

(12) PATENT
(19) AUSTRALIAN PATENT OFFICE

(11) Application No. AU 199923442 B2
(10) Patent No. 750789

(54) Title
Plastic bag sealing apparatus with an ultracapacitor discharging power circuit

(51)⁶ International Patent Classification(s)
B32B 031/20 H05B 001/00
B32B 035/00

(21) Application No: 199923442 (22) Application Date: 1999 .01 .26

(87) WIPO No: WO99/41076

(30) Priority Data

(31) Number (32) Date (33) Country
09/022613 1998 .02 .12 US

(43) Publication Date : 1999 .08 .30
(43) Publication Journal Date : 1999 .11 .04
(44) Accepted Journal Date : 2002 .07 .25

(71) Applicant(s)
Tilia International, Incorporated

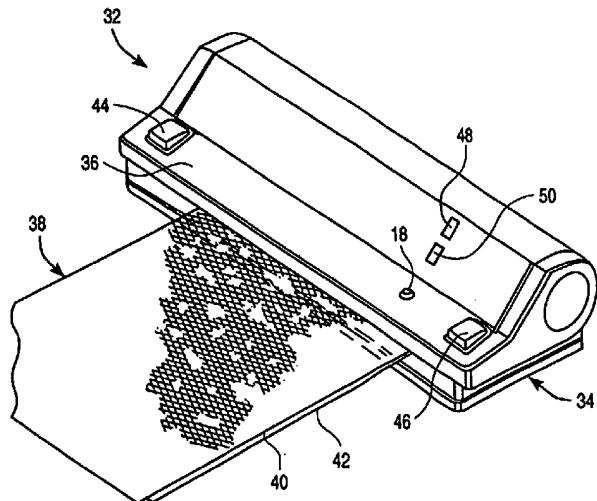
(72) Inventor(s)
Hanns J. Kristen

(74) Agent/Attorney
DAVIES COLLISON CAVE, 1 Little Collins Street, MELBOURNE VIC 3000

(56) Related Art
US 4378266
US 4713131
FR 873847

23442/99
PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau



INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 : B32B 31/20, 35/00, H05B 1/00	A1	(11) International Publication Number: WO 99/41076 (43) International Publication Date: 19 August 1999 (19.08.99)
(21) International Application Number: PCT/US99/01641 (22) International Filing Date: 26 January 1999 (26.01.99)		(81) Designated States: AU, CA, JP, KR, European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).
(30) Priority Data: 09/022,613 12 February 1998 (12.02.98) US		Published <i>With international search report.</i>
(71) Applicants: TILIA INCORPORATED [US/US]; 2nd floor, 568 Howard Street, San Francisco, CA 94105 (US). TILIA INTERNATIONAL, INCORPORATED [CN/CN]; Flat B, 7th floor, Evernew Commercial Center, 33-35 Pine Street, Kowloon, Hong Kong (CN).		
(72) Inventor: KRISTEN, Hanns, J.; 58 Indian Rock Road, San Anselmo, CA 94960 (US).		
(74) Agents: FLIESLER, Martin, C. et al.; Fliesler, Dubb, Meyer and Lovejoy LLP, Suite 400, Four Embarcadero Center, San Francisco, CA 94111-4156 (US).		

(54) Title: PLASTIC BAG SEALING APPARATUS WITH AN ULTRACAPACITOR DISCHARGING POWER CIRCUIT

(57) Abstract

An energy discharge circuit includes a high-power ultracapacitor (4) for providing pulses of electrical energy to a sealer (8) in an apparatus for sealing a plastic bag (38). The ultracapacitor (4) is charged by a power supply and discharges the stored energy to the sealer (8), thereby enabling the sealing apparatus to seal the plastic bag (38) without the need for a high energy continuous electrical power source.

-1-

PLASTIC BAG SEALING APPARATUS WITH AN
ULTRACAPACITOR DISCHARGING POWER CIRCUIT

5 **BACKGROUND OF THE INVENTION**

1. Field of the Invention

The present invention relates to a plastic bag sealing apparatus, and more particularly, to a plastic bag sealing apparatus with an ultracapacitor power supply circuit.

10

2. Background

Various types of electrical power supply circuits have been developed and used for supplying electrical power to plastic bag sealers. Conventional power supply circuits for plastic bag sealers include those adapted to receive 15 electrical power from alternating current (AC) power sources and those adapted to receive power from direct current (DC) power sources. Some of these conventional circuits include conventional rectifier circuits adapted to convert AC power into DC power. Some of the conventional rectifier circuits include a capacitor which serves as a low-pass filter to smoothen DC pulses converted 20 from the AC waveform. These conventional capacitors in the conventional rectifier circuits generally have small capacitances, usually in the range of several microfarads. In general, the conventional capacitors in conventional power supply circuits serve only as low-pass filters to filter out high frequency jitters to smoothen the DC pulses, and have capacitances too small to serve as energy 25 storage units for supplying electrical power. A conventional plastic bag sealer usually includes a heating element powered by continuous energy from a

- 2 -

conventional power supply circuit. However, the conventional power supply circuit is generally bulky and energy inefficient.

Furthermore, a conventional plastic bag sealer requires a timer or a heat sensor to control the amount of heating generated by the heating element to seal the plastic bags

5 because the power supply circuit itself does not control the amount of energy supplied to the heating element. Moreover, the size, weight and energy inefficiency of conventional power supplies to make them unsuitable for implementation in a portable or battery-operated plastic bag sealer. In some countries the AC voltage may not be compatible with the power supply circuit in a conventional plastic bag sealer, and in some areas AC power

10 may not be available. A portable or battery-operated bag sealer with a compact power supply circuit may be desirable for applications such as the preservation of perishable goods at locations in which AC power is not available or is supplied at a different standard AC voltage.

Therefore, there is a need for a plastic bag sealer with a power supply circuit that is

15 sufficiently light and small for portable applications. There is a further need for a plastic bag sealer with a high efficiency of energy conversion for use with low voltage power supplies such as batteries. There is yet a further need for a plastic bag sealer with a power supply circuit that generates a fixed and predetermined energy for each sealing without necessity for a timer or a heat sensor to control the amount of energy used for sealing each

20 bag.

The reference to any prior art in this specification is not, and should not be taken as, an acknowledgment or any form of suggestion that that prior art forms part of the common general knowledge in Australia.

25 SUMMARY OF THE INVENTION

The present invention provides an apparatus for sealing at least two plastic layers, comprising:

- (a) a power supply input capable of being supplied with an electrical energy;
- (b) an ultracapacitor coupled to store the electrical energy received by the power supply input;

- (c) a discharge circuit coupled to the ultracapacitor to discharge the electrical energy stored in the ultracapacitor; and
- (d) a sealer coupled to receive the electrical energy from the discharge circuit, the sealer being capable of sealing the at least two plastic layers together upon a single discharge of the ultracapacitor.

5 The present invention further provides an apparatus for sealing at least two plastic layers, comprising:

- (a) a power supply input capable of being supplied with an electrical energy;
- (b) an ultracapacitor coupled to store the electrical energy received by the 10 power supply input;
- (c) a discharge circuit coupled to the ultracapacitor, the discharge circuit including a sealer for sealing the at least two plastic layers together; and
- (d) a switch connected between the power supply input, the ultracapacitor and the discharge circuit, the switch adapted to occupy a first position where the ultracapacitor 15 is charged with the electrical energy from the power supply input, and a second position where the electrical energy stored in the ultracapacitor is discharged to the sealer, the switch moving between the first and second positions once for the sealer to seal the at least two plastic layers together.

20 The present invention further provides an apparatus for sealing at least two plastic layers, comprising:

- (a) a power supply input adapted to receive an electrical energy;
- (b) an ultracapacitor coupled to store the electrical energy received by the power supply input;
- (c) a sealer coupled to the ultracapacitor for sealing the at least two plastic 25 layers together; and
- (d) a switch connected between the power supply input, the ultracapacitor and the sealer, the switch adapted to occupy a first position to charge the ultracapacitor with the electrical energy from the power supply input and a second position to discharge the electrical energy stored in the ultracapacitor to the sealer, a single discharge of the energy 30 stored in the ultracapacitor providing sufficient energy to the sealer to seal the at least two plastic layers together.

The power supply can be either an alternating current (AC) power supply or a direct current (DC) power supply. If the power supply is an AC power supply, the AC voltage can be downconverted and rectified by a diode to provide a rectified voltage to charge the ultracapacitor. The electrical energy discharging circuit may further include a 5 switch connected between the power supply, the ultracapacitor and the sealer, the switch capable of moving between a first position, where the ultracapacitor is charged with the electrical energy from the power supply, and a second position where the electrical energy stored in the ultracapacitor is discharged to the sealer. The energy discharging circuit may further include a second diode, for example, a light emitting diode (LED), which is capable 10 of emitting a visible light to indicate that power is being supplied to the sealer.

Advantageously, the apparatus according to the present invention can be of a small size and light weight for portable applications. A further advantage of the invention is that the apparatus includes an ultracapacitor circuit which can be used with a low voltage DC power supply such as a battery to provide the power needed for sealing plastic bags. Yet 15 another advantage of the invention is that it obviates the need for a timer or a heat sensor to control the amount of energy needed for sealing each plastic bag.

BRIEF DESCRIPTION OF THE DRAWINGS

20 The invention will be described, by way of example only, with respect to particular embodiments thereof, and references will be made to the drawings in which:

Fig. 1 is a circuit diagram of the apparatus according to an embodiment of the present invention with an alternating current (AC) power supply;

25 Fig. 2 is a circuit diagram of the apparatus according to an embodiment of the present invention with a direct current (DC) power supply;

Fig. 3 is a circuit diagram of the apparatus according to an embodiment of the present invention with a heat pulse or ultrasonic generator for sealing plastic bags;

Fig. 4 is a perspective view of an embodiment of the apparatus according to an embodiment of the present invention; and

30 Fig. 5 is a partial perspective view of the apparatus of Fig. 4 with the hood in a partially opened position showing a heat sealer.

DETAILED DESCRIPTION

Fig. 1 shows a circuit diagram of an embodiment of the apparatus for sealing plastic bags according to the present invention, with a power supply input 1 connected to an alternating current (AC) power supply 2, an ultracapacitor 4, 5 a switch 6, and a plastic bag sealer 8. If the AC power supply 2 carries a high voltage, for example, 115 volts or 230 volts from a power outlet, a voltage transformer 10 may be connected to the AC power supply 2 to downconvert the high AC voltage from the power supply 2 to a lower AC voltage. For example, the AC voltage may be reduced by a factor of N if the transformer has a winding 10 ratio of N:1. The AC voltage needs to be rectified such that an electrical energy can be charged to the ultracapacitor 4 without changing the polarity of the voltage. To rectify the AC voltage, a rectifying diode 12 may be connected to the ultracapacitor 4 and coupled to the AC power supply 2 such that the polarity of the voltage across the ultracapacitor 4 is maintained by the forward biasing of 15 the diode 12. In the illustrative embodiment shown in Fig. 1, the transformer 10 includes a primary 10a connected to the AC power supply 2 and a secondary 10b connected to the diode 12. A first resistor 14, which serves as a charge control resistor, may be optionally provided to control the rate of charging the ultracapacitor 4.

20 A discharge circuit 16 is coupled to receive an electrical discharge from the ultracapacitor 4. The discharge circuit 16 includes the sealer 8, an example of which is a conventional heat sealer for sealing plastic layers. The discharge circuit 16 may also include a second diode 18, for example, a light emitting diode (LED), for emitting a visible light to indicate that electrical energy is being 25 discharged from the ultracapacitor 4 in the sealing process. The LED 18 can be connected in parallel with the sealer 8, and the discharge circuit 16 may further include a second resistor 20, which serves as an LED resistor, connected in series

- 6 -

with the LED 18. The LED 18 merely serves to indicate to an operator the status of energy discharge to the plastic bag sealer 8, and is thus not critical to the present invention.

The switch 6 can be a two-position switch which is adapted to occupy a 5 first position 22 where the ultracapacitor 4 is charged with the electrical energy from the power supply 2 when a closed circuit is formed between the ultracapacitor 4, the diode 12, the secondary 10b of the transformer 10, and the first resistor 14. When the switch 6 is in the first position 22, the ultracapacitor 10 4 is charged and a voltage across the ultracapacitor 4 is formed with a voltage polarity indicated in Fig. 1. The charging of the ultracapacitor 4 continues until the voltage across the ultracapacitor 4 is about the same as the peak voltage of the AC waveform at the secondary 10b of the transformer 10. The switch 6 can be switched from the first position 22 to the second position 24 such that a closed 15 circuit is formed between the ultracapacitor 4 and the discharge circuit 16. At this time, a current flows from the ultracapacitor 4 to the sealer 8, thereby transferring the electrical energy stored in the ultracapacitor 4 to the sealer 8 for sealing plastic bags. In addition to sealing plastic bags, the apparatus according to the present invention can also be used for sealing other layers such as polymer layers, rubber layers, or specially coated papers or films.

20 In the illustrative example shown in Fig. 1, the LED 18 is reverse biased with respect to the voltage across the ultracapacitor 4, and therefore only a negligibly small current flows through the serially connected LED 18 and the LED resistor 20. After the electrical energy stored in the ultracapacitor 4 is discharged to the sealer 8, the switch 6 can be switched back to the first position 25 22 to recharge the ultracapacitor 4. The switch 6 may be switched between the first and second positions 22 and 24 in multiple repetitions to seal a plurality of plastic bags successively.

- 7 -

The switch 6 may be implemented in various configurations. For example, a simple conventional two-position mechanical switch can be used as the switch 6 if the plastic bag sealing apparatus is intended for home or personal applications in which sealing a plurality of plastic bags in a quick succession is 5 not required. For a plastic bag sealing apparatus which is designed to seal a plurality of plastic bags within a short period of time, the switch 6 can be implemented as a conventional automatic reset-to-charge switch such that the switch 6 engages the first position 22 for charging the ultracapacitor 4 over a fixed time interval and the second position 24 for energizing the sealer 8 over 10 another fixed time interval.

In some applications in which the plastic bag sealing apparatus is required to seal various types of plastic bags or plastic bags with various thicknesses, variable sealing times may be required. In these applications, the switch 6 may be implemented as a conventional adjustable reset switch that 15 allows an operator to set variable time intervals for the switch 6 to engage the first position 22 for charging the ultracapacitor 4 and the second position 24 for discharging the energy stored in the ultracapacitor 4 to the sealer 8. The two-position mechanical switch, the automatic reset switch, and the adjustable reset switch are conventional and well known to a person skilled in the art. However, 20 the present invention is not limited to these types of switches; other types of switches can also be used as the switch 6.

The ultracapacitor 4, which stores the electrical energy necessary for the sealer 8 to seal plastic bags, should have a sufficiently large capacitance, for example, in the range of about 1F to about 10F, to be able to store the amount 25 of energy required. This is in contrast to conventional capacitors used for smoothing DC currents in conventional rectifying power supply circuits, which usually have capacitances ranging from several picofarads to several microfarads.

- 8 -

The conventional capacitors in such power supply circuits are not nearly sufficient to provide the electrical energy needed to seal a plastic bag. Examples of the ultracapacitor 6 include one made of sandwiches of plastic and electrolyte-soaked carbon. Alternatively, the ultracapacitor 6 may be made of ceramics. It 5 is understood that the present invention is not limited to these types of ultracapacitors. Other types of capacitors that provide a large capacitance to store sufficient electrical energy for discharge to the plastic bag sealer 8 can also be used as the ultracapacitor 4 in the circuit according to the present invention.

Fig. 2 shows a circuit diagram of another embodiment of the present 10 invention with the power supply input 1 connected to a direct current (DC) power supply 26 instead of the AC power supply 2 of Fig. 1. The circuit of Fig. 2 is similar to that of Fig. 1 except that the transformer 10 and the rectifying diode 12 are not required for the DC power supply 26. The ultracapacitor 4, the switch 6, and the sealer 8 are connected in the same manner as in Fig. 1. The 15 charge control resistor 14 may be optionally included to control the rate of charge by the DC power supply 26 to the ultracapacitor 4 when the switch 6 is in the first position 22 to form a closed circuit between the DC power supply 26, the charge control resistor 14, and the ultracapacitor 4. The switch 6 can be switched to the second position 24 to form a closed circuit between the 20 ultracapacitor 4 and the sealer 8, thereby discharging the electrical energy stored in the ultracapacitor 4 to the sealer 8.

In a manner similar to that which is shown in Fig. 1 and described above, the discharge circuit 16 in Fig. 2 may optionally include an LED 18 connected in parallel with the sealer 8, and may further include an LED resistor 25 20 connected in series with the LED 18. The LED 18, which is reverse biased with respect to the voltage across the ultracapacitor 4, emits a visible light to indicate a discharge from the ultracapacitor 4 when the ultracapacitor 4 supplies

the energy to the sealer 8. A low voltage battery or series of batteries can be used as the DC power supply 26. In the embodiment shown in Fig. 2, only a low DC voltage, for example, in the range of about 12 volts to about 24 volts, is needed to charge the ultracapacitor 4.

5 Fig. 3 shows a circuit diagram of another embodiment of the present invention similar to Figs. 1 and 2 except that the heat sealer 8 is replaced with a heat pulse or ultrasonic generator 28. Heat pulse or ultrasonic generators can be used for heat sealing with pulses of high energy electricity, which can be readily provided by the ultracapacitor 4. The power supply for the circuit of Fig. 10 3 is indicated generically by block 30, which can be either the AC power supply 2 with the transformer 10 and rectifying diode 12 of Fig. 1 or the DC power supply 26 of Fig. 2 connected to the power supply input 1. The heat pulse or ultrasonic generator 28 is energy efficient and therefore may be desirable for portable applications.

15 Fig. 4 shows a perspective view of an embodiment of a plastic bag sealing apparatus 32 having a base 34 and a movable top portion or hood 36 engaging a plastic bag 38 with at least two plastic layers 40 and 42. Two release buttons 44 and 46 are provided on the hood 36 to disengage the hood 36 from the base 34, thereby releasing the plastic bag 38 from the sealing apparatus 32. The 20 two-position switch 6 in Figs. 1-3 can be implemented on the hood 36 as first and second touch buttons 48 and 50, respectively. For example, when the first touch button 48 is pressed, the switch 6 of Figs. 1-3 moves into the first position 22 to charge the ultracapacitor 4, and when the second touch button 50 is pressed, the switch 6 moves into the second position 24 to discharge the energy 25 stored in the ultracapacitor 4 to the plastic bag sealer 8.

The diode 18 in Figs. 1-3, which as indicated may be an LED, may be positioned on the hood 36 in Fig. 4 as an indicator light which indicates a discharge.

Fig. 5 shows a partial perspective view of the plastic bag sealing apparatus of Fig. 4 with the hood 36 in a partially disengaged position from the base 34, thereby exposing the heat sealer 8 and a trough 52 for securing the plastic layers 40 and 42 of the plastic bag 38 during the sealing process. In 5 addition, a polytetrafluoroethylene tape 54 may be attached to the heat sealer 8 to prevent the plastic layer 42 from adhering to the heat sealer 8 when it is heated.

Figs. 4-5 show only one illustrative embodiment in which the power supply circuits of Figs. 1-3 with the ultracapacitor 4 can be implemented. 10 However, the apparatus according to the present invention with an ultracapacitor as an energy storage and discharge element is not limited to those which are shown in Figs. 1-5 and described above; other embodiments of the apparatus according to the present invention are also possible.

The invention has been described with respect to particular embodiments 15 thereof, and numerous modifications can be made which are in the scope of the invention as set forth in the claims.

Throughout this specification and the claims which follow, unless the context requires otherwise, the word "comprise", and variations such as "comprises" and "comprising", will be understood to imply the inclusion of a stated integer or step or group of integers or steps but not the exclusion of any other integer or step or group of integers or steps.

- 11 -

CLAIMS:

What is claimed is:

- 5 1. An apparatus for sealing at least two plastic layers, comprising:
 - (a) a power supply input capable of being supplied with an electrical energy;
 - (b) an ultracapacitor coupled to store the electrical energy received by the power supply input;
 - (c) a discharge circuit coupled to the ultracapacitor to discharge the electrical energy stored in the ultracapacitor; and
 - (d) a sealer coupled to receive the electrical energy from the discharge circuit, the sealer being capable of sealing the at least two plastic layers together upon a single discharge of the ultracapacitor.
- 15 2. The apparatus of claim 1, further comprising a charge control resistor coupled between the ultracapacitor and the power supply input.
- 20 3. The apparatus of claim 1, wherein the power supply input is adapted to be coupled to a direct current (DC) power supply.
4. The apparatus of claim 1, wherein the power supply input is adapted to be coupled to an alternating current (AC) power supply.
- 25 5. The apparatus of claim 4, further comprising a first diode coupled between the power supply input and the ultracapacitor.
6. The apparatus of claim 4, further comprising a transformer coupled between the power supply input and the ultracapacitor.
- 30 7. The apparatus of claim 1, wherein the discharge circuit further includes a switch connected between the power supply input, the ultracapacitor and the sealer, the switch

capable of occupying a first position to charge the ultracapacitor with the electrical energy from the power supply input and a second position to discharge the electrical energy stored in the ultracapacitor to the sealer.

5 8. The apparatus of claim 1, wherein the discharge circuit further includes a second diode connected in parallel with the sealer.

9. The apparatus of claim 8, wherein the second diode comprises a light emitting diode (LED).

10

10. The apparatus of claim 8, wherein the discharge circuit further includes a second resistor connected in series with the second diode.

11. The apparatus of claim 1, wherein the sealer comprises a heat sealer.

15

12. The apparatus of claim 1, wherein the sealer comprises a heat pulse generator.

13. The apparatus of claim 1, wherein the sealer comprises an ultrasonic generator.

20

14. An apparatus for sealing at least two plastic layers, comprising:

(a) a power supply input capable of being supplied with an electrical energy;

(b) an ultracapacitor coupled to store the electrical energy received by the power supply input;

(c) a discharge circuit coupled to the ultracapacitor, the discharge circuit

25 including a sealer for sealing the at least two plastic layers together; and

(d) a switch connected between the power supply input, the ultracapacitor and the discharge circuit, the switch adapted to occupy a first position where the ultracapacitor is charged with the electrical energy from the power supply input, and a second position where the electrical energy stored in the ultracapacitor is discharged to the sealer, the

30 switch moving between the first and second positions once for the sealer to seal the at least two plastic layers together.

15. The apparatus of claim 14, further comprising a charge control resistor coupled between the ultracapacitor and the power supply input.

5 16. The apparatus of claim 14, wherein the power supply input is adapted to be connected to a direct current (DC) power supply.

17. The apparatus of claim 14, wherein the power supply input is adapted to be connected to an alternating current (AC) power supply.

10

18. The apparatus of claim 17, further comprising a first diode coupled between the power supply input and the ultracapacitor.

15

19. The apparatus of claim 17, further comprising a transformer coupled between the power supply input and the ultracapacitor.

20. The apparatus of claim 14, wherein the discharge circuit further includes a second diode connected in parallel with the sealer.

20

21. The apparatus of claim 20, wherein the second diode comprises a light emitting diode (LED).

22. The apparatus of claim 20, wherein the discharge circuit further includes a second resistor connected in series with the second diode.

25

23. The apparatus of claim 14, wherein the sealer comprises a heat sealer.

24. The apparatus of claim 14, wherein the sealer comprises a heat pulse generator.

25. The apparatus of claim 14, wherein the sealer comprises an ultrasonic generator.

26. An apparatus for sealing at least two plastic layers, comprising:

- (a) a power supply input adapted to receive an electrical energy;
- (b) an ultracapacitor coupled to store the electrical energy received by the power supply input;
- (c) a sealer coupled to the ultracapacitor for sealing the at least two plastic layers together; and
- (d) a switch connected between the power supply input, the ultracapacitor and the sealer, the switch adapted to occupy a first position to charge the ultracapacitor with the electrical energy from the power supply input and a second position to discharge the electrical energy stored in the ultracapacitor to the sealer, a single discharge of the energy stored in the ultracapacitor providing sufficient energy to the sealer to seal the at least two plastic layers together.

15 27. The apparatus of claim 26, further comprising a charge control resistor connected between the ultracapacitor and the power supply input.

28. The apparatus of claim 26, wherein the power supply input is adapted to be connected to a direct current (DC) power supply.

20 29. The apparatus of claim 26, wherein the power supply input is adapted to be connected to an alternating current (AC) power supply.

30. The apparatus of claim 29, further comprising a first diode coupled between the power supply input and the ultracapacitor.

25 31. The apparatus of claim 29, further comprising a transformer coupled between the power supply input and the ultracapacitor.

30 32. The apparatus of claim 26, further comprising a second diode connected in parallel with the sealer.

33. The apparatus of claim 32, wherein the second diode comprises a light emitting diode (LED).

5 34. The apparatus of claim 32, further comprising a second resistor connected in series with the second diode.

35. The apparatus of claim 26, wherein the sealer comprises a heat sealer.

10 36. The apparatus of claim 26, wherein the sealer comprises a heat pulse generator.

37. The apparatus of claim 26, wherein the sealer comprises an ultrasonic generator.

38. An apparatus for sealing at least two plastic layers substantially as hereinbefore
15 described with reference to the accompanying drawings.

DATED this 3rd day of June, 2002

Tilia International, Incorporated

20 by DAVIES COLLISON CAVE
Patent Attorneys for the Applicant

1/2

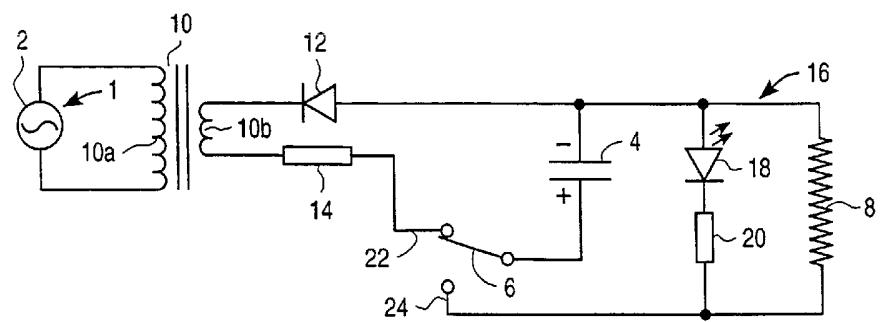


FIG. 1

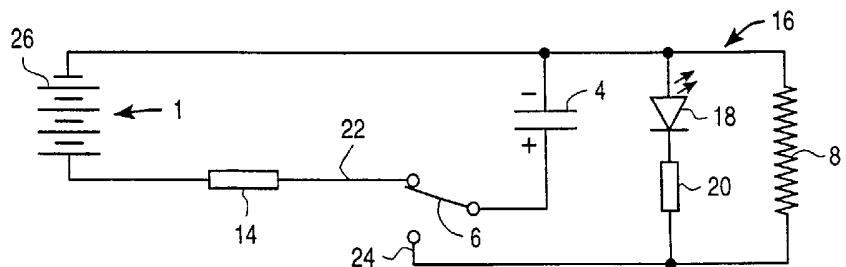


FIG. 2

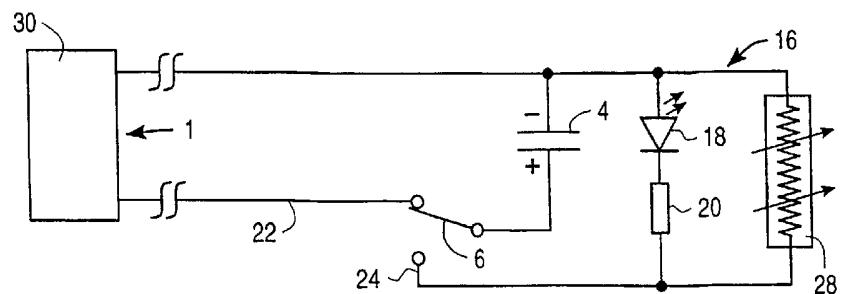


FIG. 3

SUBSTITUTE SHEET (RULE 26)

2/2

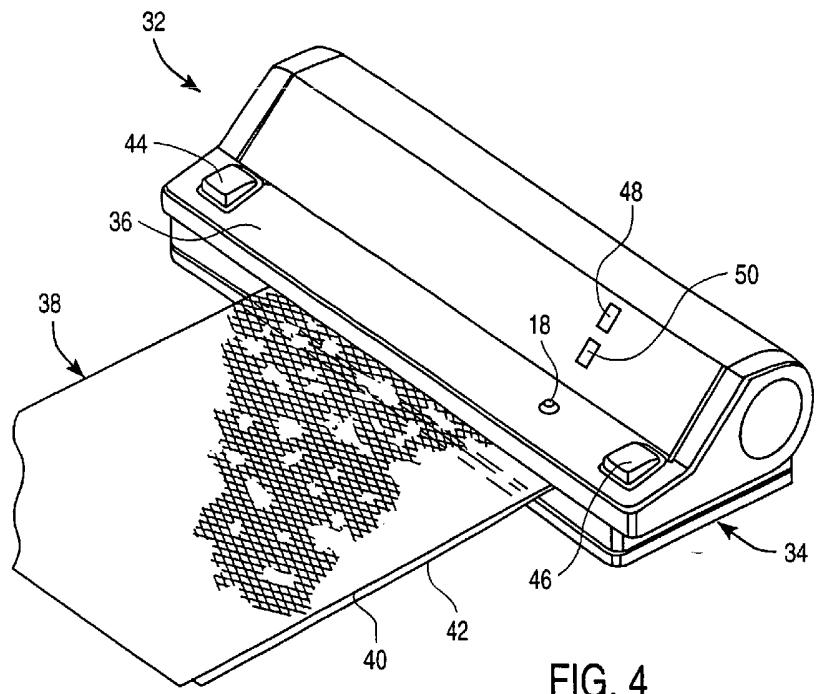


FIG. 4

FIG. 5

SUBSTITUTE SHEET (RULE 26)