METHOD AND SYSTEM FOR ACCUMULATING MARGINAL DISCOUNTS AND APPLYING AN ASSOCIATED INCENTIVE UPON ACHIEVING THRESHOLD

Inventors: David W. Deaton, Abilene, TX (US); Rodney G. Gabriel, Abilene, TX (US)

Assignee: Midnight Blue Remote Access L.L.C., Los Altos, CA (US)

Filed: Aug. 26, 2005

Related U.S. Patent Documents

Reissue of:

Patent No.: 6,611,811
Issued: Aug. 26, 2003
Appl. No.: 09/411,588
Filed: Oct. 1, 1999

U.S. Applications:

Continuation of application No. 09/320,114, filed on May 26, 1999, now abandoned.

Provisional application No. 60/136,130, filed on May 26, 1999.

Field of Classification Search

USPC 705/14,39; 705/14,73; 705/14,38; 705/16

References Cited

U.S. PATENT DOCUMENTS

2,995,727 A 8/1961 Quade

FOREIGN PATENT DOCUMENTS

EP 0 511 463 A2 11/1992
EP 0 512 509 A2 11/1992

OTHER PUBLICATIONS

Amy Doan “The Shoppers wallet—More and more retailers are using rewards clubs to keep customers, generate market research”, San Francisco Chronicle: Jul. 31, 1998

ABSTRACT

A method for customer promotion includes sequentially processing each of a plurality of items in a customer order. The price of each item is accumulated after processing. A marginal discount associated with each item processed is generated. This marginal discount is generated in response to a signal that indicates the accumulated price exceeds a predetermined threshold. Unapplied marginal discounts are accumulated for application to the customer order. A discount is applied to the customer order in response to a signal that is generated that indicates the accumulated discounts exceeds a predetermined minimum.

35 Claims, 88 Drawing Sheets
References Cited

U.S. PATENT DOCUMENTS

<table>
<thead>
<tr>
<th>Patent Number</th>
<th>Date</th>
<th>Inventor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,723,212 A</td>
<td>2/1988</td>
<td>Mindrum et al.</td>
</tr>
<tr>
<td>4,727,243 A</td>
<td>2/1988</td>
<td>Savar</td>
</tr>
<tr>
<td>4,745,468 A</td>
<td>5/1988</td>
<td>Von Kohorn</td>
</tr>
<tr>
<td>4,748,668 A</td>
<td>5/1988</td>
<td>Shimam et al.</td>
</tr>
<tr>
<td>4,748,673 A</td>
<td>5/1988</td>
<td>Barre et al.</td>
</tr>
<tr>
<td>4,776,021 A</td>
<td>10/1988</td>
<td>Ho</td>
</tr>
<tr>
<td>4,797,938 A</td>
<td>1/1989</td>
<td>Will</td>
</tr>
<tr>
<td>4,809,351 A</td>
<td>2/1989</td>
<td>Abramovitz et al.</td>
</tr>
<tr>
<td>4,825,045 A</td>
<td>4/1989</td>
<td>Humble</td>
</tr>
<tr>
<td>4,833,308 A</td>
<td>5/1989</td>
<td>Humble</td>
</tr>
<tr>
<td>4,872,113 A</td>
<td>10/1989</td>
<td>Dinerstein</td>
</tr>
<tr>
<td>4,876,592 A</td>
<td>10/1989</td>
<td>Von Kohorn</td>
</tr>
<tr>
<td>4,885,685 A</td>
<td>12/1989</td>
<td>Wolfberg et al.</td>
</tr>
<tr>
<td>4,887,207 A</td>
<td>12/1989</td>
<td>Natarajan</td>
</tr>
<tr>
<td>4,891,503 A</td>
<td>1/1990</td>
<td>Jewell</td>
</tr>
<tr>
<td>4,897,880 A</td>
<td>1/1990</td>
<td>Wilber et al.</td>
</tr>
<tr>
<td>4,908,761 A</td>
<td>3/1990</td>
<td>Tait</td>
</tr>
<tr>
<td>4,926,255 A</td>
<td>5/1990</td>
<td>Von Kohorn</td>
</tr>
<tr>
<td>4,933,536 A</td>
<td>6/1990</td>
<td>Linda et al.</td>
</tr>
<tr>
<td>4,941,090 A</td>
<td>7/1990</td>
<td>McCarthy</td>
</tr>
<tr>
<td>4,949,256 A</td>
<td>8/1990</td>
<td>Humble</td>
</tr>
<tr>
<td>4,975,841 A</td>
<td>12/1990</td>
<td>Kehnemuji et al.</td>
</tr>
<tr>
<td>4,993,068 A</td>
<td>2/1991</td>
<td>Posenka et al.</td>
</tr>
<tr>
<td>5,008,518 A</td>
<td>4/1991</td>
<td>Tausig et al.</td>
</tr>
<tr>
<td>5,010,485 A</td>
<td>4/1991</td>
<td>Bigari</td>
</tr>
<tr>
<td>5,014,324 A</td>
<td>5/1991</td>
<td>Mazumder</td>
</tr>
<tr>
<td>5,034,807 A</td>
<td>7/1991</td>
<td>Von Kohorn</td>
</tr>
<tr>
<td>5,039,848 A</td>
<td>8/1991</td>
<td>Stoken</td>
</tr>
<tr>
<td>5,053,955 A</td>
<td>10/1991</td>
<td>Peach et al.</td>
</tr>
<tr>
<td>5,054,092 A</td>
<td>10/1991</td>
<td>LaCaze</td>
</tr>
<tr>
<td>5,057,915 A</td>
<td>10/1991</td>
<td>Von Kohorn</td>
</tr>
<tr>
<td>5,070,452 A</td>
<td>12/1991</td>
<td>Doyle et al.</td>
</tr>
<tr>
<td>5,077,805 A</td>
<td>12/1991</td>
<td>Tan</td>
</tr>
<tr>
<td>5,091,634 A</td>
<td>2/1992</td>
<td>Finch et al.</td>
</tr>
<tr>
<td>5,117,355 A</td>
<td>5/1992</td>
<td>McCarthy</td>
</tr>
<tr>
<td>5,128,520 A</td>
<td>7/1992</td>
<td>Rando et al.</td>
</tr>
<tr>
<td>5,128,752 A</td>
<td>7/1992</td>
<td>Von Kohorn</td>
</tr>
<tr>
<td>5,172,314 A</td>
<td>12/1992</td>
<td>Poland et al.</td>
</tr>
<tr>
<td>5,173,851 A</td>
<td>12/1992</td>
<td>Off et al.</td>
</tr>
<tr>
<td>5,179,375 A</td>
<td>1/1993</td>
<td>Dick et al.</td>
</tr>
<tr>
<td>5,185,695 A</td>
<td>*</td>
<td>Pruchnicki</td>
</tr>
<tr>
<td>5,201,010 A</td>
<td>4/1993</td>
<td>Deaton et al.</td>
</tr>
<tr>
<td>5,202,826 A</td>
<td>4/1993</td>
<td>McCarthy</td>
</tr>
<tr>
<td>5,207,874 A</td>
<td>7/1993</td>
<td>Von Kohorn</td>
</tr>
<tr>
<td>5,237,496 A</td>
<td>8/1993</td>
<td>Kagami et al.</td>
</tr>
<tr>
<td>5,237,620 A</td>
<td>8/1993</td>
<td>Deaton et al.</td>
</tr>
<tr>
<td>5,245,164 A</td>
<td>9/1993</td>
<td>Oyama</td>
</tr>
<tr>
<td>5,245,533 A</td>
<td>9/1993</td>
<td>Marshall</td>
</tr>
<tr>
<td>5,251,152 A</td>
<td>10/1993</td>
<td>Von Kohorn</td>
</tr>
<tr>
<td>5,253,345 A</td>
<td>10/1993</td>
<td>Notess</td>
</tr>
<tr>
<td>5,256,863 A</td>
<td>10/1993</td>
<td>Fernandes et al.</td>
</tr>
<tr>
<td>5,272,874 A</td>
<td>7/1994</td>
<td>Deaton et al.</td>
</tr>
<tr>
<td>5,283,734 A</td>
<td>2/1994</td>
<td>Von Kohorn</td>
</tr>
<tr>
<td>5,310,597 A</td>
<td>5/1994</td>
<td>Roach et al.</td>
</tr>
<tr>
<td>5,368,129 A</td>
<td>11/1994</td>
<td>Von Kohorn</td>
</tr>
<tr>
<td>5,388,165 A</td>
<td>2/1995</td>
<td>Deaton et al.</td>
</tr>
<tr>
<td>5,430,644 A</td>
<td>7/1995</td>
<td>Deaton et al.</td>
</tr>
</tbody>
</table>
References Cited

U.S. PATENT DOCUMENTS

5,448,471 A 9/1995 Deaton et al.
5,481,094 A 1/1996 Suda 705/14.26
5,483,049 A 1/1996 Schulze, Jr.
5,508,731 A 4/1996 Kohorn
5,515,098 A 5/1996 Carles
5,526,963 A 6/1996 Hodges
5,537,314 A * 7/1996 Kaater 705/14
5,592,560 A 1/1997 Deaton et al.
5,604,788 A 2/1997 Tett
5,612,527 A 3/1997 Ovadina
5,621,812 A 4/1997 Deaton et al.
5,632,010 A 5/1997 Bricelje et al.
5,638,457 A 6/1997 Deaton et al.
5,642,484 A 6/1997 Harrison, III et al.
5,644,723 A 7/1997 Deaton et al.
5,649,114 A 7/1997 Deaton et al.
5,690,469 A 8/1997 Deaton et al.
5,675,662 A 10/1997 Deaton et al.
5,687,322 A 11/1997 Deaton et al.
5,697,844 A 12/1997 Von Kohorn
5,710,886 A 1/1998 Christensen et al.
5,713,795 A 2/1998 Kohorn
5,717,866 A 2/1998 Naefger
5,719,382 A 2/1998 White
5,751,257 A 5/1998 Sutherland
5,793,972 A 8/1998 Shane
5,797,132 A 8/1998 Altwater
5,806,044 A 9/1998 Powell
5,819,954 A 10/1998 Lacirola
5,822,735 A 10/1998 De Lapa et al.
5,845,759 A 12/1998 West et al.
5,850,446 A 12/1998 Berger et al.
5,855,007 A 12/1998 Jovicic et al.
5,857,175 A 1/1999 Day et al.
5,870,714 A 2/1999 Shetty et al.
5,873,069 A 2/1999 Reuhl et al.
5,875,415 A 2/1999 Lieb et al.
5,878,401 A 3/1999 Joseph
5,887,271 A 3/1999 Powell
5,899,980 A 5/1999 Wilt et al.
5,905,246 A 5/1999 Fajkowski
5,907,750 A 5/1999 Nemirowsky
5,907,830 A 5/1999 Engel et al.
5,913,210 A 6/1999 Call
5,918,211 A 6/1999 Sloane
5,918,212 A 6/1999 Goodwin, III
5,918,214 A 6/1999 Perkowski
5,933,813 A 8/1999 Teicher et al.
5,937,191 A * 8/1999 Ikeda et al. 705/14
5,953,133 A 10/1999 Monsjo
5,974,399 A 10/1999 Guiral et al.
5,999,914 A * 12/1999 Brilliant et al. 705/26
6,003,013 A * 12/1999 Boushy et al. 705/10
6,009,407 A 12/1999 Garg
6,009,411 A 12/1999 Kepecs
6,012,040 A 1/2000 Goodwin, III

FOREIGN PATENT DOCUMENTS

EP 0 749 091 A2 12/1996
GB 1 525 928 9/1978
GB 2 094 532 A 9/1982
JP 52-16941 2/1977
JP 56-27468 3/1981
JP 59-94166 5/1984
JP 59-94166 A 5/1984
JP 59-184965 10/1984
JP 59-184965 A 10/1984
JP 59-184965 B 12/1984
JP 59-190898 A 5/1995
JP 52-16941 2/1997
References Cited
FOREIGN PATENT DOCUMENTS

WO WO 95/05370 A2 2/1995
WO WO 96/14280 A2 12/1996

OTHER PUBLICATIONS

Raphael Murray, “Take a card . . . any card please!” (Direct marketing through the integration of courtesy cards and front-end scanners (includes a related article on scanner vendors); (Retail’), Direct Marketing, v52, n10, p. 63 (6): Feb. 1990.*

MFC 101, Xerox Internet Site, 1998 (excerpts, 20 sheets).

Catalina publication “Checkout Savings System and Frequency Marketing Overview”, 33 pages.

Decision on 633(b)-(e) and 642 motions in the parent 104,208 Interference, mailed Jun. 28, 2000, 102 pages.

First declaration of Betty Amendola, Dec. 8, 1998, 3 pages.

First Declaration of James S. Spencer.

First Declaration of Robert S. Ukpok (See Motion 43), Oct. 4, 2000, 71 pages.

Fourth Declaration of Roy Van Denburg, Apr. 10, 1999, 5 pages.

Lexis Printout, Results of Lexis search of POS check reading system known to Mr. Vandenburgh.

Point-of-Scan, Electronic Frequent Shoppers Program. The Newsletter of Electronic Marketing, Jan 1991, 6 pages.

Pp. 5 and 6 of Deaton’s specification, containing Deaton’s admissions of the content of the prior art, and the content of the prior art

Goldman system.

Program of “Profitable Trade Promotion Programs,” The Marketing Institute, Sep. 11 & 12, 1998.

References Cited

OTHER PUBLICATIONS

The title page, copyright page, and p. 120 (containing a definition of “database”) of the First Computer Dictionary, 1974.
The title page, copyright page, and p. 685 (containing the definition of “perspective”) of Webster’s Seventh New Collegiate Dictionary (1967).
Third Declaration of Roy Van Denburgh—supports O’Brien opposition to Deaton motion Nos. 1-17, Feb. 18, 1999, 66 pages.
Vision Value Club Brochure, 16 pages.
Web-Based Couponing, Ads Tested at Randalls (Randalls Food Markets tests link to web sites that offer a customized virtual store in which customers can find store specials and download coupons); Supermarket News, v. 47, n. 22, p. 25+. Jun. 2, 1997.
References Cited

OTHER PUBLICATIONS

Raphael, "Take a card ... any card please" Direct Marketing, Feb. 1990, pp. 63-68.

Russ Stanton, "Notebook" The Orange County Register, Nov. 8, 1999 (printout of online version, 1 sheet).

Scanning A New Horizon Food & Beverage Marketing, Aug. 1989, cover page, index page, and pp. 32-33 (7 sheets).

Stop Bad Check Losses—Without Lifting the Phone, Drug Topics, Sep. 15, 1986, p. 42 (printout of online version, 1 sheet).

Petersen, Laurie; “Catalina Launches Two New Coupon Programs,” Adweek, Nov. 12, 1990 (printout of online version, 1 sheet).

References Cited

OTHER PUBLICATIONS

* cited by examiner
FIG. 4A - 1

4. CHECK IS RECEIVED AT RETAIL STORE

5. MICR CODE IS READ USING A CHECK SCANNING DEVICE

6. SCANNING DEVICE SEND'S MICR READING TO PARSING PROCESSOR

8. PARSE_MICR;

9. BANK'S TRANSIT NUMBER IS LOCATED BETWEEN SYMBOLS AT POSITIONS 33 AND 43

10. BANK'S TRANSIT NUMBER IS USED TO FORM FIRST PART OF CUSTOMER'S ID

12. LOCATE_SEQUENCE_;

13. BANK'S TRANSIT NUMBER IS USED TO KEY 1 OR MORE ENTRIES IN TRANSIT CODE TABLE

14. CHECK TRANSIT CODE TABLE FOR FIRST ENTRY FOR THIS BANK'S TRANSIT NUMBER

16. IF (CODE_FOUND_IN_TABLE)

18. CHECK TRANSIT CODE TABLE FOR NEXT ENTRY FOR THIS BANK'S TRANSIT NUMBER

24. IF (FORMAT_MATCHES)

29. COMPARE RAW MICR DATA WITH MICR TEMPLATE CONTAINED IN TRANSIT CODE TABLE

30. IF (AUX_ON_US_PRESENT)

31. AUXILIARY ON US IS SEQUENCE NUMBER

32. USE ON US (POSITION 14 THRU 31) FOR ACCOUNT NUMBER

35. USE SEPARATORS TO DETERMINE DISCRETE NUMBERS IN ON US (POSITION 14 THRU 31)

TO FIG. 4A-2
ON US SYMBOLS AND SPACING OF 2 OR MORE SPACES SEPARATE DIFFERENT NUMBERS

COMRESS DASHES OR SINGLE SPACE SEPARATORS FROM EACH NUMBER

IF (NUMBER COUNT = 1 OR > 3)

READ PARAMETERS GIVING LOCATION OF SEQUENCE AND CUSTOMER'S ACCOUNT

USE PARAMETERS TO REMOVE SEQUENCE AND IDENTIFY CUSTOMER'S ACCOUNT

TABLE CONTAINS INFORMATION PERTAINING TO ANY CHANGE IN BANK ACCOUNT CONTAINED

SEQUENCE NUMBER CANNOT BE DETERMINED

SEQUENCE NUMBER MUST BE MANUALLY SPECIFIED

READ SEQUENCE NUMBER INPUT TO DETERMINE PARAMETERS FOR LOCATION IN ON US

WRITE PARAMETERS FOR THIS TRANSIT TO TRANSIT CODE TABLE FOR FUTURE USE

CASE THREE/DISCRETE NUMBER:
FIND ACTUAL NUMERIC VALUE OF THREE NUMBERS

LARGEST VALUE USED FOR ACCOUNT NUMBER

MIDDLE VALUE USED FOR SEQUENCE NUMBER

SMALLEST VALUE (TPC) APPENDED TO ACCOUNT

COMBINE TRANSIT ID WITH ACCOUNT ID TO FORM CUSTOMER'S UNIQUE CHECKING ACCOUNT ID

COMBINE ID CODE WITH ANY ACCOUNT CHANGE INFORMATION INTO DATA MANAGER PACKET

TO FIG. 4A-3

FIG. 4A-2
FROM FIG. 4A-2

SEND ID CODE PACKET TO
THE DATA MANAGER
ACCESSING STORED
DATABASE OF ID CODES

DATA_MANAGER_PROCESSING;

BREAK PACKET INTO
PRIMARY ID CODE KEY
AND ACCOUNT CHANGE
INFORMATION

READ_CHECK_DATABASE;

IF (RECORD_FOUND)

BUILD PRIMARY KEY
BASED ON GIVEN ID
CODE AND SAID
ACCOUNT CHANGES

READ_CHECK_DATABASE;

IF (RECORD_FOUND)

TRANSFER INFORMATION
FROM OLD RECORD TO
NEW RECORD WITH NEW
ID CODE

DELETE OLD RECORD

WRITE NEW RECORD

IF (ACCOUNT_CHANGES)

PERFORM VERIFICATION
PROCESS

FUNCTION RETURN

FIG. 4A-3
FIG. 4B

REQUEST VERIFICATION STATUS [CHECK ID/FUNCTION CODE/$AMOUNT]

202

204 CUSTOMER FILE INCLUDES CUSTOMER RECORD

206 YES

208 CREATE CUSTOMER RECORD [STATUS=CAUTION]

210 RETRIEVE CUSTOMER RECORD

212 ROLL ACCESS DATE/TIME CURRENT

214 TRANSACTION INTERVAL EXCEEDS STATUS RESET/CAUTION LIMIT

216 TRANSACTION INTERVAL EXCEEDS CAUTION/POSITIVE LIMIT

218 ROLL [DWT FREQUENCY] [DWT $AMOUNT]

220 ADD CURRENT TRANSACTION DATA [INCREMENT DWT FREQUENCY] [ADD DWT $AMOUNT]

222 PREAPPROVED OR MANAGER ONLY USER FLAG

224 NEITHER

226 NORMAL STATUS RESPONSE

228 CALL MANAGER RESPONSE

229 MANAGER ONLY RESPONSE

230 MANAGER ONLY
FIG. 6A

1. RECEIVE RECORD FROM REMOTE 240
2. RETRIEVE OR CREATE CORRESPONDING HOST RECORD 241
3. SET STATUS EQUAL TO REMOTE 243
4. SET BAD DATA EQUAL TO REMOTE 244
5. RETRIVE OR CREATE NEGATIVE STATUS RECORD FOR THAT LOCATION 230
6. SET STATUS ACTIVE INACTIVE 232
7. SET BAD DATA [BAD FREQUENCY] [BAD $AMOUNT] 233
8. ADD OR DELETE 234
9. NEGATIVE STATUS RECORD FOR OTHER LOCATIONS 236
10. RETRIEVE OR CREATE CUSTOMER RECORD 235
11. ROLL/UPDATE 238
12. SET STATUS 239

FIG. 5

13. ROLL/UPDATE 246
14. ARBITRATE/ASSIGN STATUS 247
15. ADD TRANSFER DWT DATA TO HOST DWT DATA 248
16. SELECT GREATER OF HOST/REMOTE DWT DATA 249
FIG. 6B

- RECEIVE RECORD FROM HOST
- RETRIEVE OR CREATE CORRESPONDING REMOTE RECORD
 - NEGATIVE STATUS
 - RECORD TYPE
 - CUSTOMER
 - COPY HOST RECORD
 - (OTHER LOCATIONS)
 - HOST DWT DATA
 - NO
 - SELECT HOST DWT DATA
 - ROLL ACCESS DATE/TIME
 - ARBITRATE/ASSIGN STATUS
 - YES
 - COPY HOST RECORD

FIG. 7

- TERMINAL MANAGER
 - DATABASE MANAGER
 - SCREEN MANAGER
 - SYSTEM KERNAL
 - MODEM MANAGER
 - EVENT MANAGER
 - SYSTEM UTILITIES
FIG. 9A

1. MONITOR IN-QUEUE
 - NO REQUEST
 - INTERNAL FUNCTIONS

2. READ INTERTASK REQUEST PACKET

3. DECODE FUNCTION CODE

4. DISPATCH TO EXECUTION ROUTINE

5. VERIFY

6. ADD NEGATIVE

7. DELETE NEGATIVE

8. HOST GLOBAL. UPDATE NEGATIVE STATUS RECORDS

9. HOST GLOBAL UPDATE CUSTOMER RECORDS

10. REMOTE GLOBAL UPDATE CUSTOMER RECORDS

FIG. 8

1. SYSTEM FUNCTIONS

2. MONITOR SERVICE REQUEST QUEUE

3. SUBTASK REQUEST

4. SERVICE REQUEST

5. Spawn Subtask

6. Set Stop Semaphore

7. Build Intertask Request Packet
 - Requesting Task ID
 - Function Code
 - Address of Request Data
 - Address for Response Data
 - Stop Semaphore

8. Write Intertask Request Packet to Responding Task Queue
FIG. 9B

500

DISPATCH FROM DATA MANAGER 508

READ REQUEST DATA [CHECK ID/$AMOUNT] FROM REQUEST DATA ADDRESS 512

CUSTOMER FILE CONTAINS CUSTOMER RECORD 514

YES 515

CREATE CUSTOMER RECORD [STATUS=CAUTION] 516

RETRIEVE CUSTOMER RECORD

CALL ROLL ROUTINE [ACCESS DATE] [STATUS] [DWT FREQUENCY] [DWT $AMOUNT] 520

ADD TRANSACTION DATA [DWT FREQUENCY] [DWT $AMOUNT] 540

WRITE CUSTOMER RECORD TO DISK 542

WRITE CUSTOMER RECORD TO RESPONSE DATA ADDRESS 544

SEND STOP REQUEST [INTERTASK REQUEST PACKET] 546
FIG. 9C

1. Roll access date/time
2. Calculate transaction interval
3. Read status reset/caution limit from system control file
4. Transaction interval exceeds reset/caution limit
 - Yes: Call status roll subroutine [roll caution] [roll status change date]
 - No: Status = caution
5. Status = caution
 - Yes: Read caution/positive limit from system control file
 - No: Status change date exceeds caution/positive limit
 - Yes: Call status roll subroutine [roll positive] [roll status change date]
 - No: Roll [DWT frequency] [DWT amount]
6. Return
FIG. 9D

DISPATCH FROM DATA MANAGER 508

READ REQUEST DATA [CHECK ID/LOCATION/$AMOUNT] FROM REQUEST DATA ADDRESS 551

NEGATIVE STATUS FILE CONTAINS NEGATIVE STATUS RECORD NO 552

CREATE NEGATIVE STATUS RECORD 554

NEGATIVE STATUS RECORD 553

RETRIEVE NEGATIVE STATUS RECORD 555

NEGATIVE STATUS EQUAL TO INACTIVE NO 556

CALL STATUS ROLL SUBROUTINE [ROLL NEGATIVE STATUS ACTIVE] 557

ADD TRANSACTION DATA [BAD FREQUENCY] [BAD $AMOUNT] 558

WRITE NEGATIVE STATUS RECORD TO NEGATIVE STATUS FILE 559

CUSTOMER FILE CONTAINS CUSTOMER RECORD NO 560

CREATE CUSTOMER RECORD 561

RETRIEVE CUSTOMER RECORD 562

CALL ROLL ROUTINE 563

CALL STATUS ROLL SUBROUTINE [ROLL NEGATIVE] 566

WRITE CUSTOMER RECORD TO CUSTOMER FILE 568

WRITE CONFIRMATION TO RESPONSE DATA ADDRESS 570

SEND STOP REQUEST [INTERTASK REQUEST PACKET] 572
FIG. 9E

580

DISPATCH FROM DATA MANAGER

581

READ REQUEST DATA [CHECK ID/LOCATION]

582

NEGATIVE STATUS FILE CONTAINS NEGATIVE STATUS RECORD FOR THAT LOCATION

NO

YES

584

RETRIEVE NEGATIVE STATUS RECORD FOR THAT LOCATION

586

CALL STATUS ROLL SUBROUTINE [ROLL ACTIVE TO INACTIVE]

587

DELETE [BAD FREQUENCY] [BAD AMOUNT]

588

WRITE NEGATIVE STATUS RECORD TO NEGATIVE STATUS FILE

590

NEGATIVE STATUS FILE CONTAINS ACTIVE NEGATIVE STATUS RECORDS FOR OTHER LOCATIONS

YES

NO

592

RETRIEVE CUSTOMER RECORD FROM CUSTOMER FILE

594

CALL ROLL ROUTINE

595

CALL STATUS ROLL SUBROUTINE [ROLL TO PREVIOUS STATUS]

596

WRITE CUSTOMER RECORD TO CUSTOMER FILE

597

WRITE CONFIRMATION TO RESPONSE DATA ADDRESS

598

SEND STOP REQUEST
FIG. 9F

508 - DISPATCH FROM HOST DATA MANAGER

602 - READ NEGATIVE STATUS RECORDS RECEIVED FROM REMOTE

604 - NEGATIVE STATUS FILE CONTAINS NEGATIVE STATUS RECORD

NO

YES

606 - RETRIEVE NEGATIVE STATUS RECORD

607 - COPY REMOTE NEGATIVE STATUS RECORD

608 - REPLACE HOST STATUS WITH REMOTE STATUS

610 - REPLACE HOST BAD FREQUENCY/AMOUNT WITH REMOTE BAD FREQUENCY/AMOUNT

612 - ROLL ACCESS DATE/TIME

614 - WRITE NEGATIVE STATUS RECORD TO NEGATIVE STATUS FILE

616 - NEGATIVE STATUS FILE CONTAINS ACTIVE NEGATIVE STATUS RECORDS FOR OTHER LOCATIONS

YES

NO

618 - RETRIEVE CUSTOMER RECORD FROM CUSTOMER FILE

620 - CALL ROLL ROUTINE

622 - CALL STATUS ROLL SUBROUTINE [ROLL TO PREVIOUS STATUS]

624 - WRITE CUSTOMER RECORD TO CUSTOMER RECORD FILE

626 - SEND STOP REQUEST
FIG. 9G

508 DISPATCH FROM HOST DATA MANAGER

632 READ CUSTOMER RECORD RECEIVED FROM REMOTE

634 CUSTOMER FILE CONTAINS CUSTOMER RECORD

635 RETRIEVE CUSTOMER RECORD

636 CALL ROLL ROUTINE

638 COPY REMOTE CUSTOMER RECORD [LOCAL DWT DATA SET TO ZERO]

640 HOST STATUS IS CAUTION, POSITIVE OR STOLEN AND IS NOT EQUAL TO REMOTE STATUS

642 ARBITRATE/ASSIGN STATUS

ADD REMOTE [TRANSFER FREQUENCY] TO HOST [DWT FREQUENCY] HOST [DWT $AMOUNT]

644 SELECT HOST DWT DATA

646 COMPARE HOST/REMOTE [DWT FREQUENCY] [DWT $AMOUNT]

648 WRITE CUSTOMER RECORD TO CUSTOMER RECORD FILE

650 SEND STOP REQUEST
FIG. 9H

508
DISPATCH FROM REMOTE DATA MANAGER

662
READ CUSTOMER RECORD RECEIVED FROM HOST

664
CUSTOMER FILE CONTAINS CUSTOMER RECORD

666
COPY HOST CUSTOMER RECORD [LOCAL DWT DATA SET TO ZERO]

668
ROLL DWT DATA

670
HOST DWT DATA LESS THAN REMOTE DWT DATA

672
ROLL ACCESS DATA/TIME

674
STATUS IS CAUTION, POSITIVE OR STOLEN AND IS NOT EQUAL TO HOST STATUS

675
ARBITRATE/ASSIGN STATUS

676
WRITE CUSTOMER RECORD TO CUSTOMER FILE

678
SEND STOP REQUEST

671
SELECT HOST DWT DATA
FIG. 10B

1. VERIFY/QUERY STATUS FUNCTIONS ONLY
2. QUERY STATUS FUNCTIONS ONLY
3. POSITIVE
4. BUILD CALL MANAGER RESPONSE
5. BUILD NORMAL RESPONSE
6. WRITE RESPONSE INTO TERMINAL BUFFER
7. SET TERMINAL DATA STATE FLAG
8. TERMINATE
FIG. 11A

1. Monitor EMT queue (802)
2. Spawn event subtask (816)
3. Event-active semaphore (810)
4. Read next event/record from event file (812)
5. Check if event time is greater than current time (814)
6. Execute (804)
7. Set (810)
8. Clear (812)
FIG. 12
START:
CHECK IS RECEIVED AT RETAIL STORE
MICR CODE IS READ USING A CHECK SCANNING DEVICE
PARSE_MICR;
BANK'S TRANSIT NUMBER IS LOCATED BETWEEN SYMBOLS AT POSITIONS 33 AND 43
BANK'S TRANSIT NUMBER IS USED TO FORM FIRST PART OF CUSTOMER'S ID
LOCATE_SEQUENCE;
CHECK TRANSIT CODE TABLE FOR THIS BANK'S TRANSIT NUMBER
IF (CODE_FOUND_IN_TABLE)
CHECK FOR PRESENCE OF AUXILIARY ON US (POSITION 45 THRU 65)
IF (AUX_ON_US_PRESENT)
USE SEPARATORS TO DETERMINE DISCRETE NUMBERS IN ON US (POSITION 14 THRU 31)
ON US SYMBOLS AND SPACING OF 2 OR MORE SPACES SEPARATE DIFFERENT NUMBERS
DEPRESS DASHES OR SINGLE SPACE SEPARATORS FROM EACH NUMBER
IF (NUMBER_COUNT = 1 OR > 3)
TO FIG. 13B
READ PARAMETERS GIVING LOCATION OF SEQUENCE AND CUSTOMER'S ACCOUNT
USE PARAMETERS TO REMOVE SEQUENCE AND IDENTIFY CUSTOMER'S ACCOUNT
FIG. 13A
FROM FIG. 13A

41 CASE THREE_DISCREET_NUMBER:
42 FIND ACTUAL NUMERIC VALUE OF THREE NUMBERS
43 LARGEST VALUE USED FOR ACCOUNT NUMBER

44 MIDDLE VALUE USED FOR SEQUENCE NUMBER
45 SMALLEST VALUE (TRANSACTION PROCESSING CODE) IS APPENDED TO ACCOUNT I

46 CHECK FOR COMPLETENESS OF PREDETERMINED IDENTIFICATION CRITERIA
47 IF (RECORD IS_COMPLETE)
48 SIGNAL TO SCANNING LOCATION THAT ADDITIONAL IDENTIFICATION CRITERIA IS NEEDED
49 SIGNAL TO SCANNING LOCATION THAT NO FURTHER INFORMATION IS REQUIRED

50 COMBINE TRANSIT I WITH ACCOUNT I TO FORM CUSTOMER'S UNIQUE CHECKING ACCOUNT ID
51 SEND ID CODE TO THE PROCESSOR WHICH CONTAINS A STORED DATABASE OF ID CODES
52 SEARCH DATABASE;
53 USING ID CODE AS PRIMARY KEY, SEARCH DATABASE FOR THIS CUSTOMER'S ID CODE
54 IF (ID_CODE_FOUND)
55 INITIALIZE FIELDS AND ADD CUSTOMER'S ID CODE TO DATABASE
56 SIGNAL TO SCANNING LOCATION THAT ADDITIONAL IDENTIFICATION CRITERIA IS NEEDED
57 ENTER ANY ADDITIONAL IDENTIFICATION CRITERIA FROM FACE OF PERSONAL CHECK
58 REMAP DATABASE RECORD WITH ADDITIONAL IDENTIFICATION CRITERIA
59 RECORD SHOPPING EVENT AND DOLLARS SPENT TO PROVIDE SHOPPING HISTORY

60 SAVE SEQUENCE NUMBER USED TO DETERMINE PARAMETERS FOR LOCATION ON US
61 WRITE PARAMETERS FOR THIS TRANSIT I TO TRANSIT CODE TABLE FOR FUTURE USE

FIG. 13B
CUSTOMER ENTERS RETAIL STORE AND TENDERS PURCHASE WITH A PERSONAL CHECK KEY ON UNIQUE CHECKING ACCOUNT ID CODE TO ACCESS CUSTOMER IN DATABASE.

IF (CUSTOMER EXISTS IN DATABASE)

ADD TO DATABASE WITH CUSTOMER'S UNIQUE CHECKING ACCOUNT ID CODE.

RECORD SHOPPING EVENT FOR EXISTING CUSTOMER.

CHECK FOR COMPLETENESS OF PRE-DETERMINED IDENTIFICATION CRITERIA.

SIGNAL TO SCANNING LOCATION THAT ADDITIONAL IDENTIFICATION CRITERIA IS NEEDED.

RECORD SHOPPING EVENT FOR EXISTING CUSTOMER.

CONTINUE BUILDING A HISTORY OF CUSTOMER'S SHOPPING FOR A PRE-DETERMINED TIME.

IF (HISTORY IS COMPLETE)

A DATABASE OF THE STORE'S EXISTING CUSTOMER'S CHECKING INFORMATION IS COMPLETE.

ACQUIRE A LIST OF PROSPECTIVE CUSTOMERS IN A PRE-DETERMINED GEOGRAPHICAL AREA.

FIG. 14A
FROM FIG. 14A

32
CREATE TARGET FILE OF
PROSPECTIVE CUSTOMERS
NOT APPEARING IN
STORE'S DATABASE

33
READ FIRST RECORD FROM
ACQUIRED LIST OF
PROSPECTIVE CUSTOMERS

36
SEARCH STORE'S
DATABASE OF EXISTING
CUSTOMER'S CHECKING
ACCOUNT INFORMATION

38
IF (CUSTOMER_EXISTS_IN_DATABASE)

Y
WRITE RECORD FROM
LIST OF PROSPECTIVE
CUSTOMERS TO
TARGET FILE

N
READ NEXT RECORD
FROM LIST OF
PROSPECTIVE CUSTOMERS
IN PREDETERMINED AREA

45
IF (END_OF_FILE)

N
TARGET FILE CONSISTS OF
PROSPECTIVE CUSTOMERS
NOT FOUND IN STORE'S
DATABASE

Y
MARKETING MAY NOW
BE TARGETED AT NON-
CUSTOMER'S IN SAID
GEOGRAPHICAL AREA

48
(FUNCTION RETURN)

FIG. 14B
CUSTOMER ENTERS RETAIL STORE AND TENDERS PURCHASE WITH A PERSONAL CHECK.

IF (CUSTOMER EXISTS IN DATABASE)

RECORD SHOPPING EVENT FOR EXISTING CUSTOMER

CHECK FOR COMPLETENESS OF PRE-DETERMINED IDENTIFICATION CRITERIA

SIGNAL TO SCANNING LOCATION THAT ADDITIONAL IDENTIFICATION CRITERIA IS NEEDED

CONTINUE BUILDING A HISTORY OF CUSTOMER'S SHOPPING FOR A PRE-DETERMINED TIME

IF (HISTORY IS COMPLETE)

A DATABASE OF THE STORE'S EXISTING CUSTOMER'S CHECKING ACCOUNT ID CODE

CREATE A TARGET FILE OF CUSTOMERS WHO HAVE NOT SHopped SINCE A PRE-SELECTED DATE

FIG. 15A
FROM FIG. 15A

34
READ FIRST RECORD IN DATABASE OF CUSTOMER'S CHECKING ACCOUNT INFORMATION

37
LOCATE LAST TRANSACTION DATE IN CUSTOMER'S SHOPPING HISTORY

38
COMPARE LAST TRANSACTION DATE WITH PRE-SELECTED TARGET DATE

40
IF (SHOPPED_SINCE_TARGET_DATE)

44
WRITE RECORD FROM STORE'S DATABASE OF CUSTOMERS TO TARGET FILE

47
READ NEXT RECORD FROM STORE'S DATABASE OF CUSTOMERS

49
IF (END_OF_FILE)

50
TARGET FILE CONTAINS CUSTOMERS NOT SHOPPING SINCE PRE-SELECTED TARGET DATE

55
MARKETING MAY NOW BE TARGETED AT CUSTOMER'S NOT SHOPPING SINCE TARGET DATE

(function return)

FIG. 15B
CUSTOMER ENTERS RETAIL STORE AND TENDERS PURCHASE WITH A PERSONAL CHECK
KEY ON UNIQUE CHECKING ACCOUNT ID CODE TO ACCESS CUSTOMER ID IN DATABASE

IF (CUSTOMER EXISTS IN DATABASE)
 RECORD SHOPPING EVENT FOR EXISTING CUSTOMER
 CHECK FOR COMPLETENESS OF PRE-DETERMINED IDENTIFICATION CRITERIA
 SIGNAL TO SCANNING LOCATION THAT ADDITIONAL CRITERIA IS NEEDED

ADD TO DATABASE WITH CUSTOMER'S UNIQUE CHECKING ACCOUNT ID CODE

SIGNAL TO SCANNING LOCATION THAT ADDITIONAL IDENTIFICATION CRITERIA IS NEEDED

CONTINUE BUILDING A HISTORY OF CUSTOMER'S SHOPPING FOR A PRE-DETERMINED TIME

IF (HISTORY IS COMPLETE)
 SIGNAL TO SCANNING LOCATION THAT NO FURTHER INFORMATION IS REQUIRED

CREATE TARGET FILE OF CUSTOMERS WHO LAST SHopped WITHIN PRE-SELECTED DATE RANGE

FIG. 16A
FROM FIG. 16A

33
READ FIRST RECORD IN DATABASE OF CUSTOMER'S CHECKING ACCOUNT INFORMATION

36
LOCATE LAST TRANSACTION DATE IN CUSTOMER'S SHOPPING HISTORY

37
COMPARE LAST TRANSACTION DATE WITH PRE-SELECTED TARGET DATE RANGE

39
IF DATE_WITHIN_TARGET_RANGE

Y
WRITE RECORD FROM STORE'S DATABASE OF CUSTOMERS TO TARGET FILE

N
READ NEXT RECORD FROM STORE'S DATABASE OF CUSTOMERS

43
IF END_OF_FILE

Y
TARGET FILE CONTAINS CUSTOMERS WHO LAST SHOPPED WITHIN SAID DATE RANGE

MARKETING MAY NOW BE TARGETED AT CUSTOMER'S LAST SHOPPING WITHIN DATE RANGE

54
FUNCTION RETURN

FIG. 16B
START;

CUSTOMER TENDERS PURCHASE WITH A PERSONAL CHECK OR PROVIDES PHONE TO
SEND CHECK ID CODE OR PHONE TO PROCESSOR FOR ACCESSING CUSTOMER
DATABASE

IF (CUSTOMER IS IN DATABASE)
RECORD IS CREATED FOR CUSTOMER AND ALL FIELDS ARE SET TO INITIALIZED VALUES
PROCESSOR RECORDS SHOPPING EVENT AND DOLLARS SPENT TO PROVIDE SHOPPING HISTORY

POINT OF SALE COUPONS OF VARYING VALUE ARE AVAILABLE FOR CUSTOMER
PROCESSOR DETERMINES VALUE OF COUPONS TO BE DISPENSED TO CUSTOMER

SWITCH (METHOD DETERMINE_VALUE)

CASE 30_DAY_VOLUME:
PRESSET DOLLAR LIMITS AND ASSOCIATED COUPON VALUE'S ARE STORED ON-LINE
COMPARE LAST 30 DAYS DOLLAR VOLUME TO PREDETERMINED LIMIT'S

CASE VALUE SET IN DATABASE:
CRITERIA SUCH AS VOLUME, FREQUENCY, AND DEMOGRAPHICS, ETC. ARE PRESET
DATABASE IS ANALYZED OFF-LINE AND FLAGS ARE SET BASED ON PRESET CRITERIA

FIG. 17A
FIG. 17B
FIG. 18A

START,
CUSTOMER'S PURCHASE IS TRANSACTED WITH THE USE OF BAR CODE SCANNING REGISTER
ITEM IS SCANNED BY BAR CODE SCANNING REGISTER
CASH REGISTER MAINTAINS DEPARTMENT, PRODUCT, AND PRODUCT GROUP SHOPPED
IF (ALL_ITEMS_ARE_SCANNED)
CUSTOMER TENDERS PURCHASE WITH A PERSONAL CHECK OR PROVIDES PHONE
SEND CHECK ID CODE OR PHONE TO PROCESSOR FOR ACCESSING CUSTOMER DATABASE
IF (CUSTOMER IS IN DATABASE)
RECORD IS CREATED FOR CUSTOMER AND ALL FIELDS ARE SET TO INITIALIZED VALUES
SEND INFORMATION ON SCANNED ITEMS TO PROCESSOR CONTAINING DATABASE
PROCESSOR RECORDS SHOPPING EVENT AND DOLLARS SPENT TO PROVIDE SHOPPING HISTORY
PROCESSOR UPDATES CUSTOMER'S RECORD WITH SCANNED ITEMS INFORMATION
POINT OF SALE COUPONS OF VARYING VALUE ARE AVAILABLE FOR CUSTOMER
TO FIG. 18B
PROCESSOR DETERMINES VALUE OF COUPONS TO BE DISPERSED TO CUSTOMER
SNITCH (METHOD DETERMINE VALUE)

CASE VALUE_SET_IN DATABASE
CRITERIA SUCH AS VOLUME, FREQUENCY, AND DEMOGRAPHICS, ETC. ARE PRESET

DATABASE IS ANALYZED OFF-LINE AND FLAGS ARE SET BASED ON PRESET CRITERIA
ON-LINE PROCESSOR USES FLAGS AND CURRENT PURCHASE TO DETERMINE COUPON VALUE

DATABASE CONTAINS PRESET FIELDS TO MONITOR CUSTOMER SHOPPING ACTIVITY
ACTIVITY MONITORED INCLUDES PRESET DEPARTMENT AND PRESET ITEM TRACKING

PROCESSOR ANALYZES SHOPPING HISTORY TO DETECT EXCEPTIONS TO DEPTS AND ITEMS
MAX_SUB WILL REPRESENT THE NUMBER OF DEPTS AND ITEMS BEING TRACKED

TABLES OF COUPON OFFERINGS
DEPTS AND ITEMS IN TABLE ARE PRESET IN ORDER OF DECREASING PRIORITY

FROM FIG. 18A

CASE 30_DAY_VOLUME:
PRESET DOLLAR LIMITS AND ASSOCIATED COUPON VALUES ARE STORED ON-LINE
COMPARE LAST 30 DAYS DOLLAR VOLUME TO PREDETERMINED LIMITS
IF (VOLUME < DOLLAR LIMIT 1)

SECONDARY SHOPPER DETECTED, COUPON INCENTIVE VALUE A IS ISSUED
IF (VOLUME < DOLLAR LIMIT 2)

PRIMARY SHOPPER DETECTED, COUPON INCENTIVE VALUE B IS ISSUED

TO FIG. 18C
FIG. 18C

FROM FIG. 18B

USE POINTER SUB TO STEP THRU TABLE AND CHECK ACTIVITY FOR DEPT AND/OR ITEM

SUB = 1;
DISPERSE = 0;

IF (TABLE(SUB) IS INACTIVE)

SUB = SUB + 1;

IF (SUB <= MAX_SUB)

STEP THROUGH ALTERNATE TABLE OF COUPONS PRESET IN ORDER OF DECLINING PRIORITY

ISSUE COUPON IN TABLE POINTED TO BY SUB -- TABLE(SUB);

DISPERSE = DISPERSE + COUPON;

IF (DISPERSE > VALUE)

CASE POINT_OF_SALE: PROCESSOR SPOOLS COUPONS TO POINT OF SALE COUPON PRINTER

CASE DIRECT MAIL: COUPONS ARE MAILED BASED ON ANALYSIS FOR VALUE AND TYPE

END;

FUNCTION RETURN
FIG. 19

PLURAL REMOTE MASTER CONTROLLER

DIAL OUT TELEPHONE LINE

ECR INTEGRATION LINK

PASSIVE LISTENING DEVICE

ECR CONTROLLER

CVC CONTROLLER (MASTER)

CVC CONTROLLER (SLAVE)

TELEPHONE
FIG. 22

1. LOAD BCTT INTO CONTROLLER
2. SCAN ITEM WITH BAR CODE SCANNER
3. READ SCANNED UPC WITH PASSIVE DEVICE
4. PASSIVE DEVICE PASSES UPC TO CONTROLLER
5. CONTROLLER CHECKS FOR A MATCH IN BCTT
6. MATCH IN BCTT?
 - YES
 - NO
5. CONTROLLER CHECKS FOR A MATCH IN BCTT
 - YES
 - NO
 - SCAN MORE ITEMS?
 - NO
 - TO FIG. 23A

FIG. 23A
FROM FIG. 22

1. ECR SENDS TRANSACTION AMOUNT TO AP/M
2. AP/M SENDS AMOUNT TO CONTROLLER
3. CHOOSE PAYMENT METHOD

TO FIG. 23B, 23C
FROM FIG. 23A

FIG. 23B

14 CHECK

15 CHECK READER READS CHECK AND SENDS TO AP/M

16 AP/M SENDS MICR TO CONTROLLER

17 CONTROLLER PARSES MICR TO REMOVE SEQUENCE NUMBER

18 CONTROLLER VERIFIES CHECK AGAINST POSITIVE AND NEGATIVE DATABASES

19 CONTROLLER SENDS VERIFICATION TO AP/M FOR DISPLAY TO CLERK

20 CREDIT CARD

21 CREDIT CARD IS SWIPED IN MAGNETIC SWIPE ON AP/M

22 AP/M SENDS ACCOUNT NUMBER TO CONTROLLER

23 CONTROLLER PLACES A CALL TO VERIFY CREDIT CARD TRANSACTION

24 CONTROLLER SENDS VERIFICATION TO AP/M FOR DISPLAY TO CLERK

25 RECEIPT IS PRINTED ON PRINTER CONNECTED TO AP/M

26 DEBIT CARD

27 DEBIT CARD IS SWIPED IN MAGNETIC SWIPE ON AP/M

28 CUSTOMER ENTERS A PASSWORD (PIN) INTO PIN PAD ON AP/M

29 AP/M SENDS ACCOUNT NUMBER AND PIN TO CONTROLLER

30 CONTROLLER PLACES A CALL AND PROCESSES DEBIT TRANSACTION

31 CONTROLLER SENDS COMPLETION STATUS TO AP/M FOR DISPLAY

32 RECEIPT IS PRINTED ON PRINTER CONNECTED TO AP/M

TO FIG. 24
FIG. 23C

33 AUTOMATIC CLEARING HOUSE (ACH)

34 ACH CARD IS SWIPED IN MAGNETIC SWIPE ON AP/M

35 CUSTOMER ENTERS A PASSWORD (PIN) INTO PIN PAD ON AP/M

36 AP/M SENDS ACCOUNT NUMBER AND PIN TO CONTROLLER

37 CONTROLLER PLACES A CALL AND PROCESSES ELECTRONIC CHECK

38 CONTROLLER SENDS COMPLETION STATUS TO AP/M FOR DISPLAY

39 RECEIPT IS PRINTED ON PRINTER CONNECTED TO AP/M

40 ELECTRONIC BENEFITS (EBS)

41 ACH CARD IS SWIPED IN MAGNETIC SWIPE ON AP/M

42 CUSTOMER ENTERS A PASSWORD (PIN) INTO PIN PAD ON AP/M

43 AP/M SENDS ACCOUNT NUMBER AND PIN TO CONTROLLER

44 CONTROLLER PLACES A CALL AND PROCESSES EBS TRANSACTION

45 CONTROLLER SENDS COMPLETION STATUS TO AP/M FOR DISPLAY

46 RECEIPT IS PRINTED ON PRINTER CONNECTED TO AP/M

TO FIG. 24
FROM FIG. 23A, 23B

FIG. 24

CASH SHOPPER?

47

NO

48

CHOOSE SHOPPING CARD

YES

47

MAGNETIC STRIPE

50 SWIPE SHOPPING CARD IN MAGNETIC SWIPE ON AP/M

51 SMART CARD

52 READ SMART CARD WITH READ/WRITE DEVICE ON ARM

53 MANUAL INPUT

54 KEY SHOPPING CARD NUMBER INTO AP/M

55 AP/M SENDS ACCOUNT NUMBER TO CONTROLLER

56 UPC BAR CODE

57 SCAN SHOPPING CARD WITH SCANNER ON ECR

58 PASSIVE DEVICE READS UPC CODE FROM ECR NETWORK

59 PASSIVE DEVICE SENDS ACCOUNT NUMBER TO CONTROLLER

TO FIG. 25
FROM FIG. 25

FIG. 26

74 ACCESS PHONE NUMBER IN ACCOUNT RECORD

75 PHONE NUMBER EXIST?

76 SEND SIGNAL TO AP/M FOR CLERK TO ENTER PHONE NUMBER

77 PHONE NUMBER ENTERED?

78 ACCESS FIRST ACCOUNT RECORD KEYING ON PHONE NUMBER

79 INCORPORATE INTO MARKETING RECORD

80 ACCESS NEXT ACCOUNT RECORD KEYING ON PHONE NUMBER

81 NEXT RECORD FOUND?

NO

TO FIG. 27
FIG. 27

FROM FIG. 26

82. ACCESS PRESET CRITERIA FOR COUPON "A"

83. ACCESS COUPON TRACKING FIELDS FOR ACCOUNT

84. CURRENTLY SUPER "A"?

85. INCREMENT SUPER "A" PROGRAM COUNTER

86. PROGRAM LIMIT EXCEEDED

87. NO

88. CURRENTLY COUPON "A"?

89. MARK ACCOUNT TO RECEIVE SUPER "A" COUPONS

90. INCREMENT COUPON "A" PROGRAM COUNTER

91. PROGRAM LIMIT EXCEEDED?

92. MARK ACCOUNT TO RECEIVE COUPON "A" COUPONS

TO FIG. 28

TO FIG. 29
FIG. 28

93 CHOOSE METHOD TO DETERMINE COUPON "A"

94 DOLLAR VOLUME

95 SUM DOLLARS FOR PRESET NUMBER OF DAYS

96 SUM DOLLARS < PRESET LIMIT?

97 MARK ACCOUNT TO RECEIVE COUPON "A" COUPONS

98 WEEKLY FREQUENCY

99 BUILD WEEKLY ATTENDANCE FOR PRESET NUMBER OF WEEKS

100 WEEKS ATTEND < PRESET LIMIT?

101 MARK ACCOUNT TO RECEIVE COUPON "A" COUPONS

102 CHOOSE METHOD TO DETERMINE COUPON "A" INCENTIVE LEVEL

103 BASE ON NUMBER OF WEEKS ATTENDED

104 BASE ON AVERAGE PURCHASE

105 STORE LEVEL OF COUPON "A" IN ACCOUNT RECORD

TO FIG. 29
From Fig. 28

106 Access preset criteria for coupon "M"

107 Access coupon tracking fields for account

108 Currently super "M"?

109 Compute average purchase while on program

110 Average > criteria?

111 Mark account to receive super "M" coupons

112 Current coupon "M"?

113 Enough trips for base?

114 Compute and store base average purchase

115 Base in range?

116 Calculate a target increase of base

117 Enough trips to test?

118 Compute average purchase while on program

119 Average < criteria?

120 Average > target?

121 Mark account to receive coupon "M" coupons

Fig. 29

To Fig. 30
FIG. 30

FROM FIG. 29

1

122
SET COUPON TYPE TO STANDARD

123
PERFORM BUILD COUPON LIST

124
CHOOSE PURCHASE LEVEL

124

126
128
130
132

BELOW ALL RANGES
DOLLAR RANGE 1
DOLLAR RANGE 2
DOLLAR RANGE 3
DOLLAR RANGE 4

127
SET COUPON TYPE TO "B"

129
SET COUPON TYPE TO "C"

131
SET COUPON TYPE TO "D"

133
SET COUPON TYPE TO "E"

134
PERFORM BUILD COUPON LIST

TO FIG. 31
FIG. 31
FROM FIG. 30

J

135

CHOOSE SPECIAL COUPON PROGRAM

136

COUPON "A"

137

SET COUPON TYPE TO "A"

138

SUPER "A"

139

SET COUPON TYPE TO "SUPER A"

140

SET COUPON LEVEL FROM ACCOUNT RECORD

141

PERFORM BUILD COUPON LIST

142

COUPON "M"

143

SET COUPON TYPE TO "M"

144

SUPER "M"

145

SET COUPON TYPE TO "SUPER M"

146

PERFORM BUILD COUPON LIST

147

NONE

K

TO FIG. 32
FROM FIG. 33

180 ACCESS FIRST COUPON IN THE COUPON LIST

181 COUPON FOUND?

YES

182 CHOOSE SPOOILING MEDIUM

NO

183 END

184 CONTROLLER SENDS COUPON TO AP/M

185 AP/M SENDS COUPON TO PRINTER

186 "SMART" CARD

187 CONTROLLER ENCRYPTS COUPON DATA

188 CONTROLLER SENDS COUPON TO AP/M

189 AP/M WRITES COUPON ONTO "SMART" CARD

190 CONTROLLER'S MASS STORAGE DEVICE

191 CONTROLLER WRITES COUPON TO STORAGE DEVICE

192 ACCESS NEXT COUPONS IN THE COUPON LIST

FIG. 34
FIG. 35

200 ECHO COUPONS

201 FIRST ECHO COUPON?

202 ACCESS FIRST ITEM FROM ACCOUNT'S ITEM LIST

203 ITEM FOUND?

204 ASSIGN ITEM A PRIORITY

205 ADD ITEM TO ECHO COUPON WORKSPACE

206 ACCESS NEXT ITEM FROM ACCOUNT'S ITEM LIST

207 ACCESS HIGHEST PRIORITY ITEM FROM ECHO COUPON WORKSPACE

208 ITEM FOUND?

209 PLACE ITEM'S UPC IN RETURN SPACE FOR CALLING ROUTINE

210 REMOVE ITEM FROM ECHO COUPON WORKSPACE

211 RETURN
BEGIN

250 ACCESS FIRST TRANSFER EVENT

251 DIAL REMOTE CONTROLLER

252 RECORD NEXT RECORD SINCE LAST TRANSFER

253 NEXT RECORD EXIST?

254 ACCESS NEXT REMOTE RECORD SINCE LAST TRANSFER

255 NEXT RECORD EXIST?

256 UPDATE REMOTE SECONDARY DATABASE

257 ACCESS NEXT TRANSFER EVENT

258 NEXT EVENT EXIST?

259 END

FIG. 36
FIG. 37

BEGIN

261 ACCESS FIRST ITEM FROM ACCOUNT'S ITEM LIST

262 ITEM FOUND?

Y

263 ACCESS ITEM'S RECORD IN BCTT

N

265 ACCESS NEXT ITEM FROM ACCOUNT'S ITEM LIST

266 RETURN

264 FACTOR VALUES STORED IN BCTT INTO ACCOUNT'S PROFILE VALUE

FIG. 38

BEGIN

267 ACCESS COUPON FROM COUPON DATABASE

268 USE ACCOUNT'S PROFILE VALUE TO DETERMINE VALUE OF COUPON

269 ISSUE COUPON?

N

269

Y

270 BUILD COUPON BASED ON VALUE ASSIGNED FROM PROFILE

271 DISPERSE COUPON AT THE POINT OF SALE

272 RETURN
FIG. 40

275 BEGIN

276 INITIALIZE KEYPAD

277 CHECK FOR DATA FROM CVC CONTROLLER

278 DATA ON NETWORK?

279 PERFORM POLLING PROCESS

280 CHECK FOR DATA FROM PERIPHERALS

281 DATA RECEIVED?

282 CHECK FOR DATA FROM KEYBOARD

283 KEY PRESSED?

284 CHECK CHARACTER FOR END OF ENTRY

285 IS CHARACTER LF OR CR?

286 SET FLAG TO SEND KEYPAD ENTRY PACKET ON NEXT POLL

287 ADD CHARACTER TO KEYPAD ENTRY PACKET

NO YES

NO YES

NO YES

NO YES

NO YES
FIG. 41

288 POLLING PROCESS

289 CHECK POLL CHARACTER'S TOP THREE BITS

290 CASE ON OFF OFF (POLLED KEYPAD)

291 ADDRESS FOR THIS KEYPAD?

292 CHECK FLAG FOR SENDING KEY ENTRY PACKET

293 IS FLAG SET?

294 SEND A ‘%’ CHARACTER

295 SEND A ‘&’ FOLLOWED BY KEYPAD PACKET

296 CASE ON OFF ON (SEND TO DISPLAY)

297 ADDRESS FOR THIS KEYPAD?

298 READ DATA FOR DISPLAY

299 WRITE DATA TO AP/M DISPLAY

300 CASE ON OFF ON (SEND TO PRINTER)

301 ADDRESS FOR THIS KEYPAD?

302 READ DATA FOR PRINTING

303 SEND DATA TO PRINTER

304 CASE ON ON ON (SEND TO ALL KEYPADS)

305 CHECK LOW ORDER BIT

306 IS LOW ORDER BIT ON?

307 RETURN
FIG. 42

1. ACCESS FIRST ITEM FROM ACCOUNT'S ITEM LIST
2. ITEM FOUND?
 YES: END
 NO: ITEM MATCH?
3. ITEM MATCH?
 YES: ACCESS ITEM'S RECORD IN BCTT
 NO: FACTOR QUANTITY STORED IN BCTT INTO ACCOUNT'S AVERAGE CONSUMPTION VALUE
4. ACCESS NEXT ITEM FROM ACCOUNT'S ITEM LIST

FIG. 43

1. SHOPPING HISTORY CRITERIA MET?
 NO: ISSUE INCENTIVE AND RECORD
 YES: MONITOR AND RECORD RESPONSE TO INCENTIVE
2. MODIFY INCENTIVE BASED ON FAILURE CRITERIA
3. RESPONSE CRITERIA MET?
 YES: MODIFY INCENTIVE BASED ON SUCCESS CRITERIA
 NO: IS TARGETED MARKETING COMPLETE?
4. YES: END
 NO: END
FIG. 44A

1. ACCESS PRESET CRITERIA FOR COUPON "A"
2. ACCESS COUPON TRACKING FIELDS FOR ACCOUNT

3. CURRENTLY SUPER "A"?
 - NO
 - YES

4. CURRENTLY COUPON "A"?
 - NO
 - YES

5. WAS COUPON "A" COUPON REDEEMED?
 - NO
 - YES

6. SET SUPER "A" LEVEL TO 1

7. PROGRAM LIMIT EXCEEDED?
 - NO
 - YES

8. SUPER "A" COUPON REDEEMED?
 - NO
 - YES

9. INCREMENT SUPER "A" LEVEL

10. INCREMENT SUPER "A" PROGRAM COUNTER

11. MARK ACCOUNT TO RECEIVE COUPON "A" COUPONS

12. LEVEL > MAX NUMBER OF LEVELS?
 - NO
 - YES

13. SET LEVEL EQUAL TO MAX LEVEL

14. MARK ACCOUNT TO RECEIVE SUPER "A" COUPONS

15. TO FIG. 44B

16. TO FIG. 44B
FIG. 44B

FROM FIG. 44A

17
ACCESS PRESET CRITERIA FOR PRODUCT GROUP

18
CALCULATE CONSUMPTION RATE FOR PRESET NUMBER OF WEEKS

19
CONSUMPTION < PRESET LIMIT?

NO

YES

20
MARK ACCOUNT TO RECEIVE COUPON “A” FOR THIS PRODUCT OR PRODUCT GROUP

21
STORE LEVEL OF COUPON “A” BASED ON CONSUMPTION

22
SPOOL POINT OF SALE INCENTIVE(S) TO CUSTOMER

FROM FIG. 44A

23
END
BEGIN

1. ACCESS PRESET CRITERIA FOR COUPON "M"

2. ACCESS COUPON TRACKING FIELDS FOR ACCOUNT

3. CURRENTLY SUPER "M"?
 - NO
 - YES
 8. SUPER "M" COUPON REDEEMED?
 - NO
 - YES
 12. NO
 - YES
 10. PROGRAM LIMIT EXCEEDED?
 - NO
 - YES
 11. MARK ACCOUNT TO RECEIVE COUPON "M" COUPONS
 A TO FIG. 45B
 - NO
 - YES
 13. LEVEL > MAX NUMBER OF LEVELS?
 - NO
 - YES
 14. SET LEVEL EQUAL TO MAX LEVEL
 15. SET SUPER "M" LEVEL TO 1
 16. MARK ACCOUNT TO RECEIVE SUPER "M" COUPONS
 A TO FIG. 45B

4. CURRENTLY COUPON "M"?
 - NO
 - YES
 5. WAS COUPON "M" COUPON REDEEMED?
 - NO
 - YES
 6. INCREMENT COUPON "M" PROGRAM COUNTER
 - YES
 7. PROGRAM LIMIT EXCEEDED?
 - NO
 - YES
 8. TO FIG. 45B

FIG. 45A
FIG. 45B

17 ACCESS PRESET CRITERIA FOR MAXIMIZING PRODUCT GROUP

18 CALCULATE CONSUMPTION RATE FOR PRESET NUMBER OF WEEKS

19 CONSUMPTION < PRESET LIMIT?

20 YES

21 STORE LEVEL OF COUPON "M" BASED ON CONSUMPTION

22 SPOOL POINT OF SALE INCENTIVE(S) TO CUSTOMER

23 END
FIG. 46A

BEGIN

1. Store and maintain a history of previously purchased products for each ID.

2. Maintain an "incentive list" for each ID based on a subset of products that meet a preselected frequent purchasing history criteria.

3. A preset "value of incentives" for each level of infrequency is stored and maintained on-line.

4. An ID is entered at the point of sale and is determined to meet a preselected infrequent shopping history criteria.

5. Program tracking values for this ID are initialized and an incentive program begins.

6. Determine value of incentives based on preset values for this level of infrequency.

7. Utilize preselected value formula to calculate the incentive mix of product, brand, size, packaging, number of units and sale price to customer.

A TO FIG. 45B

BEGIN

$2a$ Consumption rate analysis is performed for each product based on ID's consumption history.

$2b$ Is there sufficient product history to predict next purchase?

$2c$ A priority value is assigned for each product based on ID's level of consumption frequency and estimated next purchase date.

$2d$ A final adjustment is made based on a preset value representing the store's perception of this product as an incentive.

$2e$ END
ISSUE THE DETERMINED VALUE OF INCENTIVES FROM THE INCENTIVE LIST CONTINGENT ON A FUTURE TRANSACTION

MONITOR TRANSACTIONS SUBSEQUENT TO ISSUE OF INCENTIVES

ESTABLISH A RESPONSE CRITERIA TO DETERMINE IF FURTHER INCENTIVE IS NECESSARY

DOES CUSTOMER'S RESPONSE FALL SHORT OF RESPONSE CRITERIA?

INCREASE VALUE OF INCENTIVES BASED ON PRESET VALUES ASSOCIATED WITH RESPONSE CRITERIA

IS INCENTIVE PROGRAM COMPLETE?

END

FIG. 48A

CUSTOMER PC 322
WEB SITE SERVER 324
MANUFACTURER 332
RETAILER 334
WHOLESALER 336
INCENTIVE AND ELECTRONIC REGISTER SYSTEM 326
INCENTIVE CONTROLLER 340
FIG. 47

1. STORE AND MAINTAIN A HISTORY OF PREVIOUSLY PURCHASED PRODUCTS FOR EACH ID

2. ACCESS NEXT PRODUCT FROM THE LIST OF PREVIOUSLY PURCHASED PRODUCTS FOR THIS ID

3. DOES PRODUCT MEET A CURRENT PURCHASE HISTORY CRITERIA?
 - NO
 - YES

4. DOES PRODUCT MEET A “FAVORED” CRITERIA WITHIN ITS PRODUCT CATEGORY?
 - NO
 - YES

5. ADD PRODUCT TO LIST OF PRODUCTS QUALIFIED FOR ECHO COUPON INCENTIVES

6. ARE THERE ANY MORE PRODUCTS TO ANALYZE FOR ECHO COUPONS?
 - YES
 - NO

7. END
FIG. 52

2 START

4 CUSTOMER CONNECTS TO INCENTIVE WEB SITE

6 ID FOR CUSTOMER IS DETERMINED

10 PRESENT CUSTOMER WITH LIST OF INCENTIVES

18 SEND LIST OF INCENTIVES ASSOCIATED WITH CUSTOMER TO INCENTIVE CONTROLLER

20 CUSTOMER GOES TO STORE

22 DETERMINE THAT CUSTOMER ID MATCHES ID DETERMINED BY INCENTIVE WEB SERVER

24 SCAN ITEM

28 IS ITEM PRESENT IN LIST OF INCENTIVES?

YES APPLY DISCOUNT TO ITEM

NO 26

26 MORE ITEMS?

YES 30

NO

30 APPLY ANY OTHER APPLICABLE INCENTIVE ON LIST

32 STOP
FIG. 53

START

4 CUSTOMER CONNECTS TO INCENTIVE WEB SITE SERVER

6 ID FOR CUSTOMER IS DETERMINED

8 ACCESS CUSTOMER RECORD FROM ID DATABASE

10 ANALYZE PAST PURCHASING HISTORY

14 GENERATE LIST OF INCENTIVES BASED ON CUSTOMER'S PAST PURCHASING HISTORY

16 PRESENT CUSTOMER WITH LIST OF INCENTIVES

18 SEND LIST OF INCENTIVES ASSOCIATED WITH CUSTOMER TO INCENTIVE CONTROLLER

20 CUSTOMER GOES TO STORE

22 DETERMINE THAT CUSTOMER ID MATCHES ID DETERMINED BY INCENTIVE WEB SERVER

24 SCAN ITEM

26 IS ITEM PRESENT IN LIST OF INCENTIVES?

28 APPLY DISCOUNT TO ITEM

28 MORE ITEMS?

30 APPLY ANY OTHER APPLICABLE INCENTIVE ON LIST

32 STOP
FIG. 54

1. START

2. CUSTOMER CONNECTS TO INCENTIVE WEB SITE

3. ID FOR CUSTOMER IS DETERMINED

4. ACCESS CUSTOMER RECORD FROM ID DATABASE

5. ANALYZE PAST PURCHASING HISTORY

6. DETERMINE CATEGORY OF CUSTOMER

7. GENERATE LIST OF INCENTIVES BASED ON PURCHASING HISTORY MEETING CRITERIA

8. PRESENT CUSTOMER WITH LIST OF INCENTIVES

9. SEND LIST OF INCENTIVES ASSOCIATED WITH CUSTOMER TO INCENTIVE CONTROLLER

10. CUSTOMER GOES TO STORE

11. DETERMINE THAT CUSTOMER ID MATCHES ID DETERMINED BY INCENTIVE WEB SERVER

12. SCAN ITEM

13. IS ITEM PRESENT IN LIST OF INCENTIVES?

14. YES

15. APPLY DISCOUNT TO ITEM

16. NO

17. MORE ITEMS?

18. YES

19. APPLY ANY OTHER APPLICABLE INCENTIVE ON LIST

20. NO

21. STOP
FIG. 55

1. START

2. CUSTOMER CONNECTS TO INCENTIVE WEB SITE SERVER

3. ID FOR CUSTOMER IS DETERMINED

4. ACCESS CUSTOMER RECORD FROM ID DATABASE

5. ANALYZE PAST PURCHASING HISTORY

6. SELECT FAVORITE PRODUCTS

7. GENERATE LIST OF FAVORITE PRODUCTS FOR PROVIDING INCENTIVES

8. PRESENT CUSTOMER WITH LIST OF INCENTIVES

9. SEND LIST OF INCENTIVES ASSOCIATED WITH CUSTOMER TO INCENTIVE CONTROLLER

10. CUSTOMER GOES TO STORE

11. DETERMINE THAT CUSTOMER ID MATCHES ID DETERMINED BY INCENTIVE WEB SERVER

12. SCANNED ITEM

13. IS ITEM PRESENT IN LIST OF INCENTIVES?

14. APPLY DISCOUNT TO ITEM

15. MORE ITEMS?

16. APPLY ANY OTHER APPLICABLE INCENTIVE ON LIST

17. STOP
FIG. 56

2 START

4 SCAN ITEM

6 OBTAIN IDENTITY OF PRODUCT THROUGH SCANNER WEDGE

8 OBTAIN PRICE THROUGH PRINTER WEDGE

10 WHEN APPROPRIATE, INSERT DISCOUNT PLU ON SCANNER WEDGE

12 WHEN APPROPRIATE, INSERT DISCOUNT MESSAGE ON PRINTER WEDGE

13 REPEAT AS NECESSARY

14 OBTAIN "TOTAL" INDICATION FROM PRINTER WEDGE

16 INSERT ADDITIONAL TEXT ON PRINTER WEDGE AFTER TOTAL KEY

18 STOP
FIG. 57A

1. START

2. ENTER ID

3. ACCESS RECORD IN ID DATABASE

4. APPLY CRITERIA BASED ON HISTORY OF PRIOR PURCHASES

5. SET ACCUMULATOR TO $0.00

6. SCAN AN ITEM

7. ADD COST OF ITEM TO ACCUMULATOR

8. HAS ACCUMULATOR REACHED SET AMOUNT?
 - YES: APPLY DISCOUNT TO ORDER
 - NO: RESET ACCUMULATOR

9. END OF SALE?
 - NO: CONTINUE
 - YES: STOP

10. END OF SALE?
FIG. 57B

2 START

3 ACCESS COMPUTER SITE

4 DETERMINE ID

6 ACCESS RECORD IN ID DATABASE

8 APPLY CRITERIA BASED ON HISTORY OF PRIOR PURCHASES

10 SET ACCUMULATOR TO $0.00

12 PROCESS AN ITEM

14 ADD COST OF ITEM TO ACCUMULATOR

16 HAS ACCUMULATOR REACHED SET AMOUNT?

18 END OF SALE?

20 APPLY DISCOUNT TO ORDER

22 RESET ACCUMULATOR

24 STOP
FIG. 58A

1. **START**
2. **ENTER ID**
3. **ACCESS RECORD IN ID DATABASE**
4. **APPLY CRITERIA BASED ON HISTORY OF PRIOR PURCHASES**
5. **SCAN AN ITEM**
6. **IS ITEM IN LIST OF ELECTRONIC DISCOUNTS?**
 - If YES, **APPLY DISCOUNT TO ORDER**
 - If NO, **END OF SALE?**
 - If YES, **NOTIFICATION OF FUTURE PRODUCT DISCOUNTS**
 - If NO, return to **ENTER ID**
7. **STOP**
Welcome back
Valued XYZ Store Customer
Susan Smith

- CF Diet Coke 8.97
- Private Sale -1.00
- Loyal Customer Rewards
- BC FF Milk W 2.89
- Private Sale -1.00
- Loyal Customer Rewards
- BC FF Milk W 2.89
- Mrs Bairds Bread 2.49
- Private Sale -1.00
- Loyal Customer Rewards
- G Farms Bread 1.79
- Rev Cosmetics 5.89
- Blue Bunny Bars 2.99
- Private Sale -1.00
- Loyal Customer Rewards
- Tyson Rstd Nlgs 4.19
- Private Sale -1.00
- Loyal Customer Rewards
- Zatarain Black Bean 1.49
- Private Sale -0.50
- Loyal Customer Rewards
- Zatarain Black Bean 1.49
- Hytop Mozarella 5.98
- Mushrooms Sliced 0.98
- Private Sale -0.50
- Loyal Customer Rewards
- Quail Mountain 1.98
- 2.30lbs @ 1.39/lb
- White Grapes Seed 3.29
- Mushrooms Sliced 0.98
- Private Sale -0.50
- Loyal Customer Rewards
- Sunkist Grapefruit 0.83
- Ricotta Cheese 2.29
- Private Sale -1.00
- Loyal Customer Rewards

FIG. 58B

- Ricotta Cheese 2.29
- Crisco Sticks 1.99
- Campbell DBL NOODLE 0.99
- Private Sale -0.25
- Loyal Customer Rewards
- Campbell DBL NOODLE 0.99
- Uncle Ben Soup Mix 1.99
- Private Sale -1.00
- Loyal Customer Rewards
- Knorr Soup Cup 1.09
- SUB TOTAL 120.21
- 23.88 TAX 1 1.97
- TOTAL 122.18

TOTAL PRIVATE SALE REWARDS
THIS VISIT -8.25

our way of saying thank you
for shopping at XYZ

The next time you shop
at XYZ look for these
Personalized Private Sale
rewards selected just for
the Susan Smith household.

- Milk Bone - 4 LB 1.00 OFF
- Nabisco Cheese Nips .50 OFF
- Uncle Ben's Wild Rice 1.00 OFF
- Nabisco Triscuits 1.00 OFF
- Del Monte Cream Corn .50 OFF
- Orange Gatorade 1.00 OFF
- General Mills Cheerios 1.00 OFF
- Absolutely Picante 1.00 OFF
- Liquid Dial Refill 1.00 OFF
FIG. 58C

2. START

3. LOG ON

4. DETERMINE ID

6. ACCESS RECORD IN ID DATABASE

8. APPLY CRITERIA BASED ON HISTORY OF PRIOR PURCHASES

10. PROCESS AN ITEM

12. IS ITEM IN LIST OF ELECTRONIC DISCOUNTS?

14. APPLY DISCOUNT TO ORDER

16. END OF SALE?

18. NOTIFICATION OF FUTURE PRODUCT DISCOUNTS

20. STOP
FIG. 59A

1. START

2. ENTER ID

3. ACCESS RECORD IN ID DATABASE

4. APPLY CRITERIA BASED ON HISTORY OF PRIOR PURCHASES

5. SCAN AN ITEM

6. IS ITEM IN LIST OF CUSTOMER PREFERRED ITEMS?

7. APPLY DISCOUNT TO ORDER

8. END OF SALE?

9. YES

10. STOP

11. NO

12. NO
FIG. 59B

2 START

3 LOG ON

4 DETERMINE ID

6 ACCESS RECORD IN ID DATABASE

8 APPLY CRITERIA BASED ON HISTORY OF PRIOR PURCHASES

10 PROCESS AN ITEM

12 IS ITEM IN LIST OF CUSTOMER PREFERRED ITEMS?

14 APPLY DISCOUNT TO ORDER

16 END OF SALE?

18 STOP
FIG. 60A

1. START

2. SET DISCOUNT ACCUMULATOR TO ZERO

4. SCAN AN ITEM

6. CALCULATE DISCOUNT BASED ON PRICE OF ITEM

8. ADD DISCOUNT TO DISCOUNT ACCUMULATOR

10. DOES DISCOUNT ACCUMULATOR EXCEED MINIMUM ACCUMULATED DISCOUNT?

12. APPLY DISCOUNT AT APPROPRIATE TIME

13. NO

14. MORE ITEMS?

16. RESET DISCOUNT ACCUMULATOR

18. YES

20. STOP
FIG. 60B

2 START

3 LOG ON

4 SET DISCOUNT ACCUMULATOR TO ZERO

6 PROCESS AN ITEM

8 CALCULATE DISCOUNT BASED ON PRICE OF ITEM

10 ADD DISCOUNT TO DISCOUNT ACCUMULATOR

12 DOES DISCOUNT ACCUMULATOR EXCEED MINIMUM ACCUMULATED DISCOUNT?

YES 13 APPLY DISCOUNT AT APPROPRIATE TIME

NO 16 RESET DISCOUNT ACCUMULATOR

14 MORE ITEMS?

YES 20 STOP

NO
FIG. 61A

2 START

4 DETERMINE THAT THRESHOLD EXCEEDED

5 MORE ITEMS? NO

6 SCAN AN ITEM

8 CALCULATE DISCOUNT BASED ON PRICE OF ITEM

10 ADD DISCOUNT TO DISCOUNT ACCUMULATOR

12 DOES DISCOUNT ACCUMULATOR EXCEED MINIMUM ACCUMULATED DISCOUNT?

13 APPLY DISCOUNT AT APPROPRIATE TIME

14 NO

16 RESET DISCOUNT ACCUMULATOR

18 MORE ITEMS? YES

20 STOP
FIG. 61B

2. START

4. DETERMINE THAT THRESHOLD EXCEEDED

5. MORE ITEMS? NO

6. PROCESS AN ITEM

8. CALCULATE DISCOUNT BASED ON PRICE OF ITEM

10. ADD DISCOUNT TO DISCOUNT ACCUMULATOR

12. DOES DISCOUNT ACCUMULATOR EXCEED MINIMUM ACCUMULATED DISCOUNT?

13. APPLY DISCOUNT AT APPROPRIATE TIME

14. MORE ITEMS? NO

16. RESET DISCOUNT ACCUMULATOR

20. STOP
FIG. 62A

1. START

2. SET THRESHOLD ACCUMULATOR TO $0.00

4. SCAN AN ITEM

6. ADD PRICE TO THRESHOLD ACCUMULATOR

8. DOES THRESHOLD ACCUMULATOR EXCEED THRESHOLD?
 YES → 12. SET DISCOUNT ACCUMULATOR TO ZERO
 NO → 10. MORE ITEMS?

10. MORE ITEMS?
 YES → 8. DOES THRESHOLD ACCUMULATOR EXCEED THRESHOLD?
 NO → 14. STOP
 NO → 10. MORE ITEMS?
FIG. 62B

1. **START**

2. SET THRESHOLD ACCUMULATOR TO $0.00

4. PROCESS AN ITEM

6. ADD PRICE TO THRESHOLD ACCUMULATOR

8. DOES THRESHOLD ACCUMULATOR EXCEED THRESHOLD?

12. SET DISCOUNT ACCUMULATOR TO ZERO

14. STOP

FIG. 63

1. **START**

2. DOES PRICE OF ITEM EXCEED MINIMUM DISCOUNT?

4. CHECK EACH SUBSEQUENT ITEM UNTIL "YES" AND THEN APPLY DISCOUNT

6. APPLY DISCOUNT

8. STOP
FIG. 64A

2 START

4 SET TOTAL ACCUMULATOR TO ZERO

6 SET TOTAL ACCUMULATOR TO ZERO

8 SCAN AN ITEM

10 ADD PRICE OF ITEM TO TOTAL ACCUMULATOR

14 DETERMINE RATE AND MINIMUM DISCOUNT BASED ON TOTAL ACCUMULATOR

16 APPLY RATE TO PRICE OF ITEM AND ADD TO DISCOUNT ACCUMULATOR

18 DOES DISCOUNT ACCUMULATOR EXCEED MINIMUM DISCOUNT?

YES APPLY DISCOUNT TO ORDER AT APPROPRIATE TIME

NO

20 APPLY DISCOUNT TO ORDER AT APPROPRIATE TIME

22 RESET DISCOUNT ACCUMULATOR

24 MORE ITEMS?

YES

26 APPLY RESIDUAL ACCUMULATED DISCOUNT TO ORDER

NO

STOP
FIG. 64B

2 START

3 LOG ON

4 SET TOTAL ACCUMULATOR TO ZERO

6 SET DISCOUNT ACCUMULATOR TO ZERO

8 PROCESS AN ITEM

10 ADD PRICE OF ITEM TO TOTAL ACCUMULATOR

14 DETERMINE RATE AND MINIMUM DISCOUNT BASED ON TOTAL ACCUMULATOR

16 APPLY RATE TO PRICE OF ITEM AND ADD TO DISCOUNT ACCUMULATOR

18 DOES DISCOUNT ACCUMULATOR EXCEED MINIMUM DISCOUNT?

20 APPLY DISCOUNT TO ORDER AT APPROPRIATE TIME

22 RESET DISCOUNT ACCUMULATOR

24 MORE ITEMS?

26 APPLY RESIDUAL ACCUMULATED DISCOUNT TO ORDER

28 STOP
FIG. 65

2 START

4 TOTAL < LIMIT 1

10 TOTAL < LIMIT 2

16 TOTAL < LIMIT 3

22 TOTAL ≥ LIMIT 3

8 SET RATE TO RATE 1

14 SET RATE TO RATE 2

20 SET RATE TO RATE 3

26 SET RATE TO RATE 4

6 SET MINIMUM DISCOUNT TO DISCOUNT 1

12 SET MINIMUM DISCOUNT TO DISCOUNT 2

24 SET MINIMUM DISCOUNT TO DISCOUNT 3

28 SET MINIMUM DISCOUNT TO DISCOUNT 4

FIG. 66

2 START

4 FINGERPRINT

12 RETINA SCAN

20 VOICE PRINT

26 IMAGE RECOGNITION

CUSTOMER PLACES FINGER ON READING DEVICE

DEVICE SCANS FINGERPRINT

A SIGNAL BASED ON FINGERPRINT IMAGE IS GENERATED

RETINA OF CUSTOMER IS SCANNED

A SIGNAL BASED ON RETINA SCAN IS GENERATED

ELICIT A VOICE SAMPLE FROM CUSTOMER

A SIGNAL BASED ON VOICE SAMPLE IS/generated

CAMERA RECORDS IMAGE OF CUSTOMER

A SIGNAL BASED ON IMAGE IS GENERATED

SIGNAL IS CONVERTED INTO A CUSTOMER IDENTIFICATION NUMBER

STOP
METHOD AND SYSTEM FOR
ACCUMULATING MARGINAL DISCOUNTS
AND APPLYING AN ASSOCIATED
INCENTIVE UPON ACHIEVING THRESHOLD

Matter enclosed in heavy brackets [] appears in the
original patent but forms no part of this reissue specifi-
cation; matter printed in italics indicates the additions
made by reissue.

RELATED APPLICATIONS

This application is a continuation of U.S. patent appli-
cation Ser. No. 09/320,114 filed May 26, 1999, entitled Method
and System for Providing Customer Incentives Utilizing Dual
Customer Identifications. This application also claims the
benefit under 35 U.S.C. §119(e) of U.S. Provisional Appli-
cation Ser. No. 60/136,130 filed May 26, 1999 entitled Cu-
ster Incentives.

TECHNICAL FIELD OF THE INVENTION

This invention relates to marketing and more particularly
to a method and system for differentiated customer promo-
tion.

BACKGROUND OF THE INVENTION

Coupon distribution is widely used as a method for mar-
Keting products. However, the distribution of coupons is not
without disadvantages. For example, coupon distribution is
logistically complex. Much effort is extended by stores in
receiving, verifying, and submitting coupons for reimburse-
ment. As a method of targeted marketing, coupons are also
somewhat deficient. Coupons may be exchanged or sold,
reducing any targeted marketing aspect of coupon distribu-
tion. Coupons are also cumbersome to customers. Gathering,
storing, and remembering to take a redeemable coupon to a
store are activities with which many customers simply do not
have time to engage.

Fraud is also a problem. Store employees sometimes
redeem coupons in the absence of the purchase of an associ-
ated product, either to allow a friend the benefit of the dis-
count or as a means to obtain cash from their employer.

In addition to these problems, the unauthorized duplica-
tion of coupons also limits more widespread use of these coupons
for marketing. Further, some systems utilize customer iden-
tity to provide incentives to the customer based upon the
customer’s prior shopping history. Although desirable, these
systems incorporate identification systems, which can add
cost.

SUMMARY OF THE INVENTION

Accordingly, a need has arisen for a method and system for
providing customer incentives that address the disadvantages
of prior methods and systems. The present invention provides
such in system and method for providing customer incentives.

According to one embodiment of the invention, a method
for customer promotion of a store includes sequentially pro-
cessing each of a plurality of items in a customer order and
after processing each item, accumulating the price of each
item. A first signal is generated indicating that the accumu-
lated price exceeds a predetermined threshold and in response
a marginal discount associated with each item scanned sub-
sequent to the generation of the first signal is determined. All
unapplied marginal discounts are accumulated for applica-
tion to the customer order. A second signal indicating that the
accumulated discount exceeds a predetermined minimum is
generated, and in response, a discount is applied to the cus-
tomer order.

According to another embodiment of the invention, a sys-
tem for customer promotion over the Internet includes a com-
puter-readable medium and a computer program encoded on
the computer-readable medium. The computer program is
openable, when executed on a computer, to sequentially
receive signals indicative of the respective prices of a plurality
of items in a customer order received over the Internet and
accumulate the price of each item and determine that the
accumulated price exceeds a predetermined threshold. In
response the program determines a marginal discount associ-
ated with each subsequently item processed item and accu-
amulating all unapplied marginal discounts. A determination is
made that the accumulated discount exceeds a predetermined
minimum and in response a discount is applied to the cus-
tomer order.

Embodiments of the present invention provide numerous
technical advantages. For example in one embodiment, accu-
mulation of marginal discounts and application of the accu-
mutated discount produces the appearance of the customer
receiving a discount on a particular item. Because any given
transaction likely will include the customer’s preferred prod-
acts, over time it may appear to the customer as if discounts
are being provided for the customer’s preferred items. Pro-
ducing discounts for a customer’s preferred items likely
induces customers to return to the store providing such dis-
counts. Additional, a method of customer promotion does
not suffer from disadvantages associated with redeemable
coupons. Furthermore, such a method of customer promotion
can be implemented without identification of the customer. In
addition, differential customer promotion is effected in a
shopping context not amenable to redeemable coupons.

BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the present inven-
tion, and the advantages thereof, reference is now made to the
following descriptions taken in conjunction with the ac-
companying drawings, in which:

FIG. 1 shows the check transaction processing system of
this invention, including a multiple store remote/host con-
figuration;
FIG. 2A shows a POS terminal, including the check reader,
display and the keypad;
FIG. 2B shows a block diagram of the automatic check
reader;
FIG. 2C illustrates a typical check with MICR symbols for
reading by the check reader;
FIG. 2D shows schematic circuit detail for the transaction
terminal;
FIGS. 3 functionally diagrams the check transaction pro-
cessing system;
FIGS. 4A-1 through 4A-3 illustrate the MICR parsing
function;
FIG. 4B diagrams the verification function;
FIG. 5 diagrams the local status update function for both
Add and Delete NEGATIVE status;
FIGS. 6A and 6B diagram the global update function for,
respectively, the host and a remote system;
FIG. 7 shows the program tasks that form the check trans-
action processing program;
FIG. 8 is a program flow diagram of the System Kernel that provides task switching and intertask communication for the other program tasks.

FIG. 9A is a program flow diagram of the Data Manager Task.

FIGS. 9B-9H are program flow diagrams of selected function execution routines in the Data Manager Task, respectively, verify roll, add NEGATIVE, delete NEGATIVE, host global update (negative status records), host global update (customer records), and remote global update (customer records).

FIGS. 10A and 10B are program flow diagrams of, respectively, the Terminal Manager Task network polling function, and the terminal request subtask.

FIGS. 11A and 11B are program flow diagrams of, respectively, the Event Manager Task, and the event subtask.

FIG. 12 is a program flow diagram of the Modern Manager Task.

FIGS. 13A and B are a program flow diagram of the Build-Check-Database subroutine used to build a database.

FIGS. 14A and B are a program flow diagram of a non-customer database building technique.

FIGS. 15A and B are a program flow diagram of a last shopping date database building technique.

FIGS. 16A and B are a program flow diagram of a range of last shopping date database building technique.

FIGS. 17A and B are a program flow diagram of a technique for distributing point-of-sale coupons based upon predetermined shopper criteria; and

FIGS. 18A, B, and C are a program flow diagram for distributing point-of-sale coupons based upon the shopping habits of the customer in various departments of the retail store.

FIG. 19 is a block diagram of a second embodiment of the invention which provides check, credit card, debit card or the like transaction processing as well as targeted marketing.

FIG. 20 shows in greater detail the elements of a conventional electronic cash register (ECR) system for use with the system shown in FIG. 19.

FIG. 21 is a block diagram of the All Payments/Marketing (AP/M) system of the invention, including peripheral financial instrument reading devices and a coupon printer in accordance with the invention.

FIG. 22 is a program flow diagram of the first portion of the payment processing and point-of-sale (POS) marketing technique used in conjunction with the system in FIG. 19.

FIG. 22 illustrates scanning in of a product by the bar code scanner of FIG. 20.

FIGS. 23A, B, and C are a program flow diagram of the various techniques for verifying and accepting payments from the various readers shown in FIG. 21.

FIG. 24 is a program flow diagram of the acceptance of shopping cards by the present system.

FIG. 25 is a program flow diagram illustrating the storage and access of account records by the present system.

FIG. 26 is a program flow diagram illustrating the building of a marketing record based upon multiple accounts in a single household.

FIGS. 27 and 28 are program flow diagrams illustrating a method of tracking infrequent shoppers who are to receive a Coupon "A;"

FIG. 29 is a program flow diagram illustrating a method of increasing a customer’s average purchase by providing the customer with a Coupon "M;"

FIGS. 30 and 31 are program flow diagrams illustrating the method of building a coupon list for a POS disbursement of coupons.

FIG. 32 is a program flow diagram of a subroutine for coupon disbursements, providing the perform build coupon list in the flow diagram of FIG. 30.

FIG. 33 is a program flow diagram of a method for disbursing electronic point-of-sale incentives previously stored on a smart card or controller’s mass storage device.

FIG. 34 is a program flow diagram illustrating the disbursement of point-of-sale incentives for future shopping visits by the customer.

FIG. 35 is a program flow diagram of a subroutine for the echo coupon procedure shown in FIG. 32.

FIG. 36 is a program flow diagram of the transfer of marketing data from a store’s CVC controller via a dial-out telephone line to a remote master controller at another store.

FIG. 37 is a program flow diagram of the building of a profile value indicating what products a customer bought.

FIG. 38 is a program flow diagram illustrating use of the profile value to denote how valuable a coupon will be for the customer of FIG. 37.

FIG. 39 is a schematic electronic diagram of the AP/M terminal of FIG. 21.

FIG. 40 is a program flow diagram of the operation of the AP/M terminal of FIGS. 21 and 39.

FIG. 41 is a program flow diagram of the Perform Polling Process subroutine of FIG. 40.

FIG. 42 is a program flow diagram for the routine of determining a criteria for infrequency to a product or product group based on actual consumption.

FIG. 43 is a program flow diagram for the routine for response driven marketing based on shopping history criteria.

FIGS. 44A and B are a program flow diagram for a method of tracking infrequency to a product group and using Coupon "A;"

FIGS. 46A and B are a program flow diagram for a method of maximizing purchases to a product group with Coupon "M;"

FIGS. 46A and B are a program flow diagram illustrating the use of a value formula and consumption rate analysis in the generation of incentive coupons.

FIG. 47 is a program flow diagram illustrating the selection of products for use as ECHO coupon incentives.

FIG. 48A is a block diagram illustrating a system for providing incentives to customers who perform at least a portion of the shopping process through of a computer.

FIG. 48B is a block diagram illustrating a system for providing incentives to customers through the use of a kiosk.

FIG. 49 is a simplified block diagram of the system illustrated in FIGS. 19-21 for performing targeted marketing.

FIG. 50 is a block diagram of another embodiment of a system for effecting communication of an incentive to a customer.

FIG. 51 is a block diagram of a system for effecting communication of an incentive to a customer at the point of sale.

FIG. 52 is a flow chart illustrating a process for providing incentives to customers of a store who visit a computer site associated with the store.

FIG. 53 is a flow chart illustrating another embodiment of a process for providing incentives to customers of a store who visit a computer site associated with a store.

FIG. 54 is a flow chart illustrating another embodiment of a process for providing incentives to customers of a store who visit a computer associated with the store.

FIG. 55 is a flow chart illustrating an additional embodiment of a process for providing incentives to customers of a store who visit a computer associated with the store.

FIG. 56 is a flow chart illustrating a method for presenting incentives to a customer at a retail store.
FIG. 57A is a flow chart illustrated in embodiment of a process for providing automatic discount in a store;
FIG. 57B is a flow chart illustrating another embodiment of a process for targeted marketing of customer shopping through the use of a computer;
FIG. 58A is a flow chart illustrating a process for providing incentives to a customer;
FIG. 58B is a schematic drawing of a customer receipt generated according to the process of FIG. 58A;
FIG. 58C is a flow chart illustrating an additional embodiment of a process for providing incentives to a customer shopping on-line;
FIG. 59A is a flow chart showing an alternative embodiment for a process for providing incentives to a customer;
FIG. 59B is an internal alternative embodiment of a process for providing incentives to a customer on-line;
FIG. 60A is a flow chart showing yet another embodiment of a process for providing incentives to a customer;
FIG. 60B is yet another embodiment of a process for providing incentives to a customer on-line;
FIG. 61A is a flow chart illustrating yet another embodiment of a process for providing incentives to customers;
FIG. 61B is a flow chart illustrating yet another embodiment of a process for providing incentives to customers on-line;
FIG. 62A is a flow chart illustrating a portion of the process of FIG. 61A;
FIG. 62B is a flow chart illustrating a portion of the process of FIG. 61B;
FIG. 63 is a flow chart illustrating one example of the application of a discount according to the process of FIGS. 61A and 61B;
FIG. 64A is a flow chart of yet another embodiment of a process for providing incentives to a customer;
FIG. 64B is a flow chart showing yet another embodiment of the process for providing incentives to a customer;
FIG. 65 is a flow chart illustrating a process for determining a discount rate in a maximum discount; and
FIG. 66 is a flow chart illustrating a number of techniques for identifying a customer of a store.

DETAILED DESCRIPTION OF EMBODIMENTS OF THE INVENTION

A first embodiment of the present invention and its advantages are best understood by referring to FIGS. 1 through 18A-C of the drawings, like numerals being used for like and corresponding parts of the various drawings. A second embodiment is shown in FIGS. 19 through 47.

The check transaction processing system of the present invention enables a store with a significant volume of check transactions to accumulate and process transactional customer information for check verification and customer profiles for target marketing. The system operates at the store using a local database of customer information useful in that store's business.

A customer's bank checking account number provides a unique identification for that customer—using this check ID, a customer record is created and included in the local customer database. The customer record includes an assigned customer verification status, as well as selected transactional data. Customer status designations include POSITIVE, NEGATIVE, and CAUTION, while transactional data includes transaction frequency and dollar volume over given intervals (such as Day/Week/Total or DWT). Selected transactional (CALL MANAGER) limits are assigned to both CAUTION and POSITIVE status. This customer information (customer status and transactional data) in the customer database is continuously updated (a) on a local basis through either processing check verification requests, or inputting customer status, and (b) in the case of a multiple store business, on a global basis through interstore transfers of selected customer information (such as CAUTION and NEGATIVE status information).

The description of the first and second embodiment of the check transaction processing system is organized as follows:

1.0 Hardware Description
1.1. System Overview
1.2. Data Communications Network
1.3. POS Terminal
1.4. Multiple-Store Configuration
1.5. Exemplary Components

2.0 Functional Description
2.1. Database Structure
2.2. Function Codes
2.3. Verify/Query
2.4. Local Status Update
2.5. Global Update
2.6. Purge
2.7. Event/Activities
2.8. Communications
2.9. System
2.10. Risk Management
2.11. Customer Information Reporting

3.0 Program Description
3.1. General
3.2. System Kernel
3.3. Data Manager Task
3.4. Terminal Manager Task
3.5. Event Manager Task
3.6. Record Manager Task

4.0 Alternative Embodiments
5.0 Targeted Marketing Features
5.1. Automatic Building Of A Database For A Retail Store Marketing Program
5.2. Targeted Marketing Program
5.3. Infrequent Shopper Database And Marketing Techniques
5.4. Marketing Based On Range Of Last Shopping Dates
5.5. Dissemination Of Point-Of-Sale Coupons And Direct Mail Coupons Based Upon Shopping History
5.6. Dissemination Of Point-Of-Sale Coupons And Direct Mail Coupons Based Upon Scanned Data
5.7. Second Alternate Embodiment Of Payment Processing And Point-Of-Sale Marketing System

1.0 Check Transaction Processing System

The check transaction processing system is located at a store, and maintains a local customer database for that store. For a multiple store business, a local system is located at each store and global customer information transfers are used to supplement the essentially local customer database.

1.1. System Overview

As shown in FIG. 1, a check transaction processing system located at a store includes a transaction processor coupled to a disk system that stores the customer database used in check transaction processing. Transaction processor handles all file I/O for accessing, managing and updating the customer database.

Transaction processor is coupled through a network data communications interface (including network communications ports and associated drivers) and a network bus to a plurality of transaction terminals. Transaction processor is able to communicate with other check trans-
transaction processing systems through a telecommunications interface 117 (including a modem).

Transaction terminals 120 are each located at a point-of-sale (such as a grocery store checkout stand). Transaction terminals 120 are used to communicate information to the transaction processor 112 for check transaction processing and customer database management. A transaction terminal transmits a request (including a function code identifying the requested function together with other request data) to the transaction processor, which processes the request and returns an appropriate response.

For example, in the case of check verification, a transaction terminal is used to transmit a verification request—the customer’s check ID, the verification function code, and the dollar amount. The transaction processor processes the request, updates the customer database to reflect that transaction, and returns a customer verification status response.

1.2. Data Communications Network

Data communications between transaction processor 112 and transaction terminals 120 is implemented using a multi-drop token ring network. Network bus 118 connects the transaction terminals to the transaction processor in a star configuration so that all data signals transmitted over the network are received at each node. Each transaction terminal 120 is assigned a unique terminal address to identify its data communications.

Transaction processor 112 implements a token-passing protocol by broadcasting polling sequences (or cycles) in which tokens are sequentially addressed to the transaction terminals. For each poll, the transaction processor sends to a terminal one of two tokens (which both include the terminal address):

<table>
<thead>
<tr>
<th>POLL Token</th>
<th>RXDATA Token</th>
</tr>
</thead>
<tbody>
<tr>
<td>An invitation for the terminal to transmit data</td>
<td>Includes data requested by the terminal</td>
</tr>
</tbody>
</table>

In response to a POLL token, the transaction terminal transmits back one of two answers:

<table>
<thead>
<tr>
<th>TXDATA Answer</th>
<th>NODATA Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Includes data entered into the terminal</td>
<td>Indicates no data</td>
</tr>
</tbody>
</table>

During any given polling sequence, each transaction terminal is in one of three polling states that control the polling operation:

<table>
<thead>
<tr>
<th>Poll</th>
<th>Wait</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Send a POLL token</td>
<td>Do not send a token until requested data is available</td>
<td>Send an RXDATA token that includes the requested data in the terminal’s buffer</td>
</tr>
</tbody>
</table>

For example, in response to a POLL token, a transaction terminal may transmit a TXDATA Answer containing a check verification request. Once the request is transmitted, the terminal is placed in the Wait state until the verification response from the transaction processor is available. The response is placed in the terminal’s buffer, and the terminal is placed in the Data state. The response is included in an RXDATA token sent to the terminal during the next polling sequence, and the terminal is placed in the Poll state ready to receive a POLL token in the next polling sequence.

For the preferred embodiment, network communications interface 116 provides 32 ports for up to 32 transaction terminals. The data communications network uses the RS485 line protocol, which specifies differential signal lines SIG+ and SIG-, as well as +12V and ground lines. The network communications interface and the corresponding interfaces for each transaction terminal use a differential line driver for signal communication over network bus 118, which provides the necessary 4-wire signal path.

1.3. POS Terminal

As shown in FIG. 2A, each POS terminal 120 includes an automatic check reader 119 and a transaction terminal 121 which includes a keypad 122 and a display 124. A bar code reader 123a is also connected to terminal 121 and is used to read bar code numbers on products purchased at the point-of-sale. Further, a coupon dispenser 123b is connected to terminal 121 to dispense coupons at the point-of-sale. Keypad 122 is a 4×4 key matrix that includes specific keys for Function, Enter, Scroll, Clear and Back Space, as well as 0-9 and $. Display 124 is a liquid crystal display capable of displaying two lines of up to twenty characters each.

For example, to initiate a check verification request, check reader 121 automatically scans the magnetic ink character recognition (MICR) data printed along the bottom edge of the customer’s check and the store clerk operates the keypad 122 to enter the amount of the check, along with the function code designating check verification. This request is displayed on display 124, and sent, along with data from the check reader 121, to transaction processor 112. The check verification response, including the customer’s verification status (such as POSITIVE, NEGATIVE or CAUTION), and marketing information (such as the type of coupon to be dispensed) returned by the transaction processor is then displayed on display 124.

FIG. 2B illustrates a block diagram of an automatic check reader 119 in accordance with the present invention. Automatic check readers have been heretofore known, and the descriptions of such previously developed automatic check readers are found in U.S. Pat. Nos. 4,277,689; 4,143,355; 4,369,902 and 5,054,092, the subject matter of which is incorporated by reference herein. The present automatic check reader differs in that it contains a properly programmed processor and sufficient memory to enable the desired “parsing” and omitting of certain portions of the MICR code contained at the bottom of checks being read.

The MICR encoding of checks is known, and a detailed explanation of the MICR encoding scheme may be found in the MICR Handbook by Rylla R. Goldberg, published by Heath Printers, the subject matter which is hereby incorporated by reference. As noted in the MICR Handbook, and as will be subsequently described, the field of the MICR symbology located on the bottom of the check is broken into various data fields in which different banks can place different data at different locations. Conventional automatic check readers such as those noted in the above-noted patents often cannot detect a customer’s checking account number because it is interspersed with other data such as the check sequence number.

The present automatic check reader is provided with structure which enables the customer checking account number and the bank transit number (which identifies the bank) to be detected within the code printed on the customer’s check. This process involves detecting or parsing (the examination or analysis of a string of numbers or characters which is designed to detect or identify various subgroups or sets within the string) followed by extraction of that set or sets which have been defined as the customer checking account number. The present automatic check reader is thus provided with circuitry which enables the customer’s checking account number and the bank transit number to be passed or detected
and the remainder of the data extracted or omitted, such that the customer’s checking account number and the bank transit number may be used as the unique customer identification code for the present invention. The present check reader thus provides substantial advantages over prior check readers which have not been useful for check verification or marketing techniques because it was not possible for such prior check readers to consistently detect customer account numbers on checks presented from different banks and bank branches.

Referring to FIG. 2A, the check reader 119 of the present invention incorporates a read head 125a which comprises a magnetic or optical read head operable to read MICR characters imprinted on checks which are passed through the check reader. The output from read head 125a is applied to a magnetic wave-form analyzer 125b which applies an analog signal to the analog to digital converter 125c. A digital output from converter 125c is applied to the character recognition logic 126b of the present invention. A disk or EEPROM 126a contains stored therein an E-13(b) character table which is applied to the character recognition logic 126b. Utilizing conventional technology, the logic 126b generates recognition data to data store registers 127 for application to microprocessor 128a when required. The disk or EEPROM data storage 126a includes a transmit code table and a parsing program, and provides data and instructional programming for the microprocessor 128 to perform a parsing program discussed in more detail in FIG. 4B. An input/output device 129a is connected to microprocessor 128a, as is an output device 129b.

In operation, the read head 125a reads MICR characters on the check and applies signals to the analyzer 125b to provide an output from the analog to digital converter 125c of the MICR characters being detected. The character recognition logic 126b provides optical character recognition to generate an indication of the characters represented by the MICR symbology on the check. This data is stored in the data store registers 127 for application to the microprocessor 128a. The microprocessor 128 utilizes information from the transmit code table in the disk or EEPROM 128b to determine the particular bank whose check is being scanned and also the particular location of the customer account number in the MICR code for that particular bank. The parsing program 128a is then operable to parse or eliminate all aspects of the MICR code except for the desired customer account number. The microprocessor 128 then generates an output to the output device 129b which indicates the desired customer account number of that particular check. The output device 129b is connected to pins 1-3 which serve as the I/O of the transactional terminal 121 circuitry which is shown in FIG. 2D, to be subsequently described.

The detected customer account number and bank transit number are then subsequently used in the various programs and subroutines of the present invention to provide check verification and marketing techniques in accordance with the invention. As noted, the present automatic check reader differs from previously developed check readers in its ability to detect the location of the customer account number and to omit all other portions of the MICR code except for the desired account number and perhaps the transit number. In this way, the present automatic check reader may be used to process all checks from all banks and their branches, regardless of the location of the customer account number and regardless of which branch of a particular bank is being utilized or even in such situations where a branch is sold or transferred to another entity.

FIG. 2C illustrates a typical check which will be used to illustrate the operation of the automatic check reader of the invention. As described in The MICR Handbook by Rylla R. Goldberg, and as is commonly known, the MICR check field contains four fields, namely the Amount, On Us, Transit, and Auxiliary On Us fields. Conventionally, the Amount field includes positions 1-12 in the MICR field, the On Us field includes positions 14-31, the Transit field positions 33-43 and the Auxiliary On Us field encompasses positions 45-65 in the MICR band. In the illustrated check in FIG. 2C, the transit field comprises symbols plus the transit number sequence 101010735. This transit number identifies the particular banking institution. This transit number is set apart from the data contained in the On Us field, which field contains the customer’s account number and also contains the number of the particular check. In this instance, the number sequence in the On Us field is 179201476663, and the last two digits 0 and 1 in the MICR field are optionally included on many checks and may be offset by a symbol to indicate the branch number of the particular bank.

It can thus be seen that the sequence 179201476663 contains both the sequence number of the particular check, which in this particular instance is 1792, and also the customer’s checking account number 01476663. As noted, it is very important in the present invention to automatically detect the customer’s checking account number. It is common for many banks to provide symbology which separates the number of the particular check and the customer’s account number. However, with many banks, as in the illustrated check of FIG. 2C there is no symbology which separates two pieces of information and therefore it has not been heretofore possible to automatically determine the actual customer’s account number in all banks by conventional check readers. For example, conventional check readers which would scan the On Us field for the account number would indicate that the customer’s account number was 179201476663, whereas the customer’s true account number is 01476663.

An important aspect of the present invention is the ability of automatic check reader 119 to find the sequence number of the check and omit that number to leave the true customer account number. The encoding scheme may be different for each bank. This is accomplished by utilization of the disk or EEPROM 128b which contains tables which designate what encoding scheme is used in the MICR band for each bank. For example, the table stored in EEPROM 128b would indicate that the Mills County Bank, identified by the transit number 101010735, had a convention of always placing the check number in the first four locations of the On Us field. In the case of the check in FIG. 2C, the check reader 119 would access this information to know that the first four digits of the On Us field were merely the number of the check and should thus be omitted or parsed in order to determine the true checking account number of the customer, which was 01476663. Specifically, in the check illustrated in FIG. 2C, it can be seen that the number of the check at the upper right hand corner is 1792. This number would then be omitted by the check reader 119 to provide the true customer account number. In some instances, the customer account number may be combined with the transit number to provide a unique ID number.

It will be understood that the check number advances one unit each time a new check is written and therefore the data contained in the On Us field of the Mills County Bank would be continuously changing. Only by the check reader of the present invention having a stored knowledge of a particular
location of the check number of the Mills County Bank would it be able to detect and omit or parse out the unwanted check number information.

The present check reader of the invention can determine the instances when the On Us field contains a space or suitable symbology separating the check number from the customer’s account number, in addition to the scheme previously noted. In such cases, the check reader parses and omits the shortest number, which will be the check number. A particularly important aspect of the present invention is that the automatic check reader can read the MICR code of all banks and accurately pick out the customer’s account number for utilization as a unique customer ID to perform the advantages of the invention.

Another important aspect of the invention, as will be described in greater detail in FIGS. 4A-1 through 4A-3, is the ability of the automatic check reader 119 to be taught by the operator to recognize the eccentricities of each bank’s MICR code. For example, if the system were for the first time attempting to read a check by the Mills County Bank and thus could not pick out the customer’s account ID because it did not know the code for Mills County Bank, the present system could be taught by the operator and the new knowledge stored in table 128b. From that point forward, the system would be trained to recognize the customer’s account number and to omit the unwanted check number in the first four positions of the On Us field.

The present automatic check reader 119 also can be taught to detect changes of a bank’s branch number, and instances in which institutions are purchased and their transit number is changed, and cases wherein financial institutions run into difficulties and are required to change owners and therefore change transit IDs. Previous check readers were not able to keep track of such changes in banks and transit numbers. With the present check reader 119, such information can be stored in the transit code table 128b. Therefore, if the Mills County Bank of FIG. 2C changes its transit number or its branch number, that information can be entered into the transit code table 128b and from that point forward, the system will continue to recognize Jack Smith’s checks and his unique checking account number even though the bank’s transit number has been changed. With prior check readers, such changes in transit numbers would be scanned and considered to be a different bank and therefore Jack Smith’s account number would not be recognized as belonging to the particular Jack Smith.

In addition, banks often have different types of accounts such as money markets, now accounts, commercial accounts, personal accounts, and the like. So for a given bank transit number, there may be several non-obvious embedded locations for the particular next sequence number. For example, in the check shown in FIG. 2C, the first four digits in a personal checking account are known to represent the check sequence number. However, for a savings, NOW or money market account for the Mills County Bank, the check sequence number might be moved to the middle or the end of the On Us field. The information for each particular bank is stored in the transit code table 128b of the present reader 119 such that all branches and types of accounts of a bank may be accurately detected. The ability to teach or train the system to accommodate such new information upon the occurrence of changes is also important, as such new information may be input by the operator into the transit code table 128b and used from that point onward to detect accurately the customer’s checking account number, as well as all customers for that bank.

Another important aspect of the invention is that the MICR parsing operation previously described and shown in FIGS. 4A-1 through 4A-3 does not have to be accomplished inside the automatic check reader 119. Indeed, the transit code table and parsing program may be incorporated in the host computer 110. A conventional check reader may thus be used to read in the information and the parsing program shown in FIGS. 4A-1 through 4A-3 can be accomplished in the host computer 110. It will also be understood that the automatic check reader 119 might be incorporated into the transactional terminal 121 and that both the automatic check reader 119 and the transactional terminal 121 might be incorporated or associated directly with an automatic cash register commonly in use by retailers.

The important aspect of the invention is the ability to always recognize a customer’s checking account number in a MICR line automatically, no matter which bank or which type of account is involved. With the ability to generate an extremely accurate indication of the customer’s account number and the bank transit number, a unique customer identification code is provided which may be utilized to provide the many advantages of the invention to be subsequently described.

While the preferred customer identification code comprises the checking account number and the bank transit number, it should be understood that various aspects of the invention may be practical using different customer identification codes. For example, man of the marketing and verification techniques hereinafter described can be accomplished by the store clerk manually entering the name, address and/or phone number into the system through data terminal keypad 122. This unique identifying data could then be used to identify the store customer. While such manual entry is slower and not as efficient or accurate as the automatic reading of the MICR code, the manual technique may have applications in certain circumstances.

As shown in FIG. 2D, the transactional terminal 121 includes:

(i) A Z8 microprocessor 130;
(ii) An associated address latch 132;
(iii) An EPROM 134;
(iv) An LCD (liquid crystal display) module 136; and
(v) A differential transceiver 138.

Address and data paths are provided by an Address/Data Bus and a separate Address Bus.

The transactional terminal is coupled to the RS485 multidrop network bus (118 in FIG. 1) through a 5-Pin DIN connector 140. The RS485 network bus provides signal lines SIG+ and SIG-, along with a +12 volt power line and a ground line.

EPROM 134 provides program memory for microprocessor 130, while LCD module 136 constitutes data memory. That is, the LCD module functionally interfaces to the microprocessor as memory, providing an 80-character display data register that is treated by the microprocessor as data memory.

EPROM 134 stores programs to control keypad 122, display 124 (i.e., LCD module 136) and network data communications. The keypad program includes conventional routines for decoding key-strike signals and receiving entered characters, as well as key-debouncing and N-key rollover. The display program includes conventional routines that write characters to and read characters from the display data register in LCD module 136. To that end, the display program provides mode control commands to LCD module 136 that control read/write operations, as well as operations for cursor positioning, backlight and scroll. The network program controls token-ring network communications, including establishing a terminal polling address when the transaction terminal becomes active, detecting POLL tokens addressed to
the transaction terminal, building and sending NODATA and TXDATA answers, and receiving RXDATA tokens containing
response data for the transaction.

LCD module 136 is a self-contained liquid crystal display module that includes liquid crystal display 124, and provides
many display control functions internally. Display 124 is arranged in two lines of 20 characters each, with the internal
80-character display data register providing 40 characters of display memory for each line. Each line is independently
scrolled under control of the LCD module in response to microprocessor mode control commands (for example, when
the scroll key on keypad 122 is depressed). In addition to the internal display data register, the LCD module includes an
internal control/status register. Logically, these registers are treated as, respectively, data and control/status ports. Data
may be read to or written from the data port, while control is written to and status is read from the control/status report.

From above, the display control program in EPROM 134 provides the various mode control commands that invoke the
display control functions implemented by the LCD module. For example, in response to appropriate mode control com-
mands, the LCD module performs the necessary internal operations to move the cursor, output the character under the
cursor, write a character in the cursor position, delete a character in the cursor position, clear the display, and output
sequentially all characters in the display data register (such as after the enter key is depressed).

Microprocessor 130 provides four input/output ports 0-3. Port 0 is output only, and provides the higher order address
bits A08-A12 over the Address Bus (the 3 higher order bits A13-A15 of the 16-bit Z8 microprocessor address are not
used by the transaction terminal). Port 1 is input/output, providing the lower order address bits A00-A07 and receiving
8-bit data bytes over the Address/Data Bus. Port 2 is input only, and is coupled to the column/row matrix lines of the 4x4
keypad matrix for keypad 122, i.e., column lines C0-C3 and row lines R0-R3.

Port 3 (0-7) is a multi-purpose input/output port. Pins 0 and 7 are a serial I/O port for an internal UART (universal asyn-
chronous receiver transmitter). Pin 5 is an output drive enable line that controls the transmit/receive state of differential line
driver 138. Pin 4 is a data memory DM line used to select either program memory (i.e., EPROM 134) or data memory
(i.e., LCD module 136). Pins 1-3 are an I/O port for the check reader 119 or for a credit card reader, and Pin 6 is an output
port for a buzzer.

In addition to the four I/O ports, microprocessor 130 provides an address strobe line AS, a data strobe line DS and read/write line R/W.

A clock circuit 131 includes a crystal oscillator that establishes a 7.3728 MHz system clock. The Z8 microprocessor is
clocked down (from its 12 MHz specification) to accommodate the LCD module’s response time.

Address latch 132 receives the lower order address bits A00-A07 from microprocessor port 1 over the Address/Data
Bus during the first address cycle. The address latch is enabled to latch these address bits by a microprocessor
address strobe provided through an inverter 142. The latched address bits A00-A07 are available at the output of address latch 132 which is coupled to the Address Bus.

EPROM 134 receives a 12-bit address A00-A12 from the Address Bus. The lower order bits A00-A07 are provided by
address latch 132, and are available on the Address Bus during the second address cycle when the higher order bits
A8-A12 are provided by microprocessor port 0 over the Address Bus. Thus, EPROM 134 receives the complete 12-bit
address A00-A12 from the Address Bus during the second

address cycle. The addressed data byte AD0-AD7 is available from the EPROM output port over the Address/Data Bus and
may be read when microprocessor 130 provides a data strobe DS to the chip enable CE input to the EPROM.

LCD module 136 includes an I/O port (pins D0-D7) coupled to the Address/Data Bus (lines AD0-AD7). To connect
either the display data register or the control/status register to the I/O port, Microprocessor 130 selects either data
port operation or control/status port operation with a register select signal provided by the address bit A00 from the
Address Bus to the R/S input of the LCD module—if A00 is even (logic 0), the display data register is connected to the I/O
port, and if A00 is odd (logic 1), the control/status register is connected. Read/write operation is selected by R/W signal
from microprocessor 130 to the R/W input to LCD module 136.

LCD module 136 is enabled for output over the Address/ Data Bus by an enable signal from a NOR gate 146, which
receives input from the microprocessor’s data strobe DS line and data memory DM line (port 3, pin 4). That is, LCD
module 136 may be read only if both the data strobe and data memory lines are active. In contrast, EPROM 134 is enabled
for a read operation only if the data strobe line is active while the data memory line is inactive causing an active output from
an inverter 144. In this manner, microprocessor 130 uses the data memory line to select between program memory
(EPROM 134) and data memory (LCD module 136).

A potentiometer 148 is used to adjust contrast for the LCD display 124. The potentiometer is connected between the pins
+5 volts and ground on LCD module 136, with the potentiometer voltage being applied to the voltage reference pin VREF.

To read instructions from EPROM 134, microprocessor 130 provides a 12-bit address on the Address Bus—the lower
order address bits A00-A07 from port 1 through address latch 132, and the higher order address bits A08-A12 from port 0.
EPROM 134 is enabled for output by the data memory line (port 3, pin 4) being held inactive resulting in an active output-
able enable signal from inverter 144 to the EPROM. Conversely, LCD module 136 is disabled for a read operation because the
inactive data memory line controls an inactive signal from NOR gate 146 to the LCD module, thereby insuring that
EPROM 134 has exclusive access to the Address/Data Bus. During the read cycle, microprocessor 130 enables EPROM
134 to output the addressed data byte by providing a data strobe DS to the chip-enable input to the EPROM.

To read data display from the data display register in LCD module 136, Microprocessor 130 executes a read display routine
in the display control program stored in EPROM 134. Microprocessor 130 first disables EPROM 134 by holding the
data memory line (port 3, pin 4) active, causing the output-enable output from inverter 146 to be inactive. LCD module
136 is then enabled for input/output when a microprocessor data strobe drives active the output from NOR gate 148,
which now has both its inputs (DM and DS) active.

Once LCD module 136 has been given access to the Address/Data Bus, a display-data-register read operation is
accomplished as follows. Microprocessor 130 outputs from port 1 an LCD mode control byte including a register select
bit A00 over the Address/Data Bus. The register select bit is coupled through address latch 132 and the Address Bus to the
RS input to LCD module 136 which selects bits in the C/S state, causing LCD module 136 to select the control/status
register for I/O access to the Address/Data Bus. Microprocessor
130 also places its read/write R/W line in the write state,
so that the mode control byte can be written into the control/status register. Microprocessor 130 then provides a data
strobe DS that enables LCD module 136 to latch the mode control byte from the Address/Data Bus into the control/status register.

In accordance with this mode control command, LCD module 136 places a not-ready status byte in the control status register, makes the designated display character in the display data register available for output on the Address/Data Bus, and then places a ready status byte in the control/status register. Microprocessor 130 switches the read/write line to read the (control/status register is still selected for I/O), and then provides a data strobe DS to read the status byte in the control/status register. (The microprocessor continually strokes the LCD Module until a ready status byte is returned from the control/status register.)

Microprocessor 130 then outputs a register select bit (A00) that causes LCD module 136 to select the display data register for output. Finally, the microprocessor provides a data strobe to read the first display data character over the Address/Data Bus into port 1.

This procedure—select control/status, read status, select display data, read display data—is continued until all requested display data characters have been read. That is, microprocessor 130 first reads the status register to determine when LCD module 136 is ready (i.e., when the next display data character is available), and then reads the character.

The procedure by which microprocessor 130 provides display data characters for display by LCD module 136, writing the characters into the display data register, is analogous to the procedure for reading display data characters. Executing a write display routine in the display control program, microprocessor 136 first writes a corresponding mode control command into the control/status register of the LCD module, and then reads status to determine when the LCD module is ready. Microprocessor 130 then selects the display data register, and writes the first display data character over the Address/Data Bus. Microprocessor 130 reads the status register to confirm that the LCD module is ready prior to writing the next display data character. This procedure of reading the status register and then writing a display data character is continued until all display data characters have been written.

Differential transceiver 138 controls data communications over the network bus 118 connected to connector 140. The RS485 communications protocol is implemented by microprocessor 130 executing the network communications program stored in EPROM 134. Port 3 of microprocessor 130 is used as a communications port, with pins 0 and 7 providing a serial I/O port, and pin 5 providing a transceiver drive enable line through an inverter 152 (the differential transceiver is in the transmit mode if the signal is active, and in the receive mode if the signal is inactive).

On the network side of differential transceiver 138, signal lines 6 and 7 are coupled, respectively, to the network bus signal lines SIG+ and SIG-. These signal lines are coupled to the ±12 volt line through opposite sides of a protective diode network 154.

While waiting for a token (either POLL or RXDATA) over the network bus, microprocessor 130 holds the transceiver drive enable line inactive, thereby placing differential transceiver 138 in the receive mode. When a token is received through differential transceiver 138 into the serial I/O port (port 3, pins 0 and 7), microprocessor 130 switches the transceiver drive enable line active and transmits either a TXDATA or NODATA answer via the serial I/O port and the differential transceiver.

Keypad input is accomplished in a conventional manner using a 4×4 keypad matrix with column lines C0-C3 and row lines R0-R3. Key-struck decoding is accomplished as follows. Column lines C0-C3 are normally held high by a resistor network 160, while microprocessor 130 (port 2) holds the row lines R0-R3 low. When a key is struck, the corresponding column line is brought into contact with that key’s row line, and the column line is brought low, which is detected by microprocessor 130. The microprocessor then switches the port 2 lines high, and sequentially drops a row line low until the key-struck column line goes low, thereby identifying the key that was struck by its row/column intersection.

Keypad control functions, such as debouncing and N-key rollover are accomplished in a conventional manner using program routines of the keypad control program stored in EPROM 134.

Power for the transaction terminal is provided by a voltage regulator 165 that receives +12 volts from the +12 volt line of the network bus. Voltage regulator 165 provides a stable +5 volt logic level.

A transaction terminal is initialized as follows. At power on, voltage regulator 165 provides a reset signal to microprocessor 130 when the +5 volt logic level is stable. Microprocessor 130 turns port 0 off, so that the Address Bus is controlled by the low-current resistor network 160, which holds the Address Bus lines A08-A12 high.

Microprocessor 130 outputs from port 1 an initialization address over the Address/Data Bus, which is latched into address latch 132 and placed on the Address Bus. EPROM 134 receives the initialization address A00-A12 (with bits A08-A12 being held high by resistor network 160), and makes the addressed instruction available at its data output port. Microprocessor 130 then reads the first instruction over the Address/Data Bus. Port 0 is turned on, so that resistor network 160 no longer controls the address lines A08-A12 of the Address Bus, and normal operation commences under control of microprocessor 130.

1.4. Multiple-Store Configuration

As shown in FIG. 1, for businesses with multiple stores, a check transaction processing system 110 is located in each store.

One store is designated as a "host" system, and the other stores are designated as "remote" systems. The host system coordinates the global exchange of check verification data and other customer information, but otherwise operates as a local system for that store in the same manner as the remote systems. Operation as a host does not affect concurrent local operation, i.e., host/remote status is transparent to the check transaction processing operation at each store.

Each store operates relatively autonomously in developing and maintaining its local customer database and providing check transaction processing. However, the stores are also able to globally exchange certain customer information useful to all of the stores, particularly for purposes of check verification. For example, while it is probably unnecessary from a credit standpoint for the stores to exchange information about customers who typically frequent only a single store and do not present check transaction problems, the stores will probably want to exchange information about customers who have written bad checks at one or more stores, or who are in a cautionary status as new customers. Moreover, the present system permits exchange of data between stores for marketing purposes. Such a global exchange of customer information reduces the likelihood that the business will experience a significant loss from a concerted bad check writer.

Each store's customer database is updated with both local and global customer information. Each local check transaction processing system 110, including the designated host system, continually updates its customer database with local
customer information, either automatically through processing check transactions or through operator-input of customer status data (such as negative status information). At regular intervals, each remote system transfers the host selected customer information (such as negative and caution status information). The host updates its customer database with this customer information, and transfers back to each remote system global customer information from all remote systems. Each remote system then updates its customer database with this global customer information.

1.5. Exemplary Components

The detailed specifications for transaction processor 112, and its associated disk storage 114, and network communication interfaces 116 are not critical to this invention, being a matter of design choice. For the preferred embodiment, transaction processor 112 uses a Western Digital Processor Board Model No. WD286-WDM based on the Intel 80286 processor chip. Disk storage unit 114 is a Seagate Technologies Model ST225, and communications interface 116 is Sunlevel Systems RS485 Communications Board Model No. SIO-485. The transaction processor runs MSDOS 3.3.

The detailed specification for point-of-sale transaction terminals 120 is not critical to this invention, being a matter of routine design specification. For the preferred embodiment, transaction terminal 120 includes the following components:

<table>
<thead>
<tr>
<th>Microprocessor</th>
<th>Zilog Z8 (86C9112P8C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address Latch</td>
<td>74HC373</td>
</tr>
<tr>
<td>EPROM</td>
<td>27C64</td>
</tr>
<tr>
<td>LCD Module</td>
<td>Optrex DMC1620/7</td>
</tr>
<tr>
<td>4 × 4 Keypad</td>
<td>Standard 4 × 4 matrix</td>
</tr>
<tr>
<td>DTC Transceiver</td>
<td>75176 (RS485 compatible)</td>
</tr>
<tr>
<td>Voltage Regulator</td>
<td>LM2902</td>
</tr>
</tbody>
</table>

Alternative similar point-of-sale units are commercially available, such as from Omron Business Systems Model No. C.A.T. 90.

2.0 Functional Description

As diagrammed in FIG. 3, the check transaction processing system performs the following general functions:

(a) Verification (with Transactional Update) and Query
(b) Local Status Update
(c) Global Update
(d) Event-driven activities
(e) Customer database purging
(f) Host/Remote communications

as well as the customer database management operations necessary to support these functions. In addition, certain system information and diagnostic functions are performed.

The detailed function involves sending a request for check transaction verification from a point-of-sale terminal 120 to the transaction processor, which performs the necessary database operations to process the request, update the customer database with transactional data (such as frequency and dollar amount) to reflect the current transaction, and return an appropriate response. The local status update function involves continuously inputting customer status changes (particularly to reflect bad check experience) for customers in a store’s local customer database. The global update function, for multiple-store systems, involves continuously transferring among the stores selected customer information (preferably caution and negative status information). The purge function involves removing obsolete or unwanted customer records from the customer database based on specified purging criteria. The event-driven activities involve certain database management functions (such as purge and backup), as well as host/remote communications for global update, automatically performed at regular intervals.

2.1. Database Structure

The customer database includes all customer information used and maintained by the check transaction processing system. The customer database comprises two separate files containing customer information: the customer file and the negative status file. In addition, a system control file contains transactional limits used during check verification and purge limits.

The customer file contains customer records that include the following customer information:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Check ID</td>
<td>Customer checking account number</td>
</tr>
<tr>
<td>Verification</td>
<td>POSITIVE, NEGATIVE, CAUTION, CASH ONLY, or STOLEN</td>
</tr>
<tr>
<td>User Flags</td>
<td>User assigned flags that designate a customer as PREAPPROVED for check transactions regardless of any transactional limits, or as being authorized for check transactions on a MANAGER ONLY approval basis regardless of actual status</td>
</tr>
<tr>
<td>Date/Time</td>
<td>Date/time the customer record was last accessed and updated (written to disk), used in host/remote transfers for global update (transfers from host to remote generally do not affect this date)</td>
</tr>
<tr>
<td>Access Date/Time</td>
<td>Last date/time the customer record was accessed and updated (a query function does not change the access date/time)</td>
</tr>
<tr>
<td>Status</td>
<td>Date/time customer status changed</td>
</tr>
<tr>
<td>Change Date</td>
<td>(e.g., CAUTION TO POSITIVE)</td>
</tr>
<tr>
<td>DWT Frequency</td>
<td>Day/Week/Total values for transaction frequency (updated transactionally during check verification and globally)</td>
</tr>
<tr>
<td>DWT Amount</td>
<td>Day/Week/Total dollar amounts (updated transactionally during check verification and globally)</td>
</tr>
<tr>
<td>Previous Status</td>
<td>Customer’s previous status (such as CAUTION prior to being relaid POSITIVE)</td>
</tr>
<tr>
<td>Frequency</td>
<td>Total number of check transactions since the last global transfer $Amount Total dollar amount volume since the last global transfer $Amount Transfer Total dollar amount volume since the last global transfer $Amount Transfer Marketing Data Purchases made of predetermined products, store departments and the like</td>
</tr>
</tbody>
</table>

The file specification for a customer record is set forth in Table 1 at the end of the specification.

The preferred intervals for maintaining frequency and dollar amount transactional data are Day/Week/Month/Total, where the day is the current 24-hour period, the week is the previous 7 days, the month is trailing 30 days, and the total is the total since the customer’s first check transaction. The DWT designation will be used throughout this specification to indicate the three separate values for either frequency or $Amount. Preferably, DWT Frequency and $Amounts are maintained on a global basis, so that for those records that have been globally updated (such as NEGATIVE and CAUTION status customer records), the DWT values will be global rather than local. Alternatively, separate local and global DWT transactional data can be maintained in the customer records, as shown in Table 2.

A customer can be assigned one of five check verification status designations:

<table>
<thead>
<tr>
<th>Status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAUTION</td>
<td>The customer is a new customer, and a specified check clearance interval since the customer’s first check transaction has not passed</td>
</tr>
</tbody>
</table>
Customer status is assigned during customer record creation, and then update (transactionally, locally or globally) to reflect changes in customer status, such as due to elapsed time between check transactions or bad check history.

In addition, the local update function can be used to assign to a customer either of the following user flag designations, which override normal status responses to check verification or status query requests:

<table>
<thead>
<tr>
<th>User Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PREAPPROVED</td>
<td>The customer has been preapproved for check transactions that may otherwise exceed certain transactional limits applied even to customers with POSITIVE status</td>
</tr>
<tr>
<td>MANAGER</td>
<td>The customer is not authorized to cash checks without manager approval, even though no bad checks are outstanding</td>
</tr>
</tbody>
</table>

In response to a check verification (or status query) request entered at a transaction terminal the transaction processor returns a response with either customer status, or if specified transactional limits have been exceeded, a CALL MANAGER directive, unless the PREAPPROVED or MANAGER ONLY user flags in the customer’s record have been set.

Generally, a check transaction will be authorized if the customer has a POSITIVE status or is PREAPPROVED, will require manager approval for MANAGER ONLY regardless of status, and will be refused if customer status is NEGATIVE, CASH ONLY or STOLEN. Check authorization for customers with CAUTION status is a matter of store policy. For example, check authorization can depend upon DWT Frequency or $Amount, or the type of check transaction (such as amount of purchase only), or upon having the check transaction approved by a store manager.

The CALL MANAGER directive is not a verification status contained in a customer record, but rather, is the response to a verification request if for any status (including POSITIVE), the current check transaction causes transactional limits specified in the system control file for DWT Frequency and $Amount to be exceeded.

The negative status file contains negative status records that include the following customer information (by location for multiple store systems):

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Check ID Location</td>
<td>Customer checking account number</td>
</tr>
<tr>
<td>NEGATIVE Status</td>
<td>The location identification for the store (each store having a NEGATIVE and/or CASH ONLY status history is assigned a separate negative status record)</td>
</tr>
<tr>
<td>CASH ONLY Status</td>
<td>Active—That location has no bad checks outstanding</td>
</tr>
<tr>
<td></td>
<td>Inactive—That location has not designated the customer as CASH ONLY</td>
</tr>
</tbody>
</table>

The file specification for a negative status record is set forth in Table 2 at the end of the specification.

The negative status file is indexed by (a) status/check ID/location, and (b) status/access date/check ID/location.

The negative status file supplements the customer file for those customers with a bad check history by recording BAD Frequency/$Amount by location, and also maintains CASH ONLY status by location.

The system control file includes the following selectable limits:

<table>
<thead>
<tr>
<th>Limits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAUTION/POSITIVE</td>
<td>This limit defines a check clearance interval for new customers who will be rolled for check transactions after that interval (assuming the first check is not returned)</td>
</tr>
<tr>
<td>CALL MANAGER</td>
<td>Frequency and $Amount, defining the transactional limits applied to each status</td>
</tr>
<tr>
<td>PURGE</td>
<td>Separate Purge limits are specified for each of the five customer status designations; also used to define a Reset/CAUTION interval</td>
</tr>
</tbody>
</table>

The file specification for the system control file, including coupon control filler, is contained in Table 3 at the end of the specification.

These limits are all specified by the user during system configuration. The CALL MANAGER limits are used to override the normal customer status response to a verification request when any DWT Frequency/$Amount CALL MANAGER limit is exceeded by the current check transaction. As an alternative to using the Purge limits for deleting customer records with a specified (by status) degree of obsolescence, these limits can be used to roll a POSITIVE or any other status back to CAUTION if the specified Reset/CAUTION interval between check transactions (defined by the corresponding Purge limit) has passed. In addition to these limits, the system control file contains various system information.

The specific design of the customer database, and in particular the file specifications for the customer file, negative status file, and system control file, are not critical to the invention, being a matter of design choice. Any customer database will likely comprise customer records identified by the customer check ID, and include selected transactional/customer information; such as check verification status and transactional frequency and dollar volume over specified intervals.

2.2. Function Codes

The specific functions available in the check transaction processing system are invoked by entering at a transaction terminal 121 a request including an appropriate function code (function key plus code number) and request data (such as check ID and $Amount).
The specific check transaction processing functions are set forth in Table 4 at the end of the specification, with each function being described in terms of function code, description, keypad input, and keypad output. These functions are in the following general categories:

<table>
<thead>
<tr>
<th>Function</th>
<th>Description (Function Code)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verify</td>
<td>Request check verification status for the current check transaction (F55) updating the corresponding customer record to reflect the current transaction</td>
</tr>
<tr>
<td>Query</td>
<td>Request information about status (F1), NEGATIVE status and locations (F1, F3, F4) and DVT Frequency and $5 amount (F5) (the customer database is not updated)</td>
</tr>
<tr>
<td>Input Status</td>
<td>Add (F40, F41, F44) and Delete (F60, F61, F62, F63, and F66) the status values CASH ONLY, STOLEN and NEGATIVE, and Add (F42, F43) and Delete (F62, F63) PREAPPROVED and MANAGER ONLY user flag</td>
</tr>
<tr>
<td>Event</td>
<td>Start (F950) and Stop (F951) an event activity, request activity time (F952), and request activity status (F953)</td>
</tr>
<tr>
<td>System</td>
<td>Request certain system information, including memory usage (F902), disk usage (F903), customer file size (F904), negative status file size (F905), CAUTION/POSITIVE roll period (F906, F907), Purge limits (F906, F908-F912), CALL MANAGER limits (F906, F913-F917)</td>
</tr>
<tr>
<td>Diagnostics</td>
<td>Request system diagnostic functions, including log-in/out (F77/F88), keypad debug (F960), modem debug (F970), data manager debug (F980), open/close customer database (F981/F982) and shutdown (F909)</td>
</tr>
</tbody>
</table>

2.3. Verify/Query

The verify function is used both to provide verification status (such as POSITIVE, NEGATIVE or CAUTION) for a check transaction, and to update the transactional data in the customer database. The principal difference between the verify and query functions is that, while both functions retrieve the specified (by check ID) customer record (or in the case of verify, the negative status record) to provide an appropriate response, only the verify function actually updates the customer database by writing the updated customer record back to disk.

As previously noted, check reader 119 reads the MICR code on checks and senses the customer account number in order to generate a unique customer ID for use by the processor of the present invention. As previously discussed, an advantage of the present check reader 119 is its ability to detect the customer account number on any and all bank checks, regardless of the location of the account number within the MICR code and regardless of whether the account number is properly identified by spaces or symbols.

In addition, the present check reader operates to check against a stored Transit Code Table to detect changes in the bank’s transit code and the like.

FIGS. 4A-1 through 4A-3 illustrate a flow chart illustrating the operation of the MICR parsing and omitting function of the present invention. This function can be accomplished in the processor and storage of the check reader 119 or in the host processor 110. Explanation of the MICR parsing and omitting function is as follows:

Step	Description
4 | Check is taken for tendering purchase at retail store.
5 | Scanning device is used to read the MICR code from the bottom of the check.
6 | Scanning device sends MICR data to parsing processor 128a. Processor may be in reader itself or external computer.
8 | MICR code must now be parsed for meaningful data. ANSI standards specify the following field locations within MICR band: Amount field 3-12, On Us 14-31, Transit 33-43, Auxiliary On Us 45-64.
9-10 | Use transit field for the first part of the customer’s ID number.
11 | The check’s sequence number (which matches the number on the top right hand corner of the check) must be located in order to determine the customer’s bank checking account number.
12 | A variable length, dynamic TRANSIT CODE TABLE is maintained for checks that cannot be successfully parsed.
13 | In addition, information for MICR changes such as new transit number or addition or change of Transaction Processing Code (TPC - used for branch banking) are indicated in the table. The indexed key for this table is the transit number allowing duplicates for multiple entries for each bank.
14 | Included for each table entry is the current MICR “mask” and a prior “mask” to show any changes. Updates to this table can be entered from the keypad or downloaded from another computer.
15 | START a database query in the TRANSIT CODE TABLE at the FIRST entry with the transit number scanned from the check.
16 | IF NO entry is found for this transit number, proceed to the parsing functions starting at step 29. Otherwise continue to step 17 to determine if this table entry pertains to this check.
17-18 | Use the current MICR “mask” in the table as a template to determine if this MICR code corresponds with this table entry. If they do not match proceed to step 19, otherwise go to step 24 to try the next entry.
19-20 | Locate the sequence number in the current MICR “mask” and use this to remove sequence number from MICR data.
21 | IF the prior “mask” indicates that the banking institution has either changed transit numbers or made additions to their sequence number (such as TPC code for branch banking), use these prior masks to build the key for the OLD record. Proceed to step 61;
22 | Query for the NEXT entry in the TRANSIT CODE TABLE for this transit number. If no additional entry was found, proceed to parsing functions starting at step 29, otherwise go to step 17 to determine if this table entry pertains to this check.
29-32 | Data in the Auxiliary On Us field, unless otherwise indicated in the TRANSIT CODE TABLE, is the check sequence number. This would indicate that all data in the On Us field make up the customer’s bank account number.
35-37 | Parse On Us field. Use any data within positions 13 through 32 as the On Us field. Discrete numbers are usually divided with 2 or more spaces or the ANSI On Us character. Embedded single spaces and the ANSI MICR dash are removed from within said discrete numbers.
38 | Test for number of discrete numbers parsed from the On Us field.
40-43 | IF one, or more than three discrete numbers are located in the On Us field, the sequence number is either not present or is embedded in such a way that its location cannot be determined. The operator is signaled that the sequence number cannot be determined.
44 | Operator then enters the sequence number (including any lead zeros). The system can then determine the relative position of the sequence number in the On Us field and stores this as an additional entry to the TRANSIT CODE TABLE.
47-49 | IF two discrete numbers are located in the On Us field, unless otherwise indicated in the TRANSIT CODE TABLE, the number with the lesser value is the check sequence number, and the number with the greater value is the customer’s checking account number.
51-55 | IF three discrete numbers are located in the On Us field, unless otherwise indicated in the TRANSIT CODE TABLE, the number with the greatest value is the customer’s checking account number. The smallest value is the Transaction Processing Code and is appended to the end of the checking account number. The middle value is the check sequence number.
61 | Once the bank’s transit number and customer’s checking account number are parsed from the MICR band, they are combined (transit number followed by account number) to form the customer’s unique checking account ID.
63-64 | A packet such as following is built and passed to the Data Manager: char sourceid; /* Node ID indicating source of packet */ char FLAGS; /* A flag signaling a change in account number */ char ID_CODE[30]; /* 30 byte field containing current ID CODE */ char OLD_CODE[30]; /* 30 byte field containing old ID CODE */
It can thus been seen that the check reader 119, in combination with the MICR parsing subroutine of FIGS. 4A-1 through 4A-3, operates to detect and extract the customer's account number on all check, regardless of where located or even if improperly identified by a space or symbol. By teaching the processor any changes in the bank transit number or any unique positioning of the account number, the system thus is always able to promptly identify and detect a customer's unique ID for further use.

FIG. 4B diagrams the check verification function. A check verification function is initiated (202) by entering a verify request (check ID/function code/Amount) from a transaction terminal, which is transmitted to the transaction processor for check transaction processing and to determine the appropriate check verification response.

The transaction processor uses the check ID input from the MICR parsing subroutine of FIGS. 4A-1 through 4A-3 to search (204) the customer file for a corresponding customer record, which is retrieved (206), or if it does not exist, created (208) with a CAUTION status. The customer record is updated (210) by rolling Access Date/Time, Status and DWT Frequency and $Amount to reflect the current access date/time.

First, the Access Date/Time in the customer record is rolled (212) forward to the date/time for the current check transaction, establishing the transaction interval, i.e., the time elapsed since the customer's last check transaction.

Next, for a given status, the transaction interval is compared (214) with a corresponding selected reset/CAUTION interval—if the transaction interval is such that the reset/CAUTION interval for the customer's status is exceeded, Status is rolled (215) to CAUTION, and the customer is treated as a new customer from that time. If the customer record has a CAUTION status, the transaction interval is compared (216) with a selected CAUTION/POSITIVE limit defining a check clearance period—if this check clearance period has passed, the CAUTION status is rolled (217) POSITIVE.

The last roll/update operation is to roll (218) the DWT values for Frequency and $Amount to reflect the current access date/time.

After the roll/update operation (210) updates the customer record to reflect the current access date/time, the current transactional data are added (220) by incrementing DWT Frequency and adding the transaction $Amount to the corresponding DWT $Amount. The DWT transactional data in the updated customer record now reflects the current transaction.

Next, the user flags in the customer record are checked (222)—if the MANAGER ONLY flag is set, a MANAGER

ONLY response is returned (225) regardless of status, while if the PREAPPROVED flag is set, the normal status response (POSITIVE) is returned (226) regardless of any transactional CALL MANAGER limits.

Finally, DWT Frequency/Amount are compared (228) with the CALL MANAGER limits for the customer's status to determine whether any of these limits are exceeded. If not, a normal response with the customer's check verification status is returned (226); if any limit is exceeded, a CALL MANAGER response is returned (229).

For the status query function, the same roll/update operation (210) is performed to provide a customer record with updated Access Date/Time, Status and DWT Frequency/Amount from which an appropriate status response can be derived. However, the updated customer record is only used to derive the response to the query request—the updated record is not written back to disk, so the customer database is not updated.

2.4. Local Status Update

Local status update of the customer database is accomplished by inputting certain status (and user flag) information to reflect bad check experience or store policy.

Status input functions are used to Add or Delete the status values NEGATIVE, CASH ONLY and STOLEN. Typically these functions will involve modifying the Status of an existing customer record and/or negative status record, although new records may be created. In addition, local input functions are used to Add or Delete user flags that designate the customer as PREAPPROVED or MANAGER ONLY.

For multiple store systems, a separate negative status record is kept for each location having a NEGATIVE and/or CASH ONLY status history. Thus, assuming negative status records are transferred during the global update function, each store's negative status file will contain separate negative status records for the various locations, sometimes for the same customer. Generally, a store can only affect through the local update function, negative status records for its location.

For each status input function, the update operation for the customer record includes the roll/update operation described in connection with FIG. 4B (210) to reflect the current access (update) to the customer record (which is written to disk to update the customer file).

FIG. 5 diagrams the local status input function for Add/Delete NEGATIVE status. A store uses this operation only for the negative status records for that location, and only when all bad checks have been recovered or otherwise resolved. For the Add NEGATIVE status function, the corresponding negative status record for that location is retrieved or created (230), and NEGATIVE status is set (232) Active and BAD Frequency/Amount is adjusted (233) by adding the current bad check transaction. The corresponding customer record is then retrieved or created (235), and updated by the roll/update operation (238) but with status set (239) to NEGATIVE.

For the Delete NEGATIVE Status function, the corresponding negative status record is retrieved (230), and NEGATIVE Status is set (232) to Inactive and BAD Frequency/Amount are set (233) to zero. If that customer has no other bad checks outstanding at any location (i.e., no other negative status records with NEGATIVE Status Active) (236), then the corresponding customer record is retrieved or created (237) and updated by the roll/update operation (238), but with status rolled (239) to its previous state (i.e., prior to becoming NEGATIVE).

For status input functions that Add/Delete CASH ONLY (which status is also kept by location in negative status file),
the basic operation is the same as for Add/Delete NEGATIVE except that the BAD Frequency/$Amount data are unaffected.

For the status input functions that Add/Delete STOLEN, only the customer file need be updated. For the Add STOLEN function, the corresponding customer record is updated in accordance with the roll/update operation, but with status rolled to STOLEN. For the Delete STOLEN function, the corresponding customer record is updated and rolled to CAUTION.

For the user flag input functions that Add/Delete PREAPPROVED or MANAGER ONLY, again, only the corresponding customer record need be updated.

2.5. Global Update

For multiple-store systems, the global update function is used to coordinate the exchange of certain customer information among the individual stores. Global update is accomplished by file (record) transfers between each remote system and the host system. The host system receives selected customer records and negative status records from each remote, updates its customer database, and then transmits globally updated records back to each of the remotes. Each remote is able to maintain a local customer database, supplemented with selected global customer information deemed to be useful to all stores in the system.

The type of customer information transferred by the global update function is based on store management policies. The recommended approach to exchanging global customer information is as follows:

1. Negative Status Records—All NEGATIVE status records (NEGATIVE or CASH ONLY status) accessed (created or updated) since the last transfer; and
2. Customer Records—All customer records with status values CAUTION, NEGATIVE, CASH ONLY and STOLEN accessed (created or updated) since the last file transfer;
3. POSITIVE status records (even those designated MANAGER ONLY) are not recommended for global transfer.

As a result, the local customer database contains negative status records (including NEGATIVE and CASH ONLY status and BAD Frequency/$Amount) for all store locations (although each remote system only transfers to the host the negative status records for its location). For those customer records transferred, DWT Frequency/$Amount can be maintained either globally or locally and globally. That is, a store may decide not to maintain both global and local transaction data since, for regular customers that primarily frequent that store (i.e., the customers of primary interest) global and local transaction data are essentially the same anyway. On the other hand, a store may want to keep its local transaction data completely separate from the global data attributable to all stores.

The host/remote file transfers that support global update are accomplished automatically through the event/activity function described in Section 2.7. Generally, for each remote system, host/remote file transfer constitutes an activity automatically invoked at predetermined regular event intervals. This procedure insures that the local customer databases are regularly supplemented with globally updated status and other customer information affecting check verification.

A global update session is initiated by a remote system, or in the alternative by a host computer. The remote transmits only those negative status or selected customer records accessed (updated) since the last host/remote file transfer. Since a remote only updates (or creates) negative status records for its location (although negative status records for other locations may be queried), a remote only transfers those local records (but will receive back from the host recently updated negative status records for all locations). And, only those updated customer records meeting the selected status criteria are transferred (i.e., POSITIVE status records are not transferred, even if designated MANAGER ONLY).

Negative status records are extracted using the index [status/transfer/remote/ID] or, while customer records are extracted using the index [status/access/remote/ID].

FIG. 6A diagrams the host global update function by which the host system receives recently updated negative status and customer records, and performs a global update of its customer database. For remote negative status records (remote location only), the host retrieves or creates (240) a corresponding host record, and sets (243, 244) host status (NEGATIVE/CASH ONLY, ACTIVE/INACTIVE) and host BAD Frequency/$Amount equal to the corresponding remote value. For remote customer records, the host retrieves or creates a corresponding host record, and updates existing host records using the roll operation (246). Host and Remote status values are stored, and if different, the host assigns status (247) according to predetermined status arbitration criteria. The host then adds (248) the frequency/$Amount accumulated at the remote since last transfer to the host DWT Frequency/$Amount, and selects (249) the greater of host/remote DWT data as correct, updating the host record accordingly.

After global update of the host customer database, the host transmits to the remote all negative status records and selected customer records accessed (updated) at the host since the previous transfer. Because every remote record transferred to the host caused a corresponding host record to be created or updated, and therefore accessed, the host-to-remote file transfer necessarily includes all host records corresponding to the remote records transferred to the host during that session. In particular, host negative status records for all locations, meeting the recently accessed transfer criteria, are transferred to the remote. For negative status records from other locations, the remote merely copies (253) the host record (remote location records received from the host are necessarily the same as the remote record). For customer records, the remote first rolls (254) the DWT Frequency and $Amount. If host DWT Frequency/$Amount is less than the corresponding remote DWT data (255), the remote rolls (256) access data to insure that the remote record is transferred back to the host during the next global update transfer session (to update the corresponding host record with greater DWD data); otherwise, the remote selects (257) the host DWT data. That is, the global update function assumes that the greater DWT Frequency/$Amount is correct. Finally, the remote compares host/remote status, and if different, assigns status (258) according to predetermined status arbitration criteria.

2.6. Purge

The customer database purge function allows a store to orient its customer database toward active customers, stabilizing the database, size by deleting certain customer records and negative status records deemed to be obsolete.

During database purge, customer records or negative status records with a given status are read, and the access data/time is compared with the corresponding purge limit from the system control file. Records not accessed during the interval defined by the purge limit are deleted.

Implementing the purge function is optional as a matter of store policy. For the preferred embodiment, the purge limits are also used to define a default/CAUTION interval (described in connection with FIG. 4B). If a record is not accessed during that interval, its status is rolled to CAUTION. Thus, the check
transaction processing system defaults to the reset/CAU-TION operation if the purge function is not operational.

The purge limits are a matter of design selection. The following purge limits are recommended:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CAUTION</td>
<td>270 days</td>
</tr>
<tr>
<td>POSITIVE</td>
<td>360 days</td>
</tr>
<tr>
<td>NEGATIVE</td>
<td>360 days</td>
</tr>
<tr>
<td>CASH ONLY</td>
<td>360 days</td>
</tr>
<tr>
<td>STOLEN</td>
<td>360 days</td>
</tr>
</tbody>
</table>

Because customer record status is not rolled automatically from CAUTION to POSITIVE, but only as a result of a transaction in which the access date/time is also rolled current, the customer database maintains an accurate record of CAUTION status for those first-time customers who do not return after the check clearance interval. Those CAUTION status customers who do not return to a store within a reasonable period of time can be eliminated from the customer database. Likewise, POSITIVE status customers who stop transacting business with a store can be eliminated from the active customer database.

Selected purge limits are entered into the system control file during system installation/configuration. If the purge function is selected, performing it automatically as an event-driven activity (described in Section 2.7) is recommended.

2.7. Event/Activities

Event-driven activities are performed automatically by the check transaction processing system to implement certain functions without operator intervention.

The configuration and timing of these activities is a matter of routine design selection. The following event-driven activities, and the associated event intervals, are recommended:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Host/Remote File Transfer</td>
<td>Every 15 minutes</td>
</tr>
<tr>
<td>System Backup</td>
<td>Every 10 minutes</td>
</tr>
<tr>
<td>Purge</td>
<td>Every 24 hours</td>
</tr>
</tbody>
</table>

In addition, certain report functions can be made automatic as event-driven activities, such as reporting everyday all customer records with CAUTION or NEGATIVE status.

The specified event-driven activities and associated event intervals are contained in an event table established during system installation/configuration. These activities are then executed in background at the designated event times without user intervention, and without affecting other foreground functions such as check verification. Once the event table is configured, the various activities may be started or stopped by invoking appropriate functions from a transaction terminal (functions 'F50' and 'F51' in Table 4).

For multiple-store systems, performing the host/remote file transfers necessary for global update on a regular, event-driven basis insures that CAUTION/NEGATIVE status information for check verification purposes is kept current throughout the system. Performing such transfers at relatively short intervals keeps the individual host/remote communications sessions sufficiently short that other functions, such as check verification, are not significantly affected. Moreover, performing host/remote file transfers on a regular basis at short intervals helps guard against fraudulent bad check passing schemes.

Regularly, purging the customer database facilitates database stabilization, and focuses the database on reasonably regular customers. The need for regular, and often, event-driven backup is obvious, and is not burdensome of system computing resources because only those customer records actually updated during the short interval between backup events need be backed up.

2.8 Communications

The communications function is primarily used to support host/remote file transfers for global update in multiple-store systems. In addition, the communications function can be used for remote diagnostic operations.

The communications function is implemented in a conventional manner. Both the implementation of the communications function and the mode of communications (such as using modem communications over dial up lines) are a matter of routine design selection. Implementing the communications function so as to be essentially transparent to the local operation of the remote and host check transaction processing systems is recommended (see Section 3.6).

2.9. System

Certain system diagnostic and system information functions are available to users of the check transaction processing system.

These system functions are not critical to the inventory but are a matter of routine design selection. The recommended system functions are identified in Section 2.2 and Table 4, and include querying the customer database and system control file, obtaining disk usage and file size information, starting/ stopping activities in the event file, and controlling certain keypad and modem configuration functions, as well as controlling certain system level functions such as log-on, log off, open/close database, debug and system shutdown. In particular, these system functions are useful to store supervisory personnel for querying the customer database and for controlling event-driven activities, and to vendor support personnel for remote diagnostic purposes.

2.10. Risk Management

The check transaction processing system enables a store to adopt a risk management approach to check verification. Specifically, through selection of the CALL MANAGER limits for each status (including POSITIVE) a store has considerable flexibility in adjusting its check authorization policy to accommodate the different risks presented by different customers, both in terms of bad check risks and recovery risk.

Adopting specific risk management procedures for check verification is a matter of store policy implemented by routine design selection. In addition to selecting the CALL MANAGER transactional limits for each status, the reset/CAUTION interval can be selected to force customers who do not return for that interval into a CAUTION status. Moreover, the user flags—PREAPPROVED and MANAGER ONLY—can be used to assign special check verification treatment to selected customers regardless of status or transactional (CALL MANAGER) limits.

Adopting risk management approach to check verification through selecting transactional CALL MANAGER limits enables each store to make a policy decision about the degree of risk the store is willing to take within a given interval. Moreover, this approach can be tailored to the specific business climate of the store in terms of dollar volume, profitability, customer base and management philosophy. By specifying transactional CALL MANAGER limits in terms of status, frequency, dollar amount and transaction interval, the store’s risk management approach to check recovery risks.

For example, frequency and dollar volume limits are important for the CAUTION status to reduce the risk that a store will be hit by a concerted bad check scheme. (Global update is particularly important in this area.) Depending on past experience with its typical customer, or store policy, a
new customer can be restricted in terms of numbers of checks and/or dollar volume during the selected check clearance interval.

Frequency and dollar volume limits are just as important for the POSITIVE status. A store should not assume any significant risk in terms of dollar volume (either for a current transaction or over a given relatively short interval such as a week) just because a customer has had one or a few checks clear. That is, total historical check transaction frequency is a significant factor in assessing the risk of cashing a given check; both in terms of likelihood that the check is bad and likelihood that a bad check will be recovered.

2.11 Customer Information Reporting

The check transaction processing system allows a store to build and maintain a customer database containing customer information useful for identifying new customers and developing customer profiles, in addition to its use for check verification.

Reporting customer information, such as verification status and DWT Frequency/SAmounts, is a matter of routine design selection and store policy.

Customer information reports are recommended (a) to identify new customers, and (b) to develop customer profiles, both of which can be used in targeting marketing, advertising and promotional programs; and for other customer relations purposes. Specifically, new customers are identified by regularly reporting customer records with a CAUTION status. Regular customers are identified by reporting customer records based on DWT Frequency data, while the level of a customer's business is identified by reporting customer records based on DWT SAmount data. Additional customer information that can be readily collected in the customer records includes zip code and marital status information useful in demographic analysis.

The check transaction processing system permits the customer information contained in the customer database to be collected in an unobtrusive and efficient manner during high volume check transactions.

3.0 Program Description

The various check transaction processing functions described in Section 2.0 are implemented using a check transaction processing system ("CTPS") program executed by the transaction processor.

The CTPS Program must implement several operations in real time:

(a) transaction terminal network communications, including communicating verification requests and the corresponding responses;
(b) database operations, including responding to verification requests and updating the customer database;
(c) event-driven activities, including global update, which must execute in the background while the check verification function is executing; and
(d) host/remote communications to support global update.

Moreover, while the purge function may be run after-hours as a batch operation, system backup should be executed at regular intervals throughout a business day as an event-driven background activity.

To achieve acceptable performance using a 286-class engine for the transaction processor, the preferred embodiment of the CTPS Program uses a multi-tasking architecture. The various functions performed by the CTPS Program are implemented as separate program scripts executed by the transaction processor in a multi-tasking mode. For the preferred system configuration (described in connection with FIG. 1), a multi-tasking architecture for the CTPS Program is superior in performance, to available alternatives, such as polled interrupts.

3.1. General

As shown in FIG. 7, the CTPS Program includes various task programs interfaced through a System Kernel. Since the preferred MS/DOS Operating System is not multi-tasking, the System Kernel is required to implement (a) task switching, and (b) intertask communications. In this operating environment, the MS/DOS operating system is used only for disk file I/O, with the System Kernel interfacing functionally to the individual task programs as an operating system.

System Kernel 400 controls task switching, intertask message communications (requests and responses), subtask spawning, and task synchronization using semaphores.

Data Manager Task 500 controls all database operations used in check transaction processing functions (such as verification with transactional update, query, local status update, global update and purge), executing function requests from the other task programs (such as the Terminal Manager Task and the Event Manager Task) and returning response data.

Terminal Manager Task 700 controls data communications over the transaction terminal network, receiving function requests from the transaction terminals and spawning terminal request subtasks that transmit a request to an executing task (usually the Data Manager Task) and then build an appropriate response from the response data provided by that executing task.

Event Manager Task 800 implements activities designated for automatic execution on an event-drive basis, such as host/remote file transfers for global update, spawning a background event subtask at the specified event time to execute the specified activities.

Modem Manager Task 900 controls telecommunications primarily for host/remote file transfer for global update, but also for remote diagnostic purposes.

In addition to these check transaction processing tasks, a Screen Manager Task 950 and a System Utilities Task 960 are provided for maintenance and diagnostic purposes.

In general, for the Verify/Query and Local Status Update functions, the Terminal Manager Task sequentially polls the transaction terminals which enter and transmit requests, such as:

Verify [Function Code/check ID/Function Code/ SAmount]
Query [Function Code/check ID]
Add/Delete [Function Code/check ID/Status]

For each terminal request, the Terminal Manager Task spawns a corresponding terminal request subtask that dispatches the request to a corresponding function/request routine, which sends the request to the Data Manager Task. The Data Manager Task executes the request, and notifies the function/request routine (by a semaphore operation) that response data is ready. The function/request routine then builds the appropriate response from the response data, and writes it into the terminal buffer for the requesting terminal. The Terminal Manager Task sends the response to the requesting terminal in the next polling sequence.

For the Global Update function, the Event Manager Task running in a remote system sequences through an event table, and at specified event times and intervals, spawns a corresponding event subtask to execute the global update activities, i.e., send/receive customer records and negative status records. The subtask dispatches to corresponding activity routines, i.e., activities that send/receive customer and negative status records. The send activity routines first request the remote Data Manager Task to retrieve records accessed since
the previous global update, and then request the remote
Modem Manager Task to transfer those records to the host
Data Manager Task for global update. The receive activity
routines first send requests for globally updated records
through the remote Modem Manager Task to the host Data
Manager Task, and then requests the remote Data Manager
Task to globally update the remote customer database using
the records returned by the host.

3.2. System Kernal

The System Kernal Program is implemented functionally
by a multi-tasking module and a system services module.
The multi-tasking module controls resource allocation
through task switching, with multi-task execution being
implemented using standard context switching to swap task
instructions/data between (a) the program and data memory
areas allocated to the task, and (b) the task execution registers
(i.e., the program counter, stack and other specified and gen-
pal purpose registers). To implement intertask communica-
tions, the multi-task module allocates for each task data
memory areas for request and response data, and maintains a
task control block that contains for each task (a) task queues
for intertask requests, and (b) semaphore flags.
The system services module implements intertask commu-
nications through calls to the multi-task module. For intertask
communication, the system services module implements
semaphore operations on the allocated semaphore flags in the
task control block.

Functionally, the System Kernal interfaces to the various
task programs that comprise the CTPS Program as a multi-
tasking operating system. The Kernal performs four principal
operations that establish a multi-tasking environment for the
check transaction processing system:
(a) task switching;
(b) task control block management for task queues and
semaphores;
(c) intertask communication of task requests/responses
using the task control block and allocated data areas; and
(d) spawning subtasks.

The first two operations are performed by the multi-tasking
module, while the second two operations are performed by the
system services module. In addition, the System Kernal
manages the system control file, and performs diagnostic and
system utility operations (these operations being imple-
mented by the system services module).

The specific program implementation of the System Kernal
is not critical to this invention, being a matter of routine
design specification. Indeed, as described in Section 4.0., the
System Kernal can be replaced with a commercially available
multi-tasking operating system.

For the preferred embodiment, the multi-tasking module is
implemented with a commercially available program, Time
Slicer from Life Boat Systems. Time Slicer provides a con-
ventional multi-tasking environment, including task switching
(context switching) and task control block management
(request queues and semaphores flags). These multi-tasking
operations are implemented in a conventional manner. Alter-
native multi-tasking modules are commercially available.

At system initialization, the System Kernal allocates the
task control block (queues and semaphores flags) and the data
areas for the various tasks. Thereafter, the System Kernal
receives service requests from a requesting task addressed to
a responding task and written into the System Kernal’s
request queue.

The requesting task builds a service request in the follow-

function code

address of request data

to semaphore

The function code is one of the function codes set forth in
Table 4. The addresses for the request and response data are
data memory locations allocated to the requesting task.

FIG. 8 diagrams the intertask communication and subtask
call functions implemented by the System Kernal. The Sys-
"
reads from its task queue the verification request (i.e., the intertask verification/request packet), and determines that a verification function is requested. The Data Manager Task dispatches the request to an verification execution routine that reads the request data (check ID and $Amount) from the specified request data address, and performs the necessary customer database operations, including retrieving or creating a corresponding customer record and updating status and transactional data (DWT Frequency and $Amount) to reflect the current transaction. The execution routine then writes the updated customer record to the specific response data address, and sends a stop request (i.e., the intertask request packet) to the System Kernel. The System Kernel sets the specified semaphore flag, and the terminal request subtask reads the customer record and builds an appropriate response that is sent to the terminal by the Terminal Manager Task.

3.3. Data Manager Task

The Data Manager Task manages the customer database, maintaining the customer record file and negative status record file, and the related indices. The Data Manager Task controls all database operations for check transaction processing functions (such as verify/query and local and global update) and customer database management functions (such as backup and purge), including record creation, retrieval, modification and deletion.

The check transaction processing functions performed by the Data Manager Task are, generally:

(a) Verify (with Transactional Update)
(b) Query
(c) Local Status Update
(d) Global Update (Host and Remote)

The verify, query, and local status update functions are invoked from a transaction terminal. The global update function is an activity invoked by the Event Manager Task.

For the preferred embodiment, the Data Manager Tasks interfaces to the disk files (i.e., the customer, negative status and system control files) through a commercially available library of database management routines, C-Tree from Faircom Software. The C-Tree library, in turn, uses the MS/DOS File System (DFS) to handle disk file I/O. The configuration of those routines to operate with the Data Manager Task and the MS/DOS DFS is a matter of routine design specification. Other such libraries of database management routines are commercially available.

At system initialization, the Data Manager Task opens the customer and negative status files, and a password file (used for supervisor functions requiring a password).

FIG. 9A is a program flow diagram for the Data Manager Task. The task continually monitors (502) its task queue for requests (intertask request packets) written into the queue by the system kernel. These requests primarily involve database operations in connection with check transaction processing functions, and are received from the Terminal Manager Task (Verify/Query and Local Status Update) and the Event Manager Task (Global Update, Purge and Backup). Some requests involve system diagnostic or information requests such as for disk or database information (see Section 2.2).

If no requests are in the Data Manager Task queue, it executes internal functions (503). When the Task receives a request, it performs the following operations:

(a) reading (506) a function request packet from the task queue;
(b) decoding (506) the function code; and
(c) dispatching (508) the function request to a corresponding execution routine.

The function execution routine executes the function, performing the necessary database operations, and upon completion, writes appropriate response data into the location specified by the requesting task and then sends a stop request (the intertask request packet) to the system kernel.

The various functions identified in FIG. 9A—Verify (510), Host Global Update (Negative Status) (600), Host Global Update (Customer) (630), and Remote Global Update (660)—are representative of the check transaction processing functions performed by the CTP Program. These functions, and the associated execution routines, are described in detail in connection with FIGS. 9B-91.

FIG. 9B is a program flow diagram for the Verify routine in the Data Manager Task. After receiving and decoding the appropriate intertask request packet from the Terminal Manager Task, the Data Manager Task dispatches (508) to the Verify Execution Routine (510).

The Verify routine reads (512) the verification request data (check ID and $Amount) from the request data location specified in the intertask request packet. The customer database is searched (514) using the check ID, and the corresponding customer record is retrieved (515) or created (516) with status set to CAUTION and DWT Frequency and $Amount set to zero.

The Verify routine then calls (520) a roll routine that updates status and transactional data in the record to reflect the current access date/time. The Data Manager Task does not independently update customer records to make status and DWT Frequency/$Amount reflect a current date/time. Rather, the customer records are updated in real time as they are accessed, such as during execution of verify and update functions. Because this roll/update operation is used by many of the function execution routines in the Data Manager Task, a separate routine is provided and called by these routines.

FIG. 9C is a program flow diagram for the roll routine. The routine first calls (522) the Access Date/Time in the customer record to the current date, and then calculates (524) the transaction interval, i.e., the elapsed time since the customer’s previous check transaction.

The purge limit for the customer’s status is read (526) from the system control file, and compared (528) with the transaction interval. If the transaction interval exceeds the purge limit, a status roll subroutine is called (530) and instructed to roll the status of the customer record to CAUTION. (This reset/CAUTION operation provides a default alternative to the purge function which would delete those customer records with access dates that exceed the corresponding status purge limit.)

Next, the roll routine determines whether, for customer records with a CAUTION status, the predetermined check clearance period defined by the CAUTION/POSITIVE limit has passed. If the customer status is CAUTION (532), then the CAUTION/POSITIVE limit is read (534) from the system control file and compared (536) with the status change date, i.e., the date on which the customer became a CAUTION, either because of an initial check transaction or because of a roll to CAUTION (such as through the reset/CAUTION procedure in 526, 528 and 530). If the period during which the customer has been a CAUTION exceeds the CAUTION/POSITIVE period, then the status roll subroutine is called (537) and instructed to roll customer status to POSITIVE.

The roll routine then rolls (538) the DWT totals for both Frequency and $Amount to reflect the current access date.

The customer record is now updated to the current access date, the roll routine having rolled/updated the Access Date/Time, Status and DWT Frequency and $Amount.

The status roll subroutine is called when any function routine rolls customer status from one value to another. As part of the call instruction, the status roll subroutine receives
a new status, CAUTION in the case of the reset/CAUTION operation. Program state-logic then determines whether the roll is allowable according to specified roll state-logic: (a) if allowed, status is rolled to the specified new status; or (b) if not allowed, status is rolled to an allowable status value, or is not rolled, in accordance with the roll state-logic. The status roll subroutine then rolls the status change date in the customer record to the current date (if the subroutine effected a change in status). Thus, for customer records in which the transaction interval exceeds the status purge limit, the customer record is modified to reflect a CAUTION status with a corresponding status change date.

The roll routine returns (539) to the calling routine, in this case, the Verify routine in FIG. 9B. The verify routine adds (540) to the roll/updated customer record the current transaction by incrementing DWT Frequency and adding the current SAmount to the DWT SAmount. The customer record is now updated to reflect both the current access date and the current transaction. The updated customer record (with its transfer date updated current) is written (542) to disk, to update the customer database.

The updated customer record constitutes the response data for the verify request, and the Verify routine writes (544) the record into the response data location specified in the intertask request packet.

Finally, the Verify routine sends (546) a stop request to the System Kernel. The stop request comprises the intertask request packet received from the System Kernel by the Data Manager Task. The appearance of this packet in the Kernel's service request queue notifies the Kernel that request execution by the verify routine is complete. In response to the stop request, the System Kernel sets the semaphore flag specified in the intertask request packet to notify the Terminal Manager Task that the verification request is complete, and the response data is in the specified location.

The query function is used to query the customer database, and retrieve an updated customer record or updated negative status record from which the desired information may be extracted. For each query function, the Data Manager Task dispatches to a corresponding query execution routine that retrieves and updates the requested customer record or negative status record. The essential difference between the query routines and the verify routine is that no current check transaction data is involved, and the updated record is not written to disk to update the customer database.

For example, in the case of a query for customer information (such as status and/or DWT transactional data), the Data Manager Task dispatches the intertask request query packet to the corresponding Query execution routine. The routine reads the check ID from the specified location for the request data, and initiates a search of the customer record file. If no corresponding customer record is found, the query routine returns an error message response. If a corresponding customer record is retrieved, the query routine calls the roll routine to update Access Date/Time, Status and DWT Frequency/ SAmount. The updated customer record is written to the specified location for the response data, and a stop request is sent to the System Kernel. The Query routine does not update the customer database by writing the updated customer record back to disk.

In addition to updating the customer database in real time through the verification operation, the Data Manager Task also implements the following local status update functions: Add/Dele te NEGATIVE, Add/Dele te CASH ONLY, Add/Dele te STOLEN, Add/Dele te PREAPPROVED, Add/Dele te MANAGER ONLY.

These functions are used to input customer status and user flag information.

For multiple store systems, negative status records are kept by location, i.e., each location creates a negative status record for any customer with NEGATIVE or CASH ONLY status at that location. Global Update causes the negative status file at each location to contain negative status records for each location (assuming negative status records are selected for global update). Each location can access through the Add/Delete NEGATIVE and CASH ONLY functions only those negative status records for its location. The query function can be used to query negative status records from other locations.

FIG. 9D is a program flow diagram for the add NEGATIVE local status update function. After receiving and decoding the appropriate intertask request packet from the Terminal Manager Task, the Data Manager Task dispatches (508) to the Add NEGATIVE execution routine (550).

The Add NEGATIVE routine reads (551) the request data (check ID/location/SAmount) from the location specified in the intertask request packet. The negative status file is searched (552) for a corresponding negative status record, which is either retrieved (553) or created (554). If NEGATIVE status is Inactive (556), the status roll subroutine in called (557) and instructed to roll to Active. The current bad check data is then added (558) to the BAD Frequency and SAmount totals for that location. The routine then writes (559) the updated negative status record into the negative status file.

The customer file is searched (560) for the specified customer record, which is either retrieved (561) or created (562). The roll routine is called (564) to roll/update the customer record (Access Date/Time, Status and DWT Frequency/ SAmount) as described in connection with FIG. 9C. After roll/update, the status roll subroutine is called (566) and instructed to roll customer status NEGATIVE. The updated customer record (with its transfer date updated current) is then written (568) into the customer file.

After the add NEGATIVE function is accomplished, a confirmation response is written (570) into the specified response data location, and a stop requests sent (572) to the System Kernel (which sets the specified semaphore flag).

FIG. 9E is a program flow diagram for the delete NEGATIVE function. After receiving and decoding the appropriate intertask request packet from the Terminal Manager Task, the Data Manager Task dispatches (508) to the Delete NEGATIVE execution routine (580).

For multiple-store systems, the Delete NEGATIVE function is used according to the following criteria: (a) it is only used to delete NEGATIVE status for the location requesting the delete NEGATIVE function; i.e., to change NEGATIVE status from Active to Inactive only in the negative status record for that location; and (b) it is only used if all bad checks for that location have been paid off or otherwise resolved. Thus, each location can only affect its own negative status record—the global update function is used to distribute negative status records among all locations.

The Delete NEGATIVE routine reads (581) the request data (check ID/location) from the location specified in the intertask request packet. The negative status file is searched (582), and the negative status record for that location is retrieved (584), if it exists. The status roll subroutine is called (586) to roll NEGATIVE status from Active to Inactive. The BAD Frequency and SAmount data are then deleted (587) indicating that all bad checks have been paid or otherwise resolved.

Next, the routine determines (590) whether another negative status record exists for that customer, i.e., whether the
customer has a NEGATIVE status active at other locations. If the negative status file contains no other negative status records for the customer, the customer file is searched to retrieve (592) the corresponding customer record. The roll routine is then called (594) to roll/update the customer record as described in connection with FIG. 9C, and the status roll subroutine is called to roll status to the previous status (i.e., the customer’s status prior to becoming a NEGATIVE). The updated customer record (with its transfer date updated current) is then written (596) to the customer file.

After the delete NEGATIVE function is accomplished, a confirmation response is written (597) to the specified response data address, and a stop request is sent (598) to the System Kernel (which sets the specified semaphore flag).

The routines that Adding/Deleting CASH ONLY operate analogously to the Add/Delete NEGATIVE routine because CASH ONLY is also maintained by location in all negative status records. These routines function in accordance with FIGS. 9D and 9E, except that transaction data (BAD FREQUENCY/Amount) is not involved (i.e., step 558 is unnecessary).

The routines that Add/Deleting STOLEN affect only the customer file. Thus, these routines read the specified request data (check ID/status), and either retrieve or, for the add routine, create a corresponding customer record. The customer record is updated using the roll routine, and then rolled to STOLEN (add function) or to CAUTION (delete function) using the status roll subroutine. The updated customer record is written to the customer file, and a confirmation response is written to the specified response data location. The routine terminates with a stop request sent to the System Kernel.

The routines that Add/Deleting PREAPPROVED and MANAGER ONLY operate to set/clear the corresponding user flags in the customer record in a manner analogous to the Add/Deleting STOLEN routine. That is, these routines roll/update the corresponding customer record, set/clear the specified user flag, and then provide an appropriate confirmation response.

For the global update function, the host Data Manager Task receives negative status and selected customer records from all the remote systems, and executes a host global update function. Host negative status and selected customer records are then sent to the remote Data Manager Task which executes a remote global update function. The global update function is implemented by the remote Event Manager Task which executes a global update event/activity (see Section 3.5).

The criteria for selecting records for transfer in connection with global update are:

(a) Negative Status File—All records accessed since the previous host/remote file transfer for global update (NEGATIVE or CASH ONLY status); and

(b) Customer File—All customer records accessed since the previous host/remote file transfer for global update, and having a status value of CAUTION, NEGATIVE, CASH ONLY or STOLEN.

Since a remote location only accesses (updates) the negative status records for its location, each remote only transfers to the host negative status records for its location. The host global update function necessarily accesses each negative status record transferred by a remote during a global update session, so that all such records are transferred back to each remote (along with the host location negative status records that were accessed as a result of local host operation.

FIG. 9F is a program flow diagram for the host global update function for the negative status file. After receiving and decoding the appropriate intertask request packet containing the global update request from the remote Event Manager Task, the host Data Manager Task dispatches (508) to the Host Global Update (Negative Status) execution routine (600).

For each negative status record received (602) from a remote location, the host searches (604) its negative status file for a corresponding negative status record for that remote location. If it does not exist, the remote record is copied (607).

If a corresponding host record is retrieved (606), the host NEGATIVE status (Active or Inactive) is replaced (608) with the remote NEGATIVE status from the remote negative status record, and the host BAD FREQUENCY/Amount is replaced (610) with the remote BAD FREQUENCY/Amount. The Access Date/Time is then rolled (612) current.

The updated or copied) host negative status record for the remote location is written (614) to the negative status file, and the negative status file is searched (616) to determine if it contains any NEGATIVE status Active records for that customer for any locations (including the remote negative status record just processed).

If not (i.e., if NEGATIVE status for that customer is Inactive at all locations), the corresponding customer record is retrieved (618) from the customer file. The record is updated by the roll routine (620), and rolled to previous status (622).

The updated customer record (with its transfer date updated current) is then written (624) back to the customer file.

The Global Update (Negative Status) routine terminates with stop request sent (626) back to the requesting remote Event Manager Task (see Section 3.5).

FIG. 9G is a program flow diagram for the host global update function for the customer file. After receiving and decoding the appropriate intertask request packet (containing the global update request from the remote Event Manager Task), the host Data Manager Task dispatches (508) to the Host Global Update (Customer) execution routine (630).

For each customer record received from the remote (632), the host searches (634) its customer file. If a corresponding customer record does not exist, one is created (636) with the local DWT Frequency/Amount set to zero.

If a corresponding host customer record is retrieved (635), it is updated (638) in accordance with the roll routine in FIG. 9C. If status is CAUTION, POSITIVE or STOLEN, the status for the updated host customer record is compared (640) with the status for the remote customer record. If status is different, the host assigns (642) status in accordance with predetermined arbitration rules, and updates its customer record accordingly. (If either host or remote status is NEGATIVE, global update is accomplished through the Global Update routine for negative status records.)

The host updates DWT frequency/Amount in the host customer record by adding (644) to the host DWT Frequency and Amount the Transfer Frequency and Amount totals from the remote customer record, and then selecting (646, 648, 649) the greater of the host or remote DWT Frequency/Amount totals.

Finally, the host customer file is updated by writing (650) the host customer record (with its transfer date updated current) to disk, and a stop request is sent (652) to the remote Event Manager Task.

Once the host has completed updating its negative status file (Fig. 9F) and its customer file (Fig. 9G) for each negative status and customer record transferred by the remote, the remote then requests that the host transfer to the remote the host negative status and selected customer records that have been accessed since the previous transfer. That is, the same criteria that the remote used in selecting records for transfer are used to select host records for transfer back to the remote.
Since for each remote record transferred to the host, the host performs an update operation that changes Access Date/Time, the host-to-remote file transfer will necessarily result in all such updated records being retransmitted back to the remote. In addition, the host will transfer to the remote NEGATIVE status and selected customer records accessed and updated by the host during either (a) local-host verification or update operations, or (b) a host global update operation initiated by another remote.

The remote receives the negative status and customer records transferred from the host, and performs a global update of its customer database. As described in Section 3.5, the remote Event Manager Task requests host records from the host Data Manager Tasks, and then sends them to the remote Data Manager Task with a global update request.

The remote global update function for the negative status file is based on two criteria: (a) negative status records, the remote record is assumed to be correct and the remote record is ignored; and (b) for other-location negative status records, the host record is assumed to be correct and it is copied without any update or other access by the remote. After receiving and decoding the appropriate inter-task request packet (containing the global update request for the host negative status record from the remote Event Manager Task), the remote Data Manager Task dispatches to the Remote Global Update (Negative Status) execution routine that implements these global update operations.

FIG. 9H is a program flow diagram for the remote global update function for the customer file. After receiving and decoding the appropriate inter-task request packet (containing the global update request from the remote Event Manager Task), the remote Data Manager Task dispatches (508) to the Remote Global Update (customer) execution routine (660).

For each customer record received (662), the remote determines (664) whether it has a corresponding customer record, and if not, creates (666) one with the local DWT Frequency and $Amount data set to zero. An existing remote customer record is retrieved (665), and DWT Frequency/$Amount rolled (668) current. The remote then compares (670) its local DWT Frequency/$Amount with the corresponding totals from the host customer record, and if the remote totals are greater, rolls (672) the Access Date/Time current. Updating the Access Date/Time for the customer record insures that that record will be transferred back to the host during the next remote/host file transfer session. If the host transactional data is greater, then the Access Date/Time is not changed.

If status is CAUTION, POSITIVE or STOLEN, the status for the updated remote customer record is compared (674) to the host customer record status, and if different, the remote assigns (675) status in accordance with pre-determined arbitration rules. (If either host or remote status is NEGATIVE, global update is accomplished through the host global update function for Inactive status records.)

The updated customer record (with its transfer date updated current) is written (676) to the customer file, and a stop request is sent (678) to the host System Kernel.

The arbitration rules used by the host during global update to assign status (642 in FIG. 9C and 675 in FIG. 9H) for customer records in the case of a conflict between host and remote status are a matter of design choice and routine program implementation. The recommended criteria for specifying arbitration rules are (a) where either the host or the remote indicates POSITIVE and the other indicates CAUTION, the POSITIVE status value is selected; (b) where either the host or the remote indicates STOLEN, the STOLEN status is selected; and (c) NEGATIVE status is not arbitrated.

The database operations associated with purge and backup are also handled by the Data Manager Task. These functions are implemented as event activities by the Event Manager Task. In response to requests from the corresponding event activity routine, the Data Manager Task retrieves the specified records and processes them in accordance with conventional record delete (purge) or copy (backup) operations. Thus, for backup, the Event Manager Task provides a backup key [status/access date/time], and all records accessed since the last backup are copied to a backup file. For purge, a purge routine operates analogously to the roll routine (FIG. 9C) in reading purge limits from the system control file and comparing them against a purge interval defined by the last access date/time, deleting (or copying off-line) those records that meet the predetermined purge criteria.

3.4. Terminal Manager Task

The Terminal Manager Task manages the communication of requests/responses between the transaction terminals and the transaction processor, implementing a token ring local area network. In implementing token ring data communications, the Terminal Manager Task sequentially polls each transaction terminal using the token ring protocol described in Section 1.2.

When request data (such as check ID/$Amount) are entered into a transaction terminal, the transaction terminal responds to its next POLL token by transmitting TXDATA answer packet including the request to the Terminal Manager Task, which writes the request data into the corresponding terminal buffer.

For each request received from a transaction terminal, the Terminal Manager Task spawns a terminal request subtask that:

(a) Builds a System Kernel service request for the request entered into the transaction terminal;
(b) Sends the service request to the responding task through the System Kernel;
(c) Receives response data from the responding task;
(d) Builds the appropriate response from the response data; and
(e) Sends the response to the transaction terminal.

The responding task depends upon the request function code entered into the terminal. (See Section 2.2.) Most of the request functions are for the Data Manager Tasks because they involve customer database access. However, requests to the other tasks for diagnostic or system information can be made from a transaction terminal.

At system initialization, the Terminal Manager Task: (a) Initializes the 32-port network communications interface (116 in FIG. 1); (b) Allocates TXBUFFER, RXBUFFER and LASTDATA terminal buffers for each of 32 allowable terminals; and (c) Allocates two poll state flags, Poll/Data and Wait, for each of 32 allowable terminals. The TXBUFFER buffer holds TXDATA transmitted by the terminal, while the RXBUFFER buffer holds RXDATA to be sent to the terminal. The LASTDATA buffer contains selected data from the last request transmitted by or the last response received by the terminal (used to hold data that might be used in the next terminal request).

For the preferred embodiment, no attempt is made to deallocate terminal buffers/flags for those communications ports that do not have an active, on-line transaction terminal. This design choice does not require any significant memory allocation for the 32-terminal configuration of the preferred embodiment. Such deallocation procedures are a matter of routine program implementation.
FIG. 10A is a program flow diagram of the token ring network communication function implemented by the Terminal Manager Task.

The Terminal Manager Task continually monitors (702) its task queue, which is maintained by the System Kernel. Through the System Kernel, system and diagnostic requests can be written into the queue for execution by the Terminal Manager Task. That is, in response to a TMT request (such as a system diagnostic or system information request) written into its queue, the Terminal Manager Task calls (703) a corresponding routine that executes the request.

If no TMT request has been written into the task queue, the Terminal Manager Task begins a token polling sequence (704, 706).

A token polling sequence is accomplished by sequencing through the terminal addresses 0-31. During each polling sequence the Terminal Manager Task polls all 32 ports without regard to whether a port has an active, on-line transaction terminal coupled to it, provided however, that an active terminal in a Wait state (i.e., waiting to receive requested data) is not polled.

The Terminal Manager Task makes no attempt to segregate active and inactive communications ports, or to remove from the polling sequence terminal addresses not assigned to active, on-line transaction terminals. This design choice does not significantly impact network communications for the 32 terminal configuration of the preferred embodiment. An active-terminal-only polling scheme would be a matter of routine program implementation.

Terminal addresses are determined as follows. During each polling sequence, the Terminal Manager Task polls each of the 32 ports—beginning with Port 0, a POLL token (including the corresponding terminal address between 0 and 31) is broadcast and the Task waits until either (a) an answer packet is received, or (b) a time-out period transpires, before sending the next POLL. When a transaction terminal is not active, it is within its internal network communication software causes a USER ID token to be displayed. The terminal operator is supposed to enter a number between 0 and 31 that is uniquely assigned to that terminal; however, the terminal software processes the USER ID entry using module 31, so that any numeric entry is forced into the 0-31 range.

For each terminal address the Terminal Manager Task determines (710) the polling state of the corresponding transaction terminal—Poll, Wait, or Data.

If the terminal is in the Poll state, the Terminal Manager Task sends (712) a POLL token for that transaction terminal (i.e., a token that includes the corresponding terminal address). The POLL is received by the addressed terminal and recognized as an invitation to transmit data. The polled terminal transmits either a TXDATA answer (including request data) or a NO DATA answer. If a NO DATA answer is returned (714), the Terminal Manager Task continues with the polling sequence. If the polled terminal transmitted request data in TXDATA answer (715), the Terminal Manager Task writes (716) the request data into the corresponding terminal buffer, sets (718) the terminal Wait state flag, and spawns (720) a terminal request subtask to execute the request, and then continues the polling sequence.

During execution of the request, while the requesting terminal is in the “Wait” state, the Terminal Manager Task does not poll that terminal, but rather, continues with the polling sequence.

Once a request has been executed and the response data placed in the terminal buffer for the requesting transaction terminal, the request subtask sets the terminal Data state flag. During the next poll sequence, the Terminal Manager Task reads (722) the response from the terminal buffer and sends (724) an RXDATA token that includes the response.

When the token poll sequence is completed (i.e., terminal address 31), the task queue is checked (702) to determine whether any system or diagnostic TMT requests have been written into the queue. If not, a new polling sequence is commenced (704).

When the operator enters the terminal ID, the network software waits for that terminal address—when a POLL with that address is received, the network software waits for a time-out to determine whether another terminal has that address. If not, the network software grabs the next POLL with that address and commences normal network communications.

For the preferred embodiment, the POLL token is one byte (0-7):

<table>
<thead>
<tr>
<th>Bit 7</th>
<th>Token Flag (set if POLL token; otherwise clear)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bits 5-6</td>
<td>TX-POLL token</td>
</tr>
<tr>
<td>Bits 0-4</td>
<td>RX-RXDATA token</td>
</tr>
</tbody>
</table>

All data communications over the network are in 7 bit ASCII (0-6), so that only the POLL token uses bit 7. The answer packets are also one byte:

<table>
<thead>
<tr>
<th>Bit 7</th>
<th>Not used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bits 0-6</td>
<td>TXDATA</td>
</tr>
<tr>
<td></td>
<td>NO DATA</td>
</tr>
</tbody>
</table>

The TXDATA byte is followed by up to 40 characters of data in 7-bit ASCII (0-6), with a single END of data byte (ASCII carriage return). Finally, the RXDATA token [Token Flag Set/RX/Address] is followed by up to 40 characters of data, with the next POLL token designating END of data.

Thus, in operation, a transaction terminal watches the network for its POLL token (with its terminal address) When its POLL is received it sends back either a NO DATA answer byte, or a TXDATA byte followed by up to 40 characters of data terminated in an END character. If the terminal is waiting for response data, so that it has been placed in a Wait state, it will not receive a POLL token. When response data is available, the Terminal Manager Task will retrieve the data from the terminals RXBUFFER and transmit it with the next TXDATA token.

This implementation for a token ring network is a matter of design choice. Other implementations are a matter of routine program design. Commercial token ring program packages are available.

To execute a request sent by a transaction terminal during a polling sequence, the terminal request subtask first determines which function is requested, and then dispatches to an appropriate service request routine that:
(a) Builds a service request;
(b) Sends the service request to the responding task (via the System Kernel);
(c) Builds an appropriate response from the response data returned by the responding task; and
(d) Writes the response into the appropriate terminal buffer. In addition, for a verify request, the verify service request routine determines whether any “CALL MANAGER” limits have been exceeded, and if so, causes the “CALL MANAGER” response to be returned to the terminal.
From Section 3.2, a service request is in the following format:
- Requesting task ID
- Responding task ID
- Function code
- Address of request data location
- Address for response data location
- Semaphore flag

The service request is sent to the System Kernel, which builds a corresponding intertask request packet.

The responding task that executes the request depends upon the function code. Of course, most function codes will be executed by the Data Manager Task because they involve accessing in some way the customer database.

After execution of the request, the response data returned by the responding task depends upon the request function code. The Data Manager Task returns updated customer or negative status records in response to verify/query requests and confirmations in response to local status update functions and global update functions.

Exemplary terminal request subtask operation is described in connection with a verify request in which the responding task is the Data Manager Task.

Fig. 103 is a program flow diagram for a terminal request subtask that implements a verification or query status request, to which the response from the Data Manager Task is an updated customer record. The subtask first reads (732) the TXBUFFER terminal buffer for the transaction terminal, parses (734) the request data to identify the function code (verify) and the other request data (check ID and $Amount).

The subtask then dispatches (736) the request to a verify service request routine specified by the verify function code. The service request subroutine builds (740) an appropriate service request addressed to the Data Manager Task responding task), which is sent (742) to the System Kernel.

The terminal request subtask then suspends execution and monitors (744) the semaphore flag specified in the service request. The semaphore flag is set by the System Kernel in response to a stop request from the Data Manager Task, indicating that the request has been executed and response data (a customer record) written to the response data location specified in the service request.

The terminal request subtask then reads (746) the response data, and builds an appropriate response for the requesting terminal. For the verify (and query status) requests, the corresponding service request routine builds a response from the customer record (response data) only after testing (750) corresponding user flags and CALL MANAGER limits. These user flags and CALL MANAGER operations are not required for other function service requests (such as query negative, local status update or global update).

The first operation in building an appropriate verification response from the customer record returned by the Data Manager Task is to test the MANAGER ONLY flag (752). If that flag is set, the verify service request routine builds (754) a MANAGER ONLY response regardless of customer status, and without testing any CALL MANAGER limits.

If the MANAGER ONLY user flag is clear, the next operation is to test the PREAPPROVED flag (756). If the flag is set, and customer status is POSITIVE (758), a normal (i.e., PREAPPROVED) response is built (762) without regard to any CALL MANAGER limits. If customer status is other than POSITIVE, the PREAPPROVED flag is ignored and CALL MANAGER limits are tested.

After testing the user flags, the next operation in building a response for a verify request is to test the CALL MANAGER limits (760) for the customer’s status and DWT data. The DWT Frequency/$Amount CALL MANAGER limits appropriate for the customer’s status are read from the system control file and compared with DWT Frequency and $Amount from the customer record. If any CALL MANAGER limit is exceeded, CALL MANAGER RESPONSE is built (764) regardless of status. If no limits are exceeded, the normal response for that status is built (762).

As described in Section 2.3 and 2.10, the CALL MANAGER limits are used to place predetermined transactional limits (DWT Frequency/$Amount) on a check transaction primarily for customers with CAUTION and POSITIVE status. These limits are set as a matter of store policy, and placed in the system control file during system configuration.

For function requests other than verify and query status, the user flag and CALL MANAGER operations (756) are not included in the service request routine, and a normal response is automatically built (762) from the response data read (746) from the specified response data location.

The response—MANAGER ONLY, PREAPPROVED, CALL MANAGER or [Normal]—is written (766) into the appropriate terminal buffer, and when the terminal’s RXBUFFER buffer is full, the terminal Data state flag is set (768) to indicate that a response is in the terminal’s RXBUFFER buffer and should be sent to the terminal in the next polling sequence. The terminal request subtask then terminates (770).

The basic operation of the terminal request subtask for each request function is as described in connection with Fig. 103 for the verify request, except that the service request routines for request functions other than verify do not implement the user flag or “CALL MANAGER” response functions (750).

3.5. Event Manager Task

The Event Manager Task manages background activities that are executed automatically without operator intervention, maintaining an Event File that includes an Event Table, an Activity Table and associated indices. The Event Table includes event records each specifying an event time, an event interval and associated activity pointers into the Activity Table. The Activity Table includes a list of activity codes.

The basic activities implemented by the Event Manager Task are:

(a) Host/Remote Communications—These activities transfer customer records and negative status records between host and remote systems for global update;
(b) Purge—These activities, one for each status, delete customer records and negative status records that are obsolete based on specified purge limits contained in the system control file; and
(c) Backup—These activities are regularly invoked to backup the customer and negative status files.

The host/remote communications and backup activities operate only on those customer records or negative status records that are accessed (i.e., that have their transfer dates updated) after the last corresponding activity was performed. Host/remote communications are implemented in connection with the Modem Manager Task.

The Event Table contains an event record for each event, with each event record including: (a) an event interval specifying the interval between execution of the associated event activities; (b) the next event time, calculated by the event subtask after completing execution of an event/activity based on the event interval and the system clock; (c) up to 10 activity pointers into the Activity Table; (d) active/inactive flag set or cleared by a start/stop function request (F950 and 951 in
Table 4); and (e) diagnostic abort flag that is tested during event/activity execution by the event subtask, and can be used to abort an event/activity.

In its basic operation, the Event Manager Task sequences through the events (event records) in the Event Table, spawning a corresponding event subtask to execute the specified activity.

Event activities are started and stopped using a transaction terminal to enter a corresponding request (see the function codes 950 and 951 described in Section 2.2 and set forth in Table 4). After entry of a start/stop request at a transaction terminal, the Terminal Manager Task (terminal request subtask) addresses a service request to the Event Manager Task through the System Kernel. The Event Manager Task receives the service request from its task queue, executes the request by correspondingly modifying the event file, and returns an appropriate response to the Terminal Manager Task.

While event frequency for a given activity is a matter of store policy and design choice, typically, host/remote communications and backup will be performed fairly frequently to insure both the regular update of the customer database, and the ability to recover from a system failure without significant loss of data. On the other hand, the purge function is more a matter of system administration designed to control the size of the customer database. Indeed, the purge function can be omitted as an event activity. In that case, the status purge limits contained in the system control file define the reset/CAUTION interval used in the roll routine to roll all statuses back to CAUTION if the specified reset/CAUTION (i.e., purge) limits are exceeded, as described in connection with Fig. 9B.

The selection and timing of event-driven activities is a matter of design choice. The recommended event-driven activities, and the associated event intervals, are:

| Host/Remote File Transfer | Every 15 minutes | System Backup | Every 10 minutes | Database Purge | Every 24 hours |

The Event Manager Task sequences through the event file, selecting the specified event-driven activities on a read-next basis. Event times are specified as time intervals starting from a baseline system time 00:00:00:00:00:00 [ymmddhmmss] for Jan. 1, 1970 (the transaction processor includes a battery assisted hardware clock synchronized to this baseline system time).

When an event time is reached, and the associated activity is completed, the event time is incremented by the event interval, based on the previous event time and not on when the activity was actually completed. For example, if host/remote file transfers to support global update activities (i.e., transfers of negative status records and selected customer records are to be accomplished every 15 minutes, then each activity is entered into the event file with an interval of 15:00 [mms]. The activity will be entered into the event file, along with its event interval and its initial event time of 15 minutes after system initialization (assumed to be 00:00 [mms]). The activity will then first be executed at 15:00, and when the activity is completed, the associated event time will be incremented to 30:00.

At initialization, the Event Manager Task opens the Event Table and Activity Table, and clears all semaphore flags. Thereafter, the Event Manager Task sequences through the Event Table, spawning event subtasks at specified event times to execute corresponding activities. While a given event may have several activities associated with it, only one event subtask (and only activity within an event record) is executed at a time.

Fig. 11A is a program flow diagram for the Event Manager Task. The task continually monitors (802) the Event Manager Task queue, to determine if any EMT requests have been received from the System Kernel. These requests may be for diagnostic or system information purposes. If so, the appropriate system routine is executed (804).

If the task queue is empty, the Event Manager Task tests the event-active semaphore (810) to determine whether an event is active. If so (semaphore set), the task checks the task queue (802).

If no event is active (semaphore clear), the Event Manager Task reads (812) the next event record from the Event File, and compares (814) the event time in the event record with the current system time. If the event is greater than or equal to the system time, the Event Manager Task spawns (816) an event subtask to execute the activities associated with the event (sending a subtask request to the System Kernel).

The Event Manager Task then the task reads (812) the next event/activity from the event file.

If the event time for the next event/activity is greater than or equal to the current time (814), the Event Manager Task spawns (816) an Event Subtask to execute the event/activity.

Fig. 11B is a program flow diagram for the event subtask. At the appropriate event time, the Event Manager Task spawns the event subtask, which receives (822) the current event record from the Event Table. The current event record includes a current event time and an activity pointer to each of up to 10 associated activities identified in the Activity Table. The event subtask sequentially executes each activity associated with the current event time.

Event subtask operation will be described in connection with executing at a remote system the activities associated with the global update function. Specifically, the event subtask will be described in connection with sequentially executing the following global update activities:

(a) Originate call;
(b) Send customer records (all selected statuses);
(c) Send negative status records (NEGATIVE and CASH ONLY);
(d) Receive customer records (all selected statuses); and
(e) Receive negative status records (NEGATIVE and CASH ONLY).

That is, each of the send/receive activities reads all selected statuses. When the remote event subtask receives the event record containing the event time pointers into the Activity Table, it sets (824) the event-active semaphore (810) in Fig. 11A, preventing the Event Manager Task from spawning another event subtask. The subtask then initiates an activity sequence (826, 828). Using the activity pointer in the Event Table, the subtask sequentially reads (826) activity codes from the Activity Table. The activity codes are read on a read-next basis, with each read operation being tested to determine when the last activity in the sequence is completed (828).

For each activity code read from the Activity Table, the event subtask dispatches (830) to a corresponding activity routine for execution.

Each activity routine includes an activity data control data block containing certain fixed and/or variable data used by the routine in executing the activity. Thus, for the global update event, the originate call routine includes in its activity control data block the phone number for the host (as well as other system numbers that may be called by the remote) and a corresponding log-in ID. The send/receive record routines
include in their respective activity control data blocks the previous event time for the activity which defined the end of the previous event interval for that activity.

Thus, the current event interval for a global update (send/receive) activity is defined by the previous event time in the activity routine’s control data block, and the current event record. After execution of the activity, the current event time is written into the activity routine’s control data block to define the beginning of the next global update event interval. (A similar control data block operation is used for the backup activity.)

A global update event begins at a remote system with an originate call activity that directs the remote Modem Manager Task (MMT) to establish a communications link to the host. This activity is dispatched to an originate call routine (840) for execution.

The originate call routine begins by building and sending to the remote MMT a request (842) to dial the host—the MMT request includes a dial function code and the request data location into which the originate call routine writes the host telephone number, together with a specified semaphore flag. The originate call routine waits on a response from the MMT (843), periodically testing the stop semaphore flag. When the specified semaphore flag is set by the MMT, indicating that the host has been dialed and is in an off-hook condition opening a communications line, the originate call routine builds and sends to the remote MMT a request (844) to send a log-in ID to the host MMT, writing the log-in ID into a specified request data location. The originate call routine then waits on the specified stop semaphore flag being set (845). When the specified semaphore flag is set, indicating that the remote MMT has completed log-in to the host system and established an active communications link, the originate call routine terminates by setting (846) a modem flag to indicate that a communications link is active, and then returns (826) to the event subtask for execution of the next activity.

The event subtask reads (826) the code for the next activity in the global update activity sequence—the send customer record activity.

The event subtask dispatches (830) to the corresponding send customer record routine (850). The routine first reads (852) the previous ending event time from its control data block to provide an initial customer record retrieval key to be used by the remote Data Manager Task (DMT) to retrieve a customer record from the customer record file. The retrieval key includes two fields [check ID/transfer date/time]—each is used by the Data Manager Task to sequence through the customer record file (incrementing check ID first and then transfer date/time). The send customer record routine builds and sends to the DMT a request (854) to retrieve by the retrieval key the first customer record meeting the criteria for transfer to the host during the current activity—any customer record that was accessed (updated) during the current event interval at any time after the time specified in the retrieval key (initially, the ending time for the immediately preceding event interval during which customer records were transferred to the host). The routine writes the initial retrieval key (with check ID set to zero) into the specified request data location to provide the DMT with the initial customer record retrieval key for the current event interval. The send customer record routine then waits (855) on the specified stop semaphore flag being set by the DMT.

The DMT receives the initial customer record retrieval request, and dispatches it to a corresponding customer record retrieval routine. This routine leads the initial record retrieval key (including the ending time for the previous event interval which is the beginning time for the current event interval) from the specified request data location, and using this initial key, and the index [status/transfer date/check ID], retrieves the first customer record with an access date/time equal to or greater than the beginning event time (if more than one customer record has the same access date/time, then the customer record with the lowest check ID is retrieved) When the DMT retrieval routine has retrieved this first customer record in the current event interval, it provides an appropriate response to the send customer record routine, writing the retrieved customer record into the specified response data location and sending a stop request to the System Kernel.

When the stop semaphore is set (855), the send customer record routine reads the retrieved customer record from the specified response data location, and determines (858) that the DMT has returned a customer record. The routine then extracts (859) the transfer date/time and check ID from the retrieved customer record, and determines (860) that the current event time, which defines the end of the current global update event interval, is greater than the transfer date/time for the retrieved customer record, thereby confirming that the retrieved customer record was accessed during the current event interval.

The send customer record routine then sends a global update service request to the host DMT, along with the just-retrieved remote customer record, through the remote MMT (862). The routine then waits (863) on the specified stop request being sent, along with a response (acknowledgment), by the host DMT through the host MMT and the remote MMT to, respectively, the remote System Kernel and the specified response data location in the data area for the remote event subtask.

The above remote/host intertask communication operation is described in greater detail in Section 3.6 (Modem Manager Task). Essentially, the Modem Manager Task is designed so that remote/host intertask communications is essentially transparent to the requesting and responding tasks. That is, the remote/host requesting task sends a service request with request data and a stop semaphore to its System Kernel addressed to the host/remote responding task. The remote/host MMTs provide an essentially transparent communications link between the remote/host System Kernels to effect the return of the stop semaphore and response data from the host/remote responding task to the remote/host requesting task.

When the send customer record routine detects (863) the specified stop semaphore flag being set, it requests (854) the DMT to retrieve the next customer record in the current global update event interval, writing the transfer date/time and check ID extracted (859) from the just-sent customer record into a request data location to provide a new retrieval key for the DMT.

As with the first customer record retrieved in the current event interval, the DMT dispatches this request to a customer record retrieval routine that reads the new retrieval key from the specified request data location, and using the index [status/transfer date/check ID], searches the customer file by incrementing first check ID and then transfer date/time until the next record is retrieved. The DMT retrieval routine then responds to the customer record retrieval request, writing the retrieved customer record into the specified response data location for the send customer record routine.

This procedure—requesting a customer record using the transfer date/time and check ID for the previous record as the retrieval key, retrieving that customer record by reading the customer file using the retrieval key, sending the retrieved customer record to the host, and requesting the next customer record—continues until either (a) the remote DMT responds
to a retrieve customer record request from the send customer record routine by indicating that the customer file contains no other customer records accessed after the just-sent customer record (as detected in step 858), or (b) the send customer record routine determines that the customer record retrieved by the DMT has a transfer date/time after the current event time (which defines the end of the current global update event interval as determined in steps 859, 860). In either case, the send customer routine returns to the event subtask (826), which reads the next activity from the activity table.

After the activity for sending customer records (by selected status) has executed, the next activity specified in the Event Table is for sending negative status records (both NEGATIVE and CASH ONLY status). The corresponding routine in the event subtask for executing the send negative status record activity operates identically to the send customer record routine (828) in the Event Manager Task. Finally, the event subtask sends the current global update event interval from the negative status file and sending those records to the host.

After negative status records have been sent, the receive customer records and negative status records activities are executed. Because of the essential transparency of the remote/host communications operation using the host/remote MMTs, the receive activity is analogous to the send activity. The receive routine receives data messages that contain the home, remote MMT information along with the data, and sends it to the remote DMT for remote global update.

When the last send/receive activity for the global update function at the current event time has completed (i.e., the last receive negative status record routine has completed transferring negative status records from the host DMT to the remote DMT for global update), that routine returns to the event subtask, which determines that the current event time contains no more activities to be executed (826) so that the activity sequence is complete (828). The event subtask then checks the modem flag (870) to determine whether any communications link is active. In the present description of an exemplary operation of the event subtask to execute a global update function, the originate call routine (840) connects to the host and sets the event subtask modem flag (846).

Accordingly, at the completion of the activity sequence for the global update function, the event subtask detects that the modem flag is set (870) and requests the MMT (872) to disconnect from the host. The event subtask monitors its semaphore flag (873) until notified by the remote MMT that the communications link to the host has been terminated. When the semaphore flag is set, the event subtask clears (874) the modem flag, and then clears (876) the event active semaphore in the Event Manager Task. Finally, the event subtask (a) calculates the current event time for the event record based on the event interval and writes it into the event record, and (b) writes the current event time into its control data block for access during the next event/activity execution.

If the event subtask had been executing an event time and associated activity sequence in which communications was not necessary, such as backup or purge, the event subtask detects that the modem flag is clear (870). In that case, the event subtask would immediately clear the event active semaphore (876) and terminate (878).

3.6 Modem Manager Task

The Modem Manager Task manages modem communications, primarily to support host/remote file transfer for global update, but also for remote diagnostic purposes. Operation for host/remote file transfer depends in part upon whether the modem manager task is running in the host or remote check transaction processing system—all host/remote file transfers are initiated and controlled by the remote system.

Modem communications through the Modem Manager Task are essentially transparent to the other tasks, functionally operating as an extension of the normal intertask communications using intertask service requests. Thus, the modem Event Manager Task sends service requests to the host Data Manager Task through: the remote System Kernel, the remote Modem Manager Task, the host Modem Management Task and finally the host System Kernel. Similarly, the host Data Manager Task responds with a reply, including response data and a stop request, over the same host/remote communications path.

For remote-to-host file transfers, the remote Event Manager Task first issues a dial host request to the remote Modem Manager Task, which the Modem Manager Task executes by dialing the host Modem Manager Task and detecting an offhook condition at the host. When the remote Event Manager Task is notified by a stop semaphore that a connection has been made, it requests the MMT to send a Log-In ID to establish an active communications link. The remote Event Manager Task then issues a service request to the host Data Manager Task, which is directed by the remote System Kernel into the Modem Manager Task queue. The Modem Manager Task reads the request and forwards it to the host system, where the host Modem Manager Task transfers the request to the host Data Manager Task through the host System Kernel. The host data manager task responds with a reply that includes a stop request—this response is communicated through the host/remote Modem Manager Task link to the remote Event Manager Task.

At system initialization, the Modem Manager Task opens its communications port, and conducts modem start-up diagnostic tests.

FIG. 12 is a program flow diagram for the Modem Manager Task. The task continually monitor (902) its task queue to detect either (a) intertask request packets written into the queue by the System Kernel, or (b) a ring indication. When an intertask request packet is written into the Modem Manager Task queue, the Task reads (904) the packet, and decodes the function code and dispatches (906) the request to an appropriate modem control routine: Dial, Send, Disconnect and Reset. A communications session will always be initiated with a Connect request directed to the Modem Manager Task, which executes the request by dialing the number specified by the request data (typically the host), and in conjunction with the host Modem Manager Task, establishing a line connection between the two systems.

Typically, when the remote Event Manager Task is advised (with a stop semaphore) by the Modem Manager Task that the host answered the call and a line connection is made, the Event Manager Task sends, via the Modem Manager Task a Log-In ID that establishes an active communications link between the two systems. Once an active communications link is established, the remote/host file transfer procedure for communicating negative status and customer records is as follows.

The remote Event Manager Task sends a request for global update of a record to the host Data Manager Task, writing the record into a specified request data location. The remote System Kernel builds an intertask request packet and routes it to the remote Modem Manager Task. The Modem Manager Task reads (920) the request data from the location specified in the intertask request packet, and builds (922) a corresponding communications packet, including both the request and
the request data. The communications packet is sent (924) to the host modem Manager Task, and the remote modem Manager Task waits for a reply.

When the modem Manager Task receives (926) a reply from the host, which includes both response data (such as an acknowledgment) and a stop request, the response data is written (920) to the specified location for response data, and the stop request is sent (929) to the System Kernel, which sets the appropriate semaphore flag.

This communication procedure is continued so long as requests are sent to the modem manager Task (920). A remote/host file transfer session is terminated by the remote Event Manager Task sending to the remote modem Manager Task a disconnect request (916).

The host and remote modem Manager Tasks cooperate to establish a communications link as follows. A communications session is initiated by a dial request from the remote Event Manager Task is directed to the remote modem Manager Task, which responds by dialing the host.

A ring indication at the host modem is detected (908) by the host modem Manager Task, which directs the modem into an off-hook condition (930), establishing a remote/host connection.

The remote Event Manager Task then sends an appropriate log-in identification (932).

File transfer communications are commenced when the host modem Manager Task receives (934) a communications packet from the remote modem Manager Task. The host modem Manager Task builds (936) a corresponding service request that is sent (938) to the host System Kernel.

The service request is directed to the designated responding task, such as the host Data Manager Task, which executes the request and provides both response data and a stop request. The host modem Manager Task sends (940) the stop request from its queue, and reads (942) the response data from the specified location.

The host modem Manager Task then builds (944) an appropriate reply packet (including the response data and the "stop" request), and sends (946) the reply to the host modem Manager Task. The next communication to the host modem Manager Task will either be a Disconnect instruction (948) or another communications packet.

The modem Manager Task implements remote/host communications functions in a manner that is essentially transparent to the other tasks and the System Kernel. That is, intertask communications between a remote task and a host task are accomplished in a manner identical to intertask communications between tasks running in the same check transaction processing system, except that both the remote and the host System Kernel are involved in the intertask communication, as are the remote and host modem Manager Tasks.

However, the communications function provided by the remote and host modem Manager Tasks is essentially transparent to the other tasks running in either the remote or the host. For example, the remote event subtask sends requests in the form of service requests to the host Data Manager Task just as it would send requests to the remote Data Manager Task. Specifically, the remote event subtask builds a request to the host DMT, and sends the service request to the remote System Kernel. The remote System Kernel builds a inner task request packet and places it in the remote MMT task queue. The remote MMT task reads the intertask request packet and builds a communications packet for the request to the host DMT (including function code, request data and stop semaphore flag). The remote MMT transmits the communications packet to the host MMT, which builds a corresponding service request for the host System Kernel. The host System Kernel builds an intertask request packet that is placed in the host DMT task queue. The host DMT retrieves the intertask request packet, which constitutes a request from the remote event subtask, and executes it in the same manner that it would a request from the host event subtask, writing response data to the specified response data location and sending a stop request to the host System Kernel. The host System Kernel, recognizing the stop request as being directed to the remote event subtask, builds an intertask packet with both the response data and the stop request and writes into the remote MMT task queue.

The remote MMT reads the intertask request packet, builds a communications packet and sends it to the remote MMT. The remote MMT writes the response data into a specified location in the data area for the Event Manager Task, and sends the stop request to the remote System Kernel. The remote System Kernel sets the specified stop semaphore, notifying the remote event subtask that response data from the host DMT is available, completing the request/response cycle.

4.0 Alternative Embodiments

While the check transaction processing system has been described in connection with a preferred embodiment, other embodiments within the spirit and scope of the invention as defined by the following claims will be apparent to those skilled in the art. For example, in the case of multiple-store systems, the preferred embodiment includes separate, essentially autonomous check transaction processing systems at each store site, thereby permitting each store to establish and maintain an essentially local customer database, and limiting off-site data communications activities to remote/host file transfers for global update. However, the local customer database (and associated disk system) need not be located at the store site, but may be remote from the stores' transaction terminal network (such as by locating it in a central office) so long as: (a) transaction terminal response time is not adversely affected and, (b) the essentially local character of the customer database for each is maintained.

The preferred embodiment's implementation of a multi-tasking system using a System kernel for task-switching and intertask communications, can be readily adapted to operate under a commercial, multi-tasking operating system. These operating systems provide the task switching and intertask message communications functions performed by the System Kernel. Adapting the CTPS multi-tasking program to a commercially available multi-tasking operating system is well within the programming capabilities of those skilled in the art. Each program task would be modified in a conventional manner to accommodate the specific message communication function implemented by the multi-tasking operating system.

5.0 Targeted Marketing Functions

5.1 Automatic Building of a Database for a Retail Store Marketing Program

Coping patent application Ser. No. 07/826,255 discloses manually inputting customer information, such as a customer's checking account number, into a database for various purposes. However, previous techniques of building a database from checks required a store employee to physically review the name and address preprinted on each check and type in certain parts of that name and address to try to determine if the name matched a name and address previously stored in the database. For example, after typing in the last name Jones, it would be discovered that there are multiplicity of Joneses previously stored in the database. The name Jones would then have to be refined by typing in the names or
initials which again might produce a multiplicity of matches. The information could then be further refined by imputing the street address to match along with the full name and initials.

If a grocery store for example, has a volume of several thousand check customers per day, this manual database building technique would mean a substantial amount of labor and time required to manually key in the name and address information to find out if, in fact, that record was already in the database and was complete. If the database was incomplete, the new information would have to be manually loaded into the database.

The present invention provides a method which may be accomplished utilizing the automatic check reader 119 in order to automatically build a database for use in a retail store marketing program. With use with the system, a customer's check is quickly scanned by the check reader 119 of the invention at the point-of-sale, or at another suitable location within the store. Due to the unique nature of the reader 119, all checks from all banks can be read and the customer identification number can be detected in any MICR location. Moreover, changes in bank transit codes and other identification changes can be automatically detected by the system so that the customer may be tracked, as previously described. The detected unique customer identification code is then transmitted to the host computer 110 which stores a previously stored database of unique customer identification codes. The detected unique customer identification code is then compared against the stored database. The system detects the occurrence of a match between information in the stored database and the detected unique customer identification code. When a match occurs, a determination is made if all necessary predetermined identification criteria related to the detected unique customer identification is in the stored database. Specifically, a determination is made if the full address and the telephone number of the detected identification code was previously stored in the database.

If the predetermined customer identification data is found in the stored database, a signal is transmitted from the host processor 110 to the POS terminal 120 to provide a display that the customer record is complete and that no further data is required, or in the alternative a signal may be transmitted in only those instances when additional information is required to complete the database criteria. If an indication is provided that the predetermined identification criteria is not contained in the database, such as lack of address information or the like, a signal is generated to the POS terminal 120 to indicate that insufficient identification criteria exists. The store personnel may then input the required additional identification criteria into the database. The additional identification criteria is then entered into the database of the host processor 110 for storage in conjunction with the unique customer identification code. This entering of additional identification criteria will normally be done “after hours” by setting aside the check in question and entering the data in a “back room” in the store. The system also generates information about the date and amount of the transaction, which is also stored in the database.

Thus, the present system may continuously build an up-to-date database which contains relevant information about the frequency of the customer’s transactions, the amount of the transaction, along with the current address and information. As will be subsequently described, this database may be used for various types of targeted marketing in order to enhance the retail store’s marketing.

FIGS. 13A and B describe this aspect of the present invention, which is accomplished in conjunction with the present check reader 119 which can detect a customer account num-

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Beginning a process being flowed.</td>
</tr>
<tr>
<td>5</td>
<td>Check is taken for Henderson purchase at retail store.</td>
</tr>
<tr>
<td>6</td>
<td>Scanning device is used to read the MICR code from the bottom of the check.</td>
</tr>
<tr>
<td>8</td>
<td>MICR code must now be parsed for meaningful data. ANSI standards specify the following field locations within MICR band: Amount field 1-12 On Us 14-31 Transit 33-43 Auxiliary On Us 45-64</td>
</tr>
<tr>
<td>9</td>
<td>Check transit field for the first part of the customer’s ID number.</td>
</tr>
<tr>
<td>12</td>
<td>The check’s sequence number (which matches the number on the top right corner of the check) must be located in order to determine the customer's bank checking account number.</td>
</tr>
<tr>
<td>13-16</td>
<td>A variable length, dynamic TRANSIT CODE TABLE is maintained on disk for checks that cannot be successfully parsed. The index key for this table is the bank’s transit number. Included for each table entry are the beginning and ending positions of the sequence number within the MICR band. The system will prompt the operator for the sequence number if it cannot determine its location within the On Us field, and then add the entry to the TRANSIT CODE TABLE. The modifications to the TRANSIT CODE TABLE and/or the table may be maintained and downloaded from another computer.</td>
</tr>
<tr>
<td>20-22</td>
<td>Data in the Auxiliary On Us field, otherwise indicated in the TRANSIT CODE TABLE, is the check sequence number: This would indicate that all data in the On Us field make up the customer’s bank account number.</td>
</tr>
<tr>
<td>25-27</td>
<td>Parse On Us field. Use any data within positions 13 through 32 as the On Us field. Discrete numbers are usually divided with 2 or more spaces or the ANSI On Us character. Embedded single spaces and the ANSI MICR dash are removed from within said discrete numbers.</td>
</tr>
<tr>
<td>28</td>
<td>Test for number of discrete numbers parsed from the On Us field.</td>
</tr>
<tr>
<td>30-33</td>
<td>If one or more than three discrete numbers are located in the On Us field, the sequence number is either not present or is embedded in such a way that its location cannot be determined. The operator enters the sequence number including any leading zeros. The system can then determine the relative position of the sequence number in the On Us field and stores this as an additional entry to the TRANSIT CODE TABLE.</td>
</tr>
<tr>
<td>37-39</td>
<td>If two discrete numbers are located in the On Us field, unless otherwise indicated in the TRANSIT CODE TABLE, the number with the lesser value is the check sequence number, and the number with the greater value is the customer’s checking account number.</td>
</tr>
<tr>
<td>41-45</td>
<td>If three discrete numbers are located in the On Us field, unless otherwise indicated in the TRANSIT CODE TABLE, the number with the greatest value is the customer’s checking account number. The smallest value in the Transaction Processing Code is appended to the end of the checking account number. The middle value is the check sequence number.</td>
</tr>
<tr>
<td>51</td>
<td>Once the bank’s transit number and customer’s checking account number are parsed from the MICR band, they are extracted and combined (transit number followed by account number) to form the customer’s unique checking account ID.</td>
</tr>
<tr>
<td>52-54</td>
<td>This ID is used as the primary key for a customer database on disk indexed by checking account ID. In this database building process, the key is passed to the processor and the database is searched by checking account ID key.</td>
</tr>
<tr>
<td>57-63</td>
<td>If a record exists in the database for the customer with this checking account ID, the completeness of predetermined identification criteria is checked and the result is signaled back to the operator.</td>
</tr>
<tr>
<td>67-68</td>
<td>If no record exists, one is created for this checking account ID and the operator is signaled the record is incomplete of predetermined identification criteria.</td>
</tr>
<tr>
<td>70-71</td>
<td>If signaled to do so, operator enters additional information from off of the face of the check. The updated record is rewritten in the database.</td>
</tr>
<tr>
<td>73</td>
<td>Shopping event and dollars spent is recorded in order to build a shopping history for each customer's record.</td>
</tr>
</tbody>
</table>
5.2 Targeted Marketing Program

It has been previously known to utilize marketing programs wherein users of a retail store's services are targeted to attempt to induce the customers to make additional purchases from the retail store. What has not before been possible, however, is to allow a retail store owner to target only non-customers. If such were possible, store owners would not waste mailing and marketing expenses on people in their targeted geographic area who had been previous customers. In other words, the retailer would be able to use his marketing dollars to attempt to entice non-customers or infrequent customers to visit the store.

FIGS. 14A and B illustrate a software program subroutine operable to be performed in the host processor 110 in order to purge existing customers from a database. In operation, the system of the present invention is utilized so such that the checking of a predetermined geographical area is performed by a customer's check and inputs the customer's unique identification number based upon the customer's checking account number into the system. The specific steps of the routine of FIGS. 14A and B are described in detail as follows:

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Beginning of process being flowed.</td>
</tr>
<tr>
<td>6</td>
<td>Check is taken for tendering purchase at retail store.</td>
</tr>
<tr>
<td>7</td>
<td>Once the bank’s transit number and customer’s checking account number are passed and extracted from the MICR band, they are combined (transit number followed by account number) to form the customer’s unique checking account ID. This ID is used as the primary key for a customer database on disk indexed by checking account ID.</td>
</tr>
<tr>
<td>8-15</td>
<td>If a record exists in the database for the customer with this checking account ID, the completeness of predetermined identification criteria is checked and the result is signaled back to the operator. Shopping event and dollar spent are recorded in order to build a shopping history for each customer’s record.</td>
</tr>
<tr>
<td>19-20</td>
<td>If no record exists, one is created for this checking account ID and the operator is signaled the record is (in)complete of predetermined identification criteria.</td>
</tr>
<tr>
<td>23-25</td>
<td>Shopping event and dollar spent are recorded over a period of time sufficient in length to get a good representation of the store’s customer base.</td>
</tr>
<tr>
<td>31</td>
<td>A file containing a complete list of residents in a predetermined geographic area is obtained from a third party.</td>
</tr>
<tr>
<td>32</td>
<td>Create an empty TARGET FILE for writing records of prospective customers not appearing in store’s database.</td>
</tr>
<tr>
<td>33</td>
<td>Read FIRST record from the file containing a complete list of residents in a predetermined geographic area.</td>
</tr>
<tr>
<td>36</td>
<td>Search in the store’s database for to determine if this household is present in the store’s database.</td>
</tr>
<tr>
<td>38-42</td>
<td>If this household is not contained in the store’s database, write this record said TARGET FILE of prospective customers not appearing in the store’s database.</td>
</tr>
<tr>
<td>45-47</td>
<td>Read the NEXT record from said list of prospective customers in a predetermined geographic area. IF END OF FILE marker is found then proceed to step 48, otherwise LOOP back up to step 36.</td>
</tr>
<tr>
<td>48</td>
<td>Said TARGET FILE now contains a list of prospective customers from a predetermined geographic area that are NOT contained in the store’s active list of customers.</td>
</tr>
<tr>
<td>53</td>
<td>Marketing may now be targeted toward this list of non-customers, such as mailing of inducement coupons or advertising.</td>
</tr>
</tbody>
</table>

In summary, it may be seen that the technique of FIGS. 14A and B provides a method for retail store marketing which begins with the stored database of existing customers of the retail store which has been accumulated in the manner previously described. The database includes each customer’s checking account identification number for use as a unique customer identification code, along with additional customer identification data such as home address, telephone number and the like. Each time a retail customer enters the retail store and makes a purchase, the unique customer identification code of the customer is detected by the present system. Comparison is made of each entered unique customer identification code with the stored database. A list of prospective customers of the retail store in a predetermined geographical area is obtained through conventional sources and is stored in the host processor 110. Comparison is made of the stored database with the list of prospective customers. All data is eliminated from the list of prospective customers which relates to information contained in the stored database, such that a non-customer database is produced which contains data relating only to prospective customers who do not appear on the stored database.

The present system generates a non-customer database which would allow the mailing of advertising material in a geographic area to customers who have not previously shopped, or who have infrequently shopped at the retail store.

5.3 Infrequent Shopper Database and Marketing Technique

Competition among retail stores has dramatically increased such that targeted marketing is becoming increasingly important. Historically, such retail stores such as grocery stores have relied upon a loyal base of shoppers who have shopped at that particular establishment over a long period of time. However, with increased competition, it has now been determined that many shoppers frequent many different stores, particularly grocery stores, based upon coupons or price differentials at the time.

For example, Table 5 attached hereeto illustrates customer shopping frequency data which was accumulated by the present system at an actual grocery store over an eight week period in 1991. Surprisingly, it was found in this particular store that 55% of the store’s customers during this period only visited the grocery store one time. Only a few percentage points of the customers Visited the store over seven times during that period. Specifically, for a total number of almost 30,000 customers over the eight week period, 8,794 customers only visited the store one time, while 2,776 customers visited the store only twice. Over 20% of the store’s revenue during the period was based upon a single visit by 8,794 customers.

Table 6 illustrates an infrequent customer analysis of a different grocery store over an eight week period. This table illustrates that 24.3% of the total customer base, or 5,581 customers, averaged visiting the grocery store only 1.08 times during the eight week period.

This shopping data, which was developed using the present invention, has come as a surprise to grocery store owners. Many owners did not previously understand the large percentage of their business which was coming from infrequent shoppers. A need has thus arisen for a marketing technique to target these infrequent shoppers to encourage them to visit the grocery store more often. It will be understood that many families visit a grocery store approximately one time per week, and thus a visit of only once every eight weeks means that the store is being visited by many infrequent shoppers who are shopping at different stores. It could substantially enhance the store’s revenues if these infrequent shoppers could be induced to shop more often at a particular store.

FIGS. 15A and B illustrate a marketing program which uses the system of the present invention to detect infrequent customers such that marketing may be directed at those infrequent customers. Specifically, the techniques shown in FIGS. 15A and B identify customers who have not shopped since a predefined target date, such as thirty days. After developing this list of infrequent shoppers, the store can then mail out...
direct mail enticements to the customer, such as providing them with coupons and the like if they shop at that particular store.

A description of the routine as shown in FIGS. 15A and B is described in more detail as follows:

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Beginning of process being flowed.</td>
</tr>
<tr>
<td>6</td>
<td>Check is taken for tendering purchase at retail store.</td>
</tr>
<tr>
<td>7</td>
<td>Once the bank's transit number and customer's checking account number are parsed from the MICR band, they are combined (transit number followed by account number) to form the customer's unique checking account ID. This ID is used as the primary key for a customer database on disk indexed by checking account ID.</td>
</tr>
<tr>
<td>8-15</td>
<td>If a record exists in the database for the customer with this checking account ID, the completeness of predetermined identification criteria is checked out and the result is signaled back to the operator. Shopping event and dollars spent are recorded in order to build a shopping history for each customer's record.</td>
</tr>
<tr>
<td>19-20</td>
<td>If no record exists, one is created for this checking account ID and the operator is signaled the record is incomplete of predetermined identification criteria.</td>
</tr>
<tr>
<td>21-27</td>
<td>Shopping event and dollars spent are recorded over a period of time sufficient in length to get a good representation of the store's customer base.</td>
</tr>
<tr>
<td>33</td>
<td>Create an empty TARGET FILE for writing records of customer's who have not shopped this store since a preselected shopping date.</td>
</tr>
<tr>
<td>34</td>
<td>Read FIRST record from the store's database of customer's check information and related shopping history.</td>
</tr>
<tr>
<td>37-38</td>
<td>Locate customer's LAST SHOPPING DATE from customer's shopping history and compare with said preselected shopping date.</td>
</tr>
<tr>
<td>40-44</td>
<td>If this customer's LAST SHOPPING DATE is prior to said preselected shopping date, write this record to said TARGET FILE of customer's who have not shopped this store since a preselected shopping date.</td>
</tr>
<tr>
<td>47-49</td>
<td>Read the NEXT record from said store's database of customer's check information and related shopping history. If END OF FILE marker is found then proceed to step 50, otherwise LOOP back up to step 37.</td>
</tr>
<tr>
<td>50</td>
<td>Said TARGET FILE now contains a list of the store's customers who have not shopped this store since a preselected shopping date, and may be used for targeted marketing such as mailings.</td>
</tr>
</tbody>
</table>

It may thus be seen that the program of FIGS. 15A and B provides an efficient technique of building a customer database and mailing list using checks from a variety of different banks. In operation, a customer's checking account identification number is detected by the check reader 119 for use as a unique customer identification code. As previously disclosed, a unique aspect of this invention is that the present check reader can determine checking account identification numbers even if the proper spacing and symbology is not utilized. The system can also detect changes in bank transit numbers. If the customer's account identification number is entered into processor 110 which contain a database that maintains customer records including the customer's name and address, the checking account identification number, and customer shopping habits and transactional data over a preselected time interval. The checking account identification number is compared with the database. A response is generated by the processor 110 to signal the presence of the customer's checking account identification number or the failure to locate the customer's checking account identification number. A new record is then created in the database for that customer's checking account identification number in response to a processor 110 response indicating the failure to locate, so that the customer's name and address is entered into the record along with a shopping incidence and shopping data being recorded in the database concurrently. A list of customers is then generated in the database whose last transaction date is prior to a preselected interval of inactivity so that grouping or subgrouping of customers is available for marketing efforts.

Alternatively, the system may use dollar amounts to determine "an infrequent shopper". If the system determines that the cumulative dollars spent at the store by a specified customer is equal to or less than a predetermined dollar level within a predetermined time interval, the specified customer is designated as an "infrequent shopper". As another alternative, the database is maintained with the shopping history for each unique check identification. Each time the system detects a check with a unique check identification number, it is checked against the database. If the last date shopped is prior to a preselected date, a signal is generated and transmitted to the POS. The check is then marked set aside to be used to create a mailing list. Alternatively, the signal may be used to prompt the store clerk to disburse incentive coupons at the POS.

5.4. Marketing Based on Range of Last Shopping Dates

As noted above, it would be advantageous to be able to selectively market to infrequent shoppers. FIGS. 15A and B illustrated a database building technique to obtain a list of infrequent shoppers based upon their last shopping date. FIGS. 16A and B illustrate a database building technique to provide a list of a store's customers whose last shopping date falls within a preselected shopping date range. For example, it would be possible using the techniques shown in FIGS. 16A and B to provide a list of customers whose last shopping date falls within a period of 30 to 60 days prior.

In accordance with the techniques shown in FIGS. 16A and B, a customer's checking account identification number is entered as a unique customer identification code by the check reader 119. Host processor 110 is programmed to store a database which includes a plurality of unique customer identification codes and check cashing history of prior customers of the retail establishment, including date of check transactions. The processor then compares each newly entered unique customer identification code against the stored database. A signal is generated to indicate the presence of a complete customer information record or of an incomplete customer information record as a result of the comparison. A second database is then generated which lists customers whose last unique customer identification code entry date falls within a preselected date range. A promotion may then be selectively offered by the retail establishment to customers within the second database. For example, coupons or other enticements may be mailed directly to the customers on the second database, or distributed at the POS.

FIGS. 16A and B are described in detail as follows:

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Beginning of process being flowed.</td>
</tr>
<tr>
<td>5</td>
<td>Check is taken for tendering purchase at retail store.</td>
</tr>
<tr>
<td>6</td>
<td>Once the bank's transit number and customer's checking account number are parsed from the MICR band, they are combined (transit number followed by account number) to form the customer's unique checking account ID. This ID is used as the primary key for a customer database on disk indexed by checking account ID.</td>
</tr>
<tr>
<td>7-14</td>
<td>If a record exists in the database for the customer with this checking account ID, the completeness of predetermined identification criteria is checked and the result is signaled back to the processor. Shopping event and dollars spent are recorded in order to build a shopping history for each customer's record.</td>
</tr>
<tr>
<td>18-19</td>
<td>If no record exists, one is created for this checking account ID and the operator is signaled the record is incomplete of predetermined identification criteria.</td>
</tr>
</tbody>
</table>
59
-continued

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>23-26</td>
<td>Shopping event and dollars spent are recorded over a period of time sufficient in length to get a good representation of the store's customer base.</td>
</tr>
<tr>
<td>27</td>
<td>Create an empty TARGET FILE for writing records of customer's who last shopped this store within a preselected shopping date range.</td>
</tr>
<tr>
<td>33</td>
<td>Read FIRST record from the store's database of customer's check information and related shopping history.</td>
</tr>
<tr>
<td>36-37</td>
<td>Locate customer's LAST SHOPPING DATE from customer's shopping history and compare with said preselected shopping date range.</td>
</tr>
<tr>
<td>39-43</td>
<td>If this customer's LAST SHOPPING DATE falls within the range of said preselected shopping date range, write this record to said TARGET FILE of customer's who have last shopped this store within a preselected shopping date range.</td>
</tr>
<tr>
<td>46-48</td>
<td>Read the NEXT record from said store's database of customer's check information and related shopping history. If END OF FILE marker is found then proceed to step 49, otherwise LOOP back up to step 30.</td>
</tr>
<tr>
<td>49</td>
<td>Said TARGET FILE now contains a list of the store's customers whose LAST SHOPPING DATE falls with a preselected shopping date range.</td>
</tr>
</tbody>
</table>

In addition to the above, the selection criteria for an "infrequent shopper" may also include a required minimum dollar amount in a preselected time range.

5.5. Dissemination of Point-of-Sale Coupons and Direct Mail Coupons Based Upon Shopping History

FIGS. 17A and B illustrate a program flow chart of a marketing technique utilizing the present invention, wherein coupons may be distributed to customers based upon the frequency of shopping dollar volume or other criteria based upon the shopping habits of the customer. As previously noted, retail establishments such as grocery stores, using the present invention, can now determine the importance of inducing infrequent shoppers to shop and also the maintenance of existing customers. The technique shown in FIGS. 17A and B enables the stores to issue coupons and other inducements to customers based upon the shopping habits of the customer. For example, the technique shown in FIGS. 17A and B enables the store to reward a high volume shopper in order to hold on to especially good shoppers. Alternatively, the store can award a lesser incentive package to good shoppers in order to maintain a consistency such that each shopper receives a coupon package. Importantly, the technique enables a high incentive coupon package to be delivered to a customer who is a secondary shopper or who is an infrequent shopper, in order to make them a primary shopper.

A detailed description of the operation of the technique illustrated by FIGS. 17A and B utilizing the present invention is as follows:

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>14-15</td>
<td>The store has on hand coupons to be handed out at the point-of-sale. These coupons may be arranged into varying value packages. We will assume 3 different coupon packs for point-of-sale dispensing: Coupon VALUE A: For customer who has been determined to be a SECONDARY shopper. This would be incentive to make them become a PRIMARY shopper. Coupon VALUE B: For customer who has been determined to be a PRIMARY shopper. This would be a lesser incentive package to primarily maintain a consistency whereby everyone receives a package. Coupon VALUE C: For customer who has been determined to be a HIGH VOLUME shopper. This incentive would be used as a means to hold on to especially good shoppers.</td>
</tr>
<tr>
<td>17</td>
<td>There are two methods for determining the coupon package to be dispensed at the point-of-sale. Steps 18-21 deal with preselected criteria analyzed OFF-LINE and downloaded to the front end computer. Steps 23-34 deal with ON-LINE determination based on prior 30 days shopping VS two preselected dollar LIMITS (LIMIT 1 and LIMIT 2).</td>
</tr>
<tr>
<td>18</td>
<td>OFF-LINE ANALYSIS:</td>
</tr>
<tr>
<td>19</td>
<td>Prediscount criteria such as shopping volume, frequency, demographics, etc. along with how they relate to the Coupon offerings are set for OFF-LINE analysis.</td>
</tr>
<tr>
<td>20</td>
<td>Each record is analyzed against said prediscount criteria and corresponding Coupon VALUES are selected and flagged. Said Coupon VALUE information is then downloaded to the ONLINE processor.</td>
</tr>
<tr>
<td>21</td>
<td>On the customer's next visit, ONLINE processor uses said downloaded Coupon VALUE information to flag to clerk which point-of-sale Coupon VALUE package to dispense to the customer.</td>
</tr>
<tr>
<td>Proceed to step 40 for METHOD OF DISPERSEMENT.</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>ON-LINE 30 DAY ANALYSIS:</td>
</tr>
<tr>
<td>24</td>
<td>Two dollar limits are preselected; ie: LIMIT 1 = 100.00 LIMIT 2 = 350.00</td>
</tr>
<tr>
<td>25</td>
<td>Prior dollars spent for the previous 30 days are calculated and compared with said preselected dollar limits.</td>
</tr>
<tr>
<td>26-27</td>
<td>If prior dollars spent for previous 30 days is LESS THAN LIMIT 1, the customer is considered a SECONDARY shopper; Coupon VALUE A is dispensed to the customer.</td>
</tr>
<tr>
<td>Proceed to step 40 for METHOD OF DISPERSEMENT.</td>
<td></td>
</tr>
<tr>
<td>30-31</td>
<td>If prior dollars spent for previous 30 days is GREATER THAN LIMIT 2, customer is considered a PRIMARY shopper; Coupon VALUE B is dispensed to the customer.</td>
</tr>
<tr>
<td>Proceed to step 40 for METHOD OF DISPERSEMENT.</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>If prior dollars spent for previous 30 days is GREATER THAN LIMIT 2, customer is considered a HIGH VOLUME shopper; Coupon VALUE C is dispensed to the customer.</td>
</tr>
<tr>
<td>40-46</td>
<td>Coupons are dispensed either with clerk manually handing indicated packet to customer or by ONLINE processor spooling selected Coupon VALUE to a point-of-sale coupon printer, or by having the clerk mark the check with a code so that coupons may be subsequently distributed to the customer by direct mail.</td>
</tr>
</tbody>
</table>

Many of the prior art marketing techniques require the mailing of coupons to customers after the targeted database has been developed. With the techniques shown in FIGS. 17A and B, coupon rewards and other incentives may be made at the time of the point-of-sale. The invention contemplates at least three different ways of accomplishing a coupon reward at the point-of-sale. One is to utilize display 124 (FIG. 2A) which displays in formation to the store employee to indicate what type of coupon or other incentive reward is to be dispensed, and the employee hands the coupons to the customer, or in the alternative the clerk/operator may mark or set aside the check for use as a source of a mailing list for distribution of incentives. As an example, as previously noted, let us assume that three coupon packs A, B and C have been developed, based upon the desire to provide different incentive rewards for a secondary shopper, a primary shopper and high
volume shopper. Three stacks of these coupon packs are placed readily available to the store employee. When a shopper comes in and presents a check, the check is scanned through the check reader 119 and the host processor 110 utilizes the technique of FIGS. 16A and B to generate an indication of whether or not the shopper is a secondary, primary or high volume shopper. The display 124 then generates a display that says “This shopper is a primary shopper. Please give this shopper coupon pack B.” The store employee would then hand the customer a coupon pack B. As other customers come through that are different types of shoppers, different coupons are provided to them. In this way, the present invention enables the store to discriminate between various types of customers in order to induce the infrequent shopper to come back, while maintaining the goodwill of good shoppers.

A third technique of distributing coupons utilizes a system to actually print, at the point-of-sale, coupons bearing the desired information based upon selected criteria. Commercially available printers may be used for generating coupons at a point-of-sale, such as disclosed in U.S. Pat. No. 4,723,212 issued on Feb. 2, 1988 and entitled Method and Apparatus for Dispensing Discount Coupons or as further disclosed in U.S. Pat. No. 4,910,672 issued Mar. 20, 1990 and entitled Method and Apparatus for Dispensing Discount Coupons. As disclosed in the aforesaid patents, systems may be provided to generate coupons at the point-of-sale based upon the type of product purchase. In the disclosures of the above-captioned patents, a coupon relating to a particular type of a product is generated based upon a bar code reader determining that a triggering or competing product has just been purchased by the consumer. The same coupon dispensing apparatus described in the above-identified patents may be utilized to print the coupons as described in FIGS. 16A and B, but based upon the criteria and the operation of the present invention.

The present invention looks at the history of the shopper in question and induces the shopper to return based upon pre-selected criteria such as has the customer purchased above a certain amount of dollars, has the customer purchased between certain amount of dollars or less than a certain amount of dollars, or has the customer purchased over a certain amount of merchandise over a period of time, or has the customer not been at the store to shop within a predetermined time interval. The present system provides a more efficient distribution of point-of-sale coupons, as an alternative to the circuitous and expensive route of mailing coupons. 5.6. Dissemination of Point-Of-Sale Coupons and Direct Mail Coupons Based Upon Scanned Data

FIGS. 18A, B, and C illustrate a technique for generating coupons based upon the particular transaction currently being accomplished by the customer. The technique of FIGS. 18A, B, and C detect the particular store departments in which the products being purchased are located. This system requires the use of the bar code scanner to detect which products are being purchased, and which departments are being shopped by the customer. For example, the technique shown in FIGS. 18A, B, and C detects whether or not items have been purchased from the meat department, dairy department or deli. Based upon data stored within the computer, the decision is then made as to whether to award a coupon and what type of coupon to award. For example, if the data illustrates that over a period of time a shopper shows a consistent failure to shop at the delicatessen, then when the customer’s check identification is scanned into the check reader 119, the processor 110 pulls up the customer’s history and generates a coupon to induce the customer to shop at the delicatessen the next time the customer shops. This inducing can be done by providing the customer with a very high value coupon used only for deli shopping.

Similarly, the stored data in processor 110 may contain information regarding particular product groups. If it is determined that the customer is a frequent shopper but does not purchase coffee, the data may determine that a coupon providing a large discount on coffee would be suitable to give to the customer. Alternatively, the system might determine that the customer had no history of buying a specific brand of coffee, and incentive coupons can be distributed for that brand of coffee. To provide this information, information regarding the particular product and the department of the product is generated by the bar code reader 123a, or through entry through the cash register, and transmitted to the host processor 110. The host processor 110 then identifies each particular product being purchased, compares it against the stored data tables and generates an indication of the type of coupon to be given to the customer. As previously noted, this indication from the host processor 110 may comprise a signal transmitted on the display 124 or the signal may be utilized to generate the actual printing of a coupon using the system similar to that shown in U.S. Pat. Nos. 4,723,212 and 4,910,672.

The present invention differs from the systems disclosed in the above-identified patents because, among other things, the present system generates coupons based upon the lack of purchase of a particular item by comparing against stored history for unique customer IDs, rather than because of the purchase of a particular item.

A more detailed description of the technique of FIGS. 18A, B, and C is as follows:

Description

3. Beginning of process being flowed.
5-9. Customer’s purchase is transacted using bar code scanning cash register. As each item is scanned, said cash register maintains a record of preselected criteria for each item such a product, product group, department, etc. for the customer’s purchase.
10. Check is taken for tendering at retail store.
15-16. Once the bank’s transit number and customer’s checking account number are passed from the MICR band, they are combined (transit number followed by account number) to form the customer’s unique checking account ID. This ID is used as the primary key for a customer database on disk indexed by checking account ID.
19. If no record exists, one is created for this checking account ID and the operator is signaled the record is incomplete and predetermined identification criteria.
22. Send scanned data of said preselected criteria to the ON-LINE front end processor.
23. If a record exists in the database for the customer with this checking account ID, the completeness of predetermined identification criteria is checked and the result is signaled back to the operator. Shopping event and dollars spent are recorded in order to build a shopping history for each customer’s record.
24. Processor updates customer’s record with the said scanned information of preselected criteria.
26-27. The store has on hand coupons to be handed out at the point-of-sale. These coupons may be arranged into varying packages. We will assume 3 different coupon packs for point-of-sale dissemination:

Coupon VALUE A:
For customer who has been determined to be a SECONDARY shopper. This would be incentive to make them become a PRIMARY shopper.

Coupon VALUE B:
For customer who has been determined to be a PRIMARY shopper. This would be a lesser incentive package to primarily maintain a consistency whereby everyone receives a package.

Coupon VALUE C:
For customer who has been determined to be a HIGH VOLUME shopper. This incentive would be used as a means to hold onto especially good shoppers.
63 -continued

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>There are two methods for determining the coupon package to be dispensed at the point-of-sale. Steps 30-33 deal with preselected criteria analyzed OFF-LINE and downloaded to the front end computer. Steps 35-46 deal with ON-LINE determination based on prior 30 days shopping V8 two preselected dollar LIMITS (LIMIT 1 and LIMIT 2).</td>
</tr>
<tr>
<td>30</td>
<td>OFF-LINE ANALYSIS:</td>
</tr>
<tr>
<td>31</td>
<td>Preselected criteria such as shopping volume, frequency, demographics, etc. along with how they relate to the Coupon offerings are set for OFF-LINE analysis.</td>
</tr>
<tr>
<td>32</td>
<td>Each record is analyzed against said preselected criteria and compared to the Coupon VALUE. If the preselected Coupon VALUE is selected and flagged, Said Coupon VALUE information is then downloaded to the ON-LINE processor.</td>
</tr>
<tr>
<td>33</td>
<td>On the customer’s next visit, ON-LINE processor uses said downloaded Coupon VALUE information to flag to clerk which point-of-sale Coupon VALUE package to dispense to the customer.</td>
</tr>
<tr>
<td>34</td>
<td>Proceed to step 40 for METHOD OF DISPERSEMENT.</td>
</tr>
<tr>
<td>35</td>
<td>ON-LINE 30 DAY ANALYSIS:</td>
</tr>
<tr>
<td>36</td>
<td>Two dollar limits are preselected, i.e.; LIMIT 1 = 100.00</td>
</tr>
<tr>
<td>37</td>
<td>LIMIT 2 = 350.00</td>
</tr>
<tr>
<td>38-39</td>
<td>If prior dollars spent for previous 30 days is LESS THAN LIMIT 1, customer is considered a SECONDARY shopper; Coupon VALUE A is dispensed to customer. Proceed to step 51 to determine WHICH coupons to dispense.</td>
</tr>
<tr>
<td>42-43</td>
<td>If prior dollars spent for previous 30 days is GREATER THAN LIMIT 1, but LESS THAN LIMIT 2, customer is considered a PRIMARY shopper; Coupon VALUE B is dispensed to customer. Proceed to step 51 to determine WHICH coupons to dispense.</td>
</tr>
<tr>
<td>46</td>
<td>If prior dollars spent for previous 30 days is GREATER THAN LIMIT 2, customer is considered a HIGH VOLUME shopper; Coupon VALUE C is dispensed to customer.</td>
</tr>
<tr>
<td>51-52</td>
<td>Customer’s database record contains fields to monitor preselected shopping activities such as purchase of particular products, product groups, departments, etc.</td>
</tr>
<tr>
<td>54</td>
<td>Processor has determined what VALUE of coupons to be dispensed, now said database fields monitoring preselected shopping activities are used to determine which coupons in particular to dispense based upon exception to previous shopping activity.</td>
</tr>
<tr>
<td>55</td>
<td>MAX-SUB represents the number of said preselected items (products, product groups, departments, etc.) being maintained and monitored for shopping activity.</td>
</tr>
<tr>
<td>56</td>
<td>TABLES represent a table of coupons that represent incentives for said said preselected item (products, product groups, departments, etc.). TABLES are arranged in order of decreasing priority.</td>
</tr>
<tr>
<td>61-70</td>
<td>Step through each said preselected item in decreasing priority and check for an exception in shopping activity. If the customer has not shopped this preselected item, this particular Coupon is chosen for dispensement. This process continues through said preselected items until the total value of Coupons chosen for dispensement meets or exceeds said VALUE as determined in steps 29-46.</td>
</tr>
<tr>
<td>74-78</td>
<td>If after stepping through said preselected items and the value of dispensement does not meet or exceed said VALUE as determined in steps 29-46, an alternate table of general incentive coupons in order of decreasing priority is stepped through until said VALUE is met or exceeded.</td>
</tr>
<tr>
<td>83-88</td>
<td>Coupons are dispensed either with ON-LINE processor spooling selected Coupons to a point-of-sale coupon printer or via Direct Mail.</td>
</tr>
</tbody>
</table>

5.7 Second Alternate Embodiment of Payment Processing and Point-Of-Sale Marketing System

The previously described check verification system of FIGS. 1 through 18A-C has been found useful for verifying checks and providing targeted marketing as described herein. The second alternate embodiment to be hereinafter described provides similar functions, but enables the use of account numbers from a variety of financial payment or transaction instruments such as checks, credit cards and debit cards to be utilized as a customer identification number. Smart cards and marketing cards may also be utilized for the cash customer. This substantially enhances the breadth of uses of the present system and enables the retail store to track all customers whether or not they pay by check or not. The present system may thus be usable with checks, credit cards, debit cards, electronic checks (such as paperless check ACH), electronic benefits transfer such as food stamps, cards and the like, as well as proprietary merchant issued marketing cards for charging, check cashing identification or for marketing purposes which may or may not be magnetically encoded or bar encoded, as well as a smart card containing non-volatile memory. Of course, as previously noted, such proprietary merchant issued marketing cards have not been found to work well in practice for targeted marketing, but the present system may be used to accept their customer identification codes in order to enhance the universality of the present system.

The present system provides automatically printed coupons at the point-of-sale, or alternatively, later mailed coupons, which are particularly targeted to a customer based upon his prior shopping history. Alternatively, an output might be provided to a smart card by encoding the smart card with incentives for the next visit. Alternatively, an electronic incentive could be stored in the processor for use in conjunction with the user’s identification such that credit can be automatically given at the subsequent purchase times.

The system shown in FIGS. 1 through 18A-C has described the generation of coupons for infrequent shopper incentives. The present system shown in FIGS. 19 through 45A-B provides techniques in order to distinguish between degrees of absenteeism, such as zero visits in a certain time period as compared to multiple visits to the store in a certain time period. Other distinctions may be made by the present system in differentiating between dollar ranges spent by a customer such that coupons may be generated per visit based upon the degree of absenteeism and the shopping price range. The present system may also be used to lay out future coupons such that incentives are decreased or increased in order to maintain certain required levels of spending. The subsequent performance of a customer is tracked by the present system to determine which coupons are redeemed or not by the customer, or to determine the customer’s response to the incentive. The marketing program of incentives may then be changed by the system based upon that customer’s subsequent performance. Thus, performance may be tracked by the present system at a product level, a department level or a store level.

The present system also enables the tracking of customer buying to determine how they spend. Thus, the present system may be used to obtain an average which may be weighted in order to provide a base dollar spent per visit or per week on a particular product in a particular store department, or in a particular store. This base may then be looked at by the present system and incremental increases may be added in order to provide a target for expected behavior. The system may then generate coupons or issue incentives to induce that higher level of performance by the customer. The performance of a customer is tracked and incentives are modified based upon the criteria of performance such that incentives are added or subtracted.

Further, the present system enables the tracking of products purchased by a customer. If a customer continuously buys a certain type of product, such as a certain type of coffee or a particular size of a brand of wines, the system will track those purchases so that coupons can be printed out at the point-of-sale which relate to products which the customer has previously indicated a tendency to buy. It has been found that
by storing a shopper’s prior history and by generating coupons for particular products which he desires to buy, such coupons provide an increased inducement to shop more frequently or to spend more money in the store. Alternatively, it prevents the issuance of coupons which the customer has no interest in obtaining the product covered by the coupon, which does not enhance the value of the incentive.

The system can also predict a customer’s next due date to purchase a type of product. If a customer begins a pattern of buying a certain type of diapers, but the customer is an infrequent shopper or sub-par spender, this system may induce that customer to shop more often or to spend more by issuing an incentive to the customer to purchase diapers at the time which the customer’s history has indicated that the customer buys diapers. By tracking the purchase cycle of various products, the system can anticipate the next purchase date in order to issue incentives prior to that anticipated purchase date, or issue other incentives if the next purchase date passes and no purchase is made. The system also can provide inducement coupons that can be combined. For example, coupons may be generated for a detergent for customers who buy diapers. If a customer continuously buys coffee, a coupon can be generated by the system to provide an incentive on coffee filters. If a customer tends to buy spaghetti sauce at a particular time, the system can generate a coupon to provide a coupon on spaghetti. The system thus uses a prior shopping history of the customer in order to provide the type of coupon most likely to provide an incentive.

The system also enables the tracking of “bargain hunter” customers. Retail stores traditionally stock depending upon the size and amount of floor space. In grocery stores, between 30,000 and 60,000 items may be stocked at any point in time. Several hundreds of these items may be involved in some type of promotion by the manufacturer or distributors of the product, or the store. The present system stores a shopping history or spending history of the customer to identify whether or not the customer is a “bargain hunter” and to what degree the customer is price sensitive.

For example, the system might be loaded with one hundred different generic food items in the grocery store as leading indicators. For example, cola might be a leading indicator. Using these generic food items, the system can store the absolute number of generics purchased by a particular customer or the ratio of generics to non-generics, or alternatively the proportion of generic expenditures to total expenditures. This information enables the system to arrive at a picture of how price driven a particular customer is or how price motivated the customer is. This information is then used to determine how to best incent the customer.

Another aspect of the system is the detecting and storing of the amount of redemption of coupons by a customer. Customers who are obsessed with savings will clip more such coupons and redeem more coupons. By storing the number of deeply discounted items in order to deduct a “bargain hunter”, such that incentives may be generated at the point-of-sale in order to enable the customer to be incented. The electronic cash register detects such coupons by scanning and that information is monitored by the present system so that the coupon cashing history of a customer may be stored and maintained.

This technique for targeting customers who are price sensitive enables a retailer to better use the sales promotions provided to him. If a store owner has the opportunity to give a substantial cost reduction on a product, he may send out a large number of the coupons by direct mail and hope that very few of the coupons are returned, since people who buy their soap at full list price would tend to average the store’s gross profit upward. Alternatively, the retailer could advertise the price reduction in a newspaper. However, with the use of the present system, coupons may be intelligently printed out at the point-of-sale based upon an index of pricing and spending that the customer has accumulated in order to provide those coupons only to price sensitive customers. For example, if $1 is being provided by the manufacturer as a promotional discount to the retailer on a box of soap, a very price sensitive customer may be given the full $1 rebate, as the system determines that these shoppers need the maximum inducement since that is what drives their purchases. However, when a customer has shown not to be price sensitive and coupon driven, that customer might be provided with only a 50¢ discount on the box of soap, thus enabling the retailer to maintain the other 50¢ as a gross profit. This will not affect the purchases by many customers who are not price sensitive.

Another aspect of the present invention is the generation of a random or lottery coupon. The system may be programmed to reward random customers with a particular reward. For example, every repeat customer might receive a coupon for a free turkey or six-pack of drinks by the coupon printer. Alternatively, the generation of such gifts could be randomly generated in order to provide more of a lottery atmosphere to the awards. Different types of shoppers, as determined by their shopping history, might be provided with different random prizes. Alternatively, a “grab bag” coupon may be issued which covers a group of incentives, which may be accessed in a random fashion as will be subsequently described.

The system may also be used to generate installment coupons, such that the customer does not get the ultimate prize but points toward a prize. For example, each shopping trip might result in five points given toward a prize, such that when the customer accumulates all twenty-five points he may obtain a free turkey or other food item.

As previously noted, the present system normally uses ID numbers obtained from financial instruments such as checks, rather than relying solely on store produced shopping cards. Such store produced cards have been found to have substantial barriers to their use. First of all, there is an overriding negative psychological impact in that there is an implied presumption that the customer does not have sufficient worth to tender currency for a transaction, if it is a requirement of the merchant that the customer belong to the “club”. Such a requirement may imply to the customer that his money is not good enough for the store; that is a strong psychological barrier to participation. It may also be an affront to customers when a visible system like prior card-based systems are employed that require the customer participate in the program in order to shop.

In addition, it provides a barrier to physical participation because building a database with a card based system is a two step process, as opposed to a one, step process when one employs customer ID based on transactionism. First of all, the customer has to sign up at the store because the name and address have to be recorded and usually merchants ask for additional demographic data. There are a large number of customers who regard that as an invasion of privacy and so are very reluctant to provide that sort of personalized information. Whereas on the transparent system of the present invention using ID’s issued by a financial institution, there is no perceived invasion of privacy. Additionally, there is a barrier to participation by merchant cards caused by the need to constantly carry and constantly produce that ID at the point-of-sale. It has been the experience of most retailers that with respect to store cards, if customers can be induced to sign up
at all, in very short order there is an enormous attrition because people lose them or they simply lose patience with the system with the slow-down at the point-of-sale. Over a period of time, the attrition rate for such merchant cards means that there is a continued drive and cost associated with that drive to resolicit people with the signup. Failure to get participation means that the data is less valid and that the participation from the standpoint of marketing integrity is dramatically reduced. So, the stores wind up having a small customer base that is contingent upon voluntary active participation of customers on the one hand, versus near universal participation using the present system because it is invisible or transparent to the customer.

FIGS. 19 through 45A-B illustrate various apparatus and program flow diagrams of a system which not only performs automatic payment processing of a customer's payment at the POS but also generates automatic targeted marketing to the customer at the POS, in dependence upon the customer's prior shopping history. FIG. 19 illustrates a block diagram of a typical embodiment of such a system in a retail store. At each POS exit from the store, there is provided a conventional Electronic Cash Register system ("ECR") 962A-E, which comprises an electronic cash register, a receipt printer and a UPC bar code scanner as will be subsequently described in greater detail in FIG. 20. In the same location at each POS exit at a retail store, there is found the AP/M and its associated peripherals which are designated generally by the numerals 963A-E.

The outputs of each of the ECRs 962A-E are applied through wires or other transmission link to a conventional ECR controller, which operates to provide conventional automatic cash register functions as are well known. Examples of such ECRs and ECR controllers are those manufactured and sold by IBM Corporation under the Model No. 4680ECR. Other conventional ECRs are manufactured and sold by NCR and other companies. The ECR controller is linked to the CVC master controller 965 by an integration link so that transaction data is input to the controller 965. It should also be noted that the present invention could be implemented solely within an ECR based system with suitable peripherals.

The present system also couples to the conventional ECR network a passive listing device 964 which may, for example, comprise the passive listing device manufactured and sold by Scanning Management Incorporated. As is known, the passive listing device 964 allows data routed to and from the ECR controller to be detected and utilized, without affecting the operation of the ECR system. The output of the passive listing device 964 is indicative of the UPC data and is applied to the CVC master controller 965 which may comprise, for example, a conventional 486PC processor and associated memory or other similar equivalent types of processors. A CVC slave controller is illustrated as running in redundant tandem with the CVC controller 965 to provide redundancy in case of a malfunction or like. The outputs of the CVC controller 965 are applied to each of the AP/M terminals and associated peripherals 963A-E as illustrated.

Alternatively, direct data transfer could be provided from each individual ECR to each individual AP/M terminal. Also, the function of controller 965 may be integrated into the ECR controller.

Also referring to FIG. 19, the system illustrated is a system for one store. It will be appreciated that similar systems for multiple stores may be networked together such that information may be transferred between each store to provide marketing at different stores in different areas. Thus, the CVC controller 965 is connected via a dial-out telephone link to other remote master controllers at other stores, which are in turn connected to various ECRs and AP/Ms at that store. In this way, not only can credit verification be accomplished between stores, but integrated credit and marketing techniques can be used to service individual customers at different stores and maintain a comprehensive listing of a customer's shopping history at multiple stores.

In operation of the system shown in FIG. 19, as customers purchase products at each point-of-sale exit, the products are identified by the UPC bar code scanner, and information regarding the products and their costs are applied to the ECR controller in the known manner. This information is also received from the passive listing device 964 and is detected and stored by the CVC controller 965. When the customer pays for the purchase at the point-of-sale (POS), the customer may do so in a variety of forms of payment, including without limitation cash, check, credit card, debit card, smart card, ACH (automatic clearing house), electronic benefit system (EB), or other types of financial instruments. Such forms of payment which bear unique account numbers shall hereinafter be termed financial instruments or transaction instruments.

The advantage of using the account numbers on financial or transaction instruments is that the account numbers are pre-issued by companies other than the retail store, thus saving the store from the difficulty and expenses of issuing cards or identification numbers. Furthermore, all customers except those paying cash will have such preissued numbers. Further, the identification numbers can be automatically read during the payment cycle, thus saving time and facilitating targeted marketing during the sales procedure. Each of the present AP/M terminals 963A-E and their associated readers can detect the identity of the customer by means of the account or identification code associated with the customer, such as by the checking account number as previously discussed with respect to the first embodiment of this invention. Alternatively, a customer's account or identification number may comprise the credit card number associated with a credit card, a smart card number, a debit card number or the like. Alternatively, a shopping card number or the like, can be automatically read by one of the readers or can be manually input by the clerk at the AP/M keypad.

Data relating to the customer's unique identification code is applied from the individual AP/M 963A-E to the CVC controller 965, where it is associated with a database storage of the particular customer's past shopping history. The identification code is also used to provide credit verification. For checks, the verification procedure previously described in this application may be provided. In the case of credit cards, or the like, the credit card number may be checked against a periodically refreshed database in the controller 965, or the credit card number may be checked against a remote database in the known manner.

In dependence upon the credit check and the shopping history, as previously described in this application and as will be subsequently described in greater detail with respect to this embodiment, the CVC controller 965 generates signals which are applied through the AP/M terminal to provide credit verification on the AP/M display and also to cause a high-speed printer at each point-of-sale location to print out a series of inducement coupons particularly designed to target that particular customer based upon the customer's prior shopping history. Alternatively, as will be subsequently described, electronic inducements may also be provided in lieu of the printed coupons, such as by the way of automatic discount of the customer's bill or by automatic discount of a future bill.

As will be described in greater detail, the present system thus enables a store to provide credit verification as well as to
maintain accurate information regarding the shopping habits of its individual customers and to target marketing to those customers based upon the customer's individual shopping history. The present technique thus allows the targeting and incentive marketing of infrequent shoppers, as previously described and as will be described in subsequent detail.

FIG. 20 shows in greater detail a typical ECR point-of-sale system which includes a UPC bar code scanner 966 which automatically scans the UPC affixed to each product purchased at the point-of-sale. This scanner is conventional and generates electronic signals indicative of the UPC such that the identity of the particular product, the department from which the product was sold and the price of the product can be associated therewith and stored by the ECR controller. The system further includes an electronic cash register of the type previously disclosed which includes one or more key pads 967 to enable the entry of items and other information by the clerk and to facilitate the processing of the customer's purchases. The electronic cash register also includes a display 968 which provides information regarding the price and description of the products being read by the UPC bar code scanner 966 to provide other desired information to the customer. In addition, the ECR includes a receipt printer 969 which generates a written receipt provided to the customer to indicate the amount of his purchases.

FIG. 21 illustrates in greater detail the elements of a typical AP/M terminal and its associated peripherals as shown in FIG. 19. Details of the AP/M terminal 970 will be provided in greater schematic in FIG. 39 hereinafter described. As previously indicated, a plurality of financial instrument readers are coupled to the AP/M 970, including an impact receipt printer 971, a debit card magnetic stripe reader with a PIN pad 972, a smart card reader 973, a credit card magnetic stripe 974 and a MICR code check reader 975 as previously described in FIG. 21. It should be understood that the system shown in FIG. 21 is intended to include all possible types of automatic reading of financial instruments, but also that it is not necessary in some embodiments to have all of the peripherals. For example, certain retail stores may find that the majority of their purchases are by cash or by check; thus, the remainder of the readers might be omitted. Alternatively, if a retail store determines that a majority of its payments are made through cash and a credit card, the check reader 975 and other readers might be omitted or added as needed.

Also coupled to the AP/M 970 is a high-speed point-of-sale coupon printer 976 which may comprise, for example, a conventional thermal coupon printer such as sold by Epson Corporation (model #180 printer). The AP/M 970 also includes a visual display, such as an LCD display or the like. The display generates prompts to the clerk to assist in operation of the system, as well as providing credit verification and other functions. The keypad on the AP/M 970 enables the clerk to input customer identification data and the like into the system.

In operation of the system shown in FIG. 21, if the customer desires to make payment by a debit card, the debit card is swiped through the reader 972 and the magnetic stripe on the debit card is automatically read by the reader. Many debit/credit cards contain a bank ID number and a customer account number, which can be combined to form a unique customer ID number. A PIN pad 972-A is associated with reader 972 in order to enable the customer's PIN number to be entered by the customer, if necessary or desired. Although the PIN pad 972-A is shown with its data path going through the reader 972, in many instances, the PIN pad 972-A output would go directly to the AP/M 970. When a debit card is read, information regarding the purchase is applied through the AP/M 970 and the CVC controller 965 in order to debit the necessary dollar amount from the bank account indicated on the debit card, to provide verification authorization regarding the debit card and to use the account number information on the card to identify the customer to provide the marketing techniques of the present invention.

For example, if a debit card is swiped through the debit card reader 972, the CVC controller 965 would indicate on the display of the AP/M 970 that sufficient funds are available in the account indicated on the debit card. In operation, the CVC controller 965 would operate through a conventional dial-up credit verification system to obtain the credit verification and debit card information for authorizing the debit card transaction. Information regarding the unique customer identification and the transaction would then be stored in the database of the CVC controller 965 such that the targeted marketing of the system could be activated. Printing 965 desired coupons at the printer 976. As will be described, different coupons are printed in response to the prior shopping history of the customer in order to induce customers using different techniques based upon their prior shopping history. At this time, the impact receipt printer 971 would then generate a receipt or other indication of the purchase. In some instances, the receipt printer 971 will not be necessary due to the presence of the printer 969 shown in FIG. 20, which can be used to print the coupons and the receipts.

If the customer provides a smart card for payment of the purchases just made, the smart card would be swiped through the smart card reader 973 and the particular account code associated with the smart card would be detected by the CVC controller 965 and compared against the database. If the system detects the account code and the customer is a recognized customer, then the purchases of the customer are stored in the CVC controller database and, in dependence upon the customer's prior shopping history, coupons are generated by the printer 976 in order to induce that customer. The customer presenting the smart card might make the payment in cash or by debit card, credit card or check and those transactions would be processed as hereafter described.

If a credit card is used for payment at the POS, the credit card is swiped through the reader 974 and the credit card number is used by the CVC controller to identify the customer for accessing the customer's database. The clerk at the point-of-sale would then enter in the transaction volume through the keyboard of the AP/M 970. The CVC controller 965 would provide credit authorization by use of a conventional dollar verification technique and would provide an identification of the verification of the credit card via the display in the AP/M 970. The amount of purchase information and the items purchased would be received by the CVC controller 965 from the ECR system through the passive listening device 964.

As further shown in FIG. 21, if the customer desires payment by check, the check is swiped through the MICR reader 975 and the MICR code is read and detected as previously described in prior figures and descriptions. The check can then be authorized by the display on the AP/M terminal 970 and the MICR code banking account number is used to identify the individual customer to enable the provision of unique marketing incentives by printing out unique coupons at the printer 976.

Although various types of payment instruments and identification instruments have been illustrated for use with the AP/M in FIG. 21, it will be appreciated that other types of payment instruments bearing unique identification numbers are envisioned for use with the present system, both to provide payment identification for verification but also to pro-
FIGS. 22-38 comprise program flow diagrams illustrating the operation of the system shown in FIG. 19-21 to perform a wide variety of targeted marketing functions, as well as credit verification.

FIG. 22 illustrates a series of steps to scan the individual products purchased by a customer in order to provide such information to the ECR controller and to the CVC master controller 965. The steps include:

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Load Bar Code Tracking Table (“BCTT”) into CVC Master Controller 965. This is a table of Universal Product Codes (UPCs) from selected products and coupons. This table signals the processor to store the purchase of these products for individual accounts. In addition, this table stores information about the product to be used for marketing purposes such as: Incentive level from 1 to 10 prioritizing store’s inclination to use product as an incentive. A profile level from 1 to 10 that would be used to indicate the economical level of the product or coupon redemption. These levels are used to build an economic profile on an account based on historical purchases. Product compliments. These compliments provide references to other products in the table that could be used with this product. Retail cost of product</td>
</tr>
<tr>
<td>2</td>
<td>Clerk scans product with UPC Bar Code scanner 966 connected to ECR network.</td>
</tr>
<tr>
<td>3</td>
<td>As the UPC is sent to the ECR Controller, a passive listening device 964 sends the product UPC code and the ECR from which it was sent.</td>
</tr>
<tr>
<td>4</td>
<td>The passive listening device 964 sends UPC code and source ECR to the CVC controller 965.</td>
</tr>
<tr>
<td>5</td>
<td>Controller 965 checks for UPC in the BCTT.</td>
</tr>
<tr>
<td>6</td>
<td>If UPC is in the BCTT;</td>
</tr>
<tr>
<td>7</td>
<td>If UPC is a redeemed NOW coupon which was dispensed to the customer on a previous visit.</td>
</tr>
<tr>
<td>8</td>
<td>Controller 965 updates coupon database to reflect redemption of coupon.</td>
</tr>
<tr>
<td>9</td>
<td>Controller 965 has a holding workspace for each ECR where any products scanned that contain matches in the BCTT may be written and held until the Customer’s account number is entered. Write this UPC to the holding workspace for this ECR.</td>
</tr>
<tr>
<td>10</td>
<td>If there are more items to scan, GOTO 2.</td>
</tr>
</tbody>
</table>

FIGS. 23A, B, and C illustrate the various operations of the system for accepting payments with different types instruments by use of the various readers of FIG. 21.

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>ECR 962 now sends the total for this purchase to the APM. If the APM 963 and ECR are not integrated, the clerk enters the total by hand.</td>
</tr>
<tr>
<td>12</td>
<td>APM 963 sends this total to the CVC controller 965.</td>
</tr>
<tr>
<td>13</td>
<td>Choose a method for paying.</td>
</tr>
<tr>
<td>14</td>
<td>If paying with a personal check:</td>
</tr>
<tr>
<td>15</td>
<td>Clerk runs check through the MICR reader which sends the MICR code to the APM.</td>
</tr>
<tr>
<td>16</td>
<td>APM sends MICR code to the controller 965.</td>
</tr>
<tr>
<td>17</td>
<td>Controller passes the MICR removing the sequence number to form an account number.</td>
</tr>
<tr>
<td>18</td>
<td>Controller verifies the check’s account number against stored positive and negative databases.</td>
</tr>
<tr>
<td>19</td>
<td>Controller sends verification back to the APM 963 for display to the clerk.</td>
</tr>
<tr>
<td>20</td>
<td>If paying with a credit card:</td>
</tr>
<tr>
<td>21</td>
<td>The credit card is swiped in the magnetic card swipe which reads the account number and sends it to the APM 963.</td>
</tr>
<tr>
<td>22</td>
<td>APM 963 sends the account number to the controller 965.</td>
</tr>
<tr>
<td>23</td>
<td>Controller 965 initiates a phone call via modem to a payments processing switch. The credit card account number and amount to tender are sent for verification.</td>
</tr>
</tbody>
</table>

FIG. 24 is a flow chart of the taking of a shopping card which has been previously distributed by the retail store to the customers. Usually such cards are presented only after obtaining substantial financial and other history of the customer which may then input into the database of the CVR controller 965. In this system, such cards are a useful adjunct in that they may continue in use so that cash paying shoppers are not otherwise excluded from participation in marketing promotions distributed by this system. Each of the cards is provided with a unique number which is used to identify the in store customer checking account, bank account number or credit card number or the like. This flow chart illustrates the reading of the various types of shopping cards, including magnetic stripe and/or smart cards. Alternatively, the system provides for manual input of the customer identification numbers through the key pad on the APM and also envisions the use of a shopping card which may be scanned by the UPC code scanner.
FIG. 25 illustrates the storage and access of account records for a network of the marketing systems and illustrates accessing the customer's account in the primary database of the CVC controller 965, as well accessing of data in the secondary database. The first database includes the customer's actual visits to the particular store. The secondary database comprises visits by the customer to the other stores interconnected with the system as shown in FIG. 19. As previously described in FIG. 19, each store may be connected via a dial-out telephone line with other remotely located CVC master controllers at other stores. The flow chart of FIG. 25 illustrates how data may be shared between the stores in order to both verify payments by customers, but also to provide target marketing of customers in a group of stores. The steps include:

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>47</td>
<td>If customer is paying with cash:</td>
</tr>
<tr>
<td>48</td>
<td>Choose a shopping card:</td>
</tr>
<tr>
<td>49</td>
<td>If shopping card has a magnetic stripe:</td>
</tr>
<tr>
<td>50</td>
<td>If shopping card is a "Smart" card:</td>
</tr>
<tr>
<td>51</td>
<td>"Smart" card contains a computer chip that can be read and written to Slide "Smart" card into read/write device which reads the information on the card and sends it to the AP/M.</td>
</tr>
<tr>
<td>52</td>
<td>If shopping card is not machine readable:</td>
</tr>
<tr>
<td>53</td>
<td>Clerk keys card number into AP/M</td>
</tr>
<tr>
<td>54</td>
<td>AP/M sends shopping card account number to controller: GOTO 60.</td>
</tr>
<tr>
<td>55</td>
<td>If shopping card has a UPC Bar Code:</td>
</tr>
<tr>
<td>56</td>
<td>Scan UPC on ECR's scanner.</td>
</tr>
<tr>
<td>57</td>
<td>Passive device reads UPC code and source ECR from ECR network.</td>
</tr>
<tr>
<td>58</td>
<td>UPC code and ECR's register number are sent to the controller.</td>
</tr>
</tbody>
</table>

FIG. 26 illustrates the building of a marketing record based upon multiple accounts in a single household. As is known, often a wife and a husband will have individual checking accounts and those checking accounts will be detected and indicate individual shoppers. However, it has been found advantageous to be able to coordinate all the shoppers in a household so that target marketing can be directed toward a household rather than to individual people living within that household. The steps include:

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>74</td>
<td>Any number of accounts may be combined for a single household if a link exists. A telephone number is often on personal checks, may be required on credit and debit card transactions, or may be volunteered by the customer. The phone number is used in this process to provide a link. Check account's customer record for a phone number.</td>
</tr>
<tr>
<td>75</td>
<td>If no phone number:</td>
</tr>
<tr>
<td>76</td>
<td>Send message to AP/M for clerk to obtain phone number and enter into the system.</td>
</tr>
<tr>
<td>77</td>
<td>If phone number is NOT obtained, other accounts from customer's household cannot be merged. GOTO 82.</td>
</tr>
<tr>
<td>78</td>
<td>A phone number has been used to build a secondary key index so that all records with the same phone number may be accessed very quickly. These records will be combined to form a single marketing record. Build this secondary key and access first record.</td>
</tr>
<tr>
<td>79</td>
<td>Merge history from this record into marketing record.</td>
</tr>
<tr>
<td>80</td>
<td>Access the next record keying on phone number.</td>
</tr>
<tr>
<td>81</td>
<td>If next record exists, GOTO 79.</td>
</tr>
</tbody>
</table>

FIG. 27 illustrates the method of tracking infrequent shoppers such that a Coupon "A" may be generated by the high-speed point-of-sale printer 976. Coupon "A", as will be subsequently described, is defined as "coupons to incent what has been determined to be an infrequent shopper, that is a shopper who fails to meet predetermined shopping criteria". For example, criteria may be set of a predetermined number of shopping visits in a predetermined time. If the customer fails to meet the required number of shopping visits, he/she is determined to be an infrequent shopper and Coupon "A" may be used to incent that shopper. As will be subsequently described, Coupon "A" provides greater coupon incentives than are provided to customers who are more frequent shoppers. Although an infrequent shopper has been herein described as a customer failing to meet previous shopping criteria, the infrequent shopper may also be defined as a customer meeting predetermined infrequent shopping criteria, that is by not having visited a store in a predetermined time in a predetermined interval. The flow chart in FIG. 27 also illustrates the generation of Super "A" Coupons to an infrequent shopper who has been previously targeted for marketing but has failed to respond. The steps include:

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>82</td>
<td>Coupon "A" (for Absence) is used by the system to identify shoppers that are determined to be infrequent. Each store tailors and stores a definition of the infrequent shopper and a program to incent them which is stored on-line as follows: The method of determining infrequent shopper: 1. Based on dollars spent in the prior specified number of days, or 2. An attendance record based on weekly attendance in the prior specified number of weeks.</td>
</tr>
<tr>
<td>83</td>
<td>The level of incentive for infrequent shopper: 1. Multiple levels based on average amount of purchases. For example, an infrequent shopper with an average purchase of $137 would be incented more than an infrequent shopper with an average purchase of $23.</td>
</tr>
</tbody>
</table>
FIG. 28 illustrates the detecting techniques used to identify an infrequent shopper for placing that customer on an infrequent incentive program such that Coupon “A”’s are generated. The steps include:

Step	Description
93 | Choose the method to determine infrequent shopper.
94 | If method is based on dollar volume;
95 | Sum dollars spent in prior specified number of days.
96 | If dollars spent is less than preset value,
97 | Initialize fields for tracking coupon programs to zeros and mark account as Coupon “A”, GOTO 102.
Otherwise GOTO 106.

FIG. 29 illustrates a method for increasing a customer’s average purchases, based upon the database built and maintained by the CVC controller 965. As will be subsequently described, this technique illustrates a progressive generation of coupons in order to incent customers to increase the amount of their purchases.

Step	Description
98 | If method is based on weekly frequency;
99 | Build a weekly attendance record in the last preset number of weeks based on one or more visits during each prior 3 week span.
For example, if in the last 8 weeks this shopper had 3 trips, but they were all in the same week, this customer’s attendance record would reflect 1 week’s attendance in the last 8 weeks.
100 | If the number of trips attending does not fall below the preset criteria, GOTO 106.
101 | Initialize fields for tracking coupon programs to zeros and mark account as Coupon “A”.
102 | Determine the incentive level to be stored with this Coupon “A” infrequent shopper.
103 | If the method to determine incentive level is based on the number of weekly attendances:
Access preset criteria for assigning an incentive level based on attendances.
For example, the criteria may assign level 1 for 0 weeks attended in the prior 8 weeks, level 2 for 1 week attended in the prior 8 weeks, level 3 for 2 weeks attended in the prior 8 weeks, etc.
104 | If the method to determine incentive level is based on the average dollars spent per shopping visit:
Access preset criteria for assigning an incentive level based on average expenditures. For example, criteria may assign level 1 for an account with an average purchase of $100 or more, level 2 for an average purchase between $75 and $100, level 3 for an average purchase between $50 and $75, etc.
105 | Store this level of Coupon “A” in the account record.

Minimum number of trips to qualify for Coupon “M” program. This ensures that an account’s history has matured so that a more accurate average may be obtained.
Maximum dollar average to qualify for Coupon “M” program. This provides a ceiling to prevent attempts to increase average purchases that are considered sufficiently high. For example, if a customer has an average purchase of $125, it may not be reasonable to spoil coupons incenting them to spend $135.

Percentage to attempt increase in average purchase.
Criteria for Super “M”. This criteria is based on the failure to increase average purchases by a preset percentage of target increase.
Number of trips before testing for Super “M”.
Coupons to be used for incenting the customer to increase spending. These coupons are tailored to the amount of the customer’s target value (base average plus percentage increase).
Each coupon contains a minimum target value in order to trigger spooling. For example, Customer A has an average base of $40, Assume a target increase of 10% to make a target of $44 rounded to $45.
The first Coupon “M” incentive holds a minimum target value of $50. This coupon is NOT spooled.
The second Coupon “M” incentive holds a minimum target value of $45. This coupon IS spooled with a minimum purchase qualifier of $45. The third Coupon “M” incentive holds a minimum target value of $30. This coupon IS spooled as well with a minimum purchase qualifier of $45. And so on for the rest of the Coupon “M” incentives all spooled with a minimum purchase qualifier of $45.
Customer B has a target value of $35.
For this customer, the first and second Coupon “M” incentives are not spooled because this target value does not meet the minimum.
The third incentive with a $30 minimum target value IS spoiled with a minimum purchase qualifier of $35. And so on with the rest of the Coupon "M" incentives as is done for Customer A except that the minimum purchase qualifier will be $35. To be done with Coupon "A", each account record holds fields for tracking coupon programs for Coupon "M". These fields include:

- **Super "M" base**: The base amount arrived at when the program was initiated.
- **Number of trips on Coupon "M" program**: Super "M" flag to indicate account is in Super "M" program.
- **Number of trips on Super "M" program**:

If account is currently on a Super "M" program:

- Calculate average purchase amount of purchases since beginning

If average while on Super "M" exceeds preset criteria for percentage of increase of base, GOTO 121.

Mark account to receive Super "M" coupons. Increment Super "M" counter, GOTO 122.

If account is not currently in a Coupon "M" program:

- If the number of trips does not meet the minimum trips specified to qualify for Coupon "M", GOTO 122.

- Calculate a base average purchase amount for this account. Initialize fields for Coupon "M" in account's record to zero and store base average.

- Increment Coupon "M" program trip counter. If number of trips in Coupon "M" program is greater than or equal to preset criteria determining number of trips before testing results:

- Calculate average purchases while on Coupon "M" program.

- If average is less than preset criteria percentage increase for Super "M", GOTO 111.

- If average is greater than target value, objective has been achieved, GOTO 122.

Mark account to receive Coupon "M" Coupon.

EXAMPLE: Customer makes a purchase. History shows customer has made 11 purchases including this purchase. The preset criteria for minimum trips required to qualify for Coupon "M" is set to 10, so the customer now qualifies. Assume the average of these 11 purchases is $25. This is stored in the record as the base. The preset criteria for maximum base ceiling for Coupon "M" for this example is $50. This means any account with an average purchase of $50 or more does not qualify for Coupon "M". This account's average is less than $50 so the Coupon "M" tracking counters are set to zero and the program begins.

Assume the preset percentage increase is 20%. A target is arrived at by adding 20% of the base to the base: in this case $25 + $5 or a $30 target.

Coupons are spoiled with a minimum purchase qualifier of $30 as described previously. Assume the preset value for number of trips before testing results is 5, then on the fifth trip an average is calculated for the trips since beginning Coupon "M", or in this case the last 5 trips. If in this example these last 5 trips averaged $35, the Coupon "M" program would be complete.

If the average was still $25, and preset criteria to determine Super "M" specified that more than 50% of target increase should be achieved (in this case $25.50, then this account falls into Super "M").

FIG. 30 illustrates the flow chart for the building of a coupon list to determine the types of coupons to be printed for disbursement in accordance upon various criteria, such as dollar ranges of prior shopping and other aspects of prior shopping history.

FIG. 31 illustrates the building of additional coupon lists to allow the distribution of various coupons such as Coupon "A", Super "A", Coupon "M", Super "M" and the like:

FIG. 32 illustrates a subroutine termed coupon series for use in the subroutines shown in FIGS. 30 and 31. This subroutine provides for accessing of types of coupons determined by the previous program routines:
<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>149</td>
<td>One or more coupons may be stored for each COUPON-TYPE. COUPON-CNTR is used to sequentially access each coupon for COUPON-TYPE. SET COUPON-CNTR to 0.</td>
</tr>
<tr>
<td>150</td>
<td>Coupons are stored as follows: COUPON-TYPE-type of coupon COUPON-LEVEL-level of this particular type of coupon COUPON-CNTR-sequential counter for accessing coupons NUMBER-ISSUED-counter for number of coupons issued NUMBER-REDEEMED-counter for number redeemed ECHO-FLAG-flags if this is an ECHO COUPON ECHO-VALUE-determines value of ECHO COUPON HIT-CNTR-used with RANDOM COUPONS RND-SEED-used to determine random frequency COUPON-DATA-text and variables used to make the coupon Using COUPON-TYPE-COUPON-LEVEL, and COUPON-CNTR build a key to access the coupon from the coupon database</td>
</tr>
<tr>
<td>151</td>
<td>If the ECHO-FLAG is set for this record in the coupon database, it means that an ECHO COUPON is to be added to the COUPON LIST. An ECHO coupon is a variable coupon that is determined based on the customer's list of items that have been purchased that contained matches in the BCTT as described in 1-10 and 70-73. An Echo coupon simply attempts to provide the customer with a coupon for an item that the customer has shown a propensity to purchase. For example, a customer who has recently purchased a disposable diaper. Based on this information, we can determine that the way to incentivize this customer is with disposable diapers and/or with complements to this product such as baby wipes, baby food, etc. If the ECHO-FLAG is set for this coupon record:</td>
</tr>
<tr>
<td>152</td>
<td>PERFORM ECHO-COUPONS (200-211) and RETURN AT 153.</td>
</tr>
<tr>
<td>153</td>
<td>Two varieties of coupons available are random coupons and installment coupons.</td>
</tr>
<tr>
<td>154</td>
<td>Random coupons are produced at a set frequency as determined for each random coupon. For example, a FREE TURKEY coupon can be set to come out every 50th time that the coupon record is accessed for spoiling. If, for example, this coupon is defined for Coupon "E", then every 50th customer that qualifies as a Coupon "E" would receive a coupon for a FREE TURKEY. If this coupon is a RANDOM COUPON:</td>
</tr>
<tr>
<td>155</td>
<td>Increment HIT-CNTR in coupon record.</td>
</tr>
<tr>
<td>156</td>
<td>If HIT-CNTR matches RND-SEED, GO TO 160. Otherwise, GO TO 161.</td>
</tr>
<tr>
<td>157</td>
<td>Installment coupons are coupons whose value is determined by the amount of purchase. For example, if the store is running a promotion giving away a $100.00 U.S. Savings Bond for every 100 BOND BUCKS redeemed, a coupon could be defined that is worth 1 BOND BUCK for every dollar spent. That is, a grocery order for $75 would produce a coupon worth 75 BOND BUCKS. If this coupon is an INSTALLMENT COUPON:</td>
</tr>
<tr>
<td>158</td>
<td>Determine coupon's value based on this purchase, GO TO 160.</td>
</tr>
<tr>
<td>159</td>
<td>None of the above.</td>
</tr>
<tr>
<td>160</td>
<td>Add this coupon to the list of coupons to be spoiled for this transaction.</td>
</tr>
<tr>
<td>161</td>
<td>Update the coupon record with updated information based on issuance and/or hit (for random)</td>
</tr>
<tr>
<td>162</td>
<td>Increment COUPON-CNTR.</td>
</tr>
<tr>
<td>163</td>
<td>If another Coupon for this COUPON-TYPE exists, loop back through to add it to the list. GO TO 150.</td>
</tr>
<tr>
<td>163B</td>
<td>RETURN TO CALLING ROUTINE</td>
</tr>
</tbody>
</table>

FIG. 34 is a flow chart of the disbursement of point-of-sale incentives either by the printing out of a coupon or by storage of electronic funds on a smart card or by a mass storage device at the controller 965:

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>164</td>
<td>Point-of-sale incentives may be spoiled or stored electronically. If incentives NOT previously stored electronically, GOTO 180.</td>
</tr>
<tr>
<td>165</td>
<td>Electronic coupons were previously stored and will now be redeemed. Choose media for previous storage of electronic coupons.</td>
</tr>
<tr>
<td>166</td>
<td>If coupons stored on a "SMART" Card: AP/M accesses first coupon from "SMART" card using "SMART" card read/write device.</td>
</tr>
<tr>
<td>168</td>
<td>If no more coupons, GOTO 180.</td>
</tr>
<tr>
<td>169</td>
<td>AP/M sends coupon to CVC controller.</td>
</tr>
<tr>
<td>170</td>
<td>CVC controller checks coupon against items purchased. If item was purchased:</td>
</tr>
<tr>
<td>171</td>
<td>Coupon information is sent to ECR Controller.</td>
</tr>
<tr>
<td>172</td>
<td>ECR Controller credits customer's purchase amount for value of coupon.</td>
</tr>
<tr>
<td>173</td>
<td>CVC Controller updates coupon database to reflect redemption. AP/M accesses next coupon from "SMART" card, GOTO 168.</td>
</tr>
<tr>
<td>175</td>
<td>If coupons stored on mass storage device in CVC controller: CVC Controller accesses first coupon from storage.</td>
</tr>
<tr>
<td>177</td>
<td>If no more coupons, GOTO 180.</td>
</tr>
<tr>
<td>178</td>
<td>CVC Controller checks coupon against items purchased. It item was purchased: EXECUTE steps 171-173, THEN PROCEED WITH 179.</td>
</tr>
<tr>
<td>179</td>
<td>Read next coupon from CVC Controller’s mass storage, GOTO 177.</td>
</tr>
</tbody>
</table>

FIG. 35 is a flow chart of a subroutine for generation of an Echo Coupon. Echo Coupons are utilized for promotions that utilize items an individual customer has historically purchased. To induce a particular customer to meet a shopping criteria, such as more frequent visits, it is preferable to use specific products that the customer has previously preferred, such as certain type of meat or a particular product. In other words, if a customer has shown a proclivity to purchase a certain type of product, Echo Coupons are generated in order to ensure that the customer will wish to use a coupon since they are directed to his/her favorite product. This promotion is scaled by the store to vary in numbers of items promoted and are discounted on each item to the customer.
FIG. 37 is a program flow diagram illustrating the building of a profile value which is based upon items purchased by a customer. This profile value is then used by the system, as will be described with respect to FIG. 38, in order to determine how valuable a particular coupon will be for a particular customer. The process of FIG. 37 is as follows:

FIG. 36 illustrates the transmission of data from the CVC controller 965 of a particular store through a dial-out telephone link to a remote master controller at another store. In this way, the individual stores within a chain can share marketing and transaction information to allow incentive marketing to be provided to an individual customer at different stores in a coordinated basis. Credit verification data can also be transferred between stores. The routine is as follows:

FIG. 38 is a program flow diagram illustrating the use of the profile value determined in FIG. 37 in order to determine how valuable a coupon will be for a particular customer. The process begins with the following:

FIG. 37

Step	**Description**
254 | Marketing transaction record is sent from Hub CVC Controller to Remote CVC Controller for update of Remote CVC Controller's SECONDARY DATABASE. GOTO 252.
255 | Hub CVC Controller sends request to Remote CVC Controller for Remote's next transaction record in chronological sequence after the last transaction record sent to Hub.
256 | If a next record does not exist, GOTO 258.
257 | Remote CVC Controller sends marketing transaction record back to Hub CVC Controller for update of Hub's SECONDARY DATABASE. GOTO 255.
258 | Hub CVC Controller disconnects from Remote and looks for the next event for calling the next Remote in the network of CVC Controllers.
259 | If a next event exists, GOTO 251.
260 | Transfer of marketing data is complete.

FIG. 36

Step	**Description**
261 | This procedure is executed on account's ITEM LIST as discussed in steps 1-10 and 70-73 previously described. Access first item from ITEM LIST.
262 | If no items left in ITEM LIST, GOTO 266.
263 | Access item in stored table BCTT.
264 | Factor profile level in BCTT into level held for this account.
265 | Access next item from ITEM LIST.
266 | End of Process.

Example: The BCTT contains a number of generic brands and coupon UPC's with a profile value indicative of the "bargain hunter" value of the product or coupon. Assume Customer A purchases a large number of generic items and redeem many coupons, this customer on a scale of 1 to 10 may have a profile value of 9. On the other hand, Customer B purchases many items that either have no match in the BCTT, or items in the BCTT that indicate that price is little or no object for this consumer. Customer B may have a profile value of 1.

FIG. 38

Step	**Description**
267 | Access the target coupon from the Coupon Database.
268 | This Coupon has a variable value associated with it. Match this account's profile value with the range of values to determine the value of the coupon.
269 | If value is not greater than 6, GOTO 272.
270 | Build coupon based on value.
271 | Pass coupon back to calling procedure so it may be added to the coupon list for disbursement.
272 | End of Process.

These profile values may now be used as an indication of how much value to assign to individual coupons. The assumption being that customers with a high profile value require greater incentive than those with lower value.

Example: Assume a manufacturer is promoting a particular product and is selling the product to the store at $1.00 off the regular cost. Using profiles, the store can regulate the amount off for each customer based on their profile value. Assume both customers in the previous example are to receive this promotion at the point-of-
FIG. 39 is a schematic diagram of the AP/M terminal of FIG. 21. The terminal includes a 32K static RAM memory chip 977 which provides a temporary residence for information during the processing of an individual entry procedure through the keyboard of the terminal. Switch 978 is a plunger-type spring return SPST switch which permits the re-initialization of the terminal in case of momentary interruption of electrical power.

The terminal further includes an EPROM 979 and a RAM 980. A TTL-to-RS232 communications conversion amplifier chip 981 permits the use of either TTL or RS232 signals, to permit a wide variety of commercially available peripherals, printers, check readers and the like.

An 8-position DIP switch 982 permits each AP/M terminal in a store-wide system to be uniquely identified with an electrical address. Power jack 983 provides a connection for external DC power to operate the terminal. D-subminiature 9 contact connectors 984 and 985 provide multiple purpose input/output ports, any one of which may be connected to a high speed thermal POS printer, an impact receipt printer, a debit card magnetic stripe reader, a PIN entry keypad, a smart card read/write unit, a credit card magnetic stripe reader and a MICR reader. Display for the terminal is provided by the LCD 986. A nineteen key pad is provided to allow data to be manually input.

A listing of the chip identification and model number for a specific embodiment of the schematic of FIG. 39 is herein set forth:

<table>
<thead>
<tr>
<th>DRAWING #</th>
<th>MFG. P/N</th>
<th>MANUFACTURER</th>
</tr>
</thead>
<tbody>
<tr>
<td>983</td>
<td>RAPC712</td>
<td>Switchcraft</td>
</tr>
<tr>
<td>986</td>
<td>DMC16107</td>
<td>Optrex</td>
</tr>
<tr>
<td>978</td>
<td>TP1518ABE</td>
<td>Switchcraft</td>
</tr>
<tr>
<td>979</td>
<td>27C06-2015</td>
<td>Microchip</td>
</tr>
<tr>
<td>977</td>
<td>Z86C9320PSC</td>
<td>Zilog</td>
</tr>
<tr>
<td>980</td>
<td>SRL20256LC12</td>
<td>S-MOS</td>
</tr>
<tr>
<td>989</td>
<td>TC74HC374AP</td>
<td>Toshiba</td>
</tr>
<tr>
<td>990</td>
<td>TC74HC139AP</td>
<td>Toshiba</td>
</tr>
<tr>
<td>991</td>
<td>SN75176BP</td>
<td>Texas Instruments</td>
</tr>
<tr>
<td>998</td>
<td>MAX232</td>
<td>Maxim</td>
</tr>
<tr>
<td>987</td>
<td>LM2925T</td>
<td>Bourns</td>
</tr>
<tr>
<td>988</td>
<td>MPJ8304MEZ</td>
<td>M-Tron</td>
</tr>
</tbody>
</table>

Addresses for the manufacturer set forth above are as follows:
Bourns, 1200 Columbia Ave., Riverside, Calif. 92507
(714) 781-5050

M-Tron, 100 Douglas, Yankton, S. Dak. 57078 (605) 665-9321

Maxim, 120 San Gabriell Dr., Sunnyvale, Calif. 94086
(408) 737-7600

Microchip, 2355 West Chandler Blvd., Chandler, Ariz.
85224 (602) 963-7373

Optrex, div Asahi Glass, 44160 Plymouth Oaks Dr., Plymouth, Mich. 48170 (313) 416-8500

S-Mos, 2460 N 1st, San Jose, Calif. 95131 (408) 922-0200

Switchcraft, div Raytheon, 5555 N. Elston, Chicago, Ill.
(312) 792-2700

FIG. 41 illustrates a flow diagram for the polling process subroutine. The steps include:

Step Description

275 The CVC AP/M terminal is powered up and boots into the AP/M program.

276 Initialize AP/M terminal. The AP/M address dip switches are read to determine this AP/M's unique address. Through-out the initialization process the network is monitored to ensure that no other AP/M is using this AP/M's address. If another AP/M is using the address, control will jump to an infinite loop displaying that this AP/M's address is already being used. The CVC Marketing Systems title is displayed on the AP/M and the printer if attached. Then a message concerning invalid patent protection and patents pending is displayed and printed as well.

277 Enter ID is prompted on the terminal screen to let the clerk know it is ready to accept input. The following steps are repeated as an infinite loop.

278 The AP/M terminal resides on a network in a STAR topology using a single twisted pair balanced RS485 communications standard. The hub of the star is the CVC Controller which acts as the master. Communications is executed in a broadcast form with a token passing protocol to determine which AP/M is being addressed. In other words, if there are 3 AP/M's on the network, the Controller "polls" each AP/M one at a time in order to coordinate their activities.

279 When an AP/M receives a poll token with its address, it responds with either an "#" which means "I'm here, but I don't need anything", or an "&" followed by data for the Controller. The AP/M may also receive a data token followed by data for display on its screen or for sending to the printer.

280 First the AP/M checks for data from the RS485 network line.

278 If data is detected on the network, PERFORM the Polling Process (steps 286-307) and RETURN at step 280.

279 If not, the AP/M checks for data coming in from the RS232 port.

281 If data is detected, then GOTO 284.

282 Data is entered from the clerk into the AP/M via a 19-key keypad on the AP/M. The AP/M checks for data coming from its keypad.

283 If NO key has been pressed, then GOTO 277.

284 Data from the AP/M's keypad is terminated with a Carriage Return (CR).

285 Data from peripherals may be terminated with a Carriage Return (CR) or a Line Feed (LF). Check now for an end of data character.

286 If character is NOT a LF or CR, then GOTO 287.

287 End of data has been detected. Set a SEND DATA FLAG indicating that data is to be sent to the CVC Controller the next time the AP/M is polled. GOTO 277.

288 Polling Process Subroutine. When a character is read off of the RS485 network, it is analyzed to determine if it is intended for this AP/M. The following summarizes the polling characters and their functions. Assume this is an AP/M at
address=1.

Polling

Character

(Binary) Polling character's function

10aaaa (0x80 / pad # (bit wise boolean))

This is a polling character from the host requesting data from a specific AP/M addressed by the binary address ‘aaaa’. If the addressed AP/M has no data, it will reply with a ‘0’. Data sent from the AP/M will be preceded with an ‘&’. In the case of an error in the previous command from the host, the poll is answered with an ‘*’.

This AP/M's poll token is 10000001

(binary)

101aaaa (0xAA / pad # (bit wise boolean))

This character precedes a string of data to be displayed on the addressed AP/M’s display.

This AP/M's display data token is 10100001 (binary)

110aaaa (0xC0 / pad # (bit wise boolean)); followed by 0x55

These two characters precede a string of data to be sent out of the addressed AP/M's printer port. The second character (0x55) is used to ensure that the preceding token was not arbitrary garbage.

The character string may contain the following special function characters:

null (0): Indicates that the following character should have the MSB set.

soh (1): Indicates that the following character is to be passed to the printer if it is a NULL or SOH.

If the following character is 2 thru 15, then the contents of special buffer addressed logical 1 thru 14 respectively will be printed. If for some reason the AP/M has no data in the specified buffer, the next poll request will be answered with an ‘*’.

If the following character is 16 thru 29, then the following data stream is to be stored in the appropriate special buffer addressed 1 thru 14 respectively. This data stream will then be terminated with a combination SOH (1) followed by either 16 thru 29 to jump to another special buffer address or loading a data stream, 2 thru 15 to jump to a special buffer for spooling to the printer, or any character greater than 29 to simply terminate the load process.

This AP/M's print data tokens are 11000001 (binary) followed by 01010101

11100000 (0xE7); followed by 0x55

01010101 (binary)

These two characters precede a string of data to be sent out to all AP/M’s in broadcast fashion for display on the terminal screen.

11100000 (0xE7); followed by 0x55

01010101 (binary)

These two characters precede a string of data to be sent out to all AP/M’s in broadcast fashion for spooling to the printer.

As can be seen from studying the binary forms of the various tokens, the first three bits from the left indicate the function of the token and the remaining five bits from the AP/M address for which the token is intended.

Check the poll character’s first three bits.

The lower five bits of this character can make up to 32 ON/OFF combinations.

These combinations are used to determine the AP/M address for which polling is directed. In the case of this AP/M address = 1, the bit pattern would be OFF OFF OFF OFF OFF ON (00001).

If the lower five bits DO NOT EQUAL 00001, then this token is for different AP/M. GOTO 307.

Token character is equal to 10100001 which is intended for this AP/M.

Continue reading the rest of the display data packet.

Send data from the display data packet to the AP/M’s LCD display. GOTO 307.

Case ON OFF ON (or 110). This is a send to printer token.

The lower five bits of this character can make up to 32 ON/OFF combinations.

These combinations are used to determine the AP/M address for which polling is directed. In the case of this AP/M address = 1, the bit pattern would be OFF OFF OFF OFF OFF ON (00001).

If the lower five bits DO NOT EQUAL 00001, then this token is for different AP/M. GOTO 307.

Token character is equal to 11000001 which is intended for this AP/M.

Continue reading the rest of the print data packet.

Send data from the print data packet to the AP/M’s RS232 port for the printer. GOTO 307.

Case ON ON ON (or 111). This is a BROADCAST token which is intended for every AP/M on the network.

The lowest bit of this character determines whether the data following is to be directed to the printer (bit is ON) or to the display (bit is OFF).

If the low order bit is ON (11100001), then GOTO 302. Otherwise (bit is OFF (11100000)), then GOTO 298.

RETURN to calling program and resume at Step 280.

Whereas many of the examples described herein illustrate generation of coupons based upon dollar purchases by customer, it should be understood that similar types of targeted marketing will also be provided by the system based upon the types of products bought by the purchaser or the departments in the store from where the products were bought. As previously described, the system contemplates the use of the UPC data received by the passive listening device 964 (FIG. 19) to provide specific indications of the products purchased by customers. This would not only provide information about the type of product purchased, but also the size and type of the product. This information is stored by the system and can be used to provide targeted marketing by generating incentive coupons particularly directed to types of products which has been shown that the customer desires. Thus, although the examples herein illustrate coupons generated based on dollar volume, the same types of procedures can be used to generate coupons which are based upon products purchased by the customer. This concept is illustrated in greater detail in certain of the following examples.

It will now be described that it is important to monitor how a customer responds to the incentives generated by the present system. In reality, not every single customer responds to an incentive. Experience shows that perhaps 15-20% of the customers respond to the most lucrative incentives. Once the customer meets an infrequent shopping history criteria, the present system incents them. The system records that incentive in the database as part of the history file of that individual or the identification. Then the system takes an additional step of monitoring the activity of that shopper.

Any one incentive given to a multiplicity of shoppers is evaluated differently by each individual customer. Take two examples: (1) consider an incentive that provides $2 off on the next shopping visit, if the customer spends $25 and do it within a week. If the customer is a widow, single woman living on a fixed income, that $2 might represent 10% of her weekly food budget and therefore be a pertinent valuable
incentive to her. On the other hand, to a housewife who has five teenagers at home and spends $250 a week, $2 off may not be a sufficient incentive to modify her behavior in any significant way.

(2) In another example, on a product level, the same widow woman might consider an offer for a free 12-oz. box of detergent very pertinent, but the housewife with five dirty teenagers might not find that product volume a sufficient incentive to change brands.

So, each individual incentive given to a group of people is evaluated differently by those people. Assuming several thousand people shop a store twice in the prior 8 weeks, that is hardly a homogeneous group. So, it is important to provide an incentive to those who meet an infrequent shopping history criteria, but once that incentive is made, it should be recorded in the history file of that individual shopper.

In addition to recording that incentive in the database, the system monitors the activity of that customer in a subsequent period. Monitoring can take a couple of different avenues. First, the system can monitor customers to determine if they return to the store within the appropriate time limit of the incentive and do they spend the required amount (if there is a required amount) pursuant to the terms and conditions of the incentive. So, simply monitoring future activity is indirect evidence that the incentive was complied with. On another basis, the system can scan the redemption of a coupon through the bar code reader, or the redemption act itself can be manually entered.

In order to easily scan in the redemption of coupons, bar code data may be printed on the coupons. The bar code reader of the invention can then scan the coupons and the scanned information is stored in the customer’s shopping history. In the alternative, a manual input, can be used, wherein a coupon is given an ID number and that ID number can be manually input into the cash register so that the pre-programmed discount is available. Either way, the coupon is either manually input or machine read so that there is a positive feedback that the redemption act itself occurred. Subsequent activity subsequent to the incentive can thus be monitored basically one or two ways, either through redemption or through monitored customer activity.

Once the system monitors a customer’s subsequent activity, subsequent to the incentive, then the system can record the response. The system may then have a preset criteria of response and if that customer meets the preset response criteria, the system may either maintain that incentive over a preselected time interval or may initially or subsequently reduce that incentive over a preselected time interval. If the response criteria is favorably met, and the retail store is happy with the performance by the customer, then the store can either maintain or reduce or maintain and subsequently reduce the value of the incentive. On the other hand, if the customer fails to meet the response criteria, as is often the case, the incentive may be increased or changed.

For example, a store may offer an incentive to come back again in the next seven day period and if the customer does, the store gives $2 off the shopping visit. The store then monitors that customer to see if he performed according to the terms and conditions. Did he come back and do what the incentive provided that he should do? If not, then the value of the incentive may be increased.

Recognizing that every group of customers, and in fact, every individual customer has different valuations of an incentive, and depending on whether or not a store has the product or whether the store is short of an inventory product, the incentive may be changed. If customer response is monitored and the customer does not respond, the incentive can be increased in successive layers until the store finally gets the desired response. This approach provides for an enormous amount of efficiency, because in the “$2 off your next shopping visit” example, if the store provided this incentive to the 2,767 customers that are in Table 5 who shopped only twice in the last 8 weeks, it is unlikely that greater than a 15% participation would be obtained. If so, that 15% may be left at a $2 incentive because it works for them. But the 85% that the program did not work for will need to have their incentive increased. The present system allows a store to customize the incentive, whether it is on a shopping visit criteria, or a product group, or a department, or an individual specific product basis.

With respect to Coupon “M” as described herein, a criteria is set of prior purchases and an attempt is made to incent someone to increase that historical level of prior purchases. Taking that historical purchase level as a base, Coupon “M” seeks to incent above that by providing customer response monitoring to each to an incentive. An incentive is provided to increase customer purchases, the system monitors and records that incentive in the customer history file, then records the response if the customer meets that response criteria, the store can either maintain that incentive over a preselected time or the store can reduce that incentive over a preselected time either immediately or subsequently. Alternatively, the store can maintain the incentive a while and then choose to increase it or the store can increase the incentive if the customer has not favorably met a response criteria. The coupon increase can be organized in successive layers. A new incentive can be issued, the response is monitored and if they meet the response, the system can choose among the alternatives of maintaining or reducing. If they do not meet the response criteria, the system can increase the coupon value, or differentiate subsequent coupons, until the desired reaction is obtained from the individual customer or household.

While the prior disclosure has described infrequent shopping history criteria in terms of store purchases, department purchases or specific product purchases, it is important also to use arbitrary groupings of products and use that as a target criteria. This grouping of products may not include just all cookies for example, but an arbitrary grouping of products might include any number of different types of snack foods. It is important to include arbitrary groupings of products, because if a single product is set up as a criteria and someone is infrequent to that criteria, a manufacturer might believe the customer is not buying chocolate chip cookies and the customer needs to be incented to buy chocolate cookies. In fact, the manufacturer may make many different varieties of cookies, and the customer may buy a different type cookie. Thus, the manufacturer may then be substituting one cookie in the product line for another and having a commensurate reduction in gross profit because they would be using an incentive to do so. It should also be considered in this grouping the concept of buying cycles that are specific to the type of product in question. In certain prior systems, if a shopping basket does not include a particular product and so is not scanned in this current transaction, then the prior system prints out a coupon for that product. Without stored customer history, the prior system is not capable of considering whether or not the customer just bought yesterday or last week that very product and will not be incented. The present system retains a stored shopping history in order to make an intelligent decision as to incentivizing it or not. Buying cycles can in some instances be quite long. For example, a 3 lb. can of coffee might only be bought every 6 to 8 weeks and the customer’s average shopping visit to supermarkets is twice a week. Thus,
one out of every sixteen visits somebody buys a 3 lb. can of coffee. So the buying cycle is an important consideration as to how to incent a customer.

The history of products being purchased is stored and organized into arbitrary groups by manufacturer in the present database, so that a manufacturer does not take business from himself. An average buying cycle may be determined over the entire customer base. As an example, assume for this entire store or this entire region, the average consumption of a coffee product is 4 ounces per week. Although the coffee is only bought every eight weeks, the consumption rate of that coffee is 4 oz. a week. The system may store the average consumption rate for the customer base as a whole so that the store can use that as a starting point for saying that a customer is at or below this consumption rate. That says nothing about the individual household, but the average consumption rate is a starting point that says on a new customer or a new promotion for a coffee, the store has a standard to begin with. Therefore, a customer who buys 3 oz. a week should be incented.

A more sophisticated embellishment of that concept is to track the consumption rate per customer ID, so that the store knows what the single woman living alone consumption rate is for clothes washing detergent vis-a-vis the family of seven. Because for each there is a different buying cycle to be sure, but also there is a different consumption rate. It is the consumption rate that is very important to determine, not the buying cycle, because the buying cycle is largely determined or influenced by what size is bought. The woman living alone might have a 8 month buying cycle because she buys a tub of clothes washing detergent but uses very little. So, if the store obtains the consumption rate of a product group, then the store can obtain a much more refined criteria by which to judge the individual ID or customer ID or individual household. The store or manufacturer of a product can thus structure an inducement based on the customer's consumption rate. It may be inappropriate to give the single woman an inducement $5.00 off a 5 lb. can of Folgers when that is a two year supply for her. So, it is important to establish the consumption rate for an individual ID and or household and then set up a criteria with respect to an individual manufacturer's product group. While a customer is consuming from this general group of products, “X” amount per week, the customer is detected as consuming very little of a particular manufacturer's product. The store can then incent that customer because he is an infrequent customer to the particular product. The incentive can be based on something that is appropriate to the customer’s consumption rate. It can be an incentive on a big size if the customer is a big user, or a small size if the customer is a small user. The present system can thus determine and distribute an individualized, personalized, custom-tailored, inducement based on individualized consumption rate monitoring.

The groupings of products can be manipulated based on any number of variables. For example, it may be desired to manipulate a product group based on seasonality. A manufacturer, for example, might want to include hot cereals in the four winter months and exclude it from their product group in the summer months. The group of products may thus be manipulated to bring products in and out of that group based on holidays or based on any number of variables that are pertinent to the manufacturer. While the retailer may look at infrequent shoppers more from the perspective of store visits and department visits and purchases, the manufacturer looks at the shopper from the perspective of meeting an infrequent criteria with respect to their product group, arbitrary product group or a specific product.

Once those two groups are arrived at, they may be overlaid such to incent someone who is infrequent to a department or to the store and it is desired to incent them from the retailer standpoint. For example, it may be noted that a store's customers are not buying a manufacturer’s ham and the grocer says people are not frequenting his pharmacy. So by combining forces to go after a common customer, the manufacturer and the retailer can target market people who are infrequent to the pharmacy and use ham as an incentive of those who are infrequent to ham. This approach provides cost sharing between the retailer and the manufacturer, because a refined population that is infrequent to both can be targeted, costs can be shared and the incentive can be increased. For example, using the example of ham and the pharmacy, the manufacturer of ham might agree to reduce the cost of ham and the retailer agrees to pay for the other half of the ham if the customer will come to the pharmacy. By combining forces, the customer gets a free ham, the manufacturer and store reduce costs, and the value of the incentive is heightened.

Another feature of the invention may be termed a “Grab Bag” coupon technique. A coupon “Grab Bag” is a group of incentives which are accessed in succession for dispensing to a particular customer segment. The “Grab Bag” may be accessed in a random-fashion in the same way as a single coupon. The “Grab Bag” may also be directed to a particular target such as Coupon “A’s”. In the current system up to 10 incentives may be grouped into a single “Grab Bag”.

EXAMPLE 1

A store wishes to test redemption rates for varying “dollar off” coupons for Coupon “A” shoppers. “A Grab Bag” is set up to choose one incentive on a 1:1 ratio (every time) from the following five coupons in a grab bag:

- Grab Bag Coupon #1—$1.00 off with a minimum purchase of $25.00
- Grab Bag Coupon #2—$2.00 off with a minimum purchase of $25.00
- Grab Bag Coupon #3—$3.00 off with a minimum purchase of $25.00
- Grab Bag Coupon #4—$4.00 off with a minimum purchase of $25.00
- Grab Bag Coupon #5—$5.00 off with a minimum purchase of $25.00

Once this “Grab Bag” is activated, the first Coupon “A” shopper receives a $1.00 off coupon and that coupon’s database record is updated to reflect one issuance. The second Coupon “A” shopper receives a $2.00 off coupon, the third a $3.00 off coupon, the fourth a $4.00 off coupon, and the fifth a $5.00 off coupon with each coupon’s database record updated to reflect an issuance. The sixth Coupon “A” shopper receives a $1.00 off coupon and thus the cycle is repeated for the number of coupons indicated for dispensing in the coupon database. In this way a truly random, yet uniform and easily tracked number of Coupon “A” shoppers have been issued “dollar off” coupons of varying values. Redemptions may now be analyzed in order to more intelligently decide which incentive would be most appropriate for this particular customer segment.

EXAMPLE 2

A store has been allowed 15,000 promotional items by the manufacturer to give away in their NOW-Coupon system. These promotional items are made up of 3,000 each of five different flavors of edible widgets. A decision is made to direct 1,000 of each flavor as Coupon “A” incentives and
direct 500 of each flavor to the B, C, D, and E categories. Since less edible widgets are allotted to the primary shopper categories, a "Grab Bag" is set up for each with a random ratio to control the rate at which the coupons are dispersed. The following is the configuration for Coupon "B"s.

<table>
<thead>
<tr>
<th>Coupon category:</th>
<th>Coupon "B"</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random ratio:</td>
<td>1:5</td>
</tr>
</tbody>
</table>

Grab Bag Coupon #1 — Free Box of Edible Widgets — Grape (Issue: 500)
Grab Bag Coupon #2 — Free Box of Edible Widgets — Cherry (Issue: 500)
Grab Bag Coupon #3 — Free Box of Edible Widgets — Strawberry (Issue: 500)
Grab Bag Coupon #4 — Free Box of Edible Widgets — Lemon (Issue: 500)
Grab Bag Coupon #5 — Free Box of Edible Widgets — Orange (Issue: 500)

Once this "Grab Bag" is activated, the first four Coupon "B" shoppers would not receive a coupon for edible widgets. The fifth Coupon "B" shopper would receive a coupon for a box of Grape. The next four Coupon "B" shoppers receive no coupon from this "Grab Bag". The tenth shopper overall receives a coupon for a box of Cherry, and so on until 500 of each flavor has been issued to Coupon "B" shoppers.

The coupons generated by the system have various fields used for plugging dynamic dates based on coupon definition and amounts based on the specific customer’s spending level. For example, a coupon may be set to expire at an 'exact' date, such as Jul. 4, 1993. Or the coupon may be set to expire a specified amount of time from the issue date (called the ‘delta’ date). For example, if today is Jun. 21, 1993, and the ‘delta’ date is 604,800 seconds (1 week), then the expiration date printed on the coupon will be Jun. 28, 1993. Amounts may be plugged onto a coupon based on a percentage of the current purchase (including percentages greater than 100%), or on a Maxxer base or target for specifying minimum purchase qualifiers.

The identifiers listed below are available for display on any coupon printed by the system. These special macros are flagged with a preceding '@'. For example, if a beginning valid date is indicated on the coupon, a "@DB" would be placed on the line: Coupon Valid @DB

The @DB tells the program to calculate the date equal to the specified number of seconds from right now. For example, if on Jun. 21, 1993 the above line is encountered and the record specifies that @DB should be 8,640 seconds from the present date, the line on the coupon would read:

Coupon Valid Jun. 22, 1993

<table>
<thead>
<tr>
<th>@DB = Delta</th>
<th>calculate a beginning date n seconds from now as specified by ‘@begin’ in the coupon’s header record.</th>
</tr>
</thead>
<tbody>
<tr>
<td>@EB = Exact</td>
<td>display the exact beginning date specified by ‘@begin’ in the coupon’s header record.</td>
</tr>
<tr>
<td>@DB = Delta</td>
<td>calculate an ending date n seconds from now as specified by ‘@end’ in the record.</td>
</tr>
<tr>
<td>@EB = Exact</td>
<td>display the exact ending date specified by ‘@end’ in the record.</td>
</tr>
<tr>
<td>@TV = Maxxer</td>
<td>used for minimum purchase message. Uses the Maxxer target in the ID record.</td>
</tr>
<tr>
<td>@TP = This</td>
<td>used for typing dollars spent to a value displayed on the coupon. Uses ‘@ratio’ from the customer record to calculate a percentage of the purchase amount (including percentages of 100% and over)</td>
</tr>
<tr>
<td>@FQ = Weekly</td>
<td>Demonstration and display purposes only, generates a bit map of the prior 8 weeks attendance; ie 00100000 shows 1 week attended 3 weeks ago.</td>
</tr>
</tbody>
</table>

It may thus be seen that the present invention provides the ability to generate a large number of different types of coupons depending upon the customer’s prior shopping history. The following Tables 7-10 provide specific examples illustrating the generation of different types of incentive coupons based upon prior shopping history of a customer.

Table 7 illustrates a coupon configuration which may be entered into the data storage of the present system in order to determine the types of coupons to be issued. For example, COUPON "A" will be issued to a customer having less than five weekly attendances in the last eight weeks. COUPON "A" Levels A1-A5 denote different types of coupon levels depending upon the attendances and purchases by a customer in an eight week period. COUPONS "B"-"E" are determined by the amount of purchases made by a customer on the average. For example, a COUPON "B" will be provided to customers who have an average purchase of 0-$24.99 per each store visit. For the coupon configuration of Table 7, the scanned data by the bar code reader is not utilized, but an example of the utilization of such scanned product data will be subsequently noted.

Utilizing the coupon configuration set forth in Table 7, a Customer No. 1 profile is provided in order to indicate a customer to which would be provided a COUPON "B" by the printer. It may be seen in this instance, Customer No. 1 has made a total of 223 trips to the store with an average purchase of $22.43. The current purchase being made by the customer is $24.98. In the last eight weeks, the customer has attended the store six times, once one week ago, once two weeks ago, once four weeks ago, once five weeks ago, once six weeks ago, and once seven weeks ago. This customer is denoted a frequent shopper and thus will not be provided a COUPON "A" which would be reserved for an infrequent shopper. Thus, Customer No. 1 would be provided with a COUPON "B".

Paragraph 2 of Table 7 illustrates a Customer No. 2 profile who would receive a COUPON "C". It may be seen that this customer has a higher average purchase than Customer No. 1 and has had five attendances in the last eight weeks. Again, Customer No. 2 would not be determined to be an infrequent shopper, but instead would be determined to be a frequent shopper. Thus, this customer would not be provided with COUPON "A" but would be provided with a COUPON "C" because of his higher average purchase.

Paragraph 3 of Table 7 illustrates the various coupons which would be generated by the system for Customer No. 1. Six standard coupons would be first spoofed out by the printer of the invention, which would include informational coupons advertising the store’s new delicatessen. The standard coupons would also provide installment coupons of 25 "turkey bucks". The customer could accumulate the turkey bucks...
until a certain number had been reached, at which time he or she could receive a turkey. Coupons also include an outside coupon providing a free drink at Red’s sandwich shop with the purchase of a sandwich. A discount coupon would also be spoiled off to the customer which provides 50¢ off canned peas, another discount coupon providing 75¢ off chicken fryers and a sixth coupon providing a $3.00 discount off of a new prescription. Customer No. 1, being denoted as a COUPON “B” type of consumer, would be provided with two “B” COUPONS providing a discount of 50¢ off a laundry detergent and another coupon providing 25¢ off a cereal.

The coupons spoiled off to Customer No. 1 may be compared to the coupons spoiled off to Customer No. 2, which are set forth in Paragraph 4. Customer No. 2 receives essentially the same standard six coupons, with the exception that this customer obtains 48 turkey bucks due to the higher level of his purchases, the current purchase price being approximately $48. Customer No. 2 receives two “C” COUPONS, one providing a discount of $1.00 off a bakery purchase of $5.00 or more and a second providing a discount of 50¢ off of $1/2 gallon ice cream.

Paragraph 5 of Table 7 provides a profile of Customer No. 3 who receives a “D” COUPON. It may be seen that this customer has a higher dollar average of purchases than Customer 1 and 2 and has seven attendances in the last eight weeks, thus making him or her a frequent shopper.

Paragraph 6 illustrates a Customer No. 4 profile who is to receive an “E” COUPON. It may be seen that this customer has an even higher average in purchases and has seven attendances in the last eight weeks. This makes him/her a frequent, high volume shopper.

Paragraph 7 lists the coupons provided to Customer No. 3. It may be seen that the six standard coupons are the same as previously described, except that Customer No. 3 receives 59 turkey bucks because of his higher purchase. Customer No. 3 receives two “F” COUPONS, the first providing $2.00 off of the purchase of meat of $10.00 or more and a $1.00 discount off a deli sandwich.

Paragraph 8 indicates the coupons to be spoiled off by the printer to Customer No. 4. Again, the six standard coupons are provided, with the exception that 127 turkey bucks are provided to the customer because of the high purchases. In this instance, the customer is provided with two discount “E” COUPONS, the first providing a $2.00 discount off a deli purchase of $10.00 or more and a $3.00 discount off of any five gourmet style frozen entree. In addition, a random lottery COUPON “E” is provided wherein one coupon is randomly generated out of each 100 access of the COUPON “E” database. If Customer No. 4 was the lucky winner of the random 1 out of 100 access, Customer No. 4 would be provided a coupon indicating that he or she is a lucky winner of a free ten pound turkey. This random lottery feature generates excitement among high volume purchasers.

Paragraph 9 is a profile of a Customer No. 5 who has made 81 visits to the store and in the past has had relatively high purchase levels. However, the system has detected that Customer No. 5 has not attended the store in the last eight weeks. This system defines this Customer No. 5 as an infrequent shopper and determines that the customer is to receive a COUPON “A-5”.

Paragraphs 10-22 indicate the various coupons which are provided to Customer No. 5 in the next thirteen trips made to the store by Customer No. 5. In other words, the system determines that Customer No. 5 is an infrequent shopper and determines to induce the shopper to return to the store in a series of visits. The coupons spoiled out to Customer No. 5 in the next thirteen trips to the store are determined by the shopping activity of a customer. In the program illustrated by paragraphs 10-22, the customer does return to the store and is successfully induced to become a frequent shopper. Paragraph 10-22 thus indicate how the system provides inducement to an infrequent shopper.

Paragraph 10 illustrates the first trip back to the store by Customer No. 5 after at least an 8 week absence. The COUPON “A” level 5 procedure is implemented such that the customer is provided with the six standard coupons previously noted. However, in this instance, the customer is also provided with COUPON “D” providing the customer with discounts off of meat and the deli pizza. In addition, this customer is provided with a substantial inducement discount of $8.00 off the next purchase of $40.00 or more or $4.00 off the next purchase of $25.00 or more. In addition, the customer is provided with three additional discount coupons for discounts off of soda, milk and eggs.

Paragraph 11 indicates that the customer was indeed induced to return back to the store 7 days later by the high coupon values and purchased $71.78 worth of groceries. Again, the customer was provided with the six standard coupons and was provided with two “D” COUPONS. The customer was provided four A-5 coupons providing a discount of $4.00 off the next purchase of $25.00 or more plus discounts off of soda, milk and eggs.

Paragraph 12 illustrates a return by the customer 5 days later and a purchase of $54.81. Again, the six standard coupons were generated to the customer, along with two “D” COUPONS. Four A-5 coupons were provided, one providing a discount of $4.00 off the next purchase of $25.00 or more and discounts on soda, milk and eggs.

The remaining paragraphs 13-22 indicate subsequent returns of the customer and indicates that continued inducements are provided to the customer to insure that the customer returns. At paragraph 16, it may be noted that the amount of discount dollars off the next purchase are reduced, since the customer is becoming a frequent shopper. Paragraph 18 indicates that the A-5 coupon discounts are becoming of less value. It may be seen that trips 11 and 12 shown in paragraphs 20 and 21 provided the customer with only a single A-5 coupon. Finally, at trip number 13 as indicated by paragraph 22, the program is determined to be complete as the customer has become a frequent shopper. No additional A-5 discount coupons are provided to the customer, but only the six standard coupons along with the two “D” COUPONS. The customer would continue to be monitored by the system and if the customer again became an infrequent shopper, the system would then again implement an infrequent shopping program for this customer.

Table 8 illustrates a COUPON “M” program wherein a normal or frequent shopper is detected, but where it is desired to attempt to increase the customer’s shopping level. As shown in table 8, paragraph 1 illustrates a typical COUPON “M” configuration. COUPON “A” level and purchase levels are identical to the coupon configuration shown in Table 7. However, in this instance the COUPON “M” routine is turned on and a COUPON “M” is determined to attempt to provide a 10% increase on an average purchase of $50 or less. The effectiveness of the program will be detected after three trips by the customer.

Paragraph 2 of Table 8 indicates a profile of Customer No. 6 in order to illustrate the generation of a COUPON “M” program. Customer No. 6 is determined by the system to have made 223 total trips to the store and has an average purchase of $22.43. The customer has attended the store six times in the last eight weeks and is therefore a frequent shopper. However, the system determines the “Maxer base” or average pur-
chase of the customer now to be $22 each store visit and the program will attempt to induce the customer to increase his or her average purchases to $25 per visit within a three visit program. Paragraph 3 of Table 8 illustrates the coupons that are generated by the COUPON “M” program. The customer is provided with the normal six standard coupons previously noted and two “B” COUPONS. However, the customer is also distributed a “M” COUPON providing a discount $1.00 off of the next grocery purchase of $25 or more, in order to attempt to induce the customer to increase his average purchase.

Paragraph 4 illustrates trip number two, seven days later wherein the customer indeed does increase his purchases to $31.68. The customer is again generated the six standard coupons and two “B” COUPONS, but is additionally generated another “M” COUPON which provides him with a $1.00 discount off the next grocery purchase of $25 or more. Paragraph 5 illustrates the next visit of the customer seven days later wherein a purchase of $26.45 is made. Again, the standard coupons and two B COUPONS are generated, along with a “M” COUPON again providing a $1.00 discount off the next purchase of $25 or more. Paragraph 6 illustrates trip number four wherein a $29.67 purchase is made, providing an average purchase since the M program began of $32.60. The program is determined to be successful and complete and the “M” COUPON program is deleted. The customer then receives the standard six coupons along with two B COUPONS but in this instance does no longer receive a “M” COUPON.

Paragraph 7 of Table 8 illustrates a Customer No. 7 profile wherein the customer is a frequent shopper and has an average purchase $66.41. The system determines that the Maxxer or current average base of the customer of $66 per visit is so high that it is not practical to attempt to increase that customer’s purchases. Thus, the customer is determined to be out of range for a COUPON “M”.

Consequently, paragraph 8 indicates that the customer at that visit is generated only the six standard coupons and two “D” COUPONS and is not provided with the COUPON “M” as previously noted.

Table 9 illustrates a SUPER “A” COUPON program wherein a series of program steps are implemented in order to attempt to induce an infrequent shopper with high incentive coupons. Paragraph 1 of Table 9 illustrates the coupon configuration previously denoted, with the COUPON “M” and scanned data techniques turned off. However, the coupon configuration indicates that the SUPER “A” COUPON configuration is energized and is applied to the customers presently involved in the Coupon “A” program, and who have been absent from the store 30 or more days. The coupon configuration, indicates the duration of the SUPER “A” program is three trips.

Paragraph 2 of Table 9 profiles Customer No. 8 who has previously visited the store with an average purchase of $73.62, but who has recorded only 2 attendances in the prior 8 weeks and is thus noted as an infrequent shopper. Paragraph 3 thus indicates the coupons spoiled to Customer No. 8 in the next visit to the store. Six standard coupons and two “D” COUPONS are generated to the customer as previously described. However, this system’s high incentive coupons noted as A3 are provided to the customer. One A3 discount coupon provides a $6 discount off the next purchase of $40 or more or $3 of the next purchase of $25 or more. The other two A-3 discount coupons provide free soda and free bread. The free coupons are high incentive coupons in order to insure that the customer comes back to the store to obtain the free merchandise at a subsequent visit.

Paragraph 4 illustrates the second visit to the store made by Customer No. 8, wherein three high incentive A-3 coupons are provided to the customer. Paragraph 5 illustrates the number three trip by Customer No. 8 wherein three A-3 discount coupons were provided. Paragraph 6 illustrates the fourth trip made by Customer No. 8. It will be noted that trip number four is made 35 days after trip number three. The system detects the length of time between the third and fourth visits and begins a SUPER “A” program on Customer No. 8 to incent his return by adding higher value coupons. With this visit, the Customer No. 8 is provided with the six standard coupons and two “D” COUPONS. However, the customer is now provided with five SUPER “A” COUPONS. One coupon provides a discount of $8 off the next purchase of $40 or more or $4 off the next purchase of $25 or more. The customer is provided with a coupon for a free 12 pack of soda, free ice cream and a free whole chicken fryer, along with 25 bonus turkey bucks.

As shown in Paragraph 7, since the customer began a SUPER “A” program in Paragraph 6, the system determines this visit to be trip 2 on a SUPER “A” program. This trip to the store is seven days from the start of SUPER “A” program and results in the purchase of $48.92. The customer is provided with the six standard coupons, two D COUPONS and five SUPER “A” COUPONS to continue the high incentive.

Paragraph 8 illustrates the next visit by the customer to the store, with a resulting purchase of $55.63. The program determines the SUPER “A” program to be successful and complete. At this visit, the customer is provided with five SUPER “A” coupons. However, Paragraph 9 indicates that the next trip places the customer back on the COUPON “A” program and the next visit by the customer is determined to be trip number four on the COUPON “A” program. In other words, the customer’s hiatus in visiting the store during the “A” COUPON program kicked the customer into a SUPER “A” program for a series of visits until the customer again became a more frequent visitor. Paragraph 9 thus illustrates the generation of only three A-3 coupons rather than the SUPER “A-3” coupons previously noted.

Paragraph 10 illustrates trip number 5 on a COUPON “A” program and shows the generation of only two A-3 coupons. Paragraphs 11-18 illustrate successive visits by the customer and indicate subtle reductions in the coupons as the customer becomes a more frequent shopper, until the customer begins to receive the standard coupons on trip number 13 as indicated in paragraph 18. If the customer subsequently again becomes an infrequent, the system automatically detects this and may again implement higher incentive programs.

Table 10 illustrates the use of the scan data function of the present invention wherein the bar code reader generates data indicating the specific articles purchased by a customer and this data is utilized by the present system to incent the customer. Paragraph 1 of Table 10 illustrates that the system is set with the coupon and purchase levels as previously described. The coupon configuration however is set to provide a COUPON “M” and SUPER “M” coupon. Scanned data is used to build ECHO coupons and customer profiles as previously described.

Paragraph 2 defines the profile of a Customer No. 9 and illustrates a COUPON “M” and SUPER “M” program using ECHO coupons for incenting. This table will assume that the customer has previously purchased disposable diapers and baby food at that store and those articles have been scanned in by the system and stored. Customer No. 9 may be seen to be a frequent shopper, having an average purchase of $22.43 and having six attendances in the last eight weeks. It is determined by the system to attempt to incent this purchaser up to a
Maxxer target of $25 per visit, or an increase of approximately 10% in the average purchase. Paragraph 3 thus indicates the coupons generated to Customer No. 9 on the first trip after beginning the COUPON “M” program. Six standard coupons are generated along with two standard “B” COUPONS. However, in this instance, an ECHO COUPON of $1 off disposable diapers on a purchase of $25 or more at the store is generated to the customer. The system has previously determined that this customer is subject to desiring coupons for purchasing diapers. It is believed that the generation of this coupon will highly incent the customer to return to the store and spend $25 or more in order to receive a $1 off disposable diapers. Paragraph 4 thus indicates trip two of Customer No. 9 seven days from the start of the program. The customer only purchased $21.68 worth of groceries, therefore did not use the ECHO COUPON provided on trip one. The system generates the same coupons as previously generated, including the ECHO COUPON of $1 discount off of disposable diapers if the customer purchases $25 or more of total groceries. Paragraph 5 illustrates the third trip by the customer and indicates that the customer only purchased $16.45. The system again generates the ECHO COUPON providing $1 discount off disposable diapers. Paragraph 6 illustrates trip number four wherein the system evaluates the success of the ECHO and COUPON “M” program. It is determined that there has been no increase in average purchases by the customer since the implementation of the program. Thus, a “Super” “M” program is instituted to provide higher incentive in order to incent this particular customer. Thus, two Super “M” ECHO COUPONS are provided to the customer on this fourth visit. One ECHO COUPON provides a free box of disposable diapers with a purchase of $25 or more and $1 off of baby wipes with a purchase of $25 or more on the next visit. Paragraph 7 illustrates the next visit nine days later by the customer wherein a purchase of $36.84 is noted. This indicates that the program is indeed working and again two Super “M” ECHO COUPONS of free disposable diapers and a discount off of baby wipes are generated to the customer. Paragraph 8 indicates the third Super “M” trip visit 40 days from the start of the program and indicates the purchase of $32.32. The system thus determines that the duration of Super “M” program is complete and the two Super “M” ECHO COUPONS are issued. Paragraph 9 illustrates coupons spoiled to the customer on the visit 46 days from the program start. Paragraph 10 thus indicates the coupons spoiled off to the Customer No. 9 on the next visit. On this visit, a purchase of $29.11 was made by the customer. This purchase provides the system indicating that the average purchases by the customer since the program began is over $25 and thus the COUPON “M” system is successful and is complete. Consequently, the customer is no longer provided with the higher incentive coupons but is only provided with the six standard coupons and two “B” COUPONS. The system has incented the customer to raise the customer’s average purchases to a higher level and the system will thereafter monitor the customer to insure that the purchases are maintained at that higher level. If the customer’s visits become less frequent or if the dollar volume decreases, the system will automatically institute a higher incentive program to incent that customer. The following provides additional information on how the present system enables targeted marketing to households which are infrequent shoppers of a particular product group. Assume a manufacturer of five varieties of chocolate chip cookies (BRAND A) wants to target marketing at households who historically demonstrate an infrequency to their product group. The following parameters are set in a group of grocery stores utilizing the present invention:

Householding is activated linking the various accounts of various payment instruments within a single household based on the household’s telephone number. Historical shopping history is transferred between stores to ensure purchases at all locations is merged. The consumption of the following products are tracked in order to arrive at an average rate of consumption of bakery type snack products (PRODUCT TYPE): 1. Manufacturer’s own product group, 2. Other manufacturer’s chocolate chip cookies (BRANDS B, C, and D)

UPC’s and product sizes in ounces are stored in the Bar Code Tracking Table (BCTT). Cookies other than chocolate chip (i.e., BRAND E’s creme filled Cookies). Other bakery type snack items such as BRAND F’s cupcakes and other cake type snack items. The following Levels of Coupon “A” are set with each level providing incentives for 5 trips. The “deal” represents the discount offered of list price for each level, as shown on Table 11.

BRAND A is indifferent to which of their variety of chocolate chip cookies is purchased, so a “grab bag” is set up to rotate through the five variations in the following manner:

Item 1—BRAND A chocolate chip cookie—original

Item 2—BRAND A chocolate chip cookie—w/fudge stripes

Item 3—BRAND A chocolate chip cookie—chewy

Item 4—BRAND A chocolate chip cookie—w/big chips

Item 5—BRAND A chocolate chip cookie—w/candy coated chips

In this way, the first time the “grab bag” is accessed, the “original” BRAND A is used. The second time, BRAND A “w/fudge stripes” is used. The third time, “chewy” is used, and so on, looping through the five variations in succession. The criteria for infrequency to the product group are as follows:

A tracking period of 10 or more weeks must be collected for an account (or accounts within a single household) before targeting that account.

Of the consumption rate accumulated for the whole PRODUCT TYPE, a consumption rate of 50% or less of BRAND A’s product group is considered infrequent. The product sizes shown in Table 12 are used as incentives based on average consumption levels of PRODUCT TYPE. The idea being to avoid using an inappropriate product size such as a 32 ounce size used as an incentive for a household that only consumes 3 ounces per week.

The criteria for Super “A” will be the failure to redeem the coupon dispensed the prior week. The following Levels of Super “A” are set with each level providing incentives for 2 trips, as shown in Table 13.

The shopping profiles shown in Table 14 demonstrate how the criteria of incentives may be directed toward different households based on their actual consumption.

The data shown in Table 15 demonstrates various Product Group Coupon “A” Programs.

Household #1’s consumption shown in Table 14 was tracked for 10 weeks and found to average 17 ounces per week of the overall PRODUCT TYPE (all bakery type snack items), but averaged only 4 ounces per week of BRAND A. This 24% consumption falls short of the preset criteria for infrequency and falls into a Coupon “A” Level 3 as shown in
Table 11. Additionally, referring to Table 12, the 20 ounce package size will be used for incentives to this household. Table 15 shows the initial offering to Household #1 and the following weeks of activity. Note the initial offering is 60¢ OFF the 20 ounce package of BRAND A. This offering was arrived at based on the "Deal" indicated in Table 11 (25¢ OFF for Level 3) applied to the list price indicated in Table 12 ($2.50 for the 20 oz. package) rounded to the nearest 5¢. The scenario for Household #1 is that every following week this customer redeems the 60¢ OFF coupon and therefore receives that same incentive until the program runs out (5 trips).

Household #2’s consumption shown in Table 14 was tracked for 14 weeks and found to average 12 ounces per week of the overall PRODUCT TYPE (all bakery type snack items), but averaged only 2 ounces per week of BRAND A. This 17% consumption falls short of the preset criteria for infrequency and falls into a Coupon “A” Level 2 as shown in Table 11. Additionally, referring to Table 12, the 12 ounce package size will be used for incentives to this household.

Table 15 shows the initial offering to Household #1 and the following weeks of activity. Note the initial offering is 60¢ OFF the 12 ounce package of BRAND A. This offering was arrived at based on the “Deal” indicated in Table 11 (40¢ OFF for Level 2) applied to the list price indicated in Table 12 ($1.50 for the 12 oz package) rounded to the nearest 5¢. It is important to note the difference between the Coupon “A” campaign for Household #2 vs Household #1. First, Household #2 had a lower PRODUCT TYPE consumption rate than Household #1 and therefore is being incented with the 12 oz package size rather than the 20 oz. Second, Household #2 had a lower percentage consumption of BRAND A vs PRODUCT TYPE and therefore received a higher incentive (40¢ OFF vs 25¢ OFF). In Household #2’s campaign shown in Table 15, note that in week #2 this customer did NOT redeem the coupon dispensed in the prior week. This failure to respond to an incentive puts this customer’s status to the first level of Super “A”.

As indicated in Table 13, the first level of Super “A” results in an incentive equal to a 20% increase over the original incentive, or, in this case, 70¢ OFF the 12 oz package. In week #3, the customer once again fails to respond to the incentive and therefore moves to level 2 of Super “A” with a higher incentive of 85¢ OFF the 12 oz size. In week #4, the customer redeems the coupon and receives another coupon for 85¢ since this has proven to work. In week #5, the customer once again redeems the Super “A” coupon. This redemption results in the completion of Super “A” and the customer resumes the Coupon “A” program receiving the original incentive of 60¢. Weeks #6 and #7 result in redemptions, so the customer once again receives a coupon for 60¢. In week #8, however, this customer once again fails to respond to the incentive and once again begins the Super “A” campaign at level 1. This time, the first Super “A” coupon for 70¢ is redeemed in week #9 but the second one is not redeemed in week #10 and therefore advances to level 2 once again with a Super “A” coupon for 85¢. This incentive once again proves sufficient for getting the customer to purchase BRAND A and once again falls back to Coupon “A” for week #12 and upon redemption in week #13, this Coupon “A” program is concluded.

The subsequent households portray additional examples of this method of targeted marketing whereas:

1. A household’s consumption of BRAND A and PRODUCT TYPE is collected and a history maintained.
2. The percentage of BRAND A vs PRODUCT TYPE is analyzed and applied to preset criteria in order to determine infrequency. (Note Household #4 simply portrays a customer who is NOT infrequent to the product group and so receives no incentive.)
3. The consumption rate of PRODUCT TYPE is analyzed to determine what size is most appropriate for each particular household.
4. Incentives are issued.
5. Responses are monitored to determine if greater incentive (Super “A”) is needed in order to obtain the desired results.

It should be noted that while for demonstration purposes all incentives for a particular Coupon “A” and Super “A” level were the same, these certainly could have varied. For example, level 1 of Coupon “A” could have been 50¢ OFF for the first two incentives and then tapered off to 40¢, 30%, 20%, etc. on subsequent incentives. Additionally, Super “A” incentives could have gradually moved back down to the original incentive as well. For example, Household #6 advanced to level 5 of Super “A” before redemptions were recorded. Upon successful completion of Super “A” at level 5, Coupon “A” was immediately resumed. An alternative to this could have been moving back through Super “A” levels 4 through 1 prior to dropping back to Coupon “A” to make the drop more gradual.

FIG. 42 is a program flow chart illustrating the tailoring of a criteria for infrequency to a product or product group based on actual consumption of that product. The system operates according to the following steps:

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>This procedure is executed on account’s ITEM LIST of scanned items that matched items in the Bar Code Tracking Table. Access first item from ITEM LIST.</td>
</tr>
<tr>
<td>2</td>
<td>If no items left in ITEM LIST, GOTO 7.</td>
</tr>
<tr>
<td>3</td>
<td>For each product or product group is maintained a set of UPC codes reflecting products to be used for determining consumption levels. For example, if a manufacturer of chocolate chip cookies wants to determine infrequency to their product, it may include the UPC codes from the following products in order to track consumptions:</td>
</tr>
<tr>
<td>4</td>
<td>Its own chocolate chip cookie product group. Chocolate chip cookies from other manufacturers. Other cookie products. Other bakery type snack products such as snack cakes. Tracking consumptions from these UPC codes, the manufacturer can tailor a definition of infrequency to its product group of chocolate chip cookies based on each account’s average consumption rate of all bakery type snack products. In addition, incentives may be tailored to the account’s consumption level as well. Assume a single adult historically consumed an average of 6 ounces of bakery type snack products per week.</td>
</tr>
<tr>
<td>5</td>
<td>If this same account shows an average consumption of 1.5 ounces of this manufacturer’s chocolate chip cookie product group, then this account would logically receive an incentive offering a discount on the smaller 12 ounce size. Conversely, assume a “large” family historically consumed an average of 60 ounces of bakery type snack products per week. If this same account shows an average consumption of 5 ounces of this manufacturer’s chocolate chip cookie product group, then this account would logically receive an incentive offering a discount on the 3 lbs. economy “Tub O’Cookies” size. Search list of items for tracking consumption levels for this product or product group.</td>
</tr>
<tr>
<td>6</td>
<td>If item does not match, GOTO 7.</td>
</tr>
<tr>
<td>7</td>
<td>Access item in BCTT.</td>
</tr>
<tr>
<td>8</td>
<td>Factor product size stored into BCTT into account’s average consumption level.</td>
</tr>
<tr>
<td>9</td>
<td>Access next item from ITEM LIST, GOTO 2.</td>
</tr>
<tr>
<td>10</td>
<td>End of Process.</td>
</tr>
</tbody>
</table>

FIG. 43 is program flow chart illustrating the operation of the system to provide response driven marketing based on shopping history criteria. The program steps include:
FIGS. 44A and B illustrate a program flow chart of the present system providing a method of tracking infrequency to a product group, by generating Coupon “A”. The program steps include:

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CVCC Controller 965 accesses preset criteria for Coupon “A” for a product group. A product group may consist of similar products offered by a manufacturer (such as the variations of chocolate chip cookies offered by the same manufacturer) or products in a department. These preset criteria may comprise:</td>
</tr>
<tr>
<td>1</td>
<td>Number of weeks for analyzing consumption of a product or product group</td>
</tr>
<tr>
<td>1</td>
<td>UPC’S of product or groups of products for tracking</td>
</tr>
<tr>
<td>1</td>
<td>Levels of product consumption for infrequency (Coupon “A”) Levels</td>
</tr>
<tr>
<td>1</td>
<td>Levels of incentives that relate to above levels of consumption infrequencies</td>
</tr>
<tr>
<td>1</td>
<td>Program durations (i.e., number of trips or numbers of weeks) for each Coupon “A” level</td>
</tr>
<tr>
<td>1</td>
<td>Varying Super “A” levels for response to an unsuccessful Coupon “A” attempt</td>
</tr>
<tr>
<td>2</td>
<td>Program durations for each Super “A” level</td>
</tr>
<tr>
<td>3</td>
<td>CVCC Controller 965 accesses Coupon “A” tracking fields for this account (or accounts if more than 1 in a household). These fields determine if Coupon “A” and/or Super “A” incentives are currently in effect for this account. As previously mentioned, incentives for up to 32 trips or periods may be contained in a Coupon “A” and/or Super “A” marketing campaigns. These counters keep track of the current position in a Coupon “A” and/or Super “A” campaign for this account.</td>
</tr>
<tr>
<td>3</td>
<td>If customer is NOT currently in a Super “A” program, GOTO 10.</td>
</tr>
<tr>
<td>3</td>
<td>If customer has NOT Responded to the Coupon “A” incentive program by redeeming the coupon (or purchasing the desired product without the coupon) GOTO 15.</td>
</tr>
<tr>
<td>3</td>
<td>Increment the field for number of trips as Coupon “A”.</td>
</tr>
<tr>
<td>3</td>
<td>If Coupon “A” program is complete, GOTO 17. OTHERWISE, GOTO 11.</td>
</tr>
<tr>
<td>4</td>
<td>CVCC Controller accesses preset criteria for maximizing purchases (Coupon “M”) for a product group. A product group may consist of similar products offered by a manufacturer (such as the variations of chocolate chip cookies offered by the same manufacturer) or products in a department. These preset criteria may consist of:</td>
</tr>
<tr>
<td>4</td>
<td>Number of weeks for analyzing consumption of a product or product group</td>
</tr>
<tr>
<td>4</td>
<td>UPC’S of product or groups of products for tracking</td>
</tr>
<tr>
<td>4</td>
<td>Levels of product consumption for maximizing (Coupon “M”) Levels</td>
</tr>
<tr>
<td>4</td>
<td>Levels of incentives that relate to above levels of consumption maximizing.</td>
</tr>
<tr>
<td>4</td>
<td>Program durations (i.e., number of trips or numbers of weeks) for each Coupon “M” level</td>
</tr>
<tr>
<td>5</td>
<td>Varying Super “M” levels for response to an unsuccessful Coupon “M” attempt</td>
</tr>
<tr>
<td>5</td>
<td>Program durations for each Super “M” level</td>
</tr>
</tbody>
</table>

FIGS. 45A-B illustrate a program flow chart of the operation of the system to provide a method of maximizing purchases to a product group, in order to generate a Coupon “M”. The steps include:

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CVCC Controller accesses preset criteria for maximizing purchases (Coupon “M”) for a product group. A product group may consist of similar products offered by a manufacturer (such as the variations of chocolate chip cookies offered by the same manufacturer) or products in a department. These preset criteria may consist of:</td>
</tr>
<tr>
<td>1</td>
<td>Number of weeks for analyzing consumption of a product or product group</td>
</tr>
<tr>
<td>1</td>
<td>UPC’S of product or groups of products for tracking</td>
</tr>
<tr>
<td>1</td>
<td>Levels of product consumption for maximizing (Coupon “M”) Levels</td>
</tr>
<tr>
<td>1</td>
<td>Levels of incentives that relate to above levels of consumption maximizing.</td>
</tr>
<tr>
<td>2</td>
<td>Program durations (i.e., number of trips or numbers of weeks) for each Coupon “M” level</td>
</tr>
<tr>
<td>2</td>
<td>Varying Super “M” levels for response to an unsuccessful Coupon “M” attempt</td>
</tr>
<tr>
<td>2</td>
<td>Program durations for each Super “M” level</td>
</tr>
<tr>
<td>3</td>
<td>CVCC Controller accesses Coupon “M” tracking fields for this account (or accounts if more than 1 in a household). These fields determine if Coupon “M” and/or Super “M” incentives are currently in effect for this account. As previously mentioned, incentives for up to 32 trips or periods may be contained in a Coupon “M” and/or Super “M” marketing campaign. These counters keep track of the current position in a Coupon “M” and/or Super “M” campaign for this account.</td>
</tr>
<tr>
<td>3</td>
<td>If customer is currently in a Super “M” program, GOTO 8.</td>
</tr>
<tr>
<td>3</td>
<td>If customer is NOT currently in a Coupon “M” program, GOTO 17. OTHERWISE, GOTO 11.</td>
</tr>
</tbody>
</table>
If customer has NOT RESPONDED to the Coupon “M” incentive program by redeeming the coupon (or purchasing the desired product without the coupon), GOTO 15.

Increment the field for number of trips as Coupon “M”. GOTO 17. OTHERWISE, GOTO 11.

If customer has NOT RESPONDED to this level of the Super “M” program by redeeming the coupon (or purchasing the desired product without the coupon), GOTO 12.

Increment the field for number of trips in Super “M”. I-F Super “M” program is complete, customer falls back into Coupon “M” program where they left off. I-if Super “M” program is NOT COMPLETE, GOTO 16.

Mark account to receive the Coupon “M” coupon(s) for this product or product group. This information will be used later when building a list of coupons to be spoiled to the customer. GOTO 22.

This level of Super “M” incentive has proven inadequate; increment the level of Super “M” for inventing this account.

If the Super “M” level is greater than the maximum number of levels, GOTO 14. OTHERWISE, GOTO 16.

Set the Super “M” level to the highest available level. GOTO 16.

Set the Super “M” level to the first level.

Mark account to receive the Super “M” coupon(s) at the indicated Super “M” level for this product or product group. This information will be used later when building a list of coupons to be spoiled to the customer. GOTO 22.

Access the criteria for this product group. This criteria is either based on preset criteria or on the actual average consumption of this product and related products by this account.

Calculate the actual consumption rate for this product or product group for this account for the preset number of weeks.

If the consumption rate is less than the criteria set for this account, GOTO 20. OTHERWISE, GOTO 23.

Initialize fields for tracking this Coupon “M” program to zeros and mark account as Coupon “M” for this product or product group.

Access preset criteria for assigning an incentive level based on consumption.

For example, the criteria may assign the following levels based on consumption:

- Level 1: No consumption of product or product group
- Level 2: 1-20% of the preset consumption criteria
- Level 3: 21-40% of the preset consumption criteria
- Level 4: 41-60% of the preset consumption criteria, etc.

Dispense incentive(s) to customer either at the point-of-sale or through direct mail.

END OF PROCESS.

FIGS. 46A-B and 47 illustrate flow diagrams of further aspects of the operation of the system previously described in FIGS. 19 through 45A-B. The ECHO coupon has been previously described, and is issued in response to stored data of a customer’s prior purchases of products. From this stored data, a subset list of products frequently previously purchased by the customer in previous visits is accumulated. Previously purchased products are then used as the incentive point for coupons to the customer. In other words, if the customer consistently purchases a type of cookies, the system issues coupons which provide discounts on those cookies for future visits to the store. This ensures that the customer receives coupons that he/she is attracted to, because of the customer’s prior history of purchasing the products, so that the customer is inclined to return to the store. In some instances, however, a particular customer may have previously purchased a large number of products. For example, some customers may over a period of time purchase over 100 different products. Techniques are thus provided to select a subset of products from such long lists for use with incentive coupons.

First, the technique purges, or determines not to use, products in the stored list that have had a predetermined period of inactivity. In other words, if the customer’s history indicates that the customer has not purchased a product for a certain period of time, this product is determined not to be a product which can be used to incent that customer and that product is not used on a discount coupon. Further, products are purged or ignored that have relative inactivity to other products. For example, if a customer has purchased four different kinds of cookies over a period of time, the cookie which has the greatest and most recent purchasing activity is chosen as an incentive and the remaining three are purged or ignored. The greatest purchasing activity may be measured in dollars, ounces, or the like. Thus, the present invention not only stores a list of products previously purchased by a customer, but applies predetermined formulas to pick the best products for use as an incentive.

In addition, a “value formula” is used by the system to further refine the list of products for use on incentive coupons. A store will normally establish a total dollar value of coupons to be delivered to each level of customer. For example, the store may determine to award an infrequent shopper with coupons having a value of $5, while a more frequent shopper would only be rewarded with a $1 value coupon. An incentive value formula must be utilized to pick the products which provide these values of reward or incentive, based upon the stored database of products previously purchased by a customer. The value formula is necessary because each customer has a different list of frequently purchased prior products. The formula may vary from store to store, but will normally include the following parameters.

A determination is first made as to whether or not the worth of the merchandise is to be calculated at retail, at retailer’s cost, at discount off of retail, or at discount off of retailer’s cost.

Assume that the value formula is programmed to use retailer’s cost as a basis for calculating the $5 incentive to a customer. A determination is made as to whether or not the incentive value of $5 will be provided with a single product or with multiple products. If multiple products are being utilized, the brand of the product is first determined by the formula. For example, a generic brand and a national advertised brand often have radically different cost structures to the retailer. The quantity of the product is then determined and put into the formula. Then a determination is made as to the size of the product. In other words, is a six ounce size or a 32 ounce size to be awarded to the customer. Next, the formula must establish the number of units of the product to be used as an incentive.

The value formula used by the present invention thus takes an answer, which in this instance is a $5 incentive award and determines the number, cost, brand, size and type of products to be selected from the customer’s particular database of previously purchased products to derive a coupon reward. The formula may be designed to ensure that the store does not provide an incentive of more than 50¢ below the retailer’s cost on any one item. The store might decide to design the formula such that no more than two of any one item will be used.

Using these limits in the formula, the controller 965 selects a series of products from each customer’s product database, the sum of which at 50¢ apiece and utilizing not more than two items would represent $5 in retailer’s cost. The formula calculates this information based upon the retailer’s cost and subtracts 50¢ and prints out the price on an incentive coupon to the customer. For example, if a certain type of bathroom tissue is selected by the formula and costs 79¢, when the 50¢ discount is subtracted from 79¢, a 29¢ selling price is determined. As part of the $5 incentive, a coupon is printed out by the system and is provided to the customer, the coupon indicating that the customer may buy two packs of bathroom tissue at a future time at 29¢ each. Since the system has
The controller 965 utilizes the consumption rate analysis previously described. In other words, the processor determines when the consumer had time to at least partially consume the amount of product purchased. Such a minimum consumption period might be that the consumer would have had time to at least partially consume the product at least one half or three fourths of the quantity purchased. The minimum consumption period might alternatively require that the product be not a part of the present purchase, unless the product is a frequently purchased product such as bread of milk. Thus, when the controller 965 next determines that, using the consumption rate analysis, the consumer has had time to at least partially consume the product at the time the controller determines that the consumer has had time to at least partially consume the product so that the product may be used as a real incentive. Further, continuous monitoring of the return of coupons is maintained so that future coupons may be tailored to continue to induce the customer, as previously described.

In further summary of this aspect of the invention, products previously purchased by a customer are stored in the database. The customer's identification code is entered at the point of sale. The product identification code is scanned by the MICR code of the check or by scanning a credit card as previously described. Products are selected from the product database which meet a frequent purchasing history criteria, determined by period of purchase and/or a dollar value. At this time, a consumption rate analysis may be performed on the products and if a product meets a predetermined consumption criteria, this product is designated as eligible for use as an incentive.

The incentive value for infrequent shopping history criteria is established. An incentive value formula is applied by the controller 965 to the products which meet the frequent purchasing history criteria. The system then determines whether or not the identification entered at the point of sale meets an infrequent shopping history criteria. For example, a determination may be made that a particular customer is to receive a simple COUPON A or a SUPER A coupon, based upon the selected incentive products. The system then issues first incentive coupons whose value is contingent upon a future transaction. A response criteria is then established to determine whether or not the issuing of an incentive coupon has been a success. Future transactions by the customer are monitored in order to determine the success of the first incentive coupons. If the customer fails to meet predetermined response criteria, additional incentive coupons of differentiated value are then issued by the system in order to further incite the customer as previously described.

As another example the value of echo coupons distributed is a function of a coupon redemption rate, a percentage of sales, and the customer's spending level. The value of the coupons is determined by the formula:

\[
\text{Value of Coupons} = \frac{\text{Sales Total} \times \% \text{Sales}}{\text{Redemption Rate}}
\]

The below table illustrates one example of an estimated coupon redemption rate and percentage of sale for various spending levels. The spending level categories represented by the letters "B" through "E" designate a customer's purchase level, as opposed to the spending level of the current transaction.

<table>
<thead>
<tr>
<th>LEVEL</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Sales</td>
<td>0.5</td>
<td>1</td>
<td>1.5</td>
<td>2</td>
</tr>
<tr>
<td>% Redeemt. Rate</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
</tbody>
</table>

The values in the above table are applied to the total dollar amount spent on a current transaction to arrive at the value of echo coupons to be provided to the customer. Assuming a purchase of $50, customers in the various categories receive coupons as follows:

- B receives \((50 \times 0.005)/(0.25) = 1.00\)
- C receives \((50 \times 0.01)/(0.25) = 2.00\)
- D receives \((50 \times 0.015)/(0.25) = 3.00\)
- E receives \((50 \times 0.02)/(0.25) = 4.00\)

FIGS. 46A and B illustrate a flow diagram of the software routine for performing the initial selection of products to be used as an incentive for a customer, and illustrating the use of the value formula and the consumption rate analysis in order to generate desired coupons for the customer. Referring to the routine shown in FIGS. 46A-B, the following steps are performed:

1. Store and maintain a history of previously purchased products for each ID. This is accomplished by capturing UPC data as it is scanned by the UPC reader, matching the UPC with products contained in the Bar Code Tracking Table (BCTT), and, if a match exists in the BCTT, recording the purchase in a database that links product purchase history with individual ID's.

2. The list of products stored and maintained in Step #1 may potentially be used as incentives for a customer. An analysis is made to determine which products would be best suited for initiating the customer each time that customer's ID is received. If sufficient data has been recorded in the short term, a consumption rate analysis (2a-2e) is performed to further identify which products would be best suited as incentives. These products make up an "Incentive List" and are prioritized by incentive value in the following manner:

2a A consumption rate analysis is performed based on historical product purchases. Non-perishable products that may typically be
consumed over a period of more than one week are analyzed to determine the rate in which they are consumed for each ID. 2b If there is not enough recent shopping data for this ID, then GOTO 2c. 2c This consumption rate is compared with the date of last purchase so that a prediction of next purchase may be made. A priority value is assigned for each product based on the product’s anticipated next purchase date (i.e., if a next purchase is 2 weeks away, the priority is increased, and if the product was just purchased and the estimated next purchase date is a month off, the priority is decreased). For example, assume ID #12345 buys 16 ounce package of Brand A diced coffee in automatic drip filters an average of four every weeks, and the last purchase date shown was 20 days ago. If the system should need to incent this customer for any reason, a discount on a 16 ounce package of Brand A coffee in automatic drip filters (once historically the system has predicted that this customer will buy the product in approximately 8 days) would most likely be used. 2d Figs., an “incentive rating” is stored for each product in the BCCTT that represents the store’s perception of the product as an incentive. The priority value is adjusted based on this “incentive rating.” For example, milk, bread, and soda may be high consumption products for many people, but since these items are commonly low in price, available at a steep discount at most grocery stores, they may not be best suited as incentives. Therefore, these items would carry a lower “incentive rating” that would decrease the priority value. Conversely, items with very high profit margins such as bakery and deli items may be very attractive to grocers as incentives. These items would carry a higher “incentive rating” and therefore increase the priority value. 2e End of Incentive List process 3 Tables containing the “value of incentives” for varying levels of infrequency to a store, department, product group, and/or product are stored and maintained on file. Logically, the value of incentives is directly related to the level of infrequency, i.e., a higher incentive going to a frequency of one activity in eight weeks versus four activities in eight weeks. Increasing values are also available in varying levels in the event that the customer does not respond. 4 An ID entered at the point-of-sale is determined to fall short of a preset level of infrequency. An incentive program utilizing the methods discussed in #1 through #3 begins. 5 Fields in the ID’s record used for incentive program tracking are initialized and the beginning of the incentive program is recorded. 6 The table discussed in #3 is accessed and the value of incentives to dispense is determined. 7 A value formula designed by the store is used to arrive at a combination of product, brand, unit size and number of units necessary to satisfy a preselected total value of incentive. The incentive will utilize those products that meet a frequent purchasing history criteria as a basis for promotion. 8 The incentive list for this ID is accessed in order of decreasing priority values. Using unit costs stored in the BCCTT, coupons are created and dispensed until the “value of incentives” is met in accordance with the parameters of the value formula for the particular store. Should the number of incentives fall short of this “value of incentives”, default items or “dollars off next purchase” are substituted. All of these incentives are contingent on a future transaction. 9 Monitor the transactions for this ID subsequent to the issuance of the incentives. 10 Establish a response criteria to determine if further incentive is necessary. 11 If the customer fails short of this response criteria, GOTO 11; otherwise, GOTO 12. 12 It is evident that the prior incentives were insufficient for motivating the customer to respond. The “value of incentive” will now be increased as determined by the tables discussed in #3, GOTO 7. 13 The customer demonstrated that the prior incentives were sufficient for achieving a desired response. If the program is complete, GOTO 13; otherwise, GOTO 7. 14 END OF PROCESS

The following example of the technique illustrated in FIGS. 46A-B will now be set forth:

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ABC Foods, Inc. has set the following incentive values for incenting customers demonstrating an infrequency to their store. Incentive values may be specified as amounts off of retail or store’s cost.</td>
</tr>
<tr>
<td>2</td>
<td>Infrequency over last 8 weeks</td>
</tr>
<tr>
<td>3</td>
<td>No Trips</td>
</tr>
<tr>
<td>4</td>
<td>1 Trip</td>
</tr>
<tr>
<td>5</td>
<td>2 Trips</td>
</tr>
<tr>
<td>6</td>
<td>3 Trips</td>
</tr>
<tr>
<td>7</td>
<td>4 Trips</td>
</tr>
</tbody>
</table>

The store has set an infrequent shopping history criteria of less than five shopping trips in the prior eight weeks will be incented.

The store has set a criteria that a discount of no more than $2.00 will be given for any one product. Products with a cost of less than $2.00 may be offered in quantity (i.e., a product costing $1.18 may be offered off at two for $2.00 in order to obtain a $2.00 discount).

The store has set a criteria that a limit of two of any one product will be utilized.

The criteria for SUPER A will be set at 14 days from the issuance of a COUPON A incentive(s). The following table contains the increased incentive values for SUPER A programs:

<table>
<thead>
<tr>
<th>Currency Program</th>
<th>SA1</th>
<th>SA2</th>
<th>SA3</th>
<th>SA4</th>
<th>SA5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 5</td>
<td>$6.00</td>
<td>$7.00</td>
<td>$8.00</td>
<td>$9.00</td>
<td>$10.00</td>
</tr>
<tr>
<td>Level 4</td>
<td>$5.00</td>
<td>$6.00</td>
<td>$7.00</td>
<td>$8.00</td>
<td>$9.00</td>
</tr>
<tr>
<td>Level 3</td>
<td>$4.00</td>
<td>$5.00</td>
<td>$6.00</td>
<td>$7.00</td>
<td>$8.00</td>
</tr>
<tr>
<td>Level 2</td>
<td>$3.00</td>
<td>$4.00</td>
<td>$5.00</td>
<td>$6.00</td>
<td>$7.00</td>
</tr>
<tr>
<td>Level 1</td>
<td>$2.00</td>
<td>$3.00</td>
<td>$4.00</td>
<td>$5.00</td>
<td>$6.00</td>
</tr>
</tbody>
</table>

SUPER A programs are utilized when responses to the COUPON A program fall short of the desired response criteria.

Scanned data is captured and stored for each ID. This stored data is based on matches in the Bar Code Tracking Table (BCCTT). These items will be used as incentives for customers in the COUPON A program.

ID #12345 is entered into the present system and the stored history of the ID number indicates that they have shopped ABC Foods, Inc. twice in the prior eight weeks. Referring to the previous table of incentive values, ID #12345 meets the preset infrequent shopping history criteria and begins a LEVEL 1 COUPON A program, and is to receive $3.00 worth of incentives. Before becoming infrequent to ABC Foods, this customer shopped the store regularly for 6 months and scanned data was captured and stored for this ID. Among other products, the following purchasing patterns are identified:

<table>
<thead>
<tr>
<th>Item</th>
<th>Frequency</th>
<th>Last Purchased</th>
<th>Store’s Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brand A Decaf</td>
<td>1 lb. package every 20 days</td>
<td>83 days ago</td>
<td>$1.79</td>
</tr>
<tr>
<td>Coffee in automatic drip filters</td>
<td>1 gal. bottle every 28 days</td>
<td>77 days ago</td>
<td>$4.73</td>
</tr>
<tr>
<td>Brand B Liquid Detergent with Bleach</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ID #12345 has been infrequent to the store in the short term, so it is not possible to accurately predict the timeliness of products Brand A or B. Their trip 20 days ago (1 of the 2 in the prior 8 weeks) did however show that they purchased the Brand C dog food. Based on the consumption rate analysis made for this product, a next purchase date is estimated to be in 25 days. Since the incentive is targeted at drawing the customer back into the store next week, this estimated purchase date is too far for use at this time. The same is true for the Brand D Barbecue Sauce which was purchased on the immediate trip and therefore is estimated for next purchase in 19 days.

The pizza and the Brand E milk just purchased, however, have a higher frequency; so even though they were just purchased, these products are estimated for purchase again in a timely manner that makes them suitable for incentive in the short term. Since each of these items cost $1.00, the two pizzas and the one milk satisfy the $3.00 incentive value for this level of COUPON A.

Examples of the coupons printed at the point-of-sale printer are as follows:

Assume now that 15 days pass before ID #12345 returns to the store. The customer has exceeded the 14 days since receiving the COUPON A incentives and is now elevated to SUPER A (SA1 for LEVEL 3 of COUPON A). Referring to the previous table of incentive values, this customer is now to receive $4.00 in value of incentives. An updated table of the items previously analyzed for this customer follows:

Assuming that this customer responds to these coupons and continues on the COUPON A program for the following weeks, the logical incentive in two weeks will be the 1 lb. package of Brand A Decaf Coffee in the automatic drip filters, and the week after that the 1 gallon bottle of Brand B Liquid Detergent with Bleach. In other words, exact products in exact sizes tailored to the purchasing history of each discreet ID will be used in order to incent this customer to shop ABC Foods more frequently.

FIG. 47 is a program flow diagram which illustrates in further detail the choosing of products for use as ECHO coupon incentives in the present system.

In the present system, scanned data from products purchased is maintained for each individual ID. When an ECHO coupon is to be printed, the list of previously purchased products is analyzed to arrive at the product(s) that are best suited.
as incentives for each particular ID. The program flow diagram of FIG. 47 describes this analysis as follows:

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Each time a customer shops, the products scanned are captured at the controller and a history of products purchased are stored and maintained with that customer’s unique ID. Assume an ID has been entered and an ECHO coupon is to be spoiled. Proceed to Step 2 to access the first item for this ID.</td>
</tr>
<tr>
<td>2</td>
<td>Access the next item from the list of previously purchased products that have been stored and maintained for this particular ID.</td>
</tr>
<tr>
<td>3</td>
<td>Check to see if this product meets a “current purchase history criteria” (i.e., products purchased within a current time period and/or within a preset recent number of shopping transactions). For example, assume Customer A has 16 shopping transactions within the last four months. Also assume that Brand A cookies have been purchased 50 times over the life of this ID and that Brand A cookies were purchased in some of the most recent transactions within the last four months. Although the brand data does not show a purchase of Brand A cookies in the last four months, there are not enough transactions since the last purchase of Brand A cookies to warrant the assumption that Brand A has fallen out of Customer B’s favor. Therefore, Brand A cookies will be considered as a candidate for ECHO coupon incentive.</td>
</tr>
<tr>
<td>4</td>
<td>If this product meets the “current purchase history criteria”, then GOTO 5. Otherwise, GOTO 6.</td>
</tr>
<tr>
<td>5</td>
<td>Assume also that Customer A has frequently purchased Brand A cookies, but also has frequently purchased Brand B, Brand C and Brand D cookies. Assume that Brand C cookies were purchased more frequently than the other three brands in this product group, then Brand C cookies would be considered as a candidate for an ECHO COUPON incentive. Brand A, Brand B and Brand D, though frequently purchased, would not be selected as candidates since one item has already been chosen from the cookie product group. If this product meets the “relative most favored status criteria” within its product category, then GOTO 5; otherwise, GOTO 6.</td>
</tr>
<tr>
<td>6</td>
<td>Add product to the list of products qualified for consideration for use as an ECHO COUPON incentive.</td>
</tr>
<tr>
<td>7</td>
<td>END OF PROCESS.</td>
</tr>
</tbody>
</table>

FIG. 48A illustrates a system 320 for providing incentives to customers through the use of a computer. System 320 utilizes a customer personal computer 322 and an accessible computer site 324 to facilitate on-line shopping as well as communication of incentives to a customer. In one example, computer site 324 is a world wide web site location, hereinafter “web site 324”. Web site 324 is associated with a particular store or group of stores. System 320 also includes an incentive and electronic register system 326 for processing items to be purchased and also for generating incentives, including examining a customer’s prior purchasing history to generate those incentives. Incentive and electronic register system 326 may communicate with web site 324. In operation, customer personal computer 322 may be used to log on to a web site associated with a store. An example of a store that may be associated with system 320 is a grocery store; however, other types of stores will benefit from system 320. To facilitate description, system 320 is described in the context of a grocery store. After identifying the customer, the grocery store may present the customer with his prior purchases through web site 324 in a well organized fashion. Identification of a customer accessing web site 324 is described in greater detail below in conjunction with FIG. 57B. For example, a customer may be presented with all the items that he has purchased in the past, and the customer may then check each item he wishes to purchase. The customer may have items delivered to his home, or alternatively, the customer may proceed to the store to pick up his purchases. The customer may choose to select only a portion of the goods required through web site 324. For example, the customer may insist on hand-picking his desired perishables such as fruits, vegetables, eggs, and meats in person at the store, but allow the store to select canned goods for him. Further, a customer may merely choose to access web site 324 to determine any incentives that are available to him and perform all of his shopping at the store. Incentive and electronic register system 326 operates to generate a list of incentives that may be provided to a customer utilizing customer personal computer 322. The particular incentives presented to a customer utilizing customer personal computer 322 may be determined according to a variety of techniques, including those described above, such as utilizing a customer’s past purchasing history as a basis for generating incentives. The incentives are provided to web site 324 where, in one example, they are available for viewing by the customer through customer personal computer 322. This provision of incentives may incorporate providing, for example, HTML text for viewing by a user of customer personal computer 322. As another example, an electronic mail may be sent to an address associated with customer personal computer 322, or a user of customer personal computer 322, or other suitable customer. These example techniques for providing incentives are also applicable to additional embodiments described below.

If the customer chooses to physically visit the store, the customer is identified at the store and the incentive communicated to the customer is automatically applied upon purchase of the associated item. Identification of a customer in the store is described in greater detail in conjunction with FIGS. 57A and 66. Web site 324 may be accessible by a plurality of entities other than customers. For example, web site 324 may be accessible by a manufacturer 332. In this manner manufacturer 332 can provide particular incentives based upon the products the manufacturer wishes to be purchased more than others. Similarly, a retailer 334 may wish to provide particular incentives, such as store discounts or discounts on particular products. Furthermore, a wholesaler 336 may wish to grant incentives to generate additional purchases of particular items.

In one embodiment, incentive and electronic register system 326 is located in the store at which the customer shops; however, suitable portions of system 326 may be located at alternative locations. Incentive and electronic register system 326 operates to process items to be purchased and to provide incentives to a customer. In one embodiment, these functions are performed by separate systems, such as by an electronic register system 338 and an incentive controller 340. One example of an incentive controller 340 is an ECR controller illustrated in FIGS. 19 and 20. One example of an incentive controller 340 is a CVC controller 965, illustrated in FIGS. 19 and 21. Additional details of these example systems are described in greater detail in conjunction with FIGS. 19 and 20.
Thus, by utilizing system 320, a customer may shop online, receive incentives on line, and receive the benefits of those incentives on line. Alternatively, a customer may receive incentives on line and have those incentives applied when the customer actually shops at the store, is identified, and purchases an item associated with the incentive.

The system described in conjunction with FIG. 48A provides numerous advantages. For example, system 320 does not suffer from potential fraud that plagues other types of incentive distribution. Where the customer chooses to receive an incentive at the store, the application of an incentive is dependent on the matching of an identification associated with the person logging on to the computer site with a customer identification in the associated store. Therefore, the store can verify that the incentive is utilized by the correct customer and that application of the incentive will occur only upon the purchase of particular products. Further, the store can ensure that the incentive is utilized only once. Such a system is not subject to fraud, such as duplication of a redeemable coupon in paper form, nor is subject to the printing of multiple copies of a coupon communicated through the Internet. Further, there is no possibility of a store employee redeeming a plurality of duplications of one coupon without there being a corresponding number of products purchased.

FIG. 48B illustrates a system 1320 for preparing incentive to customers through the use of a kiosk. System 1320 includes an incentive controller 1340, a kiosk 1350, and an electronic register system 1338. Incentive controller 1340 generates incentives and may be analogous to incentive controllers 340, 352 or 362, described below.

Incentive controller 1340 generates incentives according to a variety of techniques described in greater detail above and below. These incentives are provided to kiosk 1350 for communication to a customer. The incentives generated by incentive controller 1340 are also communicated to electronic register system 1338 for application when a customer is identified as a customer who has previously received the communicated incentive by, in this example, kiosk 1350. In this manner, many advantages described above in conjunction with FIG. 48A are realized through the use of a kiosk rather than a customer's personal computer, such as the fraud problems associated with redeemable coupons.

In the illustrated embodiment, incentive controller 1340 is connected to a kiosk 1350 by a communication link 1342 and is also connected to an electronic register system 1338 by a communication link 1344. Alternatively, incentive controller 1340 could be integrated with either kiosk 1350 or electronic register system 1338. Further, communication links 1344 and 1342 may be omitted and replaced with suitable alternative techniques for transferring information between incentive controller 1340 and kiosk 1350 and for transmitting information between electronic register system 1338 and incentive controller 1340, such as for example, the exchange of floppy disks.

In the illustrated embodiment, kiosk 1350 includes a display 1352, a keypad 1354, a printer 1336 and a card reader 1348. Display 1352 may communicate incentives to a customer and provide additional information. In addition, display could be a touch-sensitive screen for receiving information from the customer, such as information related to which incentives the customer desires. Keypad 1354 allows a customer to provide information to kiosk 1350. For example, a customer may provide a name, address, telephone number, or other suitable indication of the customer's identity. Card reader 1350 may also be used to identify a customer by receipt of a customer card. Printer 1336 may be used in conjunction with display 1352 to generate a shopping list of items for which the customer will receive discounts when the items are purchased. Kiosk 1350 may also incorporate other techniques for identifying customers, such as those described in conjunction with FIGS. 57A and 66.

Electronic register system 1338 is analogous to electronic register system 338 described above.

In operation, a customer approaches kiosk 1350 and is identified. In response, incentive controller 1340 provides incentives available to the customer to kiosk 1350 for communication to the customer. The particular incentives may be generated before or after identification of the customer in any suitable manner. Example criteria for determining which incentives to generate are described herein, above and below. The incentives are then communicated to the customer by kiosk 1350. Without limitation, example techniques for communicating the incentives include displaying the incentives on display 1352 and printing the incentives by printer 1336. The incentives can also be provided audibly by a speaker or other suitable technique. In addition to incentive controller 1340 communicating the incentives to kiosk 1350, incentive controller 1340 also communicates the incentives available to the customer to electronic register system 1338 for storing. According to one embodiment, a customer can select by kiosk 1350 certain incentives he wishes to accept. According to another embodiment, all incentives communicated to kiosk 1350 are available to the customer when the associated items are purchased. When the customer is identified as purchasing an item for which an incentive has been previously communicated to the customer, the incentive is applied. Identification of the customer in the store is described in conjunction with FIGS. 57A and 66.

Therefore, customer incentives are provided without requiring the use of redeemable coupons, which is desirable. The customer could be notified of such incentives at any time, at specified time periods after a previous shopping visit, or at specified time periods before the incentives will become effective.

FIG. 49 is a simplified block diagram of a system 340 for effecting communication of an incentive to a customer that is analogous to the system described in conjunction with FIGS. 19 through 21. System 340 may be used as a portion of system 320 described in conjunction with FIG. 48A, or may be used independently.

System 340 includes an electronic cash register 342. An example of electronic cash register 342 is electronic cash register 962a-e, illustrated in FIGS. 19 and 20. Electronic cash register 342 includes a processor 343, a keyboard 344, a display 346, an electronic cash register printer 347, and a bar code scanner 354. Processor 343 may, in some embodiments, have a memory system associated with it (not explicitly shown). Processor 343 receives information from keyboard 344 and bar code scanner 354, manipulates that information, communicates with a register controller 350, and provides information such as the price of a scanned item and a description of the item to display 346, electronic cash register printer 347, or both. Keyboard 344 is used to enter information into processor 343. Display 346 displays information related to items processed by processor 343. For example, display device 346 may display a name indicating an item purchased along with its purchase price. An example of display 346 is display 960 illustrated in FIG. 20.

Register controller 350 communicates with electronic cash register 342. Register controller 350 operates to receive information from electronic cash register 342 related to an item and provides information to electronic cash register 342 concerning that item. For example, electronic cash register 342 may provide a signal indicative of a scanned bar code of an
item to register controller 350. In response, register controller 350 provides the price of the item to electronic cash register 342. In some implementations, a common register controller 350 may be associated with a plurality of electronic cash registers 342.

Electronic cash register printer 347 may be used to generate a written record of items purchased along with their associated prices. An example of electronic cash register printer 347 is printer 969 in FIG. 20. An incentive printer 349 may be used to provide a written display of an incentive for a customer. An example incentive printer is printer 976 in FIG. 21. For example, an incentive may take the form of a coupon. Alternatively an incentive may take the form of an automatic discount applied to the current order. In such a case, incentive printer 349 may be used to generate a record of the automatic discount. Electronic cash register printer 347 and incentive printer 349 may also be replaced by a single printer.

Electronic cash register 342 also includes bar code scanner 354. Bar code scanner 354 is used to read bar codes on items being purchased. A signal indicative of the bar code is provided to the electronic cash register 342 through a transmission medium 377 for processing. An example of transmission medium 377 is an RS-232 serial cable; however, other suitable transmission media may be used.

System 340 also includes an incentive controller 352. Incentive controller 352 determines incentives that are to be provided to the customer and initiates the communication of the incentives to the customer. An example of an incentive controller 352 is CVC controller 965. Communication may occur between incentive controller 352 and register controller 350 through an electronic cash register link 353, such as the electronic cash register link described above in conjunction with FIG. 19. Examples of this link are the ISP port on an NCR 2127 master register and a node residing on an Ethernet network sending and receiving function packets to the server.

System 340 may be used to communicate incentives to a customer, including communication to customers at the point of sale. For example, a customer may receive a coupon designated by incentive controller 352 and printed on incentive printer 349. Alternatively, a customer may receive, as an incentive, an automatic discount determined by incentive controller 352 and processed by electronic cash register processor 343, with notification to the customer of the electronic discount on electronic cash register printer 347. As will be described in greater detail below, system 340 may also be used to communicate future product discounts that a customer will receive in a subsequent transaction.

FIG. 50 is a block diagram of a system 360 for effecting communication of an incentive to a customer. System 360 is analogous to system 340 described in conjunction with FIG. 49, except that register controller 350 and incentive controller 352 are replaced with an integrated register and incentive controller 362. Integrated register and incentive controller 362 performs the functions of both register controller 350 and incentive controller 352. The integrated register and incentive controller maintains customer profiles and therefore combines customer differentiation based on a particular customer's contribution to the profitability of the enterprise with the pricing of that customer's order. In this manner, multiple pricing tables can be maintained such that prices for goods purchased by better customers are considerably less than the prices charged to infrequent shoppers. In addition, electronic cash register printer 347 and incentive printer 349 are replaced with a single printer 348.

System 360 may be used for the same purposes described above in conjunction with system 340. In particular, incentives generated by integrated register and incentive controller 362 may be processed by electronic cash register 343 and communicated to the customer by printer 348. Incentives may take the form of an electronic discount applied to the current transaction, a coupon for use in a later transaction, or a notification of a future electronic discount. Generation of these types of incentives is described in greater detail below. FIG. 51 is a block diagram of a system 370 for effecting communication of an incentive to a customer at a point of sale. System 370 is analogous to system 340 described in conjunction with FIG. 49, except for the introduction of scanner wedge 372 and printer wedge 374.

In general, system 370 allows the generating of a printed incentive on the same receipt as is used for listing items and prices of items purchased by a customer. Such generation of a printed incentive on a customer receipt may be accomplished without the use of an integrated register and incentive controller, such as controller 362, and without the introduction of a link between the register controller and the incentive controller, such as link 353. A scanner wedge 372 is utilized to implement such a process. Scanner wedge 372 allows insertion into, or extraction of, a signal between bar code scanner 354 and electronic cash register processor 343. In the absence of scanner wedge 372 a signal generated by bar code scanner 354 is transmitted through a transmission medium 375 to electronic cash register processor 343. In this context, transmission medium 375 refers to any suitable transportation media that can be used to communicate information between bar code scanner 354 and electronic cash register processor 343. An example of transmission medium 375 is an RS-232 serial cable. An example of scanner wedge 372 is an RS-232 Y-cable used to enable two devices, for example computers, to share a single serial device.

Use of scanner wedge 372 allows incentive controller 352 to introduce into or extract information from transmission medium 375. Introduction of information into transmission medium 375 that is directed towards electronic cash register processor 343 allows the introduction of an automatic discount for receipt by electronic cash register processor 343. Such a signal may be provided by providing a signal indicative of a bar code for a discount of a certain value. Electronic cash register processor 343 receives the signal indicative of a bar code for a discount and processes it as if it were a purchased item. Electronic cash register controller 343 then provides a signal to printer 348 for printing an indication of the discount.

Incentive controller 352 may also be used to intercept a signal, through printer wedge 374, for receipt by printer 348. An example of printer wedge 374 is a Y-cable that enables two computers to share a printer. This signal may provide textual information indicating that a special discount has been applied. Printer wedge 374 is analogous to scanner wedge 372. Printer wedge 374 allows introduction into and extraction of information from transmission medium 377. Transmission medium 377 is analogous to transmission medium 375.

In addition to utilizing scanner wedge 372 to introduce incentives for receipt and processing by electronic cash register 342, scanner wedge 372 is used to provide information concerning the items purchased to incentive controller 352. As an item is being scanned, bar code scanner 354 generates a signal for receipt by electronic cash register 342. Incentive controller 352 may intercept such a signal in order to determine which products are purchased. In response to determining which products are purchased, incentive controller 352 may generate special discounts associated with the purchased
products. Additionally, incentive controller 352 may store information related to the purchase of products for later use in generating incentives.

Thus, according to the system illustrated in FIG. 51, an incentive may be communicated to a customer by printing the incentive on the customer receipt. Such a communication of an incentive on the customer receipt may be effected without explicit interfacing of a register controller with an incentive controller. Therefore, generation of incentive on a customer receipt may be more easily effected in existing systems that utilize existing register controllers.

FIG. 52 is a flow chart illustrating a process for providing incentives to customers of a store who visit a computer site associated with the store, such as through the Internet. The process illustrated in FIG. 52 may be implemented using the system shown in FIG. 48A, or other suitable systems. The process begins at a step 2. At a step 4, a customer of a store connects to an Internet site associated with a store, such as web site 324. For example, a customer at home may access an Internet world wide web location maintained by a grocery store through a personal computer and a telephone line. At a step 6, the identification of the customer connected to the incentive web site is determined. Identification of the customer may be performed according to a variety of techniques, examples of which are described in greater detail in connection with FIG. 57B. A customer identification number may be associated with the identified customer.

At a step 10, the customer is presented with a list of incentives that are available to the customer by, for example, web site server 324. The list may be presented to the customer by providing the list in a readable format on the customer's computer screen, or in other suitable formats. Transmitting an electronic mail letter is an example of presenting the customer with a list of incentives. At a step 18, a list of incentives communicated to the customer through the web site is provided to an incentive controller associated with one or more particular stores, such as incentive controller 352. According to the illustrated embodiment, the list of incentives communicated to the customer at step 18 is automatically provided to an incentive controller once the incentives are communicated to the customer, regardless of any subsequent action by customer. Alternatively, only specific incentives accepted by the customer through the computer are provided to an incentive controller.

At a step 20, the customer, or a person associated with the customer such as a family member, goes to the store to purchase one or more products. At a step 22, a determination is made that the customer is, or is associated with, the customer who connected to the incentive web site at step 4 and who was provided a list of incentives at step 18. An example method for making this determination involves receiving indicia of the identity of the customer and associating such indicia with a customer identification number. The customer identification number is compared to customer identification numbers associated with persons who previously accessed the incentive web site server. Techniques for identifying customers in the store and identifying customers logged onto a computer associated with the store are described in greater detail in conjunction with FIGS. 57A and 66, respectively. An example of a person associated with a customer is a family member of the customer.

At a step 24, the process continues with scanning of items purchased by the customer, by, for example, bar code scanner 354. A determination is made at step 26 of whether the scanned item is present in the list of incentives previously communicated to the customer through web site 324. This determination is made by, for example, incentive controller 352. If the scanned item was previously presented to the customer in a list of incentives, an appropriate discount is applied to the item at step 28. If the item is not present in the list of incentives previously communicated to the customer, processing continues at step 30. Alternatively, a determination is made of whether a customer previously accepted an incentive related to the scanned product, and processing continues based upon that determination. Step 30 involves determining whether there are additional items for processing. If there are additional items for scanning, processing continues with step 24. If there are no additional items for scanning, a step 30 may be executed in which any other incentives that were previously communicated to the customer are applied. An example of such another applicable incentive would be a dollar amount off any purchases over a certain amount. The process of FIG. 52 concludes at step 34.

Thus, according to the embodiment described in conjunction with FIGS. 48 and 52, a system and method are provided that address fraud problems that affect distribution of incentives through the Internet. For example, because the described method utilizes a identification code that is associated with both customers logged onto a store computer as well as customers who physically visit the store, any potential problem associated with improper duplication of coupons is alleviated. Further, such a customer is not required to physically transport or retain any particular redeemable coupon in order to receive the benefit of that coupon. Rather, the customer must only purchase the item for which the incentive was provided. Further, the present system and method prevent store employees from receiving cash discounts for products, or multiple products, that were not purchased.

FIG. 53 is a flow chart illustrating an additional process for providing incentives to customers of a store who visit a computer site associated with the store, such as through the Internet. The process illustrated in FIG. 53 may be implemented using the system shown in FIG. 48A, or other suitable system. The process is analogous in many respects to the process illustrated in FIG. 52 and begins at a step 2. At a step 4, a customer of a store connects to an incentive web site, such as web site 324. At a step 6, the identification of the customer connected to the incentive web site is determined. Identification of a customer is described in greater detail below in conjunction with FIG. 57B.

After an identification for the customer logged onto the incentive web site is determined, the customer’s record is accessed in a database of previous customer shopping history at step 8. According to one embodiment, such a database is stored in incentive controller 340; however, other suitable storage locations may be used. This record may be accessed utilizing a customer number associated with the identification of the customer. At a step 10, the past purchasing history of the customer is analyzed. The customer’s past purchasing history may be obtained and stored as described above or through other suitable techniques. The analysis of the customer’s past purchases is performed by incentive controller 340; however, other suitable systems may be used, including an incentive controller dedicated to web site 324.

Based upon the customer’s past purchasing history, a list of incentives is generated for the customer at step 14. The particular incentives generated may be determined according to a variety of techniques, including those described in conjunction with FIGS. 30 through 32. For example, the list may include incentives based on a discount rate determined by the past history of the customer. The list may also include a number of items that are determined based on the past history of the customer. Thus, the process of FIG. 53 allows the
generation of incentives to be communicated to customers based on their past purchasing history.

At a step 16, the customer is presented with a list of incentives that are available to the customer if the customer purchases products associated with those incentives at, or from, the store. The list may be presented to the customer by providing the list in a readable format on the customer’s computer screen, or other suitable format.

The remaining steps 18, 20, 22, 24, 26, 28, 30, 32, and 34 are analogous to the respective steps of FIG. 52 having the same reference numeral.

Thus, in addition to providing incentives to a customer on-line, and then effecting a discount associated with the incentive when the customer, or a person associated with the customer, is identified in the store and purchases the product associated with the discount, the particular discounts, number of times a customer receives such incentives will be provided are based, at least in part, upon the past purchasing history of the customer and/or other suitable criteria, associated with customer incentives. It should be understood that, according to one embodiment, purchases made during a current transaction may also be considered and affect provision of incentives.

FIG. 54 is a flow chart illustrating a process for providing incentives to customers of a store who visit a computer associated with the store, such as through the Internet. The process illustrated in FIG. 54 also may be implemented using the system shown in FIG. 48A, or other suitable system. The process begins at a step 2 and includes many of the steps of the process described in conjunction with FIG. 52. At a step 4, a customer of a store connects to a computer site associated with the store, such as web site 324. Although this computer site may be related to activities other than providing incentives, for clarity of description, it is also referred to herein as an incentive web site. At a step 6, the identification of the customer connected to the incentive web site is determined. Identification of a customer connected to a web site is described in greater detail below in conjunction with FIG. 57B.

After an identification for the customer logged onto the incentive web site is determined, the customer’s record is accessed in a database of previous customer shopping history at step 8. This record is accessed utilizing a user identification number associated with the identification of the customer. At a step 10, the past purchasing history of the customer is analyzed. At a step 12, based upon the analysis of step 10, a determination is made as to the category of the customer. The category of the customer is determined based upon the customer’s past purchasing history.

The customer is then assigned a value of the customer to the retail establishment. In one embodiment, the category of the customer is determined based upon an average dollar amount of purchases made by the customer; however, other criteria may be used, including frequency of shopping and profitability of the purchases of the customer. Determining into which category a customer falls is described in greater detail below, and may include determining that the customer’s purchasing history meets a predetermined purchasing criteria. Based on the category of the customer, a list of incentives is generated at a step 14.

Thus, the process of FIG. 54 allows the generation of incentives to be communicated to particular customers who are determined to meet a predetermined criteria or fall into a certain category, the determination may be based on, for example, exceeding or not exceeding a minimum monthly purchasing history. Other criteria for determining whether a customer receives an incentive are described above, including in the description of FIGS. 27-31, 44A, and 44B.

At a step 16, the customer is presented with a list of incentives that are available to the customer if the customer purchases products associated with those incentives at, or from, the store. The list may be presented to the customer by providing the list in a readable format on the customer’s computer screen, such as by transmitting an electronic mail message or providing appropriate text on the associated web site. The remaining steps 18, 20, 22, 24, 26, 28, 30, 32, and 34 are analogous to the respective steps of the process of FIG. 52 having the same reference numeral.

Thus, in addition to offering incentives on-line and effecting those incentives when the customer is identified in the store and purchases a product associated with the incentive, the incentives communicated to the customer are generated based upon the customer’s prior purchasing history meeting a predetermined criteria. Having met a predetermined purchasing criteria, the customer may be placed into a category. Example categories include “A” customers, “B” customers, “C” customers, and “D” customers. Thus, infrequent shoppers, or alternatively, good customers can be rewarded appropriately based upon the desires of the stores by examining the customer’s purchasing history and determining whether it meets a predetermined criteria. By combining these features with the matching of a customer ID received on-line, and the identification of a customer in the store, a valuable procedure for performing targeting marketing is provided that not only produces desirable results, but also addresses fraud problems associated with paper coupons.

FIG. 55 is a flow chart illustrating a process for providing incentives to customers of a store who visit a computer associated with the store, such as through the Internet. The process illustrated in FIG. 55 may be implemented using the system shown in FIG. 48A or other suitable system. The process begins at a step 2. At a step 4, a customer of a store connects to a web site, such as web site 324. At a step 6, the identity of the customer connected to the incentive web site server is determined, as described above.

After the identity of the customer logged onto the incentive web site is determined, the customer’s record is accessed in a database of previous customer shopping history at a step 8. This record is accessed utilizing a user number associated with the identity of the customer. Methods for ascertaining the identity of a customer accessing a computer associated with the store are described in greater detail in conjunction with FIG. 57A. At a step 10, the past purchasing history of the customer is analyzed. Such analysis may be performed by incentive controller 340 or other suitable system, as described above.

At a step 12, a plurality of favorite products of the customer are selected. One methodology for selecting the customer’s favorite products is described above in conjunction with FIGS. 32, 42, 46A, 46B, and 47. In response to generating a list of the customer’s favorite products, a list of incentives is generated at step 14. This list may be a subset of the list generated at step 12 or may include all items.

At a step 16, the customer is presented with a list of incentives that are available to the customer if the customer purchases products associated with those incentives at, or from, the store. As described above, the list may be presented to the customer by providing the list in a readable format on the customer’s computer screen.

The remaining steps 18, 20, 22, 24, 26, 28, 30, 32, and 34 are analogous to the respective steps of FIG. 53 having the same reference numeral.
Thus, the customer is provided, through the Internet, incentives that are related to his favorite product and those incentives are applied at the store when the customer purchases associated items. Therefore, the current process provides a desirable method for providing incentives that benefits from the advantages of providing incentives on a customer’s favorite products that were described above, but that also does not suffer the previously discussed disadvantages of paper coupons.

FIG. 56 is a flowchart illustrating a method for presenting incentives to a customer at a retail store. This method may be implemented utilizing the system of FIG. 51, or other suitable systems. The method begins at a step 2. At a step 4 an item is scanned. For example, bar code scanner 354 of FIG. 51. At a step 6 the identity of the scanned product is made available to an incentive controller, such as incentive controller 352 through use of scanner wedge 372. In that example, scanner wedge 372 intercepts a signal indicative of the bar code of the scanned product and provides it to incentive controller 352. The signal is also provided to electronic cash register processor 343. Incentive controller 352 receives this signal and processes it to determine the identity of the scanned item. At a step 8 the price of the scanned item is made available to an incentive controller, such as, incentive controller 352, through printer wedge 374. Printer wedge 374 intercepts, a signal indicative of the price of the scanned item that is generated by a register controller, such as register controller 350, and provided to electronic cash register processor 343. Printer wedge 374 provides the intercepted signal to incentive controller 352 and to printer 348. Incentive controller 352 receives the signal and determines the price of the scanned item from the signal.

At an appropriate time a discount is effected by inserting a discount price look-up (PLU) onto scanner wedge 372 at a step 10. Electronic cash register processor 343 receives this signal and treats it as a discount. Insertion is performed by incentive controller 352 in this embodiment. In conjunction, a message associated with the incentive is inserted onto printer wedge 374 at a step 12. This process of receiving and inserting information on scanner wedge 372 and printer wedge 374 is repeated as appropriate at step 13. After all items have been scanned, a “total” indication may be obtained from printer wedge 372 at a step 14. At a step 16 additional text may be inserted after entering of a total key at step 16. Such additional text may describe the total amount of discounts applied to the order. The process concludes at step 18.

The particular discounts applied according to the process described in conjunction with FIG. 56 may be generating according to the techniques described herein or may be generated according to other discount generation techniques. The process therefore provides a method of applying electronic discounts to a customer order and communicating the application of such a discount to the customer through the customer receipt received in purchasing items. The use of scanner wedge 372 and printer wedge 374 facilitates communication and application of electronic discounts in pre-existing systems that are not configured to communicate or apply electronic discounts on the customer’s receipt.

Additional embodiments are described below in conjunction with FIGS. 57A through 59B. As described above, economic differentiation is an important aspect in targeted marketing. Economic differentiation refers to providing an incentive based on the value of a particular customer to a given store. For example, a discount rate may be greater for customers who spend more than for customers who spend less. In one example, when the amount of expenditures of customers exceeds a threshold, they are rewarded with a higher incentive or discount rate than the associated rate applied for customers who do not reach the threshold.

In a particular example, a threshold is set at $50 and customers who spend less than $50 get no discount and customers who spend more than $50 get 5% off the total purchase. This is another example of non-linear differentiation. In another example, customers who spend less than $50 get a 2% discount and those who spend more than $50 get a 5% discount. In either example, the proportionality of the reward or incentive changes so that the award as a percentage of the total purchase is considerably different.

Differentiating the incentive applied to a particular customer based upon the amount of purchases by a customer is one example of differentiating based upon a customer’s contribution to the business enterprise. Thus, according to aspects of the invention, a criteria may be established that is an indicator of the customer’s contribution to the enterprise, as distinguished from the customer’s contribution to any particular product or group of products. Such criteria may include revenue, profit, frequency of purchase, or other suitable criteria.

For a revenue criteria, simple revenue in terms of what the customer purchased in dollars may be used as direct indicators of revenue. Indirect indicators may also be used. Examples of indirect indicators include number of units, number of pounds, and number of ounces.

With regard to profit contribution, this criterion may be, for example, in terms of gross profit contribution to the enterprise. Gross profit contribution is not necessarily correlated with gross revenues because customers may purchase equal dollar amounts, but some purchases would be more valuable to the enterprise because of associated higher profit margins.

Frequency may be used because, for example, in a particular enterprise there may be certain efficiencies realized with the scale of the transaction processing costs. For example, a customer who buys $200 worth of goods in one transaction might have an associated cost less than a customer who buys $10 worth of goods in twenty transactions. It may be more efficient to check out one $200 order than twenty $10 orders in terms of time, as well as associated costs, such as the cost of support personnel transporting the goods to the shopper’s vehicle.

Other criteria in addition to revenues, profits, and frequency may also be utilized without departing from the scope of the present invention. Once the criteria is established, however, the teachings of this embodiment of the invention provide for a higher rate of reward or incentive for customers who fall above the criteria threshold than for customers who fall below the criteria threshold.

Alternatively, a converse incentive methodology could be employed in which customers who fall below the given criteria are given a higher rate of incentive than customers who fall above the criteria threshold. As an example, customers who visit a store less often than others may be perceived to be splitting their shopping visits with competitive establishments. A higher rate of reward based on lower frequency of attendance may be used as a method for inducing those customers to loyalty to a given store.

The determination of where a customer falls with respect to one or more threshold criteria may be determined based on past shopping history, the current shopping transaction, or a mixture of the two. Once a determination has been made as to where the customer falls with regard to particular threshold criteria, an incentive can be applied to a current or future transaction.

The incentive provided can take the form of a redeemable coupon conditioned upon the presentation of the coupon in a
subsequent transaction, or, the incentive can take the form of an electronic discount applied to the current transaction that is not conditioned upon subsequent presentation of a redeemable coupon.

The latter incentive provides advantages over a redeemable certificate. For example, for a variety of reasons, a customer may not return to a store, and therefore, the customer could possibly never benefit from such an incentive. By contrast, a non-conditional immediate electronic discount is not dependent upon future performance by the customer, e.g., the customer returning to the store and purchasing a particular item. The electronic discount may be based strictly on performance by the customer prior to the tendering of payment for the transaction, either before or after a particular order is totaled, but, in one embodiment, prior to payment for goods and services.

With reference to FIG. 57A, a process for providing an automatic discount in a store is described. This process may be implemented with the systems illustrated in FIGS. 19 through 21 and 49 through 51, or other suitable systems. The process begins at a step 2. At a step 4, the identification of a customer is determined. Step 4 may be accomplished in a plurality of ways. For example, the identity of the customer is determined by the entering of a customer identification number, reading of information from a customer identity card, reading of information on a check presented by the customer, reading of information on a credit or debit card presented by the customer, asking the customer for a telephone number or other indicia of identity of the customer, fingerprinting, retina scans, image recognition, and voice recognition of the customer. These example identification methods are described in greater detail in conjunction with FIG. 65 and above in conjunction with FIGS. 23B, 23C, and 24. At a step 6, records in a database associated with the customer are accessed. In one embodiment, the shopping history of a particular customer is stored along with a customer identification number.

As described above, a plurality of customer identification codes and customer transaction data may be received in prior transactions through a plurality of mechanisms, including scanning the bar code of each item and storing an indication of which items are purchased by which customers. Further, such data may be processed, as described above, by an incentive controller such as CVC controller 965 or incentive controllers 352 and 362 to determine whether the prior purchasing actions of a particular customer meet a particular purchasing criteria. Such criteria may include a sufficient level of revenue, profit, frequency of shopping, or other attributes associated with a particular customer.

At step 8, based upon the prior history of purchases by a particular customer, a discount level is determined by, for example, incentive controller 352, based upon a comparison of the customer's prior purchasing activities with the established criteria. This discount level is a rate of discount that is applied to the current transaction.

The following steps 10, 12, 14, 16, 18, 20, 22, and 24 effect application of a percentage discount to a current purchase. These steps are performed by incentive controller 352; however, other suitable combinations of hardware and/or software may be utilized to perform the steps. At a step 10, an accumulator (not explicitly shown) is set to 0. This accumulator resides in incentive controller 352; however, other suitable accumulators may be used. At a step 12, an item is scanned by bar code scanner such as scanners 354 or 966. At a step 14, the cost of the item scanned in step 6 is added to the accumulator. At a step 16, a determination is made of whether the accumulator has reached a set amount.

The set amount is any suitable amount onto which a discount can be applied. For example, a $10.00 set amount could be imposed so that a 5% discount level results in a $0.50 electronic discount. If the accumulator has not reached a set amount, a determination is made at a step 18 of whether there are any more items in the current transaction. If the current order has been completely processed, the process ends at a step 24. If the current transaction has not been completed, an additional item is scanned at a step 12.

If, in step 16, the accumulator has reached the set amount, a discount is applied to the order at a step 20. In this example, the discount applied to the order is a percentage of the accumulated amount. Alternatively, the amount of discount could be a percentage of the set amount over which the accumulator must have exceeded to generate the discount. At a step 22, the accumulator is reset to 0, and the scanning of items continues at step 12. The process continues until an entire order has been processed. The process ends at step 24.

At step 20, the application of a discount to the current order provides the differentiated incentive to the customer. The incentive is differentiated because the amount of the incentive is based upon the rate determined at step 8 based on the customer's prior purchasing history. The discount acts as an incentive for the customer to return to the store because the customer will anticipate that a similar discount will be applied on the customer's next purchase.

Thus the process described in conjunction with FIG. 57A allows for automatic application of an electronic discount at a rate based upon the customer's prior purchasing history. By automatically applying the discount, rather than granting a coupon, the customer is not required to retain and return to the store with the redeemable coupon in order to receive the benefit of incentives. Rather, the incentive is automatically applied, and the customer will grow to expect such incentives in the future, resulting in store loyalty. Additionally, store employees are alleviated from coupon handling, and potential fraud problems are addressed because no redeemable coupons are utilized.

FIG. 57B is analogous to FIG. 57A except that the described process is directed to targeted marketing of customers shopping through the use of a computer. Instead of physically going to the store, a customer may choose to access a computer site associated with the store, for example, through use of the Internet, and select a plurality of items for purchase. The customer may then go to the store to pick up the purchased items, or alternatively, the selected items may be delivered.

The method described in FIG. 57B is in many respects analogous to the method described in conjunction with FIG. 57A and begins with step 2. At a step 3, a customer accesses a computer site associated with the store. This may be accomplished by, for example, accessing a world wide web Internet site operated by the store. The customer may access such site by, for example, use of a home personal computer that is connectable to the Internet. At a step 4, the identification of a person who accessed computer site at step 3 is determined. This identification may include any of the applicable identification methods described above, including voice recognition, but may also include the customer entering a customer number, customer name, customer phone number, or customer address. In addition, the identification of the person accessing the web site may be determined through other techniques, such as cookies. When a computer accesses a web site, the web server can pass the connecting computer an identification token known as a cookie. The computer stores this cookie, and when asked for the contents of this cookie from the web server in future visits, the web server can use the
cookie contents as an ID to enable an automatic identification of the computer. As another example, the customer may be identified by identifying a chip used in or with the customer's computer.

At a step 6, a customer's prior shopping history is accessed, as described in conjunction with FIG. 57A. At a step 8, the criteria is applied in a similar manner as that described in conjunction with step 8 of FIG. 57A. Based on the criteria applied, the following steps effect an electronic discount to the current purchase.

At a step 10, an accumulator is set to 0. At a step 12, an item is processed. Processing of an item may include receiving a request from the customer through the customer's computer for purchase of an item. Such requests may be made on an item-by-item basis or all items may be submitted as a batch. An order may be processed real time on an item-by-item basis, or the customer might have an application that would allow on-line processing of the customer's order. In the off-line processing example, once this off-line process is complete, the customer's processor connects with the computer site and download the order in a batch. In either event, each item is processed individually in an analogous fashion to that described in conjunction with FIG. 57A. The remaining steps 14, 16, 18, 20, 22, and 24 are analogous to those steps as described in conjunction with FIG. 57A.

Thus, a differentiated incentive may be provided to a "on-line" customer by application of an automatic discount that is applied after a predetermined accumulated amount has been spent. The rate of the discount is determined based upon the customer's prior shopping history, and therefore, is a differentiated incentive.

This process provides the same advantages described above in conjunction with FIG. 57A; however, on-line shoppers normally do not benefit from redeemable coupons. Therefore, with the use of the present invention, a customer is not reluctant to utilize on-line shopping because of any loss in value that may be attributed to failing to receive coupons. Yet another alternative embodiment of the invention is described in conjunction with FIG. 58A. According to the invention described with reference to FIG. 58A, electronic discounts are applied upon the purchase of particular products by a customer. The selection of the particular products for which an electronic discount is applied may be based upon the customer's prior purchasing history.

An examination of the customer's prior purchasing history provides an indication of whether the customer meets a predetermined criteria threshold. As described above, this predetermined criteria threshold can take a plurality of forms, including gross revenues by the customer, profits attributable to the customer, and frequency of shopping by the customer. Assuming a pre-determined criteria has been met, the customer is provided an incentive to return to the store by granting the customer an electronic discount on specific products purchased in the current transaction and, in addition, is notified of an electronic discount the customer would receive upon purchasing products in a future transaction.

The rate of the discount is determined based on how the customer falls in reference to one or more pre-determined criteria based upon prior purchasing history. The particular products for which a current and future electronic discount will be provided may be established according to a variety of techniques. For example, the customer's prior purchasing history may be examined, and a selection of the customer's preferred products may be made. Such determination of a customer's preferred products is described above in conjunction with FIGS. 30 through 32. Therefore, the particular items for which discounts will be provided are items that are more frequently purchased by the customer. Such selection of items provides favorable marketing qualities to the present incentive-generating process because customers are more apt to return to a store that issues the customer incentives on his favorite products.

Other criteria may be used to select products for which the customer may receive incentives. For example, incentives may be generated for items that the customer has not previously purchased, items that the customer has not purchased in a set amount of time but has previously purchased, and items that the store wishes to be purchased more than others. Further, in addition to setting the rate of discount and selecting the items for which a discount will be applied based on prior purchasing history, the number of items offered to the customer may be determined based on the customer's prior purchasing history. In addition to applying a different rate of discount based upon prior purchasing history, the number of items on the lists for which electronic discounts are available may also be determined based upon prior purchasing history.

Whatever the electronic discounts to be received by the customer, the customer receives a discount applied to a particular product of the current transaction and also receives a notification of discounts the customer would receive in a future transaction if associated items are purchased. Therefore, the customer is induced to return to the store to receive the future electronic discounts and loyalty is established to the store by providing the customer an award in the current transaction.

By providing electronic discounts in such a manner, problems associated with conventional coupons are alleviated. For example, the burden associated with distributing and processing redeemable coupons and the associated potential fraud is addressed. Unlike coupons, a clerk does not have to scan or enter into a keyboard an electronic discount, nor does the clerk have to store and account for such coupons. Further, the clerk does not have to confirm that products associated with a presented coupon are actually purchased. Therefore, the time a customer spends in line at a store may be reduced. Further, by issuing a notification of future electronic discounts, a customer is not required to retain the coupon for future use. Rather, a future electronic discount is applied automatically upon purchase of an associated item, without actually producing any redeemable coupon. A further advantage is that the electronic discount is available only to the customer or a person associated with a customer, for example a family member. In contrast, redeemable coupons may be transferred or traded to persons the store would prefer receive different types of incentives. Thus, being nontransferable, the incentive aspect of such electronic discounts are more particularly targeted.

A particular implementation of the above-described process is illustrated in FIG. 58A. This process may be implemented using the systems illustrated in FIGS. 19 through 21 and 49 through 51, or other suitable systems. In one embodiment, many of the below-described steps are performed by an incentive controller, such as incentive controller 352. The process begins at a step 2. At a step 4 a customer identification is entered, and at a step 6 the customer's prior shopping history is accessed. These steps 2, 4, and 6 may be performed as described above in conjunction with similar steps in FIGS. 57A. Based upon the customer's prior shopping history, a comparison of one or more predetermined shopping criteria is made to the customer's prior shopping history, and a discount rate is determined. Step 8 may also include generating, based on prior shopping history, a list of incentives that will be provided to the customer at the conclusion of the current transaction for use in a future transaction. Alternatively, the
generation of a discount rate and a list of items for which incentives will be provided may be performed at any suitable time. An incentive controller, such as incentive controllers 965, 352, 362, may perform these tasks.

At a step 10 an item is scanned. At a step 12, if the scanned item is in a previously generated list of electronic discounts, a discount is applied to the order at step 14. Application of the discount is effected in a number of alternative ways. For example, if the system of FIG. 51 is utilized, the discount is effected through use of scanner wedge 372 and communicated through use of printer wedge 374, as described in conjunction with the process of FIG. 56. Alternatively, for example, if the system of FIG. 50 is utilized, the electronic cash register receives the discount directly from integrated register and incentive controller 362 and effects application and printing of the electronic discount.

At a step 16 a determination is made of whether there are any additional items in the customer order. If the customer order has not been concluded, additional items are scanned and applicable discounts are applied. At the conclusion of the transaction, the customer is notified of future product discounts at step 18. Notification of the future product discounts includes providing a list of future discounts on the customer’s receipt; however, other alternative notification techniques may be employed, including notification by use of display 968, 346, printing of a list of discounts separate from the customer’s receipt, or other suitable technique. The process concludes at step 20.

FIG. 58B is an example customer receipt including a description of automatic electronic discounts as well as a notification of future product discounts. As illustrated in FIG. 58B, a customer “Susan Smith” receives discounts for a number of items. According to this embodiment, the availability of these discounts to the Susan Smith household were previously communicated at a prior transaction. The first electronic discount occurs after the purchase of “Diet Coke.” An indication is made on the customer receipt of the total price of the purchase “$8.97.” On a line immediately following the purchase of Diet Coke, an electronic discount is noted of “Private Sale—1.00.” This electronic discount is followed by a “Loyal Customer Rewards” indication to remind the customer that the electronic discount is applied because the customer is considered a loyal customer. A number of subsequent similar electronic discounts are illustrated in FIG. 58B, with some product purchases not explicitly shown in FIG. 58B for clarity of illustration. It should be noted that each of the electronic discounts are applied after the purchase of a product for which a personalized private sale reward has been previously communicated to the customer. Near the end of the receipt is an indication of the total amount of electronic discounts for the current ticket due to the customer being a loyal customer. In this instance, this total is communicated to the customer by the phrase “Total Private Sale Rewards This Visit—$8.25; our way of saying thank you for shopping at XYZ.”

In addition to notifying the customer of the amount of the automatic electronic discount applied to the current transaction, a list of electronic rewards that will be applied on the next customer transaction, or alternatively on a number of subsequent customer transactions, are provided. For example, the bottom portion of the customer receipts indicate “Milkbone—4 lb. $1.00 off.” This notation indicates to the customer that if she purchases a 4 lb. bag of Milkbone in her next purchase, $1.00 will be taken off the total cost of her next purchase. The numbers of items on the list of future rewards and the dollar amount applied as a discount is determined, at least in part, according to the customer’s purchasing history.

This form of providing incentives to customers allows targeted marketing to be effected without the use of a redeemable coupon. Such a manner of providing incentives is desirable because it alleviates the customer from the burden of having to retain and return to the store with a redeemable coupon. Further, it prevents a customer from trading coupons or otherwise disposing of them to third parties. Thus, provided incentives are available for use only by the person who is intended to use them. Further, the incorporation of examining the customer’s prior history allows appropriate selection of products for which incentives will be provided in order to encourage the customer to return to the store, as opposed to shopping at another store. In addition, the use of electronic discounts relieves the clerk of the burden of having to scan or enter into a keyboard a coupon. Further, the clerk does not have to maintain the coupon in the cash drawer and account for it at the end of the day, thus the time required to check out a customer is reduced.

An embodiment of the above-described process as applied to on-line shopping is described with reference to FIG. 58C. This process may be implemented with the system illustrated in FIG. 58A, or other suitable system. In many respects, the process is similar to the process described in connection with FIG. 58A.

The process begins at step 2. At a step 3 a customer accesses a computer site associated with the store, such as a web site. At a step 4, a determination is made of the identification of the person accessing the computer site at step 3. At a step 6 the customer’s records are accessed in the database of previous shopping history, and at a step 8, the comparison of the customer’s prior shopping history is made with one or more criteria. As described above in conjunction with FIG. 58A, step 8 may also be performed at suitable other times.

At a step 10 an item selected by the customer is processed. If the selected item is included in a list of electronic discounts, a determination is made at step 12 to apply a discount to the order at step 14. This determination is performed by an incentive controller, such as incentive controller and register system 326. This process continues until a determination is made at step 16 that the current order is completed, at which point notification of future product discounts is provided at step 18. This notification could take the form of a list generated and provided to the customer for viewing on a home computer, or other suitable formats. The process ends at step 20.

This embodiment provides similar advantages as those described above in conjunction with FIG. 58A. In addition, providing electronic discounts and notification of future discounts is particularly advantageous in the on-line shopping context because paper coupons are not easily distributed and redeemed through on-line shopping.

An alternative embodiment is described in conjunction with FIG. 59A. In this embodiment, electronic discounts are applied to a current transaction based upon the customer’s prior purchasing history. As described above, the particular products for which discounts will be applied may be determined according to customer preference, particular needs of a store, or other techniques.

In this embodiment, no notification is provided to the customer as to which items discounts will be provided in a future transaction. Thus, an electronic discount is applied to the current transaction, and future electronic discounts are generated, but are not communicated to the customer. The future electronic discounts may be generated at or near the time of the current transaction for application in a future transaction, or may be generated at some time convenient for the store.

A particular embodiment of this invention is described in conjunction with FIG. 59A. At a step 2 the process begins.
steps 4, 6, 8 and 10 the customer identification is determined, the customer's prior purchasing history is accessed, a determination of where the customer falls with reference to one or more criteria is performed, and an item is scanned.

At a step 12, a determination is made whether the scanned item is in a list of previously determined items for which an electronic discount is available for the particular customer. In the illustrated embodiment, this step is implemented in a particular example in which a determination is made of whether a scanned item is one of a number of previously determined preferred items of the particular customer. If the scanned item matches the list, a discount is applied to the order at step 14. This process continues until the entire order is processed. The process concludes at step 20. An example customer receipts according to the process of FIG. 59A is the receipt illustrated in FIG. 58B, but without the notification of future products discounts and the end of the receipt.

The determination of the item for which an electronic discount will be generated may be made for future transactions at the conclusion of the present transaction or may be made at some other time. As described above, the particular items for which an electronic discount will be granted may be based upon prior purchasing history or other criteria. The number of items and the discount rate is determined based upon prior purchasing history of the customer as an indicator of the value of the customer to the store.

The selection of the products for which an electronic discount will be provided may be made according to a variety of techniques, including examining the customer's past shopping history, providing coupons for particular products the retailer wishes to be purchased, and providing electronic discounts for products a manufacturer wishes purchased.

An example of providing incentives based upon customer's past history is described below. Based upon a customer's past history, a determination can be made of the top twenty-five out of, for example, three hundred items that are purchased by the customer. If the customer purchases any of these twenty-five products in the next shopping transaction, a discount can be applied. By not communicating this list to the customer, the retailer may offer incentives on a larger number of products, so that the customer receives a discount even if he does not purchase an item on a shorter list.

Thus, a process is provided that benefits from the same advantages as those described in conjunction with FIG. 58A. In addition, the store can provide incentives on a greater variety of products because the products for which incentives are to be provided are not communicated to the customer until the product is purchased.

Such a process for providing incentives to customers of a store may also be implemented for on-line shopping. Such a process is described in conjunction with FIG. 59B. The process begins at step 2. At step 3 a customer logs onto a computer site associated with the store, such as a worldwide web site. At step 4 the identification of the customer is determined. At step 6 the customer's prior purchasing history is accessed, and at step 8 a determination is made of where the customer's prior purchasing history applies with respect to one or more previous purchasing criteria.

At a step 10 an item is processed. Such processing may include receiving an electronic submittal of a request to purchase an item. If the item received at step 10 is in a predetermined list of items, a determination is made at step 12 to apply a discount to the order at step 14. In the particular illustrated embodiment, the determination of whether the processed item is in a list of previously determined items is made by determining whether the processed item is in a list of previously determined preferred items of the customer. The process continues until the customer order is completed at step 16. The process concludes at step 18.

Thus, a process is provided that benefits from the same advantages as those described in conjunction with FIG. 59A, but is additionally beneficial because it is applied in a shopping context in which the use of redeemable coupons is difficult.

According to other embodiments, providing incentives to customers on a differentiated basis based on the value of the customer to the store does not necessarily involve examining the prior purchasing history of the customer. According to this embodiment, a plurality of items are sequentially processed by a store. A discount associated with each item is stored, but not applied. Rather, the individual discounts are accumulated. After a pre-determined threshold for an accumulated discount is reached, a discount is applied. In one embodiment, the discount is applied immediately after the purchase of an item having a price exceeding the amount of the discount. In this manner, it appears to the customer that the customer is receiving a discount on a particular product.

A particular embodiment of this process is described with reference to FIG. 60A. This process may be implemented with the systems of FIGS. 19 through 21 and 49 through 51, or other suitable systems. The process begins at a step 2. At a step 4 a discount accumulator is set to zero. A discount accumulator (not explicitly shown) accumulates unapplied marginal discounts associated with individual items. The discount accumulator is implemented as a portion of an incentive controller, such as incentive controllers 965, 352, 362; however, other suitable implementations may be utilized. At a step 6 an item to be purchased is scanned by a bar code scanner, such as scanner 966, 354. Based upon scanning of a bar code of the item, the price of the item is determined by, for example, the ECR register controller illustrated in FIG. 19. After scanning an item, a discount is calculated based on the price of the item at step 8. The rate of discount is pre-determined based on the marketing requirements of the store. The discount for a particular item, or marginal discount, is added to the discount accumulator at step 10. At a step 12 a determination is made of whether the discount accumulator exceeds a minimum accumulated discount. If the discount accumulator exceeds the minimum accumulated discount, the discount is applied at an appropriate time at step 13. Details of one embodiment of applying the discount are described below in conjunction with FIG. 63. The application of the discount is communicated to the customer by printing the discount on a customer receipt; however, other methods of communicating the discount to the customer may be utilized. The printing of the discount on the customer's receipt may be effected by, for example, printer 969, 348. An example customer receipt generated according to this method is illustrated in FIG. 60C.

After application of the discount, the discount accumulator is reset to zero at step 14 and the process continues until all items have been scanned. When a determination has been made that there are no more items in the order at step 16, the process concludes at step 18. If the discount accumulator does not exceed the minimum accumulated discount at step 12, a determination is made of whether there are additional items to be scanned. If there are additional items to be scanned, the process continues at step 6.

Therefore, according to the embodiment described with reference to FIG. 60A, the plurality of items are scanned and marginal discounts are accumulated. When an accumulated discount exceeds a minimum accumulated discount, for example, $0.50, a $0.50 discount is applied to a subsequent item that exceeds $0.50. Thus, it appears to the customer as if the customer is receiving a discount on a particular product.
Alternatively, a different discount amount could be applied depending upon the particular implementation. For example, once the accumulated discount threshold is exceeded, the actual accumulated discount could be applied, or some other suitable discount could be applied.

By accumulating a marginal discount for each item and applying an accumulated discount subsequent to the purchase of an item having a price exceeding that amount, there is an appearance that the customer received a discount on a particular item. Because any given transaction likely will include the customer’s preferred products, over time it may appear to the customer as if discounts are being provided for the customer’s preferred items. As described above, providing discounts for a customer’s preferred items will likely induce the customer to return to the store providing such discounts. Additionally, such a method of customer promotion does not suffer from disadvantages associated with redeemable coupons.

Such a process may also be applied in the context of online shopping. One embodiment of such an application is described with reference to FIG. 60A, which is substantially similar to FIG. 60B. This process may be implemented by the system of FIG. 60A, or other suitable system. At a step 2 the process begins. At a step 3 a customer logs onto a computer site associated with the store, such as a web site. At a step 4 a discount accumulator is set to zero. At a step 6 an item is processed. Processing of an item according to step 6 is described in greater detail below. At a step 8 a marginal discount is calculated based upon the price of each item. At a step 10 the marginal discounts are accumulated by the discount accumulator.

At a step 12 a determination is made of whether the discount accumulator exceeds a minimum accumulated discount. If the minimum accumulated discount is exceeded, a discount is applied to a product. Communication of this discount may take the form of, for example, “Private Sale—$0.50.” This phrase may be displayed on a computer screen viewable by the customer logged onto a computer associated with the store immediately following a display of a purchased product. At a step 14 the discount accumulator is reset to zero. A determination is made at step 16 whether additional items are to be processed and the method concludes at step 18. If the discount accumulator does not exceed the minimum accumulated discount, the process continues at step 6 if additional items are to be processed.

In processing an item as described in step 6, a plurality of items could be entered by a customer at a computer in a batch fashion and the remaining steps of the invention described in FIG. 60B applied on a product-by-product basis. Alternatively, a customer may enter one product at a time and submit the product to the computer associated with the store for processing. An order may be processed real time on an item-by-item basis, or the customer might have an application that would allow off-line processing of the customer’s order. Once this off-line process is complete, the customer’s processor would then connect with the computer site and download the order in a batch.

The inventions described with reference to FIGS. 60A and 60B provide the appearance of discounts applied to particular products without requiring the storage of prior shopping criteria or the identification of a particular customer. The inventions described below with reference to FIGS. 61A and 61B incorporate such a concept but additionally apply customer differentiation principles without the use of prior shopping history. In these embodiments, the current transaction is utilized to effect customer differentiation. As the customer purchases a larger volume of goods in the current transaction, the rate of the applied discounts increases. In the particularly described examples, the value of the customer to the store is represented by a dollar amount purchased and an increased incentive due to a customer being more valuable to a store is effected by an increased rate of incentive. Alternatively, however, other suitable criteria other than revenue may be implemented, such as basing the criteria at which incentives are increased upon the number of goods purchased.

The process of FIG. 61A begins at a step 2. At a step 4 multiple products are processed until some minimum purchase threshold is exceeded. The minimum purchase threshold is the minimum amount of purchases that must be exceeded before a customer can start accumulating discounts for subsequently purchased products. Details of one embodiment of making this determination are described in greater detail below in conjunction with FIG. 61A. Step 4 includes setting a discount accumulator to zero. After the minimum purchase threshold accumulator is exceeded a determination is made at a step 5 of whether there are additional items in the current order to be processed. If so, an item is scanned at a step 6. At a step 8, a marginal discount is calculated based upon the price of the item and this marginal discount is added to a discount accumulator at step 10. A determination is made at a step 12 of whether the discount accumulator exceeds a minimum discount. If so, a discount is applied at a step 13. Step 13 is described in greater detail below in conjunction with FIG. 63. After application of a discount, the discount accumulator is reset at step 16 and processing continues until all items in the customer’s order have been scanned. The process concludes at a step 20.

FIG. 62A illustrates a portion of the process of FIG. 61A. This portion determines when a customer’s purchases exceed the minimum purchase threshold. After exceeding the minimum purchase threshold, discounts may be applied. At a step 2 in FIG. 62A, a threshold accumulator is set to zero. At a step 4, an item is scanned and the price of the item is determined. At a step 6, the price of the item is added to a threshold accumulator. At a step 8, a determination is made of whether the threshold accumulator exceeds a predetermined threshold. If the threshold accumulator exceeds the predetermined threshold, the process continues as described in FIG. 61A. If the threshold accumulator does not exceed the predetermined threshold, a check is made at a step 10 of whether there are additional items to be processed. If there are additional items to be processed, the process repeats at step 4. If there are no additional items to be processed, the process is concluded.

Thus, according to the above described invention, discounts are applied only after exceeding a predetermined threshold. After exceeding the predetermined threshold, marginal discounts are accumulated until they exceed a minimum accumulated discount, at which point a discount is applied. Such a process effects differentiated incentive generation because only customers who purchase a minimum amount of goods are provided an incentive. This process also benefits from the advantages associated with differentiated incentives described above. In addition, differentiating may occur without storing a customer’s past purchasing history and without identifying the customer.

FIG. 63 illustrates one example of the actual application of a discount, once it has been determined that a discount will be applied. This example may be used in conjunction with the method described in FIG. 61A. At a step 2, a determination is made of whether the price of the previously scanned item exceeds the minimum discount. If the price exceeds the minimum discount, the minimum discount is applied at step 6. Alternatively, step 2 could be replaced with a determination of whether the price of the previously scanned item exceeds...
the actual accumulated discount, and if so, the actual accumulated discount is applied at step 6.

If the price of the previously scanned item does not exceed the minimum discount, step 4 of checking each subsequent item is applied until the price of an item exceeds the minimum discount, at which point the discount is applied at step 4. While step 6 is being executed, the generating of additional discounts may take place according to the process described in FIG. 61A. By determining that the discount to be applied exceeds the price of the immediately preceding scanned item, a discount may be applied that would appear to the customer to be applied to a particular product.

FIG. 61B illustrates a process for targeted marketing of customers that is analogous to the process described in conjunction with FIG. 61A, except that it is directed to customers shopping on-line. The system of FIG. 48A, or other suitable systems, may be used to implement this process.

The process begins at a step 2. At a step 3, a customer logs on to a computer site associated with the store, such as a web site. At a step 4, multiple products are processed until some minimum purchase threshold is exceeded. One example of step 4 of determining that the minimum purchase threshold is exceeded is described in greater detail below in conjunction with FIG. 62B. Based on whether there are any additional items in a customer’s order, the decision is made at step 5 of whether to continue processing items or to conclude the process.

If processing continues, at a step 6 an additional item is processed. At a step 8, a discount is calculated based on the price of the processed item. At a step 10, the calculated discount is added to a discount accumulator. At a step 12, a determination is made whether the discount accumulator exceeds a minimum accumulated discount. If the minimum accumulated discount is exceeded, a discount is applied at the appropriate time according to step 13. Step 13 is described, in greater detail above in conjunction with FIG. 63. If the minimum accumulated discount is not exceeded, a determination is made at step 14 of whether there are additional items to be processed. If there are additional items, processing of items continues at step 6. If there are no additional items, the process concludes at step 20.

FIG. 62B illustrates a portion of the process of FIG. 61B. This portion determines when a customer’s purchases exceed a minimum purchase threshold. The process begins at step 1. At a step 2, a threshold accumulator is set to zero. At a step 4, an item is processed and the price of the item is determined. At a step 6, the price of the item is added to the threshold accumulator. At a step 8, a determination is made of whether the threshold accumulator exceeds the minimum threshold. If the threshold accumulator does not exceed the minimum threshold, a determination is made at step 10 of whether there are additional items for processing. If there are additional items, processing continues at step 6.

If it is determined at step 8 that the threshold accumulator is exceeded, a discount accumulator is set to zero at a step 12. The process concludes at step 14.

Thus, the process described in conjunction with FIG. 62B illustrates one example of determining that a threshold is exceeded. Once this threshold is exceeded, discounts are then applied as described in conjunction with FIG. 62A.

Thus, according to the above described invention, discounts are applied after exceeding a predetermined threshold. After exceeding the predetermined threshold, marginal discounts are accumulated until they exceed a minimum accumulated discount, at which point a discount is applied. Such a process effects differentiated incentive generation because only customers who purchase a minimum amount of goods are provided an incentive. This process also benefits from the advantages associated with differentiated incentives described above. In addition, differentiated incentives may be applied without storing a customer’s past purchasing history and identifying the customer. Moreover, such incentives are provided in a shopping context in which the use of redeemable coupons is difficult.

FIG. 64A illustrates another embodiment of the invention. In FIG. 64A, a process is shown for providing discounts to customers at variable rates depending upon the amount the customer purchases in a given transaction. The systems of FIGS. 19-21 and FIGS. 49-51, or other suitable system, may be used to implement this process.

The process begins at a step 2. At a step 4, a total accumulator is reset to zero. At a step 6, a discount accumulator is set to zero. The total accumulator keeps track of the total amount purchased in a given transaction. The discount accumulator keeps track of marginal discounts associated with the purchase of any given item. Both the total accumulator and discount accumulator are stored in incentive controller 352, 362, or 365, however, these accumulators may be contained in other suitable places and may be implemented in other suitable manners. At a step 8, an item in a customer order is scanned and the price of the item is determined. At a step 10, the price of the scanned item is added to the total accumulator. At a step 14, the determination is made of the rate and minimum discount that will be applied to the purchase of subsequent items. The rate is based upon the total amount that has been purchased up to this point. An example method for determining the rate and minimum discount based on the total accumulated purchase is described in greater detail in conjunction with FIG. 65. At a step 16, the determined rate is applied to the price of the scanned item, and the result is added to the discount accumulator.

At a step 18, a determination is made of whether a discount accumulator exceeds the determined minimum discount. If the discount accumulator exceeds the minimum discount, the discount is applied at an appropriate time at step 20. The application of a discount at an appropriate time at step 20 may be performed according to the process described in conjunction with FIG. 63. After application of the appropriate discount, the discount accumulator is reset at step 22, and processing of additional items continues at step 24. If the discount accumulator does not exceed the minimum discount, processing continues at step 24.

Step 24 involves determining whether there are additional items in a customer order. If there are no additional items, a step 26 may be executed. Step 26 applies any residual accumulated discount to the order. Thus, even though a next threshold is not reached, a customer receives the benefit of a discount on the last few purchases even though the sum total of discounts associated with those purchases did not exceed the minimum discount. The process ends at step 28.

An example of the process described in conjunction with FIG. 64A is described below. A customer approaches the point-of-sale, such as a checker in a grocery store. The total accumulator and the discount accumulator are set to zero at steps 4 and 6. Then a plurality of items are scanned. Until the total accumulator equals or exceeds, for example, $25.00 a rate of 2 percent is applied. Thus, 2% of the price of each item is calculated and totaled by the discount accumulator.

In this example, the minimum discount is $0.30. Therefore, when the discount accumulator exceeds $0.30, a discount of, for example, $0.30 is applied immediately after the purchase of the next item exceeding $0.30 in price. After application of the discount, the discount accumulator is reset. In this example the discount accumulator will exceed $0.30 upon
purchase of $15.00 worth of goods. After the total accumulator exceeds $25.00, a rate of 4% is applied. The next discount occurs after the discount accumulator again exceeds $15.00. Thus, after the purchase of a total of $27.50, a discount of, for example $0.30 is again applied [0.02(27.5-15) + 0.04(27.50-25.00) = 0.30].

This process continues, with the rate adjusting appropriately until all items are scanned or processed. According to one embodiment, unassembled discounts are applied after all items have been processed even if the discount accumulator does not exceed a minimum amount.

Thus, in the embodiment described in conjunction with FIG. 6A, a system and method are provided that allow differentiated incentives based on the value of a customer to an establishment. In the described embodiment, the value is measured by dollar revenue to a store. Such differentiation may occur without necessarily identifying the customer. Further, a number of levels of differentiation are available such that certain customers may be provided additional incentives. Moreover, incentives are provided that do not suffer the disadvantages associated with redeemable coupons.

FIG. 6B illustrates another embodiment of the invention. In FIG. 6B, a process is shown for providing discounts to customers shopping on-line at variable rates depending upon the amount the customer purchases in a given transaction.

The method begins at step 2. At a step 3, a customer logs onto a computer site associated with a store. At a step 4, a total accumulator is set to zero. At a step 6, a discount accumulator is set to zero. The total accumulator and discount accumulator may be the same as described in conjunction with FIG. 6A or may be implanted and maintained in other suitable manners and places. At a step 8, an item in a customer order is processed. At a step 10, the price of the processed item is added to the total accumulator.

The remaining steps 14, 16, 18, 20, 22, 24, 26, and 28 are analogous to the steps of FIG. 6A having the same reference numerals.

This embodiment benefits from the same advantages described above in conjunction with FIG. 6. Moreover, such incentives may be applied in a shopping context in which the use of redeemable coupons is difficult.

FIG. 65 is a flowchart illustrating a process for determining a discount rate and a minimum discount. Such a process may be used, for example, in conjunction with step 14 of FIG. 6A and step 14 of FIG. 6B. The process begins at step 2. At a step 4, the determination is made of whether the total amount of purchases exceeds a first limit. If the total amount of purchases does not exceed the first limit, the discount rate is set to a first rate at step 6 and the minimum discount is set to a first minimum discount at step 8. If the total purchase amount does exceed the first limit, a determination is made of whether the total purchase exceeds the second limit at a step 10. If the total purchase does not exceed the second limit, the discount rate is set to a second rate at step 12, and the minimum discount is set to a second minimum discount at step 22. If the total purchase exceeds the second limit, a determination is made of whether the total purchase amount exceeds a third limit at a step 16. If the total purchase amount does not exceed the third limit, the discount rate is set to a third rate at a step 18, and the minimum discount is set to a third minimum discount at a step 20. If the total purchase amount is greater than or equal to the third limit, the discount rate is set to a fourth discount rate at a step 24, and the minimum discount is set to a fourth minimum discount at a step 26. The process concludes at a step 28.

FIG. 66 is a flowchart illustrating a number of techniques for identifying a customer of a store. These techniques may be used in addition to those described in conjunction with FIGS. 23A, 23C, and 24. The process begins at a step 2. At a step 4 a determination is made that fingerprints will be used as a method for identification. At a step 6, a customer places a finger on a fingerprint reading device. At a step 8, the fingerprint reading device scans the fingerprint, and at a step 10 a signal based on the scanned fingerprint image is generated. At a step 30 the signal is converted into a customer identification number.

Alternatively, at step 12 a determination is made that the customer identification will be performed through a retinal scan. At a step 14 a retina of a customer is scanned. At a step 16 a signal based on the scanned retina is generated, and at a step 30 the signal is converted into the customer identification number.

According to another alternative for identification, at a step 18 it is determined that a voiceprint will be utilized. At a step 20 a voice sample is elicited from the customer. At a step 22, a signal based on the voice sample is generated, and at step 30 the voice signal is converted into a customer identification number. Although a number of voice recognition techniques may be used, two particular examples are described here. In one example, a customer verbalizes an identification code. The recognition of the verbalized code allows identification of the customer by his code. In another, the customer's voice sample is automatically converted into an identification code, and when the customer's voice is recognized, the customer is identified by his code. Automatic conversion of the customer's voice sample into an identification code may include initially obtaining an identifier, such as an address or telephone number, for example, from the customer in conjunction with a voice sample and training a voice recognition system to associate the voice sample of a given person with his identification.

Another alternative method for customer identification is image recognition. At a step 24 it is determined that image recognition will be used. At a step 26 a camera records the image of a customer, and at a step 28 a signal based on the image is generated. The signal is converted into a customer identification number at step 30. The process for determining the identification of a customer concludes at step 32.

Although the present invention has been described in detail, it should be understood that various changes, substitutions and alterations can be made herein without departing from the spirit and scope of the invention, which is solely defined by the appended claims.

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>char [25]:</td>
<td>/ customer's bank id /*</td>
</tr>
<tr>
<td>unsigned long phone</td>
<td>/ customer's phone # for householding Digit 1 - multiple account flag Digit 2-8 - Phone # Digit 9-10 - Account counter # /*</td>
</tr>
<tr>
<td>struct []</td>
<td>/</td>
</tr>
<tr>
<td>int hitam;</td>
<td>/ total hitam /*</td>
</tr>
<tr>
<td>long total;</td>
<td>/ total cents amount verified /*</td>
</tr>
<tr>
<td>long amount;</td>
<td>/ last cents amount verified /*</td>
</tr>
<tr>
<td>long daynart:</td>
<td>/ Last 7 days cents verified /*</td>
</tr>
</tbody>
</table>
TABLE 1-continued

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>log date;</td>
<td>last verify access date/time */</td>
</tr>
<tr>
<td>{ verify;</td>
<td></td>
</tr>
<tr>
<td>char status;</td>
<td>current status */</td>
</tr>
<tr>
<td>char flags;</td>
<td>id user flags */</td>
</tr>
<tr>
<td>log lastdate;</td>
<td>last access date (for transfer use) */</td>
</tr>
<tr>
<td>log curdate;</td>
<td>last access date (for rolling id) */</td>
</tr>
<tr>
<td>log startdate;</td>
<td>date status changed */</td>
</tr>
<tr>
<td>{ current;</td>
<td></td>
</tr>
<tr>
<td>struct }</td>
<td></td>
</tr>
<tr>
<td>unsigned daysago: 11;</td>
<td># days ago from last date (11 bits) */</td>
</tr>
<tr>
<td>unsigned hits: 5;</td>
<td>Hits for that day (5 bits) */</td>
</tr>
<tr>
<td>unsigned sum;</td>
<td>Amount in whole dollars */</td>
</tr>
<tr>
<td>{ history [30];</td>
<td></td>
</tr>
<tr>
<td>struct }</td>
<td></td>
</tr>
<tr>
<td>char status;</td>
<td>previous status before current */</td>
</tr>
<tr>
<td>int hitcnt;</td>
<td>previous local hitcnt */</td>
</tr>
<tr>
<td>long totamt;</td>
<td>previous local dollar amount */</td>
</tr>
<tr>
<td>long startdate;</td>
<td>previous status date */</td>
</tr>
<tr>
<td>{ previous;</td>
<td></td>
</tr>
<tr>
<td>struct }</td>
<td></td>
</tr>
<tr>
<td>unsigned int type;</td>
<td>Bit Mask of coupons issued */</td>
</tr>
<tr>
<td>char flags;</td>
<td></td>
</tr>
<tr>
<td>unsigned char Acntc;</td>
<td>Miscellaneous coupon flags */</td>
</tr>
<tr>
<td>*"Tally counters as Coupon "A" */</td>
<td></td>
</tr>
<tr>
<td>unsigned char SAcntc;</td>
<td>*"Tally counters as Super "A" */</td>
</tr>
<tr>
<td>unsigned char Mntc;</td>
<td>*"Tally counters as Coupon "M" */</td>
</tr>
<tr>
<td>unsigned char Mloop;</td>
<td>Number of Maxxer loops */</td>
</tr>
<tr>
<td>unsigned char Floop;</td>
<td>Number of failure loops */</td>
</tr>
<tr>
<td>unsigned int maxbase;</td>
<td>Base avg for maxxig */</td>
</tr>
<tr>
<td>unsigned int racnt;</td>
<td>Last successful target */</td>
</tr>
<tr>
<td>char level;</td>
<td>Standard series min */</td>
</tr>
<tr>
<td>char Alevel;</td>
<td>Coupon “A” Level */</td>
</tr>
</tbody>
</table>

TABLE 2

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>char id;</td>
<td>customer’s bank id</td>
</tr>
<tr>
<td>char COlsoeid;</td>
<td>location showing CASH ONLY</td>
</tr>
<tr>
<td>char Noesid;</td>
<td>location showing negative</td>
</tr>
<tr>
<td>char Status;</td>
<td>current record status NEGATIVE</td>
</tr>
<tr>
<td>CHAR COstatus;</td>
<td>current record status CASH ONLY</td>
</tr>
<tr>
<td>long curdate;</td>
<td>current access date</td>
</tr>
<tr>
<td>long CntDate;</td>
<td>date became CASH ONLY</td>
</tr>
<tr>
<td>long Ntstatdate;</td>
<td>date became negative</td>
</tr>
<tr>
<td>int hitcnt;</td>
<td>total bad checks against location</td>
</tr>
<tr>
<td>long totamt;</td>
<td>total bad dollars against location</td>
</tr>
</tbody>
</table>

TABLE 3

<table>
<thead>
<tr>
<th>Field</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>char locid</td>
<td>system id</td>
</tr>
<tr>
<td>KpPortDef keypad</td>
<td>keypad definition</td>
</tr>
<tr>
<td>int port</td>
<td>modern comm port value</td>
</tr>
<tr>
<td>int baud</td>
<td>max baud rate of installed modem</td>
</tr>
<tr>
<td>char tone</td>
<td>tone/pulse dial mode</td>
</tr>
<tr>
<td>long strtime</td>
<td>system start time (machine turned on)</td>
</tr>
<tr>
<td>long curtime</td>
<td>current system time</td>
</tr>
<tr>
<td>long timebnd</td>
<td>timebnd date/time</td>
</tr>
<tr>
<td>char logfile[FLNMSIZE]</td>
<td>screen log filename</td>
</tr>
<tr>
<td>char password[LOCSIZE]</td>
<td>system access password</td>
</tr>
<tr>
<td>char privpass[LOCSIZE]</td>
<td>privileged password (for tech)</td>
</tr>
<tr>
<td>int timepass</td>
<td>factor to change time password</td>
</tr>
<tr>
<td>char flags</td>
<td>system control flags</td>
</tr>
<tr>
<td>char flags2</td>
<td>2nd set system control flags</td>
</tr>
<tr>
<td>char CMS_flags1</td>
<td>future use CardLess flags</td>
</tr>
<tr>
<td>char CMS_flags2</td>
<td>another set of CardLess flags</td>
</tr>
<tr>
<td>char dayflag</td>
<td>flag for day/second roll limits</td>
</tr>
<tr>
<td>long ctmroll</td>
<td>caution to positive limit</td>
</tr>
<tr>
<td>long ctablma</td>
<td>caution purge limit</td>
</tr>
<tr>
<td>long neglim</td>
<td>negative purge limit</td>
</tr>
<tr>
<td>long postlim</td>
<td>positive purge limit</td>
</tr>
<tr>
<td>long colim</td>
<td>cash only purge limit</td>
</tr>
<tr>
<td>long selim</td>
<td>stolen purge limit</td>
</tr>
<tr>
<td>VerifyLimit dmax</td>
<td>day maximum call manager limits</td>
</tr>
<tr>
<td>VerifyLimit wmax</td>
<td>week maximum call manager limits</td>
</tr>
<tr>
<td>VerifyLimit min</td>
<td>total minimum call manager limits</td>
</tr>
<tr>
<td>long break1</td>
<td>break value 1 for POS coupons</td>
</tr>
<tr>
<td>long break2</td>
<td>break value 2 for POS coupons</td>
</tr>
<tr>
<td>long break3</td>
<td>break value 3 for POS coupons</td>
</tr>
</tbody>
</table>
TABLE 3-continued

<table>
<thead>
<tr>
<th>Field</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>int cms</td>
<td>latest Cardless version making contact</td>
</tr>
<tr>
<td>int collect</td>
<td>latest Collect version making contact</td>
</tr>
<tr>
<td>int cve</td>
<td>current CVS version</td>
</tr>
<tr>
<td>long set_date</td>
<td>date counters were set to zero</td>
</tr>
<tr>
<td>long to_date</td>
<td>ending date for this set of counters</td>
</tr>
<tr>
<td>long coupon.A</td>
<td>number qualifying for Coupon "A"</td>
</tr>
<tr>
<td>long amtA</td>
<td>dollars Coupon "A" spent</td>
</tr>
<tr>
<td>long couponB</td>
<td>number qualifying for Coupon "B"</td>
</tr>
<tr>
<td>long amtB</td>
<td>dollars Coupon "B" spent</td>
</tr>
<tr>
<td>long couponC</td>
<td>number qualifying for Coupon "C"</td>
</tr>
<tr>
<td>long amtC</td>
<td>dollars Coupon "C" spent</td>
</tr>
<tr>
<td>long caution</td>
<td>number of Cautions</td>
</tr>
<tr>
<td>long amt_caunt</td>
<td>dollars Cautions spent</td>
</tr>
<tr>
<td>long positive</td>
<td>number of Positives</td>
</tr>
<tr>
<td>long amt_pos</td>
<td>dollars Positives spent</td>
</tr>
<tr>
<td>char [oid[10]];</td>
<td>/* system id */</td>
</tr>
<tr>
<td>int flags;</td>
<td>/* Bitwise flags for general coupon system */</td>
</tr>
<tr>
<td>intissue;</td>
<td>/* Bitwise flags for available check coupons */</td>
</tr>
<tr>
<td>int cash;</td>
<td>/* Bitwise flags for available cash coupons */</td>
</tr>
<tr>
<td>struct det</td>
<td>/* How do we determine secondary shopper */</td>
</tr>
<tr>
<td>int slim;</td>
<td>/* $/trips less than this is Secondary Shopper */</td>
</tr>
<tr>
<td>int dim;</td>
<td>/* # of days/weeks for determination */</td>
</tr>
<tr>
<td>char avgdet;</td>
<td>/* How do we determine A vs AA vs AAA? Using $ determination */</td>
</tr>
<tr>
<td>int per;</td>
<td>/* "n" trips/weeks to analyze avg $ */</td>
</tr>
<tr>
<td>char mintrp;</td>
<td>/* Minimum # trips before det Secondary */</td>
</tr>
<tr>
<td>char high1;</td>
<td>/* High $ in last "per" triggers AA, A */</td>
</tr>
<tr>
<td>char high2;</td>
<td>/* High $ in last "per" triggers AAA, AA */</td>
</tr>
<tr>
<td>char high3;</td>
<td>/* High $ in last "per" triggers AAAA, AA */</td>
</tr>
<tr>
<td>char high4;</td>
<td>/* High $ in last "per" triggers A4A, AA */</td>
</tr>
<tr>
<td>char perks;</td>
<td>/* # trips for Secondary coupons */</td>
</tr>
<tr>
<td>char super perks;</td>
<td>/* # trips for Super Secondary */</td>
</tr>
<tr>
<td>char super lag;</td>
<td>/* # days before Super Secondary */</td>
</tr>
<tr>
<td>)Secondary;</td>
<td>/* */</td>
</tr>
<tr>
<td>struct det</td>
<td>/* How do we determine Primary Status */</td>
</tr>
<tr>
<td>int Limit;</td>
<td>/* "n" trips/weeks for $ determination */</td>
</tr>
<tr>
<td>int CouponB;</td>
<td>/* $ minimum for Coupon "B" */</td>
</tr>
<tr>
<td>int CouponC;</td>
<td>/* $ minimum for Coupon "C" */</td>
</tr>
<tr>
<td>int CouponD;</td>
<td>/* $ minimum for Coupon "D" */</td>
</tr>
<tr>
<td>int CouponE;</td>
<td>/* $ minimum for Coupon "E" */</td>
</tr>
<tr>
<td>)Primary;</td>
<td>/* */</td>
</tr>
<tr>
<td>struct det</td>
<td>/* How do we determine avg */</td>
</tr>
<tr>
<td>unsigned char rubhs;</td>
<td>/* Maximum base for playing Maxxer */</td>
</tr>
<tr>
<td>unsigned char percent;</td>
<td>/* Increase percent for Maxxip */</td>
</tr>
<tr>
<td>unsigned char loops;</td>
<td>/* Number of passes at above percentage */</td>
</tr>
<tr>
<td>unsigned char mintrp;</td>
<td>/* # trips before using Maxxer */</td>
</tr>
<tr>
<td>unsigned char trips;</td>
<td>/* # trips for establishing base avg */</td>
</tr>
<tr>
<td>unsigned char super;</td>
<td>/* Number of trips til Super Max testing */</td>
</tr>
<tr>
<td>unsigned char radar;</td>
<td>/* Number of trips til give up Maxxer */</td>
</tr>
<tr>
<td>unsigned char Floops;</td>
<td>/* Number of loops to retry failures */</td>
</tr>
</tbody>
</table>
TABLE 3-continued

<table>
<thead>
<tr>
<th>Field</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>char makeflags;</td>
<td>/* Maxxer Flags */</td>
</tr>
<tr>
<td>char stacr;</td>
<td>/* Date counters were set to zero */</td>
</tr>
<tr>
<td>long set_date;</td>
<td>/* Ending date for this set of counters */</td>
</tr>
<tr>
<td>long to_date;</td>
<td>/* Counters from Coupon "A1" to Coupon "E" */</td>
</tr>
<tr>
<td>long hms [15];</td>
<td>/* and Chs, Pks, and No $15 */</td>
</tr>
<tr>
<td>long amts [15];</td>
<td>/* and $2 for me */</td>
</tr>
<tr>
<td>int counters [3];</td>
<td>/* 3 sets of counters; 2 for me */</td>
</tr>
<tr>
<td>long stacr;</td>
<td>/* Start date for coupon Tracking */</td>
</tr>
<tr>
<td>long to_date;</td>
<td>/* End date for coupon Tracking */</td>
</tr>
<tr>
<td>unsigned int cntn [100];</td>
<td>/* Coupons issued for date range */</td>
</tr>
<tr>
<td>char Sries[2];</td>
<td>/* Number of standard series */</td>
</tr>
<tr>
<td>char Slags;</td>
<td>/* Lag time before back to standard series 1 */</td>
</tr>
<tr>
<td>char Aflags;</td>
<td>/* Lag time for Coupon "A" */</td>
</tr>
<tr>
<td>char Bflags;</td>
<td>/* Lag time for Coupons "B" thru "E" */</td>
</tr>
<tr>
<td>char maxime;</td>
<td>/* Max issued per trip */</td>
</tr>
<tr>
<td>char headel[2];</td>
<td>/* Header for coupon */</td>
</tr>
<tr>
<td>char footer[29];</td>
<td>/* Footer for coupon */</td>
</tr>
<tr>
<td>long ResetDate;</td>
<td>/* Date to reset standard issue lag */</td>
</tr>
<tr>
<td>int impurchase;</td>
<td>/* Minimum purchase */</td>
</tr>
</tbody>
</table>

COUPON RECORD DEFINITION

TABLE 4

<table>
<thead>
<tr>
<th>Function Code Specification</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function: F1</td>
<td></td>
</tr>
<tr>
<td>Description: Query ID, displaying current data</td>
<td></td>
</tr>
<tr>
<td>Keypad Input: [id] F1</td>
<td></td>
</tr>
<tr>
<td>Keypad Output: Status Dlncent Whitcent Thiten</td>
<td></td>
</tr>
<tr>
<td>Function: F2</td>
<td></td>
</tr>
</tbody>
</table>

TABLE 4-continued

<table>
<thead>
<tr>
<th>Function Code Specification</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description: List Negative Locations for entered ID</td>
<td></td>
</tr>
</tbody>
</table>
TABLE 4-continued

<table>
<thead>
<tr>
<th>Keypad Input:</th>
<th>FUNCTION CODE SPECIFICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keypad Input:</td>
<td>5</td>
</tr>
<tr>
<td>Keypad Input:</td>
<td>id F77</td>
</tr>
<tr>
<td>Keypad Output:</td>
<td>Login Valid 3</td>
</tr>
<tr>
<td>Function:</td>
<td>F62</td>
</tr>
<tr>
<td>Description:</td>
<td>Delete Preapproved</td>
</tr>
<tr>
<td>Keypad Input:</td>
<td>id F62</td>
</tr>
<tr>
<td>Keypad Output:</td>
<td>PREAPPROVED</td>
</tr>
<tr>
<td>Function:</td>
<td>F43</td>
</tr>
<tr>
<td>Description:</td>
<td>Delete Manager Only</td>
</tr>
<tr>
<td>Keypad Input:</td>
<td>id F83</td>
</tr>
<tr>
<td>Keypad Output:</td>
<td>MANAGER ONLY</td>
</tr>
<tr>
<td>Function:</td>
<td>F88</td>
</tr>
<tr>
<td>Description:</td>
<td>Logout from system</td>
</tr>
<tr>
<td>Keypad Input:</td>
<td>F88</td>
</tr>
<tr>
<td>Keypad Output:</td>
<td>End Session</td>
</tr>
<tr>
<td>Function:</td>
<td>F900</td>
</tr>
<tr>
<td>Description:</td>
<td>Return System Author Information</td>
</tr>
<tr>
<td>Keypad Input:</td>
<td>F900</td>
</tr>
<tr>
<td>Keypad Output:</td>
<td>CVS v4.20 (c) 1989 CVC, by Scott Wood, CCP</td>
</tr>
<tr>
<td>Function:</td>
<td>F901</td>
</tr>
<tr>
<td>Description:</td>
<td>Return System Internal Date & Time</td>
</tr>
<tr>
<td>Keypad Input:</td>
<td>F901</td>
</tr>
<tr>
<td>Keypad Output:</td>
<td>System Date</td>
</tr>
<tr>
<td>Function:</td>
<td>F902</td>
</tr>
<tr>
<td>Description:</td>
<td>Return System Memory Usage</td>
</tr>
<tr>
<td>Keypad Input:</td>
<td>F902</td>
</tr>
<tr>
<td>Keypad Output:</td>
<td>System Memory</td>
</tr>
<tr>
<td>Function:</td>
<td>F903</td>
</tr>
<tr>
<td>Description:</td>
<td>Return Disk Usage</td>
</tr>
<tr>
<td>Keypad Input:</td>
<td>n F903</td>
</tr>
<tr>
<td>Keypad Output:</td>
<td>Disk Usage (CID)</td>
</tr>
<tr>
<td>Function:</td>
<td>F904</td>
</tr>
<tr>
<td>Description:</td>
<td>Return ID Database Size</td>
</tr>
<tr>
<td>Keypad Input:</td>
<td>n F904</td>
</tr>
<tr>
<td>Keypad Output:</td>
<td>ID Database</td>
</tr>
<tr>
<td>Function:</td>
<td>F905</td>
</tr>
<tr>
<td>Description:</td>
<td>Return Negative ID Database Size</td>
</tr>
<tr>
<td>Keypad Input:</td>
<td>n F905</td>
</tr>
<tr>
<td>Keypad Output:</td>
<td>Negative dBase</td>
</tr>
<tr>
<td>Function:</td>
<td>F906</td>
</tr>
<tr>
<td>Description:</td>
<td>Return System Information depending on n</td>
</tr>
<tr>
<td>Keypad Input:</td>
<td>n F906</td>
</tr>
<tr>
<td>Keypad Output:</td>
<td>*n-6 - System ID</td>
</tr>
<tr>
<td>Function:</td>
<td>F907</td>
</tr>
<tr>
<td>Description:</td>
<td>Location ID</td>
</tr>
<tr>
<td>Keypad Input:</td>
<td>Port, Polla, Recvr</td>
</tr>
<tr>
<td>Keypad Output:</td>
<td>Port 0,a, Port 1,a</td>
</tr>
<tr>
<td>Function:</td>
<td>F908</td>
</tr>
<tr>
<td>Description:</td>
<td>System Start Time</td>
</tr>
<tr>
<td>Keypad Input:</td>
<td>mm/dd/yy - hh:mm:ss</td>
</tr>
<tr>
<td>Keypad Output:</td>
<td>Start Time</td>
</tr>
<tr>
<td>Function:</td>
<td>F909</td>
</tr>
<tr>
<td>Description:</td>
<td>System Current Time</td>
</tr>
<tr>
<td>Keypad Input:</td>
<td>mm/dd/yy - hh:mm:ss</td>
</tr>
<tr>
<td>Keypad Output:</td>
<td>Current Time</td>
</tr>
<tr>
<td>Function:</td>
<td>F910</td>
</tr>
<tr>
<td>Description:</td>
<td>System Password</td>
</tr>
<tr>
<td>Keypad Input:</td>
<td>mm/dd/yy - hh:mm:ss</td>
</tr>
<tr>
<td>Keypad Output:</td>
<td>Password</td>
</tr>
<tr>
<td>Function:</td>
<td>F911</td>
</tr>
<tr>
<td>Description:</td>
<td>System Flags</td>
</tr>
<tr>
<td>Keypad Input:</td>
<td>mm/dd/yy - hh:mm:ss</td>
</tr>
<tr>
<td>Keypad Output:</td>
<td>Flags a</td>
</tr>
<tr>
<td>Function:</td>
<td>F912</td>
</tr>
<tr>
<td>Description:</td>
<td>Caution Roll Period</td>
</tr>
<tr>
<td>Keypad Input:</td>
<td>mm/dd/yy - hh:mm:ss</td>
</tr>
<tr>
<td>Keypad Output:</td>
<td>Caution Roll N</td>
</tr>
<tr>
<td>Function:</td>
<td>F913</td>
</tr>
<tr>
<td>Description:</td>
<td>Caution Purge Limit</td>
</tr>
<tr>
<td>Keypad Input:</td>
<td>mm/dd/yy - hh:mm:ss</td>
</tr>
<tr>
<td>Keypad Output:</td>
<td>Caution Purge Limit</td>
</tr>
<tr>
<td>Function:</td>
<td>F914</td>
</tr>
<tr>
<td>Description:</td>
<td>Caution Limit</td>
</tr>
<tr>
<td>Keypad Input:</td>
<td>mm/dd/yy - hh:mm:ss</td>
</tr>
<tr>
<td>Keypad Output:</td>
<td>Caution Limit</td>
</tr>
<tr>
<td>Function:</td>
<td>F915</td>
</tr>
<tr>
<td>Description:</td>
<td>Negative Purge Limit</td>
</tr>
<tr>
<td>Keypad Input:</td>
<td>mm/dd/yy - hh:mm:ss</td>
</tr>
<tr>
<td>Keypad Output:</td>
<td>Negative Purge Limit</td>
</tr>
<tr>
<td>Function:</td>
<td>F916</td>
</tr>
<tr>
<td>Description:</td>
<td>Negative Purge Limit</td>
</tr>
</tbody>
</table>

TABLE 4-continued

<table>
<thead>
<tr>
<th>Keypad Input:</th>
<th>FUNCTION CODE SPECIFICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keypad Input:</td>
<td>10</td>
</tr>
<tr>
<td>Keypad Input:</td>
<td>Status: Duplicate: amount $200; amount Whittet: amount $100; amount Thient: amount $50; amount Phant: amount $10; amount and amount Whittet: amount $5; amount and amount Thient: amount $2; amount and amount Phant: amount $1; amount and amount and amount: amount $0.5</td>
</tr>
<tr>
<td>Keypad Output:</td>
<td>CASH ONLY FILE</td>
</tr>
<tr>
<td>Function:</td>
<td>F40</td>
</tr>
<tr>
<td>Description:</td>
<td>Add Stolen ID</td>
</tr>
<tr>
<td>Keypad Input:</td>
<td>id F40</td>
</tr>
<tr>
<td>Keypad Output:</td>
<td>STOLEN FILE</td>
</tr>
<tr>
<td>Function:</td>
<td>F41</td>
</tr>
<tr>
<td>Description:</td>
<td>Add Negative ID with location</td>
</tr>
<tr>
<td>Keypad Input:</td>
<td>id F44</td>
</tr>
<tr>
<td>Keypad Output:</td>
<td>NEGATIVE FILE</td>
</tr>
<tr>
<td>Function:</td>
<td>F44</td>
</tr>
<tr>
<td>Description:</td>
<td>Verify ID. If F55 is not in use, verify is assumed</td>
</tr>
<tr>
<td>Keypad Input:</td>
<td>id [F55]</td>
</tr>
<tr>
<td>Keypad Output:</td>
<td>*If any limits are exceeded: CALL MANAGER</td>
</tr>
<tr>
<td>id:</td>
<td>*status is caution: CAUTION warning</td>
</tr>
<tr>
<td>id:</td>
<td>*status is negative: NEGATIVE ID</td>
</tr>
<tr>
<td>id:</td>
<td>*status is positive: POS DUPLICATE Whittet Thient</td>
</tr>
<tr>
<td>id:</td>
<td>*status is cash only: CASH ONLY</td>
</tr>
<tr>
<td>id:</td>
<td>*status is stolen: STOLEN</td>
</tr>
<tr>
<td>Function:</td>
<td>F60</td>
</tr>
<tr>
<td>Description:</td>
<td>Delete Cash only ID</td>
</tr>
<tr>
<td>Keypad Input:</td>
<td>id F160</td>
</tr>
<tr>
<td>Keypad Output:</td>
<td>CHECKS ACCEPTED</td>
</tr>
<tr>
<td>Function:</td>
<td>F61</td>
</tr>
<tr>
<td>Description:</td>
<td>Delete Stolen ID</td>
</tr>
<tr>
<td>Keypad Input:</td>
<td>id F61</td>
</tr>
<tr>
<td>Keypad Output:</td>
<td>CHECKS ACCEPTED</td>
</tr>
<tr>
<td>Function:</td>
<td>F66</td>
</tr>
<tr>
<td>Description:</td>
<td>Add Positive ID. Remove stolen list</td>
</tr>
<tr>
<td>Keypad Input:</td>
<td>id F66</td>
</tr>
<tr>
<td>Keypad Output:</td>
<td>PAID OFF FILE</td>
</tr>
<tr>
<td>Function:</td>
<td>F77</td>
</tr>
<tr>
<td>Description:</td>
<td>Login to system to gain access to privileged commands</td>
</tr>
<tr>
<td>TABLE 4-continued</td>
<td>TABLE 4-continued</td>
</tr>
<tr>
<td>------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>FUNCTION CODE SPECIFICATION</td>
<td>FUNCTION CODE SPECIFICATION</td>
</tr>
<tr>
<td>n seconds</td>
<td>5</td>
</tr>
<tr>
<td>*n=10 - Positive Purge Limit</td>
<td>Keypad Output: mn/dd/yy - h:mm:ss</td>
</tr>
<tr>
<td>Positive Limit</td>
<td>ael act2 act3 ... act10</td>
</tr>
<tr>
<td>n seconds</td>
<td>Function: F953</td>
</tr>
<tr>
<td>*n=11 - Cash Only Purge Limit</td>
<td>Description: Get Activity Status for activity n</td>
</tr>
<tr>
<td>Cash Only Limit</td>
<td>Keypad Input: n F953</td>
</tr>
<tr>
<td>n seconds</td>
<td>*n=event number</td>
</tr>
<tr>
<td>*n=12 - Stolen Purge Limit</td>
<td>Keypad Output: activity description</td>
</tr>
<tr>
<td>Stolen Limit</td>
<td>Function: F960</td>
</tr>
<tr>
<td>*n=13 - Caution Call Manager</td>
<td>Description: Toggle Keypad Debug Mode</td>
</tr>
<tr>
<td>Limits</td>
<td>Keypad Input: n F960</td>
</tr>
<tr>
<td>Caution Calling</td>
<td>*n=0/Off, 1/On</td>
</tr>
<tr>
<td>Dlncnt, amount -</td>
<td>Keypad Output: Keypad Debut</td>
</tr>
<tr>
<td>Whiten, amount -</td>
<td>(ON/OFF)</td>
</tr>
<tr>
<td>Thlcnt, amount</td>
<td>Function: F961</td>
</tr>
<tr>
<td>*n=14 - Negative Call Manager</td>
<td>Description: Return Keypad number associated with current pad</td>
</tr>
<tr>
<td>Limits</td>
<td>Keypad Input: F961</td>
</tr>
<tr>
<td>Negative Calling</td>
<td>Keypad Output: Keypad Number</td>
</tr>
<tr>
<td>Dlncnt, amount -</td>
<td>n</td>
</tr>
<tr>
<td>Whiten, amount -</td>
<td>Function: F970</td>
</tr>
<tr>
<td>Thlcnt, amount</td>
<td>Keypad Input: [F970]</td>
</tr>
<tr>
<td>*n=15 - Positive Call Manager</td>
<td>Keypad Output: Normal Debug</td>
</tr>
<tr>
<td>Limits</td>
<td>Function: F971</td>
</tr>
<tr>
<td>Positive Calling</td>
<td>Description: Reset Normal</td>
</tr>
<tr>
<td>Dlncnt, amount -</td>
<td>Keypad Input: F971</td>
</tr>
<tr>
<td>Whiten, amount -</td>
<td>Keypad Output: Reset Normal</td>
</tr>
<tr>
<td>Thlcnt, amount</td>
<td>Function: F980</td>
</tr>
<tr>
<td>*n=16 - Cash only Call Manager</td>
<td>Description: Toggle Data Manager Debug Mode</td>
</tr>
<tr>
<td>Limits</td>
<td>Keypad Input: n F980</td>
</tr>
<tr>
<td>Cash only Calling</td>
<td>*n=0/Off, 1/On</td>
</tr>
<tr>
<td>Dlncnt, amount -</td>
<td>Keypad Output: Database Debug</td>
</tr>
<tr>
<td>Whiten, amount -</td>
<td>Function: F981</td>
</tr>
<tr>
<td>Thlcnt, amount</td>
<td>Description: Open database system if currently closed</td>
</tr>
<tr>
<td>*n=17 - Stolen Call Manager</td>
<td>Keypad Input: F981</td>
</tr>
<tr>
<td>Limits</td>
<td>Keypad Output: Open dBase</td>
</tr>
<tr>
<td>Stolen Calling</td>
<td>Function: F983</td>
</tr>
<tr>
<td>Dlncnt, amount -</td>
<td>Description: Close database system if currently open</td>
</tr>
<tr>
<td>Whiten, amount -</td>
<td>Keypad Input: F983</td>
</tr>
<tr>
<td>Thlcnt, amount</td>
<td>Keypad Output: Close dBase</td>
</tr>
<tr>
<td>Function:</td>
<td>Function: F983</td>
</tr>
<tr>
<td>Screen Log</td>
<td>Description: Return Internal Database Status</td>
</tr>
<tr>
<td>Keypad Output:</td>
<td>Keypad Input: F983</td>
</tr>
<tr>
<td>(ON/OFF)</td>
<td>Keypad Output: Database Status</td>
</tr>
<tr>
<td>Keypad Input:</td>
<td>Bbbyflag, HcHcflag,</td>
</tr>
<tr>
<td>n F940</td>
<td>CcHcflag, DbgkDbgflag,</td>
</tr>
<tr>
<td>*n=0/Off, 1/On</td>
<td>Error, Dodoserr</td>
</tr>
<tr>
<td>Keypad Output:</td>
<td>Function: F990</td>
</tr>
<tr>
<td>Event n</td>
<td>Description: Toggle System Supervisor Debug Mode</td>
</tr>
<tr>
<td>Keypad Input:</td>
<td>Keypad Input: n F990</td>
</tr>
<tr>
<td>*n=event number</td>
<td>*n=0/Off, 1/On</td>
</tr>
<tr>
<td>Keypad Output:</td>
<td>Keypad Output: SysServe Debut</td>
</tr>
<tr>
<td>Event n</td>
<td>(ON/OFF)</td>
</tr>
<tr>
<td>Keypad Input: F951</td>
<td>Function: F990</td>
</tr>
<tr>
<td>Keypad Output:</td>
<td>Description: Shut System Down</td>
</tr>
<tr>
<td>Event n</td>
<td>Keypad Input: password F999</td>
</tr>
<tr>
<td>Keypad Input:</td>
<td>Keypad Output: System Halted</td>
</tr>
<tr>
<td>F951</td>
<td></td>
</tr>
<tr>
<td>Keypad Input:</td>
<td></td>
</tr>
<tr>
<td>F952</td>
<td></td>
</tr>
<tr>
<td>Keypad Input: n F952</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TABLE 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUSTOMER SHOPPING FREQUENCY</td>
</tr>
<tr>
<td>Time Period: 8 Weeks, 4 Days [frequency > 20 omitted]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Shopping Frequency per Customer</th>
<th>Total Customers</th>
<th>% Customers Shopping for Period</th>
<th>% Total Customer Base</th>
<th>Total $ Spent for Period</th>
<th>% Total $ Spent for Period</th>
<th>Average Check per Visit</th>
<th>Average $ Spent per Customer</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>36</td>
<td>0.23</td>
<td>0.12</td>
<td>25600</td>
<td>1.27</td>
<td>35.56</td>
<td>711.11</td>
</tr>
<tr>
<td>19</td>
<td>28</td>
<td>0.18</td>
<td>0.09</td>
<td>22044</td>
<td>1.09</td>
<td>41.44</td>
<td>787.28</td>
</tr>
<tr>
<td>18</td>
<td>42</td>
<td>0.27</td>
<td>0.14</td>
<td>31751</td>
<td>1.57</td>
<td>42.00</td>
<td>755.58</td>
</tr>
<tr>
<td>17</td>
<td>51</td>
<td>0.32</td>
<td>0.17</td>
<td>32326</td>
<td>1.60</td>
<td>37.28</td>
<td>633.64</td>
</tr>
<tr>
<td>16</td>
<td>51</td>
<td>0.32</td>
<td>0.17</td>
<td>29088</td>
<td>1.44</td>
<td>35.65</td>
<td>570.35</td>
</tr>
</tbody>
</table>
TABLE 5-continued

CUSTOMER SHOPPING FREQUENCY

<table>
<thead>
<tr>
<th>Shopping Frequency per Customer</th>
<th>Total Customers</th>
<th>% Customers Shopping for Period</th>
<th>% Total Customer Base</th>
<th>Total $ Spent for Period</th>
<th>% Total $ Spent for Period</th>
<th>Average Check per Visit</th>
<th>Average $ Spent per Customer</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>52</td>
<td>0.33</td>
<td>0.17</td>
<td>34410</td>
<td>1.70</td>
<td>44.12</td>
<td>661.73</td>
</tr>
<tr>
<td>14</td>
<td>70</td>
<td>0.44</td>
<td>0.24</td>
<td>40982</td>
<td>2.44</td>
<td>50.39</td>
<td>705.46</td>
</tr>
<tr>
<td>13</td>
<td>64</td>
<td>0.40</td>
<td>0.21</td>
<td>37923</td>
<td>1.88</td>
<td>45.58</td>
<td>592.55</td>
</tr>
<tr>
<td>12</td>
<td>80</td>
<td>0.51</td>
<td>0.27</td>
<td>41916</td>
<td>2.07</td>
<td>43.66</td>
<td>523.95</td>
</tr>
<tr>
<td>11</td>
<td>92</td>
<td>0.58</td>
<td>0.31</td>
<td>46311</td>
<td>2.29</td>
<td>45.76</td>
<td>503.38</td>
</tr>
<tr>
<td>10</td>
<td>137</td>
<td>0.87</td>
<td>0.46</td>
<td>69992</td>
<td>3.02</td>
<td>44.52</td>
<td>445.20</td>
</tr>
<tr>
<td>9</td>
<td>155</td>
<td>0.98</td>
<td>0.52</td>
<td>73404</td>
<td>3.63</td>
<td>52.62</td>
<td>473.57</td>
</tr>
<tr>
<td>8</td>
<td>210</td>
<td>1.33</td>
<td>0.71</td>
<td>90403</td>
<td>4.47</td>
<td>53.81</td>
<td>430.49</td>
</tr>
<tr>
<td>7</td>
<td>261</td>
<td>1.65</td>
<td>0.88</td>
<td>93222</td>
<td>4.61</td>
<td>51.02</td>
<td>357.17</td>
</tr>
<tr>
<td>6</td>
<td>377</td>
<td>2.38</td>
<td>1.27</td>
<td>114366</td>
<td>5.66</td>
<td>50.56</td>
<td>303.36</td>
</tr>
<tr>
<td>5</td>
<td>406</td>
<td>2.56</td>
<td>1.36</td>
<td>122223</td>
<td>6.05</td>
<td>60.21</td>
<td>301.04</td>
</tr>
<tr>
<td>4</td>
<td>801</td>
<td>5.06</td>
<td>2.69</td>
<td>191331</td>
<td>9.46</td>
<td>59.72</td>
<td>238.87</td>
</tr>
<tr>
<td>3</td>
<td>1122</td>
<td>7.09</td>
<td>3.77</td>
<td>210922</td>
<td>10.43</td>
<td>62.66</td>
<td>187.99</td>
</tr>
<tr>
<td>2</td>
<td>2760</td>
<td>17.48</td>
<td>9.29</td>
<td>305223</td>
<td>15.10</td>
<td>55.15</td>
<td>110.31</td>
</tr>
<tr>
<td>1</td>
<td>8704</td>
<td>55.55</td>
<td>29.52</td>
<td>408702</td>
<td>20.22</td>
<td>46.48</td>
<td>46.48</td>
</tr>
<tr>
<td>TOTAL</td>
<td>15830</td>
<td>100.00</td>
<td>53.15</td>
<td>2021539</td>
<td>100.00</td>
<td>47.91</td>
<td>127.70</td>
</tr>
</tbody>
</table>

Total Customer Base: 29,786

TABLE 6

Infrequent Customer Analysis

<table>
<thead>
<tr>
<th>Total Customers</th>
<th>% Total Customer Base</th>
<th>Total $ Spent for Period</th>
<th>Average Check per Visit</th>
<th>Average $ Spent per Customer</th>
<th>Total Visits per Customer</th>
<th>Average Visits per Customer</th>
</tr>
</thead>
<tbody>
<tr>
<td>5581</td>
<td>24.30</td>
<td>305763</td>
<td>50.66</td>
<td>54.79</td>
<td>6036</td>
<td>1.08</td>
</tr>
</tbody>
</table>

Active: from Oct. 5, 1991 to Nov. 3, 1992

TABLE 7

COUPON CONFIGURATION

<table>
<thead>
<tr>
<th>Coupon Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>4 weekly attendances in last 8 weeks</td>
</tr>
<tr>
<td>A2</td>
<td>3 weekly attendances in last 8 weeks</td>
</tr>
<tr>
<td>A3</td>
<td>2 weekly attendances in last 8 weeks</td>
</tr>
<tr>
<td>A4</td>
<td>1 weekly attendance in last 8 weeks</td>
</tr>
<tr>
<td>A5</td>
<td>0 weekly attendances in last 8 weeks</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coupon Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>Less than 5 weekly attendances in last 8 weeks</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coupon Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>Based on attendance</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coupon Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>$25-$49.99 average purchase</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coupon Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>$50-$74.99 average purchase</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coupon Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>$75+ average purchase</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coupon Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>OFF</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coupon Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Illustrate Coupon B</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coupon Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>Less than 5 weekly attendances in last 8 weeks</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coupon Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>Based on attendance</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coupon Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>$25-$49.99 average purchase</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coupon Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>$50-$74.99 average purchase</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coupon Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>$75+ average purchase</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coupon Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>OFF</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coupon Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>OFF</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coupon Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>OFF</td>
</tr>
</tbody>
</table>

TABLE 7-continued

COUPON CONFIGURATION

<table>
<thead>
<tr>
<th>Coupon Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>4 weekly attendances in last 8 weeks</td>
</tr>
<tr>
<td>A2</td>
<td>3 weekly attendances in last 8 weeks</td>
</tr>
<tr>
<td>A3</td>
<td>2 weekly attendances in last 8 weeks</td>
</tr>
<tr>
<td>A4</td>
<td>1 weekly attendance in last 8 weeks</td>
</tr>
<tr>
<td>A5</td>
<td>0 weekly attendances in last 8 weeks</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coupon Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>Less than 5 weekly attendances in last 8 weeks</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coupon Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>Based on attendance</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coupon Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>$25-$49.99 average purchase</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coupon Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>$50-$74.99 average purchase</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coupon Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>$75+ average purchase</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coupon Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>OFF</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coupon Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Illustrate Coupon B</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coupon Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>Less than 5 weekly attendances in last 8 weeks</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coupon Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>Based on attendance</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coupon Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>$25-$49.99 average purchase</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coupon Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>$50-$74.99 average purchase</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coupon Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>$75+ average purchase</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coupon Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>OFF</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coupon Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>OFF</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coupon Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>OFF</td>
</tr>
</tbody>
</table>

2. Customer Profile

<table>
<thead>
<tr>
<th>Illustrate Coupon C</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Total trips</th>
<th>89</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Purchase</td>
<td>$41.83</td>
</tr>
<tr>
<td>Current Purchase</td>
<td>$48.38</td>
</tr>
</tbody>
</table>

Prior Attendance

<table>
<thead>
<tr>
<th>1 week ago</th>
<th>Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 weeks ago</td>
<td>Yes</td>
</tr>
<tr>
<td>3 weeks ago</td>
<td>No</td>
</tr>
<tr>
<td>4 weeks ago</td>
<td>Yes</td>
</tr>
<tr>
<td>5 weeks ago</td>
<td>Yes</td>
</tr>
<tr>
<td>6 weeks ago</td>
<td>Yes</td>
</tr>
<tr>
<td>7 weeks ago</td>
<td>Yes</td>
</tr>
<tr>
<td>8 weeks ago</td>
<td>No</td>
</tr>
</tbody>
</table>

Customer Status

<table>
<thead>
<tr>
<th>Frequent</th>
</tr>
</thead>
</table>

Coupon A Level

<table>
<thead>
<tr>
<th>N/A</th>
</tr>
</thead>
</table>

Purchase Level

<table>
<thead>
<tr>
<th>C</th>
</tr>
</thead>
</table>

3. Coupons to spoil Customer #1

<table>
<thead>
<tr>
<th>Class</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Std</th>
<th>Info</th>
<th>Shop our NEW Deli</th>
</tr>
</thead>
<tbody>
<tr>
<td>Std</td>
<td>Install</td>
<td>25 Turkey Bakes</td>
</tr>
<tr>
<td>Std</td>
<td>Outside Ad</td>
<td>Free drink at Rod's Sandwich Shop w/Sandwich Purchase</td>
</tr>
<tr>
<td>Std</td>
<td>Discount</td>
<td>$0.4 OFF Canned Peas</td>
</tr>
<tr>
<td>Std</td>
<td>Discount</td>
<td>75c OFF Chicken Fries</td>
</tr>
<tr>
<td>Std</td>
<td>Discount</td>
<td>$3.00 OFF New Prescription</td>
</tr>
<tr>
<td>B</td>
<td>Discount</td>
<td>50c OFF Laundry Detergent</td>
</tr>
<tr>
<td>B</td>
<td>Discount</td>
<td>25c OFF Cereal</td>
</tr>
</tbody>
</table>
TABLE 7-continued

COUPON CONFIGURATION

<table>
<thead>
<tr>
<th></th>
<th>Class</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Std</td>
<td>Info</td>
<td>Shop our NEW Deli</td>
</tr>
<tr>
<td></td>
<td>Std</td>
<td>Install</td>
<td>4X Turkey Buckets</td>
</tr>
<tr>
<td></td>
<td>Std</td>
<td>Outside Ad</td>
<td>Free drink at Rod’s Sandwich Shop w/Sandwich Purchase</td>
</tr>
<tr>
<td></td>
<td>Std</td>
<td>Discount</td>
<td>50¢ OFF Canned Peas</td>
</tr>
<tr>
<td></td>
<td>Std</td>
<td>Discount</td>
<td>75¢ OFF Chicken Fryers</td>
</tr>
<tr>
<td></td>
<td>Std</td>
<td>Discount</td>
<td>$3.00 OFF New Prescription</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>Discount</td>
<td>$1.00 OFF Bakery Purchase of $5.00 or more</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>Discount</td>
<td>50¢ OFF ½ Gallon Ice Cream</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>Customer #3 Profile</td>
<td>Illustrate Coupon D</td>
</tr>
<tr>
<td></td>
<td>Total trips</td>
<td>123</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Average Purchase</td>
<td>$66.41</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Current Purchase</td>
<td>$38.93</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prior Attendance</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 week ago</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 weeks ago</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 weeks ago</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 weeks ago</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5 weeks ago</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6 weeks ago</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7 weeks ago</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8 weeks ago</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Customer Status</td>
<td>Frequent</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Coupon A Level</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Purchase Level</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>Customer #4 Profile</td>
<td>Illustrate Coupon E</td>
</tr>
<tr>
<td></td>
<td>Total trips</td>
<td>77</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Average Purchase</td>
<td>$112.69</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Current Purchase</td>
<td>$127.48</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prior Attendance</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 week ago</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 weeks ago</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 weeks ago</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 weeks ago</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5 weeks ago</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6 weeks ago</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7 weeks ago</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8 weeks ago</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Customer Status</td>
<td>Frequent</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Coupon A Level</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Purchase Level</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>Coupon to spool Customer #3</td>
<td>Illustrate Coupon A, Level 5</td>
</tr>
<tr>
<td></td>
<td>Total trips</td>
<td>81</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Average Purchase</td>
<td>$73.62</td>
<td></td>
</tr>
</tbody>
</table>

TABLE 7-continued

<table>
<thead>
<tr>
<th></th>
<th>Class</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Std</td>
<td>Info</td>
<td>Shop our NEW Deli</td>
</tr>
<tr>
<td></td>
<td>Std</td>
<td>Install</td>
<td>87 Turkey Buckets</td>
</tr>
<tr>
<td></td>
<td>Std</td>
<td>Outside Ad</td>
<td>Free drink at Rod’s Sandwich Shop w/Sandwich Purchase</td>
</tr>
<tr>
<td></td>
<td>Std</td>
<td>Discount</td>
<td>50¢ OFF Canned Peas</td>
</tr>
<tr>
<td></td>
<td>Std</td>
<td>Discount</td>
<td>75¢ OFF Chicken Fryers</td>
</tr>
<tr>
<td></td>
<td>Std</td>
<td>Discount</td>
<td>$3.00 OFF New Prescription</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>Discount</td>
<td>$2.00 OFF Meat Department Purchase of $10.00 or more</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>Discount</td>
<td>$1.00 OFF Deli Pizza</td>
</tr>
<tr>
<td>10</td>
<td>A5</td>
<td>Discount</td>
<td>$8.00 OFF Next Purchase of $40.00 or more</td>
</tr>
<tr>
<td></td>
<td>A5</td>
<td>Discount</td>
<td>FREE 12 pack Sodas</td>
</tr>
<tr>
<td></td>
<td>A5</td>
<td>Discount</td>
<td>FREE 1 gallon Milk</td>
</tr>
<tr>
<td></td>
<td>A5</td>
<td>Discount</td>
<td>FREE 1 dozen large Grade A Eggs</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>Coupon to spool Customer #5</td>
<td>Trip #2 - 7 days from start of program</td>
</tr>
<tr>
<td></td>
<td>Purchase</td>
<td>$31.78</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Std</td>
<td>Info</td>
<td>Shop our NEW Deli</td>
</tr>
<tr>
<td></td>
<td>Std</td>
<td>Install</td>
<td>87 Turkey Buckets</td>
</tr>
<tr>
<td></td>
<td>Std</td>
<td>Outside Ad</td>
<td>Free drink at Rod’s Sandwich Shop w/Sandwich Purchase</td>
</tr>
<tr>
<td></td>
<td>Std</td>
<td>Discount</td>
<td>50¢ OFF Canned Peas</td>
</tr>
<tr>
<td></td>
<td>Std</td>
<td>Discount</td>
<td>75¢ OFF Chicken Fryers</td>
</tr>
<tr>
<td></td>
<td>Std</td>
<td>Discount</td>
<td>$3.00 OFF New Prescription</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>Discount</td>
<td>$2.00 OFF Meat Department Purchase of $10.00 or more</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>Discount</td>
<td>$1.00 OFF Deli Pizza</td>
</tr>
<tr>
<td></td>
<td>A5</td>
<td>Discount</td>
<td>$4.00 OFF Next Purchase of $25.00 or more</td>
</tr>
<tr>
<td></td>
<td>A5</td>
<td>Discount</td>
<td>FREE 12 pack Sodas</td>
</tr>
<tr>
<td></td>
<td>A5</td>
<td>Discount</td>
<td>FREE 1 gallon Milk</td>
</tr>
<tr>
<td></td>
<td>A5</td>
<td>Discount</td>
<td>FREE 1 dozen large Grade A Eggs</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>Coupon to spool Customer #5</td>
<td>Trip #3 - 12 days from start of program</td>
</tr>
<tr>
<td></td>
<td>Purchase</td>
<td>$54.81</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Std</td>
<td>Info</td>
<td>Shop our NEW Deli</td>
</tr>
<tr>
<td></td>
<td>Std</td>
<td>Install</td>
<td>55 Turkey Buckets</td>
</tr>
<tr>
<td></td>
<td>Std</td>
<td>Outside Ad</td>
<td>Free drink at Rod’s Sandwich Shop w/Sandwich Purchase</td>
</tr>
<tr>
<td></td>
<td>Std</td>
<td>Discount</td>
<td>50¢ OFF Canned Peas</td>
</tr>
<tr>
<td></td>
<td>Std</td>
<td>Discount</td>
<td>75¢ OFF Chicken Fryers</td>
</tr>
<tr>
<td></td>
<td>Std</td>
<td>Discount</td>
<td>$3.00 OFF New Prescription</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>Discount</td>
<td>$2.00 OFF Meat Department Purchase of $10.00 or more</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>Discount</td>
<td>$1.00 OFF Deli Pizza</td>
</tr>
<tr>
<td></td>
<td>A5</td>
<td>Discount</td>
<td>$4.00 OFF Next Purchase of $25.00 or more</td>
</tr>
<tr>
<td></td>
<td>A5</td>
<td>Discount</td>
<td>FREE 12 pack Sodas</td>
</tr>
<tr>
<td></td>
<td>A5</td>
<td>Discount</td>
<td>FREE 1 gallon Milk</td>
</tr>
<tr>
<td></td>
<td>A5</td>
<td>Discount</td>
<td>FREE 1 dozen large Grade A Eggs</td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>Coupon to spool Customer #5</td>
<td>Trip #4 - 21 days from start of program</td>
</tr>
<tr>
<td></td>
<td>Purchase</td>
<td>$63.09</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Std</td>
<td>Info</td>
<td>Shop our NEW Deli</td>
</tr>
</tbody>
</table>
TABLE 7-continued

<table>
<thead>
<tr>
<th>Std</th>
<th>Install</th>
<th>63 Turkey Bucks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Std</td>
<td>Outside Ad</td>
<td>Free drink at Rod's Sandwich Shop w/Sandwich Purchase</td>
</tr>
<tr>
<td>Std</td>
<td>Discount</td>
<td>50¢ OFF Canned Peas</td>
</tr>
<tr>
<td>Std</td>
<td>Discount</td>
<td>75¢ OFF Chicken Fries</td>
</tr>
<tr>
<td>Std</td>
<td>Discount</td>
<td>$3.00 OFF New Prescription</td>
</tr>
<tr>
<td>D</td>
<td>Discount</td>
<td>$2.00 OFF Meat Department Purchase of $10.00 or more</td>
</tr>
<tr>
<td>D</td>
<td>Discount</td>
<td>$1.00 OFF Deli Pizza</td>
</tr>
<tr>
<td>A5</td>
<td>Discount</td>
<td>$6.00 OFF Next Purchase of $40.00 or more</td>
</tr>
<tr>
<td>A5</td>
<td>Discount</td>
<td>$3.00 OFF Next Purchase of $25.00 or more</td>
</tr>
<tr>
<td>A5</td>
<td>Discount</td>
<td>FREE 12 pack Soda</td>
</tr>
<tr>
<td>A5</td>
<td>Install</td>
<td>20 BONUS Turkey Bucks</td>
</tr>
</tbody>
</table>

14. Coupon to spoil Customer #5
Trip #5 - 35 days from start of program
Purchase = $118.68

<table>
<thead>
<tr>
<th>Std</th>
<th>Info</th>
<th>Shop our NEW Deli</th>
</tr>
</thead>
<tbody>
<tr>
<td>Std</td>
<td>Install</td>
<td>119 Turkey Bucks</td>
</tr>
<tr>
<td>Std</td>
<td>Outside Ad</td>
<td>Free drink at Rod's Sandwich Shop w/Sandwich Purchase</td>
</tr>
<tr>
<td>Std</td>
<td>Discount</td>
<td>50¢ OFF Canned Peas</td>
</tr>
<tr>
<td>Std</td>
<td>Discount</td>
<td>75¢ OFF Chicken Fries</td>
</tr>
<tr>
<td>Std</td>
<td>Discount</td>
<td>$3.00 OFF New Prescription</td>
</tr>
<tr>
<td>D</td>
<td>Discount</td>
<td>$2.00 OFF Meat Department Purchase of $10.00 or more</td>
</tr>
<tr>
<td>D</td>
<td>Discount</td>
<td>$1.00 OFF Deli Pizza</td>
</tr>
<tr>
<td>A5</td>
<td>Discount</td>
<td>$6.00 OFF Next Purchase of $40.00 or more</td>
</tr>
<tr>
<td>A5</td>
<td>Discount</td>
<td>$3.00 OFF Next Purchase of $25.00 or more</td>
</tr>
<tr>
<td>A5</td>
<td>Discount</td>
<td>FREE 12 pack Soda</td>
</tr>
<tr>
<td>A5</td>
<td>Install</td>
<td>20 BONUS Turkey Bucks</td>
</tr>
</tbody>
</table>

15. Coupon to spoil Customer #5
Trip #6 - 39 days from start of program
Purchase = $44.11

<table>
<thead>
<tr>
<th>Std</th>
<th>Info</th>
<th>Shop our NEW Deli</th>
</tr>
</thead>
<tbody>
<tr>
<td>Std</td>
<td>Install</td>
<td>44 Turkey Bucks</td>
</tr>
<tr>
<td>Std</td>
<td>Outside Ad</td>
<td>Free drink at Rod's Sandwich Shop w/Sandwich Purchase</td>
</tr>
<tr>
<td>Std</td>
<td>Discount</td>
<td>50¢ OFF Canned Peas</td>
</tr>
<tr>
<td>Std</td>
<td>Discount</td>
<td>75¢ OFF Chicken Fries</td>
</tr>
<tr>
<td>Std</td>
<td>Discount</td>
<td>$3.00 OFF New Prescription</td>
</tr>
<tr>
<td>D</td>
<td>Discount</td>
<td>$2.00 OFF Meat Department Purchase of $10.00 or more</td>
</tr>
<tr>
<td>D</td>
<td>Discount</td>
<td>$1.00 OFF Deli Pizza</td>
</tr>
<tr>
<td>A5</td>
<td>Discount</td>
<td>$6.00 OFF Next Purchase of $40.00 or more</td>
</tr>
<tr>
<td>A5</td>
<td>Discount</td>
<td>$3.00 OFF Next Purchase of $25.00 or more</td>
</tr>
<tr>
<td>A5</td>
<td>Discount</td>
<td>FREE 12 pack Soda</td>
</tr>
<tr>
<td>A5</td>
<td>Install</td>
<td>20 BONUS Turkey Bucks</td>
</tr>
</tbody>
</table>

16. Coupon to spoil Customer #5
Trip #7 - 48 days from start of program
Purchase = $72.53

<table>
<thead>
<tr>
<th>Std</th>
<th>Info</th>
<th>Shop our NEW Deli</th>
</tr>
</thead>
<tbody>
<tr>
<td>Std</td>
<td>Install</td>
<td>73 Turkey Bucks</td>
</tr>
<tr>
<td>Std</td>
<td>Outside Ad</td>
<td>Free drink at Rod's Sandwich Shop w/Sandwich Purchase</td>
</tr>
<tr>
<td>Std</td>
<td>Discount</td>
<td>50¢ OFF Canned Peas</td>
</tr>
<tr>
<td>Std</td>
<td>Discount</td>
<td>75¢ OFF Chicken Fries</td>
</tr>
<tr>
<td>Std</td>
<td>Discount</td>
<td>$3.00 OFF New Prescription</td>
</tr>
<tr>
<td>D</td>
<td>Discount</td>
<td>$2.00 OFF Meat Department Purchase of $10.00 or more</td>
</tr>
<tr>
<td>D</td>
<td>Discount</td>
<td>$1.00 OFF Deli Pizza</td>
</tr>
<tr>
<td>A5</td>
<td>Discount</td>
<td>$3.00 OFF Next Purchase of $25.00 or more</td>
</tr>
<tr>
<td>A5</td>
<td>Discount</td>
<td>FREE 12 pack Soda</td>
</tr>
<tr>
<td>A5</td>
<td>Discount</td>
<td>20 OFF on ALL Deli Purchases</td>
</tr>
</tbody>
</table>

17. Coupon to spoil Customer #5
Trip #8 - 58 days from start of program
Purchase = $80.39
TABLE 7-continued

COUPON CONFIGURATION

<table>
<thead>
<tr>
<th>Class</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Std</td>
<td>Info</td>
<td>Shop our NEW Deli</td>
</tr>
<tr>
<td>Std</td>
<td>Install</td>
<td>61 Turkey Bucks</td>
</tr>
<tr>
<td>Std</td>
<td>Outside Ad</td>
<td>Free drink at Rod's Sandwich Shop w/Sandwich Purchase</td>
</tr>
<tr>
<td>Std</td>
<td>Discount</td>
<td>50¢ OFF Canned Peas</td>
</tr>
<tr>
<td>Std</td>
<td>Discount</td>
<td>75¢ OFF Chicken Fryers</td>
</tr>
<tr>
<td>D</td>
<td>Discount</td>
<td>$2.00 OFF Meat Department Purchase of $10.00 or more</td>
</tr>
<tr>
<td>D</td>
<td>Discount</td>
<td>$1.00 OFF Deli Pizza</td>
</tr>
</tbody>
</table>

*Random coupon set to spoil 1 out of 100 accesses

TABLE 8-continued

Coupon M Configuration

1. **Coupon A:**
 - Less than 5 weekly attendances in last 8 weeks.
 - A levels: Based on attendance
 - A1: 4 weekly attendances in last 8 weeks
 - A2: 3 weekly attendances in last 8 weeks
 - A3: 2 weekly attendances in last 8 weeks
 - A4: 1 weekly attendance in last 8 weeks
 - A5: 0 weekly attendances in last 8 weeks
 - Purchase Levels:
 - Coupon B: $0-$24.99 average purchase
 - Coupon C: $25-$49.99 average purchase
 - Coupon D: $50-$74.99 average purchase
 - Coupon E: $75+ average purchase
 - Coupon M: 10% increase on Average $50 or less
 - Test effectiveness after 3 trips
 - Scanned data: OFF

2. **Customer #6 Profile**
 - Illustrate Coupon M
 - Total trips: 223
 - Average Purchase: $22.43
 - Current Purchase: $24.98
 - Prior Attendance:
 - 6 weeks ago: Yes
 - 5 weeks ago: Yes
 - 4 weeks ago: Yes
 - 3 weeks ago: Yes
 - 2 weeks ago: Yes
 - 1 week ago: Yes
 - No customers 8 weeks ago
 - Customer Status: Frequent
 - Coupon A Level: N/A
 - Purchase Level: B
 - Maxxer Base: $22
 - Maxxer Target: $25
 - Rounded to: $5

3. **Coupons to spoil Customer #6**
 - Trip #1 (Begin Coupon M Program)

4. **Coupons to spoil Customer #6**
 - Trip #2: 7 days from start of Program
 - Purchase: $31.68
 - Std: Info
 - Std: Install: 32 Turkey Bucks
 - Std: Outside Ad: Free drink at Rod's Sandwich Shop w/Sandwich Purchase
 - Std: Discount: 50¢ OFF Canned Peas
 - Std: Discount: 75¢ OFF Chicken Fryers
 - Std: Discount: $3.00 OFF New Prescription
 - B: Discount: 50¢ OFF Laundry Detergent
 - B: Discount: 25¢ OFF Cereal
 - M: Discount: $1.00 OFF Next Grocery Purchase of $25.00 or more

5. **Coupons to spoil Customer #6**
 - Trip #3: 14 days from start of Program
 - Purchase: $36.45
 - Std: Info
 - Std: Install: 36 Turkey Bucks
 - Std: Outside Ad: Free drink at Rod's Sandwich Shop w/Sandwich Purchase
 - Std: Discount: 50¢ OFF Canned Peas
 - Std: Discount: 75¢ OFF Chicken Fryers
 - Std: Discount: $3.00 OFF New Prescription
 - B: Discount: 50¢ OFF Laundry Detergent
 - B: Discount: 25¢ OFF Cereal
 - M: Discount: $1.00 OFF Next Grocery Purchase of $25.00 or more

6. **Coupons to spoil Customer #6**
 - Trip #4: 14 days from start of Program
 - Purchase: $29.67
 - Average since program began: $32.60
 - Program is complete

7. **Customer #7 Profile**
 - Illustrate Out of Range for Coupon M

8. **Coupons to spoil Customer #7**
 - **Base above $50 ceiling**
TABLE 8-continued

<table>
<thead>
<tr>
<th>Discount</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>$2.00 OFF Meat Department Purchase of $10.00 or more</td>
</tr>
<tr>
<td>D</td>
<td>$1.00 OFF Deli Pizza</td>
</tr>
</tbody>
</table>

TABLE 9-continued

<table>
<thead>
<tr>
<th>Discount</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A3</td>
<td>FREE 12 pack Soda</td>
</tr>
<tr>
<td>A3</td>
<td>FREE 1 loaf of bread</td>
</tr>
</tbody>
</table>

Super A Coupon Configuration

1. **Coupon A**:
 - Less than 5 weekly attendances in last 8 weeks.
 - A levels:
 - A1: 4 weekly attendances in last 8 weeks
 - A2: 3 weekly attendances in last 8 weeks
 - A3: 2 weekly attendances in last 8 weeks
 - A4: 1 weekly attendance in last 8 weeks
 - A5: 0 weekly attendances in last 8 weeks
 - **Super A**:
 - Applied to 50 or more days absent
 - Duration of program is 3 trips

Purchase Levels:

<table>
<thead>
<tr>
<th>Purchase</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coupon B:</td>
<td>0.5% - $24.99 average purchase</td>
</tr>
<tr>
<td>Coupon C:</td>
<td>25% - $49.99 average purchase</td>
</tr>
<tr>
<td>Coupon D:</td>
<td>50% - $74.99 average purchase</td>
</tr>
<tr>
<td>Coupon E:</td>
<td>75% - average purchase</td>
</tr>
</tbody>
</table>

Total Trips: 81
Average Purchase: $73.62
Current Purchase: $87.09

Customer #8 Profile

Customer Status: Infrequent

<table>
<thead>
<tr>
<th>Purchase Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Level 3</td>
<td>Begin SUPER A Program</td>
</tr>
</tbody>
</table>

3. **Coupon to Spoil Customer #8**

Trip #1 - Begin Coupon A Level 3

<table>
<thead>
<tr>
<th>Class</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Std</td>
<td>Info</td>
<td>Shop our NEW Deli</td>
</tr>
<tr>
<td>Std</td>
<td>Install</td>
<td>63 Turkey Bucks</td>
</tr>
<tr>
<td>Std</td>
<td>Outside Ad</td>
<td>Free drink at Rod's Sandwich Shop w/Sandwich Purchase</td>
</tr>
<tr>
<td>SW</td>
<td>Discount</td>
<td>50% OFF Canned Peas</td>
</tr>
<tr>
<td>Std</td>
<td>Discount</td>
<td>75% OFF Chicken Fryers</td>
</tr>
<tr>
<td>Std</td>
<td>Discount</td>
<td>$3.00 OFF New Prescription</td>
</tr>
<tr>
<td>D</td>
<td>Discount</td>
<td>$2.00 OFF Meat Department Purchase of $10.00 or more</td>
</tr>
<tr>
<td>D</td>
<td>Discount</td>
<td>$1.00 OFF Deli Pizza</td>
</tr>
<tr>
<td>A3</td>
<td>Discount</td>
<td>FREE 12 pack Soda</td>
</tr>
<tr>
<td>A3</td>
<td>Discount</td>
<td>FREE 1 loaf of bread</td>
</tr>
</tbody>
</table>

4. **Coupon to Spoil Customer #8**

Trip #2 - 7 days from start of program

<table>
<thead>
<tr>
<th>Class</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Std</td>
<td>Info</td>
<td>Shop our NEW Deli</td>
</tr>
<tr>
<td>Std</td>
<td>Install</td>
<td>49 Turkey Bucks</td>
</tr>
<tr>
<td>Std</td>
<td>Outside Ad</td>
<td>Free drink at Rod's Sandwich Shop w/Sandwich Purchase</td>
</tr>
<tr>
<td>SW</td>
<td>Discount</td>
<td>50% OFF Canned Peas</td>
</tr>
<tr>
<td>Std</td>
<td>Discount</td>
<td>75% OFF Chicken Fryers</td>
</tr>
<tr>
<td>Std</td>
<td>Discount</td>
<td>$3.00 OFF New Prescription</td>
</tr>
<tr>
<td>D</td>
<td>Discount</td>
<td>$2.00 OFF Meat Department Purchase of $10.00 or more</td>
</tr>
<tr>
<td>D</td>
<td>Discount</td>
<td>$1.00 OFF Deli Pizza</td>
</tr>
<tr>
<td>A3</td>
<td>Discount</td>
<td>FREE 12 pack Soda</td>
</tr>
<tr>
<td>A3</td>
<td>Discount</td>
<td>FREE 1 loaf of bread</td>
</tr>
</tbody>
</table>

5. **Coupon to Spoil Customer #8**

Trip #3 - 12 days from start of program

<table>
<thead>
<tr>
<th>Class</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Std</td>
<td>Info</td>
<td>Shop our NEW Deli</td>
</tr>
<tr>
<td>Std</td>
<td>Install</td>
<td>25 BONUS Turkey Bucks</td>
</tr>
<tr>
<td>Std</td>
<td>Discount</td>
<td>FREE ½ gallon Ice Cream</td>
</tr>
<tr>
<td>SA3</td>
<td>Discount</td>
<td>FREE 10 lb Whole Chicken Fryer</td>
</tr>
</tbody>
</table>

6. **Coupon to Spoil Customer #8**

Trip #4 - 47 days from start of program

<table>
<thead>
<tr>
<th>Class</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Std</td>
<td>Info</td>
<td>Shop our NEW Deli</td>
</tr>
<tr>
<td>Std</td>
<td>Install</td>
<td>49 Turkey Bucks</td>
</tr>
<tr>
<td>Std</td>
<td>Outside Ad</td>
<td>Free drink at Rod's Sandwich Shop w/Sandwich Purchase</td>
</tr>
<tr>
<td>SW</td>
<td>Discount</td>
<td>50% OFF Canned Peas</td>
</tr>
<tr>
<td>Std</td>
<td>Discount</td>
<td>75% OFF Chicken Fryers</td>
</tr>
<tr>
<td>Std</td>
<td>Discount</td>
<td>$3.00 OFF New Prescription</td>
</tr>
<tr>
<td>D</td>
<td>Discount</td>
<td>$2.00 OFF Meat Department Purchase of $10.00 or more</td>
</tr>
<tr>
<td>D</td>
<td>Discount</td>
<td>$1.00 OFF Deli Pizza</td>
</tr>
<tr>
<td>SA3</td>
<td>Discount</td>
<td>FREE 12 pack Soda</td>
</tr>
<tr>
<td>SA3</td>
<td>Discount</td>
<td>FREE 10 lb Whole Chicken Fryer</td>
</tr>
<tr>
<td>Table 9-continued</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Super A Coupon Configuration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Coupons to spoil Customer #8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trip #3 - 17 days from start of Super A program</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Purchase = $55.63</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SUPER A is complete, Next Visit resumes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coupon A Program at trip #4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Class</td>
<td>Type</td>
<td>Description</td>
</tr>
<tr>
<td>Std</td>
<td>Info</td>
<td>Shop our NEW Deli</td>
</tr>
<tr>
<td>Std</td>
<td>Install</td>
<td>56 Turkey Bucks</td>
</tr>
<tr>
<td>Std</td>
<td>Outside Ad</td>
<td>Free drink at Rod's Sandwich Shop w/Sandwich Purchase</td>
</tr>
<tr>
<td>Std</td>
<td>Discount</td>
<td>50¢ OFF Canned Peas</td>
</tr>
<tr>
<td>Std</td>
<td>Discount</td>
<td>75¢ OFF Chicken Fryers</td>
</tr>
<tr>
<td>Std</td>
<td>Discount</td>
<td>$3.00 OFF New Prescription</td>
</tr>
<tr>
<td>D</td>
<td>Discount</td>
<td>$2.00 OFF Meat Department Purchase of $10.00 or more</td>
</tr>
<tr>
<td>D</td>
<td>Discount</td>
<td>$1.00 OFF Deli Pizza</td>
</tr>
<tr>
<td>SA3</td>
<td>Discount</td>
<td>$8.00 OFF Next Purchase of $40.00 or more - OR - $4.00 OFF Next Purchase of $25.00 or more</td>
</tr>
<tr>
<td>SA3</td>
<td>Discount</td>
<td>FREE 12 pack Soda</td>
</tr>
<tr>
<td>SA3</td>
<td>Install</td>
<td>25 BONUS Turkey Bucks</td>
</tr>
<tr>
<td>SA3</td>
<td>Discount</td>
<td>FREE ½ Gallon Ice Cream</td>
</tr>
<tr>
<td>SA3</td>
<td>Discount</td>
<td>FREE 10 lb Whole Chicken Fryer</td>
</tr>
<tr>
<td>9. Coupons to spoil Customer #8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trip #4 - 76 days from start of program</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Purchase = $72.18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Class</td>
<td>Type</td>
<td>Description</td>
</tr>
<tr>
<td>Std</td>
<td>Info</td>
<td>Shop our NEW Deli</td>
</tr>
<tr>
<td>Std</td>
<td>Install</td>
<td>72 Turkey Bucks</td>
</tr>
<tr>
<td>Std</td>
<td>Outside Ad</td>
<td>Free drink at Rod's Sandwich Shop w/Sandwich Purchase</td>
</tr>
<tr>
<td>Std</td>
<td>Discount</td>
<td>50¢ OFF Canned Peas</td>
</tr>
<tr>
<td>Std</td>
<td>Discount</td>
<td>75¢ OFF Chicken Fryers</td>
</tr>
<tr>
<td>Std</td>
<td>Discount</td>
<td>$3.00 OFF New Prescription</td>
</tr>
<tr>
<td>D</td>
<td>Discount</td>
<td>$2.00 OFF Meat Department Purchase of $10.00 or more</td>
</tr>
<tr>
<td>D</td>
<td>Discount</td>
<td>$1.00 OFF Deli Pizza</td>
</tr>
<tr>
<td>A3</td>
<td>Discount</td>
<td>$6.00 OFF Next Purchase of $40.00 or more - OR - $3.00 OFF Next Purchase of $25.00 or more</td>
</tr>
<tr>
<td>A3</td>
<td>Discount</td>
<td>FREE 12 pack Soda</td>
</tr>
<tr>
<td>A3</td>
<td>Discount</td>
<td>FREE 1 loaf of bread</td>
</tr>
<tr>
<td>10. Coupons to spoil Customer #8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trip #5 - 84 days from start of program</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Purchase = $118.68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Class</td>
<td>Type</td>
<td>Description</td>
</tr>
<tr>
<td>Std</td>
<td>Info</td>
<td>Shop our NEW Deli</td>
</tr>
<tr>
<td>Std</td>
<td>Install</td>
<td>119 Turkey Bucks</td>
</tr>
<tr>
<td>Std</td>
<td>Outside Ad</td>
<td>Free drink at Rod's Sandwich Shop w/Sandwich Purchase</td>
</tr>
<tr>
<td>Std</td>
<td>Discount</td>
<td>50¢ OFF Canned Peas</td>
</tr>
<tr>
<td>Std</td>
<td>Discount</td>
<td>75¢ OFF Chicken Fryers</td>
</tr>
<tr>
<td>Std</td>
<td>Discount</td>
<td>$3.00 OFF New Prescription</td>
</tr>
<tr>
<td>D</td>
<td>Discount</td>
<td>$2.00 OFF Meat Department Purchase of $10.00 or more</td>
</tr>
<tr>
<td>D</td>
<td>Discount</td>
<td>$1.00 OFF Deli Pizza</td>
</tr>
<tr>
<td>A3</td>
<td>Discount</td>
<td>$3.00 OFF Next Purchase of $25.00 or more</td>
</tr>
<tr>
<td>A3</td>
<td>Discount</td>
<td>FREE 12 pack Soda</td>
</tr>
<tr>
<td>11. Coupons to spoil Customer #8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trip #6 - 93 days from start of program</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Purchase = $44.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Class</td>
<td>Type</td>
<td>Description</td>
</tr>
<tr>
<td>Std</td>
<td>Info</td>
<td>Shop our NEW Deli</td>
</tr>
<tr>
<td>Std</td>
<td>Install</td>
<td>44 Turkey Bucks</td>
</tr>
<tr>
<td>Std</td>
<td>Outside Ad</td>
<td>Free drink at Rod's Sandwich Shop w/Sandwich Purchase</td>
</tr>
<tr>
<td>Std</td>
<td>Discount</td>
<td>50¢ OFF Canned Peas</td>
</tr>
<tr>
<td>Std</td>
<td>Discount</td>
<td>75¢ OFF Chicken Fryers</td>
</tr>
<tr>
<td>Std</td>
<td>Discount</td>
<td>$3.00 OFF New Prescription</td>
</tr>
<tr>
<td>D</td>
<td>Discount</td>
<td>$2.00 OFF Meat Department Purchase of $10.00 or more</td>
</tr>
<tr>
<td>Table 9-continued</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Super A Coupon Configuration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Coupons to spoil Customer #8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trip #7 - 99 days from start of program</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Purchase = $72.53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Class</td>
<td>Type</td>
<td>Description</td>
</tr>
<tr>
<td>Std</td>
<td>Info</td>
<td>Shop our NEW Deli</td>
</tr>
<tr>
<td>Std</td>
<td>Install</td>
<td>73 Turkey Bucks</td>
</tr>
<tr>
<td>Std</td>
<td>Outside Ad</td>
<td>Free drink at Rod's Sandwich Shop w/Sandwich Purchase</td>
</tr>
<tr>
<td>Std</td>
<td>Discount</td>
<td>50¢ OFF Canned Peas</td>
</tr>
<tr>
<td>Std</td>
<td>Discount</td>
<td>75¢ OFF Chicken Fryers</td>
</tr>
<tr>
<td>Std</td>
<td>Discount</td>
<td>$3.00 OFF New Prescription</td>
</tr>
<tr>
<td>D</td>
<td>Discount</td>
<td>$2.00 OFF Meat Department Purchase of $10.00 or more</td>
</tr>
<tr>
<td>D</td>
<td>Discount</td>
<td>$1.00 OFF Deli Pizza</td>
</tr>
<tr>
<td>A3</td>
<td>Discount</td>
<td>FREE 12 pack Soda</td>
</tr>
<tr>
<td>A3</td>
<td>Discount</td>
<td>20 OFF on ALL Deli Purchases</td>
</tr>
<tr>
<td>12. Coupons to spoil Customer #8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trip #8 - 108 days from start of program</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Purchase = $80.39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Class</td>
<td>Type</td>
<td>Description</td>
</tr>
<tr>
<td>Std</td>
<td>Info</td>
<td>Shop our NEW Deli</td>
</tr>
<tr>
<td>Std</td>
<td>Install</td>
<td>80 Turkey Bucks</td>
</tr>
<tr>
<td>Std</td>
<td>Outside Ad</td>
<td>Free drink at Rod's Sandwich Shop w/Sandwich Purchase</td>
</tr>
<tr>
<td>Std</td>
<td>Discount</td>
<td>50¢ OFF Canned Peas</td>
</tr>
<tr>
<td>Std</td>
<td>Discount</td>
<td>75¢ OFF Chicken Fryers</td>
</tr>
<tr>
<td>Std</td>
<td>Discount</td>
<td>$3.00 OFF New Prescription</td>
</tr>
<tr>
<td>D</td>
<td>Discount</td>
<td>$2.00 OFF Meat Department Purchase of $10.00 or more</td>
</tr>
<tr>
<td>D</td>
<td>Discount</td>
<td>$1.00 OFF Deli Pizza</td>
</tr>
<tr>
<td>A5</td>
<td>Discount</td>
<td>FREE 12 pack Soda</td>
</tr>
<tr>
<td>A5</td>
<td>Discount</td>
<td>20 OFF on ALL Deli Purchases</td>
</tr>
<tr>
<td>13. Coupons to spoil Customer #8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trip #9 - 117 days from start of program</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Purchase = $66.34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Class</td>
<td>Type</td>
<td>Description</td>
</tr>
<tr>
<td>Std</td>
<td>Info</td>
<td>Shop our NEW Deli</td>
</tr>
<tr>
<td>Std</td>
<td>Install</td>
<td>66 Turkey Bucks</td>
</tr>
<tr>
<td>Std</td>
<td>Outside Ad</td>
<td>Free drink at Rod's Sandwich Shop w/Sandwich Purchase</td>
</tr>
<tr>
<td>Std</td>
<td>Discount</td>
<td>50¢ OFF Canned Peas</td>
</tr>
<tr>
<td>Std</td>
<td>Discount</td>
<td>75¢ OFF Chicken Fryers</td>
</tr>
<tr>
<td>Std</td>
<td>Discount</td>
<td>$3.00 OFF New Prescription</td>
</tr>
<tr>
<td>D</td>
<td>Discount</td>
<td>$2.00 OFF Meat Department Purchase of $10.00 or more</td>
</tr>
<tr>
<td>D</td>
<td>Discount</td>
<td>$1.00 OFF Deli Pizza</td>
</tr>
<tr>
<td>A5</td>
<td>Discount</td>
<td>FREE 12 pack Soda</td>
</tr>
<tr>
<td>14. Coupons to spoil Customer #8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trip #10 - 122 days from start of program</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Purchase = $48.61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Class</td>
<td>Type</td>
<td>Description</td>
</tr>
<tr>
<td>Std</td>
<td>Info</td>
<td>Shop our NEW Deli</td>
</tr>
<tr>
<td>Std</td>
<td>Install</td>
<td>49 Turkey Bucks</td>
</tr>
<tr>
<td>Std</td>
<td>Outside Ad</td>
<td>Free drink at Rod's Sandwich Shop w/Sandwich Purchase</td>
</tr>
<tr>
<td>Std</td>
<td>Discount</td>
<td>50¢ OFF Canned Peas</td>
</tr>
<tr>
<td>Std</td>
<td>Discount</td>
<td>75¢ OFF Chicken Fryers</td>
</tr>
<tr>
<td>Std</td>
<td>Discount</td>
<td>$3.00 OFF New Prescription</td>
</tr>
<tr>
<td>D</td>
<td>Discount</td>
<td>$2.00 OFF Meat Department Purchase of $10.00 or more</td>
</tr>
<tr>
<td>D</td>
<td>Discount</td>
<td>$1.00 OFF Deli Pizza</td>
</tr>
<tr>
<td>A5</td>
<td>Discount</td>
<td>FREE 12 pack Soda</td>
</tr>
<tr>
<td>15. Coupons to spoil Customer #8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trip #11 - 130 days from start of program</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Purchase = $81.42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Class</td>
<td>Type</td>
<td>Description</td>
</tr>
<tr>
<td>Std</td>
<td>Info</td>
<td>Shop our NEW Deli</td>
</tr>
<tr>
<td>Std</td>
<td>Install</td>
<td>81 Turkey Bucks</td>
</tr>
</tbody>
</table>
TABLE 9-continued

<table>
<thead>
<tr>
<th>Class</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Std Outside Ad</td>
<td>Free drink at Rod’s Sandwich Shop w/Sandwich Purchase</td>
<td>Std Discount 50¢ OFF Canned Peas</td>
</tr>
<tr>
<td>Std Discount</td>
<td>75¢ OFF Chicken Fryers</td>
<td>Std Discount $3.00 OFF New Prescription</td>
</tr>
<tr>
<td>Std Discount</td>
<td>$2.00 OFF Meat Department Purchase of $10.00 or more</td>
<td>D Discount Deli Pizza</td>
</tr>
<tr>
<td>D Discount</td>
<td>$1.00 OFF Deli Pizza</td>
<td>A5 Discount FREE 12 pack Sodas</td>
</tr>
</tbody>
</table>

17. Coupons to spoil Customer #8

Trip #12 7/37 days from start of program

Purchase = $112.49

<table>
<thead>
<tr>
<th>Class</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Std Info</td>
<td>Shop our NEW Deli</td>
<td>Std Install 112 Turkey Bucks</td>
</tr>
<tr>
<td>Std Install</td>
<td>61 Turkey Bucks</td>
<td>Std Outside Ad Free drink at Rod’s Sandwich Shop w/Sandwich Purchase</td>
</tr>
<tr>
<td>Std Discount</td>
<td>50¢ OFF Canned Peas</td>
<td>Std Discount 75¢ OFF Chicken Fryers</td>
</tr>
<tr>
<td>Std Discount</td>
<td>$3.00 OFF New Prescription</td>
<td>D Discount $2.00 OFF Meat Department Purchase of $10.00 or more</td>
</tr>
<tr>
<td>D Discount</td>
<td>$1.00 OFF Deli Pizza</td>
<td>A5 Discount FREE 12 pack Sodas</td>
</tr>
</tbody>
</table>

18. Coupons to spoil Customer #8

Trip #13 7 Program is complete

Purchase = $61.00

<table>
<thead>
<tr>
<th>Class</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Std Info</td>
<td>Shop our NEW Deli</td>
<td>Std Install 25 Turkey Bucks</td>
</tr>
<tr>
<td>Std Install</td>
<td>25 Turkey Bucks</td>
<td>Std Outside Ad Free drink at Rod’s Sandwich Shop w/Sandwich Purchase</td>
</tr>
<tr>
<td>Std Discount</td>
<td>50¢ OFF Canned Peas</td>
<td>Std Discount 75¢ OFF Chicken Fryers</td>
</tr>
<tr>
<td>Std Discount</td>
<td>$3.00 OFF New Prescription</td>
<td>D Discount $2.00 OFF Meat Department Purchase of $10.00 or more</td>
</tr>
<tr>
<td>D Discount</td>
<td>$1.00 OFF Deli Pizza</td>
<td>A5 Discount FREE 12 pack Sodas</td>
</tr>
</tbody>
</table>

TABLE 10-continued

<table>
<thead>
<tr>
<th>Class</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Std Info</td>
<td>Shop our NEW Deli</td>
<td>Std Install 27 Turkey Bucks</td>
</tr>
<tr>
<td>Std Install</td>
<td>27 Turkey Bucks</td>
<td>Std Outside Ad Free drink at Rod’s Sandwich Shop w/Sandwich Purchase</td>
</tr>
<tr>
<td>Std Discount</td>
<td>50¢ OFF Canned Peas</td>
<td>Std Discount 75¢ OFF Chicken Fryers</td>
</tr>
<tr>
<td>Std Discount</td>
<td>$3.00 OFF New Prescription</td>
<td>D Discount $2.00 OFF Meat Department Purchase of $10.00 or more</td>
</tr>
<tr>
<td>D Discount</td>
<td>$1.00 OFF Deli Pizza</td>
<td>A5 Discount FREE 12 pack Sodas</td>
</tr>
</tbody>
</table>

TABLE 10

1. Coupon A: Less than 5 weekly attendances in last 8 weeks. (Based on attendance)
 - A1: 4 weekly attendances in last 8 weeks
 - A2: 3 weekly attendances in last 8 weeks
 - A3: 2 weekly attendances in last 8 weeks
 - A4: 1 weekly attendance in last 8 weeks
 - A5: 0 weekly attendances in last 8 weeks

2. Customer #9 Profile
 - Illustrate Coupon M & Super M using Echo Coupons to intent
 - Assume items such as disposable diapers and baby food have been scanned previously

3. Total trips: 223
 - Average Purchase: $22.43
 - Current Purchase: $24.98
 - Prior Attendance: 6
 - 1 week ago: Yes
 - 2 weeks ago: Yes
 - 3 weeks ago: No

4. On Building Echo Coupons and Customer Profiles

5. Coupon B: $0-$24.99 average purchase
 - Coupon C: $25-$49.99 average purchase
 - Coupon D: $50-$74.99 average purchase
 - Coupon E: $75+ average purchase
 - Coupon M: 10% increase on Average $50 or less
 - Super M: Based on NO improvement in average purchase run for duration of 3 trips

6. Scanned data:
 - ON Building Echo Coupons and Customer Profiles

7. Coupon Configuration

Coupon Configuration

8. 4 weeks ago: Yes
 - 5 weeks ago: Yes
 - 6 weeks ago: Yes
 - 7 weeks ago: Yes
 - 8 weeks ago: No

9. Customer Status: Frequent
 - Coupon A level: N/A
 - Purchase level: B
 - Maxxor Base: $22
 - Maxxor Target: $25

10. Coupon Configuration

Coupon Configuration

11. Trip #1 (Begin Coupon M Program)

Coupon Configuration

12. Trip #2 - 7 days from start of Program

Coupon Configuration

13. Trip #3 - 14 days from start of Program

Coupon Configuration

14. Trip #4 - 23 days from start of Program

Coupon Configuration

15. Average since program began: $25.67

Coupon Configuration

16. Average since program began: $22.60

Coupon Configuration

17. No Increase - Begin Super M Program

Coupon Configuration

18. Purchase $25.00

Coupon Configuration

19. Purchase $25.00

Coupon Configuration

20. Purchase $25.00

Coupon Configuration

21. Purchase $25.00

Coupon Configuration

22. Purchase $25.00

Coupon Configuration

23. Purchase $25.00

Coupon Configuration

24. Purchase $25.00

Coupon Configuration

25. Purchase $25.00

Coupon Configuration

26. Purchase $25.00

Coupon Configuration

27. Purchase $25.00

Coupon Configuration

28. Purchase $25.00

Coupon Configuration

29. Purchase $25.00

Coupon Configuration

30. Purchase $25.00

Coupon Configuration

31. Purchase $25.00

Coupon Configuration

32. Purchase $25.00

Coupon Configuration

33. Purchase $25.00

Coupon Configuration

34. Purchase $25.00

Coupon Configuration

35. Purchase $25.00

Coupon Configuration

36. Purchase $25.00

Coupon Configuration

37. Purchase $25.00

Coupon Configuration

38. Purchase $25.00

Coupon Configuration

39. Purchase $25.00

Coupon Configuration

40. Purchase $25.00

Coupon Configuration

41. Purchase $25.00

Coupon Configuration

42. Purchase $25.00

Coupon Configuration

43. Purchase $25.00

Coupon Configuration

44. Purchase $25.00

Coupon Configuration

45. Purchase $25.00

Coupon Configuration

46. Purchase $25.00

Coupon Configuration

47. Purchase $25.00

Coupon Configuration

48. Purchase $25.00

Coupon Configuration

49. Purchase $25.00

Coupon Configuration

50. Purchase $25.00

Coupon Configuration

51. Purchase $25.00

Coupon Configuration

52. Purchase $25.00

Coupon Configuration

53. Purchase $25.00

Coupon Configuration

54. Purchase $25.00

Coupon Configuration

55. Purchase $25.00

Coupon Configuration

56. Purchase $25.00

Coupon Configuration

57. Purchase $25.00

Coupon Configuration

58. Purchase $25.00

Coupon Configuration

59. Purchase $25.00

Coupon Configuration

60. Purchase $25.00

Coupon Configuration

61. Purchase $25.00

Coupon Configuration

62. Purchase $25.00

Coupon Configuration

63. Purchase $25.00

Coupon Configuration

64. Purchase $25.00

Coupon Configuration

65. Purchase $25.00

Coupon Configuration

66. Purchase $25.00

Coupon Configuration

67. Purchase $25.00

Coupon Configuration

68. Purchase $25.00

Coupon Configuration

69. Purchase $25.00

Coupon Configuration

70. Purchase $25.00

Coupon Configuration

71. Purchase $25.00

Coupon Configuration

72. Purchase $25.00

Coupon Configuration

73. Purchase $25.00

Coupon Configuration

74. Purchase $25.00

Coupon Configuration

75. Purchase $25.00

Coupon Configuration

76. Purchase $25.00

Coupon Configuration

77. Purchase $25.00

Coupon Configuration

78. Purchase $25.00

Coupon Configuration

79. Purchase $25.00

Coupon Configuration

80. Purchase $25.00

Coupon Configuration

81. Purchase $25.00

Coupon Configuration

82. Purchase $25.00

Coupon Configuration

83. Purchase $25.00

Coupon Configuration

84. Purchase $25.00

Coupon Configuration

85. Purchase $25.00

Coupon Configuration

86. Purchase $25.00

Coupon Configuration

87. Purchase $25.00

Coupon Configuration

88. Purchase $25.00

Coupon Configuration

89. Purchase $25.00

Coupon Configuration

90. Purchase $25.00

Coupon Configuration

91. Purchase $25.00

Coupon Configuration

92. Purchase $25.00

Coupon Configuration

93. Purchase $25.00

Coupon Configuration

94. Purchase $25.00

Coupon Configuration

95. Purchase $25.00

Coupon Configuration

96. Purchase $25.00

Coupon Configuration

97. Purchase $25.00

Coupon Configuration

98. Purchase $25.00

Coupon Configuration

99. Purchase $25.00

Coupon Configuration
7. Coupon to spool Customer #9
 Super M Trip #2 - 32 days from start of Program
 Purchase = $38.84

Class	Type	Description
Std	Info	Shop our NEW Deli
Std	Install	37 Turkey Bucks
Std	Outside Ad	Free drink at Rod’s Sandwich Shop w/ Sandwich Purchase
Std	Discount	50¢ OFF Canned Peas
Std	Discount	75¢ OFF Chicken Fryers
Std	Discount	$3.00 OFF New Prescription
B	Discount	50¢ OFF Laundry Detergent
B	Discount	25¢ OFF Cereal
SM	Echo	FREE Box 24 count Disposable Diaper with Purchase of $25.00
SM	Echo	$1.00 OFF Baby Wipes with Purchase of $25.00

8. Coupon to spool Customer #9
 Super M Trip #3 - 40 days from start of Program
 Purchase = $32.32

<table>
<thead>
<tr>
<th>Class</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Std</td>
<td>Info</td>
<td>Shop our NEW Deli</td>
</tr>
<tr>
<td>Std</td>
<td>Install</td>
<td>32 Turkey Bucks</td>
</tr>
<tr>
<td>Std</td>
<td>Outside Ad</td>
<td>Free drink at Rod’s Sandwich Shop w/ Sandwich Purchase</td>
</tr>
<tr>
<td>Std</td>
<td>Discount</td>
<td>50¢ OFF Canned Peas</td>
</tr>
<tr>
<td>Std</td>
<td>Discount</td>
<td>75¢ OFF Chicken Fryers</td>
</tr>
<tr>
<td>Std</td>
<td>Discount</td>
<td>$3.00 OFF New Prescription</td>
</tr>
<tr>
<td>B</td>
<td>Discount</td>
<td>50¢ OFF Laundry Detergent</td>
</tr>
<tr>
<td>B</td>
<td>Discount</td>
<td>25¢ OFF Cereal</td>
</tr>
<tr>
<td>SM</td>
<td>Echo</td>
<td>FREE Box 24 count Disposable Diaper with Purchase of $25.00</td>
</tr>
<tr>
<td>SM</td>
<td>Echo</td>
<td>$1.00 OFF Baby Wipes with Purchase of $25.00</td>
</tr>
</tbody>
</table>

9. Coupon to spool Customer #9
 Trip #3 - 46 days from start of Program
 Purchase $26.78

10. Coupon to spool Customer #9
 Trip #3 - 50 days from start of Program
 Purchase $29.11
 Avg > $25.00 - Coupon M is complete

TABLE 11

<table>
<thead>
<tr>
<th>INFREQUENCY</th>
<th>COUPON “A”</th>
<th>DEAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO Consumption</td>
<td>Level 1</td>
<td>50% Off</td>
</tr>
<tr>
<td>1-20% of Brand A vs. all Product Type</td>
<td>Level 2</td>
<td>40% Off</td>
</tr>
<tr>
<td>21-46% of Brand A vs. all Product Type</td>
<td>Level 3</td>
<td>25% Off</td>
</tr>
<tr>
<td>40-50% of Brand A vs. all Product Type</td>
<td>Level 4</td>
<td>10% Off</td>
</tr>
</tbody>
</table>

TABLE 12

<table>
<thead>
<tr>
<th>WEEKLY CONSUMPTION</th>
<th>PACKAGE SIZE TO USE FOR INCENTIVE</th>
<th>LIST PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-5 ounces</td>
<td>8 ounce size</td>
<td>$1.00</td>
</tr>
<tr>
<td>6-15 ounces</td>
<td>12 ounce size</td>
<td>$1.50</td>
</tr>
<tr>
<td>16-25 ounces</td>
<td>20 ounce size</td>
<td>$2.50</td>
</tr>
<tr>
<td>26 ounces plus</td>
<td>32 ounce size</td>
<td>$4.00</td>
</tr>
</tbody>
</table>

TABLE 13

<table>
<thead>
<tr>
<th>Super A Level 1</th>
<th>Original incentive plus 20%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Super A Level 2</td>
<td>Original incentive plus 40%</td>
</tr>
<tr>
<td>Super A Level 3</td>
<td>Original incentive plus 60%</td>
</tr>
<tr>
<td>Super A Level 4</td>
<td>Original incentive plus 80%</td>
</tr>
<tr>
<td>Super A Level 5</td>
<td>Double the original incentive</td>
</tr>
</tbody>
</table>

TABLE 14

<table>
<thead>
<tr>
<th>Household</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10</td>
<td>14</td>
<td>15</td>
<td>14</td>
<td>18</td>
<td>12</td>
<td>13</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>12</td>
<td>36</td>
<td>4.5</td>
<td>5</td>
<td>12</td>
<td>44</td>
<td>18.5</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>2</td>
<td>15</td>
<td>3</td>
<td>2</td>
<td>4.5</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>17</td>
<td>42</td>
<td>67</td>
<td>40</td>
<td>38</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>N/A</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

TABLE 15

WEEK 1

<table>
<thead>
<tr>
<th>HOUSEHOLD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>17</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>24</td>
</tr>
<tr>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WEEK 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coupone Type</td>
</tr>
<tr>
<td>Cents off</td>
</tr>
<tr>
<td>Product Size (Oz)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WEEK 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prior Coupon Redeemed</td>
</tr>
<tr>
<td>Coupon Type</td>
</tr>
<tr>
<td>Cents Off</td>
</tr>
<tr>
<td>Product Size (Oz)</td>
</tr>
</tbody>
</table>
TABLE 15-continued

<table>
<thead>
<tr>
<th>WEEK #3</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Coupon Type</td>
<td>A3 (3)</td>
<td>SA2 (1)</td>
<td>A4 (3)</td>
<td>SA1 (2)</td>
<td>A1 (3)</td>
<td>A2 (3)</td>
<td>A1 (3)</td>
<td>A1 (3)</td>
</tr>
<tr>
<td>Cents Off</td>
<td>69¢</td>
<td>85¢</td>
<td>40¢</td>
<td>15¢</td>
<td>50¢</td>
<td>$1.50</td>
<td>$1.25</td>
<td>$1.50</td>
</tr>
<tr>
<td>Product Size (Oz)</td>
<td>20</td>
<td>12</td>
<td>32</td>
<td>8</td>
<td>12</td>
<td>32</td>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WEEK #4</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Coupon Type</td>
<td>A3 (4)</td>
<td>SA2 (2)</td>
<td>A4 (2)</td>
<td>SA3 (1)</td>
<td>SA1 (1)</td>
<td>A1 (4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cents Off</td>
<td>60¢</td>
<td>85¢</td>
<td>50¢</td>
<td>10¢</td>
<td>55¢</td>
<td>$1.90</td>
<td>$1.25</td>
<td>$1.90</td>
</tr>
<tr>
<td>Product Size (Oz)</td>
<td>20</td>
<td>12</td>
<td>32</td>
<td>8</td>
<td>12</td>
<td>32</td>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WEEK #5</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Coupon Type</td>
<td>A3 (5)</td>
<td>A2 (2)</td>
<td>SA2 (1)</td>
<td>A4 (3)</td>
<td>SA4 (1)</td>
<td>SA1 (2)</td>
<td>A1 (5)</td>
<td>A2 (4)</td>
</tr>
<tr>
<td>Cents Off</td>
<td>69¢</td>
<td>85¢</td>
<td>55¢</td>
<td>10¢</td>
<td>65¢</td>
<td>$1.60</td>
<td>$1.60</td>
<td>$1.60</td>
</tr>
<tr>
<td>Product Size (Oz)</td>
<td>20</td>
<td>12</td>
<td>32</td>
<td>8</td>
<td>12</td>
<td>32</td>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WEEK #6</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Coupon Type</td>
<td>A3 (4)</td>
<td>A2 (4)</td>
<td>A4 (4)</td>
<td>SA5 (1)</td>
<td>A2 (4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cents Off</td>
<td>60¢</td>
<td>55¢</td>
<td>10¢</td>
<td>70¢</td>
<td>70¢</td>
<td>$1.60</td>
<td>$1.60</td>
<td>$1.60</td>
</tr>
<tr>
<td>Product Size (Oz)</td>
<td>12</td>
<td>32</td>
<td>8</td>
<td>12</td>
<td>32</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WEEK #7</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Coupon Type</td>
<td>SA1 (1)</td>
<td>A4 (5)</td>
<td>SA5 (2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cents Off</td>
<td>70¢</td>
<td>40¢</td>
<td>70¢</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Product Size (Oz)</td>
<td>12</td>
<td>32</td>
<td>8</td>
<td>12</td>
<td>32</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WEEK #8</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coupon Type</td>
<td>SA1 (2)</td>
<td>A3 (2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cents Off</td>
<td>70¢</td>
<td>35¢</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Product Size (Oz)</td>
<td>12</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WEEK #9</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coupon Type</td>
<td>SA2 (1)</td>
<td>A3 (3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cents Off</td>
<td>85¢</td>
<td>35¢</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Product Size (Oz)</td>
<td>12</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WEEK #10</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coupon Type</td>
<td>SA2 (2)</td>
<td>A3 (4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cents Off</td>
<td>85¢</td>
<td>35¢</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Product Size (Oz)</td>
<td>12</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WEEK #11</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coupon Type</td>
<td>SA2 (1)</td>
<td>A3 (5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cents Off</td>
<td>60¢</td>
<td>55¢</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Product Size (Oz)</td>
<td>12</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WEEK #12</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coupon Type</td>
<td>A2 (5)</td>
<td>A3 (5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cents Off</td>
<td>60¢</td>
<td>55¢</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Product Size (Oz)</td>
<td>12</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WEEK #13</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coupon Type</td>
<td>A2 (5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cents Off</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Product Size (Oz)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

What is claimed is:

1. A method for [customer promotion of a store] providing an incentive to a customer, the method comprising:
 - sequentially processing each, by a computing device, one or more of a plurality of items in a customer order;
 - after processing each item, accumulating the price prices of each item, the items;
 - in response to the accumulated price exceeding a predetermined threshold, generating a first signal indicating that the accumulated price exceeds a predetermined threshold;[1]
 - in response to the first signal[1], determining by the computing device, one or more marginal discounts associated with each
item] one or more items processed subsequent to the generation of the first signal; and accumulating [all] unapplied marginal discounts[; the marginal discounts for application to the customer order] subsequent to the generation of the first signal; in response to the accumulated unapplied marginal discounts exceeding a predetermined minimum generating a second signal indicating that the accumulated discount exceeds a predetermined minimum; and in response to the second signal, applying a discount to the customer order.

2. The method of claim 1, wherein sequentially processing [each] one or more of a plurality of items in a customer order comprises sequentially processing [each] one or more of a plurality of items in a customer order received over the Internet.

3. The method of claim 1, wherein applying a discount to the customer order comprises applying a discount in response to the second signal indicating that the accumulated [discount] unapplied marginal discounts exceeds a predetermined minimum and upon processing an item in the customer order having a price that is no less than the discount.

4. The method of claim 1, wherein applying a discount to the customer order comprises applying the minimum discount.

5. The method of claim 1, wherein applying a discount to the customer order comprises applying the accumulated [discount] unapplied marginal discounts.

6. The method of claim 1, wherein determining [a] one or more marginal [discount] discounts associated with [each] one or more items comprises applying a constant percentage discount on [each] one or more items.

7. The method of claim 1, wherein determining [a] one or more marginal [discount] discounts associated with [each] one or more items comprises applying a variable percentage discount on [each] one or more items.

8. A system for customer promotion over the Internet tangible computer-readable medium having instructions stored thereon, the instructions comprising:

 [a computer-readable medium; and a computer program encoded on the computer-readable medium, the computer program operable, when executed on a computer, to:

 instructions to sequentially receive signals indicative of [the] respective prices of a plurality of items in a received customer order [received over the Internet] and accumulate the [prices of [each item]] the items;

 instructions to determine [that] whether the accumulated price exceeds a predetermined threshold [and in response];

 instructions to determine [a] one or more marginal [discount] discounts associated with [each] one or more items subsequently processed and accumulate [all] unapplied marginal discounts in response to determining that the accumulated price exceeds a predetermined threshold; and

 instructions to determine [that] whether the accumulated [discount] unapplied marginal discounts exceeds a predetermined minimum; and [in response]

 instructions to apply a discount to the customer order in response to determining that the accumulated unapplied marginal discounts exceeds a predetermined minimum.

9. The [system] computer-readable medium of claim 8, wherein the [computer program is] instructions further operable to:

 instructions to initiate application of a discount in response to determining that the accumulated [discount] unapplied marginal discounts exceeds a predetermined minimum and upon receiving a signal indicative of [the price] an item in the customer order having a price that is no less than the discount.

10. The [system] computer-readable medium of claim 8, wherein the [computer program is] instructions further comprise:

 [operable] instructions to initiate application of a discount having a value equal to the minimum discount.

11. The [system] computer-readable medium of claim 8, wherein the [computer program is] instructions further comprise:

 [operable] instructions to initiate application of a discount having a value equal to the accumulated [discount] unapplied marginal discounts.

12. The [system] computer-readable medium of claim 8, wherein the [computer program is] instructions further comprise:

 [operable] instructions to determine [a] one or more marginal [discount] discounts associated with [each] one or more items by applying a constant percentage discount on [each] one or more items.

13. The [system] computer-readable medium of claim 8, wherein the [computer program is] instructions further comprise:

 [operable] instructions to determine [a] one or more marginal [discount] discounts associated with [each] one or more items by applying a variable percentage discount on [each] one or more items.

14. A [computerized] system for customer promotion, the system comprising:

 a storage medium; and

 a processor coupled to the storage medium; and

 a computer program encoded on the [computer-readable] storage medium, [the computer program operable, [when executed on] that in response to execution by the processor, causes the processor to:

 sequentially receive signals indicative of [the] respective prices of a plurality of items in a received customer order [received over the Internet] and accumulate the [prices of [each item]] the items;

 determine [that] whether the accumulated price exceeds a predetermined threshold [and in response];

 in response to the accumulated price exceeding a predetermined threshold, determine [a] one or more marginal [discount] discounts associated with [each] one or more items subsequently processed and accumulate [all] unapplied marginal discounts; [and]

 determine [that] whether the accumulated discount exceeds a predetermined minimum; and

 in response to the accumulated unapplied marginal discounts exceeding a predetermined minimum, apply a discount to the customer order.

15. The system of claim 14, wherein the computer program is further operable to cause the processor to:

 initiate application of a discount in response to determining that the accumulated [discount] unapplied marginal discounts exceeds a predetermined minimum and upon receiving a signal indicative of [the price] an item in the customer order having a price that is no less than the discount.

16. The system of claim 14, wherein the computer program is further operable to cause the processor to:

 initiate application of a discount having a value equal to the minimum discount.
17. The system of claim 14, wherein the computer program is further operable to cause the processor to:
initiate application of a discount having a value equal to the accumulated [discount] unapplied marginal discounts.
18. The system of claim 14, wherein the computer program is further operable to cause the processor to:
determine [a] one or more marginal [discount] discounts associated with [each item] one or more items by applying
a constant percentage discount on [each item] the one or more items.
19. The system of claim 14, wherein the computer program is further operable to cause the processor to:
determine [a] one or more marginal [discount] discounts associated with [each item] one or more items by applying
a variable percentage discount on [each item] the one or more items.
20. A method for providing an incentive to a customer
[promotion of a store], the method comprising:
sequentially processing, at a remote computer at a location remote from the store on a substantially real-time
basis, computing device, [each] one or more of a plurality of items in a customer order on a substantially real-time
basis;
after processing each item, accumulating, by, at the remote computer computing device, the [price] prices
of [each item] the processed items;
in response to the accumulated price exceeding a predetermined threshold, generating, by, at the remote computer
computing device, a first signal indicating that the accumulated price exceeds a predetermined threshold;
in response to the first signal, determining, by the remote computer computing device:
a one or more marginal [discount] discounts associated with [each item] one or more items processed subsequent
to the generation of the first signal; and
accumulating all unapplied marginal discounts, the marginal discounts for application to the customer order;
in response to the accumulated unapplied marginal discounts exceeding a predetermined minimum, generating
a second signal indicating that the accumulated discount exceeds a predetermined minimum; and
in response to the second signal, applying a discount to the customer order.
21. The method of claim 20, wherein sequentially processing [each] one or more of a plurality of items in a customer order comprises sequentially processing [each] one or more of a plurality of items in a customer order received over the Internet.
22. The method of claim 20, wherein further comprising applying a discount to the customer order comprises applying a discount in response to the second signal indicating that the accumulated discount exceeds a predetermined minimum and upon scanning an item in the customer order having a price that is no less than the discount.
23. The method of claim 20, wherein applying a discount to the customer order comprises applying the minimum discount.
24. The method of claim 20, wherein applying a discount to the customer order comprises applying the accumulated [discount] unapplied marginal discounts.
25. The method of claim 20, wherein determining [a] one or more marginal [discount] discounts associated with [each item] one or more items comprises applying the same percentage discount on [each item] the one or more items.
26. The method of claim 20, wherein determining [a] one or more marginal [discount] discounts associated with [each item] one or more items comprises applying a variable percentage discount on [each item] the one or more items.
27. A method for providing an incentive to a customer
[promotion of a store], the method comprising:
sequentially processing, by, at a computing device, one or more of a plurality of items in a customer order;
after processing each item, accumulating the [price] prices of [each item] the processed items;
in response to the accumulated price exceeding a predetermined threshold, generating a first signal indicating
that the accumulated price exceeds a predetermined threshold;
in response to the first signal, determining, by the computing device one or more marginal [discount] discounts associated with [each item] the processed items processed subsequent to the generation of the first signal; accumulating all unapplied marginal discounts, the marginal discounts for application to the customer order, the value of the marginal discount being dependent on the price of the item and otherwise independent of the identity of the item:
in response to the accumulated unapplied marginal discounts exceeding a predetermined minimum, generating
a second signal indicating that the accumulated discount exceeds a predetermined minimum; and
in response to the second signal, applying a discount to the customer order.
28. The method of claim 27, wherein sequentially processing [each] one or more of a plurality of items in a customer order comprises sequentially processing [each] one or more of a plurality of items in a customer order received over the Internet.
29. The method of claim 27, wherein applying a discount to the customer order comprises applying a discount in response to the second signal indicating that the accumulated [discount] unapplied marginal discounts exceeds a predetermined minimum and upon processing an item in the customer order having a price that is no less than the discount.
30. The method of claim 27, wherein applying a discount to the customer order comprises applying the minimum discount.
31. The method of claim 27, wherein applying a discount to the customer order comprises applying the accumulated [discount] unapplied marginal discounts.
32. The method of claim 27, wherein determining [a] one or more marginal [discount] discounts associated with [each item] one or more items comprises applying a constant percentage discount on [each item] the one or more items.
33. The method of claim 27, wherein determining [a] one or more marginal [discount] discounts associated with [each item] one or more items comprises applying a variable percentage discount on [each item] the one or more items.
34. A computer program product comprising a non-transitory computer useable medium having instructions for providing a customer incentive stored thereon, the instructions comprising:
instructions to accumulate prices for a plurality of items in a customer order;
instructions to accumulate one or more marginal discounts associated with the plurality of items;
instructions to compare the accumulated price and the accumulated marginal discount with respective thresholds; and
instructions to apply a price reduction to the customer order in response to the accumulated price and the accumulated marginal discount exceeding the respective thresholds.

35. An article of manufacture including a non-transitory computer-readable medium having instructions stored thereon that, if executed by a computing device, cause the computing device to perform operations comprising:

accumulating prices for a plurality of items in a customer order;
accumulating one or more marginal discounts associated with the plurality of items;
comparing the accumulated price and the accumulated marginal discount with respective thresholds; and applying a price reduction to the customer order in response to the accumulated price and the accumulated marginal discount exceeding the respective thresholds.

* * * * *