SYSTEMS AND METHODS FOR ASSOCIATING SOCIAL MEDIA SYSTEMS AND WEB PAGES

Inventor: Michael J. Strutton, Villa Rica, GA (US)
Assignee: VITRUE, INC., Atlanta, GA (US)
Appl. No.: 13/195,677
Filed: Aug. 1, 2011

Publication Classification
Int. Cl. G06F 17/00 (2006.01)
U.S. Cl. 715/234

ABSTRACT
Systems and methods for the creation and management of electronic associations between social media systems and web pages. Such associations promote greater interactions between web page visitors and users of social media pages. A social graph management system (SGMS) receives information related to a web page, and creates associations between the web page and social media pages. A process of creating such associations involves configuration of social media software for insertion into the web page. Furthermore, creating associations also involves creation of an intermediary page (and related data structures) by the SGMS in order to direct traffic between the web page and social media pages. User activity in the web page is tracked in addition to web traffic arriving at the intermediary page at subsequent times for computation of various analytics.

High-level Overview of Social Graph Management System (SGMS)
FIG. 1 – High-level Overview of Social Graph Management System (SGMS)
FIG. 3A – Exemplary Social Graph Object Creation and Management Process
FIG. 3B – Exemplary Social Graph Object Creation and Management Process
FIG. 4 – Exemplary Sequence Diagram Showing Interactions Between Various System Components
<table>
<thead>
<tr>
<th>USER ANALYTICS TABLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIME STAMP</td>
</tr>
<tr>
<td>2011-07-20 11:30 AM</td>
</tr>
<tr>
<td>2011-07-20 12:20 PM</td>
</tr>
<tr>
<td>2011-07-20 1:00 PM</td>
</tr>
<tr>
<td>2011-07-21 11:30 PM</td>
</tr>
</tbody>
</table>

FIG. 5 - Exemplary SGMS Database Comprising Social Graph Object Data
<table>
<thead>
<tr>
<th>ACCOUNT:</th>
<th>JEFF</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADD SOCIAL GRAPH OBJECTS</td>
<td></td>
</tr>
<tr>
<td>PAGE URL:</td>
<td>HTTP://WWW.ACMECOFFEE.COM</td>
</tr>
<tr>
<td>SOCIAL GRAPH SITE NAME:</td>
<td>ACMECOFFEE</td>
</tr>
<tr>
<td>TITLE:</td>
<td>HOW TO MAKE THE PERFECT BREW COFFEE</td>
</tr>
<tr>
<td>DESCRIPTION:</td>
<td>WANT TO ENHANCE THE TASTE OF YOUR BREW COFFEE? FOLLOW THESE SIMPLE STEPS</td>
</tr>
<tr>
<td>SOCIAL GRAPH TYPE:</td>
<td>ACTIVITY</td>
</tr>
<tr>
<td>SOCIAL GRAPH IMAGE:</td>
<td>![Image](C:\DOCUMENTS AND SETT)</td>
</tr>
<tr>
<td>SLUG DOMAIN:</td>
<td>ACMECOFFEEEXTERNALDOMAIN.COM</td>
</tr>
<tr>
<td>SLUG IDENTIFIER:</td>
<td>PERFECTBREW</td>
</tr>
<tr>
<td>EYETEXT PAGE ADMIN UID STRING:</td>
<td>1417067222</td>
</tr>
</tbody>
</table>

FIG. 7 – Exemplary SGMS Interface for Creating Social Graph Objects
FIG. 8 – Exemplary SGMS Interface Displaying Source Code for Social Media Plugin
<table>
<thead>
<tr>
<th>EXISTING SOCIAL GRAPH OBJECTS</th>
<th>604</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID: 240244</td>
<td>"HOW TO MAKE THE PERFECT BREW COFFEE"</td>
</tr>
<tr>
<td>ACCOUNT: JEFF</td>
<td></td>
</tr>
<tr>
<td>ID: 225234</td>
<td>"CAFE LATTE"</td>
</tr>
<tr>
<td>ID: 123457</td>
<td>"THE BEST CAPPUCINO"</td>
</tr>
<tr>
<td>ID: 137840</td>
<td>"THE RICH CAFE BREVA"</td>
</tr>
</tbody>
</table>

FIG. 9 - Exemplary SGMS Interface Showing Pre-created Social Graph Objects
ALL YOU WANT TO KNOW ABOUT COFFEE

PRESENTED BY ACMECOFFEE

FEATURED ARTICLES:

COFFEE TASTING

COFFEE TASTING (ALSO CALLED COFFEE CUPPING) IS DONE TO DETERMINE THE CHARACTERISTICS OF A PARTICULAR COFFEE BLEND. A COFFEE TASTER JUDGES COFFEE BASED ON APPEARANCE, AROMA, BODY, AND FLAVOUR BY FIRST SMELLING AND THEN TASTING THE COFFEE.

READ MORE >

COFFEE ORIGINS

AS THE LEGEND GOES, THE FIRST PERSON TO EVER DRINK A CUP OF COFFEE WAS THE 9TH CENTURY GOAT HERDER KALDI WHO NOTICED THAT HIS FLOCK HAD MORE ENERGY WHEN CONSUMING THE RED BERRIES OF A CERTAIN PLANT. HE COLLECTED THE BERRIES AND TOOK THEM TO A MUSLIM HOLY MAN WHO THREW THEM INTO A FIRE.

READ MORE >

FAST FACTS:

> ONE OF MOST CONSUMED BEVERAGES

> ARABICA AND ROBUSTA

THE 2 MAIN TYPES OF COMMERCIALLY GROWN COFFEE ARE ARABICA AND ROBUSTA. ARABICA BEANS ACCOUNT FOR AROUND 65% OF TOTAL COFFEE PRODUCTION. ROBUSTA MAKE UP THE REST.
ACME COFFEE

HOME | OUR COFFEES | COFFEE ABC | THE ACME COFFEE PLAN | COFFEE AND WELL-BEING | MY ACME COFFEE

ALL YOU WANT TO KNOW ABOUT COFFEE
PRESENTED BY ACMECOFFEE

FEATURED ARTICLES:

COFFEE TASTING

COFFEE TASTING (ALSO CALLED COFFEE CUPPING) IS DONE TO DETERMINE THE CHARACTERISTICS OF A PARTICULAR COFFEE BLEND. A COFFEE TASTER JUDGES COFFEE BASED ON APPEARANCE, AROMA, BODY, AND FLAVOUR BY FIRST SMELLING AND THEN TASTING THE COFFEE.

READ MORE >

FAST FACTS:

ARABICA AND ROBUSTA
THE 2 MAIN TYPES OF COMMERCIALLY GROWN COFFEE ARE ARABICA AND ROBUSTA. ARABICA BEANS ACCOUNT FOR AROUND 85% OF TOTAL COFFEE PRODUCTION, ROBUSTA MAKE UP THE REST.

>ONE OF MOST CONSUMED BEVERAGES

SHARE YOUR ACME COFFEE EXPERIENCE
LIKE JOHN DOE AND 544,344 OTHERS LIKE THIS
@ ACME COFFEE: 2.3 M FOLLOWERS

COFFEE ORIGINS
AS THE LEGEND GOES, THE FIRST PERSON TO EVER DRINK A CUP OF COFFEE WAS THE 9TH CENTURY GOAT HERDER KALDI WHO NOTICED THAT HIS FLOCK HAD MORE ENERGY WHEN CONSUMING THE RED BERRIES OF A CERTAIN PLANT. HE COLLECTED THE BERRIES AND TOOK THEM TO A MUSLIM HOLY MAN WHO THREW THEM INTO A FIRE.

READ MORE >

TERMS AND CONDITIONS | PRIVACY POLICY | CONTACT US

FIG. 10B – Exemplary Web Page After Association with Social Media Systems
SYSTEMS AND METHODS FOR ASSOCIATING SOCIAL MEDIA SYSTEMS AND WEB PAGES

CROSS REFERENCE TO RELATED APPLICATIONS

TECHNICAL FIELD

[0002] The present disclosure relates generally to the creation and management of associations between social media systems and web pages. In particular, aspects of the present disclosure relate to an intermediary system that induces greater flexibility in streamlining the creation and management of electronic associations between social graphs (which are generated due to complex interconnections arising from published content on social media pages of individuals, organizations, and corporate entities hosted by social media systems or performed on behalf by social media systems) and web pages, wherein such electronic associations promote greater interactions between web page visitors and users of social media pages.

BACKGROUND

[0003] Establishing a well-rounded social media presence is important for many organizations, corporate entities and private individuals. Social media pages belonging to private individuals generally provide an online description of a page owner’s socio-cultural profile including a page owner’s friends, family, hometown, birthday, relationship status, political views, fans, interests, hobbies, likes, dislikes, and many more such attributes. Social media pages further provide a page owner’s socio-economic status, educational background, professional qualifications and expertise, various networks, ventures and organizations a page owner is affiliated with, career opportunities a page owner is involved in, and several others. Social media pages belonging to organizations and corporate entities provide information relating to their businesses, business ethics, human rights, diversity in their workplace, sustainability considerations undertaken, charities supported, donations, endorsements, upcoming events, and various other parameters that impact society. In recent times, social media pages belonging to individuals, political parties, and non-profit institutions disseminate mass information about social and political uprisings and wrongdoings in restrictive and underdemocratic territories and countries.

[0004] Social media pages of private individuals, organizations and corporate entities are typically hosted by social media systems, also referred to as social media networks. Common examples of social media systems include YOUTUBE™, FACEBOOK™, TWITTER™, LINKEDIN™, MYSPACE™, GOOGLE BUZZ™, and many more. Further examples of social media systems include social bookmarking sites like Del.icio.us™, and social news sites like DIGG™ and REDDIT™. Social media pages generally comprise web pages hosted by a social media system and can be accessed via computers, smart phones or any other Internet-enabled computing device.

[0005] Users of social media systems own one or more social media pages that are used as a platform to interact, exchange and engage with other users and even, in some cases, with individuals who do not own social media pages. Social media pages are personal or group pages that disseminate information through messages, files, posts, news feeds, photographs, audio clips, video clips, URL’s, etc. Information shared on social media pages involve associations through personal and business contacts, for example, including friends, family, classmates, co-workers, customers, political constituents, clients, and various social groups/organizations on a social media system. This extensive set of relationships generates a vast database of interconnections involving social media system users which can be mapped into social graphs by social media systems. Thus, a user’s social graph is a complex digital footprint of all such relationships wherein owners of social media pages constitute the nodes of the social graph. As will be understood by one skilled in the art, owners of a social media page can belong to more than one social graph, and hence social graphs are overlapping in nature. Because of the complexities of interconnections in social graphs, social graphs are generally rendered on a computer with special application software.

[0006] As a result of such interconnections involving personal and business relationships, many individuals, organizations, groups, corporate entities and communities are empowered with potential marketing tools relating to their products or services. Consequently, a large number of marketing campaigns are launched via social media pages, different from conventional marketing campaigns involving radio, television, print, and traditional online ads that are not dependent on social media systems.

[0007] In advertising and marketing campaigns launched via social media pages, advertisers and marketers post messages or advertisements on social media pages belonging to an individual, an organization, corporate entity, or in some scenarios, a social media page that is owned by a common interest group or channel. Individuals review such messages or advertisements, generally named posts, along with accompanying files, news feeds, photographs, audio clips, video clips, coupons, polls, quizzes, URL’s (Uniform Resource Locators), etc. It will be understood by one of ordinary skill in the art that use of such a wide variety of multimedia tools and features promotes rich, interactive, and personalized social media experiences and manifests by driving web traffic to a social media page belonging to a social media page owner.

[0008] Recently, in addition to direct advertising and marketing campaigns launched via social media pages, social graphs (as explained earlier) created by social media systems, when linked with traditional web pages, have been found to significantly change the ways in which people find, research, purchase, and support products. For example, if a person buys a product from a merchant via the merchant’s traditional web page, wherein the merchant’s web page is linked with a social media system, then such a linkage facilitates sharing of infor-
mation related to the purchase with friends and fans of the person on the social media system. This is possible generally because social media systems provide various tools that facilitate associations between conventional web pages and social media pages. Generally speaking, these tools create linkages that provide a channel of communication between web pages and social media pages. Such tools are usually referred to as "social media plugins" in the art, and are inserted in web pages (including blogs or video blogs) of individuals, organization, and corporate entities. As will be understood and appreciated, social media plugins provided by social media systems can be inserted into web pages, and hence allow integration of interactive features of social media systems on web pages, and also allows communication between social media profile pages and web pages.

As a result of the above features, it will be understood that social media plugins are useful tools for web page owners in driving web traffic to their web pages, consequently realizing greater credibility and popularity of their web pages. For instance, owners of web pages can insert on their web pages a social media plugin called the "Like" button provided by the social media system FACEBOOK™. The Like button on a web page or a social media page displays the number of times certain content on the web page or the social media page has been appreciated ("liked") by FACEBOOK™ users. The Like button also allows visitors who visit the web page to publish a message comprising related content and provides a link to the web page on the visitor’s FACEBOOK™ profile page. Friends and fans of the visitor on FACEBOOK™ can review the message on the visitor’s FACEBOOK™ profile page, and further, upon clicking a link attached to the message they will be directed to the web page. Such a functionality is also provided by social bookmarking sites and social news sites such as Del.icio.us™ and DIGG™.

In some scenarios, a web page requires visitors of the web page to create a user account on the web page for interacting or interfacing with the web page. Examples of such web pages include those owned by online merchants, retailers, news and sports blogs, non-profit organizations and various others. In these scenarios, social media plugins inserted in such web pages and developed by social media systems provides visitors (who are also users of social media pages) the benefit of interacting with the web pages without the need to create a user account or even log in, if the visitors are already logged into their respective social media systems. An example of such a social media plugin is the "Facebook Connect" button provided by FACEBOOK™.

In another scenario, social media plugins (for example, the Activity Feed box), provided by social media systems (for example, FACEBOOK™) informs a visitor about recent (and even real time) activities on a web page involving friends of the visitor, wherein the visitor as well as the visitor’s friends have social media profile pages. Thus, as can be understood and appreciated, social media plugins generally provide various analytics related to user activity and engagement of visitors of web pages with the web pages themselves, which are key to analyze the effectiveness of published content on web pages.

Despite the aforementioned benefits provided by social media plugins, it will be understood that the process of configuring social media plugins before insertion into a web page can be quite complicated and even cumbersome, depending on the social media plugin and the associated social media system. Moreover, a diverse variety of social media plugins (for example, Like button of FACEBOOK™, Activity Feed box of FACEBOOK™, Share button of LINKEDIN™, Tweet button of TWITTER™, to name a few) each differing in their features and configuration processes, creates an overwhelming multitude of options for owners of web pages.

Unfortunately, and as will be known to one of ordinary skill, in many scenarios, web pages and systems associated with them often crash (break down) unexpectedly. In many other scenarios, content on a web page needs to be updated regularly (or sometimes sporadically), e.g., the title of an organization’s web page has to be changed to reflect the organization’s new products, etc. In a related scenario, a web page hosting service provider may need to be changed for convenience or financial reasons, or further, the servers that host a web page might unexpectedly crash due to unforeseen circumstances. Unfortunately, in such scenarios, associations (linkages) created between the web page and social media systems are broken, and sometimes even lost. This generally causes social media systems to restart the process of collecting analytics in connection with user activity and engagement of visitors related to the web page, from the beginning, treating the web page as a new page. This is highly undesirable as this causes frustration to users of social media pages who are affected due to the broken associations; and possibly loss of customers for businesses that use web pages and associated social media pages to attract customers and transact business.

Consequently, there is a long-felt but unresolved need for consolidated systems and methods that facilitate flexible yet robust associations between web pages and social media pages. In other words, such associations need to be flexible in the event of updates to the web page or changes of web page hosting services, and yet robust to failures of the web page or the related hosting services. Even further, it would be desirable to have a system that does not involve complicated configurations by web page owners; rather, the system should provide an easy-to-use interface for persons of ordinary technical knowledge to streamline the task of creating and managing associations between web pages and social media pages, without the need for installing additional software. Moreover, the system should also provide (preferably customized) detailed analytics related to user activity and engagement of visitors related to the web page.

BRIEF SUMMARY OF THE DISCLOSURE

Briefly described, and according to one embodiment, aspects of the present disclosure generally relate to systems and methods for creating and managing associations between social media systems and web pages, using an embodiment of the social graph management system (SGMS) disclosed herein. In one embodiment, aspects of the present disclosure relate to an improved system or method for creating social graph objects within traditional web pages, and subsequently maintaining and managing the social graph objects and related information. According to yet another embodiment, aspects of the present disclosure relate to systems and methods for inserting social media plugins into web pages, and managing the use of, user interaction with, and information relating to the inserted social media plugins. In yet another embodiment, aspects of the present disclosure relate to systems and methods for creating and managing associations between social graphs (generated due to the interactions between individuals, organizations, and corpo-
rate entities on social media systems) and web pages owned by individuals, organizations and corporate entities.

[0016] It will be understood and appreciated that according to one embodiment, SGMS users who wish to create and manage associations between a web page and social media pages access the SGMS easily via an user interface over a computer network, such as the World Wide Web (WWW) or Internet, using varying types of electronic devices such as smart phones and computers. In one embodiment, the SGMS receives information (such as a title, URL, and various other attributes) from SGMS users via an electronic user interface for purposes of creating intermediary page(s) that facilitate associations between social media pages and web pages, wherein in one embodiment, the intermediary page(s) function to direct traffic between social media pages and web pages. Further, the SGMS communicates via a network connection a request for activation of the intermediary page(s) to a respective social media system. Additionally, aspects of the present disclosure involve collection of analytics related to user activity from the intermediary page(s) for purposes of tracking user activity and interactions between the web page and persons visiting the web page.

[0017] These and other aspects, features, and benefits of the claimed invention(s) will become apparent from the following detailed written description of the preferred embodiments and aspects taken in conjunction with the following drawings, although variations and modifications thereto may be effected without departing from the spirit and scope of the novel concepts of the disclosure.

BRIEF DESCRIPTION OF THE DRAWINGS

[0018] The accompanying drawings illustrate one or more embodiments of the disclosure and, together with the written description, serve to explain the principles of the disclosure. Wherever possible, the same reference numbers are used throughout the drawings to refer to the same or like elements of an embodiment, and wherein:

[0019] FIG. 1 illustrates an overview of an embodiment of a Social Graph Management System (SGMS) for creating and managing the associations between social media systems and traditional web pages, operating in an exemplary environment.

[0020] FIG. 2 shows an exemplary SGMS architecture comprising various databases, software modules, engines, and other similar elements, according to one embodiment of the present system.

[0021] FIG. 3 consisting of FIG. 3A and FIG. 3B illustrates a flowchart showing computer-implemented method steps included in an exemplary SGMS process involving various software modules and engines of the SGMS, according to one embodiment of the present system.

[0022] FIG. 4 is an exemplary sequence diagram illustrating interactions involving an embodiment of the SGMS and various other associated components operating in an exemplary environment.

[0023] FIG. 5 shows an exemplary SGMS datable storing information and analytics related to user activity and interactions arising out of associations between social media pages and web pages, used in connection with one embodiment of the present system.

[0024] FIG. 6 is a screenshot of an exemplary SGMS interface showing various social graph objects that facilitate associations between web pages and social media systems, pre-stored in the SGMS database, according to one embodiment of the present system.

[0025] FIG. 7 is a screenshot of an exemplary SGMS interface used in creating social graph objects that facilitate associations between web pages and social media systems, using information provided by a user, according to one embodiment of the present system.

[0026] FIG. 8 is a screenshot of an exemplary SGMS interface displaying source code of a configured social media plugin to be inserted in a web page, wherein the configuration is performed on the basis of information provided by a user, according to one embodiment of the present system.

[0027] FIG. 9 is a screenshot of an exemplary SGMS interface showing a listing of social graph objects that facilitate associations between web pages and social media pages, pre-stored in the SGMS database, (including listing of a social graph object newly created according to exemplary data as shown in FIG. 7) according to one embodiment of the present system.

[0028] FIG. 10 consisting of FIG. 10A and FIG. 10B displays screenshots of an exemplary web page before and after creating associations between the web page and social media systems, according to one embodiment of the present system.

DETAILED DESCRIPTION

[0029] For the purpose of promoting an understanding of the principles of the present disclosure, reference will now be made to the embodiments illustrated in the drawings and specific language will be used to describe the same. It will, nevertheless, be understood that no limitation of the scope of the disclosure is thereby intended; any alterations and further modifications of the described or illustrated embodiments, and any further applications of the principles of the disclosure as illustrated herein are contemplated as would normally occur to one skilled in the art to which the disclosure relates.

[0030] Aspects of the present disclosure relate to systems and methods for creating and managing associations between social media systems (including social media pages or accounts) and traditional web pages. In one embodiment, aspects of the present disclosure relate to an improved system or method for creating social graph objects within traditional web pages, and subsequently maintaining and managing the social graph objects and related information. According to yet another embodiment, aspects of the present disclosure relate to systems and methods for inserting social media plugins into web pages, and managing the use of user interaction with, and information relating to the inserted social media plugins. In yet another embodiment, aspects of the present disclosure relate to systems and methods for creating and managing associations between social graphs (generated due to the interactions between individuals, organizations, and corporate entities on social media systems) and web pages owned by individuals, organizations and corporate entities. Social graphs are complex digital footprints of all such interactions, wherein owners of social media pages constitute the nodes of the social graph. As will be understood by one skilled in the art, owners of a social media page can belong to more than one social graph, and hence social graphs are overlapping in nature. Because of the complexities of interconnections in social graphs, social graphs are generally rendered on a computer with specialized application software.

[0031] Generally, as will be understood, aspects of a social graph protocol enables web pages to be associated with social
media profile pages of users on a social media system. As will be understood and appreciated further from the discussions that follow, such associations will provide web page owners simple, easy-to-use tools in driving web traffic to their web pages, consequently realizing greater credibility and popularity of their web pages due to greater interactions between web visitors and users of social media pages.

[0032] As mentioned above, one aspect of the present disclosure is an improved system that enables efficient and streamlined creation and insertion of social media plugins into conventional web pages, and further enables enhanced management of the plugins and information relating thereto after insertion. As described in greater detail below, a "social graph object" generally refers to a data structure developed according to a social graph protocol that is a computer programming protocol followed by a social media system, and that includes a social media plugin. For example, data relating to an article posted on a news web page could be associated with a social media plugin, and the overall collection of data corresponding to the article and the social media plugin would comprise the social graph object for that article. Traditionally, creating and inserting social graph objects into conventional web pages was somewhat cumbersome, and could be difficult to maintain. For example, if the traditional web page was updated, or information within that web page revised, then the corresponding (and previously-inserted) social graph object could be lost, or re-set, and valuable information relating to that social graph object could be lost (e.g., the number of social media system users that had "Liked" that object could be re-set). Accordingly, the present systems and methods provide streamline mechanisms for creating and using social media plugins (and, consequently, social graph objects) in traditional web pages, and also tracking and utilizing information that is derived from such social media pages.

[0033] Referring now to the figures, FIG. 1 illustrates an overview 100 of an embodiment of a social graph management system (SGMS) 110 in an exemplary environment, constructed and operated in accordance with various aspects of the present disclosure, wherein the SGMS 110 is hosted on a physical server in a facility or a virtual server in a cloud computing environment. According to the disclosed embodiment, a SGMS user 102 utilizes the SGMS 110 (comprising a social graph manager (SGM) 112 and a SGMS database 114), for purposes of creating and managing associations between a web page 118 and social media pages 126 on social media systems 122. Social media pages 126 can belong to one or more web visitors 130 who visit the web page 118, or can belong to friends 128 of the web visitor 130. Even further, in another aspect, social media pages 126 can also belong to the SGMS user 102. It will be further understood that the SGMS 110, in one embodiment, is used to create and manage associations between a plurality of web pages 118 (visited by a multitude of web visitors 130) and social media pages 126 belonging to web visitors 130 and/or their friends 128 on a variety of social media systems 122.

[0034] Generally speaking, and as will be understood by a person skilled in the art, a social media page is a web page that is hosted by a social media system on the world wide web (Internet). However, in the present disclosure, it will be understood that references to "web pages" or "traditional web pages" are meant to generally indicate web pages that are maintained outside of social media systems. For example, a company may maintain its traditional corporate web page, which provides information about the company, store locations, advertisements and offers, and the like, and the company may also maintain one or more social media pages within social media systems that provide interconnectivity and information-sharing features not typically offered with conventional web pages. As will also be understood and appreciated, in some embodiments, the term "social media page" does not necessarily refer to a "page," but could also refer to an account or other information-sharing tool used to connect with others in a social media system (e.g., TWITTER™ feeds).

[0035] As shown in FIG. 1, computers (e.g., laptops, desktops, servers, tablet computers, etc.) or computing devices (e.g., smart phones) capable of accessing the world wide web can be used to communicate with social media pages for purposes of publishing new material, editing material, or reviewing published material. As will be known by one of ordinary skill, owners of social media pages may create a personal or group profile page and use it as a platform to share information through messages, files, posts, news feeds, photographs, audio clips, video clips, URL's, etc. As will be understood by one skilled in the art, users of social media systems 122 can access their own social media pages, and can also access and interact with social media pages owned or related to their friends 128 on social media systems 122.

[0036] Further, those skilled in the art will also understand that social media systems and the social media pages hosted therein also present marketers and advertisers affiliated with organizations, groups, and entities with potential marketing tools to advertise their products and/or services. In other words, marketers and advertisers can post messages or advertisements on these social media systems as a way to advertise outside of conventional marketing channels such as radio, television, print, and conventional web pages. Such messages or advertisements can include polls, quizzes, video clips, coupons, and various other multimedia tools and features. Details of such a system wherein marketers and advertisers are able to post messages and/or advertisements on social media profile pages of users of a social media page is discussed in greater detail in U.S. patent application Ser. No. 12/859,675, filed Aug. 19, 2010, and entitled “Systems and Methods for Managing Marketing Programs on Multiple Social Media Systems”, which is incorporated by reference herein.

[0037] According to one embodiment, aspects of the present systems and methods may comprise features or components of the social relationship management system (SRMS) described in U.S. patent application Ser. No. 12/859,675 (referred above). Specifically, in one embodiment, the functionality described herein that enables a user may create associations between web pages and social media pages comprises an add-on feature an embodiment of the SRMS described in U.S. patent application Ser. No. 12/859,675. Accordingly, in such embodiments, the presently-described systems and methods are interconnected with and utilize overlapping functionality of a SRMS system. Of course, in other embodiments, the systems and methods recited herein comprise standalone features that are not part of a larger overall marketing or social relationship management system.

[0038] In the present disclosure, a high level summary of actions (as shown in FIG. 1) involving SGMS users 102 and the SGMS 110 are indicated as numbered steps with the numbers “1” through “10” in FIG. 1, and will be described next. Furthermore, detailed interactions involving SGMS
users 102, the SGMS 110 and other associated components in an exemplary environment will be illustrated in connection with a sequence diagram in FIG. 4. In the illustrations shown in the accompanying screenshots, and as will be seen, an exemplary SGMS user 102 (sometimes referred to as “Jeff”) utilizes an embodiment of the SGMS 110 to create and manage associations between web pages of a fictitious organization called “Acme Coffee” and social media pages hosted by a hypothetical social media system called “Eyetext”. As will be understood and appreciated, the exemplary and illustrative “Jeff”, “Acme Coffee”, and “Eyetext” are meant to represent sample system users, companies, and social media systems (respectively) to aid in the understanding of the present system, and are not intended to limit the scope of the present disclosure in any way.

[0039] Continuing with FIG. 1, according to one embodiment, at step “1” SGMS users 102 access the SGMS 110 via a SGMS user interface 104 over a communication network 108 (such as the Internet) in order to create, manipulate and manage associations electronically between social graphs (generated due to complex interconnections arising from published content on social media pages 126 of individuals, organizations, and corporate entities and hosted by social media systems 122) and web pages 118. Specifically, in one embodiment, SGMS users utilize the SGMS to insert social graph objects or social media plugins relating to social media systems into traditional web pages, and subsequently manage the functionality of those social graph objects or social media plugins. Generally, web pages of SGMS users 102 are owned by the users themselves, or, such web pages belong to other persons or entities, wherein SGMS users 102 utilize an embodiment of the SGMS 110 to create and manage associations between web pages 118 and social media pages 126.

[0040] As can be seen from FIG. 1, after successful login by an SGMS user 102, the SGMS 110 displays (at step “2”) a social graph object creation form 106 to SGMS user 102 for purposes of creating social graph objects. As described previously and as referred to herein, the term “social graph objects” generally refers to data structures developed according to a social graph protocol that is a computer programming protocol followed by a social media system. Generally, a social graph object will include a “social media plugin,” which is essentially software code that enables communication and sharing of information between the social media plugin and a corresponding social media system. Thus, examples of social media plugins include the “Like” button on FACEBOOK™, the “re-tweet” functionality of TWITTER™, and many others that are known to those of ordinary skill in the art. An exemplary screenshot showing a social graph object creation form 106 is displayed in FIG. 7 (discussed in greater detail below). Social graph object creation form 106 generally contains various fields such as “title”, “type”, “url”, etc., in connection with web page 118 and the social graph object that will be created. Various software modules and engines that comprise an embodiment of the SGMS and are involved in the creation of social graph objects will be discussed in connection with FIG. 2. Exemplary screenshots showing social graph objects created by an embodiment of the SGMS 110 (and stored in an exemplary database SGMS 114) are illustrated in FIGS. 6, 9, and 108.

[0041] With reference to FIG. 1, at following step “3”, a SGMS user 102 fills out the displayed social graph object creation form 106 and submits it to the SGMS 110 for creation of social graph objects. Details of a computer-implemented method performed by an embodiment of the SGMS to create social graph objects graphs will be described with a flowchart in connection with FIG. 3.

[0042] It will be understood that SGMS users 102, as discussed in the present disclosure, include individual users, and in some scenarios, one or more SGMS users 102 may be affiliated with an organization or corporate entity. For example, an SGMS user might be a marketer or advertiser associated with a company, or may be generally understood to represent the marketing department or company as a whole. As will be further understood by a person of ordinary skill in the art, SGMS users 102 can also be users of social media systems 122 and own or use social media pages 126. Therefore, as discussed herein, the term “user” is intended to relate to individuals or companies who use an embodiment of the SGMS 110, i.e. an SGMS user 102, to create and manage social graph objects and associations between web pages and social media systems. In some circumstances, however, the term “user” is used in the context of persons or entities who own or use social media pages (which may also be users of the SGMS). In this disclosure, it should be discernable from the context regarding the type of user being discussed.

[0043] Still referring to FIG. 1, according to an aspect of the present disclosure, creation of social graph objects further comprises the SGMS 110 creating one or more intermediary pages, for example, a pseudo page 120 and a redirector page 124 at steps “4a” and “4b” respectively, using information entered by the SGMS user 102. Exemplary intermediary pages, i.e., pseudo page 120 and redirector page 124, generally comprise meta tags (provided by social media systems) and meta data provided in the form of SGMS user’s inputs.

[0044] As the name implies, and as described subsequently herein, a redirector page 124 redirects web traffic originating from the social media system to the web page 118. On the other hand, a pseudo page 120 presents information related to the web page 118 to the social media system 122 in the form of meta tags and meta data. According to one embodiment, the functionalities of the pseudo page 120 and the redirector page 124 can be combined into a single intermediary page. As will be understood, such intermediary page(s) provide the benefit of robust associations (linkages) between web pages and social media pages, in the event of updates to the web page, unforeseen crashes by the web pages or systems associated with hosting of the web pages, and other social graph objects. Additional functionalities (and corresponding benefits) of intermediary pages will be better understood in the discussions that follow. Details of the process performed by various software modules and engines included in an embodiment of the SGMS 110, and involved in creation of intermediary pages, are explained with a flowchart in FIG. 3.

[0045] After creation of the intermediary pages, the social media system (SMS) 122 interacts with the SGMS 110 via network 108 to activate the social graph objects with the help of the information provided by the pseudo page 120 and the redirector page 124 at step “5”. As will be understood and appreciated, network 108 may comprise a wide area network, virtual public or private network, the world wide web (Internet), or other similar network. Exemplary screenshots showing a list of active social graph objects (stored in exemplary SGMS database 114) are displayed in FIGS. 6 and 9.

[0046] According to another aspect of the present disclosure, the SGMS user’s inputs in social graph object creation form 106 (reached at step “2”) are used by the SGMS 110 to configure a social media plugin that will be involved in track-
ing interactions between the web page 118 and social media pages. As mentioned previously, a “social media plugin” comprises a means of communication between a social media system and a web page. In one embodiment, social graph objects include social media plugins to enable such communication and information-sharing. Thus, social media plugins enable web page visitors to provide information relating to a corresponding social graph object, interact with the object, share the object with others, etc. Examples of such “social media plugins” include the “Like” button of FACEBOOK™, Share button of LINKEDIN™, Tweet button of TWITTER™, and many others. Such social media plugins can be inserted by the SGMS user 102 into the web page 118. According to one embodiment, the social media plugin communicates user activity related data to the SMS 122, and the data is retrieved subsequently by the SGMS 110 for purposes of tracking and analytics. Thus, at step “6”, the SGMS 110 configures a social media plugin and further displays associated source code 116 for the social media plugin to the SGMS user 102. It will be understood that configuration of a social media plugin involves using information entered by SGMS user 102 on an unconfigured social media plugin provided by a social media system 122. An exemplary screenshot showing source code 116 for a configured social media plugin is displayed in Fig. 8.

After receiving source code 116 for the configured social media plugin (or other social graph object), SGMS user 102 inserts (at step “7”) source code 116 in the user’s web page 118 that allows tracking and capture of analytics related to user activity and engagement of persons visiting the web page 118 with the social graph object and associated social media pages 126. In one aspect, the social media plugin also displays (on web page 118) the number of times a web page 118 has been liked or appreciated by social media system users who have interacted with the web page 118.

Consequently, web visitor 130 interacts with the web page 118 and further with the social media plugin (or other social graph object) on the web page 118. In one embodiment, interactions of the web visitor 130 with the web page 118 are published as a message on the visitor’s social media page 126, as shown in step “9” in Fig. 1. According to one embodiment, such a message published on the visitor’s social media page 126 comprises a direct link pointing to the redirector page 124 (shown with a thick arrow in FIG. 1) along with a brief summary of the web page. Friends 128 of the visitor 130 on the social media system 122 are able to review (step “10” in Fig. 1) the message on the web visitor’s social media profile page 126. Further, according to one embodiment, when a friend of the web visitor clicks a link attached to the message on the visitor’s social media page (or otherwise interacts with the message), information regarding that interaction will first momentarily arrive at the redirector page 124, and subsequently will be routed from the redirector page 124 to the web page 118 (as shown with a thick arrow in FIG. 1). According to another embodiment, interactions by web visitor 130 with web page 118 are communicated to the SMS 122 by the embedded configured social media plugin in web page 118. Subsequently, data pertaining to such interactions involving web visitors 130 and web pages 118 are retrieved by the SGMS 110 from the SMS 122.

In yet another embodiment, interactions involving web visitors 130 and web pages 118 are communicated directly to the SGMS 110, which then inform the SMS 122 about the interactions. Details of the interactions involving a web visitor 130, the SGMS 110, a SMS 122, and a SGMS user 102 are shown with a sequence diagram in FIG. 4. As will be understood by one of ordinary skill in the art, an outcome of the present system, as described above, is that web traffic is driven (for example, social media system friends of a web visitor) to the web page that is associated with social media system pages, resulting in greater credibility and popularity of the web page. Exemplary screenshots of a web page (belonging to exemplary organization Acme Coffee) before and after creating associations between the web page and exemplary social media systems, are shown in FIG. 10A and FIG. 10B.

As will be understood, electronic communications involving various components such as the SGMS 110, SGMS users 102, web visitors 130, social media systems (SMS) 122, SMS friends of the visitor 130, and intermediary pages (for example, pseudo page 120 and redirector page 124) typically proceed through a network 108, using one or the other services, such as a Web-deployed service with client/service architecture, a corporate Local Area Network (LAN) or Wide Area Network (WAN), or through a cloud-based system. Further, as will be understood and appreciated, various networking components like routers, switches, hubs etc., are typically involved in the communications. Although not shown in FIG. 1, it can also be further understood that such communications may include one or more gateways/firewalls that provide information security from unwarranted intrusions and cyber attacks.

Those skilled in the art will understand and appreciate that creating and managing associations between a web page and social media systems, as performed by an embodiment of the SGMS 110 and described herein, involves an easy-to-use interface and further promotes greater interactions between web page visitors (or, simply web visitors, in short) and social media systems users, consequently driving greater web traffic to the web page, resulting in greater credibility and popularity of the web page. According to one embodiment of the present disclosure, various analytics related to user activity and engagement of persons visiting the web page and associated social media pages are collected by the SGMS 110 and stored in an exemplary SGMS database 114. Exemplary data tables showing representative user activity analytics stored in SGMS database 114 are shown in FIG. 5.

As will be understood, the embodiments discussed herein are for illustrative purposes only. The discussion above in association with FIG. 1 is intended to merely provide an overview of an embodiment of the present system for creating and managing flexible yet robust associations between social media pages and web pages, and is not intended to limit in any way the scope of the present disclosure. Accordingly, various other embodiments of the SGMS that use other ways (for example, using multiple social media plugins from a various social media systems, or even allowing SGMS users the option of choosing various social graph objects and the corresponding social media systems they desire) are possible, as will occur to one of ordinary skill in the art. According to another embodiment, analytics pertaining to user activity and interactions with social graph objects embedded in traditional web pages are displayed to SGMS users in real time or non-real time. Alternate embodiments can also use various user activity and interactions criteria, some or all of which may be different than the ones discussed herein.
Turning now to FIG. 2, an exemplary SGMS architecture 200 is shown, involving architectural details of the social graph manager (SGM) 112 (further comprising various software modules and components), communicating with a SMS management module 202 that is a part of an exemplary social media system (SMS) 122. As shown in the embodiment in FIG. 2, a SMS 122 includes a SMS management module 202 that contains various standards, rules, and policies in connection with social media pages hosted by a SMS. For example, a SMS 122 generally has specific configurations such as application programming interfaces (APIs) for developers and software programmers to access or publish content on social media pages hosted by the respective SMS. For example, APIs for various social media plugins that offer various features and rules for communicating with the SMS 122, are stored in a SMS management module 202.

In another example of functionalities of a SMS management module 202, various components such as users, events, pages, video clips, and the connections between them (e.g., friend relationships, shared content, and photo tags), are often represented as objects (or, generally computer data structures) on a social graph. Information related to such objects can be exchanged using specific standards and formats such as HTML (Hyper Text markup Language) or Extensible Markup Language (XML). Even further, a SMS 122 could have strict guidelines on the privacy of users’ pages. For example, a SMS 122 might allow third party developers and software programmers to access only publicly available information on social media pages. To obtain additional information about a social media page, developers must first obtain the page owner’s permission. Such a permission can be granted by a page owner in the form of an “access token”, i.e., a software certificate conferring proper rights and privileges. Third party developers can perform authorized requests on behalf of a user by specifying the access token of a user in an API request. Those skilled in the art will understand and appreciate that various other functionalities related to communicating with social media pages (hosted by a respective SMS 122) are handled by a SMS management module 202.

As shown in FIG. 2, the SGM 112 communicates with a SMS management module 202 over a network 108, for purposes of creating and managing associations between web pages 118 (for example, hosted by a web page hosting service provider 204) and social media pages 126. As will be understood, creating and managing such associations further comprises creation of intermediary pages by an embodiment of the SGM 110. It will be further understood that the intermediary pages provide the benefit of robust associations (linkages) between web pages and social media systems, in the event of unforeseen crashes by the web pages or systems associated with hosting of the web page (for example, web page hosting service 204).

According to an embodiment of the present disclosure, the SGM 112 further comprises several software modules, for example, a user interface (UI) module 206, a data processing module 208, and a redirection module 210. As will be understood by one of ordinary skill in the art, various other modules and software engines can comprise an embodiment of the SGM 110. The modules and software engines discussed in connection with FIG. 2 are for illustration purposes only, and alternate embodiments are not limited to the specific modules and software engines discussed herein.

In one embodiment of the SGM 110, UI module 206 stores computer code needed to interface and interact with SGMS users 102 via a user interface 104. For example, UI module 206 displays a social graph object creation form 106 (illustrated with exemplary screen shots in FIG. 7 and FIG. 8) to SGMS users 102. Examples of various entries in such a form include (but are not limited to) title, url, type of social graph object, etc. Subsequently, after SGMS users enter the relevant information through the user interface 104, such information is received by the UI module 206. According to one embodiment of the present disclosure, information received from SGMS users 102 is stored in an exemplary SGMS database 114 before being processed by other modules and engines.

Still referring to FIG. 2, information related to creation of social graph objects and received by UI module 206 is then processed by the SGMS 110 to create social graph objects and intermediary pages. It will be understood that social graph objects newly-created by the SGMS 110 are usually activated by communicating an activation request to SMS 122. In turn, the SMS 122 validates and activates a newly created social graph object before further manipulations are performed on the social graph object by the SGMS 110 and/or the SMS 122.

According to one aspect of the present disclosure, information provided by SGMS users 102 is processed by a data processing module 206. According to another aspect of the present disclosure, processing such information involves generating unique meta data from the information provided by SGMS users, in conjunction with meta tags provided by the respective SMS 122. As will be understood, meta data and meta tags are usually developed according to a social graph protocol that is a computer programming protocol followed by a social media system for communicating with external web pages. In addition to generating meta data and meta tags, in one embodiment, the data processing module 208 is also involved in the configuration of a social media plugin that will be inserted in web page 118. As will be understood, usually one or more unconfigured social media plugins are provided by SMS’s 122 to create social graph objects on traditional web pages. Generally, social media plugins allow web page owners to integrate features and functionalities of social media pages into external web pages 118. In an embodiment of the present SGMS 110, source code for a configured social media plugin is provided to SGMS users 102 to be inserted in web pages 118, wherein the configuration is generally performed with the help of information provided by SGMS users 102.

Further, in one embodiment, developed meta data and meta tags are used by the SGMS acting as an intermediary system that induces greater flexibility and streamlining in the processes of creating and managing the associations between social media pages and web pages owned by individuals, organizations and corporate entities. According to one aspect, the intermediary system includes a redirector page 124 hosted in a redirection module 210 that redirects web traffic originating from the social media system 122 to the web page 118, in addition to a pseudo page 120 that presents information related to the web page 118 to the social media system 122 in the form of meta tags and meta data.

According to one embodiment of the present disclosure, various analytics related to user activity and engagement of persons visiting web page 118 based on interactions with social graph objects associated with those web pages are
collected by the SGMS 110 and stored in an exemplary SGMS database 114. Exemplary data tables showing representative data stored in an SGMS database 114 are shown in FIG. 5. Such analytics are displayed to SGMS users 102 for reporting of user activity analytics. Further, such analytics can be provided as reports in electronic and/or print form that can also be customized to suit the requirements of SGMS users 102 who wish to review such reports.

[0062] Now referring to FIG. 3 (further consisting of FIG. 3A and FIG. 3B), an exemplary social graph object creation and management process 300, as performed by an embodiment of the SGMS 110, is illustrated with the help of a flowchart. As will be understood and appreciated, the steps of the process 300 shown in FIG. 3 are not necessarily completed in the order shown, and various steps of the SGMS may operate concurrently and independently. Accordingly, the steps shown in FIG. 3 are generally asynchronous and independent, computer-implemented, tied to particular machines (including various modules/engines of the SGM 112, coupled to databases, users’ devices to access the SGMS server(s), and/or one or more social media systems), and not necessarily performed in the order shown.

[0063] As recited previously, according to one embodiment of the present disclosure, the system disclosed herein provides greater flexibility in streamlining the creation and management of electronic associations between web pages and social graphs. For example, a web page is created, wherein the merchant’s web page is linked with a social media system, and such a linkage facilitates sharing of the information related to the product with friends and fans of the person on the social media system, wherein the merchant’s web page and social media pages are typically represented as objects in a social graph.

[0064] Generally, a “social graph” is constructed according to a social graph protocol followed by a social media system. An example of a social graph is the “Open Graph”, which is based on a social graph protocol called as the “Open Graph Protocol” followed by the social media system FACEBOOK™. A social graph protocol enables web page owners to associate their web pages with social media systems (and social media profile pages of users on a social media system). Typically, a social graph protocol is made to have similar features as a social media page, by including meta tags associated with a social graph protocol in conjunction with social graph objects (such as social media plugins) on the web page. As described previously, “social graph objects” are generally computer data structures that are developed using social graph protocols followed by social media systems. In one instance, social graph objects can be created by including social graph protocol meta tags on a web page, in addition to social media plugins provided by the social media system. For example, an article posted on a news publication web page can be turned into a social graph object by associating a social media plugin with data relating to the article, thus providing social media system functionality in connection with the article. Generally, meta tags provide a structure and organization of the information that the social media system can retrieve, including content type, thumbnail image, video size and many other details.

[0065] This means, for example, when a visitor clicks on social media plugin on a web page, an association is made automatically between the web page and the visitor’s social media page. The social media plugin allows the visitor to share content related to the web page with the visitor’s friends on the social media system. In one example of a social media plugin, the plugin generates a post on the visitor’s social media profile page containing a link back to the web page. In many scenarios, the social page typically appears in an exemplary “Interests” section (or, potentially at some other location) of the visitor’s social media profile page, and the web page owner further is provided the ability to publish updates to the visitor’s social media profile page, because of the automatic association between the pages. In the discussions that follow, an exemplary process of creating and managing such associations will be described with the help of a series of computer implemented steps performed by an embodiment of the SGMS 110.

[0066] Starting at step 302, the SGMS receives credentials (e.g., login/password) of a SGMS user 102 via a user interface 104 for creation or management of social graph objects. Although not shown in FIG. 3, it will be understood that in the event the user credentials submitted by a user 102 are invalid, a corresponding error message is displayed to the user’s screen via the user interface 104, and the process exits thereafter.

[0067] If credentials of the SGMS user 102 are valid, then according to one embodiment, the SGMS 110 retrieves pre-created and pre-stored social graph objects (if any) from a database (for example, SGMS database 114). These pre-stored social graph objects may be revised and updated, as described subsequently herein. At step 304, the social graph object creation form is displayed to the SGMS user to be completed by the user for purposes of creating associations between a web page and social media systems. (Screenshots of a graphical user interface (GUI) displaying an exemplary social graph object creation form 106 are shown in FIG. 7 and FIG. 8).

[0068] Usually, a social graph object creation form 106 comprises various fields that are required properties of the social graph protocol followed by the social media system. Such fields include (but are not limited to) a title of a social graph object (e.g., “How to make the perfect brew coffee”), a type of social graph object (e.g., activity, article, restaurant, video, etc.), an image illustrative of the social graph object in the associated social graph(s), a URL (e.g., “http://www.acmemcoffee.com”) of a web page that represents a social graph object in the associated social graph(s), and others. As will be understood by a person skilled in the art, a list of various types of social graph objects that are likely to be included in social graphs are usually predetermined by social media systems. Furthermore, according to one embodiment, the SGMS provides the ability to create custom social graph object types that are not predetermined by social media systems.

[0069] In addition to the URL (e.g., “http://www.acmemcoffee.com”) of the web page that will be associated with a social media system (e.g., Eyetext, in one embodiment, a SGMS user also provides an external domain (also referred to as a slug domain), wherein the external domain will host a redirector page. As will be seen in the screenshots in connection with FIG. 7, an exemplary external domain for a redirector page of Acme Coffee is given by acmemcoffeeexternaldomain.com. Since an external domain can host multiple redirector pages corresponding to multiple social graph objects, a unique identifier (sometimes referred to as a slug identifier in a social graph object creation form) is entered by a SGMS user that uniquely identifies the redirector page associated...
with the respective social graph object. An example of a slug identifier in connection with Acme Coffee’s social graph objects is provided by a SGMS user as “perfectbrew”.

[0070] As recited previously, social graph object creation forms generally include a field for an image illustrative of the respective social graph objects that will be created. Such images can typically be uploaded by SGMS users from their computing devices through a user interface. Additionally, as will be understood, social graph object creation forms often request that SGMS users enter an admin ID that is a unique ID (comprising a string of numbers and alphabetic characters for example) provided by social media systems to identify individuals and entities who own or use social media pages on the respective social media systems. In various scenarios, such individuals include SGMS users.

[0071] After a SGMS user fills out a social graph object creation form thereby providing information and submitting it through a user interface, the form is received by the SGMS at step 306. As will be understood by one of ordinary skill in the art, information provided by SGMS users is stored in an exemplary SGMS database 114.

[0072] At next step 308, the SGMS creates meta data using information provided by SGMS users and meta tags provided by social media systems. As recited previously, meta tags provide a structure and organization of the information of a web page that the social media system can retrieve, including content type, thumbnail image, video size and many other details. Generally speaking, meta data and meta tags comprise specialized programming language keywords created according to a social media protocol that is followed by a social media system. As will be seen next, information provided by a SGMS user (at step 310) will be used to configure a social graph object (e.g., a social media plugin).

[0073] As mentioned previously, in one embodiment, a social media plugin in used to create a social graph object in a web page. Under this embodiment, at step 310, the SGMS configures a social media plugin that will be inserted by the web page owner in the web page for tracking of user activity related data on the web page. It will be understood that in one embodiment, a configured social media plugin communicates user activity-related information directly to a SMS. In another embodiment, such interaction information is communicated first to the SGMS, and then to an SMS for processing. Generally, social media plugins provided by social media systems allow integration of interactive features of social media systems on web pages, and further allow communication between social media profile pages and web pages. As a result of such features, it will be understood that social media plugins are useful tools for web page owners in driving web traffic to their web pages, consequently realizing greater credibility and popularity of their web pages. For instance, owners of web pages can insert on their web pages an exemplary social media plugin called the “ILike” button provided by a fictitious social media system called “Eyetext”. An ILike button allows visitors who visit the web page to publish a message comprising related content, a miniature image (provided by SGMS users through a social graph object creation form interface and thereafter received by the SGMS at step 308) illustrative of the web page, and links to the web page on the visitor’s profile page on Eyetext. Although configuration of a single social media plugin for a specific social media system is discussed in this flowchart, it will be understood that in alternate embodiments, the SGMS can configure several social media plugins that allow different features, the social media plugins being associated with a variety of social media systems.

[0074] Still referring to FIG. 3, after a social media plugin is configured, the SGMS creates (at step 312) a pseudo page that presents information to a respective social media system in connection with the web page (that is represented as a social graph object in the associated social graphs), wherein the information is presented in the form of meta tags and meta data created previously by the SGMS. In an embodiment of the SGMS, the SGMS creates at step 314 a redirector page (comprising meta data and meta tags) that redirects web traffic originating from the social media system to the web page. Functionality of the redirector page will be described next with an exemplary scenario.

[0075] In an exemplary scenario involving creating and managing associations between a web page http://www.acmecoffee.com of an organization called Acme Coffee with a social media system, a SGMS user provides information related to Acme Coffee’s web page to the SGMS for creation of social graph objects. Thereafter, the SGMS creates social graph objects and intermediary pages comprising meta data and meta tags. Further, the SGMS configures (using information provided by the SGMS user) an ILike button (an exemplary social media plugin of a social media system called Eyetext), and provides source code of the configured ILike button to the SGMS user. Owner of Acme Coffee’s web page (or, possibly the SGMS user) inserts the source code for the configured ILike button in Acme Coffee’s web page.

[0076] Thereafter, in one embodiment, the social graph object associated with this web page is activated by Eyetext. Following the activation, web page visitors visiting the web page interact with the web page and further with the social media plugin on the web page. Interactions of the web visitor with the web page are published as a message on the visitor’s social media page along with a brief summary, including a URL and an image illustrative of the web page. Further, as will be understood, in one embodiment, the aforementioned URL hosts a redirector page (located at an exemplary web address given by http://www.acmecoffeeexernaldomain.com/perfectbrew) that redirects web traffic originating from an exemplary social media system called Eyetext to the original web page http://www.acmecoffee.com.

[0077] Friends of the web visitor on the social media system can review the message on the web visitor’s social media page (such as the visitor’s social media profile page). Further, according to one embodiment, upon clicking the URL attached to the message, friends of the visitor will be first redirected to the redirector page (exemplarily, http://www.acmecoffeeexernaldomain.com/perfectbrew) and subsequently will be routed from the redirector page to the web page (exemplarily, http://www.acmecoffee.com). Generally, this redirection occurs virtually instantaneously, such that a user will not notice the redirection. Consequently, and as will be understood, analytics related to user activity and interactions are provided by the embedded social media plugin directly to the SMS. Such analytics are then subsequently retrieved from the SMS by the SGMS, for display to SGMS users. According to another embodiment, interactions by web visitor with the web page are first communicated to the SGMS by the embedded configured social media plugin in the web page, and then to the SMS for storage and subsequent processing.
Continuing with the description of FIG. 3, at step 316, according to one embodiment of the present disclosure, the SGMS creates database entries in an exemplary SGMS database 114 for storing analytics related to user activity and engagements (illustratively shown in FIG. 5) in connection with web visitors who visit the web page (exemplarily, Acme Coffee's web page http://www.acme咖啡.com) and social media pages associated with that web page. According to an aspect of the present disclosure, the SGMS, can be utilized to manage previously created associations between web pages and social media pages. For example, the SGMS allows SGMS users to make changes or update pre-created social graph objects, including those that have been activated and validated by social media systems. In one instance, SGMS users can change the description associated with social graph objects. Further, in another instance, a SGMS user may change the title, the name or the image, the URL, the external (slug) domain, the unique (slug) identifier and various other attributes associated with a pre-created social graph object. In such instances, the SGMS user can make the necessary changes to the social graph object through a user interface that displays a social graph object update form. An exemplary social graph object update form (that includes an exemplary “Update Social Graph Object” button 720) is shown in FIG. 8. It will be understood that the effect of such changes to social graph objects, will not affect the associations created between the web page and social media pages. However, the effect of such changes will be reflected in published (both retroactive and subsequent) content on the social media pages associated with the web page. For example, if a SGMS user replaces the image of a pre-created social graph object, then in every message (or post) published in social media pages associated with that social graph object, the previous image will be replaced by a new image. As will be further understood and appreciated, SGMS users can make changes to social graph objects to point to different URLs. For example, a SGMS user can transfer previously created associations between social media pages and www.acmebeverages.com, to another exemplary URL www.acmebeverages.com, without causing the associations to break. In this example, a reconfigured source code of a social media plugin typically should be inserted in the web page www.acmebeverages.com.

After the source code for the configured social media plugin has been inserted in the web page, web page visitors visiting the web page interact with the web page and further with the social media plugin on the web page. In an embodiment, interactions involving web visitors and web pages are communicated directly to the respective social media systems by the social media plugin embedded in the web page. Subsequently, the social media system informs the SGMS about the interactions, in response to a query (in connection with the interactions) by the SGMS.

Generally, interactions of the web visitor with the web page are published as a message on the visitor's social media page along with a brief summary of the web page along with a URL to a redirector page. Then, friends of the web visitor on the social media system who review the message on the web visitor's social media profile page, and further, when they click on the URL attached to the message will first momentarily arrive at the redirector page (exemplarily http://www.acmebeverages.com/perfectbrew), and subsequently will be routed from the redirector page to the web page (exemplarily http://www.acmebeverages.com).

Consequently at step 322, the SGMS processes the redirector page in order to extract analytics (illustratively shown in FIG. 5) related to user activity and engagements in connection with visitors who visited the web page and/or social media pages of users who have visited the web page. Furthermore, the SGMS processes the redirector page in order to direct web traffic originating from the social media system to the web page. According to one embodiment, the SGMS displays (at step 324) analytics related to user activity and engagements in connection with the web page to SGMS users.
SGMS 110, one or more web page visitors 130, and one or more SMSs 122. Further, as will be understood, a system user 102 accesses the SGMS 110 online via computers, smart phones or any other Internet-enabled computing device. However, it will be understood that no such limitation is imposed, and alternate embodiments can use multiple SMSs, and even involving associations with multiple web pages. According to one aspect of the present disclosure, various functionalities of a SMS 122 discussed in FIG. 2 in connection with communicating with social media pages are handled by a SMS management module 202.

[0088] As shown in FIG. 4, at step 1, a SGMS user 102 logs into the SGMS 110 using the user’s credentials (login/password) through a user interface. Next, at step 2, the SGMS authenticates the SGMS user 102. If the user’s credentials are not valid, the SGMS 110 displays a message indicating that the user’s credentials are not valid.

[0089] If the user’s credentials are valid, the SGMS 110 displays a social graph object creation form for purposes of creating associations between a web page and a social media system. (Screenshots of a graphical user interface (GUI) displaying an exemplary social graph object creation form are indicated in FIGS. 7 and 8). Then, at step 4, the user provides information to the SGMS by filling out the social graph object creation form. After the SGMS user 102 fills out a social graph object creation form, thereby providing information and submitting it through a user interface, the form is received by the SGMS 110.

[0090] At next step 5, the SGMS 110 creates social graph objects for purposes of building associations between profile pages on social media systems and web pages. In one embodiment, a process of creating social graph objects further comprises creating meta data using information provided by SGMS users and meta tags available from social media systems. As recited previously, meta tags provide a structure and organization of the information of a web page (which will be associated with social media systems) so that the social media system can retrieve, including content type, thumbnail image, video size, and many other details. Generally, meta data and meta tags are developed according to a social media protocol that is followed by a social media system. In the present example, information provided by a SGMS user (at step 4) will be used by the SGMS 110 to configure a social media plugin.

[0091] Still referring to FIG. 4, at step 5, the SGMS 110 configures a social media plugin that will be inserted by the web page owner in the web page. As mentioned previously, the social media plugin is used to provide social media functionality to a page associated with a web page, thereby creating a social graph object in the web page. As will be understood, social media plugins provided by social media systems allow integration of interactive features of social media systems on web pages, and further allow communication between social media profile pages and web pages.

[0092] After a social media plugin (or other social graph object) is configured, the SGMS 110 creates intermediary pages such as a pseudo page and a redirector page. A pseudo page presents information to the social media system 122 in connection with the web page (that is represented as a social graph object in the associated social graph), wherein the information is presented in the form of meta tags and meta data created previously by the SGMS 110. In an embodiment of the SGMS 110, the SGMS further creates a redirector page (comprising meta data and meta tags) that redirects web traffic originating from the social media system to the web page. Details of the process performed by various software modules and engines included in an embodiment of the SGMS 110, and involved in creation of intermediary pages, have been explained previously with a flowchart in FIG. 3.

[0093] In the embodiment shown in FIG. 4, after creation of the intermediary pages, the social graph object associated with this web page is activated by a SMS 122. Hence, after creation of the intermediary pages, the SGMS 110 communicates (at step 6) a request for activation and validation of social graph objects created at step 5. Consequently, a respective social media system (SMS) 122 visits (at step 7) the pseudo page created by the SGMS 110 in order to activate and validate the social graph objects.

[0094] Following the activation, in one embodiment, at step 8, the SMS 122 saves metadata extracted from the pseudo page (or any other intermediary page) in a SMS database 114, in order to keep track and store analytics of user activity and engagement in connection with interactions between the web page and social media system users.

[0095] Next, at step 9, the SGMS 122 displays source code for a configured social media plugin (that was previously configured in step 5). In one embodiment, configuration of a social media plugin involves using information entered by SMS user 102 on an unconfigured social media plugin provided by a social media system 122. An exemplary screenshot showing source code for a configured social media plugin is displayed in FIG. 8.

[0096] After receiving source code for the configured social media plugin, a SGMS user 102 inserts (at step 10) the source code in the web page in order to allow tracking and capture of analytics related to user activity and engagement of persons visiting the web page and associated social media pages. As mentioned previously, in one embodiment, steps 9 and 10 are performed automatically by the SGMS or another third party system, and the SMS user is not required to manually embed such source code into the web page. Examples of analytics related to user activity and engagement, as displayed in FIG. 5, include (but are not limited to) the number of times certain content on the web page has been liked and/or recommended by social media system users, recent (and even real time) activities on a web page involving friends of a visitor of a web page, wherein the visitor as well as the visitor’s friends have social media profile pages, originating IP address, and various other analytics desired by web page owners.

[0097] Next, web page visitors 130 visit the web page and interact with the web page and further with the social graph object (e.g., the social media plugin) on the web page. Interactions between a web visitor 130 and the web page are communicated (at step 11) to the SMS 122 by the configured social media plugin embedded in the web page. Then, at step 12, data related to the interactions will be stored in the SMS. Subsequently at step 13, the social media system informs the SGMS of the interactions and information relating thereto, either automatically or in response to a query by the SGMS. At step 14, the SGMS processes the information received from the SMS to provide analytics, trends, and other helpful information regarding the social graph object (and web visitor interaction therewith) to SGMS users. Eventually, at step 15, related analytics (for example, various, user metrics in connection with the interactions will be displayed) to SGMS users 102. Example of such metrics include (but not limited to) the number of times certain content on the web page has
been liked and/or recommended by social media system users, recent (and even real time) activities on a web page involving friends of a visitor of a web page, originating IP address for users' interactions, and various other analytics required by web page owners.

[0098] Now referring to FIG. 5, an exemplary SGMS database 114 is shown, including a user analytics table 510 (stored in the SGMS database). According to one embodiment of the present system, the SGMS creates social graph objects that facilitate associations between a web page and social media systems. It will be recalled that web visitors visiting the web page will interact with the configured social graph objects created in the web page, and further user analytics are retrieved by the SGMS from such interactions between web visitors and the configured social graph objects (e.g., via social media plugins) inserted in the web page. Information relating to user interactions with the social graph objects, as well as the objects themselves, is generally stored in the SGMS database.

[0099] As seen in FIG. 5, a user analytics table illustrates various representative fields related to user activity and interactions with web pages, and associated social media systems. As will be understood, the representative fields in table 510 represents information relating to social graph objects maintained by the SGMS, as well as analytics stored by the SGMS. According to one embodiment, such analytics are captured by the SGMS in real-time, or possibly in non-real-time at some periodic intervals of time, or even intermittently.

[0100] As shown, user analytics table 510 comprises exemplary columns titled “Time Stamp”, “Social Graph ID”, “Request Originating IP”, “Social Media Systems”, “Total IIlikes”, and “Total Tag Me”. All of these data fields provide information relating to social graph objects created within the SGMS, and information relating thereto. For example, a “Time Stamp” column indicates a date and time when the information relating to the social graph object was captured, in connection with social graph objects uniquely specified in a “Social Graph ID” column. It will be understood that in capturing analytics of user activity and interactions, the SGMS keeps a track of the IP address that originates a request for the interactions, as specified in an exemplary “Request Originating IP” column in table 510. Further, the social media system involved in the interactions is stored in a “Social Media Systems” column. Further, various social media software (for example, social media plugins configured by the SGMS named as “IIlike” and “Tag Me” for fictitious social media systems (SMSs) called “Eyetext” and “Scribble” respectively) associated with the interactions are also stored in an embodiment of the present system.

[0101] As shown in FIG. 5, one example of user analytics for a social graph object ID 156984 associated with a social media system Eyetext, reveals that a request for interacting with the aforementioned social graph object originated from an IP address at 11:30 AM on 07-20-2011. Further, the number of total IIlike-related interactions for this social graph object is counted as 315 until the aforementioned date and time. It will be understood that since the Tag Me social media plugin belongs to social media system Scribble, the number of total Tag Me interactions is specified as zero, in the corresponding column.

[0102] In another example, user analytics for a social graph object ID 320501 associated with a social media system Scribble, reveals that a request for interacting with the aforementioned social graph object originated from an IP address at 1:00 PM on 07-20-2011. Further, the number of total IIlike-related interactions for this social graph object is counted as 5526 until this date and time. Since the IIlike social media plugin belongs to social media system Eyetext, the number of total IIlike interactions is specified as zero, in the corresponding column.

[0103] It will be understood that the types of data and information shown in page table 510 are presented merely for illustrative purposes only, and other types of data may be included, and further in different formats. For example, data and information relating to creation and storage of social graph objects themselves (such as associations between web pages, redirector pages, pseudo pages, social media systems, social graph object fields, and other related information) may be stored in database 114. Also, various other social media plugins involved in the associations between a web page and social media pages, hosted by a variety of social media systems are possible in alternate embodiments. Furthermore, analytics related to user activity can be further used in computation of various statistics, and even for visualization of data in the form of line graphs, bar graphs etc., as will occur to those skilled in the art. Next, screenshots displaying various aspects and embodiments of the SGMS will be described in the discussions that follow.

[0104] FIG. 6 illustrates a screenshot 600 of a SGMS interface showing various pre-created social graph objects by an embodiment of the SGMS as displayed to a SGMS user after logging in to the SGMS. As recited previously, social graph objects facilitate associations between web pages and social media systems. In the illustrations shown in the accompanying screenshots, an exemplary SGMS user (“Jeff”) utilizes an embodiment of the SGMS to create and manage associations between web pages of a fictitious organization called “Acme Coffee” and social media pages hosted by hypothetical social media systems called “Eyetext” and “Scribble”. Specifically, in one embodiment, Jeff is able to create social graph objects within the SGMS for inclusion in his company’s web page.

[0105] As shown in FIG. 6, in region 602 the account (or, generally speaking login) name of a SGMS user is displayed. For example, in FIG. 6 name of the account is indicated as “Jeff”. In one embodiment, the SGMS allows users to search for pre-created social graph objects using a search box (shown in region 604), adjacent to a “Search” button. Further, a SGMS user can create (and add) a social graph object by clicking on an “Add Social Graph Object” button 606. It can also be seen from FIG. 6 that the interface displays additional information of pre-created social graph objects in regions 608, 610, 612, 614, and 616. For example, as can be seen, region 608 displays social graph IDs that are unique IDs (comprising a string of numbers and/or alphabetic characters) generated by the SGMS to uniquely identify social graph objects. In addition, as recited previously, social graph objects within the SGMS usually have a title. Accordingly, region 610 displays titles of various pre-created social graph objects, e.g., in connection with Acme Coffee’s web page, pre-created social graph objects include Café Latte, The Best Cappuccino, and The Rich Café Breva.

[0106] Further, the web addresses of the redirector pages for the respective social graph objects are shown in region 612. It will be understood that usually a redirector page is hosted at a domain address different from the web page for ensuring safety in the event of unforeseen crashes. For example, as can be seen from region 612 in FIG. 6, for a social graph object called “Café Latte” (listed in region 610) the
corresponding redirector page is located at a fictitious address given by http://www.acmecoffeeexternaldomain.com/cafe-latte.

Moreover, in region 614 of FIG. 6, the names of SGMS users and a time stamp involved in creation of the social graph objects are shown. For example, as can be seen from region 614, a SGMS user called Jeff created the social graph object called Café Latte at Mar. 2, 2011 at 2:31 AM. Although the exemplary screenshot 600 illustrates that the single SGMS user called Jeff was involved in the creation of the displayed social graph objects, it will be understood by one of ordinary skill in the art that social graph objects for associating a web page with social media pages can be created by a plurality of SGMS users. It can be further seen that an exemplary social media plugin called the ILike button for an exemplary social media system called Eyetext tracks the number of users who have liked the content on the web page associated with the respective social graph objects. For example, region 616 indicates that one (1) person likes the web page corresponding to the social graph object called Café Latte, and six (6) persons like the contents on the web page corresponding to the social graph object called The Best Cappuccino.

Now turning to FIG. 7, a social graph object creation form is shown, as displayed in a user interface with various illustrative fields to be filled by SGMS users in connection with creation of social graph objects. For example, a URL of a web page (which will be associated with a social media system) is displayed in region 702. It will be understood that social media plugins (for example, an ILike button for a social media system called Eyetext) can be inserted in the web page at the URL entered by a SGMS user in region 702. At region 704, a simplified name of the web page wherein a social media plugin will be inserted, is entered by a SGMS user who is filling out the social graph object creation form. For example, a simplified name of a Acme Coffee’s web page located at http://www.acmecoffee.com is specified by a SGMS user as Acme Coffee. It will be understood that the simplified name of the web page will appear at the message posted on the social media profile page of the web visitor who interacts with the social media plugins.

In region 706, a title of a web page that will be associated with a social media page, and wherein a social graph object will be inserted, is provided by a SGMS user. Example of a fictitious title as shown in FIG. 6 is “How to make the perfect brew coffee”: Further, a description of a social graph object is provided by SGMS users in region 708, wherein a configured social media plugin (in this example) will be inserted. At region 710, a social graph type is entered by a SGMS user. Types of social graphs (and, in some circumstances, social graph objects) include movies, sports, tv shows, restaurants, universities, albums, authors, books, blogs, bands, food, drink, bars, and various others. As will be understood by a person skilled in the art, a list of various types of social graphs are usually predetermined by social media systems. Furthermore, according to one embodiment, the SGMS provides the ability to create custom social graph object types that are not predetermined by social media systems. It can be seen from region 711 in FIG. 7 that an image illustrative of the social graph object in the associated social graph(s) is uploaded by SGMS users from their computing devices. As can be further seen, “Browse” button adjacent to region 710 is provided for that purpose. It will be understood that in alternate embodiments, the SGMS allows a SGMS user the ability to choose an image from a list of pre-stored images.

In region 712 (indicated as a Slug Domain) of screenshot 700, an external domain address is provided by a SGMS user, the external domain hosting a redirector page. As seen in FIG. 7, an exemplary external domain address for a redirector page of Acme Coffee is given by acmecoffeexternaldomain.com. Since an external domain can host multiple redirector pages corresponding to multiple social graph objects, a unique identifier (called in a social graph object creation form as slug identifier) is entered by a SGMS user that uniquely identifies the redirector page associated with the respective social graph object. In one embodiment, SGMS users are also able to enter in region 716 an admin ID that is a unique ID (comprising a string of numbers and alphabetic characters for example) provided by social media systems to identify individuals and entities who own or use social media pages on the respective social media systems, wherein the SGMS user will be recognized as an administrator for the web page wherein web traffic originating from social media pages will be arriving. It can be further seen that a “Cancel” button 718 when clicked by a SGMS user cancels creation of a social graph object as indicated in screenshot 700. Adjacent to cancel button 718 is a “Create Social Graph Object” button 720 that when clicked by a SGMS user instructs the SGMS to begin creation of social graph objects.

Now turning to FIG. 8, an exemplary screenshot 800 of a SGMS interface is shown, for management of pre-created social graph objects. As mentioned previously, screenshot 700 displays information in connection with creation of an exemplary social graph object entitled “How to make the perfect brew coffee”, for an exemplary organization called Acme Coffee. As shown, screenshot 800 is similar to screenshot 700 with additional information displayed in region 802, subsequent to creation of the aforementioned exemplary social graph object. Such information comprises a unique social graph object ID that identifies social graph objects created by the SGMS uniquely, a name of a SGMS user who provided information for creating the social graph object, a time stamp when the social graph object was created, a slugs domain corresponding to an external domain that hosts a redirector page, a slug identifier that uniquely identifies the redirector page associated with the respective social graph object, and further source code for an exemplary social configured media plugin called ILike button. It will be understood that the source code for the configured social media plugin will be inserted in the web page of Acme Coffee hosted at http://www.acmecoffee.com by the web page owner of Acme Coffee’s web page. It will be further understood and appreciated that the data fields and information shown in FIG. 8 are provided for illustrative purposes only, and are not intended to limit the types or content of information displayed in such an interface.

In an exemplary scenario, an SGMS user (“Jeff”) provides information to the SGMS to create a social graph object having an ID 240244 thereby creating associations between a web page http://www.acmecoffee.com of an organization called Acme Coffee, and an exemplary social media system called Eyetext. Further, web page owner of Acme Coffee’s web page inserts a configured ILike button (an exemplary configured social media plugin of a social media system called Eyetext) in Acme Coffee’s web page. Thereafter the social graph object associated with this web page will
be activated by Eyetext. Following the activation, web page visitors visiting the web page interact with the web page and further with the social media plugin on the web page.

[0113] Although not shown herein, it will be understood that interactions of the web visitor with the web page are, in one embodiment, published as a message on the visitor’s social media page (exemplarily, a social media page on Eyetext). Such a message may comprise a simplified name (as provided by a SGMS user previously through region 704 in screenshot 700) of the web page, a title (as provided by a SGMS user previously through region 706 in screenshot 700), a brief description (as provided by a SGMS user previously through region 708 in screenshot 700), an image (as provided by a SGMS user previously through region 711 in screenshot 700), and further displayed in region 722 of screenshot 700), and a URL hosting a redirector page (located at an address obtained by combining information provided by a SGMS user previously through regions 712 and 714 in screenshot 700). Exemplarily, a redirector page is located at an exemplary web address given by http://www.acmecoffeeexternaldomain.com/perfectbrew, corresponding to a slug domain address “acmecoffeeexternaldomain.com” and having a slug identifier “perfectbrew”. As recited previously, the redirector page comprises meta data and meta tags that redirects web traffic originating from an exemplary social media system called Eyetext to the original web page http://www.acmecoffee.com.

[0114] According to an aspect of the present disclosure, the SGMS, can be utilized to manage pre-created associations between web pages and social media pages. For example, the SGMS allows SGMS users to make changes or update pre-created social graph objects, including those that have been activated and validated by social media systems. In one instance, SGMS users can change the description associated with social graph objects. Further, in another instance, if a SGMS user may wish to change the title, the name or the image, or the URL associated with a pre-created social graph object. In such instances, the SGMS user can make the necessary changes to the social graph object through a user interface that displays a social graph object update form. An exemplary social graph object update form (that includes an exemplary “Update Social Graph Object” button 720) is shown in FIG. 8. It will be understood that the effect of such changes to social graph objects will not affect the contents of the web page. Generally speaking, the social graph objects “clone” certain properties of the web page, and hence making changes to the clone will not affect the web page. However, the effect of such changes will be reflected in published (both retroactive and subsequent) content on the social media pages associated with the web page. For example, if a SGMS user replaces the image of a pre-created social graph object, then in every message (or post) published in social media pages associated with that social graph object, the previous image will be replaced by a new image.

[0115] Now turning to FIG. 9, a screenshot 900 is illustrated of an exemplary SGMS interface showing various pre-created social graph objects (similar to screenshot 600), by an embodiment of the SGMS as displayed to a SGMS user after logging in to the SGMS. As can be seen, in addition to the illustrative information displayed in screenshot 600, screenshot 900 also displays (in region 918) a newly created exemplary social graph object titled “How to make the perfect brew coffee”, for an exemplary organization called Acme Coffee. As recited previously, this exemplary social graph object having an unique ID given by 240244 (displayed in region 608 of screenshot 900) is associated with the web page http://www.acmecoffee.com/ belonging to an organization called Acme Coffee. Further, it can be seen that the corresponding redirector page for the social graph object having an unique ID given by 240244 is located at http://www.acmecoffeeexternaldomain.com/perfectbrew (displayed in region 612 of screenshot 900). Moreover, as seen from region 614, a SGMS user called Jeff created this exemplary social graph object on Jul. 7, 2011 at 10:24 AM. In addition, it can also be seen from region 616 that the contents of the web page http://www.acmecoffee.com/ associated with this social graph object has not yet been “liked” by any web visitor. Next, in the discussions that follow, screenshots of an exemplary web page before and after creating associations between the web page and social media systems, will be described.

[0116] FIG. 10 consisting of FIG. 10A and FIG. 10B displays screenshots 1000A and 1000B respectively of an exemplary web page before and after creating associations between the web page and social media systems, according to one embodiment of the present system. Specifically, the screenshots shown in FIG. 10A and FIG. 10B represent views, respectively, of a web page before and after a social graph object has been created therein. These screenshots are of a web page http://www.acmecoffee.com owned by an organization called Acme Coffee that is a seller of coffee. As seen in FIG. 10A, region 1002 displays various exemplary clickable buttons directed at marketing and promotions of Acme Coffee’s products, and also dissemination of general information about coffee. For example, buttons that are displayed in 1000A include “Home”, “Our Coffees”, “Coffee ABC”, “The Acme Coffee Plan”, “Coffee and Well-being”, and “My Acme Coffee”. As will be understood, screenshots 1000A and 1000B are that of the home page (i.e. the web page http://www.acmecoffee.com) of Acme Coffee. Further, it can be seen that various buttons (typical of most web pages) are illustrated in region 1006. Examples of such buttons include “Terms and Conditions”, “Privacy Policy”, and “Contact Us”. It will be understood that the screenshots shown here are for illustration only. According to aspects of the present disclosure, the contents of a web page generally have no bearing on creating associations between the web page with social media systems.

[0117] It is further shown in region 1004 that Acme Coffee provides further information in relation to historical origins of coffee, different kinds of coffee beans (for example, Arabica and Robusta), and also various aspects of coffee tasting. As seen in FIG. 10A, the screenshot of the web page does not indicate features or aspects of social media pages.

[0118] Now turning to FIG. 10B, a screenshot 1000B is shown illustrating a web page subsequent to creation of associations between the web page and social media systems, according to one embodiment of the present system. As can be seen from screenshot 1000B, region 1008 (titled “Share Your Acme Coffee Experience”) displays various features and user activities related to users of social media systems (exemplarily, fictitious social media systems called Eyetext and Scribble) on the web page of a hypothetical organization called Acme Coffee. Such features include an LIke button (an exemplary social media plugin of Eyetext) for recording and displaying the number of times (for example, 544,344) published content on this web page has been liked by web visitors visiting this web page, including the number of persons who review a summary of this web page on the Eyetext
social media profile belonging to them or their friends on Eyetext. It can be further seen that the ILike button also displays names of persons (for example, a “John Doe”) who liked the content on this web page and are on Eyetext, and moreover, are connected with the person reviewing this web page, on Eyetext. It will be understood that persons who like content published in this page can express their likes either by visiting this web page, or by reviewing a summary of this web page displayed on social media pages that have interconnections (by means of social graphs) with social media pages of persons or organizations that have expressed a like for the content published on this web page. Furthermore, although not shown herein, it will be understood that the ILike button, and a brief summary (showing title, url, an illustrative image etc.) of the web page appears in all the interconnected pages (e.g., all social media pages that are interconnected with the 544,344 social media pages on Eyetext).

In addition to exemplary ILike plugin of social media system called Eyetext, as displayed on the web page of Acme Coffee in screenshot 10003, features and user activities related to users of another social media system called Scribble are also illustrated. As can be seen from screenshot 10003, a social media plugin called “Tag Me” of social media system called Scribble reveals that 2.3 million Scribble users have tagged Acme Coffee’s social media page on Scribble.

Thus, as evidenced by FIG. 10B, section 1008 represents an open graph object for the web page illustrated in FIG. 10B. As will be understood and appreciated, web pages may include multiple open graph objects relating to various articles, videos, and other content on the web page. Or, as shown in FIG. 10B, web pages may include only a singular open graph object containing a singular social media plugin.

As described in detail above, aspects of the present disclosure generally relate to systems and methods for creating and managing associations between social media systems and web pages, using an embodiment of the social graph management system (SGMS) disclosed herein. In one embodiment, aspects of the present disclosure relate to an improved system or method for creating social graph objects within traditional web pages, and subsequently maintaining and managing the social graph objects and related information. According to yet another embodiment, aspects of the present disclosure relate to systems and methods for inserting social media plugins into web pages, and managing the use of user interaction with, and information relating to the inserted social media plugins. In yet another embodiment, aspects of the present disclosure relate to systems and methods for creating and managing associations between social graphs (generated due to the interactions between individuals, organizations, and corporate entities on social media systems) and web pages owned by individuals, organizations and corporate entities. Social graphs are complex digital footprints of all such interactions, wherein owners of social media pages constitute the nodes of the social graph. As will be understood by one skilled in the art, owners of a social media page can belong to more than one social graph, and hence social graphs are overlapping in nature. Because of the complexities of interconnections in social graphs, social graphs are generally rendered on a computer with specialized application software.

It will be understood and appreciated that according to one embodiment, SGMS users who wish to create and manage associations between a web page and social media pages access the SGMS easily via an user interface over a computer network, such as the World Wide Web (WWW), using varying types of electronic devices such as smartphones and computers. In one embodiment, the SGMS receives information (such as a title, URL, and various other attributes) from SGMS users via an electronic user interface for purposes of creating intermediary page(s) that facilitate associations between social media pages and web pages, wherein in one embodiment, the intermediary page(s) function to direct traffic between social media pages and web pages. Further, the SGMS communicates via a network connection a request for activation of the intermediary page(s) to a respective social media system. Additionally, aspects of the present disclosure involve collection of analytics related to user activity from the intermediary page(s) for purposes of tracking user activity and interactions between the web page and persons visiting the web page.

Accordingly, it will be understood from the foregoing description that various embodiments of the present system described herein are generally implemented as a special purpose or general-purpose computer including various computer hardware as discussed in greater detail below. Embodiments within the scope of the present disclosure also include computer-readable media for carrying or having computer-executable instructions or data structures stored thereon. Such computer-readable media can be any available media which can be accessed by a general purpose or special purpose computer, or downloadable through communication networks. By way of example, and not limitation, such computer-readable media can comprise physical storage media such as RAM, ROM, flash memory, EEPROM, CD-ROM, DVD, or other optical disk storage, magnetic disk storage or other magnetic storage devices, any type of removable non-volatile memories such as secure digital (SD), flash memory, memory stick etc., or any other medium which can be used to carry or store computer program code in the form of computer-executable instructions or data structures and which can be accessed by a general purpose or special purpose computer, or a mobile device.

When information is transferred or provided over a network or another communications connection (either hard-wired, wireless, or a combination of hardwired or wireless) to a computer, the computer properly views the connection as a computer-readable medium. Thus, any such a connection is properly termed and considered a computer-readable medium. Combinations of the above should also be included within the scope of computer-readable media. Computer-executable instructions comprise, for example, instructions and data which cause a general purpose computer, special purpose computer, or special purpose processing device such as a mobile device processor to perform one specific function or a group of functions.

Those skilled in the art will understand the features and aspects of a suitable computing environment in which aspects of the disclosure may be implemented. Although not required, the present disclosure is described in the general context of computer-executable instructions, such as program modules or engines, as described earlier, being executed by computers in networked environments. Such program modules are often reflected and illustrated by flow charts, sequence diagrams, exemplary screen displays, and other techniques used by those skilled in the art to communicate how to make and use such computer program modules. Generally, program modules include routines, programs, objects, components, data structures, etc. that perform particular tasks
or implement particular abstract data types, within the computer. Computer-executable instructions, associated data structures, and program modules represent examples of the program code for executing steps of the methods disclosed herein. The particular sequence of such executable instructions or associated data structures represent examples of corresponding acts for implementing the functions described in such steps.

[0126] Those skilled in the art will also appreciate that the present disclosure may be practiced in network computing environments with many types of computer system configurations, including personal computers, hand-held devices, multi-processor systems, microprocessor-based or programmable consumer electronics, networked PCs, minicomputers, mainframe computers, and the like. The present disclosure is practiced in distributed computing environments where tasks are performed by local and remote processing devices that are linked (either by hardwired links, wireless links, or by a combination of hardwired or wireless links) through a communications network. In a distributed computing environment, program modules may be located in both local and remote memory storage devices.

[0127] An exemplary system for implementing the present disclosure, which is not illustrated, includes a general purpose computing device in the form of a conventional computer, including a processing unit, a system memory, and a system bus that couples various system components including the system memory to the processing unit. The computer will typically include one or more magnetic hard disk drives (also called “data stores” or “data storage” or other names) for reading from and writing to. The drives and their associated computer-readable media provide nonvolatile storage of computer-executable instructions, data structures, program modules, and other data for the computer. Although the exemplary environment described herein employs a magnetic hard disk, a removable magnetic disk, removable optical disks, other types of computer readable media for storing data can be used, including magnetic cassettes, flash memory cards, digital video discs (DVDs), Bernoulli cartridges, RAMs, ROMs, and the like.

[0128] Computer program code that implements most of the functionality described herein typically comprises one or more program modules may be stored on the hard disk or other storage medium. This program code, as is known to those skilled in the art, usually includes an operating system, one or more application programs, other program modules, and program data. A user may enter commands and information into the computer through keyboard, pointing device, a script containing computer program code written in a scripting language or other input devices (not shown), such as a microphone, etc. These and other input devices are often connected to the processing unit through known electrical, optical, or wireless connections.

[0129] The main computer that effects many aspects of the present disclosure will typically operate in a networked environment using logical connections to one or more remote computers or data sources, which are described further below. Remote computers may be another personal computer, a server, a router, a network PC, a peer device or other common network node, and typically include many or all of the elements described above relative to the main computer system in which aspects of the present disclosure are embodied. The logical connections between computers include a local area network (LAN), a wide area network (WAN), and wireless LANs (WLAN) that are presented here by way of example and not limitation. Such networking environments are commonplace in office-wide or enterprise-wide computer networks, intranets and the Internet.

[0130] When used in a LAN or WLAN networking environment, the main computer system implementing aspects of the present disclosure is connected to the local network through a network interface or adapter. When used in a WAN or WLAN networking environment, the computer may include a modem, a wireless link, or other means for establishing communications over the wide area network, such as the Internet. In a networked environment, program modules depicted relative to the computer, or portions thereof, may be stored in a remote memory storage device. It will be appreciated that the network connections described or shown are exemplary and other means of establishing communications over wide area networks or the Internet may be used.

[0131] In view of the foregoing detailed description of preferred embodiments of the present disclosure, it readily will be understood by those persons skilled in the art that the present disclosure is susceptible to broad utility and application. While various aspects have been described in the context of a preferred embodiment, additional aspects, features, and methodologies of the present disclosure will be readily discernable from the description herein, by those of ordinary skill in the art. Many embodiments and adaptations of the present disclosure other than those herein described, as well as many variations, modifications, and equivalent arrangements and methodologies, will be apparent from or reasonably suggested by the present disclosure and the foregoing description thereof, without departing from the substance or scope of the present disclosure. For example, in the disclosure presented herein, a social graph management system (SGMS) creates associations between web pages and social media pages hosted by social media systems. However, it will be understood by one skilled in the art, that in alternate embodiments, a SGMS can create associations between web pages and specialized application software (apps) hosted by social media systems. Generally speaking, apps refers to digital content that interacts with social media system users. Examples of apps include online quizzes, polls, electronic games, and various other media types that allow users to view specific information provided by the app, provide information to or interact with the app, etc.

[0132] Furthermore, any sequence(s) and/or temporal order of steps of various processes described and claimed herein are those considered to be the best mode contemplated for carrying out the present disclosure. It should also be understood that, although steps of various processes may be shown and described as being in a preferred sequence or temporal order, the steps of any such processes are not limited to being carried out in any particular sequence or order, absent a specific indication of such to achieve a particular intended result. In most cases, the steps of such processes may be carried out in a variety of different sequences and orders, while still falling within the scope of the present disclosure. In addition, some steps may be carried out simultaneously.

[0133] Accordingly, while the present disclosure has been described herein in detail in relation to preferred embodiments, it is to be understood that this disclosure is only illustrative and exemplary of the present disclosure and is made merely for purposes of providing a full and enabling disclosure. The foregoing disclosure is not intended nor is to be construed to limit the present disclosure or otherwise to
exclude any such other embodiments, adaptations, variations, modifications and equivalent arrangements, the present disclosure being limited only by the claims appended hereto and the equivalents thereof.

What is claimed is:

1. A method for creating and managing associations between web pages and social media systems through the use of social graph objects, comprising the steps of:
 - receiving information corresponding to creation of a social graph object within a respective web page, wherein the social graph object relates to a respective social media system;
 - generating data structures and computer code corresponding to the social graph object based on the received information corresponding to creation of the social graph object;
 - creating an intermediary page that enables transmission of information between the respective social media system and the respective web page, wherein the intermediary page includes the data structures corresponding to the social graph object;
 - providing the generated computer code to be embedded within the respective web page to enable communications between the respective web page, the intermediary page, and the respective social media system, whereby upon embedding of the generated computer code into the respective web page, the web page is capable of performing social media system functionality via the open graph object.

2. The method of claim 1, wherein the social graph object includes a social media plugin that enables communication between the respective social media system and the respective web page.

3. The method of claim 1, wherein the intermediary page comprises a redirector page that directs communications between the respective web page and the respective social media system.

4. The method of claim 1, wherein the intermediary page comprises a pseudo page that provides information about the respective web page to the respective social media system.

5. The method of claim 1, wherein the generated computer code is embedded automatically within the respective web page.

6. A method for creating and managing associations between web pages and social media systems, wherein the associations are based on information related to the web pages used in combination with software protocols that are followed by the social media systems, comprising the steps of:
 - receiving information related to a web page to be associated with a respective social media system;
 - generating computer code for a social media software program based on the received information related to the web page and a respective software protocol that is followed by the respective social media system, wherein the computer code for the social media software program is inserted in the web page to enable management of user interaction with the social media software program on the web page;
 - creating an intermediary page comprising data structures developed based on the received information related to the web page and the respective software protocol that is followed by the respective social media system, wherein the intermediary page enables communication between the web page and the respective social media system;
 - communicating a request to the respective social media system for activation of the intermediary page; and
 - upon activation by the respective social media system of the intermediary page, processing information retrieved from the intermediary page corresponding to user interaction with the web page.

7. The method of claim 6, wherein the data structures comprise objects on a social graph.

8. The method of claim 6, wherein the data structures comprise meta data and meta tags.

9. The method of claim 6, wherein the social media software program further enables communication of information related to user interaction with the social media software program to the respective social media system.

10. The method of claim 6, wherein the intermediary page further comprises a pseudo page that provides information about the web page to the respective social media system, and a redirector page that enables communications between the web page and the respective social media system.

11. The method of claim 6, wherein the step of communicating the request to the respective social media system proceeds via an application programming interface (API).

12. The method of claim 6, wherein the social media software program comprises a social media plugin.

13. The method of claim 6, wherein the step of generating computer code for the social media software program comprises configuring an unconfigured social media plugin provided by the respective social media system.

14. The method of claim 6, wherein the information related to the web page is received from a system user via a graphical user interface (GUI).

15. The method of claim 6, wherein information corresponding to user interaction with the social media software program is displayed on associated social media pages of web page visitors by the respective social media system.

16. The method of claim 15, wherein information corresponding to user interaction with the social media software program further comprises information displayed on social media pages of friends of web page visitors.

17. The method of claim 6, wherein information corresponding to user interaction with the social media software program is used to compute analytics related to user activity on the web page and the respective social media system.

18. The method of claim 17, wherein the analytics are selected from the group comprising: a number of times certain content on the web page has been liked by social media system users, a number of times certain content on the web page has been recommended by social media system users, recent real time activities on the web page involving social media friends of visitors of the web page, originating IP addresses of visitors to the web page.

19. A social graph management system (SGMS) for creating and managing associations between a web page and social media pages hosted by a social media system, comprising:
 - a user interface for receiving information related to a respective web page over a network connection;
 - a database server coupled to the user interface for storing received information related to the web page; and
a processing module coupled to the database server for processing the stored information related to the web page, the processing module operative to:
create data structures based on a respective software protocol that is followed by a respective social media system;
generate source code for a social media software program based on the respective software protocol followed by the respective social media system, the social media software program responsive to track user activity on the respective web page after being inserted in the respective web page;
create an intermediary page comprising the data structures, the intermediary page operative to redirect web traffic between the respective social media page and the respective web page;
communicate a request to the respective social media system for activation of the intermediary page; and process information corresponding to web traffic and user activity between the respective web page and the respective social media system.

* * * * *