(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
31 August 2006 (31.08.2006)

(10) International Publication Number

WO 2006/091252 A2

(51) International Patent Classification:
AG63F 13/00 (2006.01)

(21) International Application Number:
PCT/US2005/043671

(22) International Filing Date:
1 December 2005 (01.12.2005)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:
11/065,757 24 February 2005 (24.02.2005) US
(71) Applicant (for all designated States except US): BALLY
GAMING, INC. [US/US]; 6601 South Bermuda Road,

Las Vegas, NV 89119 (US).

(72) Inventor; and

(75) Inventor/Applicant (for US only): MORROW, James,
W. [US/US]; 5032 Pleasant View Drive, Sparks, NV 89434
(US).

(74) Agent: BROWN RAYSMAN MILLSTEIN FELDER &
STEINER LLP; 1880 Century Park East, 12th Floor, Los
Angeles, CA 90067-1621 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KM, KN, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV,
LY, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI,
NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG,
SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US,
UZ, VC, VN, YU, ZA, ZM, ZW.
(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT,
RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,
GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: SYSTEM AND METHOD FOR AN ALTERABLE STORAGE MEDIA IN A GAMING MACHINE

(BBSRAM)
on PCl card

€D

R —
i Pentium
60

BIOS+ 84

139

o
-

i DATABASE 74
L]

ROM
77

108

130 Y

50

(o) %
appllcatlo
prcvgrams) @lles
XE
OSQB @ —

@ Q\)

vervﬁcanon
software
program 96

N 1o

.

Canfg Logs
102

(57) Abstract: A system for verifying one or more downloaded components (54) of a gaming device (10) that includes the gaming

6/0912552 A2 | IV 0 O 0 O 0

device, which has an alterable hard drive (80) (or other persistent storage media (90)), and the downloaded components that further
include gaming-related content (92-96). A related method includes: enabling initiation of a game on the gaming device (10); down-
€ loading the gaming-related content (92-96) to the alterable hard drive (80) while the gaming device (10) is enabled for game play;

reading an identifier associated with the gaming-related content (92-96); verifying that the identifier is valid (using verification soft-
O ware (70)); and reconfiguring the gaming device (10) to utilize the newly-downloaded, gaming-related content (92-96) in response
to an initiating event.

WO 2006/091252 PCT/US2005/043671

SYSTEM AND METHOD FOR AN ALTERABLE STORAGE MEDIA
IN A GAMING MACHINE

COPYRIGHT NOTICE

[0001] A portion of the disclosure of this patent document contains material that is
subject to copyright protection. The copyright owner has no objection to the facsimile
reproduction by anyone of the patent document or the patent disclosure, as it appears in the
Patent and Trademark Office patent files or records, but otherwise reserves all copyright

rights whatsoever.

FIELD OF THE INVENTION

[0002] This invention relates generally to a method and apparatus for downloading data
to an alterable storage media and, more particularly, for downloading data to an alterable

storage media that is escrowed and then later verified as authorized for download.

BACKGROUND OF THE INVENTION

[0003]) It is common practice in the prior art, in the gaming machine environment, that
verification of a device may occur by testing the entire contents of a read only memory
(ROM) containing the application software for the device to ensure that tampering has not
occurred, after a prize is won during game play. An abbreviated bit string is computed from
the gaming application program and stored in a secure ROM that is separate from the ROM
where the gaming application is stored before deployment of the gaming machine. When the
gaming machine is started, or at times when verification is desired, for example, after a win
occurs during game play, a verification program calculates another abbreviated bit string
from the contents of the ROM wherein the gaming application program is stored, and the
previously computed abbreviated bit string stored in the secure ROM is used with the newly-

calculated abbreviated bit string to verify the gaming application program.

[0004] Such a verification system may be adequate where the media on which the gaming
application is stored is read-only, and therefore difficult to alter, and where there is little
danger that the other components of the device can be compromised to breach security, such
as a casino with 24-hour surveillance. However, such constant surveillance is not always
available, both inside and outside the gaming industry, and as technology advances, it
becomes more difficult to rely on these safeguards. Furthermore, the shortcomings of prior

systems become more prevalent when several devices are connected over a network.

WO 2006/091252 PCT/US2005/043671

[0005] Accordingly, there has been a long existing need for enhanced verification of
devices, and more enhanced self-critical analysis of their components other than just the

application software.

SUMMARY OF THE INVENTION

[0006] Briefly, and in general terms, the claimed invention provides an improved method
and system for verifying a device, having various components, before or during use. More
particularly, by way of example and not necessarily by way of limitation, the claimed
invention provides a system and method for verifying a device by verifying the components
of that device. The components may comprise, for example, software components, firmware
components, hardware components, or structural components of an electronic device. These
components include, without limitation, processors, persistent storage media, volatile storage
media, random access memories, read-only memories (ROMs), erasable programmable
ROM:s, data files (which are any collections of data, including executable programs in binary
or script form, and the information those programs operate upon, sound files, picture files,
and the like), device cabinets (housings) or cathode ray tubes (CRTs). Identification numbers
or strings of the components are read and then verified. The process of verifying may
comprise algorithmically verifying each identifier in a datastore to determine whether each
identification number is valid. In the case where a data file comprises one of a plurality of
operating system files, verification of that file, in effect, comprises verifying part of an

operating system. For data files, the file names may comprise the identifiers.

[0007] Preferably, the datastore may comprise a relational database, object database, a
flat file, an ASCII list, registry entries, an XML file, or any other type of commonly known
data listing. However, in the case where storage space is limited for the verification system, a
flat file structure for the database may be more desirable, and require less software
instructions to read and retrieve information therefrom. The datastore may also comprise an
independent system stack of bindings, which comprise numbers, identification strings or
signatures in the datastore for algorithmically verifying or authenticating the components, or
from manufacturers of the components, each identification number being verified using the
binding from the manufacturer of the respective component to verify the component.
Especially in the context of smaller devices such as personal digital assistants (PDAs), such a
system stack may comprise a subset of one or more global component datastores containing

bindings from manufacturers of the components, each binding of the subset being associated

WO 2006/091252 PCT/US2005/043671

with at least one of the identification numbers of one of the components in the device.
Providing such a limited subset helps control the size of the verification system by controlling
the size of the datastore. Another example of a verification system in which it may be
desirable to limit the size of the datastore is one in which the datastore is stored in a personal
computer’s (PC’s) complementary metal oxide semiconductor memory (CMOS), along with
other configuration settings for the PC. Storing the datastore in the CMOS may improve
security wherein the PC may be configured such that only users with administrative

passwords may change the content of the portion of the CMOS containing the datastore.

[0008] Structural components, such as cabinets, may contain an electronic identification
chip embedded within them, such as a so-called Dallas chip or an IBUTTON device
manufactured by Dallas Semiconductor of Dallas, Texas. These devices allow a unique
identifier, placed within a semiconductor or chip, to be placed on a component that may or
may not be electronic, such as 2 computer or gaming machine cabinet. The IBUTTON
device is a computer chip enclosed in a 16mm stainless steel can. The steel button can be
mounted, preferably permanently or semi-permanently, on or in the structural component.
Two wires may be affixed to the IBUTTON device, one on the top, and one on the bottom, to
exchange data between the IBUTTON device and a processor, serial port, universal serial bus

(USB) port, or parallel port.

[0009] The verifying process may comprise algorithmically verifying each identification
number based on the type of component that the identification number identifies. The
identification number and the type of component are algorithmically verified in the datastore
in order to verify that the identification number is valid. The reading of the identification
numbers and verifying the components may be performed at the time of start-up of the
device, or periodically during operation of the device. Operation of the device may be
stopped if any one of the identification numbers is not algorithmically verified in the
datastore. In the case of a game or gaming machine type of device, a tilt condition message is
generated, if any one of the identification numbers is not algorithmically verified in the

datastore.

[0010] The datastore may consist of a set of signatures, also called bindings. At least
with respect to the components that comprise data files or firmware, a well-known hash
function, the Secure Hash Function -1, also known as SHA-1, may be used to compute a 160-
bit hash value from the data file or firmware contents. This 160-bit hash value, also called an

abbreviated bit string, is then processed to create a signature of the game data using an

3

WO 2006/091252 PCT/US2005/043671

equally well-known, one-way, private signature key technique, the Digital Signature
Algorithm (DSA). The DSA uses a private key of a private key/public key pair, and
randomly or pseudo-randomly generated integers, to produce a 320-bit signature of the 160-
bit hash value of the data file or firmware contents. This signature is stored in the datastore
in addition to the identification number. In other preferred embodiments, a stronger Secure

Hash Function is used (e.g., SHA-256, SHA-512, and the like).

[0011] Either contained in the device, or attachable to the device, is a processor and a
memory containing executable instructions or a software program file for verification of the
components (verification software), which may itself be one of the components to verify.
The verification software may be stored on a persistent storage media, such as a hard disk
device, read only memory (ROM), electrically erasable programmable read-only memory
(EEPROM), in the aforementioned CMOS memory, battery-backed random access memory,
flash memory or other type of persistent memory. Additionally, the verification software
may also be stored on volatile storage media, such as random access memory (RAM).
Preferably, the verification software is stored in a basic input/output system (BIOS) on a
solid-state persistent memory device or chip. BIOS chips have been used for storing
verification software, such as the BIOS+ chip used by Bally Gaming, Inc. of Las Vegas, NV
in their EVO™ gaming system. Placing the verification software in the BIOS is
advantageous because the code in the BIOS is usually the first code executed upon boot or

start-up of the device, making it hard to bypass the verification process.

[0012] Alternatively, the verification software may be stored in a firmware hub, which
may comprise an electronic device or computer that stores BIOS information. In personal
computer hub technology, such as that manufactured by the Intel Corporation of Santa Clara,
California, a hub is used in place of a peripheral component interconnect (PCI) bus to connect

elements of chipsets.

[0013] The persistent storage media may be a removable storage unit such as a CD-ROM
reader, a WORM device, a CD-RW device, a floppy disk device, a removable hard disk
device, a ZIP disk device, a JAZZ disk device, a DVD device, a removable flash memory
device, or a hard card device. However, the datastore is preferably stored in a non-
removable, secure device either within the device being verified, or remotely on a server, in

order to enhance security.

WO 2006/091252 PCT/US2005/043671

[0014] The verification software executes a DSA verification of the data files and
firmware components. Also stored in the datastore is the public key of the private key/public
key pair. For each data file and firmware component, as part of the DSA verification, the
processor and verification software first computes the hash value of the digital contents of the
component using the SHA-1 algorithm. The verification software then processes or
authenticates this computed hash value, using the DSA signature verification algorithm,
which also takes, as input, the aforementioned public key stored in the datastore. The
verification part of the DSA produces a Boolean result (yes or no) as to whether the inputs
solve the algorithm. If the algorithm is not solved by the inputs, then an unexpected result is
produced, thereby failing to verify the particular component. This may cause a fault tilt to
occur to prohibit the loading operation of the device. Otherwise, use of the device is
permitted. A detailed description of the DSA can be found in the U.S. Government’s Federal
Information Processing Standards Publication (FIPS) 186-2. That publication describes each

step of the DSA signature generation and verification.

[0015] Alternatively, the set of executable instructions may use the Rivest-Shamir-
Adleman (RSA) algorithm to verify the components. Using the RSA algorithm, a first
abbreviated bit string or hash value is computed from each component’s digital contents and
encrypted into a digital signature. The digital signature is stored in the datastore along with
the identification number for the component. When the device is verified, the component is
verified by computing a second abbreviated bit string computed from the component’s digital
contents. The signature is retrieved from the datastore by searching the datastore for the
identification number. The signature is decrypted to recover the first abbreviated bit string.
The component is then verified by comparing the second abbreviated bit string with the first
abbreviated bit string. If the first and second abbreviated bit strings cannot be algorithmically
verified, then the component is not verified. As discussed below, this may cause a fault tilt to
occur to prohibit the loading operation of the device. Otherwise, use of the device is

permitted.

[0016] Instead of creating a digital signature for, or signing, each data file individually,
collections of data files may be signed together in order to speed up processing. The
abbreviated bit strings, hash values, or signatures, also called digests, of the collection of data

files are collected into a catalog file, and the catalog is signed as described above.

[0017] In some cases, it may be desirable to nevertheless allow operation of a device

even though a data file failed verification. For example, that data file may contain an error

5

WO 2006/091252 PCT/US2005/043671

caused by a number of events, such as a bad sector on a hard disk, which in turn caused the
failed verification of that data file. The failed verification is evidently not due to tampering
of the device as the system of the claimed invention is generally designed to prevent. Still,
operation of the device is not desirable unless and until the error in the data file is corrected.
When the data file is stored in alterable media, correcting such an error may be as simple as
replacing the file. Along with the identification number and encrypted signature or
abbreviated bit string, a valid replacement data file may also be stored in the datastore. If the
software program determines that the cause of the invalid file is simply due to an error in the
file, and not tampering, then the replacement file is pulled from the datastore to replace the
data file that failed the validation. A number of factors may be used by the software program
to make such a determination. For example, determination may be based on the number of
data files or components that fail validation. This may indicate a deceptive replacement of a
hard disk in the device.

[0018] In one embodiment, the datastore is remote from the device, wherein verification
is performed over a network connecting a datastore server containing the datastore with the
device. The device transmits the identification numbers for each of the components to the
datastore server. The datastore server then performs the step of algorithmically verifying.
For example, the device may be a personal computer (PC), with verification being performed
before a transaction is allowed on a network server. A prime example of such a system is one
set up for performing banking transactions with a network server owned or operated by a
bank. In such a system, a bank may only allow trusted transactions using an authorized PC
whose bindings for all of the components and banking transaction software have been
recorded in the datastore located on the bank’s network server, or another remote network
server that is accessed by the PC. Once all of the components have been verified, the bank’s

network server then allows transactions to take place using the PC.

[0019] In another example, the device comprises a gaming machine, wherein the
verification of the gaming machine is performed before game play is allowed on the gaming
machine. The datastore may either be located in a secure location in the gaming machine,
such as a ROM device enclosed in a lock box within the gaming machine, or remotely from
the gaming machine so that the gaming machine connects to a network server containing the
datastore over a network. As with the banking personal computer described above, the
components of the gaming machine are verified at the network server after the gaming

machine transmits the identification numbers, hash values, and the like, to the network server.

WO 2006/091252 PCT/US2005/043671

[0020] Another aspect of the claimed invention is a method and system for recording
event messages in a gaming machine. The device may comprise a gaming machine, which
contains a monitor for monitoring one or more system events being processed by the gaming
machine. The operating system of the gaming machine is event driven. In an event-driven
system or device, applications and components respond to input from the user (mouse
movement, keystrokes, menu choices, and the like) and messages from other applications and
components. This is in contrast to, for example, a batch operation that continuously
processes the next item from a group of instructions. The monitor comprises an event
management system, which comprises software or firmware that monitors components of the
device. Alternatively, the monitor may be located on a remote server, workstation or other
network device. The monitor, which may comprise hardware and software components, such
as a processor and event management software, monitors routine and non-routine events. As
an example, a coin insertion into a gaming machine will trigger a corresponding routine coin-
in event message that triggers components to operate software instructions to execute.
Similarly, an exception fault or divide by zero condition will trigger a non-routine or error
event message to be generated, for example. These event messages can be generally referred

to as system events.

[0021] Either included within the monitor, or separately but in close coordination with
the monitor, is a detector for detecting selected system events of the one or more system
events so that they may be recorded. The gaming machine, or the remote server monitoring

the gaming machine, stores the event message for the detected system event in a log file.

[0022] Each monitored system event has a system event type. The detector selects the
selected system event based on the system event type for the selected system event. The
system event type may be a code in the event message that indicates a category of events that
occur in the system that the system event belongs to. For example, the previously mentioned
coin-in, exception fault and divide by zero system events are each so identified with the
system event type. The detector selects the selected system event by comparing the system
event type for each monitored system event to a list of system event types, and selecting one
of the monitored system events for the selected system event if the system event type for the
selected monitored system event can be algorithmically verified with one of the system event
types on the list. Each system event is monitored and as the detector selects a plurality of
system events based on their types, the system event messages for each selected system event

are stored in a log file. The list may be stored in an index or lookup file on a persistent

WO 2006/091252 PCT/US2005/043671

storage media of one of the alterable types described above. Alternatively, the verification
software may also be stored on volatile storage media, such as random access memory
(RAM), as described above. The lookup file may comprise a datastore file, which may be
relational, object based, or in XML format, for example. The log file may also be stored on

persistent storage media.

[0023] A buffer region of a memory may be set aside for buffering a plurality of the
monitored system events, wherein the step of storing comprises storing one or more of the
buffered system events in the log file with the selected one of the system events each time
one of the system event types is detected by the detector. Preferably, the buffer should be
large enough so that at least the last 1000 system events may be stored in the buffer, and then
written if a selected system event is detected and stored. The buffer is thus operated as a

first-in-first-out stack of system event messages.

[0024] Other digital contents of memory or components in the device may be stored upon
detection of a selected system event. For example, it may be desirable to store the entire
contents of a memory component, selected contents of a memory component, or selected
entire values for registers of a processor component of the gaming machine. For example, if
a selected system event is a memory protection exception error, then it may be desirable to
store at least the contents of the protected memory that was violated and the memory
allocation tables for the offending application(s) that caused the error. Even if the memory in
which the protection exception error occurred comprises a safe or battery-backed random
access memory device, it nevertheless still may be desirable to store the contents in case other

applications should further modify the memory.

[0025] As another aspect of the claimed invention, it is desirable to perform operations on
data files, such as verification operations, such data files being stored on a persistent storage
media such as a hard disk, before or without the need for loading of the operating system for
an electronic device. Alternatively, the verification software may also be stored on volatile
storage media, such as random access memory (RAM). Typically, the operating system must
be started or booted in order to perform file access operations on the storage media. This is
because the operating system usually exclusively contains the file access system used to read
the file allocation structure stored on the storage media. However, in some devices, it would
be desirable to validate data files on the storage media before booting the operating system

for, among other reasons, security purposes.

WO 2006/091252 PCT/US2005/043671

[0026] In this regard, the system of the claimed invention has a file allocation reader
stored in the basic input/output system (BIOS) or firmware hub (FWH). This makes
accessing files stored in the persistent storage media (or volatile storage media) or device
possible in the absence of a running and operating system. The processor may access the file
allocation reader in the BIOS to open the file allocation structure on the persistent storage
media and read it. For faster access, the processor may move the contents of the file
allocation structure into a RAM. The processor may then process the file allocation structure

to provide access to files stored on the persistent storage device.

[0027] Providing this functionality in the BIOS or FWH facilitates accessing the files
stored in the storage device using a computer program stored in the basic input/output system
wherein the computer program comprises a set of executable instructions for processing the
file allocation structure. An example of such a computer program that may benefit from this
new functionality in the BIOS or FWH is the verification program-described above for
verifying software components on the persistent storage media. In that case, operating
system files may be verified, and this provides access to files stored on the storage media
through the BIOS allowing such verification to take place before the operating system is
booted, or before any software program is run from the storage media. This makes the
verification software completely independent of files stored on the persistent storage media

that are being verified.

[0028] As described above, verifying the data files may comprise verifying each data file
by retrieving a first abbreviated bit string computed from the file from the datastore,
computing a second abbreviated bit string from the data file, and verifying the file by
authenticating the second abbreviated bit string using the first abbreviated bit string. As
described above, the datastore of signatures or abbreviated bit strings may be stored in the
BIOS as well, wherein the verification software uses DSA or RSA to verify each data file
against the corresponding signature or abbreviated bit string stored in the datastore. The file
allocation reader in the BIOS or FWH may be configured to read a 32-bit based file
allocation table, a 16-bit based file allocation table, a WINDOWS NT file system structure,
or any other file allocation structure used by the persistent storage media. Once again,
alternatively, the verification software may also be stored on volatile storage media, such as

random access memory (RAM).

- [0029] In still another preferred embodiment, the claimed invention is directed towards a

method for verifying a downloaded component of a gaming device, wherein the gaming

9

WO 2006/091252 PCT/US2005/043671

device has an alterable hard drive (or other alterable storage media) and the downloaded
component includes gaming-related content. The method includes: enabling initiation of a
game on the gaming device; downloading gaming-related content to the alterable hard drive
while the gaming device is enabled for game play; reading an identifier associated with the
gaming-related content; verifying that the identifier is valid; and reconfiguring the gaming
device to utilize the newly downloaded and authenticated gaming-related content in response
to an initiating event. In one preferred embodiment of the claimed invention, the gaming-
related content is divided into modular components, and the gaming device is reconfigurable
to utilize at least one modular component of the newly-downloaded and authenticated

gaming-related content in response to an initiating event.

[0030] Upon completion and authentication of downloaded content, the gaming device is
going to wait for an initiating event in order to install or load the authenticated data. In a
preferred embodiment, “initiating events” include, by way of example only, and not by way
of limitation: (1) no credits on the game meters, (2) no activity at the game, game play, button
pushes, card-ins, printing, and the like, (3) a period of time with no activity at the game, (e.g.,
5 minutes, 10 minutes, or the like), (4) a key insertion or card insertion by an employee, (5)
accessing of a special setup screen on the game by an authorized person, (6) touching a
button or activation point on the screen in response to a message saying the new code is ready
to load, (7) a button push or activation by an operator on the casino backend, (8) a tie-in to a
video system to confirm there is no player at the game and the initiation can take place, (9) a
biometric entry at the game or at the system that authorizes initiation of the code, and (10) a
key opening and BKey (electronic key) entry to authorize installation or reconfiguration of

the software.

[0031] In a preferred embodiment of the claimed invention “reasonableness” checks are
performed as well. For example, “reasonableness” checks ensure that a gaming machine
does not try to run a piece of code in a video game that is intended to spin mechanical reels.
Additionally, logs are preferably kept and reported back that indicate information such as
date, time, who authorized the action, and what happened (e.g., success, failure, and if failure,

for what reason).

[0032] As mentioned above, gaming-related content is preferably downloaded to the
alterable hard drive (or other persistent or volatile storage media) while the gaming device is
enabled for game play. In a preferred embodiment, “enabled for game play” includes, by

way of example only, and not by way of limitation: (1) when the gaming device is in the

10

WO 2006/091252 PCT/US2005/043671

middle of a game (from start of wager until game over/ready-for-wager), (2) when the
gaming device is between games with credits on the machine, (3) when the gaming device is
between games with no credits on the machine but money-in devices enabled, (4) when the
gaming device is in attract mode, (5) when the host considers the gaming device enabled, (6)
when the gaming device is cashing out, and (7) when the gaming device is accepting money.
The above-discussed ability of the claimed invention to “download to the alterable storage
media while the gaming device is enabled for game play” is in addition to the claimed
invention’s ability to download to the gaming device is while the gaming device is in service
or turned off (i.e., not enabled for game play). However, the ability of the claimed invention
to download to the alterable storage media while the gaming device is “enabled for game
play” is a significant advancement over the abilities of traditional gaming devices and

systems.

[0033] Additionally, a gaming device is preferably reconfigured to utilize newly-
downloaded and authenticated gaming-related content when the gaming device is “not
enabled” (i.e., disabled) for game play. In this regard, in a preferred embodiment, “not
enabled” (i.e., disabled) for game play includes, by way of example only, and not by way of
limitation: (1) when the gaming device is disabled by the attendant (and the “GAME
DISABLED” message is displayed), (2) when the gaming device is disabled by host (and the
“GAME DISABLED” message is displayed), (3) when the host has sent a game disable
command to the EGM (Electronic Gaming Machine), (4) when the gaming device is in
“attendant diagnostics” mode, (5) when the main door is open, (6) when the diagnostics
menus are available (e.g., meters, game recall, GAT (Game Authentication Terminal), and

the like or in use.

[0034] Furthermore, when a gaming device is reconfigured, utilizing newly-downloaded
and authenticated gaming-related content, the gaming device is “not enabled” (i.e., disabled)
for game play. During the reconfiguration and possibly for a period of time thereafter, a
“reconfiguration announcement” is preferably made to potential players. The reconfiguration
announcement may include the “GAME DISABLED” message described above, but also
includes a message that the gaming device is being reconfigured, modified, updated, or
otherwise altered. This reconfiguration announcement may be audio and/or video. In one
preferred embodiment, the reconfiguration announcement at least includes a message on the
video screen (or other visual presentation, such as a 2-line LCD (Liquid Crystal Display),

LED (Light Emitting Diode), VF (Vacuum Fluorescent) display, and the like) stating the

11

WO 2006/091252 PCT/US2005/043671

gaming device is being reconfigured and/or was recently reconfigured so that players and
potential players are made aware that a change has occurred. In this manner, players and
potential players are kept fully informed of any changes occurring to the game that they are
playing or considering playing. In an exemplary preferred embodiment, a reconfiguration
announcement includes a message on the display screen of a gaming machine stating, “THIS
GAMING MACHINE IS BEING RECONFIGURED AND/OR HAS RECENTLY BEEN
RECONFIGURED.” One of ordinary skill in the art will appreciate that the form and
substance of this message may vary significantly without departing from the scope of the

invention,

[0035] In one aspect of a preferred embodiment, the downloaded gaming-related content
is authenticated on the alterable hard drive while the gaming device is enabled for game play.
In accordance with another aspect, the downloaded, gaming-related content is authenticated
on the alterable hard drive in response to an initiating event. In one preferred embodiment,
the gaming-related content is downloadable to a separate partition area of the alterable hard
drive while the gaming device is enabled for game play. Preferably, the gaming-related
content is downloadable to a separate partition area of the alterable hard drive while the
gaming device is enabled for game play, and wherein downloaded, gaming-related content is
escrowed for later authentication. In accordance with another aspect, the gaming-related
content is downloadable to a staging area while the gaming device is enabled for game play,

and wherein downloaded, gaming-related content is escrowed for later authentication.

[0036] Additionally, in accordance with a preferred embodiment, the step of verifying
comprises algorithmically verifying the identifier associated with the gaming-related content
to a value in a datastore to determine whether the identifier associated with the gaming-
related content is valid. Preferably, if the identifier is not algorithmically verified in the
datastore, utilization of the gaming-related content is prevented. In another preferred
embodiment, if the identifier is not algorithmically verified in the datastore, a tilt condition
message is generated. In accordance with another aspect of a preferred embodiment, the
datastore is remote from the gaming device, and verification is performed over a network that
connects the gaming device with a database server containing the datastore. In this manner,
the gaming device preferably transmits an identifier for each of the components to the

database server where the verifying step is performed.

[0037] Moreover, in accordance with a preferred embodiment, the datastore is selected

from a group consisting of a relational database, an object database, a flat file, an ASCII list,

12

WO 2006/091252 PCT/US2005/043671

registry entries, and an XML file. In one preferred embodiment, the downloaded component
includes a data file. In another preferred embodiment, the data file comprises a software
program file. In another preferred aspect, the claimed invention further includes a persistent
storage media. Preferably, the persistent storage media is a removable storage unit selected
from the group consisting of: a CD-ROM reader, a WORM device, a CD-RW device, a
floppy disk device, a removable hard disk device, a ZIP disk device, a JAZZ disk device, a

DVD device, a removable flash memory device, and a hard card device.

[0038] Furthermore, in accordance with a preferred embodiment, unsecured components
are downloaded across an unsecured network to the gaming device, after which the
components are verified in the gaming device in response to an initiating event. In one
preferred embodiment, the claimed invention also includes a network server that contains the
database server. In accordance with another preferred aspect, the claimed invention further
includes a player-viewable reconfiguration announcement that is displayed when the gaming
machine is reconfigured using the downloaded gaming-related content. Preferably, the
gaming machine is reconfigured using the gaming-related content while the gaming machine

is disabled for game play and a player-viewable reconfiguration announcement is displayed.

[0039] In accordance with one preferred embodiment, the gaming-related content is
downloaded from a server via a network. In another preferred embodiment, the gaming-
related content is downloaded from a laptop computer that is connected to at least one
gaming device without requiring an interconnecting network. In still another preferred
embodiment, the gaming-related content is downloaded from a portable device that is
connected to at least one gaming device without requiring an interconnecting network.
Further, in yet another preferred embodiment, the gaming-related content is transferred to the
gaming device from another proximately located gaming device, whereby each gaming
device forwards gaming-related content on to another gaming device, thereby serving as a

relay station.

[0040] In another preferred embodiment, the invention is directed towards a system for
verifying a downloaded component of a gaming device, wherein the gaming device has an
alterable hard drive, and wherein the downloaded component includes gaming-related
content. The system includes a gaming device for playing a game, wherein the gaming-
related content is downloadable to the alterable hard drive while the gaming device is enabled
for game play. The system includes a processor for reading an identifier associated with the

gaming-related content and for verifying that the identifier is valid. The gaming device is

13

WO 2006/091252 PCT/US2005/043671

reconfigured to utilize the newly-downloaded, gaming-related content after the gaming-

related content has been verified in response to an initiating event.

[0041] Preferably, the system further includes one or more sets of executable instructions
that are executed by the processor, wherein the executable instructions enable reading and
verifying the identifiers. In a preferred embodiment, the system further includes a persistent
storage media. Preferably, at least one of the one or more sets of executable instructions is
stored in persistent storage media. In a preferred embodiment, the persistent storage media
can be a basic input-output chip (BIOS), a firmware hub, flash memory, and/or a hard disk
device. Additionally, the persistent storage media can also be a removable storage unit,
including by way of example only, and not by way of limitation: a CD-ROM reader, a
WORM device, a CD-RW device, a floppy disk device, a removable hard disk device, a ZIP
disk device, a JAZZ disk device, a DVD device, a removable flash memory device, and a
hard card device. As discussed above, the verification software may also be stored on

volatile storage media, such as random access memory (RAM).

[0042] In one aspect of a preferred embodiment, the processor reads and verifies the
identifier in response to an initiating event. Initiating events, as described above, are events
that have been approved by gaming regulators to begin the installation and/or reconfiguration
of the newly-downloaded, gaming-related content. In another aspect of a preferred
embodiment, the processor reads and verifies the identifier periodically while the gaming
device is not enabled for game play. Preferably, the gaming device is capable of connecting
to a network, wherein the datastore is stored on a server that is remote from the gaming
device, and wherein the processor transmits an identifier to the server to algorithmically

verify an identifier in the datastore.

[0043] In yet another preferred embodiment, the invention is directed towards a method
for verifying a downloaded component of a gaming device, wherein the gaming device has an
alterable hard drive (or other alterable storage media), and wherein the downloaded
component includes gaming-related content that contains one or more data sets that have
been downloaded with a manifest. The method includes: enabling initiation of a game on the
gaming device; downloading gaming-related content to the alterable hard drive while the
gaming device is enabled for game play on the gaming device; retrieving a first abbreviated
bit string computed from each data set from a datastore; computing a second abbreviated bit
string from each of the one or more data sets; verifying each data set by authenticating the

second abbreviated bit string computed from the data set using the first abbreviated bit string;

14

WO 2006/091252 PCT/US2005/043671

and reconfiguring the gaming device to utilize the newly-downloaded, gaming-related
content in response to an initiating event. In one preferred embodiment, the alterable hard

drive is replaced with another type of alterable storage media, as described above.

[0044] Finally, in still another preferred embodiment, the invention is directed towards a
system for verifying a downloaded component of a gaming device, wherein the gaming
device has an alterable hard drive (or other alterable storage media), and wherein the
downloaded component includes the gaming-related content. The system includes a gaming
device for playing a game, a datastore, and a processor. In the gaming device, the gaming-
related content that contains one or more data sets is downloaded to the alterable hard drive
while the gaming device is enabled for game play. The datastore contains a first abbreviated
bit string computed from each of the one or more data sets that have been download with a
manifest. In one preferred embodiment, the manifest includes, by way of example only, and
not by way of limitation, a list of files, a list of individual SHA-1 hash functions, a list of
DSA signatures, combinations thereof, and the like. Additionally, the processor computes a
second abbreviated bit string from each of the one or more data sets, and verifies each data
set by authenticating the second abbreviated bit string computed from the data set using the
first abbreviated bit string. Preferably, the gaming device is reconfigured to utilize the
newly-downloaded, gaming-related content after the gaming-related content has been verified
in response to an initiating event. In one preferred embodiment, the alterable hard drive is

replaced with another type of alterable storage media.

[0045] Other features and advantages of the invention will become apparent from the
following detailed description, taken in conjunction with the accompanying drawings, which

illustrate by way of example, the features of the claimed invention.

BRIEF DESCRIPTION OF THE DRAWING

[0046] FIGURE 1 illustrates a device and components capable of verification before and

during use of the device using the system and methods of the claimed invention;
[0047] FIGURE 2 illustrates the steps for performing verification of the device of Fig. 1;

[0048] FIGURE 3 illustrates the steps performed by the system of Fig. 1 for replacing

data files that are unverified or contain errors;

[0049] FIGURE 4 illustrates the structure of a network that may be used with the device
of Fig. 1;

15

WO 2006/091252 PCT/US2005/043671

[0050] FIGURE 5 illustrates the steps preformed by a monitor in a gaming machine

embodiment of Fig. 1;

[0051] FIGURE 6 illustrates the steps for reading a file allocation structure or file

allocation table of a persistent storage media in the device of Fig. 1; and

[0052] FIGURE 7 is a logical flow diagram of a preferred method for downloading and
verifying a downloaded component 54 of a gaming device 10, in accordance with the claimed
invention, wherein the gaming device has an alterable storage media, the downloaded
component includes gaming-related content, and the gaming device is reconfigured in

response to an initiating event.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

[0053] Referring now to the drawings, like reference numerals denote like or
corresponding parts throughout the drawing figures. With reference to Fig. 1, a block
diagram illustrating a device 10 and components 50 capable of verification before and during
use of the device 10 utilizing the system and methods of the claimed invention is shown. The
components 50 may comprise, for example, software or data file components 54, firmware
components 64-74, hardware components 60, 62, 80, 90, removable flash devices, or
structural components 130 of the device 10. These components include, without limitation,
one or more processors 62, persistent storage media 80 and 90, volatile storage media such as
random access memories (RAMs) 76, read-only memories (ROMSs) 77, or electrically-
erasable, programmable ROMs (EEPROMS) such as basic input/output systems (BIOS) 64.
Components 50 may also include data files 54 (which are any collections of data, including
executable programs in binary or script form, and the information that those programs operate
upon), device cabinets (housings) 130, cathode ray tubes (CRTs) 134, or compact disk read
only memory (CDROM) or CD read-write (CR-RW) storage 80. The data files 54 may
include data files 100-104, software program files 92-96, operating system files 98, or file
allocation tables or structures 99. Ports 139 may be included with the device 10 for
connection to diagnostic systems 140 and other input/output devices 142. The ports 139 may
each comprise a serial port, universal serial bus (USB) port, parallel port or any other type of
known port, including a wireless port. Preferably, each of the components 50 have embedded
or loaded in them identification numbers or strings that can be accessed by the processor 60,
including the processor 60 itself, which are utilized for verification as explained below. The

data files 54 may use their file name as their identification number of string.

16

WO 2006/091252 PCT/US2005/043671

[0054] Either within the device 10, or in the diagnostic system 140 attachable to the
device 10, are executable instructions or a software program 70 for verification of the
components (verification software 70), which may itself be one of the components 50 to
verify if it is internal to the device 10. The verification software 70 may be stored on a
persistent storage media such as the hard disk device 90, ROM 77, EEPROM 64, in a
complementary metal oxide semiconductor memory (CMOS) 72, in safe ram comprising a
battery-backed static random access memory (BBRAM) 62, in a flash memory or other type
of persistent memory. Preferably, the verification software 70 is stored in a basic
input/output system (BIOS) 64 device or chip. BIOS chips 64 have been used for storing
prior verification software, such as previous versions of the BIOS+ chip used by Bally
Gaming, Inc. of Las Vegas, NV in their EVO gaming system. Placing the verification
software 70 in the BIOS 64 is advantageous, because the code in the BIOS 64 is usually the
first code executed upon boot or start-up of the device 10, making it hard to bypass the

verification process.

[0055] Alternatively, the verification software 70 may be stored in a firmware hub
(FWH), which may comprise the part of an electronic device 10, which may be a computer,
that stores BIOS information. Hub technology is currently being developed and used by the
Intel Corporation of Santa Clara, California. Usually, so called north and south bridges link
elements of chip sets through a peripheral component interconnect (PCI) bus. In the hub
architecture, the elements are connected via an interlink dedicated bus. This is a high-speed
bus, currently with twice the bandwidth of the PCI bus. Typically, the interlink bus operates
at 133 MHz in 2X mode. Being 64-bits wide, the interlink provides a bandwidth of 266
MB/sec (2 X 133.000.000 X 8 byte). One such hub is known as a firmware hub (FWH).
Intel’s 82802 FWH stores system BIOS and video BIOS in a 4 Mbit or 8 Mbit EEPROM or
flash EEPROM.

[0056] As another alternative, the persistent storage media that stores the verification
software 70 may be a removable storage unit such as the CD-ROM or CD-RW device 80, a
WORM device, a floppy disk device, a removable type of hard disk device 90, a ZIP disk
device, a JAZZ disk device, a DVD device, a removable flash memory device, or a hard card
type of hard disk device 90. However, the datastore 74 containing verification data used by
the verification software 70, described below, is preferably stored either within the device 10

being verified in a non-removable, secure device, such as the BIOS+ 64 shown in Fig. 1, or

17

WO 2006/091252 PCT/US2005/043671

remotely on a server for networked devices. Additionally, the verification software may also

be stored on volatile storage media, such as random access memory (RAM).

[0057] With reference to Fig. 2, a flow diagram illustrating the steps for performing
verification of the device 10 of Fig. 1 is shown. Beginning at step 200, identification
numbers of the components 50 are read and then verified. Each identification number is then
searched in the datastore 74 to determine whether each identification number is valid, step
202. The determination may be as simple as checking for whether the identification number
exists in the datastore. If the identification number is not found in the datastore 74, step 204,
then a tilt condition message is generated in the device 10, step 206, which may end operation
of the device 10.

[0058] Preferably, digital signatures of the digital contents of at least the data files 54 and
firmware of the components 50 are also used to perform verification as explained in detail
below. In the datastore record where the identification number was located in the datastore
74, an abbreviated bit string, or encrypted signature, created from the data file 54 or firmware
of the component 50 when the device 10 was first assembled or before the device 10 was
deployed, is stored. The verification software 70 contains instructions that cause the
processor 60 to read the signature from the datastore record, step 208. A digital signature
analysis is performed, step 210. If the data file 54 or firmware of the component 50 fails an
authentication, step 212, then a tilt condition message is generated in the device 10, step 206,
which may end operation of the device 10. In the case where a data file 54 comprises one of
a plurality of operating system files 98, verification of that file 54, in effect, comprises the

verifying part of an operating system 98.

[0059] Preferably, the datastore may comprise a relational database, object database, a
flat file, an ASCII list, registry entries, an XML file, or any other type of commonly known
data listing. However, in the case where storage space is limited for the verification system, a
flat file structure for the datastore 74 may be more desirable, and require less software
instructions from which to read and retrieve information. The datastore 74 may also
comprise an independent system stack of bindings from manufacturers of the components 50,
each identification number being verified using the binding from the manufacturer of the
respective component 50 to verify the component 50. Especially in the context of smaller
devices 10 such as personal digital assistants (PDAs), such a system stack may comprise a
subset of one or more global component datastores containing bindings from manufacturers

of the components 50, each binding of the subset being associated with at least one of the

18

WO 2006/091252 PCT/US2005/043671

identification numbers of one of the components 50 in the device 10. Providing such a
limited subset helps control the size of the verification system by controlling the size of the
datastore 74. Another example of a verification system in which it may be desirable to limit
the size of the datastore is one in which the datastore is stored in a personal computer’s
(PC’s) complementary metal oxide semiconductor memory (CMOS) 72, along with other
configuration settings for the PC. Storing the datastore in the CMOS 72 may improve
security wherein the PC may be configured such that only users with administrative
passwords may change the content of the portion of the CMOS 72 containing the datastore
74.

[0060] Structural components 130, such as cabinets, may contain an electronic
identification chip embedded within them, such as a Dallas chip or an IBUTTON device
manufactured by Dallas Semiconductor of Dallas Texas. IBUTTON devices allow a unique
identifier, placed within a semiconductor or chip to be placed on a component 50 that may or
may not be electronic, such as a computer or gaming machine cabinet 130. The IBUTTON
is, in effect, a computer chip enclosed in a 16mm stainless steel can. It can be mounted,

preferably permanently or semi-permanently, on or in the structural component 130.

[0061] The searching or algorithmically verifying of each identification number may
comprise algorithmically verifying each identification number based on the type of
component 50 that the identification number identifies. The identification number and the
type of component are algorithmically verified in the datastore in order to verify that the
identification number is valid. Each datastore record in the datastore 74 contains the type of
component 50 that the identification number in that record is supposed to represent. The type
of component 50 may be recognized by the verification software either by the location from
which the identification number was read, or by performing a test of each component 50 to
determine its type. For example, in some electronic devices 10, the processor 60 may always
be located at location 0 on the PCI bus or firmware hub of the device 10. Alternatively, by
testing the component 50, the verification software 70 may find registers, which may indicate
that the component 50 is a processor 60. Otherwise, the identification number itself may be

formatted to indicate the type of component 50.

[0062] The reading of the identification numbers and verifying the components 50 may
be performed at the time of start-up of the device 10, or periodically during operation of the
device 10. Operation of the device may be stopped if any one of the identification numbers

are not algorithmically verified in the datastore 74 or if the digital contents of a component 50

19

WO 2006/091252 PCT/US2005/043671

are not authenticated with the corresponding digital signature stored in the datastore 74. A
tilt condition message is generated by the verification software 70 if any one of the

identification numbers is not algorithmically verified in the datastore 74.

[0063] The signatures in the datastore 74 are also referred to as bindings. When the
components 50 are installed before the device 10 is put into operation in the relevant field of
use, at least with respect to the components 50 that comprise data files 54 or contain
firmware, a well-known hash function, the Secure Hash Function —1 (SHA-1), may be used
for authentication. The SHA-1 computes a 160-bit hash value from the contents of the data
file 54 or firmware. This 160-bit hash value, also called an abbreviated bit string, is then
processed to create a signature of the game data using an equally well-known, one-way,
private signature key technique, the Digital Signature Algorithm (DSA). The DSA uses a
private key of a private key/public key pair, and randomly or pseudo-randomly generated
integers, to produce a 320-bit signature of the 160-bit hash value of the data file 54 or
firmware contents of the component 50. This signature is stored in the datastore 74 in

addition to the identification number.

[0064] When the device 10 is in operation in the relevant field of use, to perform a
verification of the device 10, the verification software executes a DSA verification of the data
files 54 and firmware of the components 50. Also stored in the datastore 74 is the public key
of the private key/public key pair. For each data file 54 and firmware of each component 54,
as part of the DSA verification, the processor 60 and verification software 70 first computes
the hash value of the digital contents of the component 50 or data file 54 using the SHA-1
algorithm. The verification software 70 contains instructions that cause the processor 60 to
then process or authenticate this computed hash value with the stored signature, using the
DSA signature verification algorithm, which also takes, as input, the aforementioned public
key stored in the datastore 74. The verification part of the DSA produces a Boolean result
(yes or no) as to whether the inputs solve the algorithm. If the algorithm is not solved by the
inputs, then an unexpected result is produced, thereby failing to verify the particular
component 50 or data file 54. A tilt message is generated which triggers a shut-down
mechanism to prohibit the loading operation of the device 10 or to stop operation of the
device 10, if verification is performed during operation. Otherwise, use of the device 10 is
permitted. A detailed description of the DSA can be found in the U.S. Government’s Federal
Information Processing Standards Publication (FIPS) 186-2. That publication describes each

step of the DSA signature generation and verification.

20

WO 2006/091252 PCT/US2005/043671

[0065] Alternatively, the verification software 70 may use the Rivest-Shamir-Adleman
(RSA) algorithm to verify the components 50. Using the RSA algorithm, a first-abbreviated
bit string or hash value is computed from each component’s digital contents and encrypted
into a digital signature. The digital signature is stored in the datastore 74 along with the
identification number for the component 50. When the device is verified, the component 50
is verified by computing a second abbreviated bit string computed from the component’s
digital contents. The signature is retrieved from the datastore 74 by searching the datastore
74 for the identification number. The signature is decrypted to recover the first abbreviated
bit string. The component 50 is then verified by comparing the second abbreviated bit string
with the first abbreviated bit string. If the first and second abbreviated bit strings cannot be
algorithmically verified, then the component 50 is not verified. A tilt message is generated
which triggers a shut-down mechanism to prohibit the loading operation of the device 10 or
to stop operation of the device 10 if verification is performed during operation. Otherwise,

use of the device 10 is permitted.

[0066] Instead of creating a digital signature for, or signing, each data file 54
individually, collections of data files 54 may be signed together in order to speed up
processing. The abbreviated bit strings, hash values, or signatures, also called digests, of data
files 54 are collected into a catalog file, and the catalog is signed as described above. The
verification software 70 identifies each file as being a member of a particular catalog, which
can be done by cross referencing the name of the data file or the identification number, in the
datastore 74. For verification, abbreviated bit strings are computed from each of the digital
files 54, and collected into a catalog, which is itself signed, and then verified using DSA or
RSA verification techniques as described above. Thus, the catalog itself becomes a signed

data file 54 that is verified, just as if it was an individual data file 54.

[0067] With reference to Fig. 3, a flow diagram illustrating the steps performed by the
system of Fig. 1 for replacing data files 54 that are unverified or contain errors is shown. In
some cases, it may be desirable to nevertheless allow operation of a device 10 even though a
data file 54 failed verification. For example, that data file 54 may contain an error caused by
a number of events, such as a bad sector on the hard disk 90, which in turn caused the failed
verification of that data file 54. In that example, the failed verification is evidently not due to
tampering of the device 10 as the system of the claimed invention is generally designed to
prevent. Still, operation of the device 10 is not desirable unless and until the error in the data

file 54 is corrected. When the data file 54 is stored in alterable media 90, correcting such an

21

WO 2006/091252 PCT/US2005/043671

error may be as simple as replacing the file 54. Along with the identification number and
encrypted signature or abbreviated bit string, a valid replacement data file 44 may also be
stored in the datastore 74. Starting with step 300, the verification software 70 finds an invalid
data file 54 as described above with reference to Fig. 2. The verification software 70 may
contain logic that examines the failed verification to determine whether the cause of the
invalid data file 54 is simply an error in the data file 54, and not tampering, step 302. Such
logic may comprise, for example, fuzzy logic, which uses historical data to determine if the
circumstances surrounding the failed verification most likely indicate a simple error instead
of tampering. A number of factors may be used by the verification software 70 to make such
a determination. For example, determination may be based on the number of data files 54 or
components that fail verification. Historical data in the fuzzy logic may show that having a
certain percentage of failed verifications may indicate tampering of the device 10. This may
indicate a deceptive replacement of the hard disk 90 in the device 10, for example. If the
verification software indicates that tampering of the device 10 was most likely to have
occurred, step 304, then a tilt message is generated, step 306. Otherwise, a replacement data
file 54 is pulled from the datastore 74 to replace the data file 54 that failed the validation, step
308.

[0068] Alternatively, storing the replacement, or update, files in the datastore 74, the
update files may be located in the CDROM or CD-RW device 80 as indicated at 82. Storing
the update files 82 on the CD device 80 is preferable if the data files 54 are large, while the
datastore 74 itself remains stored securely in the BIOS+ 64. The update files 82 are

organized in a large update file datastore 74 for easy indexing by identification number.

[0069] With reference to Fig. 4, a block diagram illustrating the structure of a network
that may be used with the device of Fig. 1 is shown. In one embodiment, the datastore 74 is
remote from the device 10, or a plurality of devices 10, wherein verification is performed
over a network 400 connecting a database server 402 containing the datastore 74 with the
device 10. The datastore 74 is stored in a persistent storage media 490 inside or connected to
the database server 402. The device transmits the identification numbers for each of the
components 50 (Fig. 1) to the database server 402. The database server 402 then performs
the step of algorithmically verifying use of its own version of the verification software 70
described herein. For example, the device 10 may be a personal computer (PC), with
verification being performed before a transaction is allowed on a network server 404. A

prime example of such a system is one set up for performing banking transactions with the

22

WO 2006/091252 PCT/US2005/043671

network server 404 owned or operated by a bank. In such a system, a bank may only allow
trusted transactions using an authorized PC 10 whose bindings for all of the components 50
and banking transaction software (92 in Fig. 1) have been recorded in the datastore 74. The
datastore may be either located on the bank’s network server 404, or the remote network
server 402. Once all of the components have been verified, the bank’s network server 402

then allows transactions to take place using the PC 10.

[0070] In another example, the device 10 comprises a gaming machine 10, wherein the
verification of the gaming machine 10 is performed before game play is allowed on the
gaming machine. The datastore 74 may either be located in a secure location in the gaming
machine 10, such as a ROM device 77 enclosed in a lock box within the gaming machine 10,
or remotely from the gaming machine 10 so that the gaming machine 10 connects to the
network server 402 containing the datastore 74 over the network 400. As with the banking
personal computer 10 described above, the components 50 of the gaming machine 10 are
verified at the network server 402 after the gaming machine 10 transmits the identification

numbers, hash values, and the like, to the network server 402.

[0071] Another aspect of the claimed invention is a method and system for recording
event messages in a gaming machine 10. The device 10 may comprise a gaming machine 10,
which contains a monitor 108 for monitoring one or more system events being processed by
the gaming machine 10. The monitor 108 may comprise a set of executable instructions, or a
software program, which may be located in a variety of places within the gaming machine 10
ready for loading into RAM 76 for execution by the processor during operation of the gaming
machine 10. For example, the monitor 108 may be stored on the hard disk 90, ROM 77 or
BBRAM 62. Preferably, the operating system 98 of the gaming machine 10 is event driven.
In an event-driven system or device 10, applications 92 and components 50 respond to input
from the user (mouse movement, keystrokes, menu choices, and the like), and messages from
other applications 92 and components 50. This is in contrast to, for example, a batch
operation that continuously processes the next item from a group of instructions. The
monitor 108 comprises an event-management system, which comprises software or firmware
that monitors the applications 92, operating system 98 processes, and other components 50 of
the device. Alternatively, at least parts of the monitor 108 may be located on a remote server

402, workstation or other network devices.

[0072] With reference to Fig. 5, a flow diagram illustrating the steps preformed by the

monitor 108 and gaming machine 10 is shown. The monitor 108, which may alternatively

23

WO 2006/091252 PCT/US2005/043671

comprise both hardware and software components 50 in the device 10, such as its own
processor 60 and event management software 92, monitors routine and non-routine events or
event messages generated in the gaming device, step 500. As an example, a coin insertion
into the gaming machine 10 will trigger a corresponding routine coin-in event message that
triggers components 50 to operate and/or software instructions to execute. Similarly, an
exception fault or divide by zero condition will trigger a non-routine or error event message
to be generated. These event messages can be generally referred to as system events or event

messages.

[0073] Either included within the monitor 108, or separately but in close coordination
with the monitor 108, is a detector 110 for detecting selected system events of the one or
more system events so that they may be recorded, step 502. The gaming machine 10, or the
remote server 402 monitoring the gaming machine 10, stores the event message for the
detected system event in a log file 104 on a persistent storage device such as the hard disk 90

or a persistent storage media 490 on the remote server 402.

[0074] In the step of detecting, step 502, each monitored system event is of a certain type,
which, for reference purposes, can be referred to as a system event type. The detector 110
selects the selected system event based on the system event type for the selected system
event. The system event type may, for example, comprise a code in the event message that
indicates a category of events that occur in the gaming machine 10 that the system event
belongs to or from which the event message was generated. For example, the previously
mentioned coin-in, exception fault and divide by zero system events are each so identified
with the system event type. In step 502, the detector 110 selects the selected system event by
comparing the system event type for each monitored system event to a list of system event
types, and selecting one of the monitored system events for the selected system event if the
system event type for the selected monitored system event algorithmically verifies one of the
system event types in the list. Each system event is monitored and as the detector selects a
plurality of system events based on their types, the system event messages for each selected
system event is stored in the log file 104 on the hard disk 90. The list may be stored in an
index or lookup file 112 on the hard disk 90. The lookup file may comprise a datastore file

112, which may be relational, object-based, or in XML format, for example.

[0075] A buffer region of the RAM 76 may be set aside for buffering a plurality of the
monitored system events, wherein the step of storing, step 503, comprises storing one or

more of the buffered system events in the log file 104 each time one of the system event types

24

WO 2006/091252 PCT/US2005/043671

for storing is detected in step 502 by the detector 110. Preferably, the buffer in RAM 76
should be large enough so that at least the last 1000 system events may be stored in the
buffer, and then written to the log file 104 if a selected system event is detected and stored.

The buffer in RAM 76 is thus operated as a first-in-first-out stack of system event messages.

[0076] Other digital contents of memories 62 and 76, or components 50 in the gaming
machine 10 may be stored upon detection of a selected system event. It may be desirable to
store the entire contents of a memory of a component 50, selected contents of a memory ofa
component 50, or selected or entire values for registers of a processor component 60 of the
gaming machine 10. If a selected system event is a memory protection exception error, then
it may be desirable to store at least the contents of the protected memory in RAM 76 that was
violated and memory allocation tables for the offending application(s) that caused the error.
Even if the memory portion in which the protection exception error occurred comprises a safe
RAM or battery-backed memory device 62, it nevertheless still may be desirable to store the

contents of that memory 62 in case other applications should further modify the memory 62.

[0077] With reference to Fig. 6, a logical flow diagram illustrating the steps for reading a
file allocation structure or file allocation table 99 of a persistent storage media is shown. In
another aspect of the claimed invention, it is desirable to perform operations on data files 54
stored on the persistent storage media, such as verification operations, either (1) before the
operating system 98 of an electronic device 10 is loaded or (2) without the need for the
operating system 98 of an electronic device 10. Typically, the operating system 98 must be
loaded, and started or booted, in order to perform file access operations on persistent storage
media 90. This is because the operating system usually exclusively contains the file access
system used to read the file allocation structure 99 stored on the storage media 90. However,
in some devices 10, it would be desirable to validate data files 54 on the persistent storage

media 90 before booting the operating system 99 for, among other reasons, security purposes.

[0078] In that regard, the system of the claimed invention has a file allocation reader 76
stored in the BIOS or FWH 64. This makes accessing files stored in the persistent storage
media 90 possible in the absence of a running operating system 98. The processor 60 may
access the file allocation reader 76 stored in the BIOS, step 600, to open the file allocation
structure 99 on the persistent storage media 90 and to read it, step 602. The file allocation
reader 76 is a computer program which comprises a set of executable instructions for
processing the file allocation structure such as that used by the operating system 98. For

faster access, the processor 60 may move the contents of the file allocation structure 99 into a

25

WO 2006/091252 PCT/US2005/043671

RAM 76. The processor 60 may then process the file allocation structure 604 to provide

access to files stored in the storage device.

[0079] An example of such an application that may benefit from this new functionality in
the BIOS 64 is the verification software 70 described above for verifying software
components or data files 54 on the persistent storage media 90. In that case, operating system
files 98 may be verified before loading or booting, or before any software program 92 is run
from the persistent storage media 90. This makes the verification software 70 completely
independent of data files 54 stored on the persistent storage media 90 which are being
verified. Alternatively, volatile storage media, such as random access memory (RAM), could

be utilized instead of, or in addition to, persistent storage media 90.

10080] As described above, verifying the data files 54 may comprise verifying each data
file 54 by retrieving a first abbreviated bit string computed from the file from the datastore
74, computing a second abbreviated bit string from the data file 54, and verifying the file by
authenticating the second abbreviated bit string using the first abbreviated bit string. As
described above, the datastore of signatures or abbreviated bit strings 74 may be stored in the
BIOS 64 as well, wherein the verification software uses DSA or RSA to verify each data file
54 against the corresponding signature or abbreviated bit string stored in the datastore 74.
The file allocation reader 76 in the BIOS or FWH 64 may be configured to read a 32-bit
based file allocation table 99, a 16-bit based file allocation table 99, a WINDOWS NT file
system structure 99, or any other file allocation structures 99 used by the persistent storage

media 90.

[0081] Referring again to Figs. 1 and 4, another preferred embodiment is directed
towards a method for verifying one or more downloaded components 54 of a gaming device
10, wherein the gaming device has an alterable hard drive 80 (or other persistent storage
media 90) and the downloaded components include gaming-related content 92-96. In one
embodiment, the method includes: enabling initiation of a game on the gaming device 10;
downloading gaming-related content 92-96 to the alterable hard drive 80 while the gaming
device 10 is enabled for game play; reading an identifier associated with the gaming-related
content 92-96; verifying that the identifier is valid (using verification software 70); and
reconfiguring the gaming device 10 to utilize the newly-downloaded, gaming-related content
92-96 in response to an initiating event. Initiating events, as described above, are events that
have been approved by gaming regulators to begin the installation and/or reconfiguration of

the newly-downloaded, gaming-related content. In another embodiment, the gaming device

26

WO 2006/091252 PCT/US2005/043671

utilizes volatile storage media, such as random access memory (RAM), instead of, or in

addition to, persistent storage media 90.

[0082] Preferably, this method further includes writing the downloaded gaming-related
content 92-96 to the alterable hard drive 80 while the gaming device is enabled for game
play. In another preferred embodiment, the downloading of gaming-related content 92-96 to
the alterable hard drive 80 occurs while the gaming device 10 is active. Yet in another
embodiment, the gaming-related content 92-96 is downloadable to a separate partition area of
the alterable hard drive 80 while the gaming device is enabled for game play. In such
embodiments, downloaded gaming-related content 92-96 is preferably escrowed (or
otherwise downloaded to some type of staging area) for later authentication. For example
(and not by way of limitation), a first game may be in progress while a second game (e.g.,
gaming-related content 92-96) is downloaded and written to some portion of the alterable
hard drive 80 for later authentication. In this manner the apparent download time for
changing or otherwise reconfiguring games is significantly reduced while still allowing for
adequate safeguards to meet gaming regulations. Preferably, these adequate safeguards
include verification methods such as RSA, DSA and SHA-1, which have been discussed in

detail above.

[0083] A preferred method also includes algorithmic verification associated with the
identifier associated with the gaming-related content 92-96 to a number in a datastore 74 to
determine whether the identifier associated with the gaming-related content is valid.
Typically, this algorithmic verification is performed using executable instructions or
verification software 70. Preferably, the downloaded components 54 include data files.
Further, the data files preferably include software program files, such as gaming-related
content 92-96. In one preferred embodiment, the method also includes replacing a file if the
file is not valid. Additionally, the method also preferably includes preventing utilization of
the gaming-related content 92-96 if the identifier is not algorithmically verified in the
datastore 74. Preferably, the method also includes generating a tilt condition message if the

identifier is not algorithmically verified in the datastore 74.

[0084] In one preferred embodiment, the datastore 74 is remote from the gaming device
10 and the verification is performed over a network 400 that connects a database server 402
containing the datastore with the gaming device. Preferably, the gaming device 10 transmits
the identifier for each component 54 to the database server 402, and the database server

performing the step of algorithmically verification. In one embodiment, the gaming device

27

WO 2006/091252 PCT/US2005/043671

10 includes a computer having one or more components 54 that must be verified, preferably
using verification software 70, before a transaction is allowed on the server. Further, in one
preferred embodiment, a network server 404 contains the database server 402. Preferably,
the datastore 74 comprises a relational database or an object database and is in XML format.
Additionally, the datastore 74 preferably comprises an independent system stack of bindings,
and an identifier is verified using a binding to verify a downloaded component 54.

Preferably, the datastore 74 is stored in CMOS 72 memory or in BIOS 64.

[0085] Referring again to Fig. 1, in a preferred embodiment system for verifying a
downloaded component 54 of a gaming device 10, the gaming device has an alterable hard
drive 80 and the downloaded component includes gaming-related content 92-96. The system
includes a gaming device 10 for playing a game, wherein gaming-related content 92-96 is
downloadable to the alterable hard drive 80 while the gaming device is enabled for game
play. The system includes a processor 60 for reading an identifier associated with the
gaming-related content 92-96 and for verifying that the identifier is valid. The gaming device
10 is reconfigured to utilize the newly-downloaded, gaming-related content 92-96 after the
gaming-related content has been verified in response to an initiating event. Initiating events,
as described above, are events that have been approved by gaming regulators to begin the

installation and/or reconfiguration of the newly-downloaded, gaming-related content.

[0086] Preferably, the system further includes one or more sets of executable instructions
that are executed by the processor 60, wherein the executable instructions enable reading and
verifying the identifiers. In a preferred embodiment, the system further includes a persistent
storage media 90. Preferably, at least one of the one or more sets of executable instructions is
stored in persistent storage media 90. In a preferred embodiment, the persistent storage
media 90 can be a basic input-output chip (BIOS) 64, a firmware hub, flash memory, and/or a
hard disk device. Additionally, the persistent storage media 90 is preferably a removable
storage unit, including by way of example only, and not by way of limitation: a CD-ROM
reader, a WORM device, a CD-RW device, a floppy disk device, a removable hard disk
device, a ZIP disk device, a JAZZ disk device, a DVD device, a removable flash memory
device, and a hard card device. Aiternatively, the system utilizes volatile storage media, such

as random access memory (RAM), instead of, or in addition to, persistent storage media 90.

[0087] Preferably, the processor 60 reads and verifies the identifier in response to an
initiating event. In such a preferred embodiment, the processor 60 reads and verifies the

identifier periodically while the gaming device is not enabled for game play. Referring again

28

WO 2006/091252 PCT/US2005/043671

to Fig. 4, the gaming device 10 is capable of connecting to a network 400, wherein the
datastore 74 is stored on a server that is remote from the gaming device, and wherein the
processor 60 transmits an identifier to the server to algorithmically verify an identifier in the

datastore.

[0088] Referring now to Fig. 7, in a preferred method for verifying a downloaded
component 54 of a gaming device 10, the gaming device has an alterable hard drive 80 and
the downloaded component includes gaming-related content 92-96 having one or more
modular components that are downloadable with a manifest. The method includes: at Step
700, enabling initiation of a game on the gaming device 10; at Step 710, downloading
gaming-related content 92-96 to the alterable storage media 80 while the gaming device 10 is
enabled for game play; at Step 720, reading an identifier associated with the gaming-related
content; at Step 730, verifying that the identifier is valid; at Step 740, reconfiguring the
gaming device to utilize at least one modular component of the newly-downloaded and
authenticated gaming-related content in response to an initiating event; and at Step 750, while
the gaming machine is being reconfigured and is disabled for game play, displaying a player-

viewable reconfiguration announcement.

[0089] Finally, in another preferred system for verifying a downloaded component 54 of
a gaming device 10, once again, the gaming device has an alterable hard drive 80 and the
downloaded component 54 includes gaming-related content 92-96. The system includes a
gaming device 10 for playing a game, a datastore 74, and a processor 60. In the gaming
device 10, the gaming-related content 92-96 that contains one or more data sets is
downloadable to the alterable hard drive 80 while the gaming device is enabled for game
play. The datastore 74 contains a first abbreviated bit string computed from each of the one
or more data sets that have been download with a manifest. Additionally, the processor 60
computes a second abbreviated bit string from each of the one or more data sets, and verifies
each data set by authenticating the second abbreviated bit string computed from the data set
using the first abbreviated bit string. Preferably, the gaming device 10 is reconfigured to
utilize the newly-downloaded, gaming-related content 92-96 after the gaming-related content
has been verified in response to an initiating event. Further, in one preferred embodiment,
the alterable hard drive 80 is replaced or supplemented with another type of alterable storage

media 90.

[0090] Furthermore, the various methodologies described above are provided by way of

illustration only and should not be construed to limit the invention. Those skilled in the art

29

WO 2006/091252 PCT/US2005/043671

will readily recognize various modifications, and changes may be made to the claimed
invention without departing from the true spirit and scope of the claimed invention.
Accordingly, it is not intended that the invention be limited, except as by the appended

claims.

30

WO 2006/091252 PCT/US2005/043671

WHAT IS CLAIMED:

1. A method for verifying a downloaded component of a gaming device, wherein the
gaming device has an alterable hard drive, and wherein the downloaded component includes
gaming-related content, the method comprising:

enabling initiation of a game on the gaming device;

downloading gaming-related content to the alterable hard drive while the gaming
device is enabled for game play;

reading an identifier associated with the gaming-related content;

verifying that the identifier is valid; and

reconfiguring the gaming device to utilize the newly-downloaded, gaming-related

content in response to an initiating event.

2. The method of claim 1, wherein the downloaded gaming-related content is

authenticated on the alterable hard drive while the gaming device is enabled for game play.

3. The method of claim 1, wherein the downloaded gaming-related content is

authenticated on the alterable hard drive in response to an initiating event.

4. The method of claim 1, wherein the gaming-related content is downloadable to a

separate partition area of the alterable hard drive while the gaming device is enabled for game

play.

5. The method of claim 1, wherein the gaming-related content is downloadable to a
separate partition area of the alterable hard drive while the gaming device is enabled for game

play, and wherein downloaded gaming-related content is escrowed for later authentication.

6. The method of claim 1, wherein the gaming-related content is downloadable to a
staging area while the gaming device is enabled for game play, and wherein downloaded

gaming-related content is escrowed for later authentication.

7. The method of claim 1, wherein the step of verifying comprises algorithmically
verifying the identifier associated with the gaming-related content to a value in a datastore to

determine whether the identifier associated with the gaming-related content is valid.

8. The method of claim 7, further comprising preventing utilization of the gaming-

related content if the identifier is not algorithmically verified in the datastore.

31

WO 2006/091252 PCT/US2005/043671

9. The method of claim 7, further comprising generating a tilt condition message if the

identifier is not algorithmically verified in the datastore.

10. The method of claim 7, wherein the datastore is remote from the gaming device,
wherein the verification is performed over a network that connects the gaming device with a
database server containing the datastore, and wherein the gaming device transmits an
identifier for each of the components to the database server where the verifying step is

performed.

11. The method of claim 7, wherein the datastore is selected from a group consisting of a
relational database, an object database, a flat file, an ASCII list, registry entries, and an XML
file.

12. The method of claim 1, wherein the downloaded component includes a data file.
13. The method of claim 12, wherein the data file comprises a software program file.
14. The method of claim 1, further comprising a persistent storage media.

15. The method of claim 14, wherein the persistent storage media is a removable storage
unit selected from the group consisting of: a CD-ROM reader, a WORM device, a CD-RW
device, a floppy disk device, a removable hard disk device, a ZIP disk device, a JAZZ disk

device, a DVD device, a removable flash memory device, and a hard card device.

16. The method of claim 1, wherein unsecured components are downloaded across an
unsecured network to the gaming device, and wherein the components are verified in the

gaming device in response to an initiating event.

17. The method of claim 1, further comprising a network server containing the database

Server.

18. The method of claim 1, wherein a player-viewable reconfiguration announcement is
displayed when the gaming machine is reconfigured using the downloaded gaming-related

content.

19. The method of claim 1, wherein a gaming machine is reconfigured using gaming-
related content while the gaming machine is disabled for game play and a player-viewable

reconfiguration announcement is displayed.

32

WO 2006/091252 PCT/US2005/043671

20. The method of claim 1, wherein the gaming-related content is downloaded from a

server via a network.

21. The method of claim 1, wherein the gaming-related content is downloaded from a
Japtop computer that is connected to at least one gaming device without requiring an

interconnecting network.

22. The method of claim 1, wherein the gaming-related content is downloaded from a
portable device that is connected to at least one gaming device without requiring an

interconnecting network.

23, The method of claim 1, wherein the gaming-related content is transferred to the
gaming device from another, proximately-located gaming device, whereby each gaming
device forwards gaming-related content on to another gaming device, thereby serving as a

relay station.

24. A system for verifying a downloaded component of a gaming device, wherein the
gaming device has an alterable hard drive, and wherein the downloaded component includes
the gaming-related content, the system comprising:

a gaming device for playing a game, wherein gaming-related content is downloadable
to the alterable hard drive while the gaming device is enabled for game play on the gaming
device; and

a processor for reading an identifier associated with the gaming-related content and
for verifying that the identifier is valid, wherein the gaming device is reconfigured to utilize
the newly-downloaded, gaming-related content after the gaming-related content has been

verified and in response to an initiating event.

25. The system of claim 24, wherein the downloaded gaming-related content is

authenticated on the alterable hard drive while the gaming device is enabled for game play.

26. The system of claim 24, wherein the downloaded gaming-related content is

authenticated on the alterable hard drive in response to an initiating event.

97. The method of claim 24, wherein the gaming-related content is downloadable to a

separate partition area of the alterable hard drive while the gaming device is enabled for game

play.

33

WO 2006/091252 PCT/US2005/043671

28. The system of claim 24, wherein the gaming-related content is downloadable to a
separate partition area of the alterable hard drive while the gaming device is enabled for game

play, and wherein downloaded gaming-related content is escrowed for later authentication.

29. The system of claim 24, wherein the gaming-related content is downloadable to a
staging area while the gaming device is enabled for game play, and wherein downloaded

gaming-related content is authenticated in response to an initiating event.

30. The system of claim 24, further comprising one or more sets of executable
instructions that are executed by the processor, wherein the executable instructions enable

reading and verifying the identifiers.
31. The system of claim 24, further comprising a persistent storage media.

32. The system of claim 31, wherein at least one of the one or more sets of executable

instructions are stored in persistent storage media.

33. The system of claim 31, wherein the persistent storage media is a basic input-output

chip.
34. The system of claim 29, wherein the persistent storage media is a firmware hub.
35. The system of claim 31, wherein the persistent storage media is a hard disk device.

36. The system of claim 31, wherein the persistent storage media is a removable storage
unit selected from the group consisting of: a CD-ROM reader, a WORM device, a CD-RW
device, a floppy disk device, a removable hard disk device, a ZIP disk device, a JAZZ disk

device, a DVD device, a removable flash memory device, and a hard card device.
37. The system of claim 31, wherein the persistent storage media is a flash memory.

38. The system of claim 24, further comprising a datastore, wherein the processor verifies
an identifier by algorithmically verifying the identifier in the datastore to confirm that the

identifier is valid.
39, The system of claim 24, wherein the downloaded component includes a data file.

40. The system of claim 39, wherein the data file comprises a software program file.

34

WO 2006/091252 PCT/US2005/043671

41. The system of claim 24, further comprising a volatile storage media.

42. The system of claim 24, wherein the processor reads and verifies the identifier while

the gaming device is enabled for game play.

43. The system of claim 24, wherein the processor reconfigures the gaming-related

content while the gaming device is not enabled for game play.

44. The system of claim 24, wherein a player-viewable reconfiguration announcement is
displayed when the gaming machine is reconfigured using the downloaded gaming-related

content.

45. The system of claim 24, wherein a gaming machine is reconfigured using gaming-
related content while the gaming machine is disabled for game play and a player-viewable

reconfiguration announcement is displayed.

46. The system of claim 38, wherein a tilt condition message is generated if an identifier

is not algorithmically verified in the datastore.

47. The system of claim 38, wherein the datastore is remote from the gaming device,
wherein the verification is performed over a network that connects the gaming device with a
database server containing the datastore, and wherein the gaming device transmits an
identifier for each of the components to the database server where the verifying step is

performed.

48. The system of claim 38, wherein the datastore is selected from a group consisting of a
relational database, an object database, a flat file, an ASCII list, registry entries, and an XML
file.

49. The system of claim 24, wherein unsecured components are downloaded across an
unsecured network to the gaming device, and wherein the components are verified in the

gaming device in response to an initiating event.

50. The system of claim 24, wherein the gaming-related content is downloaded from a

server via a network.

35

WO 2006/091252 PCT/US2005/043671

51. The system of claim 24, wherein the gaming-related content is downloaded from a
laptop computer that is connected to at least one gaming device without requiring an

interconnecting network.

52. The system of claim 24, wherein the gaming-related content is downloaded from a
portable device that is connected to at least one gaming device without requiring an

interconnecting network.

53. The system of claim 24, wherein the gaming-related content is transferred to the
gaming device from another, proximately-located gaming device, whereby each gaming
device forwards gaming-related content on to another gaming device, thereby serving as a

relay station.

54. A method for verifying a downloaded component of a gaming device, wherein the
gaming device has an alterable hard drive, and whérein the downloaded component includes
the gaming-related content that contains one or more data sets that have been download with
a manifest, the method comprising:

enabling initiation of a game on the gaming device;

downloading gaming-related content to the alterable hard drive while the gaming
device is enabled for game play;

retrieving a first abbreviated bit string computed from each data set from a datastore;

computing a second abbreviated bit string from each of the one or more data sets;

verifying each data set by authenticating the second abbreviated bit string computed
from the data set using the first abbreviated bit string; and

reconfiguring the gaming device to utilize the newly-downloaded, gaming-related

content in response to an initiating event.

55. A system for verifying a downloaded component of a gaming device, wherein the
gaming device has an alterable hard drive, and wherein the downloaded component includes
gaming-related content having one or more modular components, the system comprising:

a gaming device for playing a game, wherein gaming-related content contains one or
more data sets and is downloadable to the alterable hard drive while the gaming device is
enabled for game play;

a datastore containing a first abbreviated bit string computed from each of the one or

more data sets that have been download with a manifest; and

36

WO 2006/091252 PCT/US2005/043671

a processor for computing a second abbreviated bit string from each of the one or
more data sets, and for verifying each data set by authenticating the second abbreviated bit
string computed from the data set using the first abbreviated bit string, wherein the gaming
device is reconfigured to utilize the newly downloaded gaming-related content after at least
one modular component of the gaming-related content has been verified in response to an

initiating event.

56. A method for verifying a downloaded component of a gaming device, wherein the
gaming device has an alterable storage media, and wherein the downloaded component
includes gaming-related content having one or more modular components, the method
comprising: a

enabling initiation of a game on the gaming device;

downloading gaming-related content to the alterable storage media while the gaming
device is enabled for game play;

reading an identifier associated with the gaming-related content;

verifying that the identifier is valid; and

reconfiguring the gaming device to utilize at least one modular component of the

newly-downloaded, gaming-related content in response to an initiating event.

57. A system for verifying a downloaded component of a gaming device, wherein the
gaming device has an alterable storage media, and wherein the downloaded component
includes gaming-related content having one or more modular components, the system
comprising:

a gaming device for playing a game, wherein gaming-related content is downloadable
to the alterable storage media while the gaming device is enabled for game play; and

a processor for reading an identifier associated with the gaming-related content and
for verifying that the identifier is valid, wherein the gaming device is reconfigured to utilize
at least one modular component of the newly-downloaded, gaming-related content after the

gaming-related content has been verified and in response to an initiating event.

37

PCT/US2005/043671

WO 2006/091252

177

sbo Biyuon

201

001
oy demg

dX
6
saji4 eipajy

z8
sa|l} ajepdn

08

psppaqiug

96 weiboud
alemyos
UONBOLLIBA

6
swelboid
uonesidde

0s

14

(30

)
o2

([0}]

v]

¥/ asvav.iva

~

A

2. SOND
¥9 +S0I9

N

I

pied |9d uo
(wvsasa)

09
wnnuad

N 0E)

[Z27

6el

| "bi-

WO 2006/091252 PCT/US2005/043671

27

FOR EACH
COMPONENT

READID . 200

SEARCH
DATABASE [V 202
FOR ID

TILT
CONDITION

4

FOUND IN
DB?

\, 206

YES

READ DIGITAL
SIGNATURE FROM
DATABASE
REC¢ORD

), 208

PERFORM DIGITAL
SIGNATURE ~, 210
ANALYSIS

AUTHENTICATED?

YES
A 4

END LOOP

Fig. 2

WO 2006/091252 PCT/US2005/043671

37
VERIFICATION
OF DIGITAL [\ 300
FILE FAILS
v
INTELLIGENT LOGIC
DETERMINES IF SIMPLE ERROR | ...
OR INDICATIVE OF TAMPERING
OF DEVICE
. 304
TAMPERING TILT
INDICATED? YES™ conpiion[v 3%
NO
REPLACE DIGITAL
FILE "y 308

Fig. 3

WO 2006/091252 PCT/US2005/043671

4/7
e
T\ ‘
o] Y (R,
gl e
J \

' vl P-

Fig. 4

WO 2006/091252

S

MONITOR
EVENTS

~, 500

DETECT
SELECTED

SYSTEM EVENTS [W02
FOR RECRODING|

v

STORE DETECTED
SYSTEM EVENTS

A\, 503

Fig. 5

PCT/US2005/043671

WO 2006/091252 PCT/US2005/043671

6/7

ACCESS FILE
ALLOCATION [M\B00
READER

:

OPEN AND READ
FILE

ALLOCATION [602

STRUCTURE

v

PROCESS FILE
ALLOCATION |, 604
STRUCTURE

Fig. 6

WO 2006/091252

7

PCT/US2005/043671

enabling initiation of a
game on a gaming device

" 700

downloading gaming-related content to a separate
partition area of an alterable storage media while
the gaming device is enabled for game play

710

reading an identifier associated
with the gaming-related content

720

verifying that the identifier is valid

730

reconfiguring the gaming device to utilize the
newly-downloaded and authenticated gaming-
related content in response to an initiating event

740

while the gaming machine is being reconfigured
and is disabled for game play, displaying a player-
viewable reconfiguration announcement

750

Fig. 7

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

