US 20080115195A1

a9y United States

a2y Patent Application Publication o) Pub. No.: US 2008/0115195 A1

Malek et al.

(54)

(735)

(73)

@
(22)

REMOTE WORKFLOW SCHEDULE
AUTHORING

Inventors: Alexander Malek, Seattle, WA
(US); Phillip David Allen,
Redmond, WA (US); Stuart B.
Kolodner, Bellevue, WA (US)

Correspondence Address:
MICROSOFT CORPORATION
ONE MICROSOFT WAY
REDMOND, WA 98052-6399

Assignee: Microsoft Corporation, Redmond,
WA (US)

Appl. No.: 11/598,573

Filed: Nov. 13, 2006

VALIDATE WORKELOW
SCHEDULE
v 222
SEND WORKFLOW SCHEDULE|
TO SERVER
v 224
REQUEST SERVER
DISPLAY VALIDATION OF WORKFLOW | ------
ERRORS SCHEDULE
232 v 226
RECEIVE RESPONSE PO
230 228
YES
NO
CALL ASSOCIATEMETHOD |
ON SERVER
! 232
(END)

234

43) Pub. Date: May 15, 2008
Publication Classification
(51) Inmt. Cl
GO6F 21/00 (2006.01)
(52) US. Cl oottt 726/4
57 ABSTRACT

Methods, systems, apparatus, and computer-readable media
are provided herein for remotely authoring a worktlow
schedule. According to one method, a workflow schedule
authoring tool is provided that may utilize workflow action
proxies in place of actual workflow actions during author-
ing. Safeguards are also provided at various stages in the
authoring process to ensure that each workflow action
utilized in a workflow schedule has been authorized for use
in and execution by a workflow schedule. Workflow sched-
ules may also be provided with version numbers to ensure
that the same version of a workflow schedule is utilized
throughout the entire lifespan of a workflow instance.

[250

RECEIVE WORKFLOW
———————————— » SCHEDULE AND SAVE TO
DOCUMENT LIBRARY
¥ 262
VALIDATE WORKFLOW AND
———————————— » VERIFY THAT ACTIONS IN
WORKFLOW ARE SAFE
1 264
RETURN SUCCESS OR
““““““““ FAILURE RESPONSE
266
| ASSOCIATE WORKFLOW
“““““““ SCHEDULE
i 270
(END)
272

May 15, 2008 Sheet 1 of 9 US 2008/0115195 A1l

Patent Application Publication

ATLNdNOD dIAATS

0ct

mNH/\

It

801

T NOILVANNOd

-

MOIDRIOM

0'E XMOMIWVYI LAN"

SMOANIM N

21

XAVILIT INTWNOOd

ISI'T
SNOLLOV MOTDIIOM 14VS

1 9t

L~ SNOILOV MOTINIOM

NOILVOI'lddVY
JALLVIOGVTIOO .

|~

N WALSAS ONILVYIdO

1741

T814

901

AIOMLIN

dIINdNOD INIT'IO

QNHI\

9Il

S

(441

801

L1

NOILVANNOd
MOTDRIOM

— SMOJNIM

0°€ XRIOMIWVMI LIN”

YISMOYL

]

|~

SNOLLOV MOTIXIOM

S3IIXOo¥dd
NOILLOV MOTDIRIOM

—

N

ITNAIHIS MO'TINIOM

1001

ONRIOHLINV MOTDRIOM

\/

WAIILSAS ONILVIAdO

)
al

LN
8TL

L~
PIL

o1t

\
g
™~

May 15, 2008 Sheet 2 of 9 US 2008/0115195 A1l

Patent Application Publication

/N

957 t
LSI'TSNOILOV
MOTDIRIOM 3dVS NO aasvd
SNOLLOV 34V AJLINIAL

44

vivd

JOd 1SINCTA IATTDTA
Y

414

AINII'DD OL
SNOLLOV 40 LSI'T LINSNVIL

AXO¥d NOLLOV MOTDIIOM [« — — — —

A

A dIINdWNOD dIAYIS v

VIS

()

00t H

VLIVd AXO¥d NOILOV
MOTDIIOM I1SINOTA

¢d3Id3IN SNOLLOV

YIAAIS WOUL
SNOLLOV 40 ISI'T JAITILIY

07 4

YINOISIA
MOTIDIIOM HONNV'1

202 t

1001 ONIRIOHINV
MOTIIIOM HONNV'

h

m dIINdWOD INII'TD v

May 15, 2008 Sheet 3 of 9 US 2008/0115195 A1l

Patent Application Publication

em.NH

092

INTITO OL TAWX IIWSNVIL

86T 4

TWX OLNI-SNOILDV 3dVS 404
NOILVIWYOINI ALIIdOdd

ANV STIVO JZT'IVIdIS

k(4

514

MOTDRIOM d'Ind oL
YINOISIA MOTIIOM ISh

91¢

JOVIIILNI dISN YINDISIA

MOTDIEIOM AVISIA

414

+

avol
dNV SNOILDV 34VS 404

SAI'TANISSY AXOdd a'1nd

414

+

TNX JAIFOIY

May 15, 2008 Sheet 4 of 9 US 2008/0115195 A1l

Patent Application Publication

ue N vz
C and D) JCold (and)
0Lz i z67 i
4TNaIHOS P R AIANIS NO
MOTDRIOM ALVIDOSSY QOHLIW ALVIDOSSY TIVD
99z
ASNOJSTI TINTIV
||||||||||||||||||| >
¥0 SSID0NS NAINLTY ASNOASIH IAIIITT
59z i 97z ¥
2IVS 39V MOTDIRIOM TINAIHDS
NI SNOLLDV LVHLAdTNIA [4-————————===—=-—=~~1 MOTDINOM 40 NOLLVAITVA
ANV MOTDINOM LVATTVA ¥AANIS 1STNOTA
29C 3 572 3
Xavadl1ININND0d
¥IANAS OL
OL IAVS ANV TTNATHIS |4---—--=-===-—--———1
T IOM TATIT TNATHIS MOTDIIOM ANIS
444 4
TINAIHOS .
MOTDNIOM ALVAITVA
002 R
k. a

424

SYOYyd
AVIdSId

Patent Application Publication = May 15, 2008 Sheet 5 of 9 US 2008/0115195 A1

C EXECUTE VERSIONED
WORKFLOW

[300

302 X

EXECUTE
WORKFLOW?

NEW

INSTANCE OF
2

NO

A A 4

XECUTE PREVIOUSLY
INS‘FTANTIATED WORKFLOW GET LATEST VERSION OF
INSTANCE WORKFLOW SCHEDULE

306 308
A
VALIDATE ACTIONS IN

WORKFLOW AGAINST SAFE
WORKFLOW ACTIONS LIST

310

Y

COMPILE WORKFLOW
SCHEDULE INTO ASSEMBLY

Fig.3. —
A 4
PASS COMPILED WORKFLOW
ASSEMBLY TO WORKFLOW
EXECUTION ENGINE

314

y

EXECUTE WORKFLOW
INSTANCE

316

:(END)
318

ViSr]

US 2008/0115195 A1l

HSINH |[<1xaN || dova> || 130NV0 | MOTDNRIOM MITHD
(=)}
s \ HONVYd TVNOILIGNOD adv
M TVAQYdJV ¥O4 YT TTOUINOD OL INTWNIOU INTTIID NOISSV
2 N3HL /\ SNOLLDV
70} TIVINT LNOILVIVIOST LIOdIH ISNIIXT» ANIS

1
m 1 00I$ NVHILJALVINO SI SISNAJIXH TVIOL I13ISTH
= asof 00073 /\SNOILIANOD
vy A
y—
=
S F20P— aL0r—
TVAOAIIV ¥Od YIDVNVIN Ol INFANDOOd INTHIND NOISSV D SNOILLOV

= V—
2 A
= V4707 00013 OL ITvNOd 9O NVPL 553151 SISNIaxXd, 1vIoidl| | /\SNOILIANOD
- p— \I\
= A Db giby v O
nm dals M\wwwmw 99V | MOTDIYOM THL 10 JALS SIHL INIIIA LVHL SNOLLOV ANV SNOLLIGNOD THL ISOOHD
.m ww%mww ,LIVAONIAV ASNIIXT WOIShD, ¥0Od STIVLIIA AJ1D3dS
= _ TVAOQUIAV ISNIIXT WOISND | :AWVN dILS
w SdILS MOTDIYOM
m R- X AUINOISTA MOTDIIAOM
=
1) 007
[
=W

May 15, 2008 Sheet 7 of 9 US 2008/0115195 A1l

Patent Application Publication

'qp°S1]

TIONVO A0

dIIOOTYVIIO

3% 4
acasy

() ||| /\|4anmo dads :sINIWnooa azgvHs

\
0 14% 4

/\ FNVN:SIDOVINOD

\
dcsv

ya
\ 4% 4

0sy

sTvhno1

JAdIHM

NI GRISTHAINT THV NOA LSI'T dJMI00T IHL NI WALI FHL SALILINIAL
IVHI vINALIN) THI AAA0¥d OL dIIN NOA ‘dI001T STHL WHOIH3d OL HIA40 NI

1/\ SsTAAAV TIVINT

(A LSI'T SIOVINOO

...... WALI LSI'T DI4103dS AJLINIAI

a’liid

d02dNOS

INO dM00T FIHL WHO3d OL aTdld ANV IDUNO0S VLVA IHL ASOOHD

STIV1Iid dNA001T

dMIOO0TMOTDNRIOM INIIIA

Patent Application Publication = May 15, 2008 Sheet 8 of 9 US 2008/0115195 A1

SOURCES

PROVIDE Ul FOR BINDING
WORKFLOW PROPERTIES TO DATA [500

DISPLAY UI FOR SPECIFYING
ACTIONS AND CONDITIONS OF
WORKFLOW
(FIGURE 4A)

502

504

BIND
DATA SOURCETO
'ARAMETER]

DISPLAY UI FOR DECLARATIVELY
BINDING DATA SOURCETO
PARAMETER
(FIGURE 4B)

506

A
SHOW ONLY SOURCES HAVING
DATA TYPES COMPATIBLE WITH
DATA TYPE OF PARAMETER

508

NO

PARAMETER SAME AS SOURC

USE DIRECT LOOKUP

H| 512

USE FRIENDLY LOOKUP

514

BIND WORKFLOW PROPERTY TO
SPECIFIED DATA SOURCE

516

¢ D)

Fig.5. "

May 15, 2008 Sheet 9 of 9 US 2008/0115195 A1l

Patent Application Publication

'9°51]

XAOWIN
XINO AN 9
avay 009
NOLLVOI'TddV N0 AMOWIN —
szl HALLVIOgVTI00 dISMOUL ss100v TN-PH
IIIAId aeas sor | BEod
~ AJOWIN
019} IOVAOLS SSYW ONIIVIIdO st “arscs
_ [
SN
909 LIND 509 LIND
AITIOULNOO JOVINAINI ONISSTIOUd
LNdINO/INdNI XMOMIIN TVINAD
219 0§

901

US 2008/0115195 Al

REMOTE WORKFLOW SCHEDULE
AUTHORING

BACKGROUND

[0001] A workflow defines a series of tasks within an
organization to produce a final outcome. Workflows allow
for business process formalization and management. A col-
laborative workgroup computing application allows differ-
ent workflows to be defined for different types of jobs. For
example, in a publishing setting, a document may be auto-
matically routed from writer to editor to proofreader to
production. At each stage in the workflow, one individual or
group is responsible for a specific task. Once the task is
complete, the workflow application ensures that the indi-
viduals responsible for the next task are notified and receive
the data needed to execute the next stage of the process.
[0002] A workflow schedule authoring tool enables a user
to author a workflow by arranging building blocks in a
particular order. Building blocks may correspond to events,
conditions, or actions. Each building block is associated
with source code that defines an action to be taken when the
building block is executed. The order of the building blocks
determines the workflow schedule process that will be
performed when the workflow schedule is executed by a
workflow execution engine on a server computer. Some
building blocks may be predefined for commonly used
actions. Other building blocks may be customized to execute
a specific function or to provide a solution to a unique
problem. The building blocks simplity workflow schedule
authoring because the user does not need to write any code.
[0003] Previous workflow schedule authoring tools
require all of the building blocks utilized in a workflow
schedule to be stored on both the server and the remote
computer that is utilized to author the workflow. This
requirement, however, may be a barrier to deploying new
building blocks on the server computer. Additionally, in
remote workflow authoring systems where multiple users
are permitted to concurrently edit the same workflow, con-
flicts can arise as a result of different versions of the same
workflow being stored on the server computer. Moreover, in
such systems no safeguards are provided for ensuring that
the workflow engine cannot execute unauthorized building
blocks.

[0004] It is with respect to these considerations and others
that the disclosure made herein is provided.

SUMMARY

[0005] Methods and computer-readable media are pro-
vided herein for remotely authoring a workflow schedule.
Through the embodiments presented herein, the building
blocks utilized in creating a workflow schedule do not need
to be stored at the remote computer that is utilized to author
the workflow. Safeguards are also provided at various stages
in the authoring process to ensure that each building block
has been authorized for use and execution by a workflow
schedule, and to eliminate conflicts between different ver-
sions of workflow schedules.

[0006] According to one aspect presented herein, a
method is provided for remotely authoring a workflow
schedule. According to one method, a worktflow schedule
authoring tool (referred to herein as the “authoring tool”) is
provided that includes a user interface and associated func-
tionality for creating workflow schedules by arranging

May 15, 2008

building blocks, called workflow actions, in a particular
order. Workflow actions may correspond to events, condi-
tions, or actions. The authoring tool is executed at a client
computer and workflow schedules created at the client
computer are transmitted to a server computer for execution.

[0007] According to one aspect, the authoring tool is
operative to receive a list of available workflow actions from
the server computer. In response to receiving the list, the
authoring tool then determines whether the workflow actions
are present on the client computer. If the workflow actions
are not present on the client computer, the authoring tool
transmits a request to the server computer for data from
which workflow action proxies for the missing workflow
actions may be created. A workflow action proxy is an object
that includes the properties of the associated workflow
action but does not include an implementation for its meth-
ods. As described in detail herein, the workflow action
proxies are utilized at the client computer during authoring
to simulate the interfaces and properties of the correspond-
ing workflow action. At execution time, however, the server
computer utilizes the actual worktlow actions to perform the
associated workflow processing. In this manner, worktflow
schedules can be remotely authored without transferring all
of the required executable workflow actions from the server
computer to the client computer. Only the data for construct-
ing the workflow action proxies is transferred.

[0008] In response to receiving the request for data from
which workflow action proxies may be created, the server
computer determines whether the identified workflow
actions are authorized for use in a workflow schedule. This
may be accomplished, for instance, by examining a safe
workflow actions list that includes data identifying workflow
actions as either being safe or unsafe for execution. If the
identified workflow actions are safe for execution, the server
computer returns the data for creating the workflow action
proxies in response to the request. If the identified workflow
actions are not safe for execution, however, the server
computer will not return the data.

[0009] Using the data received from the server computer,
the authoring tool constructs the workflow action proxies.
The proxies may then be utilized during the worktlow
schedule authoring process in place of the actual workflow
actions. Workflow actions stored at the client computer may
also be utilized during creation of the workflow schedule.
Once the workflow schedule has been completed, the client
computer transmits the workflow schedule to the server
computer for storage. The authoring tool may also transmit
a request to the server computer to verify the contents of the
workflow schedule.

[0010] In response to receiving a request to verify the
workflow schedule, the server computer performs process-
ing operations to verify the contents of the workflow sched-
ule. In particular, in one implementation the server computer
identifies the workflow actions identified in the workflow
schedule. The server computer then determines whether the
workflow actions in the workflow schedule are authorized
for use in a workflow schedule. As described above, the
server computer may examine a safe workflow actions list to
make this determination. If the workflow actions in the
workflow schedule are authorized for use, the server com-
puter returns a success indication to the client computer in
response to the request. If the workflow actions in the

US 2008/0115195 Al

workflow schedule are not authorized for use, however, the
server computer will return a failure response to the client
computer.

[0011] Once the workflow schedule has been verified, the
workflow schedule may be instantiated and executed. This
may occur, for instance, in response to the occurrence of an
event or in response to a manual request to execute the
workflow schedule. Prior to executing the workflow sched-
ule, however, the server computer again determines whether
the workflow actions in the workflow schedule to be
executed are authorized for use. If the workflow actions in
the workflow schedule to be executed are authorized for use,
the workflow schedule is instantiated. If the workflow
actions in the workflow schedule to be executed are not
authorized for use, the server computer will not instantiate
the unsafe workflow actions.

[0012] According to other aspects provided herein, the
server computer stores workflow schedules in a versioned
document library. Through facilities provided by the docu-
ment library, each version of a workflow schedule is
assigned a version number. Newly created instances of
workflow schedules utilize the most recent version of the
workflow schedule. Previously instantiated instances, how-
ever, continue to utilize the version of the workflow schedule
that was utilized when the workflow schedule was first
instantiated. In this manner, each instance of a workflow
schedule utilizes the same version of the workflow schedule
during its entire lifespan, thereby eliminating conflicts
between different versions of workflow schedules.

[0013] The above-described subject matter may also be
implemented as a computer-controlled apparatus, a com-
puter process, a computing system, or as an article of
manufacture such as a computer-readable medium. These
and various other features will be apparent from a reading of
the following Detailed Description and a review of the
associated drawings.

[0014] This Summary is provided to introduce a selection
of concepts in a simplified form that are further described
below in the Detailed Description. This Summary is not
intended to identify key features or essential features of the
claimed subject matter, nor is it intended to be used to limit
the scope of the claimed subject matter. Furthermore, the
claimed subject matter is not limited to implementations that
solve any or all disadvantages noted in any part of this
disclosure.

BRIEF DESCRIPTION OF THE DRAWINGS

[0015] FIG. 1 is a network and software diagram showing
an illustrative operating environment for the processes and
computer systems described herein and several of the soft-
ware components utilized by the computer systems
described herein;

[0016] FIGS. 2A-2C and 3 are flow diagrams illustrating
various processes provided herein for remotely authoring a
workflow schedule;

[0017] FIGS. 4A and 4B are user interface diagrams
showing illustrative user interfaces provided herein for
declarative data binding in a system for remotely authoring
a workflow schedule;

[0018] FIG. 5 is a flow diagram showing an illustrative
process for declaratively binding workflow properties to
data sources; and

May 15, 2008

[0019] FIG. 6 is a computer architecture diagram showing
one computer architecture suitable for implementing the
various computer systems described herein.

DETAILED DESCRIPTION

[0020] The following detailed description is directed to
systems, methods, apparatus, and computer-readable media
for remotely authoring a workflow schedule. As will be
described in greater detail herein, a workflow schedule
authoring tool is provided that can utilize worktflow action
proxies instead of the workflow actions themselves during
authoring. This eliminates the need to transfer executable
workflow actions from a server computer to the client
computer executing the authoring tool. Moreover, function-
ality is described herein for performing authorization checks
at the server computer during the authoring process to
ensure that only authorized workflow actions are utilized
and executed. The server computer is also operative to
provide versioning functionality for the workflow schedules
to thereby eliminate the possibility of conflicts occurring
between different versions of a workflow schedule. Addi-
tional details regarding each of these subject areas will be
provided below with respect to the FIGURES.

[0021] While the subject matter described herein is pre-
sented in the general context of program modules that
execute in conjunction with the execution of an operating
system and application programs on a computer system,
those skilled in the art will recognize that other implemen-
tations may be performed in combination with other types of
program modules. Generally, program modules include rou-
tines, programs, components, data structures, and other
types of structures that perform particular tasks or imple-
ment particular abstract data types. Moreover, those skilled
in the art will appreciate that the subject matter described
herein may be practiced with other computer system con-
figurations, including hand-held devices, multiprocessor
systems, microprocessor-based or programmable consumer
electronics, minicomputers, mainframe computers, and the
like.

[0022] The subject matter presented herein is also
described as being practiced in a distributed computing
environment where tasks are performed by remote process-
ing devices that are linked through a communications net-
work and wherein program modules may be located in both
local and remote memory storage devices. It should be
appreciated, however, that the implementations described
herein may also be utilized in conjunction with stand-alone
computer systems and other types of computing devices. It
should also be appreciated that although reference is made
herein to the Internet, the embodiments presented herein
may be utilized with any type of local area network (“LLAN")
or wide area network (“WAN”).

[0023] Inthe following detailed description, references are
made to the accompanying drawings that form a part hereof,
and which are shown by way of illustration specific embodi-
ments or examples. Referring now to the drawings, in which
like numerals represent like elements through the several
figures, aspects of a computing system and methodology for
remote authoring of a workflow schedule will be described.
In particular, FIG. 1 is a network diagram illustrating aspects
of an illustrative operative environment for the subject
matter described herein that includes a client computer 102,
a network 106, and a server computer 104.

US 2008/0115195 Al

[0024] As shown in FIG. 1, the client computer 102 and
the server computer 104 are communicatively coupled to
one another through respective connections to the network
106. According to one implementation, the network 106
comprises the Internet. However, it should be appreciated
that the network 106 may comprise a LAN, WAN, or other
type of network suitable for connecting the client computer
102 and the server computer 104.

[0025] FIG. 1 also illustrates a number of software com-
ponents utilized by the client computer 102 and the server
computer 104. In particular, the client computer 102
includes an operating system 108 suitable for controlling the
operation of a networked desktop or laptop computer. The
server computer 104 includes an operating system 108
suitable for controlling the operation of a networked server
computer. For instance, according to implementations, both
the client computer 102 and server computer 104 may utilize
the WINDOWS XP or WINDOWS VISTA operating sys-
tems from MICROSOFT CORPORATION of Redmond,
Wash. Other operating systems, such as the LINUX oper-
ating system or the OSX operating system from APPLE
COMPUTER, INC. may be utilized. It should be appreci-
ated that although the embodiments presented herein are
described in the context of a desktop or laptop client
computer 102 and a remote server computer 104, many other
types of computing devices and systems may be utilized to
embody the various aspects presented herein.

[0026] According to one implementation, the client com-
puter 102 also includes a Web browser program (referred to
herein as a “browser”) 118. The browser 118 is operative to
request, receive, and display information pages, such as Web
pages, from the server computer 104. In particular, the
browser 118 is operative to establish a connection to a
collaborative application 124 executing on the server com-
puter 104. Through the connection, the browser 118 may
request information pages provided by the collaborative
application 124. The collaborative application 124 is a
computer software program that enables multiple users to
collaborate on documents, projects, tasks, and other matters.
[0027] The collaborative application 124 also supports
workflow processes. In general, a workflow is an abstraction
ot how work flows through a business process. This abstract
notion of workflow has been modeled in computer programs
and computer software for supporting workflow through a
business process has become known as “workflow.” Here-
inafter, the term workflow refers to such a software model
(i.e., a software program that supports the modeling of how
work flows through a business process). In one implemen-
tation, the collaborative application 124 is the MICROSOFT
OFFICE ~ SHAREPOINT SERVER 2007 from
MICROSOFT CORPORATION of Redmond, Wash. It
should be appreciated, however, that the implementations
described herein may be utilized with any type of computer
system that supports workflow processes.

[0028] In order to support the provision of workflow, in
one implementation the server computer 104 includes the
NET FRAMEWORK 3.0 122 from MICROSOFT COR-
PORATION. The .NET FRAMEWORK 3.0 122 is a frame-
work for building, deploying, and running Web services and
other applications. The NET FRAMEWORK 3.0 122
includes the WINDOWS WORKFLOW FOUNDATION
(“WF”) 120. The WF 120 is a programming model, engine,
and tools for building and executing workflow enabled
applications. The WF 120 allows a developer to more easily

May 15, 2008

model and support business processes. Details regarding the
NET FRAMEWORK 3.0 122 and the WF 120 are publicly
available from the MICROSOFT DEVELOPERS NET-
WORK (“MSDN”) and from other sources.

[0029] The WF 120 includes a workflow engine for instan-
tiating and executing instances of workflows created using
authoring tools, such as the workflow authoring tool 110.
The workflow engine runs a workflow by advancing the
workflow through a workflow schedule 112. The workflow
schedule 112 is a data structure containing data that identi-
fies the workflow actions 116 that should be executed as a
part of the workflow, workflow logic, and various metadata.
As will be described in greater detail below, the workflow
authoring tool 110 may be utilized to author the worktlow
schedule 112. The workflow schedule 112 may then be
transmitted to the server computer 104 for execution as a
part of the collaborative services provided by the collabo-
ration application 124. Additional details regarding this
process are provided below.

[0030] As shown in FIG. 1, the client computer 102 also
includes the NET FRAMEWORK 3.0 122 and WF 120 for
use during the workflow authoring process described herein.
It should be appreciated that although the implementations
presented herein are described in the context of the .NET
FRAMEWORK 3.0 122 and the WF 120, other similar
programming frameworks and workflow modeling tools
available from other manufacturers may be utilized on the
client computer 102 and server computer 104 to implement
the embodiments presented herein. Additional details
regarding the provision of and use of workflow in a col-
laborative application can be found in U.S. patent applica-
tion Ser. No. 11/117,808, filed on Apr. 29, 2005 and entitled
“Workflow Hosting Computing System Using a Collabora-
tive Application,” U.S. patent application Ser. No. 11/212,
207, filed on Aug. 25, 2005 and entitled “Workflow Tasks in
a Collaboration Application,” and U.S. patent application
Ser. No. 11/087,123, filed on Mar. 22, 2005 and entitled
“Workflow Association in a Collaborative Application,”
each of which is assigned to the assignee of the instant
application and expressly incorporated herein by reference
in its entirety.

[0031] As discussed briefly above, the client computer 102
is operative to execute a worktflow authoring tool 110. The
authoring tool 110 is an application program that provides
facilities for visually creating workflows that can be
executed by the collaborative application 124. In particular,
through the facilities provided by the authoring tool 110, a
user can graphically create a workflow schedule 112. Addi-
tional details regarding the operation of the workflow
authoring tool 110 can be found in U.S. patent application
Ser. No. 10/955,659, filed on Sep. 30, 2004 and entitled
“Workflow Schedule Authoring Tool,” which is assigned to
the assignee of the instant application and expressly incor-
porated herein by reference in its entirety.

[0032] The workflow schedule 112 references various
workflow actions 116 that are the building blocks that
perform the actual processing for the various steps of the
workflow. The workflow actions 116 are executable com-
ponents that may correspond to events, conditions, or
actions within a workflow process. As shown in FIG. 1, the
workflow actions 116 are stored on the server computer 104
for use when the workflow schedule 112 is executed. Some

US 2008/0115195 Al

of the workflow actions 116 may also be stored on the client
computer 102 for use during the authoring of a workflow
schedule 112.

[0033] In certain scenarios, it is impracticable or undesir-
able for all of the workflow actions 116 available at the
server computer 104 to be stored on the client computer 102.
For instance, new worktlow actions 116 may be added to the
server computer 104 after deployment. In many cases it is
impracticable or undesirable to transmit these workflow
actions 116 to the client computer 102. In previous worktlow
authoring systems, this would result in the client computer
102 being unable to use any workflow actions 116 that were
not stored directly thereon. In order to address this problem,
the authoring tool 110 is operative to determine which
workflow actions 116 are not stored thereon and to request
data from which workflow action proxies 114 may be
constructed for the missing workflow actions 116.

[0034] The workflow action proxies 114 are software
objects that include the properties of the associated work-
flow action 116 but that do not include an implementation
for its methods. The workflow action proxies 114 are utilized
at the client computer 102 during authoring to simulate the
interfaces and properties of the corresponding worktlow
action 116. At execution time, however, the server computer
104 utilizes the actual workflow actions 116 to perform the
associated workflow processing. In this manner, worktflow
schedules 112 can be remotely authored without transferring
all of the required executable workflow actions 116 from the
server computer 104 to the client computer 102. Only the
metadata needed by the client computer 102 to construct the
workflow action proxies 114 is transferred.

[0035] Using the metadata received from the server com-
puter 104, the authoring tool 110 constructs the workflow
action proxies 114. The proxies 114 may then be utilized
during the workflow schedule authoring process in place of
the actual workflow actions 116. Any workflow actions 116
that are stored at the client computer 102 may also be
utilized during creation of the workflow schedule 112. Once
the workflow schedule 112 has been completed, the client
computer 102 transmits the workflow schedule 112 to the
server computer 104 for storage.

[0036] In one implementation, the server computer 104
stores workflow schedules 112 in a versioned document
library 128 provided by the collaborative application 124.
Through the use of versioning facilities provided by the
document library 128, each version of a workflow schedule
112 is assigned a version number. Newly created instances
of workflow schedules 112 utilize the most recent version of
the workflow schedule 112. Previously instantiated
instances, however, continue to utilize the version of the
workflow schedule 112 that was utilized when the workflow
schedule 112 was first instantiated. In this manner, each
instance of a workflow schedule 112 utilizes the same
version of the workflow schedule 112 during its entire
lifespan. Additional details regarding this process will be
provided below with reference to FIG. 3.

[0037] Once the workflow schedule 112 has been stored in
the document library 128, the workflow schedule 112 may
be instantiated and executed. This may occur, for instance,
in response to the occurrence of an event or in response to
a manual request to execute the workflow schedule 112.
When the workflow schedule 112 is instantiated, the work-
flow actions 116 are utilized to perform the actual processing
for the workflow. If a workflow action proxy 114 was

May 15, 2008

utilized during authoring, the corresponding workflow
action 116 is utilized at run time to perform the worktflow
processing.

[0038] As will be described in greater detail below,
according to implementations, the server computer 104 is
operative to verify that each of the workflow actions 116
referenced by a workflow schedule 112 have been autho-
rized for execution. This may occur, for instance, at the time
the authoring client 110 requests data for creating the
workflow action proxies 114, at the time a workflow sched-
ule 112 is verified by the server computer 104, and at run
time. Additional details regarding these security mecha-
nisms will be provided below with reference to FIGS.
2A-2C.

[0039] Referring now to FIGS. 2A-2C, additional details
will be provided regarding the embodiments presented
herein for remotely authoring a workflow schedule 112. In
particular, FIGS. 2A-2C are flow diagrams illustrating the
operation of the client computer 102 and the server com-
puter 104 according to one implementation. The routine 200
illustrates processing operations performed by the client
computer 102 while the routine 250 illustrates processing
operations performed by the server computer 104. The
routines 200 and 250 will be described in conjunction with
one another.

[0040] It should be appreciated that the logical operations
described herein are implemented (1) as a sequence of
computer implemented acts or program modules running on
a computing system and/or (2) as interconnected machine
logic circuits or circuit modules within the computing sys-
tem. The implementation is a matter of choice dependent on
the performance requirements of the computing system.
Accordingly, the logical operations described herein are
referred to variously as operations, structural devices, acts,
or modules. These operations, structural devices, acts and
modules may be implemented in software, in firmware, in
special purpose digital logic, and any combination.

[0041] The routine 200 begins at operation 202, where the
workflow authoring tool 110 is launched on the client
computer 102. Once the workflow authoring tool 110 has
been launched, the routine 200 continues to operation 204,
where the workflow designer portion of the workflow
authoring tool 110 is launched. The workflow designer is a
portion of the workflow authoring tool 202 that provides
functionality for visually defining a business workflow with-
out programming. Several aspects of a user interface pro-
vided by the workflow designer are described below with
reference to FIGS. 4A-4B and 5.

[0042] From operation 204, the routine 200 continues to
operation 206, where the workflow authoring tool 110
retrieves a list of available workflow actions 116 from the
server computer 104. The server computer 104 transmits the
list of available workflow actions 116 to the client computer
at operation 252 of the routine 250. In response to receiving
the list of available workflow actions 116, the authoring tool
110 compares the actions identified in the received list to the
workflow actions 116 already stored at the client computer
102. In this manner, the authoring tool 110 can determine the
assemblies already present and loaded on the client com-
puter 102 and the workflow actions 116 that are available
from the server computer 104 that are not present on the
client computer 102.

[0043] At operation 208, the workflow authoring tool 110
determines whether any workflow actions 116 are needed

US 2008/0115195 Al

from the server computer 104. If no workflow actions 116
are needed, the routine 200 branches from operation 208 to
operation 216, described below. If workflow actions 116 are
needed, the routine 200 continues from operation 208 to
operation to 210. At operation to 210, the workflow author-
ing tool 110 transmits a request for the data necessary to
build the workflow action proxies 114 to the server computer
104. As discussed briefly above, rather than downloading all
of the needed worktlow actions 116, the workflow authoring
tool 110 builds proxies 114 for each of the needed workflow
actions 116.

[0044] The workflow action proxies 114 are objects that
model a corresponding workflow action 116. The proxies
114 include the properties of the corresponding workflow
action 116 and the appropriate interfaces. However, the
workflow action proxies 114 do not provide any implemen-
tation for the methods contained in the corresponding work-
flow action 116. In this manner, the workflow action proxies
114 appear to the authoring tool 110 to be valid workflow
actions 116 that can be utilized in a workflow schedule 112.
The workflow action proxies 114 can therefore be utilized
when creating a workflow schedule 112. As will be
described in greater detail below, the actual workflow
actions 116 are utilized by the server computer 104 when the
workflow schedule 112 is instantiated.

[0045] The server computer 104 receives the request for
the workflow action proxy data at the operation 254 of the
routine 250. In response thereto, the routine 250 continues to
operation 256 where the server computer 104 identifies the
actions that are authorized for use in a workflow schedule
112. This may be accomplished, for instance, by examining
the contents of the safe workflow actions list 126. The safe
workflow actions list 126 comprises a list of all of the
workflow actions 116 that are authorized for use in a
workflow schedule 112. A workflow action 116 that is
identified in the safe workflow actions list 126 as being
authorized for use in a workflow schedule 112 is referred to
herein as being “safe” for use. Once the server computer 104
has identified the safe workflow actions 116, the server
computer 104 then determines whether each of the workflow
actions 116 for which proxy data has been requested are
safe. The server computer 104 will not return proxy data for
any workflow action 116 that is not safe.

[0046] From operation 256, the routine 250 continues to
operation 258 where the server computer 104 serializes the
properties, methods, and other information necessary to
generate the workflow action proxies 114 for each of the safe
workflow actions 116 into an extensible markup language
(“XML”) document. The routine 250 then continues to
operation 260 where the XML document is transmitted to
the workflow authoring tool 110.

[0047] At operation 212 of the routine 200, the authoring
tool 110 receives the XML document containing the meta-
data necessary to build the workflow action proxies 114 for
each of the needed workflow actions 116. Once the XML
document has been received, the routine 200 continues to
operation 214, where the authoring tool 110 builds the
workflow action proxies 114 for each of the needed work-
flow actions 116. Once the proxies 114 have been created,
the authoring tool 110 loads the proxies 114 into memory for
use.

[0048] From operation 216, the routine 200 continues to
operation to 218, where the workflow designer may be
utilized by a user to create the workflow schedule 112. As

May 15, 2008

described above, the workflow designer provides a user
interface through which workflow actions 116 can be visu-
ally arranged to create the workflow schedule 112. During
this process, the workflow action proxies 114 are used in
place of the workflow actions 116 to which they correspond.
[0049] When the user has finished building the workflow
schedule 112 using the workflow designer, the routine 200
continues from operation 220 to operation 222. At operation
222, the authoring tool 110 validates the workflow schedule
112. The routine 200 then continues to operation 224 where
the authoring tool 110 transmits the workflow schedule 112
to the server computer 104. The server computer 104
receives the workflow schedule 112 at operation 262 of the
routine 250 and saves the workflow schedule 112 to the
document library 128. As will be discussed in greater detail
below, in one implementation, the document library 128
comprises a versioned document storage library provided by
the collaborative application 124. When a workflow sched-
ule 112 is stored in the document library 128, it is assigned
a version number. The version number of each workflow
schedule 112 is utilized to ensure that an instance of a
particular version of a workflow schedule 112 is executed
until it completes. This ensures that newer versions of a
workflow schedule 112 will not conflict with the execution
of a previous version of the same workflow schedule 112.
Additional details regarding this process will be described
below with reference to FIG. 3.

[0050] From operation 224, the routine 200 continues to
operation 226 where the authoring tool 110 transmits a
request to the server computer 104 to validate the workflow
schedule 112. The server computer 104 may expose a remote
application programming interface (“API”) for this purpose.
In response to receiving the validation request, the server
computer 104 validates the workflow schedule 112 and
verifies that all of the workflow actions 116 identified in the
workflow schedule 112 are safe. The routine 250 then
continues to operation 266 where the server computer
returns a success message to the authoring tool 110 if the
workflow schedule 112 is valid. If the workflow schedule
112 is not valid, the server computer 104 returns a failure
response to the authoring tool 110.

[0051] At operation 228 of the routine 200, the authoring
tool 110 receives the response to the validation request from
the server computer 104. At operation 230, the authoring
tool 110 determines if the response indicated that the work-
flow schedule 112 included errors. If the workflow schedule
112 has errors, the routine 200 branches from operation 230
to operation 232, where the errors are displayed. The routine
200 then continues from operation 232 to operation 218. At
operation 218, described above, the workflow designer may
be utilized to correct any errors in the workflow schedule
112.

[0052] If the response from the server computer 104
indicates that the workflow schedule 112 is valid, the routine
200 continues from operation 230 to operation 232. At
operation 232, the authoring tool 110 calls a remote API on
the server computer 104 for associating the worktlow sched-
ule 112 with a list on the server computer 104. In the context
of the collaborative application 124, workflow schedules
112 are executed against items and documents identified
within various lists. Multiple workflow schedules 112 may
be executed against a given document or item in a list. By
associating the workflow schedule 112 with a list, an indi-
cation is being provided regarding the types of documents or

US 2008/0115195 Al

items with which the workflow schedule 112 should be
utilized. The server computer 104 performs the association
request at operation 270. Once the association request has
been completed, the routines 200 and 250 continue to
operations 234 and 272, respectively, where they end.
[0053] Referring now to FIG. 3, an illustrative routine 300
will be described illustrating aspects provided herein for
executing workflow schedules 112 with reference to the
version numbers assigned to the schedules when they are
stored in the document library 128. In particular, the routine
300 begins at operation 302, where a decision is made as to
whether a workflow schedule 112 should be executed. As
described above, a workflow may be executed in response to
an item in a list changing, an item being added to a list, or
in response to a manual request. Additionally, instantiated
workflows may be paused during execution. The occurrence
of events or other conditions identified in the workflow may
cause the previously instantiated workflow to continue
execution. Accordingly, the determination made at operation
302 is whether to execute a new instance of a workflow
schedule 112 or to continue the execution of a previously
instantiated version of a workflow schedule 112. If a work-
flow schedule 112 is to be executed, the routine 300 con-
tinues from operation 302 to operation 304.

[0054] At operation 304, a determination is made as to
whether the workflow schedule 112 to be executed is a new
instance of the workflow or a previously instantiated
instance of the workflow. If the workflow schedule 112 to be
executed is a new instance of the workflow, the routine 300
branches from operation 304 to operation 308. At operation
308, the latest version of the workflow schedule 112 to be
executed is retrieved from the document library 128. The
routine 300 then continues to operation 310 where the
workflow actions 116 in the workflow schedule 112 to be
executed are again validated against the safe workflow
actions list 126. If the workflow schedule 112 contains any
workflow actions 116 not identified in the safe workflow
actions list 126, the unsafe actions 116 will not be executed.
[0055] Once the workflow schedule 112 has been vali-
dated, the routine 300 continues from operation 310 to
operation 312. At operation 312, the workflow schedule 112
is compiled into an executable assembly. The routine 300
then continues to operation 314, where the compiled work-
flow assembly is passed to the workflow execution engine in
the WF 120 for execution. At operation 316, the instance of
the workflow schedule 112 is executed. From operation 316,
the routine 300 continues to operation 318, where it ends.
[0056] If, at operation 304, the server computer 104 deter-
mines that the workflow to be executed is a previously
instantiated workflow, the routine 300 branches from opera-
tion 304 to operation 306. At operation 306, the previously
instantiated version of the workflow is executed using the
version of the workflow schedule 112 stored in the document
library 128. By executing previously instantiated workflows
using their originally assigned version number, each
instance of a workflow continues executing using the appro-
priate version of the workflow schedule 112 until the
instance has completed its execution. In this manner, the
workflow schedule 112 can be edited and modified while
instances of the workflow schedule 112 are executing with-
out causing a conflict. From operation 306, the routine 300
continues to operation 318, where it ends.

[0057] Referring now to FIGS. 4A and 4B, an illustrative
user interface provided by the workflow authoring tool 110

May 15, 2008

for declaratively binding data sources to parameters in
workflow actions 116 will be described. In particular, FIGS.
4A-4B show several illustrative user interfaces 400 and 450
that can be utilized by a workflow designer to graphically
bind data sources to the various parameters utilized by a
workflow action 116.

[0058] As discussed above, workflow schedules 112 can
include decision logic that allows actions to be performed
when certain conditions are met. For instance, a rule may be
created within a workflow schedule 112 that assigns an
expense report to a manager for approval when the total
amount of the expense report is less than a certain amount.
The user interfaces 400 and 450 shown in FIGS. 4A-4B
allow the workflow designer to specify the properties of
such a rule in a graphical manner. Through these user
interfaces, the user has the option of specifying a static value
for each property or choosing to make the parameter data-
driven so that at runtime the value loaded into the parameter
is looked up dynamically. Parameters may be assigned to
data fields within any list maintained by the collaborative
application 124.

[0059] The user interface 400 shown in FIG. 4A is dis-
played when a user is graphically creating the conditions and
actions for two rules 404A and 404B that define one step of
a workflow. In the example shown in FIG. 4A, the user is
defining a process for the approval of a business expense.
When a parameter of the condition or action may be speci-
fied by a user, an icon is displayed adjacent to the parameter
thereby indicating that the parameter can be specified or
bound to a data value. In response to the selection of the
icon, the user interface 450, described below with respect to
FIG. 4B is presented.

[0060] Once the user has bound a parameter to a data value
in the manner described below with reference to FIG. 4B,
the parameters are illustrated in the user interface 400 with
underlining to indicate that they are a hyperlink that can be
selected and modified. For instance, in the example shown
in FIG. 4A, the parameters 402A-402E have been under-
lined, thereby indicating that they are selectable parameters
that have been bound to a data source or manually specified.
The parameters 402A-402E can be selected to modify the
specified value or source of the data bound value.

[0061] FIG. 4B shows an illustrative user interface 450 for
binding the parameters to a list, the value from a previous
action, or to an input parameter. In one implementation, the
user interface 450 includes drop-down menus 452A and
452B through which a user may choose the data source and
field of the data source to perform the lookup on for the
associated data parameter. In particular, the drop-down
menu 452A is utilized to specify the data source and the
drop-down menu 452B is utilized to specity the field of the
selected data source. When selected, the drop-down menu
452A provides a list of available data sources and the
drop-down menu 452B provides a list of fields within the
data source selected in the drop-down menu 452A. It should
be appreciated that the data source may comprise an item in
the current list or come from an external source, such as
another list maintained by the collaborative application 124.
[0062] If a user has requests that a parameter be bound to
an external list, the query must be narrowed down so that a
single item may be returned. In order to accomplish this, the
user interface 450 includes two additional drop-down menus
452C and 452D. When selected, the drop-down menu 452C
lists the set of fields in the external list chosen in the manner

US 2008/0115195 Al

described above. The drop down menu 452D identifies the
set of workflow parameters and the set of fields in the
associated list when selected. The drop-down menu 452D is
also editable so that the user can type in a value.

[0063] According to one implementation, the user inter-
face 450 also includes a button 453 that allows a user to
databind multiple levels of the user interface 450. In par-
ticular, selection of the button 453 allows a user to input an
expression that defines the item in the lookup list that should
be bound to. The user interface 450 may also include a
button for clearing the contents of the fields of the user
interface 450. It should be appreciated that although drop-
down menus and buttons have been utilized in the illustra-
tive user interface 450 shown in FIG. 4B, other types of
suitable user interface controls may be utilized that allow a
user to select from a list of data sources and fields.

[0064] Turning now to FIG. 5, an illustrative routine 500
will be described for declaratively binding a workflow
action parameter to a data source and for propagating the
data type for data returned from a data source to the data type
of the parameter. In particular, the routine 500 begins at
operation 502, where the authoring tool 110 displays the user
interface 400 shown in FIG. 4A for specifying the actions
and conditions of the workflow. The routine 500 then
continues to operation 504, where a determination is made
as to whether a user has requested that a parameter be bound
to a data source. This may occur, for instance, in response to
a user selecting one of the parameters 402A-402F displayed
in the user interface 400. If a user does request that a
workflow action parameter be bound to a data source, the
routine 500 continues from operation 504 to operation 506.
[0065] At operation 506, the workflow authoring tool 110
displays the user interface 450 for declaratively binding a
data source to a workflow parameter shown in FIG. 4B. The
user is then permitted to select the drop-down menus 452A
and 452B to select the data source to which the selected
workflow parameter will be bound. According to one imple-
mentation, the drop-down menus 452A and 452B will only
include sources and fields having data types that are com-
patible with the data type of the selected workflow param-
eter. This occurs at operation 508 of the routine 500.
[0066] At decision operation 510, a determination is made
as to whether the data type for the selected workflow
parameter (the “target™) is the same as the same as the data
type for the selected data source (the “source). If the data
types are the same, then an internal lookup of the data may
be performed to provide the highest fidelity data lookup.
This occurs at operation 512. If, however, the data types are
not the same, the data contained in the source must be
converted to the data type of the target. In order to perform
this procedure, the routine 500 branches from operation 510
to operation 514, where a “friendly” data lookup is utilized.
[0067] A “friendly” data lookup allows data of one data
type to be converted to data of another data type. For
instance, if the source is a number type while the target is a
string type, the number type may be converted to a string
upon lookup. Other data transformations may also be pro-
vided by the friendly lookup procedure. In this manner, the
data type of the target is propagated to data retrieved from
the source.

[0068] Once the user has selected the desired data source
using the user interface 450, the routine 500 continues from
operations 512 and 514 to operation 516 where the worktflow
property is bound to the selected data source. Using either

May 15, 2008

the direct lookup or the friendly lookup described above,
data from the data source is retrieved and utilized in the
workflow parameter at runtime. From operation 516, the
routine 500 continues to operation 518, where it ends.
[0069] Referring now to FIG. 6, an illustrative computer
architecture for a computer 600 utilized in the various
embodiments presented herein will be discussed. The com-
puter architecture shown in FIG. 6 illustrates a conventional
desktop, laptop computer, or server computer. The computer
architecture shown in FIG. 6 includes a central processing
unit 602 (“CPU”), a system memory 608, including a
random access memory 614 (“RAM”) and a read-only
memory (“ROM”) 616, and a system bus 604 that couples
the memory to the CPU 602. A basic input/output system
containing the basic routines that help to transfer informa-
tion between elements within the computer 600, such as
during startup, is stored in the ROM 616. The computer 600
further includes a mass storage device 610 for storing an
operating system 108, application programs, and other pro-
gram modules, which are described in detail above with
reference to FIG. 1.

[0070] The mass storage device 610 is connected to the
CPU 602 through a mass storage controller (not shown)
connected to the bus 604. The mass storage device 610 and
its associated computer-readable media provide non-volatile
storage for the computer 600. Although the description of
computer-readable media contained herein refers to a mass
storage device, such as a hard disk or CD-ROM drive, it
should be appreciated by those skilled in the art that com-
puter-readable media can be any available media that can be
accessed by the computer 600.

[0071] By way of example, and not limitation, computer-
readable media may include volatile and non-volatile,
removable and non-removable media implemented in any
method or technology for storage of information such as
computer-readable instructions, data structures, program
modules or other data. For example, computer-readable
media includes, but is not limited to, RAM, ROM, EPROM,
EEPROM, flash memory or other solid state memory tech-
nology, CD-ROM, digital versatile disks (“DVD”), HD-
DVD, BLU-RAY, or other optical storage, magnetic cas-
settes, magnetic tape, magnetic disk storage or other
magnetic storage devices, or any other medium which can be
used to store the desired information and which can be
accessed by the computer 600.

[0072] According to various embodiments, the computer
600 may operate in a networked environment using logical
connections to remote computers through a network 106,
such as the Internet. The computer 600 may connect to the
network 106 through a network interface unit 606 connected
to the bus 604. It should be appreciated that the network
interface unit 606 may also be utilized to connect to other
types of networks and remote computer systems. The com-
puter 600 may also include an input/output controller 612
for receiving and processing input from a number of other
devices, including a keyboard, mouse, or electronic stylus
(not shown in FIG. 6). Similarly, an input/output controller
may provide output to a display screen, a printer, or other
type of output device (also not shown in FIG. 6).

[0073] As mentioned briefly above, a number of program
modules and data files may be stored in the mass storage
device 610 and RAM 614 of the computer 600, including an
operating system 108 suitable for controlling the operation
of a networked desktop or server computer, such as the

US 2008/0115195 Al

WINDOWS XP operating system from MICROSOFT COR-
PORATION of Redmond, Wash., or the WINDOWS VISTA
operating system, also from MICROSOFT CORPORA-
TION. The mass storage device 610 and RAM 614 may also
store one or more program modules. In particular, the mass
storage device 610 and the RAM 614 may store a Web
browser program 110, a collaborative application 124, and
the other program modules described above with respect to
FIG. 1. Other program modules may also be stored in the
mass storage device 610 and utilized by the computer 600.
[0074] Based on the foregoing, it should be appreciated
that systems, methods, and computer-readable media for
remotely authoring a workflow schedule are provided
herein. Although the subject matter presented herein has
been described in language specific to computer structural
features, methodological acts, and computer readable media,
it is to be understood that the invention defined in the
appended claims is not necessarily limited to the specific
features, acts, or media described herein. Rather, the specific
features, acts and mediums are disclosed as example forms
of implementing the claims.

[0075] The subject matter described above is provided by
way of illustration only and should not be construed as
limiting. Various modifications and changes may be made to
the subject matter described herein without following the
example embodiments and applications illustrated and
described, and without departing from the true spirit and
scope of the present invention, which is set forth in the
following claims.

What is claimed is:

1. A method for remote workflow schedule authoring, the
method comprising:

receiving a request for data from which a workflow action

proxy may be created for one or more workflow
actions;

in response to the request, determining whether the work-

flow actions are authorized for use in a workflow
schedule; and

in response to determining that the workflow actions are

authorized for use in a workflow schedule, transmitting
the data for creating the workflow action proxies in
response to the request.

2. The method of claim 1, further comprising not trans-
mitting the data for creating the workflow action proxies in
response to determining that the workflow actions are not
authorized for use in a workflow schedule.

3. The method of claim 2, further comprising:

receiving a workflow schedule comprising one or more

workflow actions;

receiving a request to validate the workflow schedule;

determining in response to the validation request whether

each of the workflow actions of the workflow schedule
are authorized for use; and

in response to determining that each of the workflow

actions of the workflow schedule are authorized for
use, providing an indication in response to the valida-
tion request that the workflow schedule is authorized
for use.

4. The method of claim 3, further comprising in response
to determining that each of the workflow actions of the
workflow schedule are not authorized for use, providing an
indication in response to the validation request that work-
flow actions in the workflow schedule are not authorized for
use.

May 15, 2008

5. The method of claim 4, further comprising:

receiving a request to instantiate the workflow schedule;

in response to the instantiation request, determining

whether each of the workflow actions of the workflow
schedule are authorized for use; and

instantiating the workflow schedule in response to deter-

mining that all of the workflow actions of the workflow
schedule are authorized for use.

6. The method of claim 5, further comprising not instan-
tiating the workflow schedule in response to determining
that all of the workflow actions of the workflow schedule are
not authorized for use.

7. The method of claim 6, wherein the workflow schedule
is stored in a versioned document library, and wherein
instantiating the workflow schedule comprises instantiating
a most recent version of the workflow schedule.

8. The method of claim 7, further comprising executing an
instance of a previous version of the workflow schedule
using a corresponding previous version of the workflow
schedule until the instance of the previous version of the
workflow schedule has completed execution.

9. A computer-readable medium having computer-execut-
able instructions stored thereon which, when executed by a
computer, are operative to cause the computer to perform the
method of claim 1.

10. A method for remote workflow schedule authoring,
the method comprising:

determining at a client computer whether one or more

workflow actions are needed for authoring a workflow
schedule; and

in response to determining that one or more workflow

actions are needed for authoring a workflow schedule at
the client computer, transmitting a request to a server
computer for data from which workflow action proxies
may be created for the needed workflow actions.

11. The method of claim 10, further comprising:

receiving the data from the server computer in response to

transmitting the request; and

constructing the workflow action proxies using the

received data.

12. The method of claim 11, further comprising authoring
the workflow schedule using the workflow action proxies.

13. The method of claim 12, wherein each workflow
action proxy comprises a proxy assembly corresponding to
a workflow action that resides on the server computer.

14. The method of claim 13, wherein each proxy assembly
comprises an assembly including the properties of an assem-
bly for the corresponding workflow action without any
implementation for functions performed by the assembly for
the corresponding workflow action.

15. A computer-readable medium having computer-ex-
ecutable instructions stored thereon which, when executed
by a computer, are operative to cause the computer to
perform the method of claim 10.

16. A computer-readable medium having computer-ex-
ecutable instructions stored thereon which, when executed
by a computer, are operative to cause the computer to:

perform an authorization check for one or more workflow

actions in a workflow schedule in response to receiving
a request for the workflow actions from a client com-
puter;

perform an authorization check for the workflow actions

in the workflow schedule in response to receiving a
request to validate the workflow schedule; and to

US 2008/0115195 Al

perform an authorization check for the workflow actions
in the workflow schedule when workflow schedule is
instantiated.

17. The computer-readable medium of claim 16, wherein
performing an authorization check comprises determining
whether the workflow actions in the workflow schedule have
been designated as authorized for use in a workflow sched-
ule.

18. The computer-readable medium of claim 17, compris-
ing further computer-executable instructions which, when
executed by the computer, are operative to cause the com-
puter to:

receive a request for data from which workflow action

proxies may be created for one or more workflow
actions; and

in response to the request, to transmit the data for creating

the workflow action proxies.

May 15, 2008

19. The computer-readable medium of claim 18, compris-
ing further computer-executable instructions which, when
executed by the computer, are operative to cause the com-
puter to:

store the workflow schedule in a versioned document

library;

receive a request to execute the workflow schedule; and

in response to the execution request, to instantiate a most

recent version of the workflow schedule from the
versioned document library.

20. The computer-readable medium of claim 19, compris-
ing further computer-executable instructions which, when
executed by the computer, are operative to cause the com-
puter to execute an instance of a previous version of the
workflow schedule using a corresponding previous version
of the workflow schedule until the instance of the previous
version of the workflow schedule has completed execution.

sk sk sk sk sk

