
JP 6704503 B2 2020.6.3

10

20

(57)【特許請求の範囲】
【請求項１】
　コンピューティングデバイス上で実行されるターゲットアプリケーションの機能を検出
するための方法であって、
　コンピューティングデバイス上のセキュアなメモリに、アプリケーションのためのアプ
リケーション固有仮想アドレスマッピングテーブルを記憶するステップであって、前記ア
プリケーション固有仮想アドレスマッピングテーブルは、前記アプリケーションのソース
コードにおける対応するターゲットアプリケーションの機能にマッピングされたアプリケ
ーションバイナリコードにおける複数の仮想アドレスオフセットを含む、ステップと、
　前記アプリケーションを起動したことに応答して、実行されるアプリケーションプロセ
スのインスタンスのためにプロセス固有仮想アドレスマッピングテーブルを生成するステ
ップであって、前記プロセス固有仮想アドレスマッピングテーブルは、前記アプリケーシ
ョン固有仮想アドレスマッピングテーブルにおける前記仮想アドレスオフセットを使用し
て、前記ターゲットアプリケーションの機能に対応する実際の仮想アドレスを定義する、
ステップと、
　前記アプリケーションプロセスの前記インスタンスのための前記アプリケーションバイ
ナリコードの実行中に、前記プロセス固有仮想アドレスマッピングテーブルに基づいて、
前記ターゲットアプリケーションの機能に対応する前記実際の仮想アドレスのうちの1つ
または複数におけるバイナリ命令が実行されることを検出するステップと、
　前記アプリケーションプロセスの前記インスタンスのための前記アプリケーションバイ

(2) JP 6704503 B2 2020.6.3

10

20

30

40

50

ナリコードの実行に関連付けられた1つまたは複数の悪意のあるコードまたは挙動を検出
するように構成された検出アルゴリズムに、前記プロセス固有仮想アドレスマッピングテ
ーブルにおける前記実際の仮想アドレスから検出された、前記実行されたターゲットアプ
リケーションの機能に関する情報を提供するステップと
を含む方法。
【請求項２】
　前記アプリケーションプロセスの他のインスタンスと同時に実行される前記アプリケー
ションプロセスの別のインスタンスのために別のプロセス固有仮想アドレスマッピングテ
ーブルを生成するステップと、
　前記アプリケーションプロセスの前記別のインスタンスのための前記アプリケーション
バイナリコードの実行中に、前記別のプロセス固有仮想アドレスマッピングテーブルに基
づいて、前記ターゲットアプリケーションの機能に対応する前記実際の仮想アドレスのう
ちの1つまたは複数における前記バイナリ命令がいつ実行されるかを検出するステップと
をさらに含む、請求項1に記載の方法。
【請求項３】
　前記実際の仮想アドレスは、前記アプリケーションプロセスの前記インスタンスのベー
ス仮想アドレスおよび前記アプリケーション固有仮想アドレスマッピングテーブルにおけ
る前記仮想アドレスオフセットを使用して決定される、請求項1に記載の方法。
【請求項４】
　前記セキュアなメモリは、ハイレベルオペレーティングシステム(HLOS)における信頼で
きるゾーンに存在する、請求項1に記載の方法。
【請求項５】
　前記アプリケーションは、セキュアなウェブアプリケーションおよびウェブブラウザの
うちの1つを含む、請求項1に記載の方法。
【請求項６】
　前記アプリケーションバイナリコードは、ネイティブバイナリコードとして実行される
、請求項1に記載の方法。
【請求項７】
　コンピューティングデバイス上で実行されるターゲットアプリケーションの機能を検出
するためのシステムであって、
　コンピューティングデバイス上に、アプリケーションのためのアプリケーション固有仮
想アドレスマッピングテーブルを記憶するための手段であって、前記アプリケーション固
有仮想アドレスマッピングテーブルは、前記アプリケーションのソースコードにおける対
応するターゲットアプリケーションの機能にマッピングされたアプリケーションバイナリ
コードにおける複数の仮想アドレスオフセットを含む、手段と、
　前記アプリケーションを起動したことに応答して、実行されるアプリケーションプロセ
スのインスタンスのためにプロセス固有仮想アドレスマッピングテーブルを生成するため
の手段であって、前記プロセス固有仮想アドレスマッピングテーブルは、前記アプリケー
ション固有仮想アドレスマッピングテーブルにおける前記仮想アドレスオフセットを使用
して、前記ターゲットアプリケーションの機能に対応する実際の仮想アドレスを定義する
、手段と、
　前記アプリケーションプロセスの前記インスタンスのための前記アプリケーションバイ
ナリコードの実行中に、前記プロセス固有仮想アドレスマッピングテーブルに基づいて、
前記ターゲットアプリケーションの機能に対応する前記実際の仮想アドレスのうちの1つ
または複数におけるバイナリ命令が実行されることを検出するための手段と、
　前記アプリケーションプロセスの前記インスタンスのための前記アプリケーションバイ
ナリコードの実行に関連付けられた1つまたは複数の悪意のあるコードまたは挙動を検出
するように構成された検出アルゴリズムに、前記プロセス固有仮想アドレスマッピングテ
ーブルにおける前記実際の仮想アドレスから検出された、前記実行されたターゲットアプ
リケーションの機能に関する情報を提供するための手段と

(3) JP 6704503 B2 2020.6.3

10

20

30

40

50

を含むシステム。
【請求項８】
　前記アプリケーションプロセスの他のインスタンスと同時に実行される前記アプリケー
ションプロセスの別のインスタンスのために別のプロセス固有仮想アドレスマッピングテ
ーブルを生成するための手段と、
　前記アプリケーションプロセスの前記別のインスタンスのための前記アプリケーション
バイナリコードの実行中に、前記別のプロセス固有仮想アドレスマッピングテーブルに基
づいて、前記ターゲットアプリケーションの機能に対応する前記実際の仮想アドレスのう
ちの1つまたは複数における前記バイナリ命令がいつ実行されるかを検出するための手段
と
をさらに含む、請求項7に記載のシステム。
【請求項９】
　前記実際の仮想アドレスは、前記アプリケーションプロセスの前記インスタンスのベー
ス仮想アドレスおよび前記アプリケーション固有仮想アドレスマッピングテーブルにおけ
る前記仮想アドレスオフセットを使用して決定される、請求項7に記載のシステム。
【請求項１０】
　記憶するための前記手段は、ハイレベルオペレーティングシステム(HLOS)における信頼
できるゾーンに存在する、請求項7に記載のシステム。
【請求項１１】
　前記アプリケーションは、セキュアなウェブアプリケーションおよびウェブブラウザの
うちの1つを含む、請求項7に記載のシステム。
【請求項１２】
　前記アプリケーションバイナリコードは、ネイティブバイナリコードとして実行される
、請求項7に記載のシステム。
【請求項１３】
　メモリ内で具現化され、コンピューティングデバイス上で実行されるターゲットアプリ
ケーションの機能を検出するためにプロセッサによって実行可能であるコンピュータ可読
プログラムコードを有するコンピュータプログラムであって、
　コンピューティングデバイス上のセキュアなメモリに、アプリケーションのためのアプ
リケーション固有仮想アドレスマッピングテーブルを記憶することであって、前記アプリ
ケーション固有仮想アドレスマッピングテーブルは、前記アプリケーションのソースコー
ドにおける対応するターゲットアプリケーションの機能にマッピングされたアプリケーシ
ョンバイナリコードにおける複数の仮想アドレスオフセットを含む、記憶することと、
　前記アプリケーションを起動したことに応答して、実行されるアプリケーションプロセ
スのインスタンスのためにプロセス固有仮想アドレスマッピングテーブルを生成すること
であって、前記プロセス固有仮想アドレスマッピングテーブルは、前記アプリケーション
固有仮想アドレスマッピングテーブルにおける前記仮想アドレスオフセットを使用して、
前記ターゲットアプリケーションの機能に対応する実際の仮想アドレスを定義する、生成
することと、
　前記アプリケーションプロセスの前記インスタンスのための前記アプリケーションバイ
ナリコードの実行中に、前記プロセス固有仮想アドレスマッピングテーブルに基づいて、
前記ターゲットアプリケーションの機能に対応する前記実際の仮想アドレスのうちの1つ
または複数におけるバイナリ命令が実行されることを検出することと、
　前記アプリケーションプロセスの前記インスタンスのための前記アプリケーションバイ
ナリコードの実行に関連付けられた1つまたは複数の悪意のあるコードまたは挙動を検出
するように構成された検出アルゴリズムに、前記プロセス固有仮想アドレスマッピングテ
ーブルにおける前記実際の仮想アドレスから検出された、前記実行されたターゲットアプ
リケーションの機能に関する情報を提供することと
を行うように構成された論理を含むコンピュータプログラム。
【請求項１４】

(4) JP 6704503 B2 2020.6.3

10

20

30

40

50

　前記アプリケーションプロセスの他のインスタンスと同時に実行される前記アプリケー
ションプロセスの別のインスタンスのために別のプロセス固有仮想アドレスマッピングテ
ーブルを生成することと、
　前記アプリケーションプロセスの両方のインスタンスのための前記アプリケーションバ
イナリコードの同時実行中に、前記別のプロセス固有仮想アドレスマッピングテーブルに
基づいて、前記ターゲットアプリケーションの機能に対応する前記実際の仮想アドレスの
うちの1つまたは複数における前記バイナリ命令がいつ実行されるかを検出することと
を行うように構成された論理をさらに含む、請求項13に記載のコンピュータプログラム。
【請求項１５】
　前記実際の仮想アドレスは、前記アプリケーションプロセスの前記インスタンスのベー
ス仮想アドレスおよび前記アプリケーション固有仮想アドレスマッピングテーブルにおけ
る前記仮想アドレスオフセットを使用して決定される、請求項13に記載のコンピュータプ
ログラム。
【請求項１６】
　前記セキュアなメモリは、ハイレベルオペレーティングシステム(HLOS)における信頼で
きるゾーンに存在する、請求項13に記載のコンピュータプログラム。
【請求項１７】
　前記アプリケーションは、セキュアなウェブアプリケーションおよびウェブブラウザの
うちの1つを含む、請求項13に記載のコンピュータプログラム。
【請求項１８】
　前記アプリケーションバイナリコードは、ネイティブバイナリコードとして実行される
、請求項13に記載のコンピュータプログラム。
【請求項１９】
　実行中のターゲットアプリケーションの機能を検出するためのシステムであって、
　アプリケーションバイナリコードを実行するように構成された処理デバイスと、
　ハイレベルオペレーティングシステム(HLOS)と
を含み、前記HLOSは、
　アプリケーションのソースコードにおける対応するターゲットアプリケーションの機能
にマッピングされた前記アプリケーションバイナリコードにおける複数の仮想アドレスオ
フセットを含むアプリケーション固有仮想アドレスマッピングテーブルと、
前記アプリケーションを起動したことに応答して、実行されるアプリケーションプロセス
のインスタンスのためにプロセス固有仮想アドレスマッピングテーブルを生成するように
構成されたカーネルモジュールであって、前記プロセス固有仮想アドレスマッピングテー
ブルは、前記アプリケーション固有仮想アドレスマッピングテーブルにおける前記仮想ア
ドレスオフセットを使用して、前記ターゲットアプリケーションの機能に対応する実際の
仮想アドレスを定義する、カーネルモジュールと
を含み、
　前記HLOSは、前記アプリケーションプロセスの前記インスタンスのための前記アプリケ
ーションバイナリコードの実行中に、前記プロセス固有仮想アドレスマッピングテーブル
に基づいて、前記ターゲットアプリケーションの機能に対応する前記実際の仮想アドレス
のうちの1つまたは複数におけるバイナリ命令が実行されることを検出するように構成さ
れ、
　前記HLOSは、前記アプリケーションプロセスの前記インスタンスのための前記アプリケ
ーションバイナリコードの実行に関連付けられた1つまたは複数の悪意のあるコードまた
は挙動を検出するように構成された検出アルゴリズムに、前記プロセス固有仮想アドレス
マッピングテーブルにおける前記実際の仮想アドレスから検出された、前記実行されたタ
ーゲットアプリケーションの機能に関する情報を提供する、システム。
【請求項２０】
　前記HLOSは、
　前記アプリケーションプロセスの他のインスタンスと同時に実行される前記アプリケー

(5) JP 6704503 B2 2020.6.3

10

20

30

40

50

ションプロセスの別のインスタンスのために別のプロセス固有仮想アドレスマッピングテ
ーブルを生成することと、
　前記アプリケーションプロセスの両方のインスタンスのための前記アプリケーションバ
イナリコードの同時実行中に、前記別のプロセス固有仮想アドレスマッピングテーブルに
基づいて、前記ターゲットアプリケーションの機能に対応する前記実際の仮想アドレスの
うちの1つまたは複数における前記バイナリ命令がいつ実行されるかを検出することと
を行うようにさらに構成される、請求項19に記載のシステム。
【請求項２１】
　前記実際の仮想アドレスは、前記アプリケーションプロセスの前記インスタンスのベー
ス仮想アドレスおよび前記アプリケーション固有仮想アドレスマッピングテーブルにおけ
る前記仮想アドレスオフセットを使用して決定される、請求項20に記載のシステム。
【請求項２２】
　前記アプリケーション固有仮想アドレスマッピングテーブルは、前記HLOSにおける信頼
できるゾーンに記憶される、請求項20に記載のシステム。

【発明の詳細な説明】
【技術分野】
【０００１】
優先権および関連出願の陳述
　本出願は、その全体が参照により本明細書に組み込まれる、2016年7月29日に出願され
「Kernel-Based Detection of Target Application Functionality Using Virtual Addre
ss Mapping」と題する米国仮特許出願第62/368,223号(Qualcomm整理番号163161P1)に対す
る米国特許法第119条(e)項に基づく優先権を主張する。
【０００２】
　本出願はまた、2016年8月23日に出願され「Kernel-Based Detection of Target Applic
ation Functionality Using Virtual Address Mapping」と題する米国特許出願第15/245,
037号(整理番号163161U1)、および2016年8月23日に出願され「Updating Virtual Memory
Addresses of Target Application Functionalities for an Updated Version of Applic
ation Binary Code」と題する米国特許出願第15/245,041号(整理番号163161U2)に関する
。
【背景技術】
【０００３】
　システムまたはプラットフォームレイヤにおける顕著な活動を示さず、したがってアプ
リケーション実行の有用な機能情報および挙動情報を検出する機会を提供しないハードウ
ェアプラットフォーム上で実行される様々なハイレベルアプリケーションがある。損なわ
れたハイレベルウェブブラウザアプリケーションである一般的な例。
【０００４】
　システムまたはプラットフォームレイヤにおける顕著な活動を示さず、したがってアプ
リケーション実行の有用な機能情報および挙動情報を検出する機会を提供しないハードウ
ェアプラットフォーム上で実行される様々なハイレベルアプリケーションがある。システ
ムおよびプラットフォームレベルにおいて痕跡(indicative trace)を残さないデバイス上
での実行中のセキュリティエクスプロイト(たとえば、クロスサイトスクリプティング)に
対して損なわれたハイレベルウェブブラウザアプリケーションである一般的な例。システ
ムライブラリ、プラットフォーム、SOCハードウェアを精査すること、またはデバイスレ
ベル活動を注視することのいずれかによって、ハイレベルアプリケーション上でそのよう
な活動が発生していると判断する方法がない。したがって、デバイス上で実行される様々
なサードパーティ製アプリケーションに対するプラットフォームレベル制御を改善するた
めに、またこれらの実行中のハイレベルアプリケーションの機能活動および挙動活動の一
部を検出するために、プラットフォームのHLOSまたはカーネルが理解できる形式でハイレ
ベルアプリケーションの機能および挙動を表現および通信することを可能にする機構を開
発する必要がある。これにより、プラットフォームが実行中のアプリケーションの挙動に

(6) JP 6704503 B2 2020.6.3

10

20

30

40

50

対する理解を深めることができるようになり、プラットフォームが実行中のアプリケーシ
ョンの様々な異なる状況に対処するために決定し、措置を講じることができるようになる
。一例として、サードパーティ製ウェブブラウザアプリケーション上のウェブセキュリテ
ィエクスプロイトを防止するプラットフォームレベルの決定が、情報を使用して行われ得
る。例示的な使用の他の領域は、HLOSまたはカーネルレイヤにおいて本開示における機構
を使用してアプリケーションの特定の機能的性質または挙動性質が検出されると、プラッ
トフォームが様々なSOC構成要素(DDR、バス、CPU、キャッシュ)の周波数を引き上げる/引
き下げるなどの決定を行うことであり、または高電力モードもしくは低電力モードを関与
させる。一般に、本開示により、プラットフォームは、デバイス上で実行される様々なサ
ードパーティ製アプリケーションに対する様々な制御を、アプリケーションによって実行
されている機能を検出および認識することによって行う機会を得る。これにより、SOCお
よびプラットフォームベンダーは、プラットフォームが本来制御できない様々なサードパ
ーティ製アプリケーションに対して、プラットフォームレベルからのより良いソリューシ
ョンを提供することができるようになる。
【発明の概要】
【課題を解決するための手段】
【０００５】
　コンピューティングデバイス上で実行されるアプリケーションのハイレベル機能を検出
するためのシステム、方法、およびコンピュータプログラムが開示される。方法の一実施
形態は、コンピューティングデバイス上のセキュアなメモリに、アプリケーションのため
のアプリケーション固有仮想アドレスマッピングテーブルを記憶するステップを含む。ア
プリケーション固有仮想アドレスマッピングテーブルは、対応するターゲットアプリケー
ション機能にマッピングされたアプリケーションバイナリコードにおける複数の仮想アド
レスオフセットを含む。アプリケーションを起動したことに応答して、本方法は、実行さ
れるアプリケーションプロセスのインスタンスのためにプロセス固有仮想アドレスマッピ
ングテーブルを生成する。プロセス固有仮想アドレスマッピングテーブルは、アプリケー
ション固有仮想アドレスマッピングテーブルにおける仮想アドレスオフセットを使用して
、ターゲットアプリケーション機能に対応する実際の仮想アドレスを定義する。アプリケ
ーションプロセスのインスタンスのためのアプリケーションバイナリコードの実行中に、
本方法は、プロセス固有仮想アドレスマッピングテーブルに基づいて、ターゲットアプリ
ケーション機能に対応する実際の仮想アドレスのうちの1つまたは複数がいつ実行される
かを検出する。
【０００６】
　別の実施形態は、アプリケーションバイナリコードを実行するように構成された処理デ
バイスとハイレベルオペレーティングシステム(HLOS)とを含むシステムである。HLOSは、
対応するターゲットアプリケーション機能にマッピングされたアプリケーションバイナリ
コードにおける複数の仮想アドレスオフセットを含むアプリケーション固有仮想アドレス
マッピングテーブルを含む。HLOSは、アプリケーションを起動したことに応答して、実行
されるアプリケーションプロセスのインスタンスのためにプロセス固有仮想アドレスマッ
ピングテーブルを生成するように構成されたカーネルモジュールをさらに含む。プロセス
固有仮想アドレスマッピングテーブルは、アプリケーション固有仮想アドレスマッピング
テーブルにおける仮想アドレスオフセットを使用して、ターゲットアプリケーション機能
に対応する実際の仮想アドレスを定義する。HLOSは、アプリケーションプロセスのインス
タンスのためのアプリケーションバイナリコードの実行中に、プロセス固有仮想アドレス
マッピングテーブルに基づいて、ターゲットアプリケーション機能に対応する実際の仮想
アドレスのうちの1つまたは複数がいつ実行されるかを検出するように構成される。
【０００７】
　図では、同様の参照番号は、その他の形で示されない限り、様々な図の全体を通して同
様の部分を指す。「102A」または「102B」などの文字指定を伴う参照番号の場合、文字指
定は、同じ図に存在する2つの同様の部分または要素を区別することができる。参照番号

(7) JP 6704503 B2 2020.6.3

10

20

30

40

50

がすべての図において同じ参照番号を有するすべての部分を含むことが意図されるとき、
参照番号に対する文字指定は省略される場合がある。
【図面の簡単な説明】
【０００８】
【図１】セキュアなメモリにおける仮想アドレスマッピングを使用してターゲットアプリ
ケーション機能を検出するためのシステムの実施形態のブロック図である。
【図２】対応するアプリケーションバイナリコードへのターゲットアプリケーション機能
の例示的なマッピングを示す図である。
【図３】仮想アドレス-関数マッピングテーブル(VAFMT)の例示的な実施形態を示す図であ
る。
【図４】図1のシステムにおける悪意のあるコード活動を検出するための方法の実施形態
を示すフローチャートである。
【図５】仮想機械コード空間の境界を動的に識別するために使用されるVAFMTの別の実施
形態を示す図である。
【図６】VAFMTと組み合わせて使用される識別子-仮想マッピングテーブル(IVAMT)の実施
形態を示す図である。
【図７】ガベージコレクションプロセスに関連して使用されるVMコード空間の一部分を示
す図である。
【図８】図1の仮想機械におけるガベージコレクション関数の例示的な注目ポイント、お
よび仮想機械を含むアプリケーションバイナリの実行中にガベージコレクション活動の実
行を検出するために使用されるVAFMTにおける機能注目ポイントの仮想アドレスを示す図
である。
【図９】仮想機械ヒープの外部/内部境界の仮想アドレスの例示的なマッピングを示す図
である。
【図１０】仮想機械実施形態において図1のシステムにおける悪意のあるコード活動を検
出するための方法の実施形態を示すフローチャートである。
【図１１】特定のデータ構造タイプのオブジェクトを含む動的に割り振られたバッファの
仮想アドレスを決定するために使用される特定のバッファアロケータ関数の仮想アドレス
、およびバッファにおいて割り振られたオブジェクトのメンバー/フィールドの値を含むV
AFMTの実施形態を示す図である。
【図１２】アプリケーションバイナリコードの更新バージョンを受信したことに応答して
VAFMTを自動的に更新するためのシステムの実施形態を示す合成ブロック/フロー図である
。
【図１３】更新された仮想アドレスおよびメタデータとともに図12のVAFMTを示す図であ
る。
【図１４】疑似バイナリコードテンプレートへの図12のVAFMTにおける機能注目ポイント
の例示的なマッチングを示す図である。
【図１５】アプリケーションバイナリコードの更新バージョンにおけるマッチング領域へ
の図14の疑似バイナリコードテンプレートの例示的なマッチングを示す図である。
【図１６】アプリケーションバイナリコードの更新バージョンを受信したことに応答して
VAFMTを更新するための方法の実施形態を示すフローチャートである。
【図１７】オフセットベースの仮想アドレスマッピングを使用してターゲットアプリケー
ション機能を検出するためのシステムの実施形態のブロック/フロー図である。
【図１８】図17におけるアプリケーション固有VAFMTの例示的な実施形態を示す図である
。
【図１９】図17におけるプロセス固有VAFMTのうちの1つの例示的な実施形態を示す図であ
る。
【図２０】アプリケーション固有URLバッファVAFMTの別の実施形態を示す図である。
【図２１】図20のアプリケーション固有URLバッファVAFMTにおいて識別される第1のアプ
リケーションのためのプロセス固有VAFMTの実施形態を示す図である。

(8) JP 6704503 B2 2020.6.3

10

20

30

40

50

【図２２】図20のアプリケーション固有URLバッファVAFMTにおいて識別される第2のアプ
リケーションのためのプロセス固有VAFMTの実施形態を示す図である。
【図２３】オフセットベースの仮想アドレスマッピングを使用してターゲットアプリケー
ション機能を検出するための方法の実施形態を示すフローチャートである。
【発明を実施するための形態】
【０００９】
　「例示的」という語は、本明細書では「例、事例、または例示として機能すること」を
意味するために使用される。本明細書で「例示的」と記載されている任意の態様は、必ず
しも他の態様よりも好ましいまたは有利であると解釈されるべきではない。
【００１０】
　本明細書では、「アプリケーション」という用語は、オブジェクトコード、スクリプト
、バイトコード、マークアップ言語ファイル、およびパッチなどの、実行可能コンテンツ
を有するファイルも含み得る。加えて、本明細書で言及する「アプリケーション」は、開
かれる必要があり得るドキュメント、またはアクセスされる必要がある他のデータファイ
ルなどの、本質的に実行可能ではないファイルも含み得る。
【００１１】
　「コンテンツ」という用語は、オブジェクトコード、スクリプト、バイトコード、マー
クアップ言語ファイル、およびパッチなどの、実行可能コンテンツを有するファイルも含
み得る。加えて、本明細書で言及する「コンテンツ」は、開かれる必要があり得るドキュ
メント、またはアクセスされる必要がある他のデータファイルなどの、本質的に実行可能
ではないファイルも含み得る。
【００１２】
　本明細書で使用する「構成要素」、「データベース」、「モジュール」、「システム」
などの用語は、ハードウェア、ファームウェア、ハードウェアとソフトウェアの組合せ、
ソフトウェア、または実行中のソフトウェアのいずれかのコンピュータ関連エンティティ
を指すものとする。たとえば、構成要素は、限定はしないが、プロセッサ上で実行される
プロセス、プロセッサ、オブジェクト、実行ファイル、実行のスレッド、プログラム、お
よび/またはコンピュータであってもよい。例として、コンピューティングデバイス上で
実行されるアプリケーションとコンピューティングデバイスの両方が構成要素であっても
よい。1つまたは複数の構成要素は、プロセスおよび/または実行のスレッド内に存在して
もよく、構成要素は、1つのコンピュータ上に局在化されてもよく、かつ/または2つ以上
のコンピュータ間に分散されてもよい。さらに、これらの構成要素は、様々なデータ構造
が記憶された様々なコンピュータ可読媒体から実行することができる。構成要素は、1つ
または複数のデータパケット(たとえば、ローカルシステム、分散システムの中の別の構
成要素と、かつ/またはインターネットなどのネットワークにわたって信号によって他の
システムと対話する1つの構成要素からのデータなど)を有する信号に従うなどして、ロー
カルプロセスおよび/またはリモートプロセスによって通信することができる。
【００１３】
　図1は、カーネルまたはオペレーティングシステム(O/S)レイヤからのアプリケーション
バイナリの所望のまたはターゲットハイレベル機能を検出するためのシステム100の実施
形態を示す。図1の実施形態に示すように、システム100は、処理デバイス(たとえば、中
央処理装置(CPU)102)、メモリ104、およびハイレベルオペレーティングシステム(HLOS)10
6を含む。メモリ104は、CPU102によって実行され得る1つまたは複数のアプリケーション
を記憶する。メモリ104は、コンピューティングデバイス上にインストールされたアプリ
ケーションに関連付けられた参照アプリケーションソースコード110に対応するアプリケ
ーションバイナリコード108を記憶し得る。この点について、システム100は、たとえば、
パーソナルコンピュータ、ラップトップコンピュータ、ワークステーション、サーバ、ま
たは、セルラー電話、スマートフォン、携帯情報端末(PDA)、ポータブルゲームコンソー
ル、ナビゲーションデバイス、タブレットコンピュータ、ウェアラブルデバイス(たとえ
ば、スマートウォッチ)、もしくは他のバッテリー電源式ポータブルデバイスなどのポー

(9) JP 6704503 B2 2020.6.3

10

20

30

40

50

タブルコンピューティングデバイス(PCD)を含む、任意の所望のコンピューティングデバ
イスまたはシステムにおいて実装され得る。
【００１４】
　一実施形態では、カーネルまたはO/Sレイヤは、ハイレベルオペレーティングシステム(
HLOS)106を含む。図1に示すように、HLOS106は、登録アプリケーションのリスト112、セ
キュアなメモリ(たとえば、信頼できるゾーン114)、および各登録アプリケーションのア
プリケーションバイナリコード108のための特別に構成された仮想アドレスマッピングテ
ーブルを含む。登録アプリケーションのリスト112は、セキュアな制御および/またはサポ
ートのためにHLOS106に登録されているシステム100上にインストールされたアプリケーシ
ョンを識別する。たとえば、アプリケーション(たとえば、ウェブアプリケーション、ブ
ラウザアプリケーションなど)のアプリケーションバイナリコード108は、HLOS106に登録
され、リスト112において識別され得る。当技術分野で知られているように、信頼できる
ゾーン114は、メモリにロードされ、かつ/または実行されるコードおよび/またはデータ
がセキュリティ、秘密性、完全性などに関して保護されることを保証するように構成され
たセキュアなメモリまたはエリアを含む。登録アプリケーションのためのアプリケーショ
ンバイナリコード108は、所定の仮想アドレスポイントの実行を追跡することによって所
望のまたはターゲットハイレベルアプリケーション機能を識別するためにHLOS106および/
または信頼できるゾーン114におけるアルゴリズムによって使用される、1つまたは複数の
仮想アドレスマッピングテーブルを有し得る。
【００１５】
　システム100は、カーネルレイヤにおけるハイレベルアプリケーション機能の追跡およ
び検出が有利である様々なアプリケーションドメインに適用され得ることを諒解されたい
。たとえば、例示的な一実施形態では、カーネルは、実行中のアプリケーションの特定の
機能的性質または挙動性質の検出に応答して、様々なシステムオンチップ(SoC)構成要素(
たとえば、中央処理装置(CPU)、キャッシュ、ダブルデータレート(DDR)メモリ、1つもし
くは複数のバスなど)の周波数を引き上げることおよび/もしくは引き下げることなど、決
定を制御すること、または高電力モードおよび/もしくは低電力モードを設定すること、
ならびに特定のハードウェア特徴を有効化/無効化することができる。このようにして、H
LOS106およびカーネルは、デバイス上で実行される様々なサードパーティ製アプリケーシ
ョンに対する様々な制御を、アプリケーションによって実行されている機能を検出および
認識することによって実施する機会を有する。これにより、SOCおよびプラットフォーム
ベンダーは、プラットフォームが本来制御できないことがある様々なサードパーティ製ア
プリケーションに対して、プラットフォーム/HLOS/カーネルレベルからの改善されたソリ
ューションを提供することができるようになることを諒解されたい。
【００１６】
　例示的なアプリケーションドメインでは、システム100は、ウェブアプリケーション、
ウェブブラウザ、JavaScriptコード(「JavaScript」は登録商標。以下同じ。)などの悪意
のある攻撃または他のエクスプロイトに対するリアルタイムのセキュリティ保護を実現し
得る。当技術分野で知られているように、JavaScriptは、多くのウェブサイトおよびウェ
ブアプリケーションにおいて使用されるプログラミング言語であり、JavaScriptベースの
攻撃は、サイバーセキュリティに対する最上位の脅威のうちの1つである。ますます多く
のウェブ活動がデスクトップコンピュータからモバイルにシフトするにつれて、JavaScri
pt攻撃は、ポータブルコンピューティングデバイスに対する主要な脅威になりつつある。
【００１７】
　たいていの悪意のあるJavaScript攻撃は、エクスプロイトのためにJavaScript言語の特
性ならびにウェブ標準および仕様の制約を利用する。悪意のあるJavaScriptを通じたウェ
ブベースのエクスプロイトの一般的な例には、クロスサイトスクリプティング(すなわち
、XSS/CSS)、クロスサイトリクエストフォージェリ(すなわち、CSRF/XSRF)、ドライブバ
イダウンロード、ユーザ意図ハイジャッキング(user intent hijacking)、クリックジャ
ッキング、分散型サービス拒否(DDoS)、JavaScriptステガノグラフィ、および様々な形式

(10) JP 6704503 B2 2020.6.3

10

20

30

40

50

の難読化されたJavaScriptが含まれる。悪意のある挙動を検出しようと試みる際には、ハ
イレベルのウェブの挙動および機能の知識が必要とされるので、通常、最新のウェブおよ
びJavaScriptのセキュリティソリューションがブラウザソフトウェアアーキテクチャ内に
組み込まれている。
【００１８】
　しかしながら、ウェブ/JavaScriptベースのエクスプロイトは、プラットフォーム活動(
たとえば、システムコール、デバイス使用など)に対する可視の指示を有しないことがあ
るので、HLOS、カーネルおよびデバイスプラットフォーム内のインビルトウェブセキュリ
ティ機構は限られている。多くのウェブ/JavaScriptベースの攻撃は、外向きであり、ユ
ーザのオンライン資産、活動、識別情報などを損なうだけである。言い換えれば、可視の
活動パターンは、ウェブブラウザ/アプリケーションソフトウェア内で検出されるだけで
あり得、したがって、ウェブエクスプロイトに対する大半のセキュリティ機構が、ほとん
ど常に、ウェブブラウザアプリケーション内に組み込まれている。
【００１９】
　この点について、システム100におけるアプリケーションバイナリコード108の例示的な
実施形態は、ウェブアプリケーション、ブラウザアプリケーション、またはHLOS106が所
定の仮想アドレスポイントを追跡することによってハイレベルアプリケーション機能を検
出する他のアプリケーションを含み得る。図1にさらに示すように、システム100は、信頼
できるゾーン114に存在する1つまたは複数の悪意のあるコード検出アルゴリズム116をさ
らに含み得る。悪意のあるコード検出アルゴリズム116は、仮想アドレスポイントの実行
および仮想アドレスマッピングテーブルにおいて識別されるそれらの関連する機能的意味
に関係するデータを受信し得る。このデータに基づいて、アルゴリズム116は、たとえば
、悪意のあるコードおよび挙動、悪意のあるJavaScriptコードおよび実行などを検出し、
セキュリティ脅威を解決するか、またはさもなければ悪意のある攻撃を妨害するための適
切な方法を開始することができる。一実施形態では、セキュリティ脅威が検出されたとき
、システム100は、脅威を自動的に解決するか、または適切な措置を講じるようユーザに
指示し得る。
【００２０】
　図1の実施形態に示すように、HLOS106によって使用される仮想アドレスマッピングテー
ブルは、仮想アドレス-関数マッピングテーブル120および識別子-仮想アドレスマッピン
グテーブル122を含み得る。HLOS106ならびにマッピングテーブル120および122は、システ
ム100が実行中のアプリケーションバイナリコード108からの所望のまたはターゲットハイ
レベル機能情報を決定し得る統合プラットフォーム機構を含むことを諒解されたい。ハイ
レベル機能情報は、悪意のある挙動を検出するために信頼できるゾーン114において実装
されたアルゴリズムおよび/またはモデル(たとえば、悪意のあるコード検出アルゴリズム
116)によって使用され得る。
【００２１】
　以下でより詳細に説明するように、システム100は、アプリケーションバイナリコード1
08を実行するための2つの異なる実行モデルをサポートし得る。第1の実行モデルは、(た
とえば、C/C++コードからの)ネイティブバイナリ実行を伴う。第2の実行モデルは、管理
されたランタイム実行(たとえば、仮想機械118による実行)を伴う。一実施形態では、仮
想機械118は、JavaScriptソースからの動的ジャストインタイム(JIT)または解釈されたコ
ードを実行し得る。管理されたランタイム実行実施形態では、仮想機械118は、バイナリ
コード108内で仮想機械118が実行するバイナリコード108の一部を含み得る。しかしなが
ら、他の実施形態では、別個のVMおよびバイナリ作業負荷があり得ることを諒解されたい
。
【００２２】
　ネイティブバイナリ実行モデルの例示的な実施形態が図2～図4に示されている。ネイテ
ィブバイナリ実行のために、登録アプリケーションのリスト112における各アプリケーシ
ョンは、HLOS106によって維持される対応するVAFMT120を有する。VAFMT120は、信頼でき

(11) JP 6704503 B2 2020.6.3

10

20

30

40

50

るゾーン114に存在し得る。VAFMT120は、関連ハイレベル機能とマッピングされた異なる
注目仮想アドレスを含む。一実施形態では、各関連ハイレベル機能は、アルゴリズム116
が理解するマクロ名として示され得る。しかしながら、たとえば、特定の仮想アドレスに
おいて検出された活動が、アルゴリズム116においてトリガされる必要がある機能に直接
対応するような、アルゴリズム116における関数または関数名へのポインタを含む、関連
ハイレベル機能を表すための他の機構が実装されてよいことを諒解されたい。バイナリ画
像における特定のアプリケーション関数(および関数内の特定のポイント)の仮想アドレス
は、「注目ポイント」と呼ばれることがある。一実施形態では、仮想アドレス注目ポイン
トは、たとえば、機密ソース/シンクルーチン、危険なウェブアプリケーションプログラ
ムインターフェース(API)、特定のウェブ機能、バッファの開始/終了、または攻撃者が利
用し得る任意の他のオブジェクトもしくは既知のウェブ/JavaScript攻撃の分析および検
出のための他の適切な情報の中、始めもしくは終わりのポイントを含み、またはそれらの
間の複数の特定のポイントを含むことがある。他の実施形態では、仮想アドレス注目ポイ
ントは、JavaScriptインタープリタ、ジャストインタイム(JIT)コンパイラ、またはラン
タイム環境(たとえば、JavaScriptソースコード、バイトコード/JITコードなどを記憶す
る仮想機械ヒープのための割振り/割振り解除関数)の実装形態におけるポイントを含む。
【００２３】
　図2および図3は、VAFMT120の例示的な実施形態を示す。図2は、アプリケーションバイ
ナリコード108内の対応する仮想アドレスポイントへのアプリケーションソースコード110
内のいくつかの所望のまたはターゲット機能ポイントの論理マッピング200を示す。図2お
よび図3では、仮想アドレスが示されているが、バイナリオブジェクトコードは示されて
いない。この実施形態では、アプリケーションソースコード110は、「documentWrite」関
数のためのC++コードを含む。ソースコードにおけるポイント201は、バイナリコードにお
ける仮想アドレス202にマッピングされる。ソースコードにおけるポイント203は、バイナ
リコードにおける仮想アドレス204にマッピングされる。ソースコードのポイント205は、
バイナリコードにおける仮想アドレス206にマッピングされる。図3は、VAFMT120における
列302にあるバイナリコードにおける仮想アドレス202、204、および206の、それらの仮想
アドレスにおけるコードが表すそれぞれの機能的意味への論理マッピング300を示す。図3
に示すように、VAFMT120は、機能注目ポイント(列304)の対応する説明を伴う複数の仮想
アドレス(列302)を含み得る。バイナリコードポイントに関する202によって表される仮想
アドレス(0x3273fac8)は、DOCUMENT_WRITE_FUNCTION_STARTに対応する機能ポイントにマ
ッピングされる。DOCUMENT_WRITE_1を示す機能注目ポイントに対応するバイナリコードポ
イントに関する204によって表される仮想アドレス(0x3473fad4)。バイナリコードにおけ
る206によって表される仮想アドレス(0x3473fae8)は、マクロ的意味DOCUMENT_WRITE_2を
有する機能ポイントにマッピングされる。
【００２４】
　図11は、特定のデータ構造タイプ(たとえば、クラス、構造、集合)のオブジェクトを含
む動的に割り振られたバッファの開始および終了の仮想アドレスを決定するために使用さ
れ得る特定のバッファアロケータ関数の仮想アドレスを有するカスタム仮想アドレステー
ブルを含むVAFMT120の実施形態を示す。バッファにおいて割り振られたオブジェクトのメ
ンバー/フィールドの値は、注目ポイントである特定のフィールド/メンバーのためのテー
ブルにおいて維持されることもある、オフセットおよび長さフィールドを使用して決定さ
れ得る。たとえば、システムメモリアロケータ関数の実行をアロケータ関数の仮想アドレ
スによってカバーされる領域から追跡することによって、割り振られたバッファのサイズ
およびアドレスを検出するために、バッファ割振り関数の仮想アドレスが使用され得る。
バッファ開始および終了仮想アドレスが知られると、特定のデータ構造タイプに関するオ
ブジェクトの特定のメンバー/フィールドの値を決定するために、オフセットおよび長さ
フィールドが使用され得る。
【００２５】
　図1において破線によって示されているように、アプリケーションソースコード110は、

(12) JP 6704503 B2 2020.6.3

10

20

30

40

50

システム100に記憶される必要がない。そうではなく、それは、オフラインまたはオフデ
バイスに位置してよく、参照またはオープンソースコードとして利用可能であってよい。
ブラウザまたはウェブアプリケーションの実際の商用バイナリにおける注目仮想アドレス
を決定するために、参照および指針として特定のバージョンの参照ソースコードが使用さ
れ得る。オープンソースプロジェクトのマッチングコード改訂/バージョンから、同等の
バイナリがコンパイルされ得る。そのバージョン/改訂に基づくアプリケーションバイナ
リの所望のまたはターゲット仮想アドレスおよび関数/ポイントを検出するために、参照
として、コンパイルされたバイナリが使用され得る。同様のコンパイラおよびリンカオプ
ションが使用されてよい。さらに、アプリケーションコードにおける様々なポイントにお
けるブレークポイントが、仮想アドレスおよびそれらの機能マッピングポイントの決定に
使用され得る。オープンソースプロジェクトのための既知のコンパイルされた関数からの
参照バイナリを使用することによって、所与のアプリケーションバイナリにおける機能を
識別するために、バイナリコード認識および類似性抽出方法が利用され得る。わずかに修
正されたバージョンを有するバイナリ(または既知の参照オープンソースプロジェクトと
のいくつかのソースコード差異を有するソースベースから生じたバイナリ)の場合、重要
なウェブ関数およびAPIを呼び出すテストコードが書かれ得る。ターゲット仮想アドレス
ポイントのセットに収斂するように、様々なテストケースからの仮想アドレスアクセスシ
ーケンスが使用され得る。アプリケーションバイナリコードから機能を抽出するために他
の機構が使用されてよいことを諒解されたい。
【００２６】
　図4は、ネイティブバイナリ実行モデルにおける悪意のあるコード活動を検出するため
の方法400の実施形態を示すフローチャートである。ブロック402において、アプリケーシ
ョンのためにVAFMT120が生成される。上記で説明したように、VAFMT120は、対応するハイ
レベルアプリケーション機能にマッピングされた複数の注目仮想アドレスを含む。ブロッ
ク404において、たとえば、ポータブルコンピューティングデバイスなど、コンピューテ
ィングデバイス上にアプリケーションがインストールされ得る。ブロック406において、H
LOS106によって提供されるセキュリティサポートのために、アプリケーションが登録され
得る(たとえば、登録アプリケーション112)。ブロック408において、アプリケーションが
起動されてよく、応答して、CPU102は、アプリケーションバイナリコード108を実行し得
る。登録アプリケーション112が実行されているとき、HLOS106は、アプリケーションの実
行中のプロセスをインターセプトし得る(ブロック410)。ブロック412において、HLOS106
は、対応するVAFMT120を使用して、機能注目ポイントを、実行されているときに検出およ
び記録し得る。ブロック414において、記録されたポイントは、悪意のある攻撃を検出お
よび解決するために、悪意のあるコード検出アルゴリズム116に提供され得る。悪意のあ
るコード検出アルゴリズム116は、シグネチャベースのアルゴリズム、パターンマッチン
グアルゴリズムを含むこと、または機械学習もしくは他の技法を用いることがある。この
ようにして、悪意のあるコード検出アルゴリズム116は、VAFMT120を使用して、入力とし
て受信する仮想アドレスの意味を提供し得る。
【００２７】
　VAFMT120はHLOS106の制御下にあるので、HLOS106によって実行されるアプリケーション
バイナリコード108の仮想アドレスの任意の変換/ランダム化(たとえば、アドレス空間レ
イアウトランダム化(ASLR))が、実行中のアプリケーションの有効仮想アドレスとの同期
を維持するために、VAFMT120における仮想アドレスに適用され得る。一実施形態では、VA
FMT120とともにJavaScriptコードおよびアプリケーション実行から集められた情報は、ハ
イレベルウェブ/JavaScript機能情報を提供することができ、この情報は悪意のあるコー
ド検出アルゴリズム116に供給され得る。任意の悪意のある挙動を検出すると(ブロック41
6)、HLOS106は、アプリケーション/レンダラ/JavaScriptプロセスを休止し、ユーザのダ
イアログボックスを開いて、潜在的危険について警告し、ユーザに進むことに関する指示
を求めることができる。ユーザが依然として進むことを望んでいる場合、ブラウザプロセ
スがHLOS106によって再開され得る。ユーザが進むことを望んでいない場合、HLOS106はユ

(13) JP 6704503 B2 2020.6.3

10

20

30

40

50

ーザに、タブを閉じるか、もしくは何らかの他のウェブサイトにナビゲートするように要
請することがあり、またはHLOS106は、その実行インスタンス(ブラウザタブ)のためのプ
ロセスを終了することがある。
【００２８】
　VAFMT120は、たとえば、オーバージエア(OTA)更新を介して、アプリケーションバイナ
リコード110バージョンが変わったときに更新され得る。これらの更新により、HLOS106は
任意の登録アプリケーション112に対して更新バイナリにより準備ができているようにな
る。更新バイナリは、同じ注目ポイントに対する新しい仮想アドレスをもたらし得る。
【００２９】
　HLOS106ならびにマッピングテーブル120および122が、たとえば、仮想機械118(図1)を
伴う管理されたランタイム実行モデルをサポートするように構成されてもよいことを諒解
されたい。この点について、上記で説明した統合プラットフォーム機構は、システム100
が、実行中のアプリケーションバイナリコード108からの所望のまたはターゲットハイレ
ベル機能情報を決定することを可能にする。管理されたランタイム実行モデルの例示的な
実施形態が図5～図10に示されている。
【００３０】
　管理されたランタイムまたは仮想機械実行を伴う実施形態では、JavaScriptソースおよ
び/またはJavaScriptソースのためのバイトコード/ジャストインタイム(JIT)バイナリが
、別のテーブル(たとえば、識別子-アドレスマッピングテーブル(IVAMT)122)の助けをか
りて、仮想機械(VM)ヒープの異なる部分から読み取られ得る。IVAMT122は、VMヒープの重
要な境界の仮想メモリアドレスを含む。それは、仮想機械118またはアプリケーションバ
イナリ108の様々な機能ポイントの仮想アドレスが維持され得る他のタイプのエントリを
さらに含み得る。IVAMT122は、一般に、アプリケーション実行中に更新され、かつ/また
は動的に決定され得る特定の機能ポイントの仮想アドレスに使用され得ることを諒解され
たい。この点について、IVAMT122は、機能ポイントを仮想アドレスにマッピングし得る。
一方、VAFMT120は、静的に定義された仮想アドレスを機能的意味にマッピングし得る。し
たがって、VAFMT120は、アプリケーション実行中に変化しなくてよいが、たとえば、コン
ピューティングデバイスに対するオーバージエア(OTA)更新によって、更新されることが
ある。他の種々のテーブルがVAFMT120およびIVAMT122に関連付けられ得ることをさらに諒
解されたい。種々のテーブルは、仮想アドレスではないパラメータ値または設定にマッピ
ングされた様々なマクロまたはパラメータ名を含み得る。
【００３１】
　図9の実施形態では、例示的なVMヒープ構造900の様々な外部および/または内部境界に
関して仮想メモリアドレス901が識別される。図9に示すように、VMヒープ構造900は、た
とえば、fromフィールド912、toフィールド914、コードフィールド902、マップフィール
ド904、大型オブジェクトフィールド906、旧データフィールド908、および旧ポインタフ
ィールド910を含む、様々な内部および/または外部境界を識別する複数のデータフィール
ドを含み得る。VMヒープは、ネイティブシステムヒープにおいて割り振られた、VM管理さ
れたメモリ領域である。当技術分野で知られているように、VMヒープにおいて、VMは、た
とえば、コード(たとえば、JavaScriptソース)、バイトコード、中間コード、JITedバイ
ナリ、実行中に作成されたオブジェクト、ならびにすべての他の関連するハウスキーピン
グ情報およびプログラム(たとえば、JavaScriptプログラム)の実行に使用される内部デー
タ構造を割り振り、割振り解除する、メモリ管理の抽象化を実行する。図9にさらに示す
ように、VMヒープ領域は、VMが記憶する物のタイプに応じて様々な下位領域(たとえば、9
10、908、906、904、902、912、および914)を含み得る。下位領域912および914は、最初
に作成されたオブジェクトを含めるために使用され得、任意のガベージコレクション活動
は、下位領域912から914に生のオブジェクトをスワップし、その逆も同様である。一実施
形態では、下位領域902は、JavaScriptソース、バイトコード、中間コード、およびJITed
バイナリ/アセンブリコードを保存するために使用され得る。下位領域904は、プログラム
(たとえば、JavaScriptプログラム)の実行中にVMによって作成されたオブジェクトに関連

(14) JP 6704503 B2 2020.6.3

10

20

30

40

50

付けられたいくつかの内部データ構造を維持するために使用され得る。下位領域906は、
所定のサイズ(たとえば、1MB)よりも大きい任意の種類のアイテム(コード、オブジェクト
)を維持するために使用され得る。下位領域908および910は、ガベージコレクションの複
数のサイクルにわたって存続してきたオブジェクトおよびデータを維持することができ、
下位領域908は、定数値を有するオブジェクトに焦点を当て、下位領域910は、他のオブジ
ェクトを指すオブジェクトに焦点を当てる。
【００３２】
　動作中、HLOS106は、VMヒープに関してメモリ割振りが変化したときにIVAMT122におけ
る仮想メモリアドレス901を識別し、動的に更新し得る。JavaScript仮想機械118が、関数
がアクティブになるまでヒープにおけるソースを維持することを諒解されたい。管理され
たランタイムまたは仮想機械実行モデルは、VMヒープからJavaScriptソースおよび/また
はバイトコード/JITコードを識別することを伴い得る。JavaScriptソースを保持している
VMヒープオブジェクトは、新しい書込みがないかを追跡されてよく、仮想機械118によっ
て受信された新しいJavaScriptソースが識別され得る。識別されたJavaScriptソースは、
信頼できるゾーン114におけるアルゴリズム116に提供されてよく、そこでは、JavaScript
コードから様々な特徴を抽出し、任意の悪意のある挙動を検出するためにそれらを使用す
る。JavaScriptコードから抽出される特徴の例には、以下の特徴または他の特徴が含まれ
得る。ドキュメントオブジェクトモデル(DOM)修正および感度関数、いくつかの評価、い
くつかのストリング、スクリプト長、ストリング修正関数、難読化解除のための「built-
ins」など。信頼できるゾーン115は、任意の悪意のある活動を決定するために、抽出され
た特徴を悪意のあるコード検出アルゴリズム116に供給し得る。
【００３３】
　いくつかの実施形態では、JITバイナリ/バイトコードのみが利用可能であるとき、特徴
は、それらから抽出され、次いで、悪意のあるコード検出アルゴリズム116に送られ得る
。たとえば、HLOS106は、ハイレベルJavaScriptアーティファクトを表すバイトコード/JI
Tコードシーケンスのライブラリを維持し得る。これらのアーティファクトとVMコード空
間におけるJavaScript関数からのバイトコード/JITコードストリームの任意のマッチング
が記録され、悪意のある特性の決定のために悪意のあるコード検出アルゴリズム116に渡
され得る。
【００３４】
　図5および図6は、管理されたランタイムまたは仮想機械実行中に使用されるIVAMT122お
よびVAFMT120の例示的な実施形態を示す。図5は、対応するアプリケーションバイナリコ
ード108へのVMコード空間の割振りに関係するターゲット機能の論理マッピング500を示す
。この実施形態では、アプリケーションソースコード110は、「AllocateVMCodeSpace」関
数のためのコードを含む。図5に示すように、ソースコード110における第1のポイントは
、バイナリコード108における仮想アドレス502にマッピングされ得る。ソースコード110
における第2のポイントは、バイナリコード108における仮想アドレス504にマッピングさ
れ得る。例示的な実装形態では、実行中のVMが実行する必要がある新しいJavaScriptソー
スコードを取得し、現在のVMヒープコード空間(902)に十分な空間がないと判断されたと
き、関数AllocateVMCodeSpaceが呼び出され得る。この関数は、新しいJavaScriptコード
のサイズを測り、VMがJavaScriptソース、関連するバイトコードもしくは中間コードおよ
び/またはJITedバイナリを保存できるように、VMヒープコード空間がサイズを拡大する必
要がある量を決定し得る。決定されたサイズに基づいて、AllocateVMCodeSpace関数は、m
map()、malloc()、calloc()、またはrealloc()など、システムアロケータ関数を使用して
、ネイティブプラットフォームのヒープにおけるVMヒープコード空間の割り振られた空間
を拡大し得る。mmap()関数は、好ましくはアドレス開始時に、メモリにファイル記述子に
よって指定された他のオブジェクトからのオフセットで開始するバイトのシーケンスをマ
ッピングするPOSIX準拠Unixシステムコールである。mmap()関数は、オブジェクトがマッ
ピングされる実際の場所を戻す。malloc()、realloc()、calloc()およびfree()は、C/C++
プログラミング言語での動的メモリ割振りのための手動メモリ管理を実行するためのC標

(15) JP 6704503 B2 2020.6.3

10

20

30

40

50

準ライブラリにおける関数のグループを含む。バイナリコード108における注目ポイント
の仮想アドレス502および504は、VAFMT120における列302に直接配置され得る。仮想アド
レスによって表される異なる注目ポイントの機能的意味は、VAFMT120の列304においてマ
クロ名として列挙され得る。検出アルゴリズム116(図1)は、VAFMT120の列304においてマ
クロによって表される機能を明確に理解し得る。VAFMT120における特定の行の(列304にお
ける)マクロ名は、プロセッサ(たとえば、CPU102)が(列302における)その仮想アドレスポ
イントにおけるアプリケーションのバイナリ命令を実行するときに、実行されている機能
をはっきりと識別し得る。このようにして、注目ポイントに関する仮想アドレスの実行統
計値、カウントおよびプロファイルを知ることによって、検出アルゴリズム116は、ハイ
レベルアプリケーションバイナリによって実行されている機能を完全に理解する。マッピ
ングは直接的に、仮想アドレス302と、マクロ(304)によって表され、処理または検出を実
行する検出アルゴリズム116によって理解される機能的意味との間であってよく、それに
よって、その仮想アドレス注目ポイントにおける実際のバイナリ命令を知る必要を減らし
得ることを諒解されたい。
【００３５】
　仮想アドレスおよびマクロの意味とともに表される注目ポイントは、オフラインで決定
され、次いで、特定のアプリケーションバイナリに対してVAFMT120にポピュレートされ得
る。多くのタイプのアプリケーションは、利用可能なマッチング参照ソースコードを有し
得る。たとえば、マッチング参照ソースコードは、普及しているオープンソースプロジェ
クトから開発された一般に利用可能なアプリケーション(たとえば、ブリンク/Chromiumベ
ースのブラウザ、Webkitベースのブラウザ、Dalvik、ART、RenderScriptなど、Androidプ
ラットフォームにおける様々な仮想機械)に利用可能であり得る。利用可能なマッチング
参照ソースコードを有するアプリケーションの場合、商用アプリケーションバイナリにお
ける注目ポイントの仮想アドレスを、それらの注目ポイントのソースコードにおける対応
する表現/ステートメントに関して決定するために、様々なオフライン機構が使用され得
る。
【００３６】
　注目ポイントの仮想アドレスのオフライン決定のための例示的な実施形態について説明
する。注目機能を実施するソースコード110におけるいくつかの重要かつ有用な関数が、
マッチング参照ソースコードにおいて識別され得る。合わせて特定の一意の機能を表すポ
イントの一意のセットを形成するために、ソースコード110内の様々なポイントが手動で
決定され得る。これは、機能に対して完全なソースコード110の機能全体を一意に表すソ
ースコード110内のサンプルポイントのセットと同等であり得ることを諒解されたい。ソ
ースコード110はコンパイルされ、アセンブルされ、実際の商用サードパーティ製アプリ
ケーションと同等である参照アプリケーションにリンクされ得る。両方のバイナリ(参照
および商用サードパーティ)は、同じソースコード110から生じ、同様のビルド技法(たと
えば、コンパイル、アセンブル、リンク)およびツールチェーンを使用し得る。当分野で
知られているように、オープンソースアプリケーションは、自由に利用可能なGCCまたはL
LVMツールチェーンを使用し得る。コンパイラ、アセンブラ、およびリンカツールは、参
照バイナリアプリケーションを生成するために使用されてよく、ソースコードにおける重
要なポイントに対応する仮想アドレスポイントに留意することができる。注目ポイントの
仮想アドレスは、バイナリアプリケーションがビルドされる(コンパイルされる、アセン
ブルされる、リンクされる)ソースコード110における注目ポイントの直接的マッピングを
含み得るので、商用サードパーティバイナリにおける仮想アドレス注目ポイントを識別す
るために商用バイナリと比較するために、参照バイナリがオフラインで使用され得る。商
用サードパーティバイナリにおける注目ポイントの仮想アドレスを決定するために、他の
オフラインまたは他の技法が使用されてよいことをさらに諒解されたい。一実施形態では
、図2は、ソースコード110における異なる注目ポイント(201、203、205)が、バイナリ108
における対応する仮想アドレス(202、204、206)にどのように直接マッピングされ得るか
を示す。

(16) JP 6704503 B2 2020.6.3

10

20

30

40

50

【００３７】
　図6は、図5のVAFMT120と例示的なIVAMT122との間の論理マッピング600を示す。VAFMT12
0は、実行が注目され、追跡されているバイナリアプリケーションにおける固定および既
知の注目ポイントの仮想アドレスを含む。これらの仮想アドレスは、バイナリアプリケー
ションが変わるときはいつでも更新され得る。IVAMT122は、バイナリアプリケーションが
実行されるときに作成または更新される特定のポイントの仮想アドレスを含み、これは動
的であり、動的なアイテム(たとえば、ランタイムバッファ開始または終了ポイント)の仮
想アドレスを表し得る。VAFMT120の左手列(302)は、仮想アドレスを含み、右手列(304)は
、その仮想アドレスポイントにおけるバイナリコード108に存在する機能的説明を示し得
る。このようにして、VAFMT120は、仮想アドレスを機能的意味にマッピングする。一般に
、IVAMT122は逆方向を含む。この場合、機能的意味またはマクロ名が知られており、シス
テムは、機能的意味またはマクロ名604が実装されているか、またはバイナリアプリケー
ションの実行インスタンスにおいて利用可能である仮想アドレス602を決定する。IVAMT12
2における仮想アドレスは、ランタイムにおいて決定される動的な値を含み得る。動的に
割り振られたバッファ(または仮想機械ヒープもしくはそのサブ空間)の開始および終了が
決定される場合、動的バッファ/ヒープ-空間割振りをしているバイナリアプリケーション
における関数内の注目ポイントの仮想アドレスがVAFMT120から取得され得る。これらの関
数の実行は、VAFMT120における仮想アドレスの実行を検出することによって決定され得る
。さらに、バッファ/ヒープ-空間割振りの開始/終了仮想アドレスは、これらの関数から
呼び出されたシステムメモリ割振り関数を検出することによって決定され得る。バッファ
/ヒープ-空間割振りのこれらの決定された開始/終了仮想アドレスは、IVAMT(122)におい
て更新され得る。
【００３８】
　図7は、VMヒープコード空間に対するガベージコレクションの影響、およびどのようにJ
avaScriptソースが、仮想機械118のガベージコレクション活動が存在する場合に一貫して
決定され得るかを示す。新しいオブジェクトの割振りおよび無効の(すなわち、使用され
ていない)オブジェクトの割振り解除がランタイムまたは仮想機械118によって明示的に処
理され得るので、ガベージコレクションは、管理されたランタイムまたは仮想機械の不可
欠な活動であることを諒解されたい。管理されたVMヒープから無効の(すなわち、使用さ
れていない)オブジェクトを回収する活動は、ガベージコレクションと呼ばれる。この点
について、必要とされないScriptオブジェクトまたは他のオブジェクトが回収されるとき
、VMヒープは再編成され、既存のオブジェクトはあちこち移動し、新しいオブジェクト割
振りのための空間を作るために圧縮され得る。図7は、VMヒープコード空間704aに対する
そのようなガベージコレクション活動の影響を示す。VMヒープコード空間704aは、JavaSc
riptオブジェクトJS1、JS2、JS3、およびJS4を含む。ガベージコレクション事象の後、そ
れらは圧縮され、JavaScriptオブジェクトJS3が除去されてよく、JavaScriptオブジェク
トJS3は、ガベージコレクタによって必要とされないものまたは無効のものとして検出さ
れ、したがってVMヒープコード空間704bから回収(削除)されている。ただし、VMヒープに
おけるオブジェクトのいかなるそのような動き(たとえば、除去、圧縮など)によっても、
JavaScriptオブジェクトが存在する場所を決定する仮想アドレス開始および終了ロケーシ
ョンは変わる。例示的な方法では、各ガベージコレクション活動の後、VMヒープおよびヒ
ープ内の様々な空間(図9)に関して図5および図6に示す仮想アドレス決定機構を再実行す
ることによって、仮想アドレスは変更され得、それによって、ガベージコレクション中に
Scriptオブジェクトが移動した場合に仮想アドレスは新しい値により更新され得る。図8
に示すように、カーネルは、ガベージコレクション中に発生しているオブジェクト移動お
よびそれらが移動する距離を追跡し得る。オブジェクトが移動したアドレスオフセットを
追跡することによって、VMヒープコード空間におけるJavaScriptオブジェクトの開始およ
び終了の仮想アドレス値が更新され得る。同様に、VMヒープの様々なコード空間のIVAMT1
22における仮想アドレスは、図9に示すVMヒープの様々なサブ空間の割振り/割振り解除/
移動を追跡することによって更新され得る。

(17) JP 6704503 B2 2020.6.3

10

20

30

40

50

【００３９】
　図10は、管理されたランタイムまたは仮想機械実行モデルにおける悪意のあるコード活
動を検出するための方法1000の実施形態を示すフローチャートである。図10のブロック10
02、1004、1006、1008、および1010において表されるステップまたは機能は、一般に、図
4の方法に関連して上記で説明したブロック402、404、406、408、および410に対応し得る
ことを諒解されたい。ブロック1012において、方法1000は、VMヒープアロケータ/ディア
ロケータ関数の注目ポイント仮想アドレスを、実行されたときに検出する。ブロック1014
に示すように、実行がVMヒープアロケータ/ディアロケータ関数の内部であることが検出
されたとき、方法1000は、カーネルのシステムアロケータ/ディアロケータ関数へのエン
トリVMを検出し、システムメモリ割振り/割振り解除を記録することができる。それに基
づいて、方法1000は、VMのヒープの開始/終了仮想アドレスを計算および決定し得る。VM
ヒープの特定の割振り領域(たとえば、コード空間、大型オブジェクト空間など)のために
同様の機構を実装することによって、VMヒープ内の特定の下位領域(たとえば、コード空
間、大型オブジェクト空間など)の開始/終了仮想アドレスが決定され得る。ブロック1016
に示すように、JavaScriptソースコードオブジェクトを記憶するために使用されるVMヒー
プ空間がブロック1014において決定されると、方法1000は、VMヒープ内のJavaScriptオブ
ジェクトの開始を決定するために(バイナリでの)スクリプトオブジェクトヘッダシグネチ
ャ/パターンを使用し得る。JavaScriptオブジェクトの長さは、ヘッダから抽出され、Jav
aScriptソースコード全体を抽出するために使用され得る。ブロック1018に示すように、J
avaScriptソースコードは、たとえば、悪意のある挙動を検出するために検出アルゴリズ
ム116によって使用される特定の注目特徴を抽出するために使用され得る。ブロック1020
において、JavaScriptコードの悪意のある挙動が、たとえば、ブロック1018においてJava
Scriptソースから抽出された特徴に基づいて決定され得る。
【００４０】
　上述のように、VAFMT120は、最初に、オフライン方式で構成され、コンピューティング
システム100(図1)に提供され得る。一実施形態では、アプリケーションバイナリコード10
8の新バージョンがコンピューティングシステム100にとって利用可能になったとき、VAFM
T120は、同様に、オフライン方式で更新され、コンピューティングシステム100に、たと
えば、通信ネットワークを介して提供され得る(「オーバージエア(OTA)更新」と呼ばれる
)。このようにしてVAFMT120を更新することは、頻繁に更新されるバイナリアプリケーシ
ョンにとって不利であり得る。アプリケーションバイナリコード108の更新バージョンに
おけるバイナリコードの比較的大きい部分は変わらないままであり得ることを諒解された
い。VAFMT120において識別される機能注目ポイント304は、アプリケーションバイナリコ
ード108および/またはバージョン間で変わらないことがあるバイナリコードの比較的限ら
れた部分を含み得る。
【００４１】
　たとえば、コンパイラ動作および/または設定は、まれに変わることがあり、バイナリ
コードにおける様々なモジュールは、モジュール間で同様のまたは所定のオフセットを維
持し得る。図12～図16は、アプリケーションバイナリコード108の新バージョンまたは更
新バージョンがインストールされたときにVAFMT120における仮想アドレスを自動的に更新
するためにコンピューティングデバイス100において実装され得る様々な機構を示す。
【００４２】
　これらの機構が様々なタイプのアプリケーションおよび/または使用事例に関するVAFMT
120のOTA更新の必要を減らし得ることを諒解されたい。たとえば、セキュリティアプリケ
ーションの文脈では、これらの機構は、同じ発生コードベースに基づくウェブブラウザア
プリケーションに対する最もよくあるタイプの更新の多くに関するOTA更新の必要をなく
し得る。既存のウェブブラウザアプリケーションは、週次または月次でバイナリアプリケ
ーションコードを更新し得る。新しいバイナリバージョンの仮想アドレスは、機能注目ポ
イント304に関係する特定のモジュールに関してソースコードが変わっていないときでも
変わり得る。この場合、仮想アドレスは、機能注目ポイント304以外のアプリケーション

(18) JP 6704503 B2 2020.6.3

10

20

30

40

50

の部分におけるソースコードの変更、またはアプリケーションの他の部分においてアクセ
スされる変数タイプおよびデータ構造タイプ(たとえば、C++クラス、C-構造、集合など)
の変更がある場合に変わり得る。さらに、コンパイラ、アセンブラ、およびリンカオプシ
ョンのいくつかの種類の変更は、アプリケーションの他の部分の仮想的変更をもたらし得
る。
【００４３】
　図12は、アプリケーションバイナリコード108の新バージョンまたは更新バージョンが
インストールされたときにVAFMT120を自動的に更新するためにコンピューティングデバイ
ス100において実装され得る例示的な機構の実施形態を示す。図12に示すように、VAFMT12
0は、メタデータ1200および1つまたは複数の疑似バイナリコードテンプレート1202により
補足され得る。以下でより詳細に説明するように、メタデータ1200および疑似バイナリコ
ードテンプレート1202は、HLOS106が、アプリケーションバイナリコード108が新バージョ
ンにより更新されたときに機能注目ポイント304の新しい仮想アドレス302を決定すること
を可能にし得る。
【００４４】
　疑似バイナリコードテンプレート1202は、局所変数のためのメモリおよび疑似レジスタ
における記憶ロケーションのための記号表現を使用する演算ステートメントのシーケンス
を含むことを諒解されたい。疑似バイナリコードテンプレート1202は、それらの目的を示
す様々なカテゴリーの疑似レジスタを使用し得る。一実施形態では、ArgumentReg#は、サ
ブルーチンに引数を渡す疑似レジスタを示し得る。ReturnRegは、サブルーチン呼出しか
ら戻るときの戻りアドレスを含み得る。ProgCounterは、プロセッサのプログラムカウン
タが指す現在アドレスを含み得る。ReturnValueReg#は、呼出し側コードにサブルーチン
呼出しからの値を戻すために使用されるレジスタを示し得る。演算は、変数または記憶ロ
ケーションであり得る入力および出力を伴うプロセッサにおけるアセンブリ演算の忠実な
表現(close representation)を含み得る。たとえば、AddWord変数は、サイズ4バイトまた
は1ワードのオペランドの加算演算を示し得る。LoadWord変数は、所定のサイズ(たとえば
、4バイトまたは1ワード)を有するメモリからの値をロードすることを示し得る。LoadByt
e変数は、所定のサイズ(たとえば、1バイト)を有するメモリからの値をロードすることを
示し得る。branchEQは、以前の比較演算が、比較されているオペランドの等しさをもたら
している場合に、オペランドとして提供されるターゲットに分岐する条件付き分岐を含み
得る。アドレス指定モードまたはアドレス計算は、ロード演算または記憶演算から分離さ
れ得る。一実施形態では、ベースレジスタおよびオフセットを伴うロード演算は、2つの
演算、すなわち、疑似レジスタに一定のオフセット値を加算することによって最終アドレ
スを計算する加算演算、および後続の、計算された最終アドレスを含む疑似レジスタを使
用する実際のロード演算に分割され得る。これは、様々な形式のアドレス指定モードが更
新アプリケーションバイナリによって使用される場合に最も一般的な形式による表現を維
持するために行われ得る。定数である演算引数は、有効範囲の定数を符号化するために必
要とされるビットの数によって表され得る。
【００４５】
　たとえば、定数「Const8bits」は、オペランドが8ビットによって符号化され得る任意
の有効値であることを示す演算のためのオペランドとして使用され得、したがって、許容
される値の有効な動的範囲を決定し得る。いくつかのオペランドは、ハードコーディング
された定数(たとえば、値「8」を示す「#8」)であり得る。直接分岐演算のオペランドは
、現在のプログラムカウンタからのオフセット(たとえば、(「ProgCounter + #Const20bi
ts」、または「ProgCounter + #12」))として表され得る。疑似バイナリコードテンプレ
ート1202は、これらまたは他の演算ステートメントを使用して注目機能を実施し得る。た
とえば、マッチング機能またはモジュールを介して正確な機能を実施する新しい更新バイ
ナリにおける領域を識別するために演算ステートメントが使用され得ることを諒解された
い。マッチングモジュールは、疑似バイナリコードテンプレート1202のフォーマットおよ
び表現とアプリケーションの実際のバイナリの両方を理解するように構成される。マッチ

(19) JP 6704503 B2 2020.6.3

10

20

30

40

50

ングモジュールは、マッチングを検出するために演算のウィンドウ内で演算ごとの比較を
実行するか、または制御データフローおよび制御データフロー領域内の演算を比較のため
に使用し得る。
【００４６】
　様々なマッチング技法が使用され得る。疑似バイナリコードテンプレート1202における
演算ステートメントは、静的単一代入(SSA)表現を使用することができ、SSA表現では、特
定の疑似レジスタ変数が1回だけ代入され、それによって、演算ステートメント間の真の
依存を明らかにする。SSA表現は、アプリケーションの更新バイナリにおける機能領域の
マッチングの改善を可能にし得る。「疑似」という用語は、表現がバイナリ実行可能では
なく、プロセッサの実際のアセンブリ命令、レジスタ、およびアドレス指定モードを使用
せず、バイナリコードにアセンブルされないことを指す。疑似バイナリコードテンプレー
ト1202は、アプリケーションの更新バイナリにおける注目機能を検出するためにマッチン
グモジュールがテンプレートパターンおよび指針として使用する機能参照を提供する。疑
似バイナリコードテンプレート1202の実際のフォーマットおよび表現は実装依存であり、
様々な他の代替形態が使用されてよいことを諒解されたい。他の実施形態では、いくつか
の実装形態は、実際のアセンブリ命令表現またはバイナリアプリケーションが実行される
CPU102のためのアセンブリ表現に似ている表現を使用し得る。
【００４７】
　上記で説明したように、HLOS106は、登録アプリケーションのリスト112を維持し得る。
登録アプリケーションごとに、HLOS106は、機能注目ポイント304の仮想アドレス302を含
むテーブル(たとえば、VAFMT120、IVAMT122)を維持する。図12に示すように、VAFMT120に
おける1つまたは複数の仮想アドレス302が、疑似バイナリコードテンプレート1202に関連
付けられ得る。図12の実施形態では、疑似バイナリコードテンプレート1202は、一意の機
能(documentWrite関数)を表す機能注目ポイント304の特定のセットの仮想アドレス302の
セットに関連付けられる。疑似バイナリコードテンプレート1202は、documentWrite関数
をカバーするバイナリコードと一般的に同等の疑似コード命令を含む。一実施形態では、
疑似バイナリコードテンプレート1202は、プロセッサ命令セットアーキテクチャ(ISA)を
使用しなくてよく、実際のバイナリコードにアセンブルされる必要がない。疑似バイナリ
コードテンプレート1202は、アセンブリ演算と同様の演算ステートメントを使用し、疑似
レジスタおよび記号参照をストレージのために使用し得る。そのような演算ステートメン
トのシーケンスの使用によって、疑似バイナリコードテンプレート1202は、アプリケーシ
ョンの実際のバイナリにおいて実施される注目機能(たとえば、documentWrite関数)と同
じまたは同等である、それが表す注目機能(たとえば、上記の例での「documentWrite」関
数の機能)を実施し得る。コンピューティングシステム100は、任意の数の疑似バイナリコ
ードテンプレート1202を含み得ることを諒解されたい。異なる疑似バイナリコードテンプ
レート1202の数は、機能注目ポイントの異なるセットを通じて、VAFMT120において捕捉さ
れた異なる機能すべてが、新しいアプリケーションバイナリコードがインストールされた
ときにそれがカバーする関数ポイントの仮想アドレスを更新するために使用される少なく
とも1つの代表的な疑似バイナリコードテンプレート1202を有するような数であり得る。
【００４８】
　一実施形態では、疑似バイナリコードテンプレート1202は、一般的な形式のターゲット
アセンブリ命令、1つまたは複数の疑似レジスタ、およびメモリにおける特定の参照ポイ
ントを表す一般的なベース(たとえば、グローバルヒープまたはスタック、シンボル/変数
名)からのメモリアクセスオフセットを含み得る。メタデータ1200は一般に、たとえば、
バイトオフセットを使用する仮想アドレス自由表現(virtual-address free representati
on)を含む。仮想アドレス(0x3473fac8)のメタデータ1200は、バイトオフセット(BASE2 =
BASE0 + 74709704)を含む。仮想アドレス(0x3473fad4)のメタデータ1200は、バイトオフ
セット(BASE2 + 12)を含む。仮想アドレス(0x3473fae8)のメタデータ1200は、バイトオフ
セット(BASE2 + 32)を含む。このメタデータは、「document_write」機能を一意に表す3
つの仮想アドレス注目ポイントのセットに対応する一意のセットを形成し得ることを諒解

(20) JP 6704503 B2 2020.6.3

10

20

30

40

50

されたい。
【００４９】
　疑似バイナリコードテンプレート1202は、最初にオフライン方式で生成され、コンピュ
ーティングシステム100に提供され、デバイスのセキュアなストレージに記憶され得る。
疑似バイナリコードテンプレート1202は、たとえば、機能注目ポイント304によってカバ
ーされる領域におけるコードおよび/またはデータ構造の顕著な変更があるときのみ更新
される必要があり得ることを諒解されたい。これらのタイプの変更は、比較的まれ(たと
えば、6ヵ月に1回)であり得る。このタイプおよび他のタイプの更新は、OTA更新を介して
実施され得る。これは、たとえば、週次/月次から、6ヵ月に1回だけ疑似バイナリコード
テンプレート1202のOTA更新を行うことのみへの、仮想アドレスのOTA更新の大幅な減少を
可能にする。
【００５０】
　既存の登録アプリケーションの新しいバイナリバージョンの更新または再インストール
が検出され得る。応答して、メタデータ1200および疑似バイナリコードテンプレート1202
が、VAFMT120を自動的に更新するために使用され得る。図12に示すように、疑似バイナリ
コードテンプレート1202は、疑似バイナリコードテンプレート1202によって表される機能
注目ポイント304(ひいては、この特定の疑似バイナリコードテンプレートが表す仮想アド
レス注目ポイント)が位置する新しいアプリケーションにおけるバイナリコードの領域120
6をパターンマッチングするために使用され得る。メタデータ1200は、アプリケーション
バイナリコード108の更新バージョン1204において探索される領域1206に焦点を当てるた
めに使用され得る。一意の機能の機能注目ポイント304の元のベース(BASE0)からの相対的
OFFSETを使用することによって、焦点領域(Focused Region)1206(たとえば、ベース、BAS
E2の前および後の所定のパーセンテージ)上で探索する最初の試みが行われ得る。多くの
タイプの頻繁な更新では、これらの相対的オフセットが依然として接近していることを諒
解されたい。図12にさらに示すように、マッチングが検出されたとき、新しい仮想アドレ
スが新しいバイナリから取得され得、VAFMT120は、新しい仮想アドレスを反映するために
更新され得る。1つまたは複数の機能注目ポイント304が新しいバイナリにおけるマッチン
グをもたらさない場合、コンピューティングシステム100は、OTA更新を開始してよく、ま
たは他の実施形態では、特定の注目機能および関連する仮想アドレスを、特定の機能の重
要性に基づいてVAFMT120から削除してよい。
【００５１】
　図13は、(グレーアウトされたボックスによって表される)更新仮想アドレスとともに図
12からのVAFMT120を示す。DOCUMENT_WRITE_FUNCTION_START注目ポイント304に対応する仮
想アドレス302は、新しい仮想アドレス(0x3133b61c)に更新されている。DOCUMENT_WRITE_
1注目ポイント304に対応する仮想アドレス302は、新しい仮想アドレス(0x3133b62c)に更
新されている。DOCUMENT_WRITE_2注目ポイント304に対応する仮想アドレス302は、新しい
仮想アドレス(0x3133b640)に更新されている。図13にさらに示すように、仮想アドレスに
対応するメタデータ1200も更新され得る。図13に示すように、新しい仮想アドレス(0x313
3b61c)のメタデータ1200は、「BASE2 = BASE0 + 74709000」に更新されている。これは、
アプリケーションの更新バイナリにおける2つの注目機能の間(すなわち、「KERNEL_ALLOC
ATOR_FUNCTION」と「DOCUMENT_WRITE_FUNCTION」との間)にわずかな相対位置変更があっ
たことを示す。変更は比較的わずかであり得る。たとえば、変更は、それらの間の747097
04バイトの元の総距離のうちの704バイトの縮小であり得る。したがって、探索により、2
つの注目機能の間のベースオフセットメタデータ(すなわち、74709704バイト)の前および
後のいくつかのトレランスとともに焦点を当てられて、探索領域を狭くすることによって
効果的なマッチングが可能になる。新しい仮想アドレス(0x3133b62c)のメタデータ1200は
、BASE2 + 16に更新されている。新しい仮想アドレス(0x3133b640)のメタデータ1200は、
BASE2 + 36に更新されている。
【００５２】
　図14および図15は、DOCUMENT_WRITE関数に関係する機能注目ポイント304のセットに関

(21) JP 6704503 B2 2020.6.3

10

20

30

40

50

連付けられた疑似バイナリコードテンプレート1202の例示的な実施形態を示す。機能注目
ポイント304のセットは、DOCUMENT_WRITE_FUNCTION_STARTモジュール、DOCUMENT_WRITE_1
モジュール、およびDOCUMENT_WRITE_2モジュールを含む。図14に示すように、セットにお
ける機能注目ポイント304の各々は、疑似バイナリコードテンプレート1202内の「疑似バ
イナリ命令注目ポイント」を形成する特定の疑似コード命令に直接関連付けられる。疑似
バイナリコードテンプレート1202内のこれらの「疑似バイナリ命令注目ポイント」は、「
疑似バイナリ注目ポイント」と直接マッチングした更新アプリケーションバイナリにおけ
る特定のバイナリ命令に応じた、アプリケーションバイナリの更新バージョンにおける新
しい仮想アドレス注目ポイントと現在のVAFMT120における仮想アドレス注目ポイントの1
対1のマッピングを含む。図14に示すように、DOCUMENT_WRITE_FUNCTION_STARTモジュール
は、最初の2つの呼出し側保存済み疑似レジスタ(CallSave0、CallSave1)および戻りレジ
スタ(ReturnReg)を保存する「プッシュ」演算に関連付けられる。その後に、後続のLoadW
ord演算によって必要とされるアドレスを計算するAddWord演算がある。AddWord演算は、
プログラムカウンタで8ビットに適合すべき定数値を加算し、疑似レジスタreg0に結果を
保存する。後続のLoadWord演算は、値のロード元のアドレスとしてreg0のアドレスを直接
使用する。アプリケーションのための実際のバイナリでは、8ビットの定数を有するAddWo
rdは、アドレス指定モードの一部としてLoadWord命令に直接含まれ得る。「Const8bits」
は、8ビットに適合する任意の定数値を有するオプションを可能にする。ロードされた値
は、疑似レジスタreg1において維持され、疑似レジスタreg2に値をロードする第2のLoadW
ord演算のためのアドレスとして使用される。DOCUMENT_WRITE_FUNCTION_STARTによって示
される機能注目ポイントの場合、「プッシュ」演算は、この疑似バイナリコードテンプレ
ート1202における「疑似バイナリ命令注目ポイント」である。
【００５３】
　DOCUMENT_WRITE_1モジュールは、疑似レジスタ(reg0)において維持され、疑似レジスタ
reg1に保存される値の16ビットによる論理シフト左演算に関連付けられる。それは次いで
、定数値「4」で加算され、疑似レジスタreg2に保存され、次いで疑似レジスタreg2は、
疑似レジスタ(reg3)に値がロードされる際のロード元のアドレスとして使用される。実際
のバイナリロード命令の場合、アドレス指定モードは、定数値4による加算を直接実行す
ることができ、したがって、AddWordおよびLoadWordは、単一のロード命令によって表さ
れ得ることに留意されたい。reg3における値は、プログラムカウンタ値(PC)にさらに加算
されて、呼び出されたルーチンに第1の引数として渡すために使用される第1の引数レジス
タ「ArgumentReg0」にバイト値がロードされる際のロード元のアドレスである疑似レジス
タreg4における最終アドレスが作成される。その後、20ビットに適合することができる値
であるオフセットにあるアドレスへの直接的分岐がある。しかしながら、直接的分岐命令
の前に、直接的分岐がアプリケーションの異なる部分への制御ができるようになった後に
(ReturnRegを適切に設定することによって)戻るためのアドレスを保存するAddWord命令が
ある。「論理シフト左」演算は、DOCUMENT_WRITE_1によって示される機能注目ポイントに
関するこの疑似バイナリコードテンプレート1202における「疑似バイナリ命令注目ポイン
ト」である。
【００５４】
　DOCUMENT_WRITE_2モジュールは、プログラムカウンタで8ビットに適合することができ
る定数値を加算し、疑似レジスタreg0において結果を維持するAddWord演算に関連付けら
れる。疑似レジスタreg0は次いで、疑似レジスタ(reg2)に値がロードされる際のロード元
のアドレスとして使用される。その後に、疑似レジスタ(reg2)およびプログラムカウンタ
の現在値を加算し、疑似レジスタreg1において結果を維持する別のAddWord演算がある。
疑似レジスタreg1は次いで、直接的分岐命令を通じて後続のサブルーチン呼出しに値を渡
すために使用されるArgumentReg0に値がロードされる際のロード元のアドレスとして使用
される。実際のバイナリロード命令の場合、アドレス指定モードは、定数値による加算を
直接実行することができ、したがって、AddWordおよびLoadWordは、アプリケーションの
実際のバイナリでの単一のロード命令によって表され得ることに留意されたい。LoadWord

(22) JP 6704503 B2 2020.6.3

10

20

30

40

50

演算の後、20ビットに適合することができる値であるオフセットにあるアドレスへの直接
的分岐がある。しかしながら、直接的分岐命令の前に、直接的分岐がアプリケーションの
異なる部分への制御ができるようになった後に(ReturnRegを適切に設定することによって
)戻るためのアドレスを保存するAddWord命令がある。サブルーチンの呼出しの後、比較の
2つのセットおよび疑似バイナリコードテンプレート1202内の近くのロケーションへの分
岐がある。両方の比較を、第1のサブルーチン戻り値レジスタ(ReturnValueReg0)に対して
行って、サブルーチンによって戻された特定の値(「0」および「1」)をチェックし、戻さ
れた値に基づいて、局所的にそれぞれBranchEQ演算およびBranchNE演算を使用して分岐を
行う。分岐ターゲットアドレスは、現在のプログラムカウンタ値からの定数オフセットと
して提供される。プログラムカウンタでConst8bitsオペランドを加算するAddWord演算は
、DOCUMENT_WRITE_2によって示される機能注目ポイントに関するこの疑似バイナリコード
テンプレート1202における「疑似バイナリ命令注目ポイント」である。アプリケーション
の実際のバイナリは、(「ldr r1、[pc,#80]として)単一の実際のバイナリ命令への疑似バ
イナリコードテンプレートマッチングにおいて、LoadWord演算とともにこのアドレス計算
演算(AddWord)を有することができ、この場合、全体的または部分的のいずれかにおいて
「疑似バイナリ命令注目ポイント」がマッチングする実際のバイナリ命令が、アプリケー
ションのバイナリの新バージョンにおける更新仮想アドレスを決定する命令になることに
留意されたい。
【００５５】
　図15は、アプリケーションバイナリコード108の更新バージョン1204のマッチング領域1
206における同等の対応するバイナリコードへの疑似バイナリコードテンプレート1202に
おける疑似コード命令の各々のマッチングを示す。動作中、疑似バイナリコードテンプレ
ート1202が領域1206とマッチングしたとき、機能注目ポイント304とマッチングするバイ
ナリコードにおける対応する命令の仮想アドレスが、新しい仮想アドレスになり、VAFMT1
20において更新される。新しいベースおよびオフセットが新しい仮想アドレスに基づいて
計算され得、メタデータ1200が更新され得る。
【００５６】
　図16は、アプリケーションバイナリコード108の新バージョンまたは更新バージョンが
インストールされたときにVAFMT120を自動的に更新するためにコンピューティングデバイ
ス100において実装される方法1600の実施形態を示す。ブロック1602において、上記で説
明したように、コンピューティングシステム100に、HLOS106に登録されたアプリケーショ
ンのための仮想アドレスマッピングテーブル120が記憶され得る。VAFMT120は、HLOS106中
のセキュアなメモリに記憶され得る。図12に示すように、VAFMT120は、登録アプリケーシ
ョンのアプリケーションバイナリコード108における対応するターゲットアプリケーショ
ン機能(機能注目ポイント304)にマッピングされた仮想アドレス302の複数のセットを含み
得る。アプリケーションバイナリコード108の更新バージョン1204を受信したこと(決定ブ
ロック1604)に応答して、仮想アドレスマッピングテーブル120における仮想アドレス302
の複数のセットのうちの1つまたは複数に関連付けられた対応する疑似バイナリコードテ
ンプレート1202が決定され得る(ブロック1606)。上述のように、一実施形態では、疑似バ
イナリコードテンプレート1202は、最初に、当初のVAFMT120とともにシステム100へのオ
ーバージエア(OTA)更新を通じて、またはシステム100上にコード/データをダウンロード
およびインストールする任意の他の手段によって獲得され得る。これらの疑似バイナリコ
ードテンプレート1202とVAFMT120の両方が、システム100中の、HLOS106およびカーネルに
よってアクセス可能なロケーションに記憶され得る。実際の記憶ロケーションは実装依存
である。様々なレベルのセキュリティ保護またはセキュアなメモリ構成が、記憶ロケーシ
ョンに対して考慮され得、実装選択に依存する。疑似バイナリコードテンプレート1202は
、たとえば、既存のテンプレートのうちの1つまたは複数がアプリケーションの更新バイ
ナリにおいてマッチングを発見することができないときに更新され得る。注目領域におけ
るアプリケーションコードの大規模な変更、または上記で説明した他の種類の変更に起因
して、ミスマッチが発生し得る。そのような状況の間、更新された疑似バイナリコードテ

(23) JP 6704503 B2 2020.6.3

10

20

30

40

50

ンプレート1202および更新されたVAFMT120が、システム100にOTAダウンロードおよびイン
ストールされ得る。決定ブロック1608において、疑似バイナリコードテンプレート1202は
、アプリケーションバイナリコード108の更新バージョン1204を探索し、同等のバイナリ
命令に疑似コード命令をマッチングするために使用される。マッチングが発見されたとき
、ブロック1610において、バイナリ命令に対応する新しい仮想アドレスが決定される。ブ
ロック1612において、仮想アドレスマッピングテーブル120は、新しい仮想アドレスおよ
び対応する更新ベース/オフセットメタデータ1200により更新され得る。
【００５７】
　図16に示すように、ブロック1606、1608、1610、および1612は、異なる疑似バイナリコ
ードテンプレート1202のすべてに対して、疑似バイナリコードテンプレート1202のすべて
がマッチングされ、VAFMT120における仮想アドレスのすべてが更新されるまで繰り返され
得る。決定ブロック1611において、方法1600は、疑似バイナリコードテンプレート1202の
すべてが処理されたかどうかを判断し得る。「yes」の場合、方法1600はブロック1613に
おいて終了することができる。「no」の場合、ブロック1606において新しい疑似バイナリ
コードテンプレート1202が選択され得る。決定ブロック1608において、マッチングするバ
イナリシーケンスが特定の疑似バイナリコードテンプレート1202のアプリケーションの更
新バイナリにおいて識別されると、方法1600は、マッチングのために次の疑似バイナリコ
ードテンプレート1202に対して繰り返すことができる。ある繰り返しにおいて、アプリケ
ーションの更新バイナリにおける疑似バイナリコードテンプレート1202に関するマッチン
グがない場合、疑似バイナリコードテンプレート1202によって表される注目機能がVAFMT1
20から削除され得るかどうかが最初に判断される(決定ブロック1607)。それが削除され得
る(機能の重要性が低いことを含む、様々な理由に起因し得る)場合、この注目機能に関す
る仮想アドレス注目ポイントのエントリすべてがVAFMT120から削除され得(ブロック1605)
、次の疑似バイナリコードテンプレート1202に関するマッチングを探索するために、ブロ
ック1606で繰り返しが続く。しかしながら、機能(ひいては、疑似バイナリコードテンプ
レート1202)が重要であり、削除されるべきではない場合(ブロック1609)、自動的更新機
構は失敗し、その場合、仮想アドレスおよび/または疑似バイナリコードテンプレート120
2の完全なオーバージエア(OTA)更新が実行され得る。これは、(たとえば、より低い頻度
で、6ヵ月に1回発生する)アプリケーションの更新バイナリの大幅な変更/修正がある場合
を表し得る。
【００５８】
　図17～図23は、オフセットベースの仮想アドレスマッピング方式を使用してターゲット
アプリケーション機能を検出するためのシステムおよび方法の様々な実施形態を示す。一
般に、オフセットベースの仮想アドレスマッピング方式は、仮想アドレスオフセットを使
用する、対応するハイレベルターゲットアプリケーション機能へのアプリケーションバイ
ナリコード108における仮想アドレスのマッピングを伴う。オフセットベースの仮想アド
レスマッピングは、同じアプリケーションの複数のプロセスの同時実行の場合のターゲッ
トアプリケーション機能の検出を可能にするために特に有用であり得ることを諒解された
い。一実施形態では、ターゲットアプリケーション機能は、ウェブブラウザアプリケーシ
ョンの複数のブラウザタブまたはインスタンスの同時実行の際に検出され得る。さらに、
オフセットベースの仮想アドレスマッピング方式は、再配置可能なアドレスを有する動的
共有ライブラリを用い得る。
【００５９】
　図17は、オフセットベースの仮想アドレスマッピング方式1700の例示的な実施形態のア
ーキテクチャおよび/または動作を示す。図17に示すように、オフセットベースの仮想ア
ドレスマッピング方式1700は、2つの異なるタイプの仮想アドレス-関数マッピングテーブ
ル、すなわち、アプリケーション固有VAFMT1702および1つまたは複数のプロセス固有VAFM
T1714によってサポートされる2段階方式を伴う。各登録アプリケーション112は、対応す
るアプリケーションバイナリコード108のために生成され得るアプリケーション固有VAFMT
1702を有し得る。アプリケーション固有VAFMT1702は、対応するターゲットアプリケーシ

(24) JP 6704503 B2 2020.6.3

10

20

30

40

50

ョン機能にマッピングされる、アプリケーションバイナリコード108における複数の仮想
アドレスオフセットを含む。この点について、アプリケーション固有VAFMT1702は、上記
で説明したように、実際の仮想アドレスを直接定義するのではなく、仮想アドレスオフセ
ットを含む。仮想アドレスオフセットは、仮想アドレス範囲内のロケーション差異を定義
することを諒解されたい。一実施形態では、仮想アドレスオフセットは、アプリケーショ
ンバイナリコード108の開始から定義されたベース仮想アドレスに対するロケーション差
異、または他の実施形態では、ターゲットアプリケーション機能間の仮想アドレス範囲内
の相対的差異を定義し得る。
【００６０】
　図17にさらに示すように、アプリケーションがロードされるとき、O/Sアプリケーショ
ンローンチャおよびローダ1704が、同時に実行される、アプリケーションの2つ以上のイ
ンスタンスまたはアプリケーションに関連付けられたプロセスの2つ以上のインスタンス(
まとめて「アプリケーションプロセスインスタンス」1708と呼ばれる)を起動し得る。た
とえば、アプリケーションがウェブブラウザを含む場合、アプリケーションプロセスイン
スタンス1708は、ウェブブラウザの複数のインスタンスまたは複数のブラウザタブを含み
得る。図17の実施形態では、O/Sアプリケーションローンチャおよびローダ1704は、3つの
アプリケーションプロセスインスタンス1708a、1708b、および1708cを起動している。ア
プリケーションプロセスインスタンス1708ごとに、対応するプロセス固有VAFMT1714が生
成される。アプリケーションプロセスインスタンス1708aのために、プロセス固有VAFMT17
14aが生成される。アプリケーションプロセスインスタンス1708bのために、プロセス固有
VAFMT1714bが生成される。アプリケーションプロセスインスタンス1708cのために、プロ
セス固有VAFMT1714cが生成される。
【００６１】
　図17の実施形態に示すように、カーネルモジュール1706が、アプリケーションプロセス
インスタンス1708の起動に応答して、対応するプロセス固有VAFMT1714を作成し得る。ア
プリケーション固有VAFMT1702に記憶された仮想アドレスオフセット(参照番号1712)およ
びO/Sアプリケーションローンチャおよびローダ1704によって提供されたベース仮想アド
レス(参照番号1710)を使用して、プロセス固有VAFMT1714が生成される。たとえば、アプ
リケーションプロセスインスタンス1708aが起動されたとき、O/Sアプリケーションローン
チャおよびローダ1704は、アプリケーションプロセスインスタンス1708aがロードされた
仮想アドレスベースを提供し得る。カーネルモジュール1706は、仮想アドレスベースに仮
想アドレスオフセットを加算することによって、ターゲットアプリケーション機能の実際
の仮想アドレスを決定し得る。アプリケーションプロセスインスタンス1708aの計算され
た実際の仮想アドレスは、プロセス固有VAFMT1714aに記憶される。アプリケーションプロ
セスインスタンス1708bが起動されたとき、O/Sアプリケーションローンチャおよびローダ
1704は、アプリケーションプロセスインスタンス1708bがロードされた仮想アドレスベー
スを提供し得る。カーネルモジュール1706は、仮想アドレスベースに仮想アドレスオフセ
ットを加算することによって、ターゲットアプリケーション機能の実際の仮想アドレスを
決定し得る。アプリケーションプロセスインスタンス1708bの計算された実際の仮想アド
レスは、プロセス固有VAFMT1714bに記憶される。アプリケーションプロセスインスタンス
1708cが起動されたとき、O/Sアプリケーションローンチャおよびローダ1704は、アプリケ
ーションプロセスインスタンス1708cがロードされた仮想アドレスベースを提供し得る。
カーネルモジュール1706は、仮想アドレスベースに仮想アドレスオフセットを加算するこ
とによって、ターゲットアプリケーション機能の実際の仮想アドレスを決定し得る。アプ
リケーションプロセスインスタンス1708cの計算された実際の仮想アドレスは、プロセス
固有VAFMT1714cに記憶される。
【００６２】
　このようにして、プロセス固有VAFMT1714a、1714b、および1714cは、アプリケーション
バイナリコード108におけるターゲットアプリケーション機能にマッピングされた、それ
ぞれアプリケーションプロセスインスタンス1708a、1708b、および1708cの実際の仮想ア

(25) JP 6704503 B2 2020.6.3

10

20

30

40

50

ドレスを含む。アプリケーションプロセスインスタンス1708a、1708b、および1708cの同
時実行中、それぞれプロセス固有VAFMT1714a、1714b、および1714cは、上記で説明した方
法でターゲットアプリケーション機能を検出するために使用される。図1～図16に関連し
て上記で説明した他のマッピングテーブル(たとえば、IVAMT122、「JavaScriptソースコ
ードリストテーブル」など)の構造は変わらないままであり得ることを諒解されたい。こ
れらのマッピングテーブルは、実際のプロセス固有仮想アドレスにより初期化され得る、
アプリケーションプロセスインスタンス1708の一意のインスタンスを含み得る。一実施形
態では、マッピングテーブルは、アプリケーションプロセス実行中に動的に初期化され得
る。(たとえば、ASLRなどのような活動のための)仮想アドレスに対する任意のプロセス固
有の調整が、プロセス固有VAFMTインスタンスに対して、かつプロセスランタイム中に動
的に初期化される他のテーブル(たとえば、IVAMT122など)のために、それらがカーネル制
御下にあるので、行われ得ることをさらに諒解されたい。アプリケーション固有VAFMT170
2は、ASLRおよび他の活動のために調整される必要がないことがある仮想アドレスオフセ
ットを有する。
【００６３】
　図18は、アプリケーション固有VAFMT1702の例示的な実施形態を示す。列1800がVAFMT12
0の場合のような実際の仮想アドレスの代わりに仮想アドレスオフセットを定義すること
を除いて、アプリケーション固有VAFMT1702はVAFMT120と同様に構成され得ることを諒解
されたい。この点について、図18は、アプリケーションバイナリコード108におけるコー
ドに関連付けられた仮想アドレスオフセット(列1800)の、それらの仮想アドレスオフセッ
トにおけるコードが表すそれぞれの機能的意味(列1802において識別される機能注目ポイ
ント)への論理マッピングを示す。アプリケーション固有VAFMT1702は同様に、アプリケー
ションバイナリコード108が新バージョンにより更新されたときにHLOS106が機能注目ポイ
ント(列1802)の新しい仮想アドレスオフセットを決定することを可能にするために疑似バ
イナリコードテンプレート1202と組み合わせて使用されるメタデータ(列1804)を含み得る
。
【００６４】
　図19はプロセス固有VAFMT1714の例示的な実施形態を示す。プロセス固有VAFMT1714は、
アプリケーション固有VAFMT1702と同様に、それぞれ機能注目ポイントおよびメタデータ
を識別する列1802および1804を含み得る。図19に示すように、プロセス固有VAFMT1714は
、アプリケーション固有VAFMT1702において識別される仮想アドレスオフセットの代わり
に対応するアプリケーションプロセスインスタンス1708の実際の仮想アドレスを記憶する
ための列1900を含み得る。実際の仮想アドレスに関して列1900に記憶される値は、カーネ
ルモジュール1706によって、アプリケーション固有VAFMT1702に記憶された仮想アドレス
オフセットおよびO/Sアプリケーションローンチャおよびローダ1704によって提供された
ベース仮想アドレスを使用して決定され得る。図19の例では、アプリケーションプロセス
インスタンス1708は、値0x30000000を有するベース仮想アドレスからロードされ得る。カ
ーネルモジュール1706は、このベース仮想アドレス値を受信し、応答して、アプリケーシ
ョンプロセスインスタンス1708の実際の仮想アドレスを計算し得る。図18のアプリケーシ
ョン固有VAFMT1702における第1の行を参照すると、EVAL_FUNCTION(列1802)は、0x373ea94
(列1800)の仮想アドレスオフセット値を有し得る。アプリケーションプロセスインスタン
ス1708におけるEVAL_FUNCTIONの実際の仮想アドレスを計算するために、カーネルモジュ
ール1706は、ベース仮想アドレス値(0x30000000)および仮想アドレスオフセット値(0x373
ea94)を加算し得る。図19の第1の行に示すように、EVAL_FUNCTIONの計算された実際の仮
想アドレスは、値0x3373ea94(値0x30000000および0x373ea94の和)を有する。図19の第2の
行では、DOCUMENT_WRITE_FUNCTION_STARTの計算された実際の仮想アドレスは、値0x3473f
ac8(値0x30000000および0x473fac8の和)を有する。図19における残りの行の実際の仮想ア
ドレスは、同様に式1に従って計算され、列1900に記憶され得ることを諒解されたい。
実際のVA = ベースVA + 仮想アドレスオフセット
　　　　　　　　　　式1

(26) JP 6704503 B2 2020.6.3

10

20

30

40

50

【００６５】
　上記の例示的な実施形態は、実際の仮想アドレスを計算するために加算演算を用い得る
。ただし、他の実施形態では、実際の仮想アドレスは、たとえば、計算するために使用さ
れる約束事、特定のオペレーションシステム/プラットフォームに関する(たとえば、上位
または下位アドレスへの)メモリ割振りの指示などに応じて、ベース仮想アドレスから仮
想アドレスオフセットを減算することによって取得され得ることを諒解されたい。
【００６６】
　図20は、仮想アドレスオフセットを使用するURLバッファ仮想アドレスマッピングを含
むアプリケーション固有VAFMT2000の別の実施形態を示す。アプリケーション固有VAFMT20
00は一般に、テーブルが実際の仮想アドレスの代わりに仮想アドレスオフセットを記憶す
ることを除いて、図11に示すVAFMT120に対応する。この点について、アプリケーション固
有バージョンは、特定のデータ構造タイプ(たとえば、クラス、構造、集合)のオブジェク
トを含む動的に割り振られたバッファの開始および終了の仮想アドレスを決定するために
使用され得る特定のバッファアロケータ関数の仮想アドレスオフセットを有するカスタム
仮想アドレスオフセットテーブルを含む。図20のURLバッファ仮想アドレスマッピングは
、組込みHTTPSスタックを使用するアプリケーション(列2002)に対する個別の行を含む。
第1の行は、第1のそのようなアプリケーション(アプリケーション-1)のためのURLバッフ
ァ仮想アドレスマッピングを定義し、第2の行は、第2のそのようなアプリケーション(ア
プリケーション-2)のためのURLバッファ仮想アドレスマッピングを定義する。列2004は、
たとえば、URLデータ構造割振りを実行する関数のアプリケーション-1およびアプリケー
ション-2の仮想アドレスオフセット値を記憶する。列2006、2008、2010、2012、2014、お
よび2016は、図11の列1104、1106、1108、1110、1112、および1114と直接対応する。この
点について、バッファにおいて割り振られたオブジェクトのメンバー/フィールドの値は
、注目ポイントである特定のフィールド/メンバーのためのテーブルにおいて維持される
こともある、オフセットおよび長さフィールドを使用して決定され得ることを諒解された
い。たとえば、システムメモリアロケータ関数の実行をアロケータ関数の仮想アドレスに
よってカバーされる領域から追跡することによって、割り振られたバッファのサイズおよ
びアドレスを検出するために、バッファ割振り関数の仮想アドレスが使用され得る。バッ
ファ開始および終了仮想アドレスが知られると、特定のデータ構造タイプに関するオブジ
ェクトの特定のメンバー/フィールドの値を決定するために、オフセットおよび長さフィ
ールドが使用され得る。
【００６７】
　図21および図22は、それぞれアプリケーション-1およびアプリケーション-2のために生
成されたプロセス固有VAFMT2100および2200に実施形態を示す。プロセス固有VAFMT2100お
よび2200は、図20における仮想アドレスオフセット値(列2004)ならびにアプリケーション
-1およびアプリケーション-2がそれぞれO/Sアプリケーションローンチャ/ローダ1704によ
ってロードされるベース仮想アドレスを使用して生成される。上記の式1に従って計算さ
れたアプリケーション-1の実際の仮想アドレスは、列2102(図21)に記憶され、アプリケー
ション-2の実際の仮想アドレスは、列2202に記憶される。
【００６８】
　図23は、図17～図22に関連して上記で説明したオフセットベースの仮想アドレスマッピ
ングを使用してターゲットアプリケーション機能を検出するための方法2300の実施形態を
示すフローチャートである。ブロック2302において、アプリケーション固有VAFMT1702が
アプリケーションのために生成される。上記で説明したように、アプリケーション固有VA
FMT1702は、対応するハイレベルアプリケーション機能にマッピングされた複数の注目仮
想アドレスオフセットを含む。ブロック2304において、たとえば、ポータブルコンピュー
ティングデバイスなど、コンピューティングデバイス上にアプリケーションがインストー
ルされ得る。ブロック2306において、HLOS106によって提供されるセキュリティサポート
のために、アプリケーションが登録され得る(たとえば、登録アプリケーション112)。ブ
ロック2308において、アプリケーションが起動され得る。アプリケーションを起動したこ

(27) JP 6704503 B2 2020.6.3

10

20

30

40

50

とに応答して、アプリケーションのインスタンスまたはアプリケーションプロセスインス
タンス1708のためにプロセス固有VAFMT1714が生成され得る。プロセス固有VAFMT1714は、
アプリケーション固有VAFMT1702に記憶された仮想アドレスオフセットおよびアプリケー
ションまたはインスタンスがロードされる際のロード元のベース仮想アドレスを使用して
、ハイレベルアプリケーション機能の実際の仮想アドレスを定義する。アプリケーション
バイナリコード108は、実行し始めることができる。
【００６９】
　ブロック2310において、HLOS106は、アプリケーションの実行中のプロセスをインター
セプトし得る。ブロック2312において、HLOS106は、プロセス固有VAFMT1714を使用して、
機能注目ポイントを、実行されているときに検出および記録し得る。ブロック2314におい
て、記録されたポイントは、悪意のある攻撃を検出および解決するために、悪意のあるコ
ード検出アルゴリズム116に提供され得る。悪意のあるコード検出アルゴリズム116は、シ
グネチャベースのアルゴリズム、パターンマッチングアルゴリズムを含むこと、または機
械学習もしくは他の技法を用いることがある。参照番号2318によって示されるように、ブ
ロック2308、2310、2312、2314、および2316は、複数のアプリケーションプロセスインス
タンスに対して、同時実行中のアプリケーションプロセスインスタンスに対して悪意のあ
るコードが検出され得るように、繰り返され得る。
【００７０】
　本明細書で説明した方法ステップのうちの1つまたは複数は、上記で説明したモジュー
ルなどのコンピュータプログラム命令としてメモリに記憶される場合があることを諒解さ
れたい。これらの命令は、本明細書で説明した方法を実行するために、対応するモジュー
ルと組み合わせてまたは協働して、任意の適切なプロセッサによって実行される場合があ
る。
【００７１】
　本明細書で説明したプロセスまたはプロセスフローにおけるいくつかのステップは、当
然、説明したように本発明が機能するために他のステップに先行する。しかしながら、そ
のような順序またはシーケンスが本発明の機能を変えない場合には、本発明は、説明した
ステップの順序に限定されない。すなわち、本発明の範囲および趣旨から逸脱することな
く、いくつかのステップは、他のステップの前に実行され、後に実行され、または他のス
テップと並行して(実質的に同時に)実行される場合があることを認識されたい。場合によ
っては、本発明から逸脱することなく、いくつかのステップが省略される場合または実行
されない場合がある。さらに、「その後(thereafter)」、「次いで(then)」、「次に(nex
t)」などの語は、ステップの順序を限定することを意図していない。これらの語は単に、
例示的な方法の説明を通して読者を導くために使用される。
【００７２】
　加えて、プログラミングにおける当業者は、たとえば、本明細書におけるフローチャー
トおよび関連する説明に基づいて、難なく、開示した発明を実装するコンピュータコード
を書くことができるか、または実装するのに適したハードウェアおよび/もしくは回路を
識別することができる。
【００７３】
　したがって、プログラムコード命令または詳細なハードウェアデバイスの特定のセット
の開示が、本発明をどのように製作し使用すべきかについて適切に理解するために必要で
あるとは見なされない。特許請求されるコンピュータ実装プロセスの発明性のある機能は
、上記の説明において、かつ様々なプロセスフローを示す場合がある図とともに、より詳
細に説明される。
【００７４】
　1つまたは複数の例示的な態様では、説明した機能は、ハードウェア、ソフトウェア、
ファームウェア、またはこれらの任意の組合せにおいて実装される場合がある。ソフトウ
ェアにおいて実装される場合、機能は、コンピュータ可読媒体上の1つまたは複数の命令
またはコードとして記憶または送信されてもよい。コンピュータ可読媒体は、コンピュー

(28) JP 6704503 B2 2020.6.3

10

20

30

40

50

タ記憶媒体と、ある場所から別の場所へのコンピュータプログラムの転送を容易にする任
意の媒体を含む通信媒体の両方を含む。記憶媒体は、コンピュータによってアクセスされ
得る任意の利用可能な媒体であってもよい。例として、限定はしないが、そのようなコン
ピュータ可読媒体は、RAM、ROM、EEPROM、NANDフラッシュ、NORフラッシュ、M-RAM、P-RA
M、R-RAM、CD-ROMもしくは他の光ディスクストレージ、磁気ディスクストレージもしくは
他の磁気記憶デバイス、または、命令もしくはデータ構造の形態における所望のプログラ
ムコードを搬送もしくは記憶するために使用され得、コンピュータによってアクセスされ
得る任意の他の媒体を含み得る。
【００７５】
　また、あらゆる接続が、コンピュータ可読媒体と適切に呼ばれる。たとえば、ソフトウ
ェアが、同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者線(「DSL」
)、または赤外線、無線、およびマイクロ波などのワイヤレス技術を使用してウェブサイ
ト、サーバ、または他のリモートソースから送信される場合、同軸ケーブル、光ファイバ
ケーブル、ツイストペア、DSL、または赤外線、無線、およびマイクロ波などのワイヤレ
ス技術は、媒体の定義に含まれる。
【００７６】
　本明細書で使用されるディスク(disk)およびディスク(disc)は、コンパクトディスク(d
isc)(「CD」)、レーザーディスク(登録商標)(disc)、光ディスク(disc)、デジタル多用途
ディスク(disc)(「DVD」)、フロッピーディスク(disk)、およびブルーレイディスク(disc
)を含み、ディスク(disk)は、通常、データを磁気的に再生し、ディスク(disc)は、レー
ザーを用いてデータを光学的に再生する。上記の組合せもまた、コンピュータ可読媒体の
範囲内に含まれるべきである。
【００７７】
　本発明の趣旨および範囲から逸脱することなく、本発明が関係する代替的な実施形態が
、当業者には明らかになるであろう。したがって、選択された態様が図示され詳細に説明
されてきたが、以下の特許請求の範囲によって定義されるように、本発明の趣旨および範
囲から逸脱することなく、各態様において様々な置換および改変が行われてよいことが理
解されよう。
【符号の説明】
【００７８】
　　100　システム、コンピューティングシステム
　　102　中央処理装置(CPU)
　　104　メモリ
　　106　ハイレベルオペレーティングシステム(HLOS)
　　108　アプリケーションバイナリコード、バイナリコード、アプリケーションバイナ
リ、バイナリ
　　110　参照アプリケーションソースコード、アプリケーションソースコード、ソース
コード
　　112　登録アプリケーションのリスト、リスト、登録アプリケーション
　　114　信頼できるゾーン
　　115　信頼できるゾーン
　　116　悪意のあるコード検出アルゴリズム、アルゴリズム、検出アルゴリズム
　　118　仮想機械、JavaScript仮想機械
　　120　仮想アドレス-関数マッピングテーブル、マッピングテーブル、VAFMT、仮想ア
ドレスマッピングテーブル
　　122　識別子-仮想アドレスマッピングテーブル、マッピングテーブル、識別子-アド
レスマッピングテーブル(IVAMT)
　　200　論理マッピング
　　201　ポイント、注目ポイント
　　202　仮想アドレス、バイナリコードおける仮想アドレス

(29) JP 6704503 B2 2020.6.3

10

20

30

40

50

　　203　ポイント、注目ポイント
　　204　仮想アドレス、バイナリコードおける仮想アドレス
　　205　ポイント、注目ポイント
　　206　仮想アドレス、バイナリコードおける仮想アドレス
　　300　論理マッピング
　　302　列、仮想アドレス、左手列
　　304　列、機能注目ポイント、右手列、機能的意味を表すマクロ
　　400　方法
　　500　論理マッピング
　　502　仮想アドレス
　　504　仮想アドレス
　　600　論理マッピング
　　602　仮想アドレス
　　602　機能的意味またはマクロ名
　　702　スクリプトオブジェクトヘッダ
　　704a　VMヒープコード空間、VMコード空間
　　704b　VMヒープコード空間、VMコード空間
　　900　VMヒープ構造
　　901　仮想メモリアドレス
　　902　コードフィールド、下位領域、コード
　　904　マップフィールド、下位領域、マップ
　　906　大型オブジェクトフィールド、下位領域、大型オブジェクト
　　908　旧データフィールド、下位領域、旧データ
　　910　旧ポインタフィールド、下位領域、旧ポインタ
　　912　下位領域、fromフィールド
　　914　下位領域、toフィールド
　　1000　方法
　　1104　列
　　1106　列
　　1108　列
　　1110　列
　　1112　列
　　1114　列
　　1200　メタデータ、更新ベース/オフセットメタデータ、バイトオフセットを使用す
る仮想アドレス自由表現
　　1202　疑似バイナリコードテンプレート
　　1204　更新バージョン、アプリケーションバイナリの更新バージョン
　　1206　領域、焦点領域、マッチング領域
　　1600　方法
　　1700　オフセットベースの仮想アドレスマッピング方式
　　1702　アプリケーション固有VAFMT、アプリケーション固有仮想アドレス-関数マッピ
ングテーブル(VAFMT)
　　1704　O/Sアプリケーションローンチャおよびローダ、O/Sアプリケーションローンチ
ャ/ローダ
　　1706　カーネルモジュール
　　1708　アプリケーションプロセスインスタンス
　　1708a　アプリケーションプロセスインスタンス
　　1708b　アプリケーションプロセスインスタンス
　　1708c　アプリケーションプロセスインスタンス
　　1712　VAオフセット

(30) JP 6704503 B2 2020.6.3

10

20

　　1714　プロセス固有VAFMT
　　1714a　プロセス固有VAFMT
　　1714b　プロセス固有VAFMT
　　1714c　プロセス固有VAFMT
　　1800　列、VAオフセット
　　1802　列、機能POI
　　1804　列、メタデータ
　　1900　列、実際のVA
　　2000　アプリケーション固有VAFMT
　　2002　列
　　2004　列
　　2006　列
　　2008　列
　　2010　列
　　2012　列
　　2014　列
　　2016　列
　　2100　プロセス固有VAFMT
　　2102　列
　　2200　プロセス固有VAFMT
　　2202　列
　　2300　方法
　　JS1　JavaScriptオブジェクト
　　JS2　JavaScriptオブジェクト
　　JS3　JavaScriptオブジェクト
　　JS4　JavaScriptオブジェクト

(31) JP 6704503 B2 2020.6.3

【図１】 【図２】

【図３】 【図４】

(32) JP 6704503 B2 2020.6.3

【図５】 【図６】

【図７】 【図８】

(33) JP 6704503 B2 2020.6.3

【図９】 【図１０】

【図１１】 【図１２】

(34) JP 6704503 B2 2020.6.3

【図１３】 【図１４】

【図１５】 【図１６】

(35) JP 6704503 B2 2020.6.3

【図１７】 【図１８】

【図１９】 【図２０】

(36) JP 6704503 B2 2020.6.3

【図２１】 【図２２】

【図２３】

(37) JP 6704503 B2 2020.6.3

10

20

フロントページの続き

早期審査対象出願

(72)発明者 サジョ・サンダー・ジョージ
 アメリカ合衆国・カリフォルニア・９２１２１・サン・ディエゴ・モアハウス・ドライヴ・５７７
 ５

 審査官 稲垣　良一

(56)参考文献 米国特許出願公開第２００２／００３２８０４（ＵＳ，Ａ１）　　
 米国特許第６６８１３３１（ＵＳ，Ｂ１）　　
 特表２０１５－５２５９３１（ＪＰ，Ａ）　　　
 米国特許出願公開第２０１１／００８２９６２（ＵＳ，Ａ１）　　

(58)調査した分野(Int.Cl.，ＤＢ名)
 Ｇ０６Ｆ　　２１／５０　　　　－　　２１／５７　　　　
 Ｇ０６Ｆ　　１１／３６　　　　
 Ｇ０６Ｆ　　　９／４６　　　　－　　　９／５４　　　　
 Ｇ０６Ｆ　　１２／００　　　　－　　１２／０６　　　　
 ＩＥＥＥ　Ｘｐｌｏｒｅ
 ＴＨＥ　ＡＣＭ　ＤＩＧＩＴＡＬ　ＬＩＢＲＡＲＹ

	biblio-graphic-data
	claims
	description
	drawings
	overflow

