
US 20080115195A1 

(19) United States 
(12) Patent Application Publication (10) Pub. No.: US 2008/0115195 A1 

Malek et al. (43) Pub. Date: May 15, 2008 

(54) REMOTE WORKFLOW SCHEDULE Publication Classification 
AUTHORING (51) Int. Cl. 

(75) Inventors: Alexander Malek, Seattle, WA G06F2L/00 (2006.01) 
(US); Phillip David Allen, (52) U.S. C. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 726/4 

Redmond, WA (US): Stuart B. (57) ABSTRACT 
Kolodner, Bellevue, WA (US) Methods, systems, apparatus, and computer-readable media 

Correspondence Address: are provided herein for remotely authoring a workflow 
MCROSOFT CORPORATION schedule. According to one method, a workflow schedule 
ONE MCROSOFT WAY authoring tool is provided that may utilize workflow action 
REDMOND, WA 98052-6399 proxies in place of actual workflow actions during author 

ing. Safeguards are also provided at various stages in the 
(73) Assignee: Microsoft Corporation, Redmond, authoring process to ensure that each workflow action 

WA (US) utilized in a workflow schedule has been authorized for use 
in and execution by a workflow schedule. Workflow sched 

(21) Appl. No.: 11/598,573 ules may also be provided with version numbers to ensure 
that the same version of a workflow schedule is utilized 

(22) Filed: Nov. 13, 2006 throughout the entire lifespan of a workflow instance. 

RECEIVE WORKFLOW 
SCHEDULE AND SAVE TO 
DOCUMENT LIBRARY 

262 
REQUEST SERVER VALIDATE WORKELOWAND 

DISPLAY WALIDATION OF WORKFLOW - - - - - - - - - - - - - - - - - - - VERIFY THAT ACTIONS IN 
ERRORS SCHEDLLE WORKFLOWARE SAFE 

264 
232 

RETURNSUCCESS OR 
. . . . . . . . . . . as r- - - FAILURE RESPONSE 

266 

NO 

CALL ASSOCATE METHOD AssociaTE WORKFLOW 
ONSERVER SCHEDLILE 

232 270 

234 272 

    

    

      

  

    

  











Patent Application Publication May 15, 2008 Sheet 5 of 9 US 2008/O115.195 A1 

Fig.3. 

EXECLITE PREVIOUSLY 
INSTANTIATED WORKFLOW 

INSTANCE 

EXECUTE VERSIONED 
WORKFLOW 

is so 
WORKFLOW2 

NEW 
INSTANCE OF 

p 

NO YES 

GETLATEST VERSION OF 
WORKFLOWSCHEDULE 

VALIDATEACTIONS IN 
WORKFLOWAGAINSTSAFE 
WORKFLOWACTIONS LIST 

COMPLE WORKFLOW 
SCHEDLILE INTO ASSEMBLY 

PASS COMPLIED WORKFLOW - 
ASSEMBLY TO WORKFLOW 

EXECUTION ENGINE 

EXECUTE WORKFLOW 
INSTANCE 

    

    

  

    

  

    

    

  

    

  

  

  

  

  

  

    

  

  

  







Patent Application Publication May 15, 2008 Sheet 8 of 9 US 2008/0115195A1 

PROVIDE UI FOR BINDING 
WORKFLOW PROPERTIES TODATA 500 

SOURCES ? 
DISPLAY LII FOR SPECIFYING 

ACTIONS AND CONDITIONS OF 
WORKFLOW 
(FIGURE 4A) 

502 

504 
BIND 

DATA SOURCE TO 
ARAMETER2 

YES 
DISPLAY UI FOR DECLARATIVELY 

BINDING DATASOURCE TO 
PARAMETER 
(FIGUIRE 4B) 

506 

SHOW ONLY SOURCES HAVING 
DATA TYPES COMPATIBLE WITH 
DATA TYPE OF PARAMETER 

508 

510 
TYPE FOR 

PARAMETER SAME AS SOURC 
DATA TYPE? 

YES 

UISE DIRECTLOOKLIP 

NO 

UISE FRIENDLY LOOKIP 

514 

BIND WORKFLOW PROPERTY TO 
SPECIFIED DATA SOURCE 

- His 

18 Fig.5. 5 

    

    

    

  

  

  

    

    

    

  

  

  

  

  





US 2008/O 1151.95 A1 

REMOTE WORKFLOW SCHEDULE 
AUTHORNG 

BACKGROUND 

0001. A workflow defines a series of tasks within an 
organization to produce a final outcome. Workflows allow 
for business process formalization and management. A col 
laborative workgroup computing application allows differ 
ent workflows to be defined for different types of jobs. For 
example, in a publishing setting, a document may be auto 
matically routed from writer to editor to proofreader to 
production. At each stage in the workflow, one individual or 
group is responsible for a specific task. Once the task is 
complete, the workflow application ensures that the indi 
viduals responsible for the next task are notified and receive 
the data needed to execute the next stage of the process. 
0002. A workflow schedule authoring tool enables a user 
to author a workflow by arranging building blocks in a 
particular order. Building blocks may correspond to events, 
conditions, or actions. Each building block is associated 
with source code that defines an action to be taken when the 
building block is executed. The order of the building blocks 
determines the workflow schedule process that will be 
performed when the workflow schedule is executed by a 
workflow execution engine on a server computer. Some 
building blocks may be predefined for commonly used 
actions. Other building blocks may be customized to execute 
a specific function or to provide a solution to a unique 
problem. The building blocks simplify workflow schedule 
authoring because the user does not need to write any code. 
0003 Previous workflow schedule authoring tools 
require all of the building blocks utilized in a workflow 
schedule to be stored on both the server and the remote 
computer that is utilized to author the workflow. This 
requirement, however, may be a barrier to deploying new 
building blocks on the server computer. Additionally, in 
remote workflow authoring systems where multiple users 
are permitted to concurrently edit the same workflow, con 
flicts can arise as a result of different versions of the same 
workflow being stored on the server computer. Moreover, in 
Such systems no safeguards are provided for ensuring that 
the workflow engine cannot execute unauthorized building 
blocks. 
0004. It is with respect to these considerations and others 
that the disclosure made herein is provided. 

SUMMARY 

0005 Methods and computer-readable media are pro 
vided herein for remotely authoring a workflow schedule. 
Through the embodiments presented herein, the building 
blocks utilized in creating a workflow schedule do not need 
to be stored at the remote computer that is utilized to author 
the workflow. Safeguards are also provided at various stages 
in the authoring process to ensure that each building block 
has been authorized for use and execution by a workflow 
schedule, and to eliminate conflicts between different ver 
sions of workflow schedules. 
0006. According to one aspect presented herein, a 
method is provided for remotely authoring a workflow 
schedule. According to one method, a workflow schedule 
authoring tool (referred to herein as the “authoring tool) is 
provided that includes a user interface and associated func 
tionality for creating workflow schedules by arranging 

May 15, 2008 

building blocks, called workflow actions, in a particular 
order. Workflow actions may correspond to events, condi 
tions, or actions. The authoring tool is executed at a client 
computer and workflow schedules created at the client 
computer are transmitted to a server computer for execution. 
0007 According to one aspect, the authoring tool is 
operative to receive a list of available workflow actions from 
the server computer. In response to receiving the list, the 
authoring tool then determines whether the workflow actions 
are present on the client computer. If the workflow actions 
are not present on the client computer, the authoring tool 
transmits a request to the server computer for data from 
which workflow action proxies for the missing workflow 
actions may be created. A workflow action proxy is an object 
that includes the properties of the associated workflow 
action but does not include an implementation for its meth 
ods. As described in detail herein, the workflow action 
proxies are utilized at the client computer during authoring 
to simulate the interfaces and properties of the correspond 
ing workflow action. At execution time, however, the server 
computer utilizes the actual workflow actions to perform the 
associated workflow processing. In this manner, workflow 
schedules can be remotely authored without transferring all 
of the required executable workflow actions from the server 
computer to the client computer. Only the data for construct 
ing the workflow action proxies is transferred. 
0008. In response to receiving the request for data from 
which workflow action proxies may be created, the server 
computer determines whether the identified workflow 
actions are authorized for use in a workflow schedule. This 
may be accomplished, for instance, by examining a safe 
workflow actions list that includes data identifying workflow 
actions as either being safe or unsafe for execution. If the 
identified workflow actions are safe for execution, the server 
computer returns the data for creating the workflow action 
proxies in response to the request. If the identified workflow 
actions are not safe for execution, however, the server 
computer will not return the data. 
0009. Using the data received from the server computer, 
the authoring tool constructs the workflow action proxies. 
The proxies may then be utilized during the workflow 
schedule authoring process in place of the actual workflow 
actions. Workflow actions stored at the client computer may 
also be utilized during creation of the workflow schedule. 
Once the workflow schedule has been completed, the client 
computer transmits the workflow schedule to the server 
computer for storage. The authoring tool may also transmit 
a request to the server computer to verify the contents of the 
workflow schedule. 
0010. In response to receiving a request to verify the 
workflow schedule, the server computer performs process 
ing operations to verify the contents of the workflow sched 
ule. In particular, in one implementation the server computer 
identifies the workflow actions identified in the workflow 
schedule. The server computer then determines whether the 
workflow actions in the workflow schedule are authorized 
for use in a workflow schedule. As described above, the 
server computer may examine a safe workflow actions list to 
make this determination. If the workflow actions in the 
workflow schedule are authorized for use, the server com 
puter returns a Success indication to the client computer in 
response to the request. If the workflow actions in the 



US 2008/O 1151.95 A1 

workflow schedule are not authorized for use, however, the 
server computer will return a failure response to the client 
computer. 
0011. Once the workflow schedule has been verified, the 
workflow schedule may be instantiated and executed. This 
may occur, for instance, in response to the occurrence of an 
event or in response to a manual request to execute the 
workflow schedule. Prior to executing the workflow sched 
ule, however, the server computer again determines whether 
the workflow actions in the workflow schedule to be 
executed are authorized for use. If the workflow actions in 
the workflow schedule to be executed are authorized for use, 
the workflow schedule is instantiated. If the workflow 
actions in the workflow schedule to be executed are not 
authorized for use, the server computer will not instantiate 
the unsafe workflow actions. 
0012. According to other aspects provided herein, the 
server computer stores workflow schedules in a versioned 
document library. Through facilities provided by the docu 
ment library, each version of a workflow schedule is 
assigned a version number. Newly created instances of 
workflow schedules utilize the most recent version of the 
workflow schedule. Previously instantiated instances, how 
ever, continue to utilize the version of the workflow schedule 
that was utilized when the workflow schedule was first 
instantiated. In this manner, each instance of a workflow 
schedule utilizes the same version of the workflow schedule 
during its entire lifespan, thereby eliminating conflicts 
between different versions of workflow schedules. 
0013 The above-described subject matter may also be 
implemented as a computer-controlled apparatus, a com 
puter process, a computing system, or as an article of 
manufacture Such as a computer-readable medium. These 
and various other features will be apparent from a reading of 
the following Detailed Description and a review of the 
associated drawings. 
0014. This Summary is provided to introduce a selection 
of concepts in a simplified form that are further described 
below in the Detailed Description. This Summary is not 
intended to identify key features or essential features of the 
claimed subject matter, nor is it intended to be used to limit 
the scope of the claimed subject matter. Furthermore, the 
claimed Subject matter is not limited to implementations that 
Solve any or all disadvantages noted in any part of this 
disclosure. 

BRIEF DESCRIPTION OF THE DRAWINGS 

0015 FIG. 1 is a network and software diagram showing 
an illustrative operating environment for the processes and 
computer systems described herein and several of the soft 
ware components utilized by the computer systems 
described herein; 
0016 FIGS. 2A-2C and 3 are flow diagrams illustrating 
various processes provided herein for remotely authoring a 
workflow schedule: 
0017 FIGS. 4A and 4B are user interface diagrams 
showing illustrative user interfaces provided herein for 
declarative data binding in a system for remotely authoring 
a workflow schedule: 
0018 FIG. 5 is a flow diagram showing an illustrative 
process for declaratively binding workflow properties to 
data sources; and 

May 15, 2008 

0019 FIG. 6 is a computer architecture diagram showing 
one computer architecture Suitable for implementing the 
various computer systems described herein. 

DETAILED DESCRIPTION 

0020. The following detailed description is directed to 
systems, methods, apparatus, and computer-readable media 
for remotely authoring a workflow schedule. As will be 
described in greater detail herein, a workflow schedule 
authoring tool is provided that can utilize workflow action 
proxies instead of the workflow actions themselves during 
authoring. This eliminates the need to transfer executable 
workflow actions from a server computer to the client 
computer executing the authoring tool. Moreover, function 
ality is described herein for performing authorization checks 
at the server computer during the authoring process to 
ensure that only authorized workflow actions are utilized 
and executed. The server computer is also operative to 
provide versioning functionality for the workflow schedules 
to thereby eliminate the possibility of conflicts occurring 
between different versions of a workflow schedule. Addi 
tional details regarding each of these subject areas will be 
provided below with respect to the FIGURES. 
0021 While the subject matter described herein is pre 
sented in the general context of program modules that 
execute in conjunction with the execution of an operating 
system and application programs on a computer system, 
those skilled in the art will recognize that other implemen 
tations may be performed in combination with other types of 
program modules. Generally, program modules include rou 
tines, programs, components, data structures, and other 
types of structures that perform particular tasks or imple 
ment particular abstract data types. Moreover, those skilled 
in the art will appreciate that the subject matter described 
herein may be practiced with other computer system con 
figurations, including hand-held devices, multiprocessor 
systems, microprocessor-based or programmable consumer 
electronics, minicomputers, mainframe computers, and the 
like. 

0022. The subject matter presented herein is also 
described as being practiced in a distributed computing 
environment where tasks are performed by remote process 
ing devices that are linked through a communications net 
work and wherein program modules may be located in both 
local and remote memory storage devices. It should be 
appreciated, however, that the implementations described 
herein may also be utilized in conjunction with stand-alone 
computer systems and other types of computing devices. It 
should also be appreciated that although reference is made 
herein to the Internet, the embodiments presented herein 
may be utilized with any type of local area network (“LAN”) 
or wide area network (“WAN). 
0023. In the following detailed description, references are 
made to the accompanying drawings that form a part hereof, 
and which are shown by way of illustration specific embodi 
ments or examples. Referring now to the drawings, in which 
like numerals represent like elements through the several 
figures, aspects of a computing system and methodology for 
remote authoring of a workflow schedule will be described. 
In particular, FIG. 1 is a network diagram illustrating aspects 
of an illustrative operative environment for the subject 
matter described herein that includes a client computer 102. 
a network 106, and a server computer 104. 



US 2008/O 1151.95 A1 

0024. As shown in FIG. 1, the client computer 102 and 
the server computer 104 are communicatively coupled to 
one another through respective connections to the network 
106. According to one implementation, the network 106 
comprises the Internet. However, it should be appreciated 
that the network 106 may comprise a LAN, WAN, or other 
type of network Suitable for connecting the client computer 
102 and the server computer 104. 
0.025 FIG. 1 also illustrates a number of software com 
ponents utilized by the client computer 102 and the server 
computer 104. In particular, the client computer 102 
includes an operating system 108 suitable for controlling the 
operation of a networked desktop or laptop computer. The 
server computer 104 includes an operating system 108 
suitable for controlling the operation of a networked server 
computer. For instance, according to implementations, both 
the client computer 102 and server computer 104 may utilize 
the WINDOWS XP or WINDOWS VISTA operating sys 
tems from MICROSOFT CORPORATION of Redmond, 
Wash. Other operating systems, such as the LINUX oper 
ating system or the OSX operating system from APPLE 
COMPUTER, INC. may be utilized. It should be appreci 
ated that although the embodiments presented herein are 
described in the context of a desktop or laptop client 
computer 102 and a remote server computer 104, many other 
types of computing devices and systems may be utilized to 
embody the various aspects presented herein. 
0026. According to one implementation, the client com 
puter 102 also includes a Web browser program (referred to 
herein as a “browser) 118. The browser 118 is operative to 
request, receive, and display information pages, such as Web 
pages, from the server computer 104. In particular, the 
browser 118 is operative to establish a connection to a 
collaborative application 124 executing on the server com 
puter 104. Through the connection, the browser 118 may 
request information pages provided by the collaborative 
application 124. The collaborative application 124 is a 
computer Software program that enables multiple users to 
collaborate on documents, projects, tasks, and other matters. 
0027. The collaborative application 124 also supports 
workflow processes. In general, a workflow is an abstraction 
of how work flows through a business process. This abstract 
notion of workflow has been modeled in computer programs 
and computer software for Supporting workflow through a 
business process has become known as “workflow.” Here 
inafter, the term workflow refers to such a software model 
(i.e., a Software program that Supports the modeling of how 
work flows through a business process). In one implemen 
tation, the collaborative application 124 is the MICROSOFT 
OFFICE SHAREPOINT SERVER 2007 from 
MICROSOFT CORPORATION of Redmond, Wash. It 
should be appreciated, however, that the implementations 
described herein may be utilized with any type of computer 
system that Supports workflow processes. 
0028. In order to support the provision of workflow, in 
one implementation the server computer 104 includes the 
.NET FRAMEWORK 3.O 122 from MICROSOFT COR 
PORATION. The .NET FRAMEWORK3.0 122 is a frame 
work for building, deploying, and running Web services and 
other applications. The .NET FRAMEWORK 3.0 122 
includes the WINDOWS WORKFLOW FOUNDATION 
(“WF) 120. The WF 120 is a programming model, engine, 
and tools for building and executing workflow enabled 
applications. The WF 120 allows a developer to more easily 

May 15, 2008 

model and Support business processes. Details regarding the 
.NET FRAMEWORK3.0122 and the WF 120 are publicly 
available from the MICROSOFT DEVELOPERS NET 
WORK (“MSDN) and from other sources. 
(0029. The WF 120 includes a workflow engine for instan 
tiating and executing instances of workflows created using 
authoring tools, such as the workflow authoring tool 110. 
The workflow engine runs a workflow by advancing the 
workflow through a workflow schedule 112. The workflow 
schedule 112 is a data structure containing data that identi 
fies the workflow actions 116 that should be executed as a 
part of the workflow, workflow logic, and various metadata. 
As will be described in greater detail below, the workflow 
authoring tool 110 may be utilized to author the workflow 
schedule 112. The workflow schedule 112 may then be 
transmitted to the server computer 104 for execution as a 
part of the collaborative services provided by the collabo 
ration application 124. Additional details regarding this 
process are provided below. 
0030. As shown in FIG. 1, the client computer 102 also 
includes the .NET FRAMEWORK 3.0 122 and WF 120 for 
use during the workflow authoring process described herein. 
It should be appreciated that although the implementations 
presented herein are described in the context of the .NET 
FRAMEWORK 3.0 122 and the WF 120, other similar 
programming frameworks and workflow modeling tools 
available from other manufacturers may be utilized on the 
client computer 102 and server computer 104 to implement 
the embodiments presented herein. Additional details 
regarding the provision of and use of workflow in a col 
laborative application can be found in U.S. patent applica 
tion Ser. No. 11/117,808, filed on Apr. 29, 2005 and entitled 
“Workflow Hosting Computing System Using a Collabora 
tive Application.” U.S. patent application Ser. No. 1 1/212. 
207, filed on Aug. 25, 2005 and entitled “Workflow Tasks in 
a Collaboration Application,” and U.S. patent application 
Ser. No. 11/087,123, filed on Mar. 22, 2005 and entitled 
“Workflow Association in a Collaborative Application.” 
each of which is assigned to the assignee of the instant 
application and expressly incorporated herein by reference 
in its entirety. 
0031. As discussed briefly above, the client computer 102 

is operative to execute a workflow authoring tool 110. The 
authoring tool 110 is an application program that provides 
facilities for visually creating workflows that can be 
executed by the collaborative application 124. In particular, 
through the facilities provided by the authoring tool 110, a 
user can graphically create a workflow schedule 112. Addi 
tional details regarding the operation of the workflow 
authoring tool 110 can be found in U.S. patent application 
Ser. No. 10/955,659, filed on Sep. 30, 2004 and entitled 
“Workflow Schedule Authoring Tool, which is assigned to 
the assignee of the instant application and expressly incor 
porated herein by reference in its entirety. 
0032. The workflow schedule 112 references various 
workflow actions 116 that are the building blocks that 
perform the actual processing for the various steps of the 
workflow. The workflow actions 116 are executable com 
ponents that may correspond to events, conditions, or 
actions within a workflow process. As shown in FIG. 1, the 
workflow actions 116 are stored on the server computer 104 
for use when the workflow schedule 112 is executed. Some 



US 2008/O 1151.95 A1 

of the workflow actions 116 may also be stored on the client 
computer 102 for use during the authoring of a workflow 
schedule 112. 
0033. In certain scenarios, it is impracticable or undesir 
able for all of the workflow actions 116 available at the 
server computer 104 to be stored on the client computer 102. 
For instance, new workflow actions 116 may be added to the 
server computer 104 after deployment. In many cases it is 
impracticable or undesirable to transmit these workflow 
actions 116 to the client computer 102. In previous workflow 
authoring systems, this would result in the client computer 
102 being unable to use any workflow actions 116 that were 
not stored directly thereon. In order to address this problem, 
the authoring tool 110 is operative to determine which 
workflow actions 116 are not stored thereon and to request 
data from which workflow action proxies 114 may be 
constructed for the missing workflow actions 116. 
0034. The workflow action proxies 114 are software 
objects that include the properties of the associated work 
flow action 116 but that do not include an implementation 
for its methods. The workflow action proxies 114 are utilized 
at the client computer 102 during authoring to simulate the 
interfaces and properties of the corresponding workflow 
action 116. At execution time, however, the server computer 
104 utilizes the actual workflow actions 116 to perform the 
associated workflow processing. In this manner, workflow 
schedules 112 can be remotely authored without transferring 
all of the required executable workflow actions 116 from the 
server computer 104 to the client computer 102. Only the 
metadata needed by the client computer 102 to construct the 
workflow action proxies 114 is transferred. 
0035. Using the metadata received from the server com 
puter 104, the authoring tool 110 constructs the workflow 
action proxies 114. The proxies 114 may then be utilized 
during the workflow schedule authoring process in place of 
the actual workflow actions 116. Any workflow actions 116 
that are stored at the client computer 102 may also be 
utilized during creation of the workflow schedule 112. Once 
the workflow schedule 112 has been completed, the client 
computer 102 transmits the workflow schedule 112 to the 
server computer 104 for storage. 
0036. In one implementation, the server computer 104 
stores workflow schedules 112 in a versioned document 
library 128 provided by the collaborative application 124. 
Through the use of versioning facilities provided by the 
document library 128, each version of a workflow schedule 
112 is assigned a version number. Newly created instances 
of workflow schedules 112 utilize the most recent version of 
the workflow schedule 112. Previously instantiated 
instances, however, continue to utilize the version of the 
workflow schedule 112 that was utilized when the workflow 
schedule 112 was first instantiated. In this manner, each 
instance of a workflow schedule 112 utilizes the same 
version of the workflow schedule 112 during its entire 
lifespan. Additional details regarding this process will be 
provided below with reference to FIG. 3. 
0037. Once the workflow schedule 112 has been stored in 
the document library 128, the workflow schedule 112 may 
be instantiated and executed. This may occur, for instance, 
in response to the occurrence of an event or in response to 
a manual request to execute the workflow schedule 112. 
When the workflow schedule 112 is instantiated, the work 
flow actions 116 are utilized to perform the actual processing 
for the workflow. If a workflow action proxy 114 was 

May 15, 2008 

utilized during authoring, the corresponding workflow 
action 116 is utilized at run time to perform the workflow 
processing. 
0038. As will be described in greater detail below, 
according to implementations, the server computer 104 is 
operative to verify that each of the workflow actions 116 
referenced by a workflow schedule 112 have been autho 
rized for execution. This may occur, for instance, at the time 
the authoring client 110 requests data for creating the 
workflow action proxies 114, at the time a workflow sched 
ule 112 is verified by the server computer 104, and at run 
time. Additional details regarding these security mecha 
nisms will be provided below with reference to FIGS. 
2A-2C. 

0039 Referring now to FIGS. 2A-2C, additional details 
will be provided regarding the embodiments presented 
herein for remotely authoring a workflow schedule 112. In 
particular, FIGS. 2A-2C are flow diagrams illustrating the 
operation of the client computer 102 and the server com 
puter 104 according to one implementation. The routine 200 
illustrates processing operations performed by the client 
computer 102 while the routine 250 illustrates processing 
operations performed by the server computer 104. The 
routines 200 and 250 will be described in conjunction with 
one another. 
0040. It should be appreciated that the logical operations 
described herein are implemented (1) as a sequence of 
computer implemented acts or program modules running on 
a computing System and/or (2) as interconnected machine 
logic circuits or circuit modules within the computing sys 
tem. The implementation is a matter of choice dependent on 
the performance requirements of the computing system. 
Accordingly, the logical operations described herein are 
referred to variously as operations, structural devices, acts, 
or modules. These operations, structural devices, acts and 
modules may be implemented in Software, in firmware, in 
special purpose digital logic, and any combination. 
0041. The routine 200 begins at operation 202, where the 
workflow authoring tool 110 is launched on the client 
computer 102. Once the workflow authoring tool 110 has 
been launched, the routine 200 continues to operation 204, 
where the workflow designer portion of the workflow 
authoring tool 110 is launched. The workflow designer is a 
portion of the workflow authoring tool 202 that provides 
functionality for visually defining a business workflow with 
out programming. Several aspects of a user interface pro 
vided by the workflow designer are described below with 
reference to FIGS 4A-4B and 5. 
0042. From operation 204, the routine 200 continues to 
operation 206, where the workflow authoring tool 110 
retrieves a list of available workflow actions 116 from the 
server computer 104. The server computer 104 transmits the 
list of available workflow actions 116 to the client computer 
at operation 252 of the routine 250. In response to receiving 
the list of available workflow actions 116, the authoring tool 
110 compares the actions identified in the received list to the 
workflow actions 116 already stored at the client computer 
102. In this manner, the authoring tool 110 can determine the 
assemblies already present and loaded on the client com 
puter 102 and the workflow actions 116 that are available 
from the server computer 104 that are not present on the 
client computer 102. 
0043. At operation 208, the workflow authoring tool 110 
determines whether any workflow actions 116 are needed 



US 2008/O 1151.95 A1 

from the server computer 104. If no workflow actions 116 
are needed, the routine 200 branches from operation 208 to 
operation 216, described below. If workflow actions 116 are 
needed, the routine 200 continues from operation 208 to 
operation to 210. At operation to 210, the workflow author 
ing tool 110 transmits a request for the data necessary to 
build the workflow action proxies 114 to the server computer 
104. As discussed briefly above, rather than downloading all 
of the needed workflow actions 116, the workflow authoring 
tool 110 builds proxies 114 for each of the needed workflow 
actions 116. 
0044) The workflow action proxies 114 are objects that 
model a corresponding workflow action 116. The proxies 
114 include the properties of the corresponding workflow 
action 116 and the appropriate interfaces. However, the 
workflow action proxies 114 do not provide any implemen 
tation for the methods contained in the corresponding work 
flow action 116. In this manner, the workflow action proxies 
114 appear to the authoring tool 110 to be valid workflow 
actions 116 that can be utilized in a workflow schedule 112. 
The workflow action proxies 114 can therefore be utilized 
when creating a workflow schedule 112. As will be 
described in greater detail below, the actual workflow 
actions 116 are utilized by the server computer 104 when the 
workflow schedule 112 is instantiated. 
0045. The server computer 104 receives the request for 
the workflow action proxy data at the operation 254 of the 
routine 250. In response thereto, the routine 250 continues to 
operation 256 where the server computer 104 identifies the 
actions that are authorized for use in a workflow schedule 
112. This may be accomplished, for instance, by examining 
the contents of the safe workflow actions list 126. The safe 
workflow actions list 126 comprises a list of all of the 
workflow actions 116 that are authorized for use in a 
workflow schedule 112. A workflow action 116 that is 
identified in the safe workflow actions list 126 as being 
authorized for use in a workflow schedule 112 is referred to 
herein as being “safe' for use. Once the server computer 104 
has identified the safe workflow actions 116, the server 
computer 104 then determines whether each of the workflow 
actions 116 for which proxy data has been requested are 
safe. The server computer 104 will not return proxy data for 
any workflow action 116 that is not safe. 
0046. From operation 256, the routine 250 continues to 
operation 258 where the server computer 104 serializes the 
properties, methods, and other information necessary to 
generate the workflow action proxies 114 for each of the safe 
workflow actions 116 into an extensible markup language 
(XML) document. The routine 250 then continues to 
operation 260 where the XML document is transmitted to 
the workflow authoring tool 110. 
0047. At operation 212 of the routine 200, the authoring 
tool 110 receives the XML document containing the meta 
data necessary to build the workflow action proxies 114 for 
each of the needed workflow actions 116. Once the XML 
document has been received, the routine 200 continues to 
operation 214, where the authoring tool 110 builds the 
workflow action proxies 114 for each of the needed work 
flow actions 116. Once the proxies 114 have been created, 
the authoring tool 110 loads the proxies 114 into memory for 
US 

0048. From operation 216, the routine 200 continues to 
operation to 218, where the workflow designer may be 
utilized by a user to create the workflow schedule 112. As 

May 15, 2008 

described above, the workflow designer provides a user 
interface through which workflow actions 116 can be visu 
ally arranged to create the workflow schedule 112. During 
this process, the workflow action proxies 114 are used in 
place of the workflow actions 116 to which they correspond. 
0049. When the user has finished building the workflow 
schedule 112 using the workflow designer, the routine 200 
continues from operation 220 to operation 222. At operation 
222, the authoring tool 110 validates the workflow schedule 
112. The routine 200 then continues to operation 224 where 
the authoring tool 110 transmits the workflow schedule 112 
to the server computer 104. The server computer 104 
receives the workflow schedule 112 at operation 262 of the 
routine 250 and saves the workflow schedule 112 to the 
document library 128. As will be discussed in greater detail 
below, in one implementation, the document library 128 
comprises a versioned document storage library provided by 
the collaborative application 124. When a workflow sched 
ule 112 is stored in the document library 128, it is assigned 
a version number. The version number of each workflow 
schedule 112 is utilized to ensure that an instance of a 
particular version of a workflow schedule 112 is executed 
until it completes. This ensures that newer versions of a 
workflow schedule 112 will not conflict with the execution 
of a previous version of the same workflow schedule 112. 
Additional details regarding this process will be described 
below with reference to FIG. 3. 

0050. From operation 224, the routine 200 continues to 
operation 226 where the authoring tool 110 transmits a 
request to the server computer 104 to validate the workflow 
schedule 112. The server computer 104 may expose a remote 
application programming interface (API) for this purpose. 
In response to receiving the validation request, the server 
computer 104 validates the workflow schedule 112 and 
verifies that all of the workflow actions 116 identified in the 
workflow schedule 112 are safe. The routine 250 then 
continues to operation 266 where the server computer 
returns a success message to the authoring tool 110 if the 
workflow schedule 112 is valid. If the workflow schedule 
112 is not valid, the server computer 104 returns a failure 
response to the authoring tool 110. 
0051. At operation 228 of the routine 200, the authoring 
tool 110 receives the response to the validation request from 
the server computer 104. At operation 230, the authoring 
tool 110 determines if the response indicated that the work 
flow schedule 112 included errors. If the workflow schedule 
112 has errors, the routine 200 branches from operation 230 
to operation 232, where the errors are displayed. The routine 
200 then continues from operation 232 to operation 218. At 
operation 218, described above, the workflow designer may 
be utilized to correct any errors in the workflow schedule 
112. 

0052. If the response from the server computer 104 
indicates that the workflow schedule 112 is valid, the routine 
200 continues from operation 230 to operation 232. At 
operation 232, the authoring tool 110 calls a remote API on 
the server computer 104 for associating the workflow sched 
ule 112 with a list on the server computer 104. In the context 
of the collaborative application 124, workflow schedules 
112 are executed against items and documents identified 
within various lists. Multiple workflow schedules 112 may 
be executed against a given document or item in a list. By 
associating the workflow schedule 112 with a list, an indi 
cation is being provided regarding the types of documents or 



US 2008/O 1151.95 A1 

items with which the workflow schedule 112 should be 
utilized. The server computer 104 performs the association 
request at operation 270. Once the association request has 
been completed, the routines 200 and 250 continue to 
operations 234 and 272, respectively, where they end. 
0053 Referring now to FIG. 3, an illustrative routine 300 
will be described illustrating aspects provided herein for 
executing workflow schedules 112 with reference to the 
version numbers assigned to the schedules when they are 
stored in the document library 128. In particular, the routine 
300 begins at operation 302, where a decision is made as to 
whether a workflow schedule 112 should be executed. As 
described above, a workflow may be executed in response to 
an item in a list changing, an item being added to a list, or 
in response to a manual request. Additionally, instantiated 
workflows may be paused during execution. The occurrence 
of events or other conditions identified in the workflow may 
cause the previously instantiated workflow to continue 
execution. Accordingly, the determination made at operation 
302 is whether to execute a new instance of a workflow 
schedule 112 or to continue the execution of a previously 
instantiated version of a workflow schedule 112. If a work 
flow schedule 112 is to be executed, the routine 300 con 
tinues from operation 302 to operation 304. 
0054. At operation 304, a determination is made as to 
whether the workflow schedule 112 to be executed is a new 
instance of the workflow or a previously instantiated 
instance of the workflow. If the workflow schedule 112 to be 
executed is a new instance of the workflow, the routine 300 
branches from operation 304 to operation 308. At operation 
308, the latest version of the workflow schedule 112 to be 
executed is retrieved from the document library 128. The 
routine 300 then continues to operation 310 where the 
workflow actions 116 in the workflow schedule 112 to be 
executed are again validated against the safe workflow 
actions list 126. If the workflow schedule 112 contains any 
workflow actions 116 not identified in the safe workflow 
actions list 126, the unsafe actions 116 will not be executed. 
0055. Once the workflow schedule 112 has been vali 
dated, the routine 300 continues from operation 310 to 
operation 312. At operation 312, the workflow schedule 112 
is compiled into an executable assembly. The routine 300 
then continues to operation 314, where the compiled work 
flow assembly is passed to the workflow execution engine in 
the WF 120 for execution. At operation 316, the instance of 
the workflow schedule 112 is executed. From operation 316, 
the routine 300 continues to operation 318, where it ends. 
0056. If, at operation 304, the server computer 104 deter 
mines that the workflow to be executed is a previously 
instantiated workflow, the routine 300 branches from opera 
tion 304 to operation 306. At operation 306, the previously 
instantiated version of the workflow is executed using the 
version of the workflow schedule 112 stored in the document 
library 128. By executing previously instantiated workflows 
using their originally assigned version number, each 
instance of a workflow continues executing using the appro 
priate version of the workflow schedule 112 until the 
instance has completed its execution. In this manner, the 
workflow schedule 112 can be edited and modified while 
instances of the workflow schedule 112 are executing with 
out causing a conflict. From operation 306, the routine 300 
continues to operation 318, where it ends. 
0057 Referring now to FIGS. 4A and 4B, an illustrative 
user interface provided by the workflow authoring tool 110 

May 15, 2008 

for declaratively binding data sources to parameters in 
workflow actions 116 will be described. In particular, FIGS. 
4A-4B show several illustrative user interfaces 400 and 450 
that can be utilized by a workflow designer to graphically 
bind data sources to the various parameters utilized by a 
workflow action 116. 

0.058 As discussed above, workflow schedules 112 can 
include decision logic that allows actions to be performed 
when certain conditions are met. For instance, a rule may be 
created within a workflow schedule 112 that assigns an 
expense report to a manager for approval when the total 
amount of the expense report is less than a certain amount. 
The user interfaces 400 and 450 shown in FIGS 4A-4B 
allow the workflow designer to specify the properties of 
Such a rule in a graphical manner. Through these user 
interfaces, the user has the option of specifying a static value 
for each property or choosing to make the parameter data 
driven so that at runtime the value loaded into the parameter 
is looked up dynamically. Parameters may be assigned to 
data fields within any list maintained by the collaborative 
application 124. 
0059. The user interface 400 shown in FIG. 4A is dis 
played when a user is graphically creating the conditions and 
actions for two rules 404A and 404B that define one step of 
a workflow. In the example shown in FIG. 4A, the user is 
defining a process for the approval of a business expense. 
When a parameter of the condition or action may be speci 
fied by a user, an icon is displayed adjacent to the parameter 
thereby indicating that the parameter can be specified or 
bound to a data value. In response to the selection of the 
icon, the user interface 450, described below with respect to 
FIG. 4B is presented. 
0060 Once the user has bound a parameter to a data value 
in the manner described below with reference to FIG. 4B, 
the parameters are illustrated in the user interface 400 with 
underlining to indicate that they are a hyperlink that can be 
selected and modified. For instance, in the example shown 
in FIG. 4A, the parameters 402A-402E have been under 
lined, thereby indicating that they are selectable parameters 
that have been bound to a data source or manually specified. 
The parameters 402A-402E can be selected to modify the 
specified value or source of the data bound value. 
0061 FIG. 4B shows an illustrative user interface 450 for 
binding the parameters to a list, the value from a previous 
action, or to an input parameter. In one implementation, the 
user interface 450 includes drop-down menus 452A and 
452B through which a user may choose the data source and 
field of the data source to perform the lookup on for the 
associated data parameter. In particular, the drop-down 
menu 452A is utilized to specify the data source and the 
drop-down menu 452B is utilized to specify the field of the 
selected data source. When selected, the drop-down menu 
452A provides a list of available data sources and the 
drop-down menu 452B provides a list of fields within the 
data source selected in the drop-down menu 452A. It should 
be appreciated that the data source may comprise an item in 
the current list or come from an external source. Such as 
another list maintained by the collaborative application 124. 
0062) If a user has requests that a parameter be bound to 
an external list, the query must be narrowed down so that a 
single item may be returned. In order to accomplish this, the 
user interface 450 includes two additional drop-down menus 
452C and 452D. When selected, the drop-down menu 452C 
lists the set of fields in the external list chosen in the manner 



US 2008/O 1151.95 A1 

described above. The drop down menu 452D identifies the 
set of workflow parameters and the set of fields in the 
associated list when selected. The drop-down menu 452D is 
also editable so that the user can type in a value. 
0063. According to one implementation, the user inter 
face 450 also includes a button 453 that allows a user to 
databind multiple levels of the user interface 450. In par 
ticular, selection of the button 453 allows a user to input an 
expression that defines the item in the lookup list that should 
be bound to. The user interface 450 may also include a 
button for clearing the contents of the fields of the user 
interface 450. It should be appreciated that although drop 
down menus and buttons have been utilized in the illustra 
tive user interface 450 shown in FIG. 4B, other types of 
suitable user interface controls may be utilized that allow a 
user to select from a list of data sources and fields. 
0064. Turning now to FIG. 5, an illustrative routine 500 
will be described for declaratively binding a workflow 
action parameter to a data source and for propagating the 
data type for data returned from a data source to the data type 
of the parameter. In particular, the routine 500 begins at 
operation502, where the authoring tool 110 displays the user 
interface 400 shown in FIG. 4A for specifying the actions 
and conditions of the workflow. The routine 500 then 
continues to operation 504, where a determination is made 
as to whether a user has requested that a parameter be bound 
to a data source. This may occur, for instance, in response to 
a user selecting one of the parameters 402A-402E displayed 
in the user interface 400. If a user does request that a 
workflow action parameter be bound to a data source, the 
routine 500 continues from operation 504 to operation 506. 
0065. At operation 506, the workflow authoring tool 110 
displays the user interface 450 for declaratively binding a 
data source to a workflow parameter shown in FIG. 4B. The 
user is then permitted to select the drop-down menus 452A 
and 452B to select the data source to which the selected 
workflow parameter will be bound. According to one imple 
mentation, the drop-down menus 452A and 452B will only 
include sources and fields having data types that are com 
patible with the data type of the selected workflow param 
eter. This occurs at operation 508 of the routine 500. 
0066. At decision operation 510, a determination is made 
as to whether the data type for the selected workflow 
parameter (the “target') is the same as the same as the data 
type for the selected data source (the “source). If the data 
types are the same, then an internal lookup of the data may 
be performed to provide the highest fidelity data lookup. 
This occurs at operation 512. If, however, the data types are 
not the same, the data contained in the Source must be 
converted to the data type of the target. In order to perform 
this procedure, the routine 500 branches from operation 510 
to operation 514, where a “friendly” data lookup is utilized. 
0067. A “friendly” data lookup allows data of one data 
type to be converted to data of another data type. For 
instance, if the Source is a number type while the target is a 
string type, the number type may be converted to a string 
upon lookup. Other data transformations may also be pro 
vided by the friendly lookup procedure. In this manner, the 
data type of the target is propagated to data retrieved from 
the source. 

0068. Once the user has selected the desired data source 
using the user interface 450, the routine 500 continues from 
operations 512 and 514 to operation 516 where the workflow 
property is bound to the selected data source. Using either 

May 15, 2008 

the direct lookup or the friendly lookup described above, 
data from the data source is retrieved and utilized in the 
workflow parameter at runtime. From operation 516, the 
routine 500 continues to operation 518, where it ends. 
0069. Referring now to FIG. 6, an illustrative computer 
architecture for a computer 600 utilized in the various 
embodiments presented herein will be discussed. The com 
puter architecture shown in FIG. 6 illustrates a conventional 
desktop, laptop computer, or server computer. The computer 
architecture shown in FIG. 6 includes a central processing 
unit 602 (“CPU”), a system memory 608, including a 
random access memory 614 (“RAM) and a read-only 
memory (“ROM) 616, and a system bus 604 that couples 
the memory to the CPU 602. A basic input/output system 
containing the basic routines that help to transfer informa 
tion between elements within the computer 600, such as 
during startup, is stored in the ROM 616. The computer 600 
further includes a mass storage device 610 for storing an 
operating system 108, application programs, and other pro 
gram modules, which are described in detail above with 
reference to FIG. 1. 

0070 The mass storage device 610 is connected to the 
CPU 602 through a mass storage controller (not shown) 
connected to the bus 604. The mass storage device 610 and 
its associated computer-readable media provide non-volatile 
storage for the computer 600. Although the description of 
computer-readable media contained herein refers to a mass 
storage device, such as a hard disk or CD-ROM drive, it 
should be appreciated by those skilled in the art that com 
puter-readable media can be any available media that can be 
accessed by the computer 600. 
0071. By way of example, and not limitation, computer 
readable media may include Volatile and non-volatile, 
removable and non-removable media implemented in any 
method or technology for storage of information Such as 
computer-readable instructions, data structures, program 
modules or other data. For example, computer-readable 
media includes, but is not limited to, RAM, ROM, EPROM, 
EEPROM, flash memory or other solid state memory tech 
nology, CD-ROM, digital versatile disks (“DVD), HD 
DVD, BLU-RAY, or other optical storage, magnetic cas 
settes, magnetic tape, magnetic disk storage or other 
magnetic storage devices, or any other medium which can be 
used to store the desired information and which can be 
accessed by the computer 600. 
0072 According to various embodiments, the computer 
600 may operate in a networked environment using logical 
connections to remote computers through a network 106. 
such as the Internet. The computer 600 may connect to the 
network 106 through a network interface unit 606 connected 
to the bus 604. It should be appreciated that the network 
interface unit 606 may also be utilized to connect to other 
types of networks and remote computer systems. The com 
puter 600 may also include an input/output controller 612 
for receiving and processing input from a number of other 
devices, including a keyboard, mouse, or electronic stylus 
(not shown in FIG. 6). Similarly, an input/output controller 
may provide output to a display Screen, a printer, or other 
type of output device (also not shown in FIG. 6). 
0073. As mentioned briefly above, a number of program 
modules and data files may be stored in the mass storage 
device 610 and RAM 614 of the computer 600, including an 
operating system 108 suitable for controlling the operation 
of a networked desktop or server computer. Such as the 



US 2008/O 1151.95 A1 

WINDOWS XP operating system from MICROSOFTCOR 
PORATION of Redmond, Wash., or the WINDOWS VISTA 
operating system, also from MICROSOFT CORPORA 
TION. The mass storage device 610 and RAM 614 may also 
store one or more program modules. In particular, the mass 
storage device 610 and the RAM 614 may store a Web 
browser program 110, a collaborative application 124, and 
the other program modules described above with respect to 
FIG. 1. Other program modules may also be stored in the 
mass storage device 610 and utilized by the computer 600. 
0074 Based on the foregoing, it should be appreciated 
that Systems, methods, and computer-readable media for 
remotely authoring a workflow schedule are provided 
herein. Although the subject matter presented herein has 
been described in language specific to computer structural 
features, methodological acts, and computer readable media, 
it is to be understood that the invention defined in the 
appended claims is not necessarily limited to the specific 
features, acts, or media described herein. Rather, the specific 
features, acts and mediums are disclosed as example forms 
of implementing the claims. 
0075. The subject matter described above is provided by 
way of illustration only and should not be construed as 
limiting. Various modifications and changes may be made to 
the subject matter described herein without following the 
example embodiments and applications illustrated and 
described, and without departing from the true spirit and 
scope of the present invention, which is set forth in the 
following claims. 
What is claimed is: 
1. A method for remote workflow schedule authoring, the 

method comprising: 
receiving a request for data from which a workflow action 

proxy may be created for one or more workflow 
actions; 

in response to the request, determining whether the work 
flow actions are authorized for use in a workflow 
Schedule; and 

in response to determining that the workflow actions are 
authorized for use in a workflow schedule, transmitting 
the data for creating the workflow action proxies in 
response to the request. 

2. The method of claim 1, further comprising not trans 
mitting the data for creating the workflow action proxies in 
response to determining that the workflow actions are not 
authorized for use in a workflow schedule. 

3. The method of claim 2, further comprising: 
receiving a workflow schedule comprising one or more 

workflow actions; 
receiving a request to validate the workflow schedule: 
determining in response to the validation request whether 

each of the workflow actions of the workflow schedule 
are authorized for use; and 

in response to determining that each of the workflow 
actions of the workflow schedule are authorized for 
use, providing an indication in response to the valida 
tion request that the workflow schedule is authorized 
for use. 

4. The method of claim 3, further comprising in response 
to determining that each of the workflow actions of the 
workflow Schedule are not authorized for use, providing an 
indication in response to the validation request that work 
flow actions in the workflow schedule are not authorized for 
SC. 

May 15, 2008 

5. The method of claim 4, further comprising: 
receiving a request to instantiate the workflow schedule: 
in response to the instantiation request, determining 

whether each of the workflow actions of the workflow 
schedule are authorized for use; and 

instantiating the workflow schedule in response to deter 
mining that all of the workflow actions of the workflow 
schedule are authorized for use. 

6. The method of claim 5, further comprising not instan 
tiating the workflow schedule in response to determining 
that all of the workflow actions of the workflow schedule are 
not authorized for use. 

7. The method of claim 6, wherein the workflow schedule 
is stored in a versioned document library, and wherein 
instantiating the workflow schedule comprises instantiating 
a most recent version of the workflow schedule. 

8. The method of claim 7, further comprising executing an 
instance of a previous version of the workflow schedule 
using a corresponding previous version of the workflow 
schedule until the instance of the previous version of the 
workflow schedule has completed execution. 

9. A computer-readable medium having computer-execut 
able instructions stored thereon which, when executed by a 
computer, are operative to cause the computer to perform the 
method of claim 1. 

10. A method for remote workflow schedule authoring, 
the method comprising: 

determining at a client computer whether one or more 
workflow actions are needed for authoring a workflow 
Schedule; and 

in response to determining that one or more workflow 
actions are needed for authoring a workflow schedule at 
the client computer, transmitting a request to a server 
computer for data from which workflow action proxies 
may be created for the needed workflow actions. 

11. The method of claim 10, further comprising: 
receiving the data from the server computer in response to 

transmitting the request; and 
constructing the workflow action proxies using the 

received data. 
12. The method of claim 11, further comprising authoring 

the workflow schedule using the workflow action proxies. 
13. The method of claim 12, wherein each workflow 

action proxy comprises a proxy assembly corresponding to 
a workflow action that resides on the server computer. 

14. The method of claim 13, wherein each proxy assembly 
comprises an assembly including the properties of an assem 
bly for the corresponding workflow action without any 
implementation for functions performed by the assembly for 
the corresponding workflow action. 

15. A computer-readable medium having computer-ex 
ecutable instructions stored thereon which, when executed 
by a computer, are operative to cause the computer to 
perform the method of claim 10. 

16. A computer-readable medium having computer-ex 
ecutable instructions stored thereon which, when executed 
by a computer, are operative to cause the computer to: 

perform an authorization check for one or more workflow 
actions in a workflow schedule in response to receiving 
a request for the workflow actions from a client com 
puter; 

perform an authorization check for the workflow actions 
in the workflow schedule in response to receiving a 
request to validate the workflow schedule; and to 



US 2008/O 1151.95 A1 

perform an authorization check for the workflow actions 
in the workflow schedule when workflow schedule is 
instantiated. 

17. The computer-readable medium of claim 16, wherein 
performing an authorization check comprises determining 
whether the workflow actions in the workflow schedule have 
been designated as authorized for use in a workflow sched 
ule. 

18. The computer-readable medium of claim 17, compris 
ing further computer-executable instructions which, when 
executed by the computer, are operative to cause the com 
puter to: 

receive a request for data from which workflow action 
proxies may be created for one or more workflow 
actions; and 

in response to the request, to transmit the data for creating 
the workflow action proxies. 

May 15, 2008 

19. The computer-readable medium of claim 18, compris 
ing further computer-executable instructions which, when 
executed by the computer, are operative to cause the com 
puter to: 

store the workflow schedule in a versioned document 
library; 

receive a request to execute the workflow schedule; and 
in response to the execution request, to instantiate a most 

recent version of the workflow schedule from the 
versioned document library. 

20. The computer-readable medium of claim 19, compris 
ing further computer-executable instructions which, when 
executed by the computer, are operative to cause the com 
puter to execute an instance of a previous version of the 
workflow schedule using a corresponding previous version 
of the workflow schedule until the instance of the previous 
version of the workflow schedule has completed execution. 

c c c c c 


