发明名称
电子键盘乐器

摘要
一种电子键盘乐器包括：键盘连接框架部件，所述键盘连接框架部件具有键盘部件；后框架部件，所述后框架部件连接到键盘连接框架部件的下表面的后部分并具有设置在其中的踏板。以及电子电路，所述电子电路在被激活时产生用于驱动键盘和放大器。电子电路被垂直地设置在后框架部件的后部主体部件的内表面上。孔部分和通风孔被设置在后部主体部件的底部。通风孔被设置在键盘连接框架部件上。
1. 一种电子键盘乐器，包括：

框架主体，所述框架主体包括键盘连接框架部件和后框架部件并具有形成在其中的空间部分，键盘连接框架部件具有键盘，后框架部件被连接到键盘连接框架部件的下表面的后部，并具有设置在其底部或者通过连接部件设置在其下面的脚控制器；以及

电子电路，所述电子电路在被激活时产生热；

其中所述电子电路设置在后框架部件的内部；与框架主体的外部相连通的第一通风孔被设置在位于电子电路之下的后框架部件的下部；以及

与框架主体的外部相连通的第二通风孔被设置在框架主体的位于电子电路之上的部分。

2. 根据权利要求1所述的电子键盘乐器，其特征在于，所述第二通风孔位于后框架部件上。

3. 根据权利要求2所述的电子键盘乐器，其特征在于，所述电子电路被形成在预定的平面上，并以这样的方式垂直设置，使得所述平面沿着后框架部件的内壁表面延伸。

4. 根据权利要求1所述的电子键盘乐器，其特征在于，所述第二通风孔位于键盘连接框架部件上。

5. 根据权利要求4所述的电子键盘乐器，其特征在于，所述电子电路被形成在预定的平面上，并以这样的方式垂直设置，使得所述平面沿着后框架部件的内壁表面延伸。

6. 根据权利要求1所述的电子键盘乐器，其特征在于，电源线入口被设置在框架主体的后表面上；所述第二通风孔位于电源线入口的周围区域中。

7. 根据权利要求6所述的电子键盘乐器，其特征在于，电子电路被形成在预定的平面上，并以这样的方式垂直设置，使得所述平面沿着后框架部件的内壁表面延伸。

8. 根据权利要求1-7中任一项所述的电子键盘乐器，其特征在于，脚控制器是从设置在后框架部件的底部的突出开口突出的踏板；所述突出开口用作第一通风孔。

9. 根据权利要求1-7中任一项所述的电子键盘乐器，其特征在于，所述电子电路包括电力变压器、电路板和放大器。
电子键盘乐器

技术领域

[0001] 本发明涉及电子键盘乐器，所述电子键盘乐器具有在被激活时产生热的电子电路。

背景技术

[0002] 通常，具有键盘的电子键盘乐器被用于音乐表演中。电子键盘乐器具有包括电源装置、变压器和各种电路板的电子电路。这样的电子键盘乐器的电子电路通常设置在乐器主体下面或者后面。相应地，位于键盘下面或者后面的乐器主体的一部分呈现较大的尺寸，导致电子键盘乐器的总尺寸变大。

[0003] 为了减小尺寸，例如日本实用新型申请公开出版物（KoKai）No.5-52893中所公开的特定的电子键盘乐器具有如下构造：电源装置和变压器被设置在用于支撑乐器主体的后部部分的后框架部件内部的底板上；以及在后框架部件内部的电源装置和变压器之上设置面板，计算板和用于驱动键的驱动电路板以及踏板被安装到所述面板上。

[0004] 但是，在上述的其中包括电源装置的电子电路设置在后框架部件的内部的电子键盘乐器进行音乐表演的过程中，电源装置和变压器产生热，所述热在后框架部件的内部上升。相应地，在电子键盘乐器中，在后框架部件中上升的热加热位于电源装置和变压器之上的面板。安装到面板上的驱动电路板包括对热敏感的元件。上述的电子键盘乐器涉及这样的问题，热会损坏那些对热敏感的元件或者缩短它们的寿命。

发明内容

[0005] 本发明有鉴于上述的问题而完成，本发明的一个目的是提供一种电子键盘乐器，其尺寸可以通过减小其主体的高度和深度而减小，并且可以避免电子电路中的热损坏或者类似的问题。

[0006] 为了实现上述目的，本发明提供了一种电子键盘乐器，包括：框架主体和电子电路。所述框架主体包括键盘连接框架部件和后框架部件并具有形成在其中的空间部分。键盘连接框架部件具有键盘。后框架部件被连接到键盘连接框架部件的下表面的后部并具有设置在其底部或者通过连接部件设置在其脚的脚控器。电子电路在被激活时产生热。在电子键盘乐器中，电子电路设置在后框架部件的内部，与后框架部件的外部连通的通风孔被设置在后框架部件的下部并设置在框架主体的位于电子电路上的部分上。

[0007] 在本发明的这样构造的电子键盘乐器中，电子电路被设置在后框架部件的内部，由此防止了与位于键盘之下的键盘连接框架部件和位于键盘后面的键盘连接框架部件相关的尺寸的增加。结果，电子键盘乐器的总的尺寸可以被减小。并且，由于通风孔被设置在框架主体的上部和下部，空气从一个通风孔进入并从另外一个通风孔排出，由此空气可以流经框架主体。在此情况下，优选地，空气这样流动，使得空气通过下通风孔进入后框架部件并通过上通风孔排出到后框架部件的外部。

[0008] 这样的空气流动有效地将电子电路所产生的热通过上通风孔带到后框架部件的
外部。这样，后框架部件内部的热的滞留得以防止，由此防止了将构成电子电路的各种电路板和器件加热到较高的温度。结果，即使当电子电路包括对热敏感的元件，电子电路也能够适当地工作。

[0009] 在此情况下，上通风孔被设置在电子电路之上，而下通风孔可以设置在电子电路之下或者之上。上通风孔可以设置在后框架部件或者键盘连接框架部件上，只要电子电路位于在上、下通风孔之间流动的空气通路中或附近，这样空气流将电子电路产生的热带到框架主体的外部。

[0010] 脚控制器可以设置在后框架部件的底部或者连接到后框架部件的下表面的连接部件的下端部。在脚控制器被设置在后框架部件的底部的情况下，突出开口可以被用作上升通风孔，并且踏板形式的脚控制器从所述突出开口突出。此外，电源线入口通常设置在电子键盘乐器的后表面上。根据本发明的通风孔可以设置在电源线入口的周围区域中。

[0011] 根据本发明的电子键盘乐器的另外的结构特征，电子电路形成在预定的平面上，并且垂直地设置，所述平面沿着后框架部件的内壁表面延伸。

[0012] 上述特征允许后框架部件的深度减小，由此允许电子键盘乐器的尺寸的减小。下通风孔被设置在电子电路之下的情况中，通过下通风孔进入后框架部件的空气沿着电子电路的表面上升，这样从电子电路产生的热可以从通风孔有效地释放到后框架部件的外部。在这种情况下，所述预定的平面可以是平板或者斜平面。

[0013] 在预定的平面是平面上的情况下，构成电子电路的器件被二维地排列在后框架部件的内壁表面上。

附图说明

[0014] 下面将参照附图并结合本发明的优选实施例来详细说明本发明，其中：

[0015] 图 1 是根据本发明的实施例的电子键盘乐器的平面视图；

[0016] 图 2 是图 1 的电子键盘乐器的前视图；

[0017] 图 3 是图 1 的电子键盘乐器的后视图；

[0018] 图 4 是图 1 的电子键盘乐器的平面图，面板、顶板部分和盖部分被从所述电子键盘乐器移除；

[0019] 图 5 是图 4 中所示的电子键盘乐器的后框架部件的内部的前视图；

[0020] 图 6 是沿着图 5 的线 6-6 所取的剖面图，以及

[0021] 图 7 是图 1 的电子键盘乐器的后视图。

具体实施方式

[0022] 下面将参照附图详细说明本发明的实施例。图 1-3 显示了根据本发明的电子键盘乐器 M。电子键盘乐器 M 包括键盘连接框架部件 10；后框架部件 20，所述后框架部件 20 支撑键盘连接框架部件 10 的后部中心部分；以及腿部 35a、35b，所述腿部 35a、35b 支撑键盘连接框架部件 10 的对应的前部相对侧部分。面板 36 被连接到键盘连接框架部件 10 的表面上，并在相对于深度方向的大约中心的位置处围绕后框架部件 20 的相对侧部和顶部。

[0023] 如图 1、2 中所示，键盘连接框架部件 10 为箱形，所述箱形在宽度的方向具有较长的长度并在高度方向具有较短的长度。键盘部件 11 被设置在键盘连接框架部件 10 的上表
面上朝向演奏者的一侧。键盘部件11包括多个用于演奏电子键盘乐器M的键。操作面板部分12设置在键盘连接框架部件10的上表面上的键盘部件11的后面。操作面板部分12包括多个控制器。顶板部分13被形成在键盘连接框架部件10的上表面上的操作面板部分12的后面。顶板部分13比键盘部件11和操作面板部分12的高度要高。折叠盖部分14被铰接到顶板部分13的前端表面上。

[0024] 盖部分14包括后盖14a和前盖14b。在盖部分14的闭合状态中，顶板部分13的前端表面的上边缘部分和后盖14a的后端表面的上边缘部分通过铰链15a连接；后盖14a的前端表面的上边缘部分和前盖14b的后端表面的上边缘部分通过铰链15b连接。从图3的状态中，折叠状态中的后盖14a和前盖14b围绕铰链15a一起向前旋转。然后，前盖14b围绕铰链15b向前旋转。结果，前盖和后盖14b和14a覆盖键盘部件11和操作面板部分12。

[0025] 乐谱架16a以可折叠的方式被铰接到后盖14a的下表面的后边缘部分的中心。支撑部分16b被设置在前盖14b的下表面的前端部分的中心处，以便当盖部分14被打开和折叠时将盖部分14支撑在直立状态。图4—6显示了电子键盘乐器M，其中顶板部分13、盖部分14和面板36从所述电子键盘乐器M移除，键盘连接框架部件10的内部和后框架部件20的内部被暴露。

[0026] 如图6中所示，检测装置17a和返回机构17b被设置在键盘连接框架部件10内部的键盘部件11和操作面板部分12之下。检测装置17a适于检测例如在键操作时所产生的键压力。返回机构17b用于限制各个键的上位置并将被按下的键返回到其上位置。检测装置17a包括驱动器、传感器和开关板。返回机构17b包括返回弹簧，以及用于设置各个键的上限位置和下限位置的制动器。不产生热或者产生较少的热的电路板被设置在键盘连接框架部件10的内部。

[0027] 如图7所示，凹部10a在键盘连接框架部件10的后表面的大致中心处形成。如图4所示，凹部10b和10c形成在键盘连接框架部件10的相对的后部角部处。凹部10a被用于向外延伸接线绳18，接线绳18用于将电子键盘乐器M连接到另外的设备。多个用于通风孔19a的小孔形成在前壁18a中，所述前壁用作凹部10a的前表面。多个用于通风孔19b的小孔形成在侧壁18b和18c中，所述侧壁18b和18c分别用作凹部10b和10c的侧表面（侧壁18c中的通风孔未示出）。多个用于通风孔19d的小孔形成在键盘连接框架部件10的底部10d的后部区域中。开口10e形成在将设置在凹部10a的侧部的底部10d中。

[0028] 后框架部件20具有箱形形式，所述箱形在宽度方向和高度的方向具有较长的长度，并结合到键盘连接框架部件10的下表面的后部中心部分，由此支撑键盘连接框架部件10的后部部分。后框架部件20包括位于其中的后部主体部件20a，位于后部主体部件20a的相对侧的扬声器盒30a、30b。后部主体部件20a具有类似长方体的箱形外形。后部主体部件20a的前壁部分21由弯曲曲板形成，所述弯曲曲板的相对宽度方向的中心部分向前弯曲。用作本发明的脚控制器的踏板22a、22b和22c设置在后部主体部件20a的底部，并在水平方向等间距地间隔开。

[0029] 孔部分23a、23b和23c形成在后部主体部件20a的前壁部分21a的底部区域中。踏板22a、22b和22c以这样的方式设置，以使得它们的前部部分在可垂直移动的条件下从对应的孔部分23a、23b和23c向前突出。孔部分24a、24b和24c也在对应踏板22a、22b和
22c 的后端部分的位置上形成在后部主体部件 20a 的后壁部分 21b 的底部区域中。相应地，后部主体部件 20a 的底部的内部可以通过孔部分 23a、23b、23c、24a、24b 和 24c 而通风。踏板传感器和驱动电路板（未示出）在后部主体部件 20a 的底部处被设置在踏板 22a、22b 和 22c 的附近。

[0030] 四部分式的电源线入口 25 在后部主体部件 20a 的后壁部分 21b 上的位于孔部分 24a、24b 和 24c 之上处形成。多个用作通风孔 26 的小孔被形成在电源线入口 25 的上前面部分 25a 中。用于从外部电源接收电力的连接装置 25b 被连接到电源线入口 25 的底部。诸如在被激活时产生热的电力变压器 27、电路板 28 和放大器 29 的各种器件被安置到后部主体部件 20a 的后壁部分 21b 的内表面上。诸如电力变压器 27 的器件构成根据本发明的电子电路。

[0031] 扬声器盒 30a、30b 是两侧对称的盒，每个盒具有长方体的形式，并设置在后部主体部件 20a 的相对侧。扬声器盒 31a、31b 被分别设置在扬声器盒 30a、30b 中，以便根据键和控制器的操作产生音乐声和声音效果。键盘连接框架部件 10 的底部 10d 用作各个扬声器盒 30a、30b 的上表面部分。形成在底部 10d 中的通风孔 19d 适于调整扬声器 31a、31b 的声音。为了方便声音通过，穿孔板被用于形成各个扬声器盒 30a、30b 的前表面部分。

[0032] 用作金属夹具 32a、32b 的角件被分别连接到扬声器盒 30a、30b 的外侧表面的下端部分。支撑突出 33a、33b 和 33c 被分别设置在后部主体部件 20a 的底表面的后端部分上的在宽度方向上的相对的端部区域和中心区域。支撑突出 33a、33b 和 33c 支撑后部主体部件 20a，这样后部主体部件 20a 的底表面与地板不直接接触。

[0033] 腿部分 35a、35b 被固定到键盘连接框架部件 10 的前部部分的宽度方向的相对的端部区域，由此支撑键盘连接框架部件 10 的前部部分。腿部分 35a、35b 的上部分的内部区域和后部区域分别通过加强元件 36a、36b 结合到键盘连接框架部件 10 的底表面。结果，腿部分 35a、35b 被更牢固地固定到键盘连接框架部件 10 上。支撑突出 37a、37b 也设置在腿部分 35a、35b 的对应的底表面上。支撑突出 33a、33b、33c、37a 和 37b 支撑电子键盘乐器 M 的主体，同时预定的间隙被保持在电子键盘乐器 M 的主体和地板之间。在电子键盘乐器 M 中，电路和各种器件通过配线（未示出）来连接。

[0034] 当这样构造的电子键盘乐器 M 将被演奏时，首先，演奏者将电源连接到所述连接装置 25b，并将接线绳 18 连接到需要演奏的装置，例如控制器，由此使得能够演奏电子键盘乐器 M。接着，演奏者打开盖部分 14，由此暴露键盘部件 11 和操作面板部分 12。然后，演奏者打开电源并操作键盘部件 11 的键盘部分 12 的控制器以及踏板 22a、22b 和 22c。结果，电子键盘乐器 M 根据键盘部件 11 的键盘部分 12 的控制器以及踏板 22a、22b 和 22c 的功能产生音乐声音和声音效果。

[0035] 在此情况下，空气通过孔部分 23a、23b、23c、24a、24b 和 24c 以及通风孔 26 进入后部主体部件 20a 的内部，并流经设置有电力变压器 27 等的后部主体部件 20a 内的空间。接着，空气通过形成在后部主体部件 20a 的上部分中的开口 10e 进入键盘连接框架部件 10，然后通过形成在键盘连接框架部件 10 的后表面中的通风孔 19a 或者通过形成在键盘连接框架部件 10 的侧表面中的通风孔 19b 流出到键盘连接框架部件 10 的外部。相应地，从电子电路中所产生的热通过空气流承载并有效地释放到电子键盘乐器 M 的外部，所述电子电路包括电力变压器 27 和放大器 29。
结果，可以防止这样的问题：设置在后部主体部件 20a 内部的电子电路的组成部分被加热，从而导致损坏或者失效。并且，由于没有热滞留在键盘连接框架部件 10 的内部，设置在键盘连接框架部件 10 内部的器件不会发生分离。由于热导致的损坏或者失效。这样，电子键盘乐器 M 的各部分可以适当地操作，这样从扬声器 31a、31b 适当地产生音乐声音和声音效果。

如上述所述，在根据本发明的电子键盘乐器 M 中，诸如电力变压器 27、电路板 28 和放大器 29 的电子电路的构成器件沿着后部主体部件 20a 的后壁部分 21b 的内表面设置。相应地，设置在键盘连接框架部件 10 内部的器件的数目减小，这样键盘连接框架部件 10 的尺寸可以减小。同样，后部主体部件 20a 的深度方向上的尺寸可以被减小。这样，电子键盘乐器 M 的总的尺寸可以被减小。此外，由于后部主体部件 20a 的前端部分 21a 被这样形成，使得其相对宽度方向的中心部分向前弯曲，因此可以获得充足的空间来容纳电子电路的构成器件和建立空气流动通路。这样，可以防止热滞留在器件间的空间中，否则，所述器件可能在狭窄的空间中被紧密地排列，并且空气流动比较困难。

孔部分 23a, 23b, 23c, 24a, 24b 和 24c 和通风孔 26 被设置在后部主体部件 20a 的下部；通风孔 19a, 19b 被设置在位于后部主体部件 20a 之上的键盘连接框架部件 10 上。相应地，空气通过形成在后部主体部件 20a 的下部处的各个孔部分进入后部主体部件 20a，并通过形成在键盘连接框架部件 10 上的各个通风孔而排出到键盘连接框架部件 10 的外部。这样，多个空气流通通路被形成在后部主体部件 20a 的内部以及键盘连接框架部件 10 的内部。因此，在不使用风扇等的情况下，在后部主体部件 20a 的内部产生热的随着空气的流动自然地释放到电子键盘乐器 M 的外部。

此外，孔部分 23a, 23b 和 23c 被设置在后部主体部件 20a 的前壁部分 21a 上；通风孔 26 以及通风孔 19a, 19b 在形成在后壁部分，诸如电源线入口 25 和四部 10a。相应地，即使当电子键盘乐器 M 被安置的方式使得其后壁表面位于壁表面的附近，空气流可靠地产生在后部主体部件 20a 的内部，这样从电子电路中产生的热通过空气流承载并有效地通过上通风孔释放到电子键盘乐器 M 的外部。相应地，不管电子键盘乐器 M 在什么地方放置，后部主体部件 20a 的内部的热的滞留可得到防止；这样，即使当设置在电子键盘乐器 M 中的器件包括对热敏感的元件，所述器件也可以适当地操作。

根据上述实施例的修改例，附加通风孔（未示出）可以形成在后部主体部件 20a 和扬声器盒 30a, 30b 之间的分隔壁部分中。后部主体部件 20a 内部的空气部分地通过形成在分隔壁部分中的通风孔而进入扬声器盒 30a, 30b，然后通过通风孔 19d 进入键盘连接框架部件 10。然后，空气通过通风孔 19a, 19b 播放到键盘连接框架部件 10 的外部。相应地，提高了热释放效果；并且，通风孔 19d 不仅用于调整声音质量而且提高通风性能。

根据本发明的电子键盘乐器 M 不限于上述的实施例，而是可以根据合适的其它形式来实施。例如，在上述的实施例中，通风孔 19a, 19b（通过它们由空气所承载的热被释放到电子键盘乐器 M 的外部）被设置在键盘连接框架部件 10 上。但是，通风孔 19a, 19b 可以设置在后部主体部件 20a 的上部部分，由孔部分 23a, 23b, 23c, 24a, 24b 和 24c 构成的下通风孔以及通风孔 26 被优选地设置在电子电路之下，但是也可以设置在等于或者稍高于电子电路的水平上。即使当下通风孔被设置在高于电子电路的水平上，由于热上升，热（如果有的话）被空气流承载，并释放到外部。
[0042] 在上述的实施例中，后部主体部件 20a 的下端部分延伸到地板附近。但是，后部主体部件的下端部分可以升的更高，从而踏板通过连接部件被设置在下端部分之下。在此情况下，下通风孔被设置在后部主体部件的底部。此外，根据本发明的电子键盘乐器结构可以被修改，诸如构成部件和部分的形状，而不背离本发明的范围。
图 1
图 3
图 6
图 7