

United States Patent
Scott

[15] 3,682,205

[45] Aug. 8, 1972

[54] NEEDLE LOOM

[72] Inventor: **George W. Scott, Conneaut Lake, Pa.**

[73] Assignee: **Textron, Inc.**

[22] Filed: July 28, 1970

[21] Appl. No.: 58,894

[52] U.S. Cl. 139/124 A

[51] Int. Cl. D03d 47/42

[58] **Field of Search**, 139/11, 116, 123, 124 R, 124 A

[56] References Cited

UNITED STATES PATENTS

3,457,964	7/1969	Burbank	139/124 A
3,136,343	6/1964	Firing	139/124 A
3,056,431	10/1962	Bonas et al.	139/123

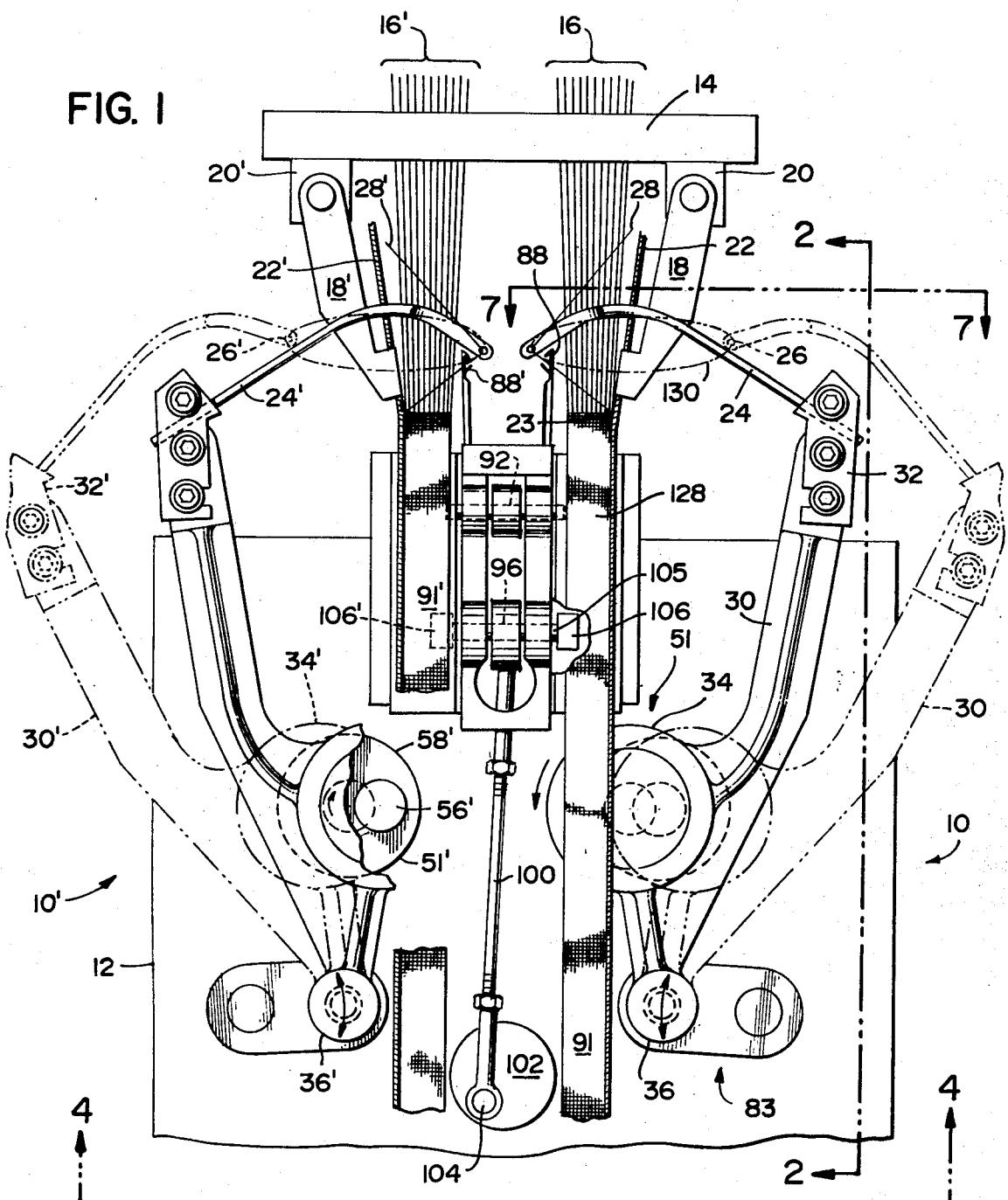
Primary Examiner—Henry S. Jaudon

Attorney—Meech & Field

ABSTRACT

A needle loom for weaving a slide fastener element strip along the edge of a tape including a harness for providing shedding movement to a plurality of warp threads at a weaving area, a guide for supplying the slide fastener element strip to the weaving area in a substantially constant plane, a weft laying needle for carrying a weft thread through each shed formed at the weaving area, a control mechanism for alternately moving the weft laying needle through the sheds in a first plane above the guide and in a second plane below the guide and in spaced parallel relation to the first plane, a knitting needle for catching loops of the weft thread to form a selvedge edge for the tape and a displacement mechanism for moving the knitting needle to first and second positions coinciding with the first and second planes.

2 Claims, 7 Drawing Figures



Patented Aug. 8, 1972

3,682,205

3 Sheets-Sheet 1

FIG. I

INVENTOR
GEORGE W. SCOTT
BY

BY
Keech & Field
ATTORNEYS

Patented Aug. 8, 1972

3,682,205

3 Sheets-Sheet 2

FIG. 2

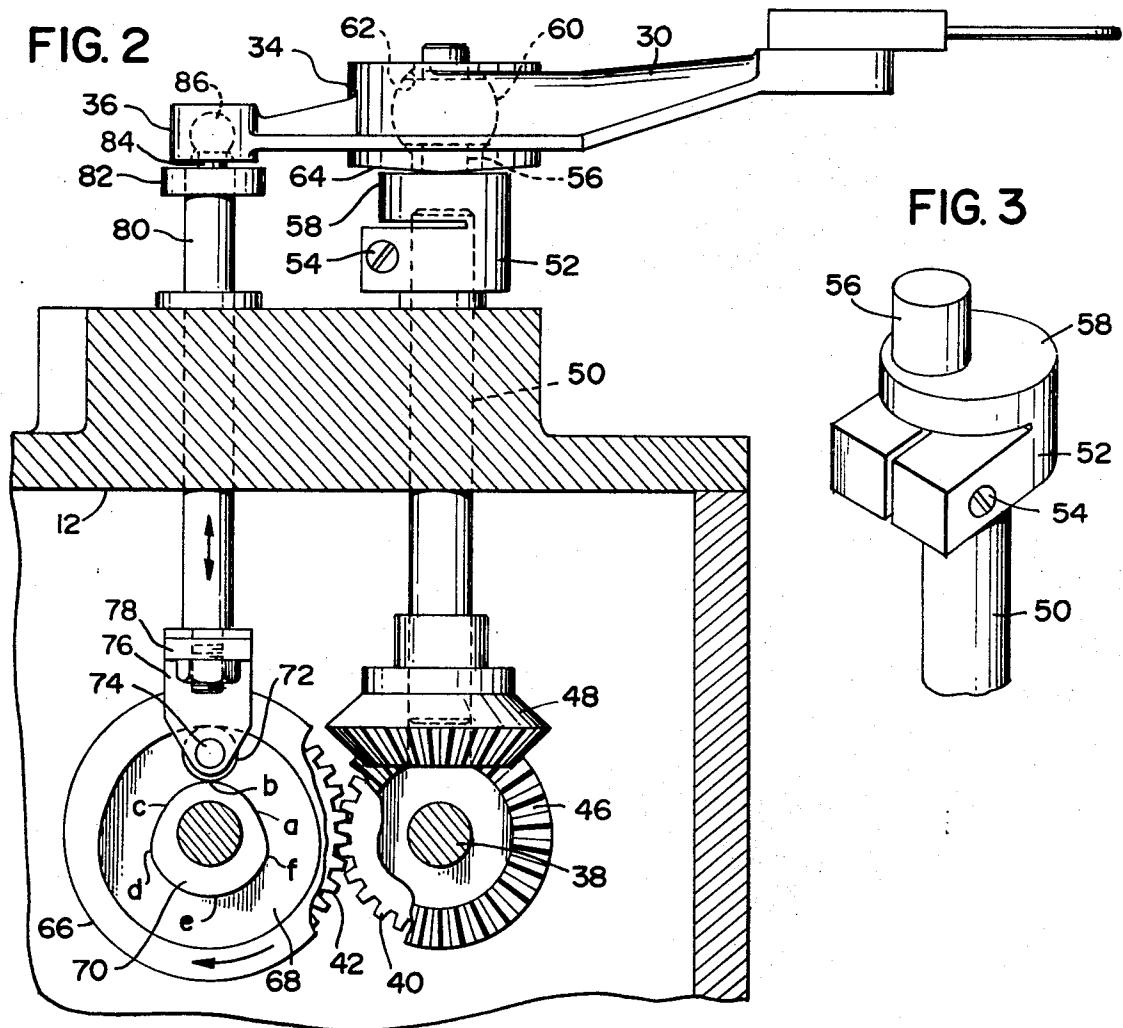


FIG. 3

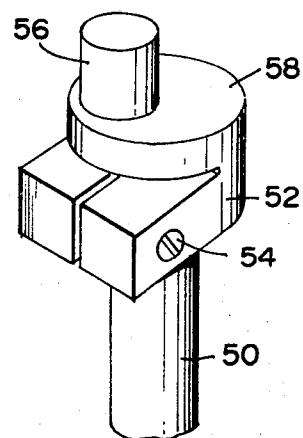


FIG. 7

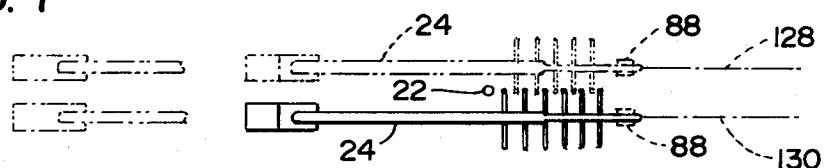
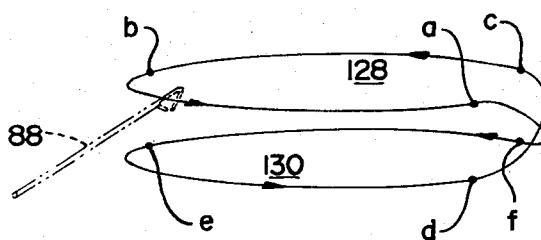



FIG. 6

INVENTOR
GEORGE W. SCOTT

BY

Meech & Field
ATTORNEYS

Patented Aug. 8, 1972

3,682,205

3 Sheets-Sheet 3

FIG. 4

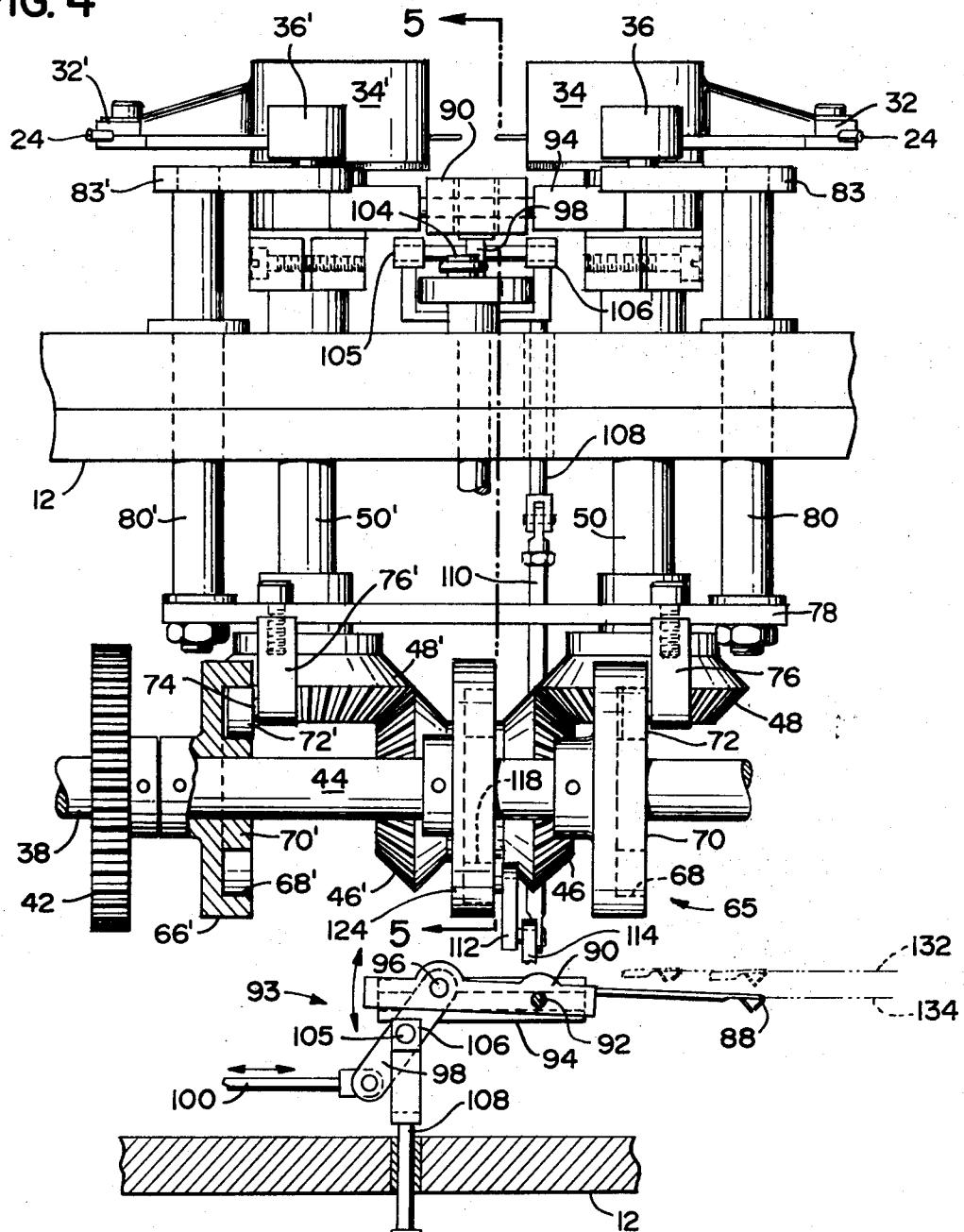
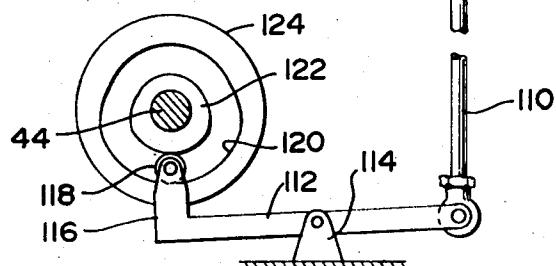



FIG. 5

INVENTOR
GEORGE W. SCOTT

BY

Meech & Field
ATTORNEYS

NEEDLE LOOM

BACKGROUND OF THE INVENTION

The present invention pertains to needle looms and more particularly to such needle looms for weaving a slide fastener element strip along the edge of a narrow tape.

Needle or shuttleless looms are conventionally utilized to weave narrow fabrics. Such looms normally use a weft laying needle to carry a weft thread into and out of a shed of warp threads with loops of the weft thread being caught by a knitting needle at the innermost position of the weft laying needle. Once the weft laying needle moves out of the shed, a new shed is formed and the weft laying needle is moved into and out of the new shed with the knitting needle operating to draw the succeeding loop of weft thread through the preceding loop of weft thread to form a selvedge edge for the fabric. The weft laying needle is normally moved in an elliptical path to facilitate formation of the selvedge edge. The prior art as above described is exemplified by U. S. Pats. No. 2,902,057, No. 3,224,467 and No. 3,320,908.

Needle looms have been found to be especially useful in the slide fastener industry to weave tapes which carry the interlocking elements of slide fasteners; and, with the advent of slide fastener element strips made of continuous filaments of plastic material, needle looms have been utilized to weave the slide fastener element strip along an edge of the tape as the tape is being woven. While weaving the slide fastener element strip into an edge of the tape as the tape is being woven, provides great time and money savings and serves to more fully automate the production of slide fasteners, the slide fastener element strip is treated as a warp thread during the weaving thereby requiring the slide fastener element strip to be bent rapidly to provide it with shedding movement, and the rapid bending of the slide fastener element strip may result in slightly deforming the strip.

U. S. Pats. No. 3,457,964 and No. 3,457,965 disclose needle looms for weaving slide fastener element strips to shedding movement. U. S. Pat. No. 3,457,964 accomplishes the above result by alternately moving the weft laying needle above and below the slide fastener element strip which is supported in a constant plane. In order to cooperate with the knitting needle, the weft laying needle is given a vertical movement toward the knitting needle as it approaches its innermost position such that the path of travel of the weft laying needle has a vertical component both in and out of the shed. U. S. Pat. No. 3,457,965 accomplishes the above result by imparting a vertical movement to the slide fastener element strip before and after the fell and to a portion of the tape to move the strip above and below the plane of the laying needle without requiring severe bending thereof.

While the loom of U. S. Pat. No. 3,457,964 does not provide a shedding movement of the slide fastener element strip, it does utilize a vertical movement of the weft laying needle while in each shed, and this requires greater and more precise shedding movement of the warp threads and limits the width of tape which can be woven. In the loom of U. S. Pat. No. 3,457,964, the movement of the weft laying needle necessitates a complex driving mechanism with little error tolerance in order to assure that the weft laying needle does not

become entangled in the warp threads and properly cooperates with the knitting needle. Furthermore, the loom of U. S. Pat. No. 3,457,964 does require some vertical movement and bending of the slide fastener strip.

SUMMARY OF THE INVENTION

Accordingly, it is an object of the present invention to construct a loom for weaving a slide fastener element strip along an edge of a tape without imparting shedding movement to the slide fastener element strip.

The present invention is generally summarized in a loom for weaving a slide fastener element strip along an edge of a tape including a harness providing shedding movement to warp threads at a weaving area, a guide supplying the slide fastener element strip to the weaving area in a substantially constant plane, a weft laying needle for carrying a weft thread through the warp threads at the weaving area, a knitting mechanism for catching the weft thread after it has been carried through the warp threads to form a selvedge edge for the tape, and a driving mechanism for alternately projecting and withdrawing the weft laying needle through the warp threads in a first plane on a first side of the guide and in a second plane on a second side of the guide and in spaced parallel relation to the first plane.

Another object of the present invention is to weave a vertically stationary slide fastener element strip along an edge of a tape without restricting the width of the tape.

A further object of the present invention is to move a weft laying needle through consecutive sheds in spaced parallel planes.

The present invention has another object in that a knitting needle is moved to be aligned with each of a pair of spaced parallel planes of movement of a weft laying needle.

Some of the advantages of the present invention over known looms for weaving a slide fastener element strip along an edge of a tape include increased slide fastener configuration integrity, decreased apparatus complexity and increased adaptability of the loom to produce various width fabrics.

Further objects and advantages of the present invention will become apparent from the following description of a preferred embodiment taken in conjunction with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a partial top plan view of a loom according to the present invention.

FIG. 2 is a section taken along 2—2 of FIG. 1.

FIG. 3 is a broken perspective view of an eccentric driving mechanism for use with the loom of FIG. 1.

FIG. 4 is a section taken along line 4—4 of FIG. 1.

FIG. 5 is a schematic view taken along line 5—5 of FIG. 4.

FIG. 6 is a schematic representation of the excursion path of the weft laying needle relative to the warp threads and the slide fastener element strip.

FIG. 7 is a view taken along line 7—7 of FIG. 1 illustrating the relation between the weft laying needle and the warp threads.

DESCRIPTION OF THE PREFERRED EMBODIMENT

A pair of needle looms 10 and 10' according to the present invention are illustrated in FIG. 1 and are supported on a frame 12. Looms 10 and 10' are mirror images of each other and only loom 10 will be described with similar parts associated with loom 10' being given the same reference numbers with primes and not described again for the sake of brevity.

A harness frame 14 receives a plurality of warp threads 16 and 16' from a supply such as a plurality of spools with suitable tensioning mechanisms for the threads. As is conventional, harness frame 14 contains a plurality of heddles for imparting shedding movement to the warp threads in predetermined sequence in accordance with a control assembly. A guide arm 18 has one end bolted to a support 20 for the harness mechanism, and arm 18 is held stationary to supply a slide fastener element strip 22 to a weaving area 23 to be woven with the warp threads.

Slide fastener element strips 22 and 22' may be made of any material capable of providing mating elements which may be controllably interlocked by means of a slider. Such slide fastener element strips are normally made of a continuous plastic filament given a specific configuration, such as the common ladder-type or coiled configurations; and, such slide fastener element strips may include a cord or thickened thread running through the interlocking elements for added support. The slide fastener element strips may be conveniently configured at a location sufficiently near the looms to be directly supplied thereto through suitable conduits or they may be stored under frame 12 after being configured and supplied to arms 18 and 18' from storage bins.

A weft laying needle 24 has an eye 26 in one end thereof receiving a weft thread 28 from a suitable supply, and needle 24 is secured to a carrier 30 at its other end by means of a clamp 32 which is bolted to the carrier and has a bore therethrough for receiving and clamping needle 24. Carrier 30 is driven at an intermediate portion 34 and at an end portion 36 to impart an elliptical movement to needle 24.

Drive power for the looms is derived from a shaft 38 which is rotated at a predetermined speed by a suitable motor, not shown. A gear 40 (FIG. 2) is secured to shaft 38 and engages a gear 42 which is secured to a shaft 44 (FIG. 4). Shaft 38 drives a pair of bevel gears 46 and 46' which engage bevel gears 48 and 48' attached to shafts 50 and 50', respectively. The speed ratio of the drive gearing causes shafts 50 and 50' to be driven at twice the speed of shaft 44.

Shaft 50 extends up through frame 12 to an eccentric drive mechanism 51 including a block 52 secured to an end of shaft 50 by means of a screw 54, and block 52 has a stud 56 attached thereto at a position eccentric to the axis of shaft 50 and extending upward from a fulcrum plate 58 carried on the top of block 52. Stud 56 carries a spherical pivot member 60 which is received in a spherical recess 62 in intermediate portion 34 of carrier 30, and an arcuate bottom surface 64 of portion 34 rocks on fulcrum plate 58. A control mechanism 65 for end portion 36 of carrier 30 includes a pair of cam members 66 and 66' secured to shaft 44 and having

cam grooves 68 and 68' therein following the contour of plate cams 70 and 70', respectively. A pair of rollers 72 and 72' ride on the outer surfaces of plate cams 70 and 70' in grooves 68 and 68', respectively; and the rollers are rotatably disposed on journals 74 and 74' which are secured to brackets 76 and 76', respectively. A bar 78 is bolted to the brackets, and a pair of risers 80 and 80' are bolted to either end of bar 78. Shaft 80 is journaled through a suitable bearing in frame 12 and rotatably supports one end of a link 82 of a link mechanism 83. The other end of link 82 has a stud 84 extending therefrom carrying a spherical pivot 86 which is disposed in a spherical recess in end portion 36 of carrier 30.

A pair of knitting needles 88 and 88' are supported on a carrier 90 disposed between the two woven tapes 91 and 91' at a position to permit the knitting needles to catch the weft threads as they are carried through each shed by weft laying needles 24 and 24'. A displacement mechanism 93 for the knitting needles includes a pivot pin 92 extending through carrier 90 and received in longitudinal slots in a stationary guide block 94 to permit movement of the knitting needles in a plane parallel to the plane of movement of the woven tapes. A second pivot pin 96 extends through carrier 90 at a rear position on the other side from the knitting needles such that carrier 90 is pivotable about pins 92 and 96. A rocker lever 98 has one end connected with pin 96 in a slot in carrier 90 and another end connected with one end of an arm 100 of a reciprocating mechanism which includes a rotating plate 102 carrying an eccentric stud 104 connected with the other end of arm 100. The drive for plate 102 is derived from shaft 38 in the same manner as the drive for block 52 such that plate 102 and block 52 rotate at the same speed. A pivot pin 105 extends through lever 98 and is supported at its ends in pillow-blocks 106 and 106' which are secured to a riser 108. Riser 108 is journaled through a bearing in frame 12 and has its lower end connected with one end of a link 110 which has its other end connected with one end of a rocker lever 112. Lever 112 is supported at a fulcrum 114 and has a transverse leg 116 at the other end which rotatably supports a roller 118 riding in a cam groove 120 having a configuration defined by a plate cam 122 of a cam member 124 centrally secured to shaft 44.

In operation, warp threads 16 are supplied to weaving area 23 with shedding movement by harness frame 14 to provide consecutive sheds of different warp threads to provide any desired tape weave configuration. The slide fastener element strip 22 is supplied to weaving area 23 in a substantially constant plane coinciding with the plane of the woven tape 91 as it moves away from weaving area 23. For this purpose, arm 18 is stationary and guides slide fastener strip 22 to converge with warp threads 16 on one side of weaving area 23.

Carrier 30 is provided with an elliptical movement, as indicated by dashed line 130 in FIG. 1, by means of eccentric mechanism 51 at intermediate portion 34 and link mechanism 83 at end portion 36. That is, as shaft 50 is rotated, stud 56 provides intermediate portion 34 of carrier 30 with a circular movement while end portion 36 is constrained to arcuate movement due to the tethering action of link 82 to move the needle carrying end of carrier 30 in an elliptical path and accordingly

an elliptical excursion path for eye 26 of needle 24. Thus, the weft thread 28 is carried through each consecutive shed, and loops thereof are caught by knitting needle 88 which is then withdrawn by means of arm 100 operating on lever 98 as reciprocatingly driven by stud 104 on plate 102 to loop the previous double pick of weft thread thereover to provide a selvedge edge.

The operation thus far described is conventional and has been found highly desirable for speedy and accurate operation. In order to permit slide fastener element strip 22 to be moved in a substantially constant plane without shedding movement, weft laying needle 24 is moved vertically each time it is withdrawn from a shed such that on alternate weft laying cycles needle 24 is moved above and below guide arm 18 supplying slide fastener element strip 22 to weaving area 23. The vertical movement is provided by means of the camming of riser 80 by cam member 66. That is, as shaft 44 rotates, roller 72 will contact a large portion of plate cam 70 for substantially half a rotation and a smaller portion for substantially half a rotation. The large and small halves of plate cam 70 are interconnected by smoothly tapering surfaces such that needle 24 is not moved abruptly. As riser 80 is moved up and down in accordance with rotation of cam member 66, carrier 30 is rocked about fulcrum plate 58 which engages arcuate bottom surface 64 of intermediate portion 34. Vertical movement of carrier 30 is facilitated by the spherical pivot members 62 and 86 engaging spherical recesses in the carrier.

Since shaft 44 only rotates once for two rotations of shaft 50, it can be seen that weft laying needle 24 travels a substantially complete elliptical excursion path while roller 74 engages either half of plate cam 70. The path of movement is illustrated schematically in FIG. 6 wherein letters *a*, *b*, *c*, *d*, *e*, and *f* indicate positions of weft laying needle 24 relative to the position of plate cam 70 and rotation of eccentric mechanism 51 with the same letters used in FIG. 2 to denote corresponding cam surfaces. Thus, as shaft 44 rotates weft laying needle 24 moves as depicted by the arrows in FIG. 6 such that eye 26 of the needle is maintained in substantially constant, spaced, parallel planes 128 and 130 except for movement between *c* and *d*, *f* and *a*, which movement takes place when laying needle 24 is in an endmost withdrawn position. As previously mentioned, the cam surfaces between *c* and *d*, and *f* and *a* smoothly connect the small half of plate cam 70 between *a* and *c* and the large half of plate cam 70 between *c* and *f*. It will be appreciated that plate cam 70 may be aligned with eccentric mechanism 51 such that movement of needle 24 between planes 128 and 130 may take place at any point on the elliptical excursion path where needle 24 is withdrawn from the sheds. That is, the primary concern is that eye 26 of needle 24 moves in a substantially constant plane while in the sheds and be moved alternately above and below slide fastener element strip 22 at any point while out of the sheds.

The movement of weft laying needle 24 through the sheds is illustrated in FIG. 7 wherein the warp threads 16 are illustrated as having alternate ones grouped to form sheds to facilitate understanding of the present invention. It should be appreciated, however, that the warp threads may be selectively moved in various changing groups to weave any desired pattern. Knitting

needle 88 is moved in synchronization with weft laying needle 24 alternately in a first plane 132 (FIG. 5) and a second plane 134 intersecting planes 128 and 130, respectively, to catch loops of the weft thread 28 as it is carried through each shed. Thus, knitting needle 88 is moved back and forth along a path parallel to the path of movement to tape 91.

Knitting needle 88 is displaced by rotation of cam member 124 on shaft 44 in the same manner as weft laying needle 24 is moved in that plate cams 70 and 122 have the same configuration and are aligned such that risers 80 and 108 are raised and lowered simultaneously. Riser 108 is controlled by vertical displacement of roller 118 which operates through lever 112 and link 110 to raise riser 108 when roller 118 engages the large half of plate cam 122. Upward movement of riser 108 raises pillow-blocks 106 and 106' and pivot pin 105 and causes carrier 90 to pivot about pin 92 to lower knitting needle 88 to move reciprocatingly in plane 132. Since cam members 66 and 124 are both rotated on shaft 44, the vertical displacement of weft laying needle 24 coincides with the vertical displacement of knitting needle 88; and, as weft laying needle 24 moves through a shed in either of planes 128 or 134, knitting needle 88 will be positioned to catch the weft thread without any vertical movement being imparted to the weft laying needle.

Displacement mechanism 93 is particularly effective for knitting a selvedge edge in that as the tape is moved through the loom loops of weft thread are properly positioned to have succeeding weft thread loops pulled therethrough. If a vertical knitting needle is used to form the selvedge edge, the knitting operation becomes quite complex and the advantage of the simplified apparatus is lost.

Thus, it may be seen that the weft laying needle is maintained in a constant plane as it moves through the warp threads thereby permitting decreased and less accurate movement of the warp threads and the weaving of wider fabrics. It should be appreciated that, as illustrated in FIG. 6, the warp threads need not be moved past a midpoint between planes 128 and 130; and, if no pattern is to be woven in the tape or part thereof, corresponding warp thread groups need not be provided with shedding movement as long as they are maintained between planes 128 and 130.

Inasmuch as the present invention is subject to many variations, modifications and changes in detail, it is intended that all matter contained in the foregoing description or shown in the accompanying drawing shall be interpreted as illustrative and not in a limiting sense.

What is claimed is:

1. In a needle loom of the type for weaving a tape and for providing shedding movement to a plurality of warp threads at a weaving area, a weft laying needle having an end carrying a weft thread, a driving mechanism for projecting the weft laying needle from a withdrawn position through the warp threads at the weaving area to a projected position and withdrawing the weft laying needle to the withdrawn position, and a knitting needle provided with reciprocating movement parallel to movement of the woven tape for catching the weft thread when the weft laying needle is in the projected position, the improvement for weaving a slide fastener element strip along an edge of the tape comprising

guide means supplying the slide fastener element strip to the weaving area in a substantially constant plane;

control means for alternately driving the end of the weft laying needle through the warp threads in a first plane and a second plane, said first and second planes being in spaced parallel relation on opposite sides of said guide means;

displacement means for alternately moving the knitting needle to a first position coinciding with said first plane and a second position coinciding with said second plane;

the knitting needle being supported in a carrier pivotable on first and second pins, the first pin riding in slots in a guide block, a lever having one end connected with said second pin and another end

10 15

connected with a reciprocating arm, and said displacement means including a riser connected with a pivot pin in a portion of the lever between the ends and cam means for raising and lowering said riser to pivot the carrier about the first pin to place the knitting needle in said first and second positions.

2. The invention as recited in claim 1 wherein said cam means includes a cam member having a groove therein following the contour of a plate cam, a roller disposed in said groove to follow said plate cam contour, a lever movable about a fulcrum in response to displacement of said roller, and a link connecting said lever with said riser.

* * * *

20

25

30

35

40

45

50

55

60

65