(51) 国際特許分類: E02F 9/20, G05B 23/02

(21) 国際出願番号: PCT/JP01/02811

(22) 国際出願日: 2001年3月30日 (30.03.2001)

(52) 国際公報の言語: 日本語

(30) 優先権データ:

(71) 出願人/米国を除く全ての指名国について: 日立建機株式会社 (HITACHI CONSTRUCTION MACHINERY CO., LTD.) [JP]; 〒112-0004 東京都文京区後楽二丁目5番1号 Tokyo (JP).

(72) 発明者: および
発明者/米国についてのみ: 足立弘之 (ADACHI, Hiroyuki) [JP]; 〒300-0023 茨城県土浦市浄信町4-484 Ibaraki (JP); 平田東一 (HIRATA, Toichi) [JP]; 〒360-1233 茨城県牛久市東町4-4-403 Ibaraki (JP); 杉山文雄 (SUGIYAMA, Genroku) [JP]; 〒340-0002 佐野市野木町7-40-11 Saitama (JP).

(74) 代理人: 永井冬紀 (NAGAI, Fuyuki); 〒100-0013 東京都千代田区霞が関3丁目4番1号 霞ビル Tokyo (JP).

(81) 指定国 (国内): CN, JP, KR, US.

(84) 指定国 (広域): YO-RO-HA特許 (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR).

添付公開文類:
— 国際調査報告書

2文字コード及び他の略語については、定期発行される各PCTガゼットの卷頭に掲載されている「コード及び略語
のガイダンスノート」を参照。

Title: WORK MACHINE REPORT CREATING METHOD, CREATING SYSTEM, AND CREATING APPARATUS

(54) 発明の名称: 作業機レポート作成方法、作成システムおよび作成装置

(57) Abstract: The states of portions of a work machine are measured. State signals representing the measured states are sent and received. A report describing the states of the portions of the work machine is written on the basis of the received state signals. Therefore the operator does not need to write a report describing the states of the work machine. Reports in various formats can be automatically created on the basis of the state signals, and therefore the report creation efficiency and report reliability are improved.

WO 01/73222 A1
（57）要約：

作業機の各部の状態を検出し、検出された状態を表す状態信号を送信し、その状態信号を受信し、受信した状態信号に基づいて作業機の各部の状況を示すレポートを作成する。したがって、オペレータは作業機の状況を記したレポートを作成する必要がない。また、状態信号に基づいて種々の形式のレポートを自動作成できるので、レポート作成効率とレポートの信頼性が向上する。
1

明細書
作業機レポート作成方法、作成システムおよび作成装置

技術分野
本発明は、建設機械などの作業機のエンジン、油圧ポンプ、油圧モータ、その他の可動機構や部品などの状態を遠隔地で把握して作業機の各部の状況を示すレポートを作成する方法、作成システムおよび作成装置に関する。

背景技術
たとえば油圧ショベルやクレーン（以後、建設機械とする）は複数の部品から構成されており、各々の部品は所定時間ごとに保守点検が必要である。従来から、建設機械の状況を日々確認する目的で、オペレータは、作業機各部の状況を記した日報と呼ばれる書類を作成している。そして、日報に基づいてメンテナンス時期などを把握している。

発明の開示
本発明の目的は、建設機械などの作業機で検出される状態信号に基づいて作業機各部の状況を示すレポートを作成するようにした作業機レポート作成方法、作成システムおよび作成装置を提供することにある。

本発明では、作業機から送信される作業機各部の状態を示す状態信号を受信し、受信した状態信号に基づいて、作業機の各部の状況を示すレポートを作成する。

また本発明では、作業機の各部の状態を検出し、検出された状態を表す状態信号を送信し、その状態信号を受信し、受信した状態信号に基づいて作業機の各部の状況を示すレポートを作成する。

このような発明によれば、状態信号に基づいて種々の形式のレポートを自動作成できるので、オペレータは作業機の状況を記したレポートを作成する必要がない。また、レポート作成効率とレポートの信頼性が向上する。

レポートには作業機各部の稼働時間および燃料消費量に関する情報を少なくと
もいずれか一方を含むことができる。稼働時間は、走行稼働時間、旋回稼働時間、
掘削稼働時間を含む。燃料消費量に関する情報は、実際に作業を行っている稼働
分燃料消費量および無負荷時の燃料消費量の少なくともいずれか一方を含む。

作業機とは別の場所に設置された作業機監視施設でレポートを作成するように
すれば、建設会社や土木会社の管理部門、あるいはレンタル業者など、作業機の
管理者が作業機の状況を的確にかつ迅速に把握することができる。

図面の簡単な説明

図1は、本発明による作業機レポート作成方法が適用される油圧ショベルの稼
働状態を示す図

図2は、油圧ショベルの一例を示す図

図3は、油圧ショベルの油圧回路図を示す図

図4は、油圧ショベルのコントローラの構成の一例を示すブロック図

図5は、油圧ショベルのセンサ群の詳細を説明する図

図6は、油圧ショベルの記憶装置を説明する図

図7は、走行操作時間などを算出する手順例を示すフローチャート

図8は、油圧ショベルの定時送信処理手順例を示すフローチャート

図9は、警報や故障を検知する油圧ショベルの処理手順例を示すフローチャート

図10は、油圧ショベルから送信されるデータの一例を示す図

図11は、基地局における情報管理のためのハード構成の一例を示すブロック
図

図12は、基地局における処理手順例を示すフローチャート

図13は、油圧ショベルの号機ごとにまとめたデータを説明する図

図14は、サービス工場単位でまとめたデータを説明する図

図15は、サービス工場における情報管理のためのハード構成の一例を示すブ
ロック図

図16は、サービス工場における処理手順例を示すフローチャート

図17は、サービス工場における処理手順例を示すフローチャート

図18は、サービス工場で出力される日報の一例を示す図
図19A～19Cは、サービス工場で出力されるメンテナンス予定の一例を示す図
図20Aは走行負荷頻度分布を示す図
図20Bは掘削負荷頻度分布を示す図
図21は、効率よく巡回サービスを行う予定を説明する図
図22は、サービスマンの予定表を示す図
図23A、23Bは、エンジン稼働時間分布を示す図
図24は、走行時間などとともに稼働分燃料消費量を算出する手順例を示すフローチャート
図25は、無線基地局と油圧ショベル製造工場とサービス工場を通信回線で接続する他の例を示す図
図26は、油圧ショベル製造工場内のシステム構成を示す図

発明を実施するための最も良の形態
図1～図24により本発明を油圧ショベルの日報を作成する方法に適用した場合について説明する。図1は本発明による日報作成方法が適用される油圧ショベルの稼働状況を説明する図である。すなわち、複数の作業地区A、B、Cではそれぞれ複数の油圧ショベルが稼働している。地区Aでは油圧ショベルa1～anが、地区Bでは油圧ショベルb1～bnが、地区Cでは油圧ショベルc1～cnがそれぞれ稼働している。地区A、B、Cは同一の作業現場ではなく地理的に離れている。この実施の形態では、各油圧ショベルの各部の状態を検出し、検出した信号は通信衛星CSを経由して基地局BCで受信される。基地局BCは受信した信号を適宜のサービス工場SF1～SFnへ一般公衆回線網PCを利用して送信する。サービス工場SF1～SFnでは、受信した信号に基づいて、後述するような日報を作成したり、故障を診断したり、巡回サービスの予定を作成したりする。各油圧ショベルはGPS受信機を搭載し、GPS衛星GSからの信号を受信して現在地を算出することができる。この現在地情報は、油圧ショベルの各部の信号とともに基地局BCを経由してサービス工場SFへ送信され、サービス工場SFは各油圧ショベルの稼働地区を認識することができる。
油圧ショベルは図2に示すように構成される。油圧ショベルは、走行体81と、走行体81の上部に旋回可能に連結された旋回体82とを有する。旋回体82には、運転室83と、作業装置84と、エンジン85と、旋回モータ86とが設けられている。作業装置84は、旋回体82の本体に回動可能に取り付けられたブームBMと、ブームBMに回動可能に連結されたアームAMと、アームAMに回動可能に連結されたアタッチメント、たとえばバケットBKとからなる。ブームBMはブームシリンダC1により昇降され、アームAMはアームシリンダC2によりクラウドとダンプ操作が行われ、バケットBKはバケットシリンダC3によりクラウドとダンプ操作が行われる。走行体81には左右の走行用油圧モータ87、88が設けられている。

油圧ショベルの油圧回路の概略を図3に示す。エンジン85は油圧ポンプ2を駆動する。この油圧ポンプ2から吐出される圧油は、複数のコントロールバルブ3s、3tr、3t1、3b、3aおよび3 bkでその方向と油量が制御され、上述した旋回油圧モータ86、左右の走行用油圧モータ87、88、油圧シリンダC1、C2、C3を駆動する。複数のコントロールバルブ3s、3tr、3t1、3b、3aおよび3 bkはそれぞれ対応する複数のパイロットバルブ4s、4tr、4t1、4b、4aおよび4 bkからそれぞれ供給されるパイロット圧力によって切換操作される。パイロットバルブ4s、4tr、4t1、4b、4aおよび4 bkは、パイロット油圧ポンプ5から所定圧力のパイロット油圧が供給され、操作レバー4Ls、4Lt r、4Lt1、4Lb、4La、4 bkの操作量に応じたパイロット圧力を出力する。複数のコントロールバルブ3s、3tr、3t1、3b、3aおよび3 bkは1つのバルブブロックに集約される。また、複数のパイロットバルブ4s、4tr、4t1、4b、4aおよび4 bkも1つのバルブブロックに集約される。

図4は油圧ショベルの各部の状態を検出し送信するための制御系のブロック図である。油圧ショベルには、上述した各部の状態を検出し複数のセンサを有するセンサ群10が搭載され、センサ群10から出力される状態検出信号は所定のタイミングでコントローラ20に読み込まれる。コントローラ20は走行操作時間、旋回操作時間、およびフロント（掘削）操作時間を積算するためのタイマ
機能20aを有している。コントローラ20は読み込んだ状態検出信号に基づいて、走行操作時間、旋回操作時間、フロント操作時間を算出する。これら算出された操作時間は記憶装置21に格納される。油圧ショベルは、エンジン85を起動するキースイッチ22と、エンジン85の稼働時間を計測するアワメータ23も有している。

油圧ショベルにはGPS受信機24が搭載されている。GPS受信機24は、GPS衛星GSからのGPS信号を受信し、GPS信号に基づいて油圧ショベルの位置を算出してコントローラ20へ出力する。油圧ショベルの運転席には各種情報を表示するためのモニタ25が設けられている。

コントローラ20は時計機能20bを有しており、キースイッチ22のオン時刻、オフ時刻、エンジン始動時刻、エンジン停止時刻を認識することができる。これらの時刻も記憶装置21に格納される。アワメータ23の計測値も所定のタイミングでコントローラ20に読み込まれ、記憶装置21に格納される。記憶装置21に記憶された走行、旋回およびフロントの操作時間とキースイッチオン時刻などは所定のタイミングで送信機30を介して送信される。送信機30から送信された電波は衛星CSを経由して基地局BCで受信される。コントローラ20には受信機35も接続されている。受信機35は、通信衛星CSおよび基地局BCを経由してサービス工場SFから送られてくる故障時の対処法などの信号を受信してコントローラ20へ送出する。コントローラ20、送信機30および受信機35は、油圧ショベルのメインスイッチがオフされているにもかかわらず、電源から電力供給を可能状態となっている。

図5に示すように、センサ群10は、メイン油圧回路系の圧力状態を検出する圧力センサ11を備えている。すなわち、油圧ポンプ2の吐出圧力を計測する圧力センサ11pと、走行油圧モータ87、88の駆動圧力を計測する圧力センサ11t、11tと、旋回油圧モータ86の駆動圧力を計測する圧力センサ11sと、ブーム油圧シリンダC1の駆動圧力を計測する圧力センサ11bと、アーム油圧シリンダC2の駆動圧力を計測する圧力センサ11aと、パケット油圧シリンダC3の駆動圧力を計測する圧力センサ11bをとし、パッケージ13に備えている。

センサ群10は、パイロット油圧回路系の圧力状態を検出する圧力センサ13
も備えている。すなわち、走行油圧パイロットバルブ４ｔｒ，４ｔｌから出力されるパイロット圧力Ｐｔｒ，Ｐｔｌを計測する圧力センサ１３ｔｒ，１３ｔｌと、旋回油圧パイロットバルブ４ｓから出力されるパイロット圧力Ｐｓを計測する圧力センサ１３ｓと、ブーム油圧パイロットバルブ４ｂから出力されるパイロット圧力Ｐｂを計測する圧力センサ１３ｂと、アーム油圧パイロットバルブ４ａから出力されるパイロット圧力Ｐａを計測する圧力センサ１３ａと、パケット油圧パイロットバルブ４ｂｋから出力されるパイロット圧力Ｐｂｋを計測する圧力センサ１３ｂｋとを有している。

走行操作時間は、走行パイロット圧力センサ１３ｔｒ，１３ｔｌで検出した圧力ＰｔｒまたはＰｔｌが所定値以上である時間を積算した時間である。旋回操作時間は、旋回パイロット圧力センサ１３ｓで検出した圧力Ｐｓが所定値以上である時間を積算した時間である。フロント操作時間は、ブーム、アームおよびパケッット用パイロット圧力センサ１３ｂ、１３ａおよび１３ｂｋのいずれかで検出した圧力Ｐｂ、Ｐａ、Ｐｂｋが所定値以上である時間を積算した時間である。

センサ群１０はまた、メイン油圧ラインに配設されたフィルタの目詰まりを検出する圧力センサ１４ｆ、油圧モータや油圧シリンダを駆動する作動油の温度を検出する温度センサ１４ｔも備えている。さらにセンサ群１０は、エンジン系の状態を検出する各種のセンサ１５を有している。すなわち、エンジン８５の冷却水温を検出する冷却水温度センサ１５ｗと、エンジンオイルの圧力を検出するエンジンオイル圧力センサ１５ｏｐと、エンジンオイルの温度を検出するエンジンオイル温度センサ１５ｏｔと、エンジンオイルのレベルを検出するエンジンオイルレベルセンサ１５ｏ１と、エアフィルタの目詰まりを検出する目詰まりセンサ１５ａｆと、燃料残量を計測する燃料残量センサ１５ｆと、バッテリの充電電圧を検出するバッテリ電圧センサ１５ｖと、エンジン回転数を検出する回転数センサ１５ｒとを有している。

上述したように油圧ショベルの各部の状態を示す信号は通信衛星ＣＳおよび基地局ＢＣを経由してサービス工場ＳＦへ送信されるが、各部の通常の状態を示す信号は日報データとして、一日分をまとめて通信料金の安い深夜の時間帯に送信される。また、警報や故障などを示す信号はそれらが発せられるたびに送信され
る。なお、燃料残量が所定値以下になったときも、時間帯に限らず直ちにこれを示す情報を送信する。

上述した日報データは次のような情報を含み、記憶装置 21 に所定のフォーマットで格納される。
①キースイッチ 2 2 のオン時刻
②キースイッチ 2 2 のオフ時刻
③エンジン始動時刻
④エンジン停止時刻
⑤アワメータ 2 3 の計測値
⑥走行操作時間（図 18 参照）
⑦旋回操作時間（図 18 参照）
⑧フロント操作時間（図 18 参照）
⑨エンジン稼働時間（図 18 参照）
また、日報データとして、走行負荷頻度分布（図 20 A 参照）、掘削負荷頻度（図 20 B 参照）、あるいは燃料消費量（単位時間あたり、稼働分、無負荷分など）も含まれる。

警報データとしては次のような情報がある。
①エンジンオイルレベル
②エンジン冷却水温度
③エンジンオイル温度
④エアフィルタ目詰まり
⑤作動油フィルタ
⑥バッテリ電圧
⑦エンジンオイル圧力
⑧燃料残量
⑨作動油温度

故障データとしては次のような情報がある。
①エンジン回転数異常
②油圧ポンプ吐出圧異常
図6は記憶装置21の一例を示す図である。記憶装置21に、エンジン85のアワメタ23の計測値を格納する第1領域R1と、走行操作時（走行移動時）を格納する第2の領域R2と、旋回操作時（旋回移動時）を格納する第3の領域R3と、フロント操作時（フロント移動時）を格納する第4の領域R4と、その他の状態信号や警報信号あるいは故障信号を格納する領域R5…領域Rnが複数設けられている。

図7は、各圧力ショベルのコントローラ20で実行される走行、旋回、フロント操作時間を積算する処理手順を示すフローチャートである。たとえば、走行パイロット圧力PtrまたはPtl、旋回パイロット圧力Ps、ブームパイロット圧力Pb、アームパイロット圧力Pa、パケットパイロット圧力Pbkのいずれかが所定値以上になると、コントローラ20は、図7に示すプログラムを起動する。そして、ステップS1において、走行用、旋回用、フロント用タイマ機能のうちうち該当する操作時計測用タイマを起動する。また、負荷頻度分布計測用タイマを起動する。走行パイロット圧力Ptr、Ptlが所定値以下の場合は、走行操作時計測用タイマを、旋回パイロット圧力Psが所定値以下の場合には旋回操作時計測用タイマを、ブームパイロット圧力Pb、アームパイロット圧力Pa、パケットパイロット圧力Pbkのいずれか所定値以下の場合はフロント用タイマをそれぞれ起動する。ステップS2において、パイロット圧力が所定値未満になったことを判定すると、ステップS3に進み、該当するタイマを停止する。

走行操作時間をTt、旋回操作時間をTs、フロント操作時間をTf、走行用タイマの計測時間をT Mt、旋回用タイマの計測時間をT Ms、フロント用タイマの計測時間をT Mfとすると、ステップS4において、次式を算出する。

\[T_t = T_t + T M_t \]
\[T_s = T_s + T M_s \]
\[T_f = T_f + T M_f \]

すなわち、タイマで計時した時間をそれぞれの操作時計測領域の現在値に加算し、その加算結果で操作時間領域を更新する。

なおここでは、走行、旋回、フロントについて操作時間を計測したが、油圧ショベルに他のアタッチメント、たとえばブレーカーなどが備わっている場合、その
アタッチメントの操作時間を検出し、同様にアタッチメント操作時間を計測してもよい。

パイロット圧力が所定値以上の場合はステップS2が否定されてステップS2Aへ進む。ステップS2Aで被荷負頻度分布計測用タイマがΔtで計測するとステップS2Bに進む。ステップS2Bにおいて、そのときの走行圧力、旋回圧力、ポンプ圧力を読み込み、ステップS2Cにおいて、該当する圧力値のヒストグラムに1を加算する。たとえば、走行圧力が10MPaであれば、10MPaの頻度に1を加算する。ステップS2Dでは被荷負頻度用タイマをリセット、再起動してステップS2に戻る。走行被荷負頻度分布は図20Aに、推削被荷負頻度分布は図20Bに示される。

図8は一定時刻に日報データを送信するための処理手順を示すフローチャートである。あらかじめ設定されている送信時刻になると、コントローラ20は図8のプログラムを起動する。ステップS11で記憶装置21から送信すべき日報データを読み出す。読み出した日報データはステップS12で所定の送信データに加工され、ステップS13で送信機30へ送られる。これにより、送信機30は、油圧ショベルの1日の稼働状態を示す日報データを通信衛星CSおよび基地局BCを経由してサービス工場SFへ送信する。

図9は警報信号や故障信号を送信するための処理手順を示すフローチャートである。コントローラ20は、上述した警報信号や故障信号の出力を判定すると、図9のプログラムを起動する。ステップS21では、検出した警報信号や故障信号を記憶装置21へ格納する。ステップS22において、これらの警報信号や故障信号がサービス工場へ送信する必要があるものと判定されるとステップS23に進む。ステップS23において、運転席のモニタ25に故障内容を表示するとともに、サービス工場へ送信した旨を表示する。ステップS24において、記憶装置21から警報信号あるいは故障信号を読み出し、ステップS25でそれらを送信データに加工する。加工された送信データはステップS26で送信機30へ送出され、ステップS27において、送信機30から警報信号あるいは故障信号が送信される（ステップS14）。

ステップS28において、コントローラ20は、サービス工場から故障に対する
る対処法を表す信号を受信したと判定すると、ステップ S29 において、運転席のモニタ 25 に故障の対処法を表示する。サービス工場からの指示が受信されない場合には、ステップ S30 において、警報信号や故障信号を送信してから所定時間以上経過したかを判定する。所定時間以上が経過するとステップ S31 において、「サービス工場へ連絡して下さい」とメッセージを表示する。ステップ S30 が否定されるとステップ S28 を繰り返す。すなわち、所定時間が経過してもサービス工場から対処法の指示が送信されてこない場合には、何らかの原因により通信が失敗した可能性が高いので、オペレータに対して電話でサービス工場へ連絡することを報知する。

ステップ S22 において、検出された警報信号がサービス工場へ送信不要であると判定された場合には、ステップ S32 において、警報信号に応じた警報内容を運転席のモニタ 25 へ表示し、ステップ S33 において、その対処法を算出する。たとえば、警報信号に対する対処法をあらかじめ記憶装置 21 にデータベース化しておく、警報信号によりデータベースをアクセスして対処法を算出する。そして、ステップ S34 において、運転席のモニタ 25 へ対処法を表示する。

図 10 は日報データや警報データあるいは故障データを送信するために作成されるデータ列の一部である。データ列のヘッダには油圧ショベルを識別する識別子 H D が設けられる。ヘッダに続いてデータ部が設けられ、現在地情報 D1、アラメータの計測時間 D2、走行稼働時間 D3、旋回稼働時間 D4、フロント稼働時間 D5 ……が順番に組み合わされる。

図 11 は、基地局 B C における情報管理のための構成を示すブロック図である。基地局 B C は、受信した各種の信号を各地のサービス工場へ送信する。基地局 B C には、通信衛星 C S から送信されてくる信号を受信する受信機 31 と、受信機 31 で受信した信号を格納する記憶装置 32 と、サービス工場へ送信すべきデータを一般公衆回線網 P C を介して送信するためのモデム 33 と、これらの各種機器を制御する制御装置 34 とを備えている。

図 12 は、基地局 B C で状態信号などを受信してサービス工場へ送信するためにの処理手順を示すフローチャートである。通信衛星 C S からの信号を受信すると、基地局 B C の制御装置 34 は図 12 のプログラムを起動する。ステップ S 30 1
では、受信した信号を記憶装置32にいったん格納する。ステップS302では、受信した状態信号のヘッダに記録されている識別子HDから油圧ショベルを識別し、図13に示すように、油圧ショベルごとに受信信号を分類する。ステップS303では、識別された油圧ショベルに基づいて（識別子に基づいて）、担当するサービス工場を識別し、図14に示すように、サービス工場ごとに油圧ショベルの受信信号としてまとめる。ステップS304では、あらかじめ記憶装置32に作成されているデータベースから、識別したサービス工場の電話番号をそれぞれ読み出し、ステップS305において、ステップS303でまとめた信号をモデム33を介して各サービス工場へ送信する。

油圧ショベルの現在地にもっとも近いサービス工場へ受信信号を送信してもよい。また、基地局BCから各サービス工場SFへの各種情報の送信は、専用回線やLAN回線などであってもよい。たとえば、基地局BCとサービス工場SFが油圧ショベルのメーカの施設であれば、いわゆる社内LAN（インフラネット）により各種情報を授受してもよい。

図15は、サービス工場SFにおける情報管理のための構成を示すブロック図である。サービス工場SFには、基地局BCから一般公開回線網PCを経由して送られてくる信号を受信するモデム41と、モデム41で受信した信号を格納する記憶装置42と、種々の演算処理を実行する処理装置43と、処理装置43に接続された表示装置44やプリンタ45と、キーボード46とを備えている。処理装置43は、記憶装置42に格納された状態信号（日報データ）に基づいて、日報を作成し、油圧ショベルのコントローラ20で演算されている負荷頻度分布をグラフ形式で表示するための演算処理を行い、油圧ショベルごとにメンテナンス時期を演算し、故障や異常の有無を判定し、巡回サービスの予定を作成する。

処理装置43にはデータベース47も接続されている。このデータベース47には、油圧ショベルごとのメンテナンスの履歴、過去の故障や異常の履歴、サービスの履歴などが格納されている。データベース47に蓄積されるデータは、巡回サービスに出向いたサービスマンが携帯情報端末装置51を用いて油圧ショベルの記憶装置21から収集したデータが含まれる。

情報端末装置51に通信機能を設けてもよい。この場合、サービスマンが携帯
報端末装置 51 のキー入力により各種情報を入力し、通信により各種情報をデータベース 47 へ入力してもよい。

図 16 は、サービス工場で受信した状態信号、警報信号、故障信号に基づいて、処理装置 43 が実行する各種の処理手順を示すフローチャートである。状態信号、警報信号あるいは故障信号を受信すると、サービス工場の処理装置 43 は図 16 のプログラムを起動する。ステップ S41 では、受信した状態信号、警報信号あるいは故障信号を記憶装置 42 に格納する。ステップ S42 では、受信した信号の識別子 HD から油圧ショベルを識別する。受信信号が複数の油圧ショベルに関する場合には、それぞれの油圧ショベルを識別して受信信号を適宜の順番に並べる。

ステップ S43 では、第 1 番目の油圧ショベルについて受信した信号が日報データか、警報信号あるいは故障信号かを判定する。日報データの場合には、ステップ S44 において、識別された油圧ショベルの識別子によりデータベース 47 をアクセスして、該当油圧ショベルの過去の履歴を読み出す。ステップ S45 では、記憶装置 42 から日報データを読み出し、ステップ S46 において、図 18 に示すような日報を作成する。日報の具体例については後述する。ステップ S47 では、日報データとデータベース 47 から読み出された過去のメンテナンス情報に基づいて、次回のメンテナンス時期を算出する。その後、ステップ S48 において、すべての油圧ショベルの受信信号について処理が終了していないと判定されると、ステップ S43 に戻って、次の油圧ショベルの受信信号について同様の処理を行う。ステップ S48 ですべての受信信号に対する処理が終了したと判定されると、ステップ S49 に進み、巡回サービスの予定を作成する。この予定作成方法については後述する。

ステップ S43 において、受信した信号が警報信号あるいは故障信号と判定されると、ステップ S50 に進み、記憶装置 42 から警報信号あるいは故障信号を読み出す。ステップ S51 では、読み出された警報信号あるいは故障信号に対する対処法をデータベース 47 から読み出す。ステップ S52 では、読み出された対処法を基地局 B C を経由、もしくは移動体通信システムを経由して、該当する油圧ショベルへ送信する。油圧ショベルの電話番号はサービス工場の記憶装置 4
2にあらかじめ格納されている。油圧ショベルへ送信するデータのヘッダには油圧ショベルの識別子が設けられ、それに引き続いて対処法を表示するためのデータが設けられる。データ送信後、ステップS５３において、サービスマンを作業地区へ派遣するための処理を実行する。そして、ステップS５４において、すべての油圧ショベルの受信信号に対して処理が終了していないと判定されると、ステップS４３に戻って同様な処理を繰り返し実行する。すべての油圧ショベルの受信信号に対する処理が終了すると、この処理を終了する。

図１７は、図１６のステップＳ５３で実行するサービスマン派遣のための処理手順を示すフローチャートである。たとえば、すべてのサービスマンにＧＰＳ受信機を携帯させ、所定時間間隔でサービス工場に送信される現在地信号をサービス工場の記憶装置４２に格納しておく。そして、図１７のステップＳ６１において、記憶装置４２からすべてのサービスマンの現在位置を読み込み、ステップＳ６２において、該当する油圧ショベルの作業地区にもっとも近いサービスマンを検索する。そして、ステップＳ６３に進み、そのサービスマンの携帯情報端末装置５１に対して、該当する油圧ショベル、作業地区、警報や故障の内容、故障の対処法、持参する部品を基地局ＢＣを経由し、もしくは移動体通信システムを経由して送信する。

なお、サービスマンの作業予定をデータベース化しておき（図２２参照）、空き時間のあるサービスマンを検索してもよい。また、そのときに部品発注を自動的に部品管理部門へ連絡するようにしてもよい。

図１８は、サービス工場が受信する状態信号（日報データ）に基づいて作成される日報データの一例を示す。日報は、各油圧ショベルについて毎日作成され、図１８は、たとえばA社の所有する253号機の2000年3月16日付けの日報である。第1頁には、エンジン稼働時間、走行操作時間、旋回操作時間、フロント操作時間の累積時間と、3月16日に行われた作業に関する時間が表示される。第2頁にはメンテナンス情報が表示され、たとえば、エンジンオイルフィルタ交換まで100時間、エンジンオイル交換まで60時間のように、メンテナンス対象部品、対象部位ごとの時間が表示される。

この日報は、サービス工場でプリントアウトされて各サービスマンに配布され
る。電子メールでサービスマンに配布してもよい。図18で示す日報を油圧ショベル253号機へ送信して運転席のモニタ25に表示したり、ユーザであるA社の管理部門へ送信するようにしてもよい。

ここで、図16に示したステップS49の巡回サービスの予定作成について説明する。図19A～19Cは、メンテナンス予定表の一例を示す図である。図19Aは走行ローラに関するメンテナンス予定を、図19Bはブッシュに関するメンテナンス予定を、図19Cはビンに関するメンテナンス予定を表している。各油圧ショベルのエンジン稼働時間、走行操作時間、旋回操作時間、フロント操作時間の累積時間は状態信号（日報データ）としてサービス工場で受信されるので、エンジン稼働時間と各操作時間に基づいて、各部品が交換時期に達しているかを判定する。

たとえば、走行ローラの推奨交換時間が2000時間の場合、油圧ショベルa1の現在までの走行操作時間が1850時間を越えると、交換時期まで150時間以内となり、メンテナンス時期であると判定し、油圧ショベルa1の巡回サービスを150時間以内に予定する。図19Aでは今月のメンテナンス予定に油圧ショベルa1が表示されている。その他の号機も同様である。

ブームの回動軸に設けられるブッシュの推奨交換時間が3000時間の場合、同じA地区の油圧ショベルa2の現在までのフロント稼働時間が2950時間を越えると、交換時期まで50時間以内となり、メンテナンス時期であると判定し、油圧ショベルa2の巡回サービスを50時間以内に予定する。図19Bでは今月のメンテナンス予定に油圧ショベルa2が表示されている。その他の号機も同様である。

さらに、バケットの回動軸に設けられるビンの推奨交換時間が4000時間の場合、同じA地区の油圧ショベルa6の現在までのフロント稼働時間が3920時間を越えると、交換時期まで80時間以内となり、メンテナンス時期であると判定し、油圧ショベルa3の巡回サービスを80時間以内に予定する。図19Cでは今月のメンテナンス予定に油圧ショベルa6が表示されている。その他の号機も同様である。

このようなメンテナンス時期を、地区Aで稼働している油圧ショベルa1～a
n、地区Bで稼働している油圧ショベルb1～bn、地区Cで稼働している油圧ショベルc1～cnに対して算出すると、図19A～Cに示すようなメンテナンス予定のチャートが作成される。なお、地区A～Cは同一サービス工場の管轄とする。

図19A～19Cに示したメンテナンス予定表に基づいて、メンテナンスに必要な部品が事前にわかる。したがって、この予定表に基づいて部品の手配を行うようにしてもよい。ここで、部品の手配は、たとえば、サービス工場に付設する部品センターに対して、部品の発注書を社内のインフラネット経由で自動送付することにより完了する。また、予定表および部品手配にしたがって、メンテナンス費用を算出し、それをユーザに送付してもよい。

図19A～Cに示したメンテナンス予定を作成する場合、対象部品の現在までの使用時間と、あらかじめ設定した標準的なメンテナンス時間とを比較してメンテナンス時期を算出した。しかしながら、油圧ショベルでは、作業現場、作業内容により使用負荷の状態が大きく異なる。そのため、負荷状態に応じてメンテナンス時期を可変するのが好ましい。

負荷状態を算出するため、油圧ショベルから毎日定期的に送信されてくる日報データに基づいて、図20A、図20Bに示すように走行負荷頻度分布、フロント（掘削）負荷頻度分布を棒グラフ表示する。また、標準的な走行負荷頻度分布と掘削負荷頻度分布をあらかじめ設定しておく。そして、演算された負荷頻度分布が標準的な負荷頻度分布に比べて軽負荷側で運転されているか、重負荷側で運転されているかを判定し、この判定結果に応じて次式にしたがってメンテナンス時間を算出する。

重負荷運転のメンテナンス時間 = 標準メンテナンス時間 × α

軽負荷運転のメンテナンス時間 = 標準メンテナンス時間 × β

ただし、αは1未満の値、βは1を超えた値であり、あらかじめ実験などにより決定しておく。

以上のメンテナンス時間の算出に当たっては、たとえば対象部品が走行ローラであれば走行負荷頻度分布が重負荷か軽負荷かによりメンテナンス時間を算出する。あるいは、対象部品がブッシュであれば掘削負荷頻度分布が重負荷か軽負荷
かによりメンテナンス時間を算出する。すなわち、対象部品と関連する負荷頻度分布を考慮してメンテナンス時間を可変とする。

なお、以上の計算式により負荷に応じてメンテナンス時間を算出する代わりに、あらかじめ重負荷メンテナンス時間、標準負荷メンテナンス時間、および軽負荷メンテナンス時間をテーブルとして設け、負荷に応じて使用テーブルを選択するようにしてもよい。

あるいは、サービス工場SFのデータベース４７から前回のメンテナンス状況の履歴を読み出し、その履歴に応じてメンテナンス時間を可変としてもよい。すなわち、前回のメンテナンス時間が標準的なメンテナンス時間よりも短いとき、あるいは長いときは、今回のメンテナンス時間を前回までのメンテナンス時間に変更して、メンテナンスの時期を算出する。

次に、１人のサービスマンがもっとも効率よく複数の作業地区へ巡回する方式について説明する。図２１は、作業地区Ａで稼働している油圧ショベル a１～ a５のメンテナンス予定表を示す。このメンテナンス予定表はサービス工場の処理装置４３で演算される。油圧ショベル a１は 3月6日～3月17日の間にメンテナンス予定が設定され、油圧ショベル a２は 3月9日～3月17日の間にメンテナンス予定が設定され、油圧ショベル a３は 3月16日～3月24日の間にメンテナンス予定が設定され、油圧ショベル a４は 3月15日～3月23日の間にメンテナンス予定が設定され、油圧ショベル a５は 3月17日～3月22日の間にメンテナンス予定が設定されている。メンテナンス予定の設定は、たとえば、メンテナンスまでの残り時間と当該油圧ショベルの1日の平均稼働時間などから交換時期を予想して求める。

図２１からわかるように、3月10日に作業地区Ａを巡回すると油圧ショベル a１と a２の2台のメンテナンスが同時に行える。3月17日に巡回すれば油圧ショベル a１～ a５の5台のメンテナンスが同時に行える。3月21日に巡回すれば油圧ショベル a３～ a５の3台のメンテナンスが同時に行える。したがって、3月17日に巡回するのがもっとも少ない巡回回数でメンテナンス作業が完了し、効率がよい。

なお、図２１の各号機のメンテナンス予定表に加えて、図２２に示すサービス
マンの日程表も考慮して最終的なメンテナンス予定を作成すれば、サービスマンの巡回の可否を反映した、精度の高いメンテナンス予定を作成することができる。

このように、処理装置 4.3 よりももっとも効率よく巡回する方法が演出される。図 2 1 では、作業地区 A の油圧ショベル a 1 〜 a 5 について説明した。しかしながら、異なる 2 以上の作業地区の油圧ショベルをもっとも効率よく巡回するように演算することも簡単にする。たとえば、同じ作業地区への巡回する回数をもっとも少なくする、複数の作業地区への最短経路で巡回するなどである。

図 1 6 のフローチャートでは、サービス工場が受信した信号に警報信号や故障信号が含まれているとき、そのステップ S 5 0 〜 S 5 4 において、データベース 4 7 から対処法を読み出して油圧ショベルへ送信するものとした。しかしながら、警報の指示や故障内容によってはオペレータに知らせる必要のないものもある。たとえば、油圧ショベルのコントローラ 2 0 内のエプロムや RAM の異常などは、オペレータに報知しても意味がなく、かえって混乱するもととなる。したがって、警報や故障の内容に応じて油圧ショベルへ対処法を送信する必要性を決定するのが好ましい。油圧ショベルへ送信する必要がない警報内容や故障内容はサービスマンにだけ通知する。

図 1 6 のフローチャートでは、サービス工場が受信した信号に警報信号や故障信号が含まれているとき、そのステップ S 5 0 〜 S 5 4 において、データベース 4 7 から対処法を読み出して油圧ショベルへ送信するものとした。しかしながら、直ちに機械を停止する必要がある故障内容の場合には、対処法を送信する代わりに、エンジンを停止する信号を油圧ショベルへ送信するのが好ましい。この場合、「エンジンを自動停止します。サービスマンが到着するまでエンジンを再起動しないで下さい」などのメッセージを、運転席のモニター 2 5 に表示する。したがって、エンジン停止信号とともにメッセージを表示する信号を同時送信する。あるいは、ブームシリンダ C 1 を降ろす方向に操作する信号も送信し、安全性の高い姿勢に自動的に駆動してもよい。

以上の説明では、警報信号や故障信号に基づいてサービス工場のデータベース 4 7 から対処法を読み出すようにした。しかしながら、複数種類の故障信号が同
時に送信されてくる場合、故障信号の組み合わせによって対処法を演算できないことも予想される。そこで、サービス工場の処理装置４３にＡＩ（人工知能）装置を接続し、警報信号や故障信号に基づいて、対処内容などを推論して対処法を求めてもよい。

また以上では、状態信号（日報データ）は夜間に定時送信するものとした。しかしながら、日報データ送信用スイッチを運転席に設け、この送信用スイッチオンで日報データを送信するようにしてもよい。あるいは、エンジン停止時もしくは起動時に日報データを送信するようにしてもよい。

以上では日報データに基づいて図１８に示す日報を作成するものとした。しかしながら、図２３Ａ、図２３Ｂに示すように、エンジン稼働時間分布を含んだ日報を作成してもよい。図２３Ａは、総稼働時間、掘削時間、旋回時間、走行時間、ブレーキ時間、ブレーキ外のアタッチメントの駆動時間、無負荷の累積時間をそれぞれバーグラフ表示したものである。これらの累積時間は油圧ショベルのコントローラ２０から送られてくる１日ごとの稼働時間に基づいて、サービス工場で作成され、バークラフ表示される。また、図２３Ｂは月別のエンジン稼働時間とアイドル時間を棒グラフ表示したものである。月別のエンジン稼働時間とアイドル時間も油圧ショベルのコントローラ２０から送られてくる１日ごとの稼働時間に基づいて、サービス工場で作成され、棒グラフ表示される。

上述したように、油圧ショベルには燃料残量センサ１５に搭載されている。したがって、燃料残量センサ１５からの信号を使用して、コントローラ２０により、単位時間あたりの燃料消費量や燃料消費率を演算することもできる。これらの燃料消費量や燃料消費率を日報データとして油圧ショベルから送信すれば、サービス工場において燃料消費量や燃料消費率をビジョナル表示することができる。

たとえば、１時間あたりの燃料消費量、稼働分消費量、待機分消費量、および6ヶ月合計消費量を算出して、日報として出力することができる。１時間あたりの燃料消費量は、１日の燃料消費量を１日のエンジン稼働時間で割って算出される。稼働分消費量は実施に作業を行っている間に消費された燃料消費量であり、待機分消費量は無負荷でエンジンが駆動されている間に消費された燃料消費量で
ある。6ヶ月合計消費量は文字通り6ヶ月間の燃料消費量の積算値である。また、待機分消費量があらかじめ定めた基準値よりも多いときは、「待機分消費量を減らして省エネルギー運転を心がけて下さい」のようなメッセージを出力する。

稼働分消費量を算出するためには、稼働状況と燃料消費量とを対応づける必要がある。たとえば、図24に示すように、走行操作時間、旋回操作時間およびフロント操作時間を演算する図7の処理の中で燃料消費量を算出する。走行、旋回、あるいは掘削のパイロット圧力が所定値以上となると、すなわち、それらの操作が開始されると、ステップS5において稼働分燃料消費量F1を読み込み、ステップS6において燃料残量センサ15fの計測値を読み込んで変数F6に代入する。パイロット圧力が所定値未満になると、すなわち、上記の各操作が終了するとステップS7へ進み、燃料残量センサ15fの計測値を読み込んで変数F7に代入する。ステップS8において、F6=F7+F1を演算して稼働分燃料消費量F1を更新する。これ以外にも燃料に関する情報を様々な観点から加工して日報とすることもできる。

なお、以上では、油圧ショベルa1~c1nからの信号を通信用衛星CSを利用して基地局BCへ送信し、基地局BCからサービス工場SFへ一般公衆回線網PCを介して信号を送信するものとした。しかしながら、通信衛星を使用せず、PHS電話、携帯電話などの移動体通信システムを利用して油圧ショベルからの信号を送信してもよい。また、油圧ショベルからの信号をサービス工場で種々の形態に加工出力するようにしたが、油圧ショベル管理者の施設（メーカのサービス工場、ユーザの管理部門）に信号を送信して、同様な情報の加工出力を行っているものが多い。この場合、油圧ショベルにIDカード読取装置を持ち込んでおくとオペレータの勤務時間の管理にも使用できる。すなわち、作業開始時に、オペレータが自分のIDカードをIDカード読取装置で読みとらせる。この情報を日報データのエンジン始動時刻と停止時刻とともに油圧ショベル所有者の施設、たとえば人事部門に送信する。人事部門では、送信されてきたID情報とエンジン始動時刻および停止時刻に基づいて、オペレータの勤務時間を管理し、給与計算に使用することもできる。あるいは、日報データに基づいて、油圧ショベルの作業量、たとえば掘削仕様量などを演算することもできる。
油圧ショベル管理者をレンタル業者としてもよい。

なお、故障対処法をサービスマンへ送信する際、油圧ショベルの号機、稼働現場、故障内容、対処法、持参する部品なども併せて送信するものとし、サービス工場において、サービスマンがいる地点から油圧ショベルの稼働現場までの道路地図を検索し、道路地図を併せて送信してもよい。さらに、サービスマンの車両にナビゲーション装置を搭載しておき、サービス工場において、サービスマンがいる地点から油圧ショベルの稼働現場までの最適経路を探索し、その探索結果にしたがってナビゲーション装置のモニタ上で経路誘導してもよい。経路探索はナビゲーション装置で行ってもよい。

以上では、油圧ショベルのセンサ群１０で検出した警報信号と故障信号をサービス工場で受信し、サービス工場で故障内容を判定し、その対処法を演算するようにした。しかしながら、油圧ショベルのコントローラ２０において、警報信号と故障信号に基づいて故障内容を判定し、故障内容を表すコード、たとえば、異常フラグや異常コードをサービス工場へ送信し、サービス工場でその異常フラグや異常コードによりデータベースを検索して対処法を求めてもよい。

さらに以上では、油圧ショベルの状態信号を通信衛星ＳＣおよび基地局ＢＣを経由してサービス工場ＳＦへ送信するようにしたが、通信衛星ＣＳからの信号をサービス工場で直接受信するようにしてもよい。

あるいは、図２５に示すように、一般公衆回線網ＰＣを経由して無線基地局ＢＣＡと油圧ショベル製造工場ＯＷとを結び、油圧ショベル製造工場ＯＷと複数のサービス工場ＳＦ１〜ＳＦｎを専用回線を使用して接続（インターネット）してもよい。この場合、図２６に示すように、図１１に示した無線基地局ＢＣＡ内のシステムと同様なシステムを油圧ショベル製造工場ＯＷに設ける。

図２６において、製造工場ＯＷには、通信衛星ＣＳから送信されてくる信号を無線基地局ＢＣＡおよび一般公衆回線網ＰＣを介して受信するモデム３１Ａと、モデム３１Ａで受信した信号を格納する記憶装置３２Ａと、サービス工場へ送信すべきデータを専用回線を介して送信するためのモデム３３Ａと、これらの各種機器を制御する制御装置３４Ａとを備えている。そして、制御装置３４Ａにより図１２と同様な処理を実行する。油圧ショベル製造工場ＯＷの機能を油圧ショベル
ル製造メーカーの本社機能あるいは前述したレンタル業者内に設けてもよい。
また、油圧ショベルを例にして説明したが、本発明は油圧ショベル以外の建設機械やその他の作業車両を含む作業機に広く適用できる。
請求の範囲

1.
作業機の各部の状態を検出し、
検出された状態を表す状態信号を送信し、
前記状態信号を受信し、
受信した前記状態信号に基づいて、前記作業機の各部の状況を示すレポートを作成する作業機レポート作成方法。

2.
請求項1に記載の作業機レポート作成方法において、
前記レポートには作業機各部の稼働時間および燃料消費量に関する情報の少なくともいずれか一方を含む。

3.
請求項2に記載の作業機レポート作成方法において、
前記稼働時間は、走行稼働時間、旋回稼働時間、掘削稼働時間を含む。

4.
請求項2に記載の作業機レポート作成方法において、
前記燃料消費量に関する情報は、実際に作業を行っている稼働分燃料消費量および無負荷時の燃料消費量の少なくともいずれか一方を含む。

5.
作業機の各部の状態を検出する状態検出装置と、
前記状態検出装置で検出された状態を表す状態信号を送信する送信機と、
前記送信機から送信された前記状態信号を受信する受信機と、
前記受信機で受信した状態信号に基づいて、前記作業機の各部の状況を示すレポートを作成するレポート作成装置とを備える作業機レポート作成システム。
6. 請求項5の作業機レポート作成システムにおいて、
前記レポートには作業機の稼働時間および燃料消費量に関する情報の少なくともいずれか一方を含む。

7. 請求項6の作業機レポート作成システムにおいて、
前記稼働時間は、走行稼働時間、旋回稼働時間、掘削稼働時間を含む。

8. 請求項6に記載の作業機レポート作成システムにおいて、
前記燃料消費量に関する情報は、実際に作業を行っている稼働分燃料消費量および無荷重時の燃料消費量の少なくともいずれか一方を含む。

9. 請求項5～8のいずれかに記載の作業機レポート作成システムにおいて、
前記レポート作成装置は、作業機とは別の場所に設置された作業機監視施設に設けられている。

10. 作業機から送信されてくる作業機各部の状態を示す状態信号を受信し、
受信した前記状態信号に基づいて、前記作業機の各部の状況を示すレポートを作成する作業機レポート作成装置。

11. 作業機から送信されてくる作業機各部の状態を示す状態信号を受信する受信機と、
受信した前記状態信号に基づいて、前記作業機の各部の状況を示すレポートを作成するレポート作成装置とを備える作業機レポート作成装置。
12．
作業機から送信される作業機各部の状態を示す状態信号を受信し、
受信した前記状態信号に基づいて、前記作業機の各部の状況を示すレポートを作成する作業機レポート作成方法。
FIG.6

アワメータ計測値格納領域 R1
走行操作時間格納領域 R2
旋回操作時間格納領域 R3
フロント操作時間格納領域 R4
その他の格納領域 R5
...
その他の格納領域 Rn

記憶装置21
9/22

FIG. 9

警報・故障検出

S 21 内容に応じて記憶装置へ格納

S 22 サービス工場へ送信必要か？

Y 運転席のモニタへ故障内容とサービス工場へ送信した旨を表示

N 運転席のモニタへ警報内容を表示

S 23

S 24 警報、故障データの読み出し

S 25 送信データへの加工

S 26 送信機へ送出

S 27 送信機から送信

S 28 サービス工場からの指示有り

N 所定時間経過

Y 運転席のモニタへ対処法を表示

S 29

送信機のモニタへ「サービス工場へ連絡して下さい」のメッセージを表示

リターン
FIG.12

11/22

基地局受信

S301 受信信号を記憶装置へ格納

S302 油圧ショベルごとに受信信号を分類

S303 サービス工場ごとに受信信号をまとめる

S304 サービス工場の電話番号を判別する

S305 各サービス工場へデータを送信する

リターン

FIG.13

<table>
<thead>
<tr>
<th>号機</th>
<th>現在地</th>
<th>アウトレット</th>
<th>走行操作時間</th>
<th>旋回操作時間</th>
<th>ブレーキ操作時間</th>
</tr>
</thead>
<tbody>
<tr>
<td>a1</td>
<td>X1Y1</td>
<td>1850</td>
<td>300</td>
<td>360</td>
<td>650</td>
</tr>
<tr>
<td>a2</td>
<td>X1Y1</td>
<td>2025</td>
<td>200</td>
<td>400</td>
<td>1300</td>
</tr>
<tr>
<td>b1</td>
<td>X2Y2</td>
<td>4500</td>
<td>800</td>
<td>2210</td>
<td>1000</td>
</tr>
<tr>
<td>b2</td>
<td>X2Y2</td>
<td>1000</td>
<td>100</td>
<td>200</td>
<td>600</td>
</tr>
<tr>
<td>c1</td>
<td>X3Y3</td>
<td>3450</td>
<td>400</td>
<td>500</td>
<td>1460</td>
</tr>
<tr>
<td>c2</td>
<td>X3Y3</td>
<td>2150</td>
<td>300</td>
<td>400</td>
<td>1200</td>
</tr>
</tbody>
</table>
FIG. 14

サービス工場				
SF1	a1	...	a2	...
SF2	b1	...	b2	...
SF3	c1	...	c2	...

FIG. 15

1. 基地局BCから
2. モデム
3. 記憶装置
4. データベース
5. 処理装置
6. 表示装置
7. プリンタ
8. キーボード
9. サービス工場SF
10. 携帯用情報端末装置
FIG. 17

サービスマン派遣

S 6 1 サービスマンの現在地を読み込み

S 6 2 該当する油圧ショベルに最も近いサービスマンを検索

S 6 3 サービスマンへデータを送信

リターン
A社 殿 No.1

<table>
<thead>
<tr>
<th>日時</th>
<th>機械</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000年3月16日</td>
<td>253号機</td>
</tr>
</tbody>
</table>

エンジン稼働時間

<table>
<thead>
<tr>
<th>日時</th>
<th>時間</th>
</tr>
</thead>
<tbody>
<tr>
<td>累積</td>
<td>1640時間</td>
</tr>
<tr>
<td>3月15日</td>
<td>9時間</td>
</tr>
</tbody>
</table>

走行操作時間

<table>
<thead>
<tr>
<th>日時</th>
<th>時間</th>
</tr>
</thead>
<tbody>
<tr>
<td>累積</td>
<td>115時間</td>
</tr>
<tr>
<td>3月15日</td>
<td>1時間</td>
</tr>
</tbody>
</table>

旋回操作時間

<table>
<thead>
<tr>
<th>日時</th>
<th>時間</th>
</tr>
</thead>
<tbody>
<tr>
<td>累積</td>
<td>621時間</td>
</tr>
<tr>
<td>3月15日</td>
<td>2時間</td>
</tr>
</tbody>
</table>

プロント操作時間

<table>
<thead>
<tr>
<th>日時</th>
<th>時間</th>
</tr>
</thead>
<tbody>
<tr>
<td>累積</td>
<td>1073時間</td>
</tr>
<tr>
<td>3月15日</td>
<td>4時間</td>
</tr>
</tbody>
</table>

メンテ情報 No.2

メンテまでの時間

<table>
<thead>
<tr>
<th>作業</th>
<th>時間</th>
</tr>
</thead>
<tbody>
<tr>
<td>エンジンオイルフィルタ交換</td>
<td>100時間</td>
</tr>
<tr>
<td>エンジンオイル交換</td>
<td>60時間</td>
</tr>
<tr>
<td>エアフィルタ交換</td>
<td>300時間</td>
</tr>
<tr>
<td>グリスアップまで</td>
<td>160時間</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>
FIG.19A

<table>
<thead>
<tr>
<th>ローラに関するメンテ予定</th>
<th>A地区</th>
<th>B地区</th>
<th>C地区</th>
</tr>
</thead>
<tbody>
<tr>
<td>今月</td>
<td>a_1, a_{n-1}</td>
<td>b_2, b_{m-5}, b_n</td>
<td>c_3, c_5</td>
</tr>
<tr>
<td>来月</td>
<td>a_3, a_5, a_{10}</td>
<td>b_3</td>
<td>—</td>
</tr>
<tr>
<td>翌々月</td>
<td>—</td>
<td>b_1, b_2</td>
<td>c_1, c_2</td>
</tr>
</tbody>
</table>

FIG.19B

<table>
<thead>
<tr>
<th>ブッシュに関するメンテ予定</th>
<th>A地区</th>
<th>B地区</th>
<th>C地区</th>
</tr>
</thead>
<tbody>
<tr>
<td>今月</td>
<td>a_2, a_5</td>
<td>b_1</td>
<td>—</td>
</tr>
<tr>
<td>来月</td>
<td>—</td>
<td>b_4</td>
<td>c_2, c_4</td>
</tr>
<tr>
<td>翌々月</td>
<td>—</td>
<td>b_{n-1}, b_5</td>
<td>c_{n-1}, c_3</td>
</tr>
</tbody>
</table>

FIG.19C

<table>
<thead>
<tr>
<th>ピンに関するメンテ予定</th>
<th>A地区</th>
<th>B地区</th>
<th>C地区</th>
</tr>
</thead>
<tbody>
<tr>
<td>今月</td>
<td>a_6</td>
<td>b_2, b_n</td>
<td>c_4, c_6</td>
</tr>
<tr>
<td>来月</td>
<td>a_8, a_9</td>
<td>—</td>
<td>c_7, c_8</td>
</tr>
<tr>
<td>翌々月</td>
<td>—</td>
<td>b_3, b_1</td>
<td>c_{n-2}, c_{n-1}</td>
</tr>
</tbody>
</table>
FIG.20A

走行荷重頻度（Mpa）

FIG.20B

掘削荷重頻度（Mpa）
FIG.22

<table>
<thead>
<tr>
<th>サービスマン日程表（3月）</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>サービスマンA</td>
<td>↔</td>
<td>↔</td>
<td>↔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>サービスマンB</td>
<td>↔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>サービスマンC</td>
<td>↔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
FIG.23A
稼働時間分析

FIG.23B
稼働時間分析

(Hr)
150
100
50
0
1月 2月 3月 4月 5月 6月
FIG.24

走行、旋回、フロント操作時間

S1 操作時間用タイマ起動
負荷頻度用タイマ起動

S5 燃焼分燃料消費量 F1 読み込み

S6 燃料残量 → FS

S2 パイロット圧所定値未満
Y → S2A
N

S3 操作時間用タイマ停止
負荷頻度用タイマ停止

S4 走行操作時間 Tt ← Tt ← TMt
旋回操作時間 Ts ← Ts ← TMs
フロント操作時間 Tf ← Tf ← TMf

リターン

S2A 負荷頻度用タイマが Δtf を計時

S2B 負荷頻度用タイマを読み取る

S2C 該当する圧力値の頻度に 1 を加算する

S2D 負荷頻度用タイマをリセット・再起動
INTERNATIONAL SEARCH REPORT

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Int.Cl E02F9/20, G05B23/02

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>JP, 11-213195, A (Yutani Heavy Ind. Ltd.), 06 August, 1999 (06.08.99), Full text; Figs. 1 to 4 (Family: none)</td>
<td>1-12</td>
</tr>
<tr>
<td>Y</td>
<td>JP, 7-166582, A (Hitachi Construction Machinery Co., Ltd.), 27 June, 1995 (27.06.95), Full text; Figs. 1 to 5 (Family: none)</td>
<td>1-12</td>
</tr>
<tr>
<td>Y</td>
<td>JP, 2584371, Y2 (Komatsu Ltd.), 30 October, 1998 (30.10.98), Full text; Figs. 1 to 2 (Family: none)</td>
<td>3,7</td>
</tr>
</tbody>
</table>

Date of the actual completion of the international search
07 June, 2001 (07.06.01)

Date of mailing of the international search report
19 June, 2001 (19.06.01)

Name and mailing address of the ISA/
 Japanese Patent Office

Authorized officer

Facsimile No.

Telephone No.

Form PCT/ISA/210 (second sheet) (July 1992)
A. 発明の属する分野の分類 (国際特許分類 (IPC))

Int. Cl E 02 F 9/20, G 05 B 23/02

B. 調査を行った分野

調査を行った国際分類 (国際特許分類 (IPC))

Int. Cl E 02 F 9/20, G 05 B 23/02

C. 環境と認められる文献

<table>
<thead>
<tr>
<th>引用文献の カテゴリー</th>
<th>引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する 論文の範囲の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>JP, 11-213195, A (油谷重工株式会社) 6.8月. 1999 (06.08.99) 全文, 第1-4図 (ファミリーなし)</td>
<td>1-12</td>
</tr>
<tr>
<td>Y</td>
<td>JP, 7-166582, A (日立建機株式会社) 27.6月. 1995 (27.06.95) 全文, 第1-5図 (ファミリーなし)</td>
<td>1-12</td>
</tr>
</tbody>
</table>

C欄の紙の折りにも文献が挙げられている。

パテントファミリーに関する別紙を参照。

* 引用文献のカテゴリ

「A」特に関連のある文脈ではなく、一般的技術水準を示すもの

「E」国際出願日前の出願または特許であるが、国際出願日に以後に公表されたもの

「L」優先権主張に直接して関連する文献又は他の文献の発行日若しくはその特別な理由を確立するために引用する文献 (理由を付す)

「O」口頭による説明、使用、展示等に意図する文献

「P」国際出願日前で、かつ優先権の主張の基礎となる出願

の日の後に公表された文献

「T」国際出願日又は優先日後に公表された文献であって出願と矛盾するものではなく、発明の算術的論理的な理解のために引用するもの

「X」特に関連のある文脈であって、当該文脈のみで発明の新規性又は進歩性が考えられるもの

「Y」特に関連のある文脈であって、当該文脈と他の1以上の文献との、当業者にとって自明である組合せによって進歩性がないと考えられるもの

「&」国際パテントファミリー文書
<table>
<thead>
<tr>
<th>引用文献のカテゴリ*</th>
<th>引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する請求の範囲の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>JP, 2584371, Y2 (株式会社小松製作所) 30.10.1998 (30.10.98) 全文, 第1-2図 (ファミリーなし)</td>
<td>3, 7</td>
</tr>
</tbody>
</table>

様式PCT／ISA／210（第2ページの続き）（1998年7月）