

US 20030195738A1

(19) **United States**

(12) **Patent Application Publication**

Shoyama

(10) **Pub. No.: US 2003/0195738 A1**

(43) **Pub. Date: Oct. 16, 2003**

(54) **INFORMATION PROCESSING SYSTEM FOR SHARING INTERNAL AUXILIARY STORAGE DEVICE**

(52) **U.S. Cl. 703/25**

(75) Inventor: **Takahiko Shoyama, Hadano-shi (JP)**

(57) **ABSTRACT**

Correspondence Address:
MATTINGLY, STANGER & MALUR, P.C.
Suite 370
1800 Diagonal Road
Alexandria, VA 22314 (US)

(73) Assignee: **Hitachi, Ltd.**

(21) Appl. No.: **10/419,187**

(22) Filed: **Apr. 21, 2003**

Related U.S. Application Data

(62) Division of application No. 09/361,973, filed on Jul. 28, 1999, now Pat. No. 6,574,589.

Foreign Application Priority Data

Jul. 29, 1998 (JP) 10-214326

An OS executed by a CPU employed in an information processing apparatus prepares a series of CCW commands and data to be transmitted or an area for receiving data in a main storage device, and issues a request to start an operation of an I/O function to an auxiliary-storage-device control unit. Receiving the request to start an operation of the I/O function, the auxiliary-storage-device control unit emulates each command in the series of CCWs to transmit or receive the data to or from another information processing apparatus, generating a command set to request the other information processing apparatus employing an embedded disk unit that information be read out from the disk unit. As requested by this command set, the embedded disk unit outputs a response and the information to the information processing apparatus preparing the series of CCW commands by way of a communication unit employed in the other information processing apparatus and a communication bus before the data is exchanged between the apparatuses. Finally, the data is transmitted to or received from the other information processing apparatus.

As a result, the embedded disk unit employed in the other information processing apparatus as an internal auxiliary storage device can be accessed by the information processing apparatus preparing the series of CCW commands at a high speed.

(51) Int. Cl.⁷ **G06F 9/455**

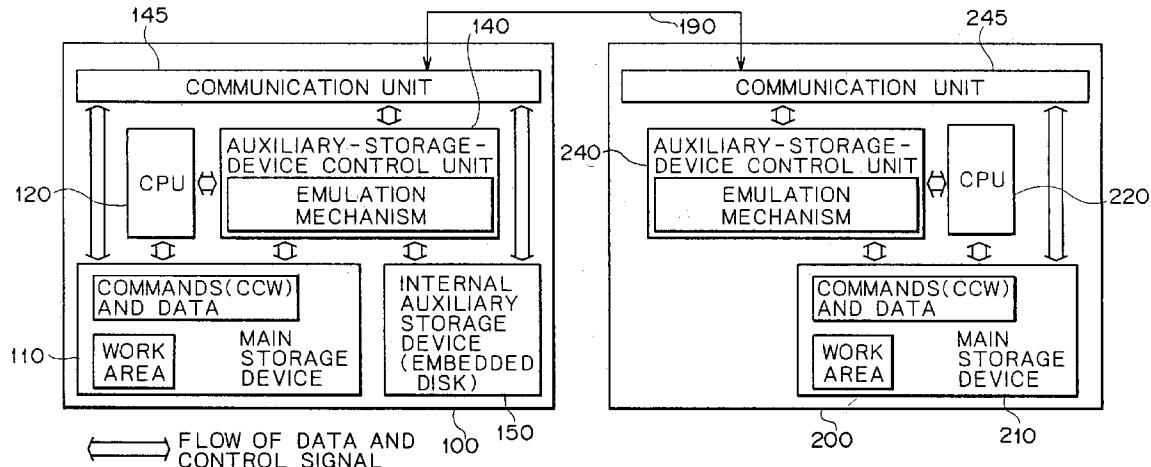
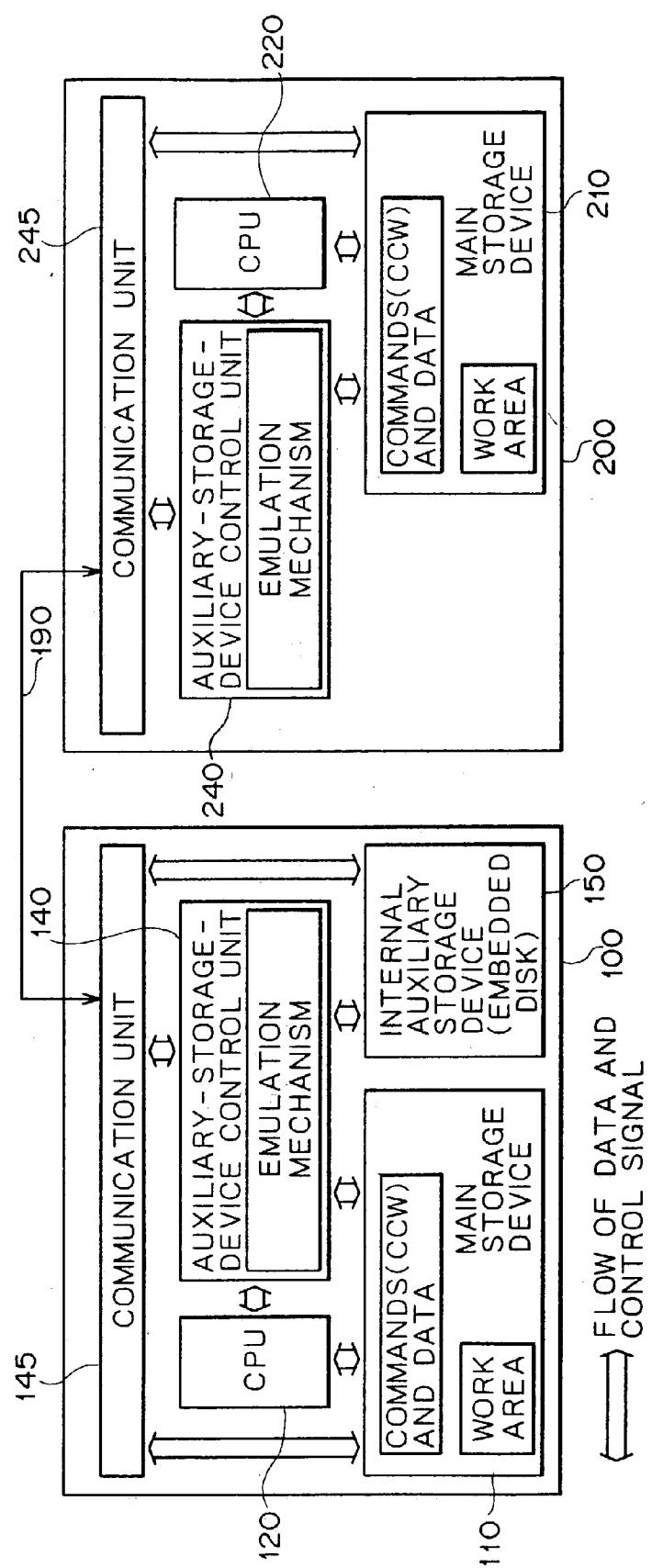



FIG. 1

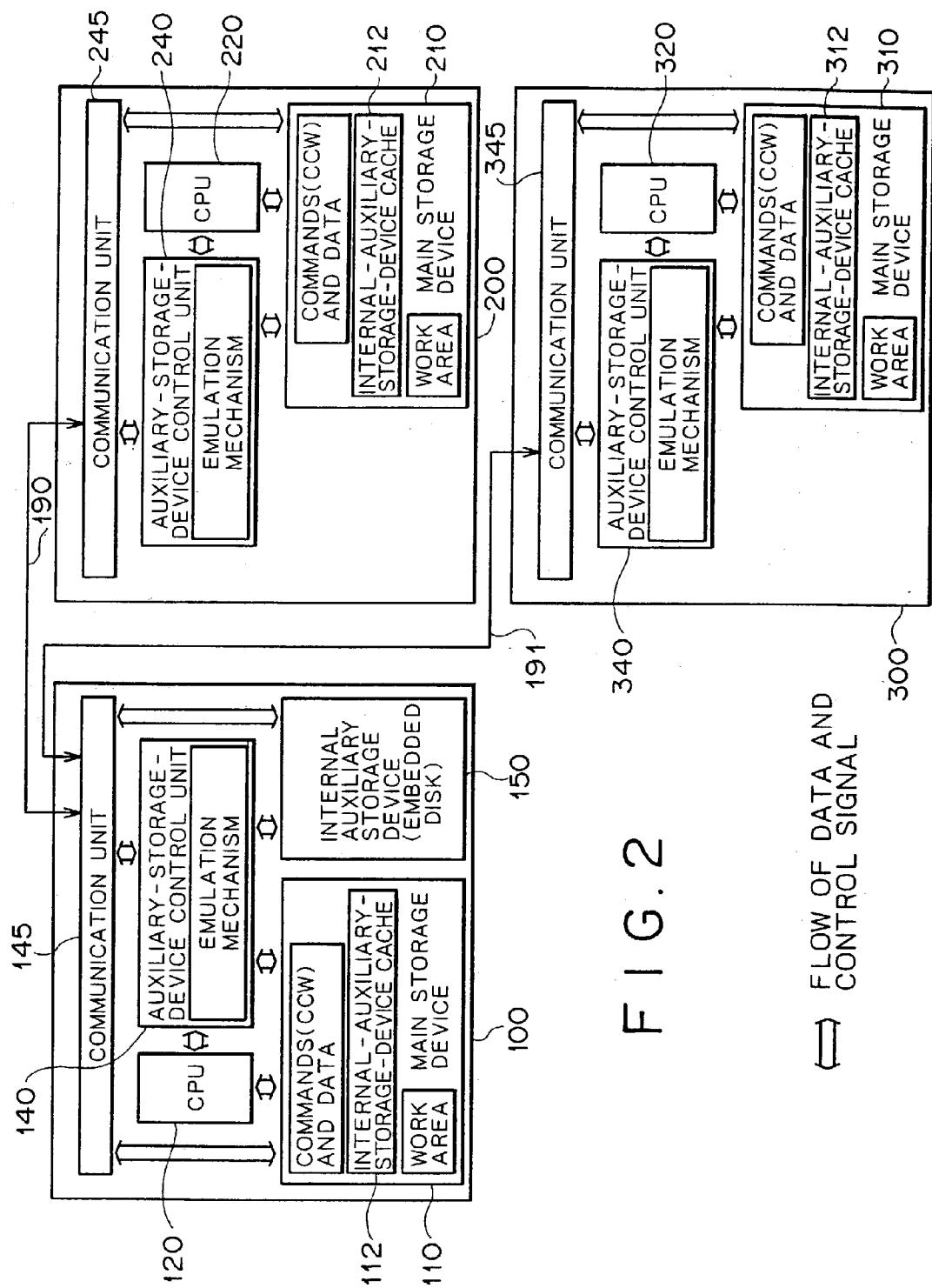
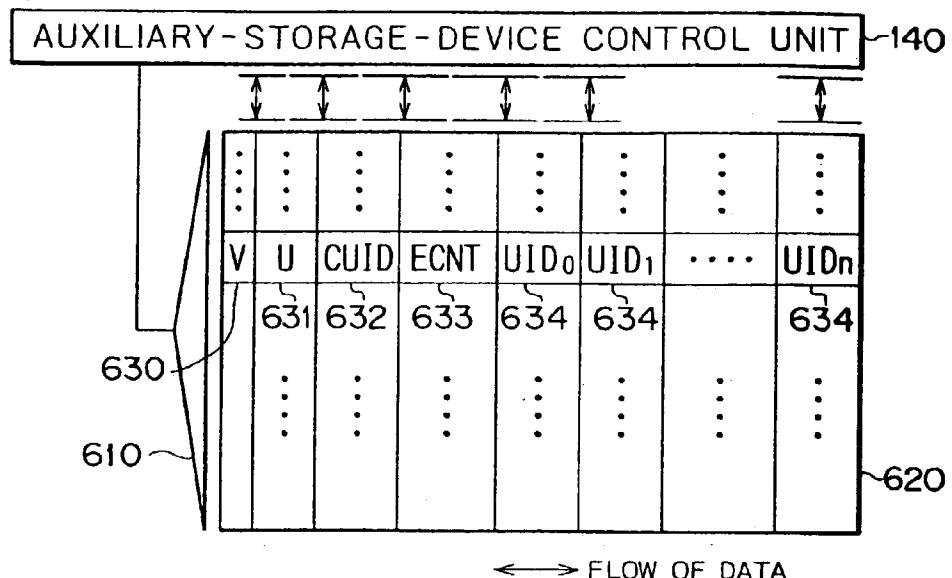
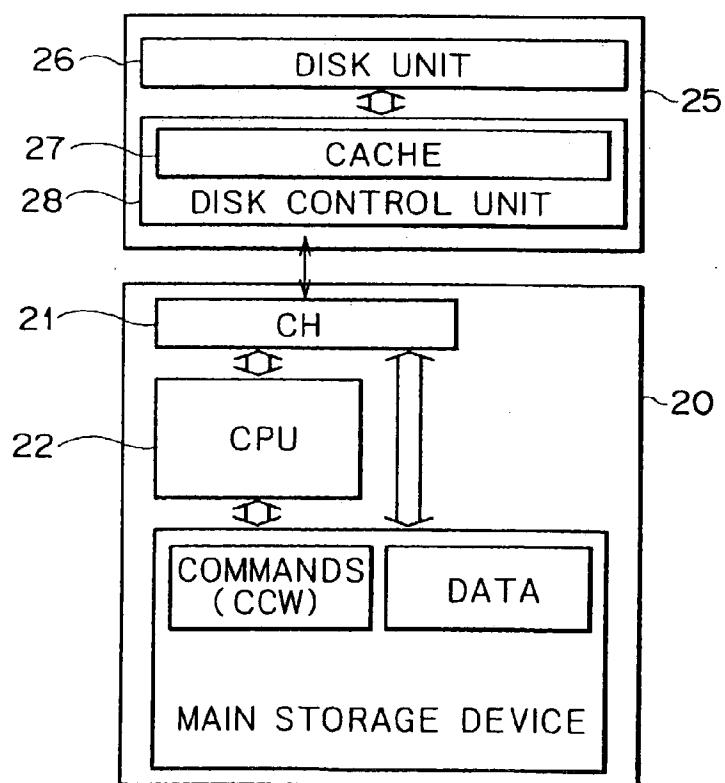


FIG. 2

⇒ FLOW OF DATA AND
CONTROL SIGNAL

FIG. 3

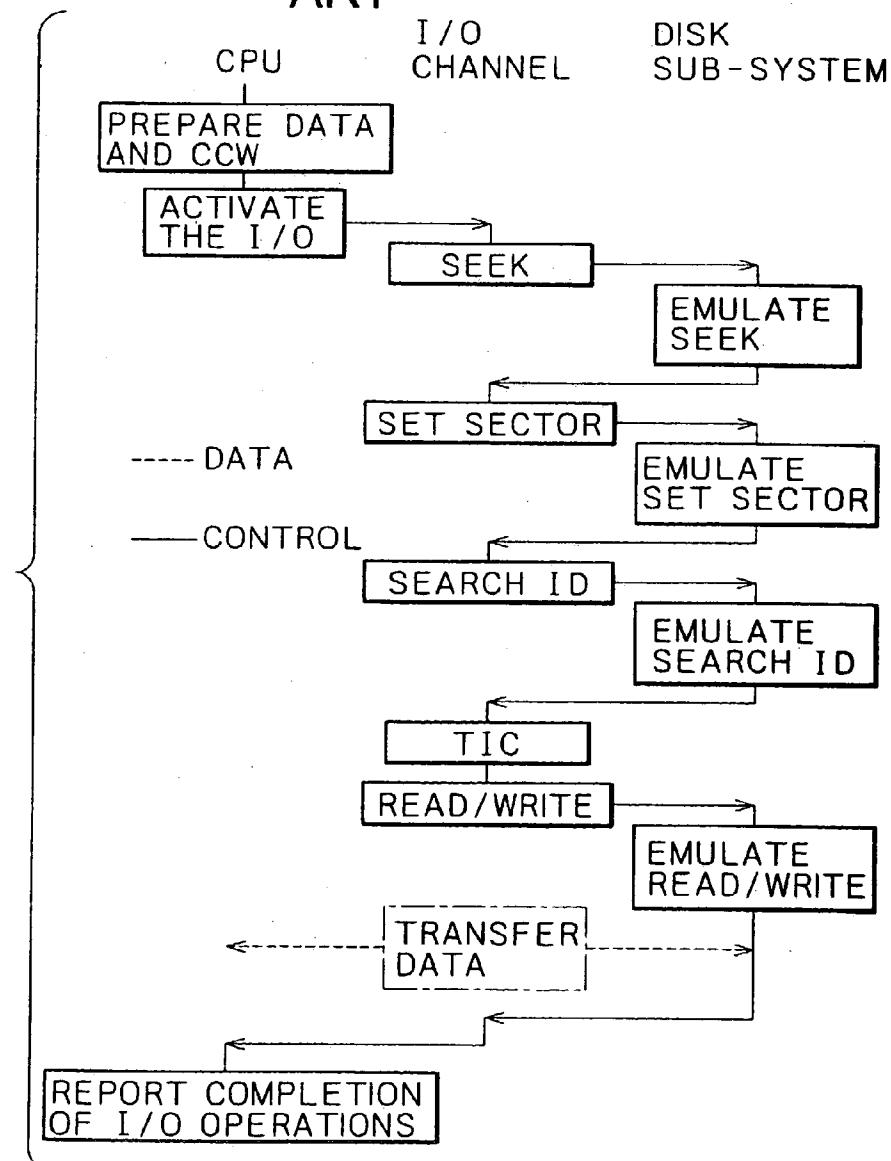

FIG. 4 PRIOR ART

FIG. 5 PRIOR ART

SEEK	~30
SET SECTOR	~31
SEARCH ID	~32
TIC	~33
READ/WRITE	~34

FIG. 6 PRIOR ART

INFORMATION PROCESSING SYSTEM FOR SHARING INTERNAL AUXILIARY STORAGE DEVICE

BACKGROUND OF THE INVENTION

[0001] The present invention relates to an input/output control system. More particularly, the present invention relates to an input/output control system suitable for an application in which accesses to an internal auxiliary storage device such as a disk unit embedded in an information processing apparatus are made by another information processing apparatus.

[0002] A general-purpose information processing system or the like normally employs a disk unit as an element of an auxiliary storage sub-system. Thus, the information processing system needs to carry out operations to input and output data from and to the disk unit.

[0003] FIG. 4 is a block diagram showing a typical configuration of an information processing system employing a disk unit based on a prior art. FIG. 5 is an explanatory diagram showing an example of a series of channel commands and FIG. 6 is an explanatory diagram showing a typical flow of commands and data between an information processing apparatus and a disc sub-system. An input/output control system based on the prior art is explained by referring to FIGS. 4 to 6. In FIG. 4, reference numerals 20 and 21 denote an information processing apparatus and an input/output (I/O) channel. Reference numeral 22 denotes a central processing unit (CPU) and reference numeral 25 denotes a disc-subsystem. Reference numerals 26 and 27 denote a disk unit and a cache respectively. Reference numeral 28 denotes a disc control unit.

[0004] The information processing system based on the prior art as shown in FIG. 4 comprises the information processing apparatus 20 and the disc-subsystem 25. The information processing apparatus 20 includes a plurality of I/O channels 21 for controlling exchanges of information between the information processing apparatus 20 and external equipment such as the disc-subsystem 25. The I/O channels 21 are connected to the disc sub-system 25 which comprises a plurality of disk units 26 each having a fixed-length format (FBA format) and the disc control unit 28 including the cache 27. The disk units 26 operate under control executed by the disc control unit 28.

[0005] The I/O channel 21 issues a necessary command to the disc control unit 28 in order to make an access to data stored in the disk unit 26. The disc control unit 28 controls the disk units 26 in accordance with the command received from the I/O channel 21. This command is prepared by an operating system (OS) executed by the CPU 22 employed in the information processing apparatus 20 as a channel command word (CCW) for controlling data and the disk units 26.

[0006] Viewing the disk units 26 controlled by the disc control unit 28 as a storage unit for storing data with a variable-length format or a CKD (Count Key Data) format provided by a CKD architecture, an I/O channel 21 issues a request to input or output data with a CKD format to the disc control unit 28. The disc control unit 28 carries out command emulation including conversion of the CKD format into an FBA format.

[0007] It should be noted that a method to emulate a disk unit with the CKD format by using a disk unit with the FBA format is disclosed for example in Japanese Patent Laid-open No. Hei 6-150557.

[0008] The following description explains typical CCW commands issued by the information processing apparatus 20 to the disc sub-system 25 to exchange data with the CKD format as well as a flow of data and the CCW commands.

[0009] Normally, the CPU 22 issues a series of CCWs like ones shown in FIG. 5. The series of commands shown in FIG. 5 includes a SEEK command 30 for selecting a track by specifying a cylinder number and a head number. The series of commands also includes a SET SECTOR command 31 for positioning the head on a target sector indicated by a sector number specified in the command. Every track of a disk unit 26 is logically divided into sectors each having shape resembling a flap and an equal space.

[0010] The series of commands also includes a SEARCH ID command 32 for positioning the head on a target record. The target record can be confirmed by comparison of a record ID specified in the SEARCH ID command 32 with the record ID of a count read out from the disk unit 26. The series of commands also includes a TIC command 33. The TIC command 33 is a command for confirming that the target record has been found by the SEARCH ID command 32. The SEARCH ID command 32 and the TIC command 33 are executed repeatedly till the record desired by the SERACH ID command 32 is found. The series of commands also includes a READ/WRITE command 34 for reading out or writing data from or into a record found by the series of preceding commands.

[0011] The following is a description of a flow of CCW commands output by the information processing apparatus 20 to the disc sub-system 25 following activation of an operation of the I/O function by the series of CCW commands prepared by the OS running on the information processing apparatus 20 with reference to FIG. 6.

[0012] The OS executed by the CPU 22 employed in the information processing apparatus 20 prepares the series of CCW commands for controlling data and a disk unit and Stores the CCW commands in a main storage device. Then, the OS requests an I/O channel 21 to activate an operation of the I/O function for outputting the series of CCW commands to a disk unit 26. The operation of the disk unit 26 is then controlled by the disc control unit 28 in accordance with the series of the CCW commands. In this way, the CCW commands are sequentially transmitted by the CPU 22 to the disc control unit 28 by way of the I/O channel 21. To put it in detail, first of all, the I/O channel 21 reads out the SEEK command 30 from the main storage device and transmits the command to the disc control unit 28. As described earlier, the SEEK command 30 is placed at the head of the series of CCW commands stored in the main storage device. The I/O channel 21 then waits for an emulation of the SEEK command 30 to be completed by the disc control unit 28. The emulation includes a conversion of the SEEK command 30 from a CKD format into an FBA format. As the emulation is finished, the disc control unit 28 informs the I/O channel 21 of the completion.

[0013] Notified by the disc control unit 28 of the completion of the emulation, the I/O channel 21 transmits the next

SET SECTOR command **31** to the disc control unit **28** on accordance with the same procedure as the preceding SEEK command **30**. As described earlier, the SET SECTOR command **31** is a second command in the series of CCW commands. The I/O channel **21** then waits for the disc control unit **28** to transmit a notice reporting completion of processing of the SET SECTOR command **31**. Receiving the notice, the I/O channel **21** repeats the same processing to transmit the SEARCH ID command **32** to the disc control unit **28** and waits for a notice of completion. The disc control unit **28** reports a notice of completion along with a result indicating a found record to the I/O channel **21**.

[**0014**] Receiving the notice of completion from the disc control unit **28**, the I/O channel **21** fetches the TIC command **33** from the main storage device. The TIC command **33** is executed by the I/O channel **21** to form a judgment as to whether or not the found record is a record desired by the SEARCH ID command **32**. If the outcome of the judgment indicates that the found record is not the desired record, the I/O channel **21** retransmits the SEARCH ID command **32** to the disc control unit **28**. This processing is carried out repeatedly till the found record matches the desired record. As the found record in the notice of completion matches the desired record specified in the SEARCH ID command **32**, the I/O channel **21** fetches the READ/WRITE command **34** following the TIC command **33** from the main storage device and transmits the READ/WRITE command **34** to the disc control unit **28**.

[**0015**] The I/O channel **21** waits for an emulation of the READ/WRITE command **34** including a conversion from a CKD format into an FBA format to be completed by the disc control unit **28**.

[**0016**] The disc control unit **28** carries out the emulation of the READ/WRITE command **34**, reading out or writing data from or into the disk unit **26**. As the operation to read out or write data is completed, the disc control unit **28** informs the I/O channel **21** of the completion of the read/write operation. Notified by the disc control unit **28** of the completion of the read/write operation, the I/O channel **21** verifies that there is no more CCW command. Then, the I/O channel **21** informs the CPU **22** that the requested operation of the I/O function has been completed and ends the operation of the I/O function.

[**0017**] In the prior art described above, a disk unit is embedded in an information processing apparatus but sharing of the disk unit embedded in an information processing apparatus with another information processing apparatus is not taken into consideration. Thus, if a plurality of other information processing apparatuses connected to the information processing apparatus including the embedded disk unit make accesses to the disk unit, the information processing apparatus having the embedded disk unit emulates the accesses, increasing the burden of an emulation mechanism employed in the apparatus having the disk unit.

[**0018**] In addition, in a system configuration wherein a plurality of information processing apparatuses each having a cache used in conjunction with an embedded disk unit employed in one of the information processing apparatuses as an internal auxiliary storage device are connected to an information processing apparatus having the embedded disk unit, the information processing apparatus having the embedded disk unit or one of the information processing

apparatuses connected to the information processing apparatus having the embedded disk unit may update a piece of data stored in the embedded disk unit. In this case, since the other information processing apparatuses connected to the information processing apparatus having the embedded disk unit are not aware of the fact that the piece of data has been updated, in the cache for an internal auxiliary storage device in each of the other information processing apparatuses, a copy of the piece of data prior to the updating becomes obsolete but remains therein as it is. Thus, the copy of the piece of data prior to the updating stored in the cache no longer matches the updated piece of data stored in the embedded disk unit. As a result, there is raised a problem that a normal operation can not be assured due to the difference between the updated data stored in the embedded disk unit and a copy of the data stored in a cache.

SUMMARY OF THE INVENTION

[**0019**] It is thus an object of the present invention addressing the problem of the prior art described above to provide an input/output control system that allows an embedded disk unit of an information processing apparatus to be accessed by another information processing apparatus and is capable of assuring a normal operation.

[**0020**] In order to achieve the object described above, according to an aspect of the present invention, there is provided an input/output control system comprising a first information processing apparatus including a central processing unit, a main storage device and an internal auxiliary storage device, and one or a plurality of second information processing apparatuses each including a central processing unit, a main storage device and a communication unit for communicating with another information processing apparatus wherein any of said second information processing apparatuses makes an access to said internal auxiliary storage device of said first information processing apparatus.

[**0021**] Said first and second information processing apparatuses each comprising an auxiliary-storage-device control unit for controlling operations to read out and write information from and into said internal auxiliary storage device wherein said auxiliary-storage-device control unit of any of said second information processing apparatuses:

[**0022**] emulates an auxiliary storage format controlled by one command or a plurality of commands forming a series of commands stored in said main storage device employed by said second information processing apparatus employing said auxiliary-storage-device control unit in an auxiliary storage format executed by said auxiliary-storage-device control unit employed in said first information processing unit in order to make an access to said internal auxiliary storage device; and

[**0023**] transmits a result of emulation to said first information processing apparatus by way of said communication unit employed by said second information processing apparatus employing said auxiliary-storage-device control unit.

[**0024**] In order to achieve the object described above, according to another aspect of the present invention, said first and second information processing apparatuses each have a cache for an internal auxiliary storage device and,

when any of said first and second information processing apparatuses makes a request for an operation to update a piece of data stored in said internal auxiliary storage device or stored in said cache in said first information processing apparatus, said information processing apparatuses other than said information processing apparatus making said request are informed of said operation to update a piece of data or replacement data used for updating said piece of data.

[0025] In order to achieve the object described above, according to a further aspect of the present invention, communications between said first information processing apparatus and said second information processing apparatuses are divided into 2 types of communication with different protocols, namely, a communication to exchange control data for controlling said caches for said internal auxiliary storage device employed in said first information processing apparatus and a communication to read out and write data from and into said internal auxiliary storage device.

[0026] In order to achieve the object described above, according to a still further aspect of the present invention, said first information processing apparatus further has a table including:

- [0027] a field for declaring an exclusive use of said internal auxiliary storage device employed in said first information processing apparatus;
- [0028] a field for storing information indicating which of said information processing apparatuses is currently using said internal auxiliary storage device;
- [0029] validity flags indicating whether or not contents of said fields are valid;
- [0030] wherein information stored in said table is used for identifying said information processing apparatuses to be informed of an operation to update a piece of data stored in said internal auxiliary storage device or stored in said cache in said first information processing apparatus or informed of replacement data used for updating said piece of data.

BRIEF DESCRIPTION OF THE DRAWINGS

[0031] FIG. 1 is a block diagram showing a typical configuration of an information processing system adopting an input/output control system provided by a first embodiment of the present invention;

[0032] FIG. 2 is a block diagram showing a typical configuration of an information processing system adopting an input/output control system provided by a second embodiment of the present invention;

[0033] FIG. 3 is an explanatory diagram showing the structure of an internal-auxiliary-storage-device control table used for controlling exclusive use of an embedded disk unit shared by information processing apparatuses and assurance of data coherency among caches of the information processing apparatuses for the shared embedded disk unit (internal auxiliary storage device);

[0034] FIG. 4 is a block diagram showing a typical configuration of an information processing system including a disk unit based on the prior art;

[0035] FIG. 5 is an explanatory diagram showing a typical series of channel commands used in the information processing system shown in FIG. 4; and

[0036] FIG. 6 is an explanatory diagram showing a typical flow of channel commands and data between an information processing apparatus and a disc sub-system employed in the information processing system shown in FIG. 4.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

[0037] Preferred embodiments implementing an input/output control system provided by the present invention are explained in detail by referring to the accompanying diagrams.

[0038] FIG. 1 is a block diagram showing a typical configuration of an information processing system adopting an input/output control system provided by a first embodiment of the present invention. In the figure, reference numerals 100 and 200 each denote an information processing apparatus whereas reference numerals 110 and 210 each denote a main storage device. Reference numerals 120 and 220 each denote a central processing unit (CPU) whereas reference numerals 140 and 240 each denote an auxiliary-storage-device control unit. Reference numerals 145 and 245 each denote a communication unit whereas reference numeral 150 denotes an internal auxiliary storage device (an embedded disk unit). Finally, reference numeral 190 denotes a communication bus.

[0039] In the information processing system shown in FIG. 1, the information processing apparatus 100 having the embedded disk unit 150 serving as an internal auxiliary storage device is connected to the information processing apparatus 200 having no embedded disk unit by the communication bus 190. The information processing apparatus 100 also has the CPU 120, the main storage device 110, the auxiliary-storage-device control unit 140 including an emulation mechanism for carrying out CKD-FBA format conversion and the communication unit 145 for controlling exchanges of information and data with another information processing system. Similarly, the information processing apparatus 200 also has the CPU 220, the main storage device 210, the auxiliary-storage-device control unit 240 including an emulation mechanism for carrying out CKD-FBA format conversion and the communication unit 245 for controlling exchanges of information and data with another information processing system. In the configuration shown in FIG. 1, the other information processing system of the information processing apparatus 100 is the information processing apparatus 200, and the other information processing system of the information processing apparatus 200 is the information processing apparatus 100.

[0040] The information processing apparatus 100 also includes the embedded disk unit 150 which is controlled by the auxiliary-storage-device control unit 140. The information processing apparatus 100 is connected to the information processing apparatus 200 by the communication bus 190 which serves as a transfer path for transferring control signals and data between the information processing apparatus 100 and the information processing apparatus 200 in an operation carried out by the information processing apparatus 200 to read out or write data from or into the embedded disk unit 150.

[0041] The following description explains processing carried out by the information processing apparatus **200** to make an access to the embedded disk unit **150** employed in the information processing apparatus **100**.

[0042] An OS executed by the CPU **220** prepares a series of CCW commands described in the CKD format in the main storage device **210**. The OS also prepares data to be transferred to the embedded disk unit **150** in the main storage device **210** in case the access is made in an write operation. Used for controlling the embedded disk unit (the internal auxiliary storage device) **150**, the CCW commands are the same as those explained earlier by referring to FIG. 5. The OS then requests the auxiliary-storage-device control unit **240** to start the operation of an I/O function. In this case, it is not necessary for the OS to specify which other information processing system is to be accessed since the information processing apparatus **100** is the only other information processing system that includes the embedded disk unit (the internal auxiliary storage device) **150**. In actuality, it is the CPU **220** that issues a command to start the operation of the I/O function to the auxiliary-storage-device control unit **240**. Receiving the command to start the operation of the I/O function, the auxiliary-storage-device control unit **240** starts an emulation of the series of CCW commands prepared by the OS.

[0043] First of all, the auxiliary-storage-device control unit **240** converts positional-address information specified in a SEEK command **30** and a SET SECTOR command **31** in the series of CCW commands described in the CKD format into positional-address information described in the FBA format. Then, the auxiliary-storage-device control unit **240** carries out an emulation of a SEARCH ID command **32** in the series of CCWs. Here, since a record ID specified in the SEARCH ID command **32** needs to be compared with the record ID of a count read out from the embedded disk unit **150** employed in the information processing apparatus **100** in order to confirm a target record, the auxiliary-storage-device control unit **240** issues a request for an operation to read out data from the embedded disk unit **150**, transmitting the request to the embedded disk unit **150**.

[0044] The request for an operation to read out data from the embedded disk unit **150** transmitted by the auxiliary-storage-device control unit **240** employed in the information processing apparatus **200** to the information processing apparatus **100** through the communication unit **245** and the communication bus **190** comprises a command to read out data issued as a command set that can be recognized by the embedded disk unit **150**, the positional-address information in the FBA format obtained as a result of the emulation carried out earlier and the number of blocks representing the length of data to be readout, that is, the length of data up to the end of a track specified by the positional-address information.

[0045] The command set of the request for an operation to read out data from the embedded disk unit **150** transmitted to the information processing apparatus **100** is supplied to the embedded disk unit **150** by way of the communication unit **145** employed in the information processing apparatus **100**. As requested by the command set, the embedded disk unit **150** transmits a response and the data to the information processing apparatus **200** by way of the communication unit **145** and the communication bus **190**.

[0046] In the information processing apparatus **200**, the data transmitted thereto is stored in a work area of the main storage device **210** by way of the communication unit **245**. In addition, the communication unit **245** also informs the auxiliary-storage-device control unit **240** that a response has been received from the embedded disk unit **150** and that data read out from the embedded disk unit **150** has been stored in the main storage device **210**. A positional address of a target count is determined from the positional-address information obtained as a result of the emulation and used to identify a count of the data read out from the embedded disk unit **150** and stored in the work area of the main storage device **210**. Then, a count of the data identified in this way is compared with information on a record ID specified in the SEARCH ID command **32**.

[0047] Subsequently, the auxiliary-storage-device control unit **240** carries out an emulation of a TIC command **33** of the series of CCW commands. To put it in detail, if the count of the data does not match the information on the record ID specified in the SEARCH ID command **32**, the SEARCH ID command **32** is emulated again to obtain the count of a next record ID following the compared record ID and to compare the count with the information on the record ID specified in the SEARCH ID command **32**. This emulation of the SEARCH ID command **32** is repeated till a count of the data matches the information on the record ID specified in the SEARCH ID command **32**. As a count of the data matches the information on the record ID specified in the SEARCH ID command **32**, the auxiliary-storage-device control unit **240** emulates a READ/WRITE command **34** in the series of CCW commands.

[0048] In the following description, the READ/WRITE command **34** in the series of CCW commands is exemplified by a WRITE command to write data with the CKD format into the embedded disk unit **150** employed in the information processing apparatus **100**. The emulation of the WRITE command **34** writes the data which has been prepared by the OS of the information processing apparatus **200** into a data portion of a record including a count matching the information on the record ID in the comparison carried out by the SEARCH ID command **32**. The data prepared by the OS has been stored in a work area in the main storage device **210** of the information processing apparatus **200**.

[0049] In order to transfer the data stored in the work area of the information processing apparatus **200** to the embedded disk unit **150** employed in the information processing apparatus **100**, in addition to the data to be transferred from the work area to the embedded disk unit **150**, the auxiliary-storage-device control unit **240** employed in the information processing apparatus **200** also transmits a command requesting a write operation as a command set which can be recognized by the embedded disk unit **150**, the positional-address information of the write operation in the FBA format obtained as a result of the emulation carried out earlier on the SEARCH ID command **32** and the length of the data to be transferred expressed in terms of blocks to the information processing apparatus **100** by way of the communication unit **245** and the communication bus **190**.

[0050] The command set transmitted by the auxiliary-storage-device control unit **240** to request a write operation is supplied to the embedded disk unit **150** by way of the communication unit **145** employed in the information pro-

cessing apparatus **100**. The embedded disk unit **150** writes the data received from the auxiliary-storage-device control unit **240** thereto in accordance with the command set. Then, the embedded disk unit **150** reports completion of the write operation to the auxiliary-storage-device control unit **240** through the communication unit **145**, the communication bus **190** and the communication unit **245**. Notified of the completion of the write operation, the auxiliary-storage-device control unit **240** confirms that no command following the WRITE ID command **34** exists in the series of CCW commands, ending the series of operations of the I/O function. Finally, the auxiliary-storage-device control unit **240** informs the OS executed by the CPU **220** that the processing carried out on the series of operations of the I/O function has been completed.

[0051] As described above, according to the first embodiment of the present invention, an internal auxiliary storage device such as an embedded disk unit employed in an information processing apparatus can be shared by another information processing apparatus.

[0052] As described above, in the first embodiment of the present invention, the communication unit **145** is employed in the information processing apparatus **100**. It should be noted that, if the embedded disk unit **150** which is used as an internal auxiliary storage device has its own communication function, the communication unit **145** is not required since the embedded disk unit **150** is capable of directly communicating with the communication unit **245** employed in the other information processing apparatus **200** through the communication bus **190**. An example of a disk unit having a communication function is an SCSI disc.

[0053] As described above, the first embodiment of the present invention comprises one information processing apparatus **100** employing the embedded disk unit **150** as an internal auxiliary storage device and one information processing apparatus **200** sharing the embedded disk unit **150**. It is worth noting, however, that the present invention allows a plurality of information processing apparatuses **200** to share the embedded disk unit **150** employed in the information processing apparatus **100** and to employ their own embedded disk units.

[0054] **FIG. 2** is a block diagram showing a typical configuration of an information processing system adopting an input/output control system provided by a second embodiment of the present invention, and **FIG. 3** is an explanatory diagram showing the structure of an internal-auxiliary-storage-device control table used for controlling exclusive use of the embedded disk unit shared by information processing apparatuses and assurance of data coherency among caches of the information processing apparatuses for the shared embedded disk unit (internal auxiliary storage device). In **FIGS. 2 and 3**, reference numeral **300** denotes another information processing apparatus whereas reference numerals **112**, **212** and **312** in the information processing apparatuses **100**, **200** and **300** respectively denote the caches for the shared internal auxiliary storage device **150**. The information processing apparatus **300** comprises a main storage device **310**, a central processing unit (CPU) **320**, an auxiliary-storage-device control unit **340** and a communication unit **345**. The information processing apparatus **300** is connected to the information processing apparatus **100** by a communication bus **191**. Reference numerals **610** and **620**

denote a select circuit and an internal-auxiliary-storage-device control table. The other reference numerals denote the same components as those shown in **FIG. 1**.

[0055] In comparison with the system shown in **FIG. 1**, in the system implemented by the second embodiment of the present invention as shown in **FIG. 2**, the information processing apparatus **300** is connected to the information processing apparatus **100** by the communication bus **191**. In addition, the main storage devices **110**, **210** and **310** of the information processing apparatuses **100**, **200** and **300** respectively include the caches **112**, **212** and **312** respectively which are provided for the internal auxiliary storage device **150** employed in information processing apparatus **100** so that the information processing apparatuses **200** and **300** are allowed to share the embedded disk unit **150**.

[0056] The following description explains processing carried out by the information processing apparatus **200** to make an access to the embedded disk unit **150** employed in the information processing apparatus **100** in the system shown in **FIG. 2**.

[0057] Like the system shown in **FIG. 1**, receiving a command to start an operation of the I/O function from the CPU **220** of the information processing apparatus **200**, the auxiliary-storage-device control unit **240** emulates the SEEK command **30** and the SET SECTOR command **31** of the series of CCW commands shown in **FIG. 5**. In an operation to read out data necessary for the emulation of the SEARCH ID command **32**, first of all, the internal-auxiliary-storage-device cache **212** in the main storage device **210** is searched for the necessary data instead of searching the embedded disk unit **150** employed in the information processing apparatus **100**.

[0058] If the necessary data exists in the internal-auxiliary-storage-device cache **212** at a location matching positional-address information specified in the SEEK command **30** and the SET SECTOR command **31**, the auxiliary-storage-device control unit **240** compares information on a record ID specified in the SEARCH ID command **32** with a count in the necessary data existing in the internal-auxiliary-storage-device cache **212** in an emulation of a next TIC command **33**. If the necessary data does not exist in the internal-auxiliary-storage-device cache **212** at a location matching the positional-address information, on the other hand, the auxiliary-storage-device control unit **240** transmits a command set requesting a read operation as explained earlier by referring to **FIG. 1** to the communication unit **145** employed in the information processing apparatus **100** by way of the communication unit **245** and the communication bus **190**. The communication unit **145** passes on the command set received from the communication unit **245** to the auxiliary-storage-device control unit **140**.

[0059] The auxiliary-storage-device control unit **140** analyzes the command set received from the information processing apparatus **200** and searches the internal-auxiliary-storage-device cache **112** employed in the information processing apparatus **100** for the necessary data. If the necessary data exists in the internal-auxiliary-storage-device cache **112** at a location matching a read-data positional address specified in the command set, the auxiliary-storage-device control unit **140** reads out the necessary data and from the internal-auxiliary-storage-device cache **112** and transmits the data to the information processing apparatus

200 by way of the communication unit **145** and the communication bus **190**. **1** If the necessary data does not exist in the internal-auxiliary-storage-device cache **112** at a location matching a read-data positional address specified in the command set, on the other hand, the auxiliary-storage-device control unit **140** passes on the command set requesting a read operation to the embedded disk unit **150**. The embedded disk unit **150** reads out the necessary data therefrom in accordance with the command set and transmits the data to the information processing apparatus **200** by way of the communication unit **145** and the communication bus **190**.

[0060] In the information processing apparatus **200**, the necessary data received from the information processing apparatus **100** is passed on to the main storage device **210** by way of the communication unit **245** to be stored in the internal-auxiliary-storage-device cache **212**. Then, the auxiliary-storage-device control unit **240** compares the information on the ID record specified in the SEARCH ID command **32** with a count in the data stored in the internal-auxiliary-storage-device cache **212** in an emulation of a next TIC command **33**. As the SEARCH ID command **32** indicates that the ID record specified in the SEARCH ID command **32** matches a count in the necessary data, a WRITE/READ command **34** in the series of CCW commands is emulated.

[0061] Like the system shown in FIG. 1, in the following description, the READ/WRITE command **34** in the series of CCW commands is exemplified by a WRITE command to write data with the CKD format into the embedded disk unit **150** employed in the information processing apparatus **100**.

[0062] The emulation of the WRITE command **34** writes the data which has been prepared by the OS executed by the CPU **220** of the information processing apparatus **200** into a data portion of a record including a count matching the information on the record ID in the comparison carried out by the SEARCH ID command **32**. The data prepared by the OS has been stored in the internal-auxiliary-storage-device cache **212**. In order to transfer the data stored in the internal-auxiliary-storage-device cache **212** to the embedded disk unit **150** employed in the information processing apparatus **100**, in addition to the data to be transferred from the work area to the embedded disk unit **150**, the auxiliary-storage-device control unit **240** employed in the information processing apparatus **200** also transmits a command requesting a write operation as a command set which can be recognized by the embedded disk unit **150**, the positional-address information of the write operation in the FBA format obtained as a result of the emulation carried out earlier on the SEARCH ID command **32** and the length of the data to be transferred expressed in terms of blocks to the information processing apparatus **100** by way of the communication unit **245** and the communication bus **190**.

[0063] The command set transmitted by the auxiliary-storage-device control unit **240** to request a write operation is supplied to the auxiliary-storage-device control unit **140** by way of the communication unit **145** employed in the information processing apparatus **100**. The auxiliary-storage-device control unit **140** analyzes the command set received from the communication unit **145**. Recognizing that the command set is a request for an operation to write data into the embedded disk unit **150**, the auxiliary-storage-

device control unit **140** informs the information processing apparatus **300** of the operation to write data over existing old data through the communication unit **145** and the communication bus **191** to notify the information processing apparatus **300** that the existing old data is no longer valid. To put it in detail, this notice informs the information processing apparatus **300** that the requested write operation invalidates the existing old data at a location matching the information on the write-data positional address specified in the command set received from the information processing apparatus **200**. In the information processing apparatus **300**, this notice is supplied to the auxiliary-storage-device control unit **340** by way of the communication unit **345**.

[0064] The information processing apparatus **100** determines which other information processing apparatuses should be informed of the invalidation of the existing old data by referring to the internal-auxiliary-storage-device control table **620** stored in the main storage device **110** employed in the information processing apparatus **100** including the embedded disk unit **150**. The internal-auxiliary-storage-device control table **620** shown in FIG. 3 is used for controlling identifiers of information processing apparatuses which make accesses to the embedded disk unit **150**. Identifiers of information processing apparatuses which make accesses to the embedded disk unit **150** are provided in the internal-auxiliary-storage-device control table **620** as information on the system configuration.

[0065] Informed that existing old data is invalidated, the auxiliary-storage-device control unit **340** employed in the information processing apparatus **300** searches the internal-auxiliary-storage-device cache **312** for a copy of the existing old data. If a copy of the existing old data is stored in the internal-auxiliary-storage-device cache **312**, the copy is made obsolete.

[0066] After notifying the information processing apparatus **300** that the existing old data will be invalidated, the auxiliary-storage-device control unit **140** searches the internal-auxiliary-storage-device cache **112** for a location matching the information on the write-data positional address specified in the command set. If such a location is found cataloged in the internal-auxiliary-storage-device cache **112**, that is, if a copy of the existing old data is found stored in the internal-auxiliary-storage-device cache **112**, new data specified by the WRITE command **34** is written over the copy of the existing old data stored in the internal-auxiliary-storage-device cache **112**. If a location matching the information on the write-data positional address specified in the command set is not cataloged in the internal-auxiliary-storage-device cache **112**, that is, if a copy of the existing old data is not stored in the internal-auxiliary-storage-device cache **112**, on the other hand, the auxiliary-storage-device control unit **140** passes on the command set requesting a write operation to the embedded disk unit **150**.

[0067] The embedded disk unit **150** stores the data therein in accordance with the command set and informs the auxiliary-storage-device control unit **140** of the completion of the operation to write the data. In turns, the auxiliary-storage-device control unit **140** notifies the auxiliary-storage-device control unit **240** employed in the information processing apparatus **200** of the completion of the write operation through the communication unit **145**, the communication bus **190** and the communication unit **245**. Notified

of the completion of the write operation, the auxiliary-storage-device control unit 240 confirms that no command following the WRITE ID command 34 exists in the series of CCW commands, ending the series of operations of the I/O function. Finally, the auxiliary-storage-device control unit 240 informs the OS executed by the CPU 220 that the processing carried out on the series-of operations of the I/O function has been completed.

[0068] In the processing described above, the auxiliary-storage-device control unit 140 employed in the information processing apparatus 100 analyzes the command set received from the communication unit 145 and, recognizing that the command set is a request for an operation to write data into the embedded disk unit 150, the auxiliary-storage-device control unit 140 informs the information processing apparatus 300 of the operation to write data over existing old data through the communication unit 145 and the communication bus 191 to notify the information processing apparatus 300 that the existing old data is no longer valid. Furthermore, the new data generated by the information processing apparatus 200 can also be transmitted to the auxiliary-storage-device control unit 340 employed in the information processing apparatus 300 to replace the old data existing in the internal-auxiliary-storage-device cache 312 or the new data is just newly stored in the internal-auxiliary-storage-device cache 312 in case such old data does not exist in the internal-auxiliary-storage-device cache 312. In this way, most recent data is held in the internal-auxiliary-storage-device cache 312.

[0069] In addition, when the information processing apparatus 100 replaces data stored in the embedded disk unit 150 or in the internal-auxiliary-storage-device cache 112 with new data, likewise, a notice of the invalidation of the existing old data or the new data is transmitted to the information processing apparatuses 200 and 300. As a result, it is possible to assure data coherency among the internal-auxiliary-storage-device caches 112, 212 and 312.

[0070] As described above, according to the second embodiment, internal-auxiliary-storage-device caches are used so that data can be transferred at a high speed.

[0071] As described above, in the second embodiment, the information processing apparatus 100 employing the embedded disk unit 150 is connected to the information processing apparatuses 200 and 300 by respectively the communication buses 190 and 191 which each serve as a transfer path for transferring signals to control read and write operations, signals to control cache coherency and data read out from and data to be written into the embedded disk unit 150. It should be noted, however, that the transfer path can be divided into a control communication bus and a data transfer bus. The control communication bus serves as a control-signal transferring path for transferring signals to control read and write operations and signals to control cache coherency. On the other hand, the data transfer bus serves as a data transfer path for transferring data read out from and data to be written into the embedded disk unit 150. In this way, the auxiliary-storage-device control units 240 and 340 employed in the information processing apparatuses 200 and 300 respectively are capable of utilizing the control communication bus and the data transfer bus properly. In addition, different communication protocols can be adopted for the control communication bus and the data transfer bus.

[0072] The following description explains the internal-auxiliary-storage-device control table 620 which is used by the information processing apparatus 100 to report invalidation of existing old data to other information processing apparatuses in detail by referring to FIG. 3.

[0073] The internal-auxiliary-storage-device control table 620 is a table used for executing exclusive control and control of data coherency among internal-auxiliary-storage-device caches 112, 212 and 312 in the second embodiment of the present invention wherein the embedded disk unit 150 is shared among the information processing apparatus 100 and the other information processing apparatuses 200 and 300. The embedded disk unit 150 employed in the second embodiment shown in FIG. 2 is divided into logical volumes which are each used as 1 or a plurality of processing units. The internal-auxiliary-storage-device control table 620 comprises as many entries as the logical volumes constituting the embedded disk unit 150 and the entries are identified by the same logical-volume numbers as the logical volumes.

[0074] Each of the entries of the internal-auxiliary-storage-device control table 620 includes: a validity-flag field V 630 for indicating whether data recorded in the entry is valid or invalid; an in-use flag field U 631 for indicating whether a logical volume corresponding to the entry is used or unused; an occupying-information-processing-apparatus-identifier field CUID 632 for identifying the present user and its attributes; a valid-information-processing-apparatus-count field ECNT 633 for controlling the number of information processing apparatuses making accesses to the embedded disk unit 150; and information-processing-apparatus-identifier fields UIDn 634 each for identifying an information processing apparatus making accesses to the embedded disk unit 150 and its attributes.

[0075] It should be noted that, as described earlier, the attributes include a path group, information indicating the existence or nonexistence of a cache and information indicating the existence or nonexistence of an emulation mechanism.

[0076] If there is only one information processing apparatus making accesses to the embedded disk unit 150, the identifier of this information processing apparatus is cataloged in the UID0 field 634. If there are two information processing apparatuses making accesses to the embedded disk unit 150, the identifiers of these information processing apparatuses are cataloged in the UID0 and UID1 fields 634. In this way, the identifiers of information processing apparatuses making accesses to the embedded disk unit 150 are catalogs in as many UIDn fields as the information processing apparatuses.

[0077] The auxiliary-storage-device control unit 140 controls the select circuit 610 for selecting an entry in the internal-auxiliary-storage-device control table 620 and carries out operations to read out and write data from and into the internal-auxiliary-storage-device control table 620.

[0078] At a system-initialization phase, pieces of configuration information are cataloged into the validity-flag field V 630, the valid-information-processing-apparatus-count field ECNT 633 for controlling the number of information processing apparatuses making accesses to the embedded disk unit 150 and the information-processing-apparatus-identifier

fields UIDn 634 of the internal-auxiliary-storage-device control table 620. The information processing apparatuses making accesses to the embedded disk unit 150 can be changed by dynamically updating information stored in the internal-auxiliary-storage-device control table 620.

[0079] In the second embodiment of the present invention shown in **FIG. 2**, when the information processing apparatus 200 makes an access to the embedded disk unit 150 employed in the information processing apparatus 100, it is normally necessary for the information processing apparatus 200 to occupy a logical volume in the embedded disk unit 150 being accessed during a period of time between the start of an emulation of the first command in the series of CCWs and the end of an emulation of the last command in the series of CCWs. For this reason, the auxiliary-storage-device control unit 240 receiving a request to start the operation of the I/O function from the CPU 220 in the information processing apparatus 200 requests the auxiliary-storage-device control unit 140 employed in the information processing apparatus 100 to reserve the logical volume to be accessed.

[0080] Receiving the request to reserve the logical volume, the auxiliary-storage-device control unit 140 requests the select circuit 610 of the internal-auxiliary-storage-device control table 620 to select an entry identified by the number of the logical volume to be reserved. The auxiliary-storage-device control unit 140 confirms that the selected entry is valid by referring to the validity-flag field V 630 of the entry, that is, confirms that the logical volume which is to be reserved and associated with the selected entry exists in the embedded disk unit 150. Then, the auxiliary-storage-device control unit 140 determines whether the logical volume is usable or not by checking the in-use-flag field U 631 in the entry. If the logical volume is found usable, the information stored in the in-use-flag field U 631 in the entry is changed to 'being-used'. In addition, the auxiliary-storage-device control unit 140 stores the identifier of the information processing apparatus 200 into the occupying-information-processing-apparatus-identifier field CUID 632. Then, the auxiliary-storage-device control unit 140 reports a result of the request to reserve the logical volume to the information processing apparatus 200.

[0081] The report enables the auxiliary-storage-device control unit 240 employed in the information processing apparatus 200 to confirm the reservation of the logical volume. Emulation of a series CCW commands described earlier is then started by the second embodiment of the present invention. In the emulation of a write command, the auxiliary-storage-device control unit 240 stores new data into the internal-auxiliary-storage-device cache 212 and requests the auxiliary-storage-device control unit 140 -employed in the information processing apparatus 100 to update data into the embedded disk unit 150.

[0082] Receiving the request to update data, the auxiliary-storage-device control unit 140 stores data in the embedded disk unit 150 as described in the explanation of the second embodiment and requests the select circuit 610 to select an entry in the internal-auxiliary-storage-device control table 620 identified by the number of the updated logical volume. Then, the auxiliary-storage-device control unit 140 informs information processing apparatuses cataloged in all the information-processing-apparatus-identifier fields UIDn 634 of the selected entry that a piece of existing data has been

updated. Informed of the data updating, the information processing apparatuses each search its internal-auxiliary-storage-device cache for the existing old data and invalidates the existing old data, if found.

[0083] The auxiliary-storage-device control unit 240 employed in the information processing apparatus 200 confirms that there is no more command in the series of CCWs before transmitting a request to release the occupied logical volume to the auxiliary-storage-device control unit 140 employed in the information processing apparatus 100. Receiving the request to release the occupied logical volume, the auxiliary-storage-device control unit 140 drives the select circuit 610 to select an entry in the internal-auxiliary-storage-device control table 620 identified by the number of the occupied logical volume. The auxiliary-storage-device control unit 140 then changes the in-use-flag field U 631 to 'usable' and reports a result of the request to release the occupied logical volume to the information processing apparatus 200. Receiving the result of the request to release the occupied logical volume, the auxiliary-storage-device control unit 240 employed in the information processing apparatus 200 confirms the release of the occupied logical volume. As described above, the occupied logical volume is released by changing the contents of the in-use-flag field U 631 in the selected entry of the internal-auxiliary-storage-device control table 620 from 'being-used' to 'usable'. The auxiliary-storage-device control unit 240 notifies the CPU 220 that the operation of the I/O function has been completed and terminates the operation of the I/O function.

[0084] According to the above description, new replacement data to be written into the embedded disk unit 150 employed in the information processing apparatus 100 is transferred from the auxiliary-storage-device control unit 240 employed in the information processing apparatus 200 to the auxiliary-storage-device control unit 140 employed in the information processing apparatus 100. It should be noted, however, that in this present invention, an address showing an entry in the internal-auxiliary-storage-device cache 212 to be updated and a request for invalidation of the entry can be transmitted to the auxiliary-storage-device control unit 140 before the new replacement data to be stored in the embedded disk unit 150 and to be copied to the internal-auxiliary-storage-device cache 212 is transmitted to the information processing apparatus 100 by way of the communication unit 245, the communication bus 190 and the communication unit 145 to be directly stored into the embedded disk unit 150.

[0085] According to the methods described above, the auxiliary-storage-device control unit 240 employed in the information processing apparatus 200 is capable of directly reading out data from the embedded disk unit 150 employed in the information processing apparatus 100 through the communication unit 245, the communication bus 190 and the communication unit 145 without using the auxiliary-storage-device control unit 140 in a data read operation.

[0086] In the first and second embodiments described above, there is only one information processing apparatus employing an internal auxiliary storage device, and other information processing apparatuses including no internal auxiliary storage device make accesses to the internal auxiliary storage device. It should be noted, however, that the present invention also allows the other information process-

ing apparatuses making accesses to the internal auxiliary storage device to each have its own internal auxiliary storage device.

[0087] According to the embodiments of the present invention described above, an emulation mechanism for allowing another information processing apparatus to make an access to the embedded disk unit employed in a specific information processing apparatus as an internal auxiliary storage device is provided in the other information processing apparatus making accesses to the embedded disk unit employed in the specific information processing apparatus for emulating commands issued by the other information processing apparatus. Thus, the embedded disk unit employed in the specific information processing apparatus as an internal auxiliary storage device can be shared with the other information processing apparatus.

[0088] In addition, according to the embodiments of the present invention described above, if each information processing apparatus has an internal-auxiliary-storage-device cache, the information processing apparatus employing the internal auxiliary storage device is provided with a cache-rewrite informing mechanism so that, only valid data is stored in the internal-auxiliary-storage-device cache of each information processing apparatus making accesses to the internal auxiliary storage device. As a result, data can be accessed at a high speed through the use of the internal-auxiliary-storage-device caches and, at the same time, data coherency is assured.

[0089] As described above, according to the present invention, a disk unit embedded in an information processing apparatus as an internal auxiliary storage device can be accessed at a high speed by other information processing apparatuses. In addition, normal operations are assured also in a system configuration with each information processing apparatus having an internal-auxiliary-storage-device cache.

What is claimed is:

1. An input/output control system comprising a first information processing apparatus including a central processing unit, a main storage device and an internal auxiliary storage device, and one or a plurality of second information processing apparatuses each including a central processing unit, a main storage device and a communication unit for communicating with another information processing apparatus wherein any of said second information processing apparatuses makes an access to said internal auxiliary storage device of said first information processing apparatus,

said first and second information processing apparatuses each comprising an auxiliary-storage-device control unit for controlling operations to read out and write information from and into said internal auxiliary storage device wherein said auxiliary-storage-device control unit of any of said second information processing apparatuses:

emulates an auxiliary storage format controlled by one command or a plurality of commands forming a series of commands stored in said main storage device employed by said second information processing apparatus employing said auxiliary-storage-device control unit in an auxiliary storage format executed by said auxiliary-storage-device control unit employed in said first information processing

unit in order to make an access to said internal auxiliary storage device; and

transmits a result of emulation to said first information processing apparatus by way of said communication unit employed by said second information processing apparatus employing said auxiliary-storage-device control unit.

2. An input/output control system according to claim 1 wherein said first and second information processing apparatuses each have a cache for an internal auxiliary storage device and, when any of said first and second information processing apparatuses makes a request for an operation to update a piece of data stored in said internal auxiliary storage device or stored in said cache in said first information processing apparatus, said information processing apparatuses other than said information processing apparatus making said request are informed of said operation to update a piece of data or replacement data used for updating said piece of data.

3. An input/output control system according to claim 2 wherein communications between said first information processing apparatus and said second information processing apparatuses are divided into two types of communication with different protocols, namely, a communication to exchange control data for controlling said caches for said internal auxiliary storage device employed in said first information processing apparatus and a communication to read out and write data from and into said internal auxiliary storage device.

4. An input/output control system according to claim 2 wherein said first information processing apparatus further has a table including:

a field for declaring an exclusive use of said internal auxiliary storage device employed in said first information processing apparatus;

a field for storing information indicating which of said information processing apparatuses is using said internal auxiliary storage device; and

validity flags indicating whether or not contents of said fields are valid.

5. An input/output control system according to claim 4 wherein information stored in said table is used for identifying said information processing apparatuses to be informed of an operation to replace a piece of data stored in said internal auxiliary storage device or stored in said cache in said first information processing apparatus or to be informed of replacement data used for replacing said piece of data.

6. A computer system comprising a plurality of information processing apparatuses each including a central processing unit, a main storage device, an auxiliary-storage-device control unit and a communication unit for communicating with other information processing apparatuses, wherein one of said information processing apparatuses has an internal auxiliary storage device and the other information processing apparatuses each make accesses to said internal auxiliary storage device through said auxiliary-storage-device control unit thereof.

7. A computer system according to claim 6 wherein said information processing apparatuses each have an internal-auxiliary-storage-device cache and, when any of said information processing apparatuses makes a request for an opera-

tion to replace a piece of data in said internal auxiliary storage device, said information processing apparatuses other than said information processing apparatus making said request are informed that said piece of data is replaced or informed of replacement data used for replacing said piece of data.

8. A computer system according to claim 7 wherein said information processing apparatus making said request further has a table including:

a field for declaring an exclusive use of said internal auxiliary storage device;

a field for storing information indicating which of said information processing apparatuses is using said internal auxiliary storage device; and

validity flags indicating whether or not contents of said fields are valid.

9. A computer system according to claim 8 wherein information stored in said table is used for identifying one of said information processing apparatuses to be informed of an operation to replace a piece of data stored in said internal auxiliary storage device or to be informed of replacement data used for replacing said piece of data.

* * * * *