

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property

Organization

International Bureau

(10) International Publication Number

WO 2024/129220 A1

(51) International Patent Classification:

A61K 31/435 (2006.01) *A61K 31/33* (2006.01)
A61K 31/395 (2006.01) *A61P 35/00* (2006.01)

(21) International Application Number:

PCT/US2023/067656

(22) International Filing Date:

31 May 2023 (31.05.2023)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

63/432,235 13 December 2022 (13.12.2022) US
18/315,928 11 May 2023 (11.05.2023) US

(71) Applicant: AMICUS THERAPEUTICS, INC. [US/US];
3675 Market Street, Philadelphia, Pennsylvania 19104
(US).

(72) Inventor: JOHNSON, Franklin; Amicus Therapeutics,
Inc., 3675 Market Street, Philadelphia, Pennsylvania 19104
(US).

(74) Agent: ALEGRIA, Rory P.; SERVILLA WHITNEY
LLC, 33 Wood Avenue South, Suite 830, Iselin, New Jersey
08830 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CV, CZ, DE, DJ, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IQ, IR, IS, IT, JM, JO, JP, KE, KG,
KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY,
MA, MD, MG, MK, MN, MU, MW, MX, MY, MZ, NA,
NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO,
RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, ST, SV, SY, TH,
TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, WS,
ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, CV,
GH, GM, KE, LR, LS, MW, MZ, NA, RW, SC, SD, SL, ST,
SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ,
RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ,
DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT,
LU, LV, MC, ME, MK, MT, NL, NO, PL, PT, RO, RS, SE,
SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN,
GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Published:

- with international search report (Art. 21(3))
- with sequence listing part of description (Rule 5.2(a))

(54) Title: METHODS OF IMPROVING THE PHARMACOKINETICS OF MIGALASTAT

(57) Abstract: Provided are methods of improving the pharmacokinetics of migalastat by limiting caffeine intake during migalastat therapy.

WO 2024/129220 A1

METHODS OF IMPROVING THE PHARMACOKINETICS OF MIGALASTAT

TECHNICAL FIELD

[0001] Principles and embodiments of the present invention relate generally to methods 5 of improving the pharmacokinetics of migalastat.

BACKGROUND

[0002] Many human diseases result from mutations that cause changes in the amino acid sequence of a protein which reduce its stability and may prevent it from folding properly. 10 Proteins generally fold in a specific region of the cell known as the endoplasmic reticulum, or ER. The cell has quality control mechanisms that ensure that proteins are folded into their correct three-dimensional shape before they can move from the ER to the appropriate destination in the cell, a process generally referred to as protein trafficking. Misfolded proteins are often eliminated by the quality control mechanisms after initially being retained in the ER. 15 In certain instances, misfolded proteins can accumulate in the ER before being eliminated. The retention of misfolded proteins in the ER interrupts their proper trafficking, and the resulting reduced biological activity can lead to impaired cellular function and ultimately to disease. In addition, the accumulation of misfolded proteins in the ER may lead to various types of stress on cells, which may also contribute to cellular dysfunction and disease.

20 [0003] Such mutations can lead to lysosomal storage disorders (LSDs), which are characterized by deficiencies of lysosomal enzymes due to mutations in the genes encoding the lysosomal enzymes. The resultant disease causes the pathologic accumulation of substrates of those enzymes, which include lipids, carbohydrates, and polysaccharides. Although there are many different mutant genotypes associated with each LSD, many of the mutations are 25 missense mutations which can lead to the production of a less stable enzyme. These less stable enzymes are sometimes prematurely degraded by the ER-associated degradation pathway. This results in the enzyme deficiency in the lysosome, and the pathologic accumulation of substrate. Such mutant enzymes are sometimes referred to in the pertinent art as "folding mutants" or "conformational mutants."

30 [0004] Fabry disease, an LSD, is a progressive, X-linked inborn error of glycosphingolipid metabolism caused by a deficiency in the lysosomal enzyme α -galactosidase

A (α -Gal A) as a result of mutations in the α -Gal A gene (GLA). Despite being an X-linked disorder, females can express varying degrees of clinical manifestations.

[0005] Fabry disease is classified by clinical manifestations into three groups: a classic form with generalized vasculopathy, an atypical variant form with clinical manifestations limited to cardiac tissue, and later-onset disease, which includes female carriers with mild to severe forms of the disease. The clinical manifestations include angiokeratoma (small, raised reddish-purple blemishes on the skin), acroparesthesias (burning in hands and feet), hypohidrosis (decreased ability to sweat), and characteristic corneal and lenticular opacities (*The Metabolic and Molecular Bases of Inherited Disease*, 8th Edition 2001, Scriver et al., ed., 10 pp. 3733-3774, McGraw-Hill, New York).

[0006] Fabry is a rare disease with incidence estimated between 1 in 40,000 males to 1 in 117,000 in the general population. Moreover, there are variants of later onset phenotype of Fabry disease that can be under-diagnosed, as they do not present with classical signs and symptoms. This, and newborn screening for Fabry disease, suggests that the actual incidence of 15 Fabry disease can be higher than currently estimated.

[0007] Untreated, life expectancy in Fabry patients is reduced and death usually occurs in the fourth or fifth decade because of vascular disease affecting the kidneys, heart and/or central nervous system. The enzyme deficiency leads to intracellular accumulation of the substrate, globotriaosylceramide (GL-3) in the vascular endothelium and visceral tissues 20 throughout the body. The heart may also become enlarged and the kidneys may become progressively involved. Gradual deterioration of renal function and the development of azotemia, due to glycosphingolipid deposition, usually occur in the third to fifth decades of life, but can occur as early as in the second decade. Renal lesions are found in both hemizygous (male) and heterozygous (female) patients. The affected male's life expectancy is 25 reduced, and death usually occurs in the fourth or fifth decade as a result of vascular disease of the heart, brain, and/or kidneys. Other symptoms include fever and gastrointestinal difficulties, particularly after eating.

[0008] Cardiac disease as a result of Fabry disease occurs in most males and many females. Early cardiac findings include left ventricular enlargement, valvular involvement and 30 conduction abnormalities. Mitral insufficiency is the most frequent valvular lesion typically present in childhood or adolescence. Cerebrovascular manifestations result primarily from multifocal small-vessel involvement and can include thromboses, transient ischemic attacks,

basilar artery ischemia and aneurysm, seizures, hemiplegia, hemianesthesia, aphasia, labyrinthine disorders, or cerebral hemorrhages. Average age of onset of cerebrovascular manifestations is 33.8 years. Personality change and psychotic behavior can manifest with increasing age.

5 [0009] Individuals with later-onset Fabry disease can be male or female. Late-onset Fabry disease presents as the atypical variant form, and growing evidence indicates there may be a significant number of "atypical variants" which are unaccounted for in the world. Females, who inherit an X chromosome containing an a-GAL mutation, may exhibit symptoms later in life, significantly increasing the prevalence of this disease. These patients typically first

10 experience disease symptoms in adulthood, and often have disease symptoms focused on a single organ. For example, many males and females with later-onset Fabry disease have enlargement of the left ventricle of the heart. Later-onset Fabry disease may also present in the form of strokes of unknown cause. As the patients advance in age, the cardiac complications of the disease progress, and can lead to death.

15 [0010] Patients with the milder "cardiac variant" of Fabry disease normally have 5-15% of normal a-GAL activity, and present with left ventricular hypertrophy or a cardiomyopathy. These cardiac variant patients remain essentially asymptomatic when their classically affected counterparts are severely compromised. Cardiac variants were found in 1 1% of adult male patients with unexplained left ventricular hypertrophic cardiomyopathy,

20 suggesting that Fabry disease may be more frequent than previously estimated (*Nakao et al.*, N. Engl. J. Med. 1995; 333: 288-293).

[0011] There have been several approaches to treatment of Fabry disease. One approved therapy for treating Fabry disease is enzyme replacement therapy (ERT), which typically involves intravenous, infusion of a purified form of the corresponding wild-type

25 protein (Fabrazyme®, Genzyme Corp.). ERT has several drawbacks, however. One of the main complications with enzyme replacement therapy is rapid degradation of the infused protein, which leads to the need for numerous, costly high dose infusions. ERT has several additional caveats, such as difficulties with large-scale generation, purification, and storage of properly folded protein; obtaining glycosylated native protein; generation of an anti-protein

30 immune response; and inability of protein to cross the blood-brain barrier to mitigate central nervous system pathologies (i.e., low bioavailability). In addition, replacement enzyme cannot

penetrate the heart or kidney in sufficient amounts to reduce substrate accumulation in the renal podocytes or cardiac myocytes, which figure prominently in Fabry pathology.

5 [0012] Additionally, ERT typically involves intravenous, infusion of a purified form of the corresponding wild-type protein. Two α -Gal A products are currently available for the treatment of Fabry disease: agalsidase alfa (Replagal[®], Shire Human Genetic Therapies) and agalsidase beta (Fabrazyme[®]; Sanofi Genzyme Corporation). While ERT is effective in many settings, the treatment also has limitations. ERT has not been demonstrated to decrease the risk of stroke, cardiac muscle responds slowly, and GL-3 elimination from some of the cell types of the kidneys is limited. Some patients also develop immune reactions to ERT.

10 [0013] Another approach to treating some enzyme deficiencies involves the use of small molecule inhibitors to reduce production of the natural substrate of deficient enzyme proteins, thereby ameliorating the pathology. This "substrate reduction" approach has been specifically described for a class of about 40 related enzyme disorders called lysosomal storage disorders that include glycosphingolipid storage disorders. The small molecule inhibitors proposed for use as therapy are specific for inhibiting the enzymes involved in synthesis of glycolipids, reducing the amount of cellular glycolipid that needs to be broken down by the deficient enzyme.

15 [0014] A third approach to treating Fabry disease has been treatment with what are called pharmacological chaperones (PCs). Such PCs include small molecule inhibitors of α -Gal A, which can bind to the α -Gal A to increase the stability of both mutant enzyme and the corresponding wild type. One such PC for α -Gal A is migalastat.

20 [0015] Accordingly, there remains a need for therapies for the treatment of Fabry disease.

25

SUMMARY

[0016] Various aspects of the present invention relate to methods for improving the pharmacokinetics of migalastat.

30 [0017] One aspect of the present invention pertains to a method of administering migalastat to a patient, the method comprising orally administering to the patient a formulation comprising a therapeutically effective dose of migalastat or a salt thereof, wherein the patient does not consume caffeine within a certain time interval of administering the formulation

comprising migalastat or a salt thereof. In various embodiments, this time interval includes abstaining from caffeine for at least 30 minutes, at least 60 minutes (1 hour), at least 90 minutes (1.5 hours), at least 2 hours, at least 2.5 hours, at least 3 hours or at least 4 hours prior to administering the migalastat or salt thereof and at least 30 minutes, at least 60 minutes (1 hour), at least 90 minutes (1.5 hours), at least 2 hours, at least 2.5 hours, at least 3 hours or at least 4 hours after administering the migalastat or salt thereof.

5 [0018] In some embodiments, the patient does not consume caffeine within a time interval from at least 1 hour prior to and at least 1 hour after administering the migalastat or salt thereof, i.e. the patient does not consume caffeine within about 1 hour of administering the formulation comprising migalastat or a salt thereof.

10 [0019] In some embodiments, the patient does not consume caffeine within a time interval from at least 2 hours prior to and at least 1 hour after administering the migalastat or salt thereof.

15 [0020] In some embodiments, the patient does not consume caffeine within a time interval from at least 2 hours prior to and at least 2 hours after administering the migalastat or salt thereof, i.e. the patient does not consume caffeine within about 2 hours of administering the formulation comprising migalastat or a salt thereof.

20 [0021] In some embodiments, the patient does not consume caffeine within a time interval from at least 3 hours prior to and at least 2 hours after administering the migalastat or salt thereof.

[0022] In some embodiments, the patient does not consume caffeine within a time interval from at least 3 hours prior to and at least 3 hours after administering the migalastat or salt thereof, i.e. the patient does not consume caffeine within about 3 hours of administering the formulation comprising migalastat or a salt thereof.

25 [0023] In some embodiments, the patient consumes caffeine outside of the time interval for abstaining from caffeine. For example, if the time interval for abstaining from caffeine is at least 2 hours prior to and at least 2 hours after administering the migalastat or salt thereof, then in some embodiments the patient consumes caffeine at least 2 hours prior to and/or at least 2 hours after administering the migalastat or salt thereof. In various embodiments, the patient consumes caffeine at least 30 minutes, at least 60 minutes (1 hour), at least 90 minutes (1.5 hours), at least 2 hours, at least 2.5 hours, at least 3 hours or at least 4 hours prior to administering the migalastat or salt thereof. In various embodiments, the patient consumes

caffeine at least 30 minutes, at least 60 minutes (1 hour), at least 90 minutes (1.5 hours), at least 2 hours, at least 2.5 hours, at least 3 hours or at least 4 hours after administering the migalastat or salt thereof.

[0024] In some embodiments, not consuming caffeine within a certain time interval of 5 administering the formulation comprising migalastat or a salt thereof provides improvements in the pharmacokinetics of migalastat, such as avoiding a decrease in migalastat area under the curve (AUC) and/or maximum plasma concentration (C_{max}). In some embodiments, the patient does not consume caffeine within 2 hours of administering the formulation comprising migalastat or a salt thereof to avoid a decrease in AUC and C_{max} for migalastat of about 57% 10 and about 60%, respectively.

[0025] In some embodiments, the patient fasts during the time interval for abstaining from caffeine. In some embodiments, the patient does not consume food for at least 2 hours before and at least 2 hours after administering the migalastat or salt thereof and the patient does not consume caffeine for at least 2 hours before and at least 2 hours after administering the 15 migalastat or salt thereof.

[0026] In some embodiments, the patient fasts for a different time interval than the time interval for abstaining from caffeine.

[0027] In some embodiments, the therapeutically effective dose of migalastat or a salt thereof is in a range of from about 100 mg to about 150 mg every other day.

20 [0028] In some embodiments, the therapeutically effective dose of migalastat or a salt thereof is about 123 mg free base equivalent (FBE) every other day.

[0029] In some embodiments, the therapeutically effective dose of migalastat or a salt thereof is about 150 mg of migalastat hydrochloride every other day.

25 [0030] In one or more embodiments, the formulation comprises an oral dosage form. In some embodiments, the oral dosage form comprises a tablet, a capsule or a solution.

[0031] Another aspect of the present invention pertains to a method of treatment of 30 Fabry disease in a human patient in need thereof, the method comprising orally administering to the patient a formulation comprising a therapeutically effective dose of migalastat or a salt thereof, wherein the patient does not consume caffeine within a certain time interval of administering the formulation comprising migalastat or a salt thereof. This method of treatment can have any of the features described herein related to the methods of administering migalastat.

[0032] In one or more embodiments, the patient has a HEK assay amenable mutation in α -galactosidase A. In one or more embodiments, the mutation is disclosed in a pharmacological reference table. In one or more embodiments, the pharmacological reference table is provided in a product label for a migalastat product approved for the treatment of Fabry disease. In one or more embodiments, the pharmacological reference table is provided in a product label for GALAFOLD®. In one or more embodiments, the pharmacological reference table is provided at a website. In one or more embodiments, the website is one or more of www.galafoldamenabilitytable.com or www.fabrygenevariantsearch.com.

10 BRIEF DESCRIPTION OF THE DRAWINGS

[0033] Further features of the present invention will become apparent from the following written description and the accompanying figures, in which:

[0034] FIGS. 1A-E show the full DNA sequence of the human wild-type GLA gene (SEQ ID NO: 1);

15 [0035] FIG. 2 shows the wild-type α -Gal A protein (SEQ ID NO: 2);

[0036] FIG. 3 shows the nucleic acid sequence encoding the wild-type α -Gal A protein (SEQ ID NO: 3);

[0037] FIG. 4 shows the study schematic for a study investigating the effect of caffeine and sweeteners on migalastat pharmacokinetics; and

20 [0038] FIG. 5 shows the migalastat concentration-time profiles when administered with caffeine and various sweeteners.

DETAILED DESCRIPTION

[0039] Before describing several exemplary embodiments of the invention, it is to be understood that the invention is not limited to the details of construction or process steps set forth in the following description. The invention is capable of other embodiments and of being practiced or being carried out in various ways.

[0040] Various aspects of the present invention pertain to the administration of migalastat such as for the treatment of Fabry disease. It has surprisingly been discovered that 30 the co-administration of caffeine with migalastat has a negative effect on the pharmacokinetics of migalastat, independent of the food effect on migalastat pharmacokinetics. Accordingly, various embodiments of the present invention relate to the administration of migalastat or salt

thereof without the concurrent administration of caffeine, i.e. the patient does not consume caffeine within a certain time interval of administering the migalastat or salt thereof.

Definitions

[0041] The terms used in this specification generally have their ordinary meanings in the art, within the context of this invention and in the specific context where each term is used. Certain terms are discussed below, or elsewhere in the specification, to provide additional guidance to the practitioner in describing the compositions and methods of the invention and how to make and use them.

[0042] As used herein, the phrase "the patient does not consume caffeine" and similar language refers to the patient not consuming (e.g. eating or drinking) food, beverages or other products that contain caffeine. In some embodiments, a food, beverage or product is considered to be caffeine-containing if it includes a certain amount of caffeine, such as more than 1 mg, 2 mg, 5 mg or 10 mg of caffeine. In some embodiments, examples of caffeine-containing beverages include coffee, espresso, tea, caffeinated energy drinks and caffeinated sodas.

[0043] The term "Fabry disease" refers to an X-linked inborn error of glycosphingolipid catabolism due to deficient lysosomal α -Gal A activity. This defect causes accumulation of the substrate globotriaosylceramide ("GL-3", also known as Gb3 or ceramide trihexoside) and related glycosphingolipids in vascular endothelial lysosomes of the heart, kidneys, skin, and other tissues. Another substrate of the enzyme is plasma globotriaosylsphingosine ("plasma lyso-Gb₃").

[0044] The term "atypical Fabry disease" refers to patients with primarily cardiac manifestations of the α -Gal A deficiency, namely progressive GL-3 accumulation in myocardial cells that leads to significant enlargement of the heart, particularly the left ventricle.

[0045] A "carrier" is a female who has one X chromosome with a defective α -Gal A gene and one X chromosome with the normal gene and in whom X chromosome inactivation of the normal allele is present in one or more cell types. A carrier is often diagnosed with Fabry disease.

[0046] A "patient" refers to a subject who has been diagnosed with or is suspected of having a particular disease. The patient may be human or animal.

[0047] A "Fabry patient" refers to an individual who has been diagnosed with or suspected of having Fabry disease and has a mutated α -Gal A as defined further below. Characteristic markers of Fabry disease can occur in male hemizygotes and female carriers with the same prevalence, although females typically are less severely affected.

5 **[0048]** Human α -galactosidase A (α -Gal A) refers to an enzyme encoded by the human GLA gene. The full DNA sequence of α -Gal A, including introns and exons, is available in GenBank Accession No. X14448.1 and shown in FIG. 1A-E (SEQ ID NO: 1). The human α -Gal A enzyme consists of 429 amino acids and is available in GenBank Accession Nos. X14448.1 and U78027.1 and shown in FIG. 2 (SEQ ID NO: 2). The nucleic acid sequence that 10 only includes the coding regions (i.e. exons) of SEQ ID NO: 1 is shown in FIG. 3 (SEQ ID NO: 3).

15 **[0049]** The term "mutant protein" includes a protein which has a mutation in the gene encoding the protein which results in the inability of the protein to achieve a stable conformation under the conditions normally present in the endoplasmic reticulum (ER). The failure to achieve a stable conformation results in a substantial amount of the enzyme being degraded, rather than being transported to the lysosome. Such a mutation is sometimes called a "conformational mutant." Such mutations include, but are not limited to, missense mutations, and in-frame small deletions and insertions.

20 **[0050]** As used herein in one embodiment, the term "mutant α -Gal A" includes an α -Gal A which has a mutation in the gene encoding α -Gal A which results in the inability of the enzyme to achieve a stable conformation under the conditions normally present in the ER. The failure to achieve a stable conformation results in a substantial amount of the enzyme being degraded, rather than being transported to the lysosome.

25 **[0051]** As used herein, the term "pharmacological chaperone" ("PC") or "specific pharmacological chaperone" ("SPC") refers to any molecule including a small molecule, protein, peptide, nucleic acid, carbohydrate, etc. that specifically binds to a protein and has one or more of the following effects: (i) enhances the formation of a stable molecular conformation of the protein; (ii) induces trafficking of the protein from the ER to another cellular location, preferably a native cellular location, *i.e.*, prevents ER-associated degradation of the protein; 30 (iii) prevents aggregation of misfolded proteins; and/or (iv) restores or enhances at least partial wild-type function and/or activity to the protein. A compound that specifically binds to *e.g.*, α -Gal A, means that it binds to and exerts a chaperone effect on the enzyme and not a generic

group of related or unrelated enzymes. More specifically, this term does not refer to endogenous chaperones, such as BiP, or to non-specific agents which have demonstrated non-specific chaperone activity against various proteins, such as glycerol, DMSO or deuterated water, *i.e.*, chemical chaperones. In one or more embodiments of the present invention, the PC 5 may be a reversible competitive inhibitor. In one embodiment, the PC is migalastat or a salt thereof. In another embodiment, the PC is migalastat free base (*e.g.*, 123 mg of migalastat free base). In yet another embodiment, the PC is a salt of migalastat (*e.g.*, 150 mg of migalastat HCl).

[0052] A "competitive inhibitor" of an enzyme can refer to a compound which 10 structurally resembles the chemical structure and molecular geometry of the enzyme substrate to bind the enzyme in approximately the same location as the substrate. Thus, the inhibitor competes for the same active site as the substrate molecule, thus increasing the Km. Competitive inhibition is usually reversible if sufficient substrate molecules are available to displace the inhibitor, *i.e.*, competitive inhibitors can bind reversibly. Therefore, the amount of 15 enzyme inhibition depends upon the inhibitor concentration, substrate concentration, and the relative affinities of the inhibitor and substrate for the active site.

[0053] As used herein, the term "specifically binds" refers to the interaction of a pharmacological chaperone with a protein such as α -Gal A, specifically, an interaction with 20 amino acid residues of the protein that directly participate in contacting the pharmacological chaperone. A pharmacological chaperone specifically binds a target protein, *e.g.*, α -Gal A, to exert a chaperone effect on the protein and not a generic group of related or unrelated proteins. The amino acid residues of a protein that interact with any given pharmacological chaperone may or may not be within the protein's "active site." Specific binding can be evaluated through routine binding assays or through structural studies, *e.g.*, co-crystallization, NMR, and the like. 25 The active site for α -Gal A is the substrate binding site.

[0054] "Deficient α -Gal A activity" refers to α -Gal A activity in cells from a patient which is below the normal range as compared (using the same methods) to the activity in normal individuals not having or suspected of having Fabry or any other disease (especially a blood disease).

30 [0055] As used herein, the terms "enhance α -Gal A activity" or "increase α -Gal A activity" refer to increasing the amount of α -Gal A that adopts a stable conformation in a cell contacted with a pharmacological chaperone specific for the α -Gal A, relative to the amount in

a cell (preferably of the same cell-type or the same cell, *e.g.*, at an earlier time) not contacted with the pharmacological chaperone specific for the α -Gal A. This term also refers to increasing the trafficking of α -Gal A to the lysosome in a cell contacted with a pharmacological chaperone specific for the α -Gal A, relative to the trafficking of α -Gal A not contacted with the pharmacological chaperone specific for the protein. These terms refer to both wild-type and mutant α -Gal A. In one embodiment, the increase in the amount of α -Gal A in the cell is measured by measuring the hydrolysis of an artificial substrate in lysates from cells that have been treated with the PC. An increase in hydrolysis is indicative of increased α -Gal A activity.

10 [0056] The term " α -Gal A activity" refers to the normal physiological function of a wild-type α -Gal A in a cell. For example, α -Gal A activity includes hydrolysis of GL-3.

[0057] A "responder" is an individual diagnosed with or suspected of having a lysosomal storage disorder (LSD), such, for example Fabry disease, whose cells exhibit sufficiently increased α -Gal A activity, respectively, and/or amelioration of symptoms or 15 enhancement in surrogate markers, in response to contact with a PC. Non-limiting examples of enhancements in surrogate markers for Fabry are lyso-GB3 and those disclosed in US Patent Application Publication No. U.S. 2010/0113517, which is hereby incorporated by reference in its entirety.

[0058] Non-limiting examples of improvements in surrogate markers for Fabry disease 20 disclosed in U.S. 2010/0113517 include increases in α -Gal A levels or activity in cells (*e.g.*, fibroblasts) and tissue; reductions in of GL-3 accumulation; decreased plasma concentrations of homocysteine and vascular cell adhesion molecule-1 (VCAM-1); decreased GL-3 accumulation within myocardial cells and valvular fibrocytes; reduction in plasma lyso-Gb₃; reduction in cardiac hypertrophy (especially of the left ventricle), amelioration of valvular 25 insufficiency, and arrhythmias; amelioration of proteinuria; decreased urinary concentrations of lipids such as CTH, lactosylceramide, ceramide, and increased urinary concentrations of glucosylceramide and sphingomyelin; the absence of laminated inclusion bodies (Zebra bodies) in glomerular epithelial cells; improvements in renal function; mitigation of hypohidrosis; the absence of angiokeratomas; and improvements in hearing abnormalities such 30 as high frequency sensorineural hearing loss progressive hearing loss, sudden deafness, or tinnitus. Improvements in neurological symptoms include prevention of transient ischemic attack (TIA) or stroke; and amelioration of neuropathic pain manifesting itself as

acroparaesthesia (burning or tingling in extremities). Another type of clinical marker that can be assessed for Fabry disease is the prevalence of deleterious cardiovascular manifestations. Common cardiac-related signs and symptoms of Fabry disease include left ventricular hypertrophy, valvular disease (especially mitral valve prolapse and/or regurgitation), premature 5 coronary artery disease, angina, myocardial infarction, conduction abnormalities, arrhythmias, congestive heart failure.

[0059] The dose that achieves one or more of the aforementioned responses is a "therapeutically effective dose."

[0060] The phrase "pharmaceutically acceptable" refers to molecular entities and 10 compositions that are physiologically tolerable and do not typically produce untoward reactions when administered to a human. In some embodiments, as used herein, the term "pharmaceutically acceptable" means approved by a regulatory agency of the Federal or a state government or listed in the U.S. Pharmacopoeia or other generally recognized pharmacopoeia for use in animals, and more particularly in humans. The term "carrier" in reference to a 15 pharmaceutical carrier refers to a diluent, adjuvant, excipient, or vehicle with which the compound is administered. Such pharmaceutical carriers can be sterile liquids, such as water and oils. Water or aqueous solution saline solutions and aqueous dextrose and glycerol solutions are preferably employed as carriers, particularly for injectable solutions. Suitable pharmaceutical carriers are described in "Remington's Pharmaceutical Sciences" by E. W. 20 Martin, 18th Edition, or other editions.

[0061] As used herein, the term "isolated" means that the referenced material is removed from the environment in which it is normally found. Thus, an isolated biological material can be free of cellular components, *i.e.*, components of the cells in which the material is found or produced. In the case of nucleic acid molecules, an isolated nucleic acid includes a 25 PCR product, an mRNA band on a gel, a cDNA, or a restriction fragment. In another embodiment, an isolated nucleic acid is preferably excised from the chromosome in which it may be found, and more preferably is no longer joined to non-regulatory, non-coding regions, or to other genes, located upstream or downstream of the gene contained by the isolated nucleic acid molecule when found in the chromosome. In yet another embodiment, the isolated 30 nucleic acid lacks one or more introns. Isolated nucleic acids include sequences inserted into plasmids, cosmids, artificial chromosomes, and the like. Thus, in a specific embodiment, a recombinant nucleic acid is an isolated nucleic acid. An isolated protein may be associated

with other proteins or nucleic acids, or both, with which it associates in the cell, or with cellular membranes if it is a membrane-associated protein. An isolated organelle, cell, or tissue is removed from the anatomical site in which it is found in an organism. An isolated material may be, but need not be, purified.

5 [0062] The term "enzyme replacement therapy" or "ERT" refers to the introduction of a non-native, purified enzyme into an individual having a deficiency in such enzyme. The administered protein can be obtained from natural sources or by recombinant expression (as described in greater detail below). The term also refers to the introduction of a purified enzyme in an individual otherwise requiring or benefiting from administration of a purified enzyme, 10 *e.g.*, suffering from enzyme insufficiency. The introduced enzyme may be a purified, recombinant enzyme produced *in vitro*, or protein purified from isolated tissue or fluid, such as, *e.g.*, placenta or animal milk, or from plants.

[0063] The term "ERT-naïve patient" refers to a Fabry patient that has never received ERT or has not received ERT for at least 6 months prior to initiating migalastat therapy. 15 [0064] The term "ERT-experienced patient" refers to a Fabry patient that was receiving ERT immediately prior to initiating migalastat therapy. In some embodiments, the ERT-experienced patient has received at least 12 months of ERT immediately prior to initiating migalastat therapy.

[0065] As used herein, the term "free base equivalent" or "FBE" refers to the amount of 20 migalastat present in the migalastat or salt thereof. In other words, the term "FBE" means either an amount of migalastat free base, or the equivalent amount of migalastat free base that is provided by a salt of migalastat. For example, due to the weight of the hydrochloride salt, 150 mg of migalastat hydrochloride only provides as much migalastat as 123 mg of the free base form of migalastat. Other salts are expected to have different conversion factors, 25 depending on the molecular weight of the salt.

[0066] The term "migalastat" encompasses migalastat free base or a pharmaceutically acceptable salt thereof (*e.g.*, migalastat HCl), unless specifically indicated to the contrary.

[0067] The terms "mutation" and "variant" (*e.g.*, as in "amenable mutation or variant") refer to a change in the nucleotide sequence of a gene or a chromosome. The two terms 30 referred herein are typically used together – *e.g.*, as in "mutation or variant" – referring to the change in nucleotide sequence stated in the previous sentence. If only one of the two terms is recited for some reason, the missing term was intended to be included and one should

understand as such. Furthermore, the terms "amenable mutation" and "amenable variant" refer to a mutation or variant that is amenable to PC therapy, *e.g.*, a mutation that is amenable to migalastat therapy. A particular type of amenable mutation or variant is a "HEK assay amenable mutation or variant", which is a mutation or variant that is determined to be 5 amenable to migalastat therapy according to the criteria in the *in vitro* HEK assay described herein and in U.S. Patent No. 8,592,362, which is hereby incorporated by reference in its entirety.

[0068] The terms "about" and "approximately" shall generally mean an acceptable degree of error for the quantity measured given the nature or precision of the measurements. 10 Typical, exemplary degrees of error are within 20 percent (%), preferably within 10%, and more preferably within 5% of a given value or range of values. Alternatively, and particularly in biological systems, the terms "about" and "approximately" may mean values that are within an order of magnitude, preferably within 10- or 5-fold, and more preferably within 2-fold of a given value. Numerical quantities given herein are approximate unless stated otherwise, 15 meaning that the term "about" or "approximately" can be inferred when not expressly stated.

Fabry Disease

[0069] Fabry disease is a rare, progressive and devastating X-linked lysosomal storage disorder (LSD). Mutations in the GLA gene result in a deficiency of the lysosomal enzyme, α -20 Gal A, which is required for glycosphingolipid metabolism. Beginning early in life, the reduction in α -Gal A activity results in an accumulation of glycosphingolipids, including GL-3 and plasma lyso-Gb3, and leads to the symptoms and life-limiting sequelae of Fabry disease, including pain, gastrointestinal symptoms, renal failure, cardiomyopathy, cerebrovascular events, and early mortality. Early initiation of therapy and lifelong treatment provide an 25 opportunity to slow disease progression and prolong life expectancy.

[0070] Fabry disease encompasses a spectrum of disease severity and age of onset, although it has traditionally been divided into 2 main phenotypes, "classic" and "late-onset". The classic phenotype has been ascribed primarily to males with undetectable to low α -Gal A activity and earlier onset of renal, cardiac and/or cerebrovascular manifestations. The late-onset phenotype has been ascribed primarily to males with higher residual α -Gal A activity and 30 later onset of these disease manifestations. Heterozygous female carriers typically express the

late-onset phenotype but depending on the pattern of X-chromosome inactivation may also display the classic phenotype.

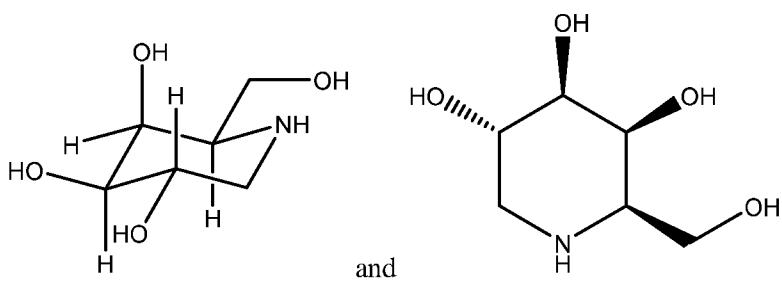
[0071] More than 1,000 Fabry disease-causing GLA mutations have been identified. The GLA mutation includes but not limited to missense, nonsense, and splicing mutations, in 5 addition to small deletions and insertions, and larger gene rearrangements. Approximately 60% are missense mutations, resulting in single amino acid substitutions in the α -Gal A enzyme. Missense GLA mutations often result in the production of abnormally folded and unstable forms of α -Gal A and the majority are associated with the classic phenotype. Normal cellular quality control mechanisms in the ER block the transit of these abnormal proteins to lysosomes 10 and target them for premature degradation and elimination. Many missense mutant forms are targets for migalastat, an α -Gal A-specific pharmacological chaperone.

[0072] The clinical manifestations of Fabry disease span a broad spectrum of severity and roughly correlate with a patient's residual α -Gal A levels. The majority of currently treated patients are referred to as classic Fabry patients, most of whom are males. These patients 15 experience disease of various organs, including the kidneys, heart and brain, with disease symptoms first appearing in adolescence and typically progressing in severity until death in the fourth or fifth decade of life. A number of recent studies suggest that there are a large number of undiagnosed males and females that have a range of Fabry disease symptoms, such as impaired cardiac or renal function and strokes, that usually first appear in adulthood. 20 Individuals with this type of Fabry disease, referred to as later-onset Fabry disease, tend to have higher residual α -Gal A levels than classic Fabry patients. Individuals with later-onset Fabry disease typically first experience disease symptoms in adulthood, and often have disease symptoms focused on a single organ, such as enlargement of the left ventricle or progressive kidney failure. In addition, later-onset Fabry disease may also present in the form of strokes of 25 unknown cause.

[0073] Because Fabry disease is rare, involves multiple organs, has a wide age range of onset, and is heterogeneous, proper diagnosis is a challenge. For example, Fabry patients have progressive kidney impairment, and untreated patients exhibit end-stage renal impairment by the fifth decade of life. Deficiency in α -Gal A activity leads to accumulation of 30 globotriaosylceramide (Gb3) and related glycosphingolipids in many cell types including cells in the kidney. Gb3 accumulates in podocytes, epithelial cells and the tubular cells of the distal

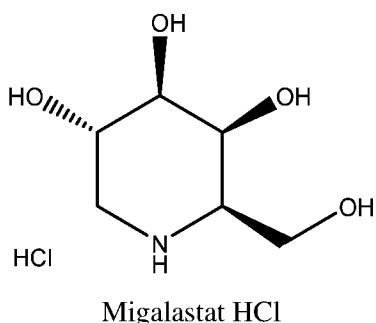
tubule and loop of Henle. Impairment in kidney function can manifest as proteinuria and reduced glomerular filtration rate.

[0074] Furthermore, awareness is low among health care professionals and misdiagnoses are frequent. Diagnosis of Fabry disease is most often confirmed on the basis of 5 decreased α -Gal A activity in plasma or peripheral leukocytes (WBCs) once a patient is symptomatic, coupled with mutational analysis. In females, diagnosis is even more challenging since the enzymatic identification of carrier females is less reliable due to random X-chromosomal inactivation in some cells of carriers. For example, some obligate carriers (daughters of classically affected males) have α -Gal A enzyme activities ranging from normal 10 to very low activities. Since carriers can have normal α -Gal A enzyme activity in leukocytes, only the identification of an α -Gal A mutation by genetic testing provides precise carrier identification and/or diagnosis.


[0075] In one or more embodiments, mutant forms of α -Gal A are considered to be amenable to migalastat are defined as showing a relative increase (+10 μ M migalastat) of 15 \geq 1.20-fold and an absolute increase (+ 10 μ M migalastat) of \geq 3.0% wild-type (WT) when the mutant form of α -Gal A is expressed in HEK-293 cells (referred to as the "HEK assay") according to Good Laboratory Practice (GLP)-validated *in vitro* assay (GLP HEK or Migalastat Amenability Assay). Such mutations are also referred to herein as "HEK assay amenable" mutations.

[0076] Previous screening methods have been provided that assess enzyme enhancement prior to the initiation of treatment. For example, an assay using HEK-293 cells 20 has been utilized in clinical trials to predict whether a given mutation will be responsive to pharmacological chaperone (*e.g.*, migalastat) treatment. In this assay, cDNA constructs are created. The corresponding α -Gal A mutant forms are transiently expressed in HEK-293 cells. 25 Cells are then incubated \pm migalastat (17 nM to 1 mM) for 4 to 5 days. After, α -Gal A levels are measured in cell lysates using a synthetic fluorogenic substrate (4-MU- α -Gal) or by western blot. This has been done for known disease-causing missense or small in-frame insertion/deletion mutations. Mutations that have previously been identified as responsive to a 30 PC (*e.g.*, migalastat) using these methods are listed in U.S. Patent No. 8,592,362, which is hereby incorporated by reference in its entirety.

Pharmacological Chaperones


[0077] The binding of small molecule inhibitors of enzymes associated with LSDs can increase the stability of both mutant enzyme and the corresponding wild-type enzyme (see U.S. Pat. Nos. 6,274,597; 6,583,158; 6,589,964; 6,599,919; 6,916,829, and 7,141,582 all 5 incorporated herein by reference). In particular, administration of small molecule derivatives of glucose and galactose, which are specific, selective competitive inhibitors for several target lysosomal enzymes, effectively increased the stability of the enzymes in cells *in vitro* and, thus, increased trafficking of the enzymes to the lysosome. Thus, by increasing the amount of 10 enzyme in the lysosome, hydrolysis of the enzyme substrates is expected to increase. The original theory behind this strategy was as follows: since the mutant enzyme protein is unstable 15 in the ER (Ishii *et al.*, *Biochem. Biophys. Res. Comm.* 1996; 220: 812-815), the enzyme protein is retarded in the normal transport pathway (ER→Golgi apparatus→endosomes→lysosome) and prematurely degraded. Therefore, a compound which binds to and increases the stability of a mutant enzyme, may serve as a "chaperone" for the enzyme and increase the amount that can 20 exit the ER and move to the lysosomes. In addition, because the folding and trafficking of some wild-type proteins is incomplete, with up to 70% of some wild-type proteins being degraded in some instances prior to reaching their final cellular location, the chaperones can be used to stabilize wild-type enzymes and increase the amount of enzyme which can exit the ER and be trafficked to lysosomes.

[0078] In one or more embodiments, the pharmacological chaperone comprises migalastat or a salt thereof. The compound migalastat, also known as 1-deoxygalactonojirimycin (1-DGJ) or (2R,3S,4R,5S)-2-(hydroxymethyl) piperidine-3,4,5-triol is a compound having the following chemical formula:

25 Migalastat free base

[0079] As discussed herein, pharmaceutically acceptable salts of migalastat may also be used in the present invention. When a salt of migalastat is used, the dosage of the salt will be adjusted so that the dose of migalastat received by the patient is equivalent to the amount which would have been received had the migalastat free base been used. One example of a 5 pharmaceutically acceptable salt of migalastat is migalastat HCl:

[0080] Migalastat is a low molecular weight iminosugar and is an analogue of the 10 terminal galactose of GL-3. *In vitro* and *in vivo* pharmacologic studies have demonstrated that migalastat acts as a pharmacological chaperone, selectively and reversibly binding, with high affinity, to the active site of wild-type α -Gal A and specific mutant forms of α -Gal A, the 15 genotypes of which are referred to as HEK assay amenable mutations. Migalastat binding stabilizes these mutant forms of α -Gal A in the endoplasmic reticulum facilitating their proper trafficking to lysosomes where dissociation of migalastat allows α -Gal A to reduce the level of GL-3 and other substrates. Approximately 30-50% of patients with Fabry disease have HEK assay amenable mutations; the majority of which are associated with the classic phenotype of the disease.

[0081] HEK assay amenable mutations include at least those mutations listed in a 20 pharmacological reference table (*e.g.*, the ones recited in the U.S. or International Product labels for a migalastat product such as GALAFOLD[®]). As used herein, "pharmacological reference table" refers to any publicly accessible written or electronic record, included in either the product label within the packaging of a migalastat product (*e.g.*, GALAFOLD[®]) or in a website accessible by health care providers, that conveys whether a particular mutation or 25 variant is responsive to migalastat (*e.g.*, GALAFOLD[®]) PC therapy, and is not necessarily limited to written records presented in tabular form. In one embodiment of the present invention, a "pharmacological reference table" thus refers to any depository of information that

includes one or more amenable mutations or variants. An exemplary pharmacological reference table for HEK assay amenable mutations can be found in the summary of product characteristics and/or prescribing information for GALAFOLD® in various countries in which GALAFOLD® is approved for use, or at a website such as www.galafoldamenabilitytable.com or www.fabrygenevariantsearch.com, each of which is hereby incorporated by reference in its entirety.

5 [0082] Although the vast majority of a-GAL mutations are missense mutations, with most being outside the catalytic site, it difficult to predict which mutations result in an unstable enzyme that could be "rescued" by a pharmacological chaperone (PC) which stabilizes the 10 enzyme, and which ones cannot be stabilized using a PC.

15 [0083] An exemplary pharmacological reference table for HEK assay amenable mutations is provided in Table 1 below. In one or more embodiments, if a double mutation is present on the same chromosome (males and females), that patient is considered HEK assay amenable if the double mutation is present in one entry in Table 1 (e.g., D55V/Q57L). In some embodiments, if a double mutation is present on different chromosomes (only in females) that patient is considered HEK assay amenable if either one of the individual mutations is present in Table 1.

Table 1. HEK Assay Amenable Mutations

Nucleotide change	Nucleotide change	Protein sequence change
c.7C>G	c.C7G	L3V
c.8T>C	c.T8C	L3P
c.[11G>T; 620A>C]	c.G11T/A620C	R4M/Y207S
c.13A>G	c.A13G	N5D
c.15C>G	c.C15G	N5K
c.16C>A	c.C16A	P6T
c.16C>T	c.C16T	P6S
c.17C>A	c.C17A	P6Q
c.17C>G	c.C17G	P6R
c.17C>T	c.C17T	P6L
c.19G>A	c.G19A	E7K
c.20A>T	c.A20T	E7V
c.21A>T	c.A21T	E7D
c.22C>A	c.C22A	L8I
c.23T>A	c.T23A	L8Q
c.23T>C	c.T23C	L8P
c.25C>T	c.C25T	H9Y
c.26A>G	c.A26G	H9R

Table 1. HEK Assay Amenable Mutations

Nucleotide change	Nucleotide change	Protein sequence change
c.26A>T	c.A26T	H9L
c.27T>A	c.T27A	H9Q
c.28C>A	c.C28A	L10M
c.28C>G	c.C28G	L10V
c.29T>A	c.T29A	L10Q
c.29T>C	c.T29C	L10P
c.29T>G	c.T29G	L10R
c.31G>A	c.G31A	G11S
c.31G>C	c.G31C	G11R
c.31G>T	c.G31T	G11C
c.32G>A	c.G32A	G11D
c.32G>T	c.G32T	G11V
c.34T>A	c.T34A	C12S
c.34T>C	c.T34C	C12R
c.34T>G	c.T34G	C12G
c.35G>A	c.G35A	C12Y
c.37G>A	c.G37A	A13T
c.37G>C	c.G37C	A13P
c.38C>A	c.C38A	A13E
c.38C>G	c.C38G	A13G
c.40C>G	c.C40G	L14V
c.40C>T	c.C40T	L14F
c.41T>A	c.T41A	L14H
c.43G>A	c.G43A	A15T
c.44C>G	c.C44G	A15G
c.49C>A	c.C49A	R17S
c.49C>G	c.C49G	R17G
c.49C>T	c.C49T	R17C
c.50G>A	c.G50A	R17H
c.50G>C	c.G50C	R17P
c.52T>A	c.T52A	F18I
c.53T>G	c.T53G	F18C
c.54C>G	c.C54G	F18L
c.58G>C	c.G58C	A20P
c.59C>A	c.C59A	A20D
c.59C>G	c.C59G	A20G
c.62T>A	c.T62A	L21H
c.64G>A	c.G64A	V22I
c.64G>C	c.G64C	V22L
c.64G>T	c.G64T	V22F
c.65T>C	c.T65C	V22A
c.65T>G	c.T65G	V22G
c.67T>A	c.T67A	S23T
c.67T>C	c.T67C	S23P
c.70T>C or c.70T>A	c.T70C or c.T70A	W24R

Table 1. HEK Assay Amenable Mutations

Nucleotide change	Nucleotide change	Protein sequence change
c.70T>G	c.T70G	W24G
c.71G>C	c.G71C	W24S
c.72G>C or c.72G>T	c.G72C or c.G72T	W24C
c.73G>C	c.G73C	D25H
c.77T>A	c.T77A	I26N
c.79C>A	c.C79A	P27T
c.79C>G	c.C79G	P27A
c.79C>T	c.C79T	P27S
c.80C>T	c.C80T	P27L
c.82G>C	c.G82C	G28R
c.82G>T	c.G82T	G28W
c.83G>A	c.G83A	G28E
c.85G>C	c.G85C	A29P
c.86C>A	c.C86A	A29D
c.86C>G	c.C86G	A29G
c.86C>T	c.C86T	A29V
c.88A>G	c.A88G	R30G
c.94C>A	c.C94A	L32M
c.94C>G	c.C94G	L32V
c.95T>A	c.T95A	L32Q
c.95T>C	c.T95C	L32P
c.95T>G	c.T95G	L32R
c.97G>C	c.G97C	D33H
c.97G>T	c.G97T	D33Y
c.98A>C	c.A98C	D33A
c.98A>G	c.A98G	D33G
c.98A>T	c.A98T	D33V
c.99C>G	c.C99G	D33E
c.100A>C	c.A100C	N34H
c.100A>G	c.A100G	N34D
c.101A>C	c.A101C	N34T
c.101A>G	c.A101G	N34S
c.102T>G or c.102T>A	c.T102G or c.T102A	N34K
c.103G>C or c.103G>A	c.G103C or c.G103A	G35R
c.104G>A	c.G104A	G35E
c.104G>C	c.G104C	G35A
c.104G>T	c.G104T	G35V
c.106T>A	c.T106A	L36M
c.106T>G	c.T106G	L36V
c.107T>C	c.T107C	L36S
c.107T>G	c.T107G	L36W
c.108G>C or c.108G>T	c.G108C or c.G108T	L36F
c.109G>A	c.G109A	A37T
c.109G>T	c.G109T	A37S
c.110C>A	c.C110A	A37E

Table 1. HEK Assay Amenable Mutations

Nucleotide change	Nucleotide change	Protein sequence change
c.110C>G	c.C110G	A37G
c.110C>T	c.C110T	A37V
c.112A>G	c.A112G	R38G
c.112A>T	c.A112T	R38W
c.113G>T	c.G113T	R38M
c.114G>C	c.G114C	R38S
c.115A>G	c.A115G	T39A
c.115A>T	c.A115T	T39S
c.116C>A	c.C116A	T39K
c.116C>G	c.C116G	T39R
c.116C>T	c.C116T	T39M
c.121A>G	c.A121G	T41A
c.122C>A	c.C122A	T41N
c.122C>G	c.C122G	T41S
c.122C>T	c.C122T	T41I
c.124A>C or c.124A>T	c.A124C or c.A124T	M42L
c.124A>G	c.A124G	M42V
c.125T>A	c.T125A	M42K
c.125T>C	c.T125C	M42T
c.125T>G	c.T125G	M42R
c.126G>A or c.126G>C or c.126G>T	c.G126A or c.G126C or c.G126T	M42I
c.128G>C	c.G128C	G43A
c.133C>A	c.C133A	L45M
c.133C>G	c.C133G	L45V
c.136C>A	c.C136A	H46N
c.136C>G	c.C136G	H46D
c.137A>C	c.A137C	H46P
c.138C>G	c.C138G	H46Q
c.142G>C	c.G142C	E48Q
c.143A>C	c.A143C	E48A
c.149T>A	c.T149A	F50Y
c.151A>G	c.A151G	M51V
c.152T>A	c.T152A	M51K
c.152T>C	c.T152C	M51T
c.152T>G	c.T152G	M51R
c.153G>A or c.153G>T or c.153G>C	c.G153A or c.G153T or c.G153C	M51I
c.157A>C	c.A157C	N53H
c.[157A>C; 158A>T]	c.A157C/A158T	N53L
c.157A>G	c.A157G	N53D
c.157A>T	c.A157T	N53Y
c.158A>C	c.A158C	N53T
c.158A>G	c.A158G	N53S
c.158A>T	c.A158T	N53I

Table 1. HEK Assay Amenable Mutations

Nucleotide change	Nucleotide change	Protein sequence change
c.159C>G or c.159C>A	c.C159G or c.C159A	N53K
c.160C>G	c.C160G	L54V
c.160C>T	c.C160T	L54F
c.161T>A	c.T161A	L54H
c.161T>C	c.T161C	L54P
c.161T>G	c.T161G	L54R
c.163G>C	c.G163C	D55H
c.163G>T	c.G163T	D55Y
c.164A>C	c.A164C	D55A
c.164A>G	c.A164G	D55G
c.164A>T	c.A164T	D55V
c.[164A>T; 170A>T]	c.A164T/A170T	D55V/Q57L
c.165C>G	c.C165G	D55E
c.167G>A	c.G167A	C56Y
c.167G>T	c.G167T	C56F
c.168C>G	c.C168G	C56W
c.170A>G	c.A170G	Q57R
c.170A>T	c.A170T	Q57L
c.172G>A	c.G172A	E58K
c.175G>A	c.G175A	E59K
c.175G>C	c.G175C	E59Q
c.176A>C	c.A176C	E59A
c.176A>G	c.A176G	E59G
c.176A>T	c.A176T	E59V
c.177G>C	c.G177C	E59D
c.178C>A	c.C178A	P60T
c.178C>G	c.C178G	P60A
c.178C>T	c.C178T	P60S
c.179C>A	c.C179A	P60Q
c.179C>G	c.C179G	P60R
c.179C>T	c.C179T	P60L
c.182A>T	c.A182T	D61V
c.183T>A	c.T183A	D61E
c.184_185insTAG	c.184_185insTAG	S62delinsLA
c.184T>C	c.T184C	S62P
c.184T>G	c.T184G	S62A
c.185C>A	c.C185A	S62Y
c.185C>G	c.C185G	S62C
c.185C>T	c.C185T	S62F
c.190A>C	c.A190C	I64L
c.190A>G	c.A190G	I64V
c.193A>G	c.A193G	S65G
c.193A>T	c.A193T	S65C
c.195T>A	c.T195A	S65R
c.196G>A	c.G196A	E66K

Table 1. HEK Assay Amenable Mutations

Nucleotide change	Nucleotide change	Protein sequence change
c.197A>G	c.A197G	E66G
c.197A>T	c.A197T	E66V
c.198G>C	c.G198C	E66D
c.199A>C	c.A199C	K67Q
c.199A>G	c.A199G	K67E
c.200A>C	c.A200C	K67T
c.200A>T	c.A200T	K67M
c.201G>C	c.G201C	K67N
c.202C>A	c.C202A	L68I
c.205T>A	c.T205A	F69I
c.206T>A	c.T206A	F69Y
c.207C>A or c.207C>G	c.C207A or c.C207G	F69L
c.208A>T	c.A208T	M70L
c.209T>A	c.T209A	M70K
c.209T>G	c.T209G	M70R
c.210G>C	c.G210C	M70I
c.211G>C	c.G211C	E71Q
c.212A>C	c.A212C	E71A
c.212A>G	c.A212G	E71G
c.212A>T	c.A212T	E71V
c.213G>C	c.G213C	E71D
c.214A>G	c.A214G	M72V
c.214A>T	c.A214T	M72L
c.215T>C	c.T215C	M72T
c.216G>A or c.216G>T or c.216G>C	c.G216A or c.G216T or c.G216C	M72I
c.217G>A	c.G217A	A73T
c.217G>T	c.G217T	A73S
c.218C>T	c.C218T	A73V
c.220G>A	c.G220A	E74K
c.221A>G	c.A221G	E74G
c.221A>T	c.A221T	E74V
c.222G>C	c.G222C	E74D
c.223C>T	c.C223T	L75F
c.224T>C	c.T224C	L75P
c.226A>G	c.A226G	M76V
c.227T>C	c.T227C	M76T
c.229G>A	c.G229A	V77I
c.229G>C	c.G229C	V77L
c.232T>C	c.T232C	S78P
c.233C>T	c.C233T	S78L
c.235G>A	c.G235A	E79K
c.235G>C	c.G235C	E79Q
c.236A>C	c.A236C	E79A
c.236A>G	c.A236G	E79G

Table 1. HEK Assay Amenable Mutations

Nucleotide change	Nucleotide change	Protein sequence change
c.236A>T	c.A236T	E79V
c.237A>T	c.A237T	E79D
c.238G>A	c.G238A	G80S
c.238G>T	c.G238T	G80C
c.239G>A	c.G239A	G80D
c.239G>C	c.G239C	G80A
c.239G>T	c.G239T	G80V
c.242G>T	c.G242T	W81L
c.244A>G	c.A244G	K82E
c.245A>C	c.A245C	K82T
c.245A>G	c.A245G	K82R
c.245A>T	c.A245T	K82M
c.246G>C	c.G246C	K82N
c.247G>A	c.G247A	D83N
c.248A>C	c.A248C	D83A
c.248A>G	c.A248G	D83G
c.248A>T	c.A248T	D83V
c.249T>A	c.T249A	D83E
c.250G>A	c.G250A	A84T
c.250G>C	c.G250C	A84P
c.250G>T	c.G250T	A84S
c.251C>A	c.C251A	A84E
c.251C>G	c.C251G	A84G
c.251C>T	c.C251T	A84V
c.253G>A	c.G253A	G85S
c.[253G>A; 254G>A]	c.G253A/G254A	G85N
c.[253G>A; 254G>T; 255T>G]	c.G253A/G254T/T255G	G85M
c.253G>C	c.G253C	G85R
c.253G>T	c.G253T	G85C
c.254G>A	c.G254A	G85D
c.254G>C	c.G254C	G85A
c.257A>T	c.A257T	Y86F
c.260A>G	c.A260G	E87G
c.261G>C or c.261G>T	c.G261C or c.G261T	E87D
c.262T>A	c.T262A	Y88N
c.262T>C	c.T262C	Y88H
c.263A>C	c.A263C	Y88S
c.263A>G	c.A263G	Y88C
c.265C>G	c.C265G	L89V
c.265C>T	c.C265T	L89F
c.271A>C	c.A271C	I91L
c.271A>T	c.A271T	I91F
c.272T>C	c.T272C	I91T
c.272T>G	c.T272G	I91S

Table 1. HEK Assay Amenable Mutations

Nucleotide change	Nucleotide change	Protein sequence change
c.273T>G	c.T273G	I91M
c.286A>G	c.A286G	M96V
c.286A>T	c.A286T	M96L
c.287T>C	c.T287C	M96T
c.288G>A or c.288G>T or c.288G>C	c.G288A or c.G288T or c.G288C	M96I
c.289G>A	c.G289A	A97T
c.289G>C	c.G289C	A97P
c.289G>T	c.G289T	A97S
c.290C>A	c.C290A	A97D
c.290C>T	c.C290T	A97V
c.293C>A	c.C293A	P98H
c.293C>G	c.C293G	P98R
c.293C>T	c.C293T	P98L
c.295C>G	c.C295G	Q99E
c.296A>C	c.A296C	Q99P
c.296A>G	c.A296G	Q99R
c.296A>T	c.A296T	Q99L
c.301G>C	c.G301C	D101H
c.302A>C	c.A302C	D101A
c.302A>G	c.A302G	D101G
c.302A>T	c.A302T	D101V
c.303T>A	c.T303A	D101E
c.304T>A	c.T304A	S102T
c.304T>C	c.T304C	S102P
c.304T>G	c.T304G	S102A
c.305C>T	c.C305T	S102L
c.310G>A	c.G310A	G104S
c.311G>A	c.G311A	G104D
c.311G>C	c.G311C	G104A
c.311G>T	c.G311T	G104V
c.313A>G	c.A313G	R105G
c.314G>A	c.G314A	R105K
c.314G>C	c.G314C	R105T
c.314G>T	c.G314T	R105I
c.316C>A	c.C316A	L106I
c.316C>G	c.C316G	L106V
c.316C>T	c.C316T	L106F
c.317T>A	c.T317A	L106H
c.317T>C	c.T317C	L106P
c.319C>A	c.C319A	Q107K
c.319C>G	c.C319G	Q107E
c.320A>G	c.A320G	Q107R
c.321G>C	c.G321C	Q107H
c.322G>A	c.G322A	A108T

Table 1. HEK Assay Amenable Mutations

Nucleotide change	Nucleotide change	Protein sequence change
c.323C>A	c.C323A	A108E
c.323C>T	c.C323T	A108V
c.325G>A	c.G325A	D109N
c.325G>C	c.G325C	D109H
c.325G>T	c.G325T	D109Y
c.326A>C	c.A326C	D109A
c.326A>G	c.A326G	D109G
c.327C>G	c.C327G	D109E
c.328C>A	c.C328A	P110T
c.334C>G	c.C334G	R112G
c.335G>A	c.G335A	R112H
c.335G>T	c.G335T	R112L
c.337T>A	c.T337A	F113I
c.337T>C or c.339T>A or c.339T>G	c.T337C or c.T339A or c.T339G	F113L
c.337T>G	c.T337G	F113V
c.338T>A	c.T338A	F113Y
c.341C>T	c.C341T	P114L
c.343C>A	c.C343A	H115N
c.343C>G	c.C343G	H115D
c.346G>C	c.G346C	G116R
c.350T>C	c.T350C	I117T
c.351T>G	c.T351G	I117M
c.352C>T	c.C352T	R118C
c.361G>A	c.G361A	A121T
c.362C>T	c.C362T	A121V
c.367T>A	c.T367A	Y123N
c.367T>G	c.T367G	Y123D
c.368A>C	c.A368C	Y123S
c.368A>G	c.A368G	Y123C
c.368A>T	c.A368T	Y123F
c.370G>A	c.G370A	V124I
c.371T>G	c.T371G	V124G
c.373C>A	c.C373A	H125N
c.373C>G	c.C373G	H125D
c.373C>T	c.C373T	H125Y
c.374A>G	c.A374G	H125R
c.374A>T	c.A374T	H125L
c.376A>G	c.A376G	S126G
c.376A>T	c.A376T	S126C
c.377G>T	c.G377T	S126I
c.379A>G	c.A379G	K127E
c.383G>A	c.G383A	G128E
c.383G>C	c.G383C	G128A
c.385C>G	c.C385G	L129V

Table 1. HEK Assay Amenable Mutations

Nucleotide change	Nucleotide change	Protein sequence change
c.388A>C	c.A388C	K130Q
c.389A>T	c.A389T	K130M
c.390G>C	c.G390C	K130N
c.391C>G	c.C391G	L131V
c.397A>C	c.A397C	I133L
c.397A>G	c.A397G	I133V
c.397A>T	c.A397T	I133F
c.398T>C	c.T398C	I133T
c.399T>G	c.T399G	I133M
c.[399T>G; 434T>C]	c.T399G/T434C	I133M/F145S
c.403G>A	c.G403A	A135T
c.403G>T	c.G403T	A135S
c.404C>A	c.C404A	A135E
c.404C>G	c.C404G	A135G
c.404C>T	c.C404T	A135V
c.406G>A	c.G406A	D136N
c.407A>C	c.A407C	D136A
c.407A>T	c.A407T	D136V
c.408T>A or c.408T>G	c.T408A or c.T408G	D136E
c.409G>A	c.G409A	V137I
c.409G>C	c.G409C	V137L
c.410T>A	c.T410A	V137D
c.410T>C	c.T410C	V137A
c.410T>G	c.T410G	V137G
c.413G>C	c.G413C	G138A
c.415A>C	c.A415C	N139H
c.415A>T	c.A415T	N139Y
c.416A>G	c.A416G	N139S
c.416A>T	c.A416T	N139I
c.417T>A	c.T417A	N139K
c.418A>C	c.A418C	K140Q
c.418A>G	c.A418G	K140E
c.419A>C	c.A419C	K140T
c.419A>G	c.A419G	K140R
c.419A>T	c.A419T	K140I
c.420A>T	c.A420T	K140N
c.421A>T	c.A421T	T141S
c.427G>A	c.G427A	A143T
c.428C>A	c.C428A	A143E
c.428C>G	c.C428G	A143G
c.428C>T	c.C428T	A143V
c.430G>A	c.G430A	G144S
c.430G>C	c.G430C	G144R
c.430G>T	c.G430T	G144C
c.431G>A	c.G431A	G144D

Table 1. HEK Assay Amenable Mutations

Nucleotide change	Nucleotide change	Protein sequence change
c.431G>C	c.G431C	G144A
c.431G>T	c.G431T	G144V
c.433T>G	c.T433G	F145V
c.434T>A	c.T434A	F145Y
c.434T>C	c.T434C	F145S
c.434T>G	c.T434G	F145C
c.435C>G	c.C435G	F145L
c.436C>A	c.C436A	P146T
c.436C>G	c.C436G	P146A
c.436C>T	c.C436T	P146S
c.437C>A	c.C437A	P146H
c.437C>G	c.C437G	P146R
c.437C>T	c.C437T	P146L
c.440G>C	c.G440C	G147A
c.442A>G	c.A442G	S148G
c.442A>T	c.A442T	S148C
c.443G>C	c.G443C	S148T
c.446T>G	c.T446G	F149C
c.449G>A	c.G449A	G150E
c.449G>T	c.G449T	G150V
c.451T>G	c.T451G	Y151D
c.452A>C	c.A452C	Y151S
c.452A>G	c.A452G	Y151C
c.454T>A	c.T454A	Y152N
c.454T>C	c.T454C	Y152H
c.454T>G	c.T454G	Y152D
c.455A>C	c.A455C	Y152S
c.455A>G	c.A455G	Y152C
c.455A>T	c.A455T	Y152F
c.457G>A	c.G457A	D153N
c.457G>C	c.G457C	D153H
c.457G>T	c.G457T	D153Y
c.458A>C	c.A458C	D153A
c.458A>T	c.A458T	D153V
c.465T>A or c.465T>G	c.T465A or c.T465G	D155E
c.466G>A	c.G466A	A156T
c.466G>T	c.G466T	A156S
c.467C>G	c.C467G	A156G
c.467C>T	c.C467T	A156V
c.469C>A	c.C469A	Q157K
c.469C>G	c.C469G	Q157E
c.470A>C	c.A470C	Q157P
c.470A>T	c.A470T	Q157L
c.471G>C or c.471G>T	c.G471C or c.G471T	Q157H
c.472A>G	c.A472G	T158A

Table 1. HEK Assay Amenable Mutations

Nucleotide change	Nucleotide change	Protein sequence change
c.472A>T	c.A472T	T158S
c.473C>A	c.C473A	T158N
c.473C>T	c.C473T	T158I
c.475T>A	c.T475A	F159I
c.475T>G	c.T475G	F159V
c.476T>A	c.T476A	F159Y
c.476T>G	c.T476G	F159C
c.477T>A	c.T477A	F159L
c.478G>A	c.G478A	A160T
c.478G>T	c.G478T	A160S
c.479C>A	c.C479A	A160D
c.479C>G	c.C479G	A160G
c.479C>T	c.C479T	A160V
c.481G>A	c.G481A	D161N
c.481G>C	c.G481C	D161H
c.481G>T	c.G481T	D161Y
c.482A>T	c.A482T	D161V
c.484T>G	c.T484G	W162G
c.485G>C	c.G485C	W162S
c.490G>A	c.G490A	V164I
c.490G>T	c.G490T	V164L
c.491T>C	c.T491C	V164A
c.493G>A	c.G493A	D165N
c.493G>C	c.G493C	D165H
c.494A>C	c.A494C	D165A
c.494A>G	c.A494G	D165G
c.495T>A	c.T495A	D165E
c.496_497delinsTC	c.496_497delinsTC	L166S
c.496C>A	c.C496A	L166M
c.496C>G	c.C496G	L166V
c.[496C>G; 497T>G]	c.C496G/T497G	L166G
c.497T>A	c.T497A	L166Q
c.499C>A	c.C499A	L167I
c.499C>G	c.C499G	L167V
c.505T>A	c.T505A	F169I
c.505T>G	c.T505G	F169V
c.506T>A	c.T506A	F169Y
c.506T>C	c.T506C	F169S
c.506T>G	c.T506G	F169C
c.507T>A	c.T507A	F169L
c.511G>A	c.G511A	G171S
c.512G>C	c.G512C	G171A
c.512G>T	c.G512T	G171V
c.517T>C	c.T517C	Y173H
c.518A>C	c.A518C	Y173S

Table 1. HEK Assay Amenable Mutations

Nucleotide change	Nucleotide change	Protein sequence change
c.518A>G	c.A518G	Y173C
c.518A>T	c.A518T	Y173F
c.520T>C	c.T520C	C174R
c.520T>G	c.T520G	C174G
c.523G>C	c.G523C	D175H
c.523G>T	c.G523T	D175Y
c.524A>G	c.A524G	D175G
c.524A>T	c.A524T	D175V
c.525C>G or c.525C>A	c.C525G or c.C525A	D175E
c.526A>T	c.A526T	S176C
c.528T>A	c.T528A	S176R
c.529T>A	c.T529A	L177M
c.529T>G	c.T529G	L177V
c.530T>C	c.T530C	L177S
c.530T>G	c.T530G	L177W
c.531G>C	c.G531C	L177F
c.532G>A	c.G532A	E178K
c.532G>C	c.G532C	E178Q
c.533A>C	c.A533C	E178A
c.533A>G	c.A533G	E178G
c.538T>A	c.T538A	L180M
c.538T>G	c.T538G	L180V
c.539T>C	c.T539C	L180S
c.539T>G	c.T539G	L180W
c.540G>C or c.540G>T	c.G540C or c.G540T	L180F
c.541G>A	c.G541A	A181T
c.541G>C	c.G541C	A181P
c.542C>T	c.C542T	A181V
c.544G>T	c.G544T	D182Y
c.545A>C	c.A545C	D182A
c.545A>G	c.A545G	D182G
c.545A>T	c.A545T	D182V
c.546T>A	c.T546A	D182E
c.548G>A	c.G548A	G183D
c.548G>C	c.G548C	G183A
c.550T>A	c.T550A	Y184N
c.550T>C	c.T550C	Y184H
c.551A>C	c.A551C	Y184S
c.551A>G	c.A551G	Y184C
c.551A>T	c.A551T	Y184F
c.553A>C	c.A553C	K185Q
c.553A>G	c.A553G	K185E
c.554A>C	c.A554C	K185T
c.554A>T	c.A554T	K185M
c.555G>C	c.G555C	K185N

Table 1. HEK Assay Amenable Mutations

Nucleotide change	Nucleotide change	Protein sequence change
c.556C>A	c.C556A	H186N
c.556C>G	c.C556G	H186D
c.556C>T	c.C556T	H186Y
c.557A>T	c.A557T	H186L
c.558C>G	c.C558G	H186Q
c.559_564dup	c.559_564dup	p.M187_S188dup
c.559A>T	c.A559T	M187L
c.559A>G	c.A559G	M187V
c.560T>C	c.T560C	M187T
c.561G>T or c.561G>A or c.561G>C	c.G561T or c.G561A or c.G561C	M187I
c.562T>A	c.T562A	S188T
c.562T>C	c.T562C	S188P
c.562T>G	c.T562G	S188A
c.563C>A	c.C563A	S188Y
c.563C>G	c.C563G	S188C
c.563C>T	c.C563T	S188F
c.565T>G	c.T565G	L189V
c.566T>C	c.T566C	L189S
c.567G>C or c.567G>T	c.G567C or c.G567T	L189F
c.568G>A	c.G568A	A190T
c.568G>T	c.G568T	A190S
c.569C>A	c.C569A	A190D
c.569C>G	c.C569G	A190G
c.569C>T	c.C569T	A190V
c.571C>A	c.C571A	L191M
c.571C>G	c.C571G	L191V
c.572T>A	c.T572A	L191Q
c.574A>C	c.A574C	N192H
c.574A>G	c.A574G	N192D
c.575A>C	c.A575C	N192T
c.575A>G	c.A575G	N192S
c.576T>A	c.T576A	N192K
c.577A>G	c.A577G	R193G
c.577A>T	c.A577T	R193W
c.578G>C	c.G578C	R193T
c.578G>T	c.G578T	R193M
c.580A>C	c.A580C	T194P
c.580A>G	c.A580G	T194A
c.580A>T or c.581C>G	c.A580T or c.C581G	T194S
c.581C>A	c.C581A	T194N
c.581C>T	c.C581T	T194I
c.583G>A	c.G583A	G195S
c.583G>C	c.G583C	G195R
c.583G>T	c.G583T	G195C

Table 1. HEK Assay Amenable Mutations

Nucleotide change	Nucleotide change	Protein sequence change
c.584G>T	c.G584T	G195V
c.586A>G	c.A586G	R196G
c.587G>A	c.G587A	R196K
c.587G>C	c.G587C	R196T
c.587G>T	c.G587T	R196I
c.589A>G	c.A589G	S197G
c.589A>T	c.A589T	S197C
c.590G>A	c.G590A	S197N
c.590G>C	c.G590C	S197T
c.590G>T	c.G590T	S197I
c.593T>C	c.T593C	I198T
c.593T>G	c.T593G	I198S
c.594T>G	c.T594G	I198M
c.595G>A	c.G595A	V199M
c.595G>C	c.G595C	V199L
c.596T>A	c.T596A	V199E
c.596T>C	c.T596C	V199A
c.596T>G	c.T596G	V199G
c.598T>A	c.T598A	Y200N
c.599A>C	c.A599C	Y200S
c.599A>G	c.A599G	Y200C
c.601T>A	c.T601A	S201T
c.601T>G	c.T601G	S201A
c.602C>A	c.C602A	S201Y
c.602C>G	c.C602G	S201C
c.602C>T	c.C602T	S201F
c.607G>C	c.G607C	E203Q
c.608A>C	c.A608C	E203A
c.608A>G	c.A608G	E203G
c.608A>T	c.A608T	E203V
c.609G>C or c.609G>T	c.G609C or c.G609T	E203D
c.610T>G	c.T610G	W204G
c.611G>C	c.G611C	W204S
c.611G>T	c.G611T	W204L
c.613C>A	c.C613A	P205T
c.613C>T	c.C613T	P205S
c.614C>T	c.C614T	P205L
c.616C>A	c.C616A	L206I
c.616C>G	c.C616G	L206V
c.616C>T	c.C616T	L206F
c.617T>A	c.T617A	L206H
c.617T>G	c.T617G	L206R
c.619T>C	c.T619C	Y207H
c.620A>C	c.A620C	Y207S
c.620A>T	c.A620T	Y207F

Table 1. HEK Assay Amenable Mutations

Nucleotide change	Nucleotide change	Protein sequence change
c.623T>A	c.T623A	M208K
c.623T>G	c.T623G	M208R
c.625T>A	c.T625A	W209R
c.625T>G	c.T625G	W209G
c.627G>C	c.G627C	W209C
c.628C>A	c.C628A	P210T
c.628C>T	c.C628T	P210S
c.629C>A	c.C629A	P210H
c.629C>T	c.C629T	P210L
c.631T>C	c.T631C	F211L
c.631T>G	c.T631G	F211V
c.632T>A	c.T632A	F211Y
c.632T>C	c.T632C	F211S
c.632T>G	c.T632G	F211C
c.635A>C	c.A635C	Q212P
c.636A>T	c.A636T	Q212H
c.637A>C	c.A637C	K213Q
c.637A>G	c.A637G	K213E
c.638A>G	c.A638G	K213R
c.638A>T	c.A638T	K213M
c.640C>A	c.C640A	P214T
c.640C>G	c.C640G	P214A
c.640C>T	c.C640T	P214S
c.641C>A	c.C641A	P214H
c.641C>G	c.C641G	P214R
c.641C>T	c.C641T	P214L
c.643A>C	c.A643C	N215H
c.643A>G	c.A643G	N215D
c.643A>T	c.A643T	N215Y
c.644A>C	c.A644C	N215T
c.644A>G	c.A644G	N215S
c.[644A>G; 937G>T]	c.A644G/G937T	N215S/D313Y
c.644A>T	c.A644T	N215I
c.645T>A	c.T645A	N215K
c.646T>A	c.T646A	Y216N
c.646T>C	c.T646C	Y216H
c.646T>G	c.T646G	Y216D
c.647A>C	c.A647C	Y216S
c.647A>G	c.A647G	Y216C
c.647A>T	c.A647T	Y216F
c.649A>C	c.A649C	T217P
c.649A>G	c.A649G	T217A
c.649A>T	c.A649T	T217S
c.650C>A	c.C650A	T217K
c.650C>G	c.C650G	T217R

Table 1. HEK Assay Amenable Mutations

Nucleotide change	Nucleotide change	Protein sequence change
c.650C>T	c.C650T	T217I
c.652G>A	c.G652A	E218K
c.652G>C	c.G652C	E218Q
c.653A>C	c.A653C	E218A
c.653A>G	c.A653G	E218G
c.653A>T	c.A653T	E218V
c.654A>T	c.A654T	E218D
c.655A>C	c.A655C	I219L
c.655A>T	c.A655T	I219F
c.656T>A	c.T656A	I219N
c.656T>C	c.T656C	I219T
c.656T>G	c.T656G	I219S
c.657C>G	c.C657G	I219M
c.659G>A	c.G659A	R220Q
c.659G>C	c.G659C	R220P
c.659G>T	c.G659T	R220L
c.661C>A	c.C661A	Q221K
c.661C>G	c.C661G	Q221E
c.662A>C	c.A662C	Q221P
c.662A>G	c.A662G	Q221R
c.662A>T	c.A662T	Q221L
c.663G>C	c.G663C	Q221H
c.664T>A	c.T664A	Y222N
c.664T>C	c.T664C	Y222H
c.664T>G	c.T664G	Y222D
c.665A>C	c.A665C	Y222S
c.665A>G	c.A665G	Y222C
c.670A>C	c.A670C	N224H
c.671A>C	c.A671C	N224T
c.671A>G	c.A671G	N224S
c.673C>G	c.C673G	H225D
c.679C>G	c.C679G	R227G
c.682A>C	c.A682C	N228H
c.682A>G	c.A682G	N228D
c.683A>C	c.A683C	N228T
c.683A>G	c.A683G	N228S
c.683A>T	c.A683T	N228I
c.685T>A	c.T685A	F229I
c.686T>A	c.T686A	F229Y
c.686T>C	c.T686C	F229S
c.687T>A or c.687T>G	c.T687A or c.T687G	F229L
c.688G>C	c.G688C	A230P
c.689C>A	c.C689A	A230D
c.689C>G	c.C689G	A230G
c.689C>T	c.C689T	A230V

Table 1. HEK Assay Amenable Mutations

Nucleotide change	Nucleotide change	Protein sequence change
c.694A>C	c.A694C	I232L
c.694A>G	c.A694G	I232V
c.695T>C	c.T695C	I232T
c.696T>G	c.T696G	I232M
c.698A>C	c.A698C	D233A
c.698A>G	c.A698G	D233G
c.698A>T	c.A698T	D233V
c.699T>A	c.T699A	D233E
c.703T>A	c.T703A	S235T
c.703T>G	c.T703G	S235A
c.710A>T	c.A710T	K237I
c.712A>G	c.A712G	S238G
c.712A>T	c.A712T	S238C
c.713G>A	c.G713A	S238N
c.713G>C	c.G713C	S238T
c.713G>T	c.G713T	S238I
c.715A>T	c.A715T	I239L
c.716T>C	c.T716C	I239T
c.717A>G	c.A717G	I239M
c.718A>G	c.A718G	K240E
c.719A>G	c.A719G	K240R
c.719A>T	c.A719T	K240M
c.720G>C or c.720G>T	c.G720C or c.G720T	K240N
c.721A>T	c.A721T	S241C
c.722G>C	c.G722C	S241T
c.722G>T	c.G722T	S241I
c.724A>C	c.A724C	I242L
c.724A>G	c.A724G	I242V
c.724A>T	c.A724T	I242F
c.725T>A	c.T725A	I242N
c.725T>C	c.T725C	I242T
c.725T>G	c.T725G	I242S
c.726C>G	c.C726G	I242M
c.727T>A	c.T727A	L243M
c.727T>G	c.T727G	L243V
c.728T>C	c.T728C	L243S
c.728T>G	c.T728G	L243W
c.729G>C or c.729G>T	c.G729C or c.G729T	L243F
c.730G>A	c.G730A	D244N
c.730G>C	c.G730C	D244H
c.730G>T	c.G730T	D244Y
c.731A>C	c.A731C	D244A
c.731A>G	c.A731G	D244G
c.731A>T	c.A731T	D244V
c.732C>G	c.C732G	D244E

Table 1. HEK Assay Amenable Mutations

Nucleotide change	Nucleotide change	Protein sequence change
c.733T>G	c.T733G	W245G
c.735G>C	c.G735C	W245C
c.736A>G	c.A736G	T246A
c.737C>A	c.C737A	T246K
c.737C>G	c.C737G	T246R
c.737C>T	c.C737T	T246I
c.739T>A	c.T739A	S247T
c.739T>G	c.T739G	S247A
c.740C>A	c.C740A	S247Y
c.740C>G	c.C740G	S247C
c.740C>T	c.C740T	S247F
c.742T>G	c.T742G	F248V
c.743T>A	c.T743A	F248Y
c.743T>G	c.T743G	F248C
c.744T>A	c.T744A	F248L
c.745A>C	c.A745C	N249H
c.745A>G	c.A745G	N249D
c.745A>T	c.A745T	N249Y
c.746A>C	c.A746C	N249T
c.746A>G	c.A746G	N249S
c.746A>T	c.A746T	N249I
c.747C>G or c.747C>A	c.C747G or c.C747A	N249K
c.748C>A	c.C748A	Q250K
c.748C>G	c.C748G	Q250E
c.749A>C	c.A749C	Q250P
c.749A>G	c.A749G	Q250R
c.749A>T	c.A749T	Q250L
c.750G>C	c.G750C	Q250H
c.751G>A	c.G751A	E251K
c.751G>C	c.G751C	E251Q
c.752A>G	c.A752G	E251G
c.752A>T	c.A752T	E251V
c.754A>G	c.A754G	R252G
c.757A>G	c.A757G	I253V
c.757A>T	c.A757T	I253F
c.758T>A	c.T758A	I253N
c.758T>C	c.T758C	I253T
c.758T>G	c.T758G	I253S
c.760-762delGTT or c.761-763del	c.760_762delGTT or c.761_763del	p.V254del
c.760G>T	c.G760T	V254F
c.761T>A	c.T761A	V254D
c.761T>C	c.T761C	V254A
c.761T>G	c.T761G	V254G
c.763G>A	c.G763A	D255N

Table 1. HEK Assay Amenable Mutations

Nucleotide change	Nucleotide change	Protein sequence change
c.763G>C	c.G763C	D255H
c.763G>T	c.G763T	D255Y
c.764A>C	c.A764C	D255A
c.764A>T	c.A764T	D255V
c.765T>A	c.T765A	D255E
c.766G>C	c.G766C	V256L
c.767T>A	c.T767A	V256D
c.767T>G	c.T767G	V256G
c.769G>A	c.G769A	A257T
c.769G>C	c.G769C	A257P
c.769G>T	c.G769T	A257S
c.770C>G	c.C770G	A257G
c.770C>T	c.C770T	A257V
c.772G>C or c.772G>A	c.G772C or c.G772A	G258R
c.773G>A	c.G773A	G258E
c.773G>T	c.G773T	G258V
c.775C>A	c.C775A	P259T
c.775C>G	c.C775G	P259A
c.775C>T	c.C775T	P259S
c.776C>A	c.C776A	P259Q
c.776C>G	c.C776G	P259R
c.776C>T	c.C776T	P259L
c.778G>T	c.G778T	G260W
c.779G>A	c.G779A	G260E
c.779G>C	c.G779C	G260A
c.781G>A	c.G781A	G261S
c.781G>C	c.G781C	G261R
c.781G>T	c.G781T	G261C
c.782G>C	c.G782C	G261A
c.787A>C	c.A787C	N263H
c.788A>C	c.A788C	N263T
c.788A>G	c.A788G	N263S
c.790G>A	c.G790A	D264N
c.790G>C	c.G790C	D264H
c.790G>T	c.G790T	D264Y
c.793C>G	c.C793G	P265A
c.794C>A	c.C794A	P265Q
c.794C>T	c.C794T	P265L
c.799A>G	c.A799G	M267V
c.799A>T	c.A799T	M267L
c.800T>C	c.T800C	M267T
c.802T>A	c.T802A	L268I
c.804A>T	c.A804T	L268F
c.805G>A	c.G805A	V269M
c.805G>C	c.G805C	V269L

Table 1. HEK Assay Amenable Mutations

Nucleotide change	Nucleotide change	Protein sequence change
c.806T>C	c.T806C	V269A
c.808A>C	c.A808C	I270L
c.808A>G	c.A808G	I270V
c.809T>C	c.T809C	I270T
c.809T>G	c.T809G	I270S
c.810T>G	c.T810G	I270M
c.811G>A	c.G811A	G271S
c.[811G>A; 937G>T]	c.G811A/G937T	G271S/D313Y
c.812G>A	c.G812A	G271D
c.812G>C	c.G812C	G271A
c.814A>G	c.A814G	N272D
c.818T>A	c.T818A	F273Y
c.823C>A	c.C823A	L275I
c.823C>G	c.C823G	L275V
c.827G>A	c.G827A	S276N
c.827G>C	c.G827C	S276T
c.829T>G	c.T829G	W277G
c.830G>T	c.G830T	W277L
c.831G>T or c.831G>C	c.G831T or c.G831C	W277C
c.832A>T	c.A832T	N278Y
c.833A>T	c.A833T	N278I
c.835C>G	c.C835G	Q279E
c.838C>A	c.C838A	Q280K
c.839A>G	c.A839G	Q280R
c.839A>T	c.A839T	Q280L
c.840A>T or c.840A>C	c.A840T or c.A840C	Q280H
c.841G>C	c.G841C	V281L
c.842T>A	c.T842A	V281E
c.842T>C	c.T842C	V281A
c.842T>G	c.T842G	V281G
c.844A>G	c.A844G	T282A
c.844A>T	c.A844T	T282S
c.845C>T	c.C845T	T282I
c.847C>G	c.C847G	Q283E
c.848A>T	c.A848T	Q283L
c.849G>C	c.G849C	Q283H
c.850A>G	c.A850G	M284V
c.850A>T	c.A850T	M284L
c.851T>C	c.T851C	M284T
c.852G>C	c.G852C	M284I
c.853G>A	c.G853A	A285T
c.854C>G	c.C854G	A285G
c.854C>T	c.C854T	A285V
c.856C>G	c.C856G	L286V
c.856C>T	c.C856T	L286F

Table 1. HEK Assay Amenable Mutations

Nucleotide change	Nucleotide change	Protein sequence change
c.857T>A	c.T857A	L286H
c.860G>T	c.G860T	W287L
c.862G>C	c.G862C	A288P
c.862G>T	c.G862T	A288S
c.863C>G	c.C863G	A288G
c.863C>T	c.C863T	A288V
c.865A>C	c.A865C	I289L
c.865A>G	c.A865G	I289V
c.866T>C	c.T866C	I289T
c.866T>G	c.T866G	I289S
c.868A>C or c.868A>T	c.A868C or c.A868T	M290L
c.868A>G	c.A868G	M290V
c.869T>C	c.T869C	M290T
c.870G>A or c.870G>C or c.870G>T	c.G870A or c.G870C or c.G870T	M290I
c.871G>A	c.G871A	A291T
c.871G>T	c.G871T	A291S
c.872C>G	c.C872G	A291G
c.874G>T	c.G874T	A292S
c.875C>G	c.C875G	A292G
c.877C>A	c.C877A	P293T
c.880T>A	c.T880A	L294I
c.880T>G	c.T880G	L294V
c.881T>C	c.T881C	L294S
c.882A>T	c.A882T	L294F
c.883T>A	c.T883A	F295I
c.883T>G	c.T883G	F295V
c.884T>A	c.T884A	F295Y
c.884T>C	c.T884C	F295S
c.884T>G	c.T884G	F295C
c.886A>G	c.A886G	M296V
c.886A>T or c.886A>C	c.A886T or c.A886C	M296L
c.887T>C	c.T887C	M296T
c.888G>A or c.888G>T or c.888G>C	c.G888A or c.G888T or c.G888C	M296I
c.889T>A	c.T889A	S297T
c.892A>G	c.A892G	N298D
c.893A>C	c.A893C	N298T
c.893A>G	c.A893G	N298S
c.893A>T	c.A893T	N298I
c.895G>A	c.G895A	D299N
c.895G>C	c.G895C	D299H
c.897C>G or c.897C>A	c.C897G or c.C897A	D299E
c.898C>A	c.C898A	L300I
c.898C>G	c.C898G	L300V

Table 1. HEK Assay Amenable Mutations

Nucleotide change	Nucleotide change	Protein sequence change
c.898C>T	c.C898T	L300F
c.899T>C	c.T899C	L300P
c.901C>G	c.C901G	R301G
c.902G>A	c.G902A	R301Q
c.902G>C	c.G902C	R301P
c.902G>T	c.G902T	R301L
c.904C>A	c.C904A	H302N
c.904C>G	c.C904G	H302D
c.904C>T	c.C904T	H302Y
c.905A>T	c.A905T	H302L
c.907A>G	c.A907G	I303V
c.907A>T	c.A907T	I303F
c.908T>A	c.T908A	I303N
c.908T>C	c.T908C	I303T
c.908T>G	c.T908G	I303S
c.911G>A	c.G911A	S304N
c.911G>C	c.G911C	S304T
c.911G>T	c.G911T	S304I
c.916C>G	c.C916G	Q306E
c.917A>C	c.A917C	Q306P
c.917A>T	c.A917T	Q306L
c.919G>A	c.G919A	A307T
c.919G>C	c.G919C	A307P
c.919G>T	c.G919T	A307S
c.920C>A	c.C920A	A307D
c.920C>G	c.C920G	A307G
c.920C>T	c.C920T	A307V
c.922A>C	c.A922C	K308Q
c.922A>G	c.A922G	K308E
c.923A>G	c.A923G	K308R
c.923A>T	c.A923T	K308I
c.924A>T or c.924A>C	c.A924T or c.A924C	K308N
c.925G>A	c.G925A	A309T
c.925G>C	c.G925C	A309P
c.926C>A	c.C926A	A309D
c.926C>T	c.C926T	A309V
c.928C>A	c.C928A	L310I
c.928C>G	c.C928G	L310V
c.928C>T	c.C928T	L310F
c.931C>A	c.C931A	L311I
c.931C>G	c.C931G	L311V
c.934C>A	c.C934A	Q312K
c.934C>G	c.C934G	Q312E
c.935A>G	c.A935G	Q312R
c.935A>T	c.A935T	Q312L

Table 1. HEK Assay Amenable Mutations

Nucleotide change	Nucleotide change	Protein sequence change
c.936G>T or c.936G>C	c.G936T or c.G936C	Q312H
c.937G>T	c.G937T	D313Y
c.[937G>T; 1232G>A]	c.G937T/G1232A	D313Y/G411D
c.938A>G	c.A938G	D313G
c.938A>T	c.A938T	D313V
c.939T>A	c.T939A	D313E
c.940A>G	c.A940G	K314E
c.941A>C	c.A941C	K314T
c.941A>T	c.A941T	K314M
c.942G>C	c.G942C	K314N
c.943G>A	c.G943A	D315N
c.943G>C	c.G943C	D315H
c.943G>T	c.G943T	D315Y
c.944A>C	c.A944C	D315A
c.944A>G	c.A944G	D315G
c.944A>T	c.A944T	D315V
c.946G>A	c.G946A	V316I
c.946G>C	c.G946C	V316L
c.947T>C	c.T947C	V316A
c.947T>G	c.T947G	V316G
c.949A>C	c.A949C	I317L
c.949A>G	c.A949G	I317V
c.950T>C	c.T950C	I317T
c.951T>G	c.T951G	I317M
c.952G>A	c.G952A	A318T
c.952G>C	c.G952C	A318P
c.953C>A	c.C953A	A318D
c.953C>T	c.C953T	A318V
c.955A>T	c.A955T	I319F
c.956T>C	c.T956C	I319T
c.957C>G	c.C957G	I319M
c.958A>C	c.A958C	N320H
c.959A>C	c.A959C	N320T
c.959A>G	c.A959G	N320S
c.959A>T	c.A959T	N320I
c.961C>A	c.C961A	Q321K
c.962A>G	c.A962G	Q321R
c.962A>T	c.A962T	Q321L
c.963G>C or c.963G>T	c.G963C or c.G963T	Q321H
c.964G>A	c.G964A	D322N
c.964G>C	c.G964C	D322H
c.965A>C	c.A965C	D322A
c.965A>T	c.A965T	D322V
c.966C>A or c.966C>G	c.C966A or c.C966G	D322E
c.967C>A	c.C967A	P323T

Table 1. HEK Assay Amenable Mutations

Nucleotide change	Nucleotide change	Protein sequence change
c.968C>G	c.C968G	P323R
c.970T>G	c.T970G	L324V
c.971T>G	c.T971G	L324W
c.973G>A	c.G973A	G325S
c.973G>C	c.G973C	G325R
c.973G>T	c.G973T	G325C
c.974G>C	c.G974C	G325A
c.974G>T	c.G974T	G325V
c.976A>C	c.A976C	K326Q
c.976A>G	c.A976G	K326E
c.977A>C	c.A977C	K326T
c.977A>G	c.A977G	K326R
c.977A>T	c.A977T	K326M
c.978G>C or c.978G>T	c.G978C or c.G978T	K326N
c.979C>G	c.C979G	Q327E
c.980A>C	c.A980C	Q327P
c.980A>T	c.A980T	Q327L
c.981A>T	c.A981T	Q327H
c.983G>C	c.G983C	G328A
c.985T>A	c.T985A	Y329N
c.985T>C	c.T985C	Y329H
c.985T>G	c.T985G	Y329D
c.986A>G	c.A986G	Y329C
c.986A>T	c.A986T	Y329F
c.988C>A	c.C988A	Q330K
c.988C>G	c.C988G	Q330E
c.989A>C	c.A989C	Q330P
c.989A>G	c.A989G	Q330R
c.990G>C	c.G990C	Q330H
c.991C>G	c.C991G	L331V
c.992T>A	c.T992A	L331H
c.992T>C	c.T992C	L331P
c.992T>G	c.T992G	L331R
c.994A>G	c.A994G	R332G
c.995G>C	c.G995C	R332T
c.995G>T	c.G995T	R332I
c.996A>T	c.A996T	R332S
c.997C>G	c.C997G	Q333E
c.998A>C	c.A998C	Q333P
c.998A>T	c.A998T	Q333L
c.1000G>C	c.G1000C	G334R
c.1001G>A	c.G1001A	G334E
c.1001G>T	c.G1001T	G334V
c.1003G>T	c.G1003T	D335Y
c.1004A>C	c.A1004C	D335A

Table 1. HEK Assay Amenable Mutations

Nucleotide change	Nucleotide change	Protein sequence change
c.1004A>G	c.A1004G	D335G
c.1004A>T	c.A1004T	D335V
c.1005C>G	c.C1005G	D335E
c.1006A>G	c.A1006G	N336D
c.1006A>T	c.A1006T	N336Y
c.1007A>C	c.A1007C	N336T
c.1007A>G	c.A1007G	N336S
c.1007A>T	c.A1007T	N336I
c.1009T>G	c.T1009G	F337V
c.1010T>A	c.T1010A	F337Y
c.1010T>C	c.T1010C	F337S
c.1010T>G	c.T1010G	F337C
c.1011T>A	c.T1011A	F337L
c.1012G>A	c.G1012A	E338K
c.1013A>C	c.A1013C	E338A
c.1013A>G	c.A1013G	E338G
c.1013A>T	c.A1013T	E338V
c.1014A>T	c.A1014T	E338D
c.1015G>A	c.G1015A	V339M
c.1016T>A	c.T1016A	V339E
c.1016T>C	c.T1016C	V339A
c.1021G>C	c.G1021C	E341Q
c.1022A>C	c.A1022C	E341A
c.1027C>A	c.C1027A	P343T
c.1027C>G	c.C1027G	P343A
c.1027C>T	c.C1027T	P343S
c.1028C>T	c.C1028T	P343L
c.1030C>G	c.C1030G	L344V
c.1030C>T	c.C1030T	L344F
c.1031T>G	c.T1031G	L344R
c.1033T>C	c.T1033C	S345P
c.1036G>T	c.G1036T	G346C
c.1037G>A	c.G1037A	G346D
c.1037G>C	c.G1037C	G346A
c.1037G>T	c.G1037T	G346V
c.1039T>A	c.T1039A	L347I
c.1043C>A	c.C1043A	A348D
c.1046G>C	c.G1046C	W349S
c.1046G>T	c.G1046T	W349L
c.1047G>C	c.G1047C	W349C
c.1048G>A	c.G1048A	A350T
c.1048G>T	c.G1048T	A350S
c.1049C>G	c.C1049G	A350G
c.1049C>T	c.C1049T	A350V
c.1052T>A	c.T1052A	V351E

Table 1. HEK Assay Amenable Mutations

Nucleotide change	Nucleotide change	Protein sequence change
c.1052T>C	c.T1052C	V351A
c.1054G>A	c.G1054A	A352T
c.1054G>T	c.G1054T	A352S
c.1055C>G	c.C1055G	A352G
c.1055C>T	c.C1055T	A352V
c.1057A>T	c.A1057T	M353L
c.1058T>A	c.T1058A	M353K
c.1058T>C	c.T1058C	M353T
c.1061T>A	c.T1061A	I354K
c.1061T>G	c.T1061G	I354R
c.1063A>C	c.A1063C	N355H
c.1063A>G	c.A1063G	N355D
c.1063A>T	c.A1063T	N355Y
c.1064A>G	c.A1064G	N355S
c.1066C>G	c.C1066G	R356G
c.1066C>T	c.C1066T	R356W
c.1067G>A	c.G1067A	R356Q
c.1067G>C	c.G1067C	R356P
c.1067G>T	c.G1067T	R356L
c.1069C>G	c.C1069G	Q357E
c.1072G>C	c.G1072C	E358Q
c.1073A>C	c.A1073C	E358A
c.1073A>G	c.A1073G	E358G
c.1074G>T or c.1074G>C	c.G1074T or c.G1074C	E358D
c.1075A>C	c.A1075C	I359L
c.1075A>G	c.A1075G	I359V
c.1075A>T	c.A1075T	I359F
c.1076T>A	c.T1076A	I359N
c.1076T>C	c.T1076C	I359T
c.1076T>G	c.T1076G	I359S
c.1078G>A	c.G1078A	G360S
c.1078G>C	c.G1078C	G360R
c.1078G>T	c.G1078T	G360C
c.1079G>A	c.G1079A	G360D
c.1079G>C	c.G1079C	G360A
c.1082G>A	c.G1082A	G361E
c.1082G>C	c.G1082C	G361A
c.1084C>A	c.C1084A	P362T
c.1084C>G	c.C1084G	P362A
c.1084C>T	c.C1084T	P362S
c.1085C>A	c.C1085A	P362H
c.1085C>G	c.C1085G	P362R
c.1085C>T	c.C1085T	P362L
c.1087C>A	c.C1087A	R363S
c.1087C>G	c.C1087G	R363G

Table 1. HEK Assay Amenable Mutations

Nucleotide change	Nucleotide change	Protein sequence change
c.1087C>T	c.C1087T	R363C
c.1088G>A	c.G1088A	R363H
c.1088G>T	c.G1088T	R363L
c.1090T>C	c.T1090C	S364P
c.1091C>G	c.C1091G	S364C
c.1093T>A	c.T1093A	Y365N
c.1093T>G	c.T1093G	Y365D
c.1094A>C	c.A1094C	Y365S
c.1094A>T	c.A1094T	Y365F
c.1096A>C	c.A1096C	T366P
c.1096A>T	c.A1096T	T366S
c.1097C>A	c.C1097A	T366N
c.1097C>T	c.C1097T	T366I
c.1099A>C	c.A1099C	I367L
c.1099A>T	c.A1099T	I367F
c.1101C>G	c.C1101G	I367M
c.1102G>A	c.G1102A	A368T
c.1102G>C	c.G1102C	A368P
c.1103C>G	c.C1103G	A368G
c.1105G>A	c.G1105A	V369I
c.1105G>C	c.G1105C	V369L
c.1105G>T	c.G1105T	V369F
c.1106T>C	c.T1106C	V369A
c.1106T>G	c.T1106G	V369G
c.1108G>A	c.G1108A	A370T
c.1108G>C	c.G1108C	A370P
c.1109C>A	c.C1109A	A370D
c.1109C>G	c.C1109G	A370G
c.1109C>T	c.C1109T	A370V
c.1111T>A	c.T1111A	S371T
c.1112C>G	c.C1112G	S371C
c.1117G>A	c.G1117A	G373S
c.1117G>T	c.G1117T	G373C
c.1118G>C	c.G1118C	G373A
c.1120A>G	c.A1120G	K374E
c.1121A>C	c.A1121C	K374T
c.1121A>G	c.A1121G	K374R
c.1121A>T	c.A1121T	K374I
c.1123G>C	c.G1123C	G375R
c.1124G>A	c.G1124A	G375E
c.1124G>C	c.G1124C	G375A
c.1126G>A	c.G1126A	V376M
c.1126G>C	c.G1126C	V376L
c.1127T>A	c.T1127A	V376E
c.1127T>G	c.T1127G	V376G

Table 1. HEK Assay Amenable Mutations

Nucleotide change	Nucleotide change	Protein sequence change
c.1129G>A	c.G1129A	A377T
c.1129G>C	c.G1129C	A377P
c.1129G>T	c.G1129T	A377S
c.1130C>G	c.C1130G	A377G
c.1135A>G	c.A1135G	N379D
c.1136A>C	c.A1136C	N379T
c.1136A>T	c.A1136T	N379I
c.1137T>A	c.T1137A	N379K
c.1138C>A	c.C1138A	P380T
c.1138C>G	c.C1138G	P380A
c.1139C>A	c.C1139A	P380H
c.1139C>G	c.C1139G	P380R
c.1139C>T	c.C1139T	P380L
c.1142C>A	c.C1142A	A381D
c.1147T>A	c.T1147A	F383I
c.1148T>A	c.T1148A	F383Y
c.1148T>G	c.T1148G	F383C
c.1150A>T	c.A1150T	I384F
c.1151T>C	c.T1151C	I384T
c.1152C>G	c.C1152G	I384M
c.1153A>G	c.A1153G	T385A
c.1154C>T	c.C1154T	T385I
c.1156C>A	c.C1156A	Q386K
c.1157A>T	c.A1157T	Q386L
c.1158G>C	c.G1158C	Q386H
c.1159C>A	c.C1159A	L387I
c.1159C>T	c.C1159T	L387F
c.1160T>A	c.T1160A	L387H
c.1160T>G	c.T1160G	L387R
c.1162C>A	c.C1162A	L388I
c.1162C>G	c.C1162G	L388V
c.1162C>T	c.C1162T	L388F
c.1163T>A	c.T1163A	L388H
c.1163T>G	c.T1163G	L388R
c.1168G>A	c.G1168A	V390M
c.1171A>C	c.A1171C	K391Q
c.1171A>G	c.A1171G	K391E
c.1172A>C	c.A1172C	K391T
c.1172A>G	c.A1172G	K391R
c.1172A>T	c.A1172T	K391I
c.1173A>T	c.A1173T	K391N
c.1174A>G	c.A1174G	R392G
c.1174A>T	c.A1174T	R392W
c.1175G>A	c.G1175A	R392K
c.1175G>C	c.G1175C	R392T

Table 1. HEK Assay Amenable Mutations

Nucleotide change	Nucleotide change	Protein sequence change
c.1175G>T	c.G1175T	R392M
c.1177A>C	c.A1177C	K393Q
c.1177A>G	c.A1177G	K393E
c.1178A>C	c.A1178C	K393T
c.1179G>C	c.G1179C	K393N
c.1180C>A	c.C1180A	L394I
c.1181T>A	c.T1181A	L394Q
c.1181T>C	c.T1181C	L394P
c.1181T>G	c.T1181G	L394R
c.1183G>C	c.G1183C	G395R
c.1184G>A	c.G1184A	G395E
c.1184G>C	c.G1184C	G395A
c.1186T>A	c.T1186A	F396I
c.1186T>G	c.T1186G	F396V
c.1187T>G	c.T1187G	F396C
c.1188C>G	c.C1188G	F396L
c.1189T>A	c.T1189A	Y397N
c.1189T>C	c.T1189C	Y397H
c.1190A>C	c.A1190C	Y397S
c.1190A>G	c.A1190G	Y397C
c.1190A>T	c.A1190T	Y397F
c.1192G>A	c.G1192A	E398K
c.1192G>C	c.G1192C	E398Q
c.1193A>G	c.A1193G	E398G
c.1195T>A	c.T1195A	W399R
c.1195T>G	c.T1195G	W399G
c.1198A>C	c.A1198C	T400P
c.1198A>G	c.A1198G	T400A
c.1198A>T	c.A1198T	T400S
c.1199C>A	c.C1199A	T400N
c.1199C>T	c.C1199T	T400I
c.1201T>A	c.T1201A	S401T
c.1201T>G	c.T1201G	S401A
c.1202_1203insGACTTC	c.1202_1203insGACTTC	p.T400_S401dup
c.1202C>T	c.C1202T	S401L
c.1204A>G	c.A1204G	R402G
c.1204A>T	c.A1204T	R402W
c.1205G>C	c.G1205C	R402T
c.1205G>T	c.G1205T	R402M
c.1206G>C	c.G1206C	R402S
c.1207T>G	c.T1207G	L403V
c.1208T>C	c.T1208C	L403S
c.1209A>T	c.A1209T	L403F
c.1210A>G	c.A1210G	R404G
c.1211G>A	c.G1211A	R404K

Table 1. HEK Assay Amenable Mutations

Nucleotide change	Nucleotide change	Protein sequence change
c.1211G>C	c.G1211C	R404T
c.1211G>T	c.G1211T	R404I
c.1212A>T	c.A1212T	R404S
c.1213A>G	c.A1213G	S405G
c.1216C>G	c.C1216G	H406D
c.1217A>T	c.A1217T	H406L
c.1218C>G	c.C1218G	H406Q
c.1219A>T	c.A1219T	I407L
c.1220T>C	c.T1220C	I407T
c.1221A>G	c.A1221G	I407M
c.1222A>C	c.A1222C	N408H
c.1222A>G	c.A1222G	N408D
c.1222A>T	c.A1222T	N408Y
c.1223A>C	c.A1223C	N408T
c.1225C>A	c.C1225A	P409T
c.1225C>G	c.C1225G	P409A
c.1225C>T	c.C1225T	P409S
c.1226C>T	c.C1226T	P409L
c.1228A>G	c.A1228G	T410A
c.1228A>T	c.A1228T	T410S
c.1229C>T	c.C1229T	T410I
c.1231G>A	c.G1231A	G411S
c.1231G>T	c.G1231T	G411C
c.1232G>A	c.G1232A	G411D
c.1232G>C	c.G1232C	G411A
c.1232G>T	c.G1232T	G411V
c.1234A>C	c.A1234C	T412P
c.1234A>G	c.A1234G	T412A
c.1234A>T	c.A1234T	T412S
c.1235C>A	c.C1235A	T412N
c.1235C>T	c.C1235T	T412I
c.1237G>A	c.G1237A	V413I
c.1237G>T	c.G1237T	V413F
c.1238T>G	c.T1238G	V413G
c.1240T>G	c.T1240G	L414V
c.1242G>C	c.G1242C	L414F
c.1243C>A	c.C1243A	L415I
c.1244T>A	c.T1244A	L415H
c.1246C>G	c.C1246G	Q416E
c.1247A>T	c.A1247T	Q416L
c.1248G>C	c.G1248C	Q416H
c.1249C>A	c.C1249A	L417I
c.1252G>A	c.G1252A	E418K
c.1252G>C	c.G1252C	E418Q
c.1253A>C	c.A1253C	E418A

Table 1. HEK Assay Amenable Mutations

Nucleotide change	Nucleotide change	Protein sequence change
c.1253A>G	c.A1253G	E418G
c.1254A>T	c.A1254T	E418D
c.1255A>G	c.A1255G	N419D
c.1255A>T	c.A1255T	N419Y
c.1256A>C	c.A1256C	N419T
c.1256A>G	c.A1256G	N419S
c.1256A>T	c.A1256T	N419I
c.1258A>C	c.A1258C	T420P
c.1258A>T	c.A1258T	T420S
c.1259C>A	c.C1259A	T420K
c.1259C>G	c.C1259G	T420R
c.1261A>G	c.A1261G	M421V
c.1261A>T	c.A1261T	M421L
c.1262T>A	c.T1262A	M421K
c.1262T>C	c.T1262C	M421T
c.1262T>G	c.T1262G	M421R
c.1263G>C	c.G1263C	M421I
c.1265A>C	c.A1265C	Q422P
c.1267A>T	c.A1267T	M423L
c.1268T>A	c.T1268A	M423K
c.1268T>C	c.T1268C	M423T
c.1269G>C	c.G1269C	M423I
c.1271C>T	c.C1271T	S424L
c.1275A>C	c.A1275C	L425F
c.1279G>A	c.G1279A	D427N
c.1286T>G	c.T1286G	L429R

Dosing, Formulation and Administration

[0084] In one or more embodiments, the Fabry patient is administered migalastat or salt thereof at a frequency of once every other day (also referred to as "QOD"). In various 5 embodiments, the doses described herein pertain to migalastat hydrochloride or an equivalent dose of migalastat or a salt thereof other than the hydrochloride salt. In some embodiments, these doses pertain to the free base of migalastat. In alternate embodiments, these doses pertain to a salt of migalastat. In further embodiments, the salt of migalastat is migalastat hydrochloride. The administration of migalastat or a salt of migalastat is referred to herein as 10 "migalastat therapy".

[0085] Accordingly, in one or more embodiments, the Fabry patient is administered migalastat of salt thereof in a range of from about 15 mg to about 300 mg, from about 15 mg to about 250 mg, from about 15 mg to about 200 mg, from about 15 mg to about 150 mg or from about 15 mg to about 123 mg at a frequency of once every other day, once every three days, 5 once every four days, once every five days, once every six days or once every seven days. In one or more embodiments, the migalastat or salt thereof is administered at a frequency of once every other day (also referred to as "QOD" or "Q48H"), every four days (also referred to as "Q4D" or "Q96H") or every seven days (also referred to as "Q7D" or "Q168H"). In some embodiments, dosing intervals may include any dosing interval with more than 48 hours 10 between doses. For example, dosing intervals may include dosing every 72, 96, 120, 144, or 168 hours.

[0086] In one or more embodiments, the Fabry patient is administered migalastat FBE in a range of from about 15 mg to about 300 mg, from about 15 mg to about 250 mg, from about 15 mg to about 200 mg, from about 15 mg to about 150 mg, from about 15 mg to about 123 mg, from about 15 mg to about 100 mg, from about 15 mg to about 50 mg, from about 50 mg to about 300 mg, from about 50 mg to about 250 mg, from about 50 mg to about 200 mg, from about 50 mg to about 150 mg, from about 50 mg to about 123 mg, from about 50 mg to about 100 mg, from about 100 mg to about 300 mg, from about 100 mg to about 250 mg, from about 100 mg to about 200 mg, from about 100 mg to about 150 mg, from about 100 mg to about 123 mg, from about 150 mg to about 300 mg, from about 150 mg to about 250 mg, from about 150 mg to about 200 mg, from about 200 mg to about 300 mg, from about 200 mg to about 250 mg or from about 250 mg to about 300 mg at a frequency of once every other day, once every three days, once every four days, once every five days, once every six days or once every seven days.

[0087] In one or more embodiments, the Fabry patient is administered migalastat FBE of about 15 mg, about 20 mg, about 25 mg, about 30 mg, about 35 mg, about 40 mg, about 45 mg, about 50 mg, about 55 mg, about 60 mg, about 65 mg, about 70 mg, about 75 mg, about 80 mg, about 85 mg, about 90 mg, about 95 mg, about 100 mg, about 105 mg, about 110 mg, about 115 mg, about 120 mg, about 123 mg, about 125 mg, about 130 mg, about 135 mg, about 140 mg, about 145 mg, about 150 mg, about 155 mg, about 160 mg, about 165 mg, about 170 mg, about 175 mg, about 180 mg, about 185 mg, about 190 mg, about 195 mg, about 200 mg, about 205 mg, about 210 mg, about 215 mg, about 220 mg, about 225 mg, about 230 mg, about

235 mg, about 240 mg, about 245 mg, about 250 mg, about 255 mg, about 260 mg, about 265 mg, about 270 mg, about 275 mg, about 280 mg, about 285 mg, about 290 mg, about 295 mg or about 300 mg at a frequency of once every other day, once every three days, once every four days, once every five days, once every six days or once every seven days.

5 [0088] Again, it is noted that 150 mg of migalastat hydrochloride is equivalent to 123 mg of the free base form of migalastat. Thus, in one or more embodiments, the dose is 150 mg of migalastat hydrochloride or an equivalent dose of migalastat or a salt thereof other than the hydrochloride salt, administered at a frequency of once every other day, once every three days, once every four days, once every five days, once every six days or once every seven days. In 10 further embodiments, the dose is 150 mg of migalastat hydrochloride administered at a frequency of once every other day. In other embodiments, the dose is 123 mg of the migalastat free base administered at a frequency of once every other day.

15 [0089] In one or more embodiments, the Fabry patient is administered migalastat hydrochloride in a range of from about 15 mg to about 300 mg, from about 15 mg to about 250 mg, from about 15 mg to about 200 mg, from about 15 mg to about 150 mg, from about 15 mg to about 123 mg, from about 15 mg to about 100 mg, from about 15 mg to about 50 mg, from about 50 mg to about 300 mg, from about 50 mg to about 250 mg, from about 50 mg to about 200 mg, from about 50 mg to about 150 mg, from about 50 mg to about 123 mg, from about 50 mg to about 100 mg, from about 100 mg to about 300 mg, from about 100 mg to about 250 mg, from about 100 mg to about 200 mg, from about 100 mg to about 150 mg, from about 100 mg to about 123 mg, from about 150 mg to about 300 mg, from about 150 mg to about 250 mg, from about 150 mg to about 200 mg, from about 200 mg to about 300 mg, from about 200 mg to about 250 mg or from about 250 mg to about 300 mg at a frequency of once every other day, once every three days, once every four days, once every five days, once every six days or 20 once every seven days.

25 [0090] In one or more embodiments, the Fabry patient is administered migalastat hydrochloride of about 15 mg, about 20 mg, about 25 mg, about 30 mg, about 35 mg, about 40 mg, about 42 mg, about 45 mg, about 50 mg, about 55 mg, about 57 mg, about 60 mg, about 65 mg, about 67 mg, about 70 mg, about 75 mg, about 77 mg, about 79 mg, about 80 mg, 30 about 85 mg, about 90 mg, about 94 mg, about 95 mg, about 97 mg, about 100 mg, about 105 mg, about 110 mg, about 115 mg, about 120 mg, about 125 mg, about 128 mg, about 130 mg, about 135 mg, about 140 mg, about 144 mg, about 145 mg, about 150 mg, about 155 mg, about

160 mg, about 165 mg, about 170 mg, about 175 mg, about 180 mg, about 185 mg, about 190 mg, about 195 mg, about 200 mg, about 205 mg, about 210 mg, about 215 mg, about 220 mg, about 225 mg, about 230 mg, about 235 mg, about 240 mg, about 245 mg, about 250 mg, about 255 mg, about 260 mg, about 265 mg, about 270 mg, about 275 mg, about 280 mg, about 285 mg, about 290 mg, about 295 mg or about 300 mg at a frequency of once every other day, once every three days, once every four days, once every five days, once every six days or once every seven days.

5 [0091] In some embodiments, the patient weighs in a range of from about 10 kg to about \geq 50 kg, from about 10 kg to about \leq 50 kg, from about 10 kg to about \leq 45 kg, from about 10 kg to about \leq 40 kg, from about 10 kg to about \leq 35 kg, from about 10 kg to about \leq 30 kg, from about 10 kg to about \leq 25 kg, from about 10 kg to about \leq 20 kg, from about 10 kg to about \leq 15 kg, from about 15 kg to about \geq 50 kg, from about 15 kg to about \leq 50 kg, from about 15 kg to about \leq 45 kg, from about 15 kg to about \leq 40 kg, from about 15 kg to about \leq 35 kg, from about 15 kg to about \leq 30 kg, from about 15 kg to about \leq 25 kg, from about 20 kg to about \geq 50 kg, from about 20 kg to about \leq 50 kg, from about 20 kg to about \leq 45 kg, from about 20 kg to about \leq 40 kg, from about 20 kg to about \leq 35 kg, from about 20 kg to about \leq 30 kg, from about 20 kg to about \leq 25 kg, from about 25 kg to about \geq 50 kg, from about 25 kg to about \leq 50 kg, from about 25 kg to about \leq 45 kg, from about 25 kg to about \leq 40 kg, from about 25 kg to about \leq 35 kg, from about 25 kg to about \leq 30 kg, from about 30 kg to about \geq 50 kg, from about 30 kg to about \leq 50 kg, from about 30 kg to about \leq 45 kg, from about 30 kg to about \leq 40 kg, from about 30 kg to about \leq 35 kg, from about 35 kg to about \geq 50 kg, from about 35 kg to about \leq 50 kg, from about 35 kg to about \leq 45 kg, from about 35 kg to about \leq 40 kg, from about 40 kg to about \geq 50 kg, from about 40 kg to about \leq 50 kg, from about 40 kg to about \leq 45 kg, from about 45 kg to about \geq 50 kg or from about 45 kg to about \leq 50 kg.

10 20 25 [0092] Administration of migalastat or salt thereof according to the present invention may be in a formulation suitable for any route of administration, but is preferably administered in an oral dosage form such as a tablet, capsule or solution. For example, the patient is orally administered capsules each containing 25 mg, 40 mg, 50 mg, 60 mg, 75 mg, 80 mg, 100 mg or 150 mg migalastat hydrochloride (i.e. 1-deoxygalactonojirimycin hydrochloride) or an equivalent dose of migalastat or a salt thereof other than the hydrochloride salt. In another example, the patient is orally administered capsules each containing 150 mg migalastat

hydrochloride or an equivalent dose of migalastat or a salt thereof other than the hydrochloride salt.

[0093] In various embodiments, the doses described herein pertain to migalastat hydrochloride or an equivalent dose of migalastat or a salt thereof other than the hydrochloride salt. In some embodiments, these doses pertain to the free base of migalastat. In alternate embodiments, these doses pertain to a salt of migalastat. In further embodiments, the salt of migalastat is migalastat hydrochloride. The administration of migalastat or a salt of migalastat is referred to herein as "migalastat therapy".

[0094] The administration of migalastat or salt thereof may be for a certain period of time. In one or more embodiments, the migalastat or salt thereof is administered for a duration of at least 28 days, such as at least 30, 60 or 90 days or at least 4, 6, 8, 12, 16, 26 or 52 weeks or at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 16, 20, 24, 30 or 36 months or at least 1, 2, 3, 4 or 5 years. In some embodiments, the migalastat therapy is of at least about 4 weeks. In various embodiments, the migalastat therapy is a long-term migalastat therapy of at least about 2, 3, 4 or 5 years.

[0095] In some embodiments, the PC (*e.g.*, migalastat or salt thereof) is administered orally. In one or more embodiments, the PC (*e.g.*, migalastat or salt thereof) is administered by injection. The PC may be accompanied by a pharmaceutically acceptable carrier, which may depend on the method of administration.

[0096] In one or more embodiments, the PC (*e.g.*, migalastat or salt thereof) is administered as monotherapy, and can be in a form suitable for any route of administration, including *e.g.*, orally in the form tablets or capsules or liquid, or in sterile aqueous solution for injection. In other embodiments, the PC is provided in a dry lyophilized powder to be added to the formulation of the replacement enzyme during or immediately after reconstitution to prevent enzyme aggregation *in vitro* prior to administration.

[0097] When the PC (*e.g.*, migalastat or salt thereof) is formulated for oral administration, the tablets or capsules can be prepared by conventional means with pharmaceutically acceptable excipients such as binding agents (*e.g.*, pregelatinized maize starch, polyvinylpyrrolidone or hydroxypropyl methylcellulose); fillers (*e.g.*, lactose, microcrystalline cellulose or calcium hydrogen phosphate); lubricants (*e.g.*, magnesium stearate, talc or silica); disintegrants (*e.g.*, potato starch or sodium starch glycolate); or wetting agents (*e.g.*, sodium lauryl sulfate). The tablets may be coated by methods well known in the

art. Liquid preparations for oral administration may take the form of, for example, solutions, syrups or suspensions, or they may be presented as a dry product for constitution with water or another suitable vehicle before use. Such liquid preparations may be prepared by conventional means with pharmaceutically acceptable additives such as suspending agents (e.g., sorbitol 5 syrup, cellulose derivatives or hydrogenated edible fats); emulsifying agents (e.g., lecithin or acacia); non-aqueous vehicles (e.g., almond oil, oily esters, ethyl alcohol or fractionated vegetable oils); and preservatives (e.g., methyl or propyl-p- hydroxybenzoates or sorbic acid). The preparations may also contain buffer salts, flavoring, coloring and sweetening agents as appropriate. Preparations for oral administration may be suitably formulated to give controlled 10 release of the active chaperone compound.

[0098] The pharmaceutical formulations of the PC (e.g., migalastat or salt thereof) suitable for parenteral/injectable use generally include sterile aqueous solutions (where water soluble), or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersion. In all cases, the form must be sterile and must be fluid to the 15 extent that easy syringability exists. It must be stable under the conditions of manufacture and storage and must be preserved against the contaminating action of microorganisms such as bacteria and fungi. The carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and polyethylene glycol, and the like), suitable mixtures thereof, and vegetable oils. The proper fluidity can be maintained, 20 for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants. Prevention of the action of microorganisms can be brought about by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, benzyl alcohol, sorbic acid, and the like. In many cases, it will be reasonable to include isotonic agents, for example, sugars or sodium chloride. 25 Prolonged absorption of the injectable compositions can be brought about by the use in the compositions of agents delaying absorption, for example, aluminum monostearate and gelatin.

[0099] Sterile injectable solutions are prepared by incorporating the purified enzyme (if any) and the PC (e.g., migalastat or salt thereof) in the required amount in the appropriate solvent with various of the other ingredients enumerated above, as required, followed by filter 30 or terminal sterilization. Generally, dispersions are prepared by incorporating the various sterilized active ingredients into a sterile vehicle which contains the basic dispersion medium and the required other ingredients from those enumerated above. In the case of sterile powders

for the preparation of sterile injectable solutions, the preferred methods of preparation are vacuum drying and the freeze-drying technique which yield a powder of the active ingredient plus any additional desired ingredient from previously sterile-filtered solution thereof.

[00100] The formulation can contain an excipient. Pharmaceutically acceptable excipients which may be included in the formulation are buffers such as citrate buffer, phosphate buffer, acetate buffer, bicarbonate buffer, amino acids, urea, alcohols, ascorbic acid, and phospholipids; proteins, such as serum albumin, collagen, and gelatin; salts such as EDTA or EGTA, and sodium chloride; liposomes; polyvinylpyrrolidone; sugars, such as dextran, mannitol, sorbitol, and glycerol; propylene glycol and polyethylene glycol (e.g., PEG-4000, 10 PEG-6000); glycerol; glycine or other amino acids; and lipids. Buffer systems for use with the formulations include citrate; acetate; bicarbonate; and phosphate buffers. Phosphate buffer is a preferred embodiment.

[00101] The route of administration of the chaperone compound may be oral or parenteral, including intravenous, subcutaneous, intra-arterial, intraperitoneal, ophthalmic, 15 intramuscular, buccal, rectal, vaginal, intraorbital, intracerebral, intradermal, intracranial, intraspinal, intraventricular, intrathecal, intracisternal, intracapsular, intrapulmonary, intranasal, transmucosal, transdermal, or via inhalation.

[00102] Administration of the above-described parenteral formulations of the chaperone compound may be by periodic injections of a bolus of the preparation, or may be administered 20 by intravenous or intraperitoneal administration from a reservoir which is external (e.g., an i.v. bag) or internal (e.g., a bioerodable implant).

[00103] Embodiments relating to pharmaceutical formulations and administration may be combined with any of the other embodiments of the invention, for example embodiments relating to methods of treating patients with Fabry disease, methods of treating ERT-naïve 25 Fabry patients, methods of treating ERT-experienced Fabry patients, methods of reducing the risk of CBV events, methods of reducing the risk of composite clinical outcomes, methods of assessing symptoms or outcomes of a patient or groups of patients, methods of evaluating a treatment therapy, methods of enhancing α -Gal A in a patient diagnosed with or suspected of having Fabry disease, use of a pharmacological chaperone for α -Gal A for the manufacture of a 30 medicament for treating a patient diagnosed with Fabry disease or to a pharmacological chaperone for α -Gal A for use in treating a patient diagnosed with Fabry disease as well as embodiments relating to amenable mutations, the PCs and suitable dosages thereof.

5 [00104] In one or more embodiments, the PC (*e.g.*, migalastat or salt thereof) is administered in combination with ERT. ERT increases the amount of protein by exogenously introducing wild-type or biologically functional enzyme by way of infusion. This therapy has been developed for many genetic disorders, including LSDs such as Fabry disease, as
10 referenced above. After the infusion, the exogenous enzyme is expected to be taken up by tissues through non-specific or receptor-specific mechanism. In general, the uptake efficiency is not high, and the circulation time of the exogenous protein is short. In addition, the exogenous protein is unstable and subject to rapid intracellular degradation as well as having the potential for adverse immunological reactions with subsequent treatments. In one or more
15 embodiments, the chaperone is administered at the same time as replacement enzyme (*e.g.*, replacement α -Gal A). In some embodiments, the chaperone is co-formulated with the replacement enzyme (*e.g.*, replacement α -Gal A).

15 [00105] In one or more embodiments, a patient is switched from ERT to migalastat therapy. In some embodiments, a patient on ERT is identified, the patient's ERT is discontinued, and the patient begins receiving migalastat therapy. The migalastat therapy can be in accordance with any of the methods described herein. In various embodiments, the patient has some degree of renal impairment, such as mild, moderate or severe renal impairment.

Administration of Migalastat

20 20 [00106] In some embodiments, migalastat or salt thereof is administered to an adult patient. In some embodiments, age of the adult patient is ≥ 18 years. In some embodiments, migalastat or salt thereof is administered to an adolescent patient. In some embodiments, age of the adolescent patient is in a range of from 12 years to <18 years, from 13 years to <18 years, from 14 years to <18 years, from 15 years to <18 years, from 16 years to <18 years, from 17 years to <18 years, from 12 years to ≤ 17 years, from 13 years to ≤ 17 years, from 14 years to ≤ 17 years, from 15 years to ≤ 17 years, from 16 years to ≤ 17 years, from 12 years to ≤ 16 years, from 13 years to ≤ 16 years, from 14 years to ≤ 16 years, from 15 years to ≤ 16 years, from 12 years to ≤ 15 years, from 13 years to ≤ 15 years, from 14 years to ≤ 15 years, from 12 years to ≤ 14 years, from 13 years to ≤ 14 years, or from 12 years to ≤ 13 years.

25 30 [00107] In some embodiments, migalastat or salt thereof is administered to the patient having a weight a range of from <15 kg to ≥ 45 kg, from 15 kg to <25 kg, from 25 kg to <35

kg, or from 35 kg to <45 kg. In some embodiments, migalastat or salt thereof is administered to the patient having a weight <15 kg. In some embodiments, migalastat or salt thereof is administered to the patient having a weight \geq 45 kg.

[00108] In some embodiments, about 25 mg of migalastat or salt thereof is administered to the patient having a weight of <15 kg. In some embodiments, about 50 mg of migalastat or salt thereof is administered to the patient having a weight in a range of from 15 kg to <25 kg. In some embodiments, about 75 mg of migalastat or salt thereof is administered to the patient having a weight in a range of from 25 kg to <35 kg. In some embodiments, about 75 mg of migalastat or salt thereof is administered to the patient having a weight in a range of from 35 kg to <50 kg.

[00109] In some embodiments, the migalastat or salt thereof is administered at a first frequency for a first time period, and then administered at a second frequency for a second time period. The first frequency is greater (i.e., more frequent) than the second frequency. The first frequency and the second frequency may be any dosing interval disclosed herein. In some embodiments, the first frequency is every other day and the second frequency is every three days, every four days, every five days, every six days or every seven days. In some embodiments, the first frequency is every four days and the second frequency is every five days, every six days, or every seven days.

[00110] In some embodiments, the migalastat or salt thereof is administered at a first frequency for a first time period, then administered at a second frequency for a second time period, and then administered at a third frequency for a third time period. The first frequency is greater (i.e., more frequent) than the second frequency, and the second frequency is greater than the third frequency. For example, in some embodiments, the migalastat or salt thereof is administered at a first frequency of once every other day for a first time period, then the migalastat or salt thereof is administered at a second frequency of once every four days for a second time period, and then the migalastat or salt thereof is administered at a third frequency of once every seven days for a third time period.

Administration of Migalastat without Caffeine

[00111] As mentioned above and described in further detail in the Examples below, caffeine was surprisingly found to have a significant effect on the pharmacokinetics of

migalastat. Accordingly, in some embodiments the patient does not consume caffeine within a certain time interval of administering the formulation comprising migalastat or a salt thereof. In various embodiments, this time interval includes abstaining from caffeine for at least 30 minutes, at least 60 minutes (1 hour), at least 90 minutes (1.5 hours), at least 2 hours, at least 5 2.5 hours, at least 3 hours or at least 4 hours prior to administering the migalastat or salt thereof and at least 30 minutes, at least 60 minutes (1 hour), at least 90 minutes (1.5 hours), at least 2 hours, at least 2.5 hours, at least 3 hours or at least 4 hours after administering the migalastat or salt thereof.

10 [00112] In some embodiments, the patient does not consume caffeine within a time interval from at least 1 hour prior to and at least 1 hour after administering the migalastat or salt thereof, i.e. the patient does not consume caffeine within about 1 hour of administering the formulation comprising migalastat or a salt thereof.

15 [00113] In some embodiments, the patient does not consume caffeine within a time interval from at least 2 hours prior to and at least 1 hour after administering the migalastat or salt thereof.

[00114] In some embodiments, the patient does not consume caffeine within a time interval from at least 2 hours prior to and at least 2 hours after administering the migalastat or salt thereof, i.e. the patient does not consume caffeine within about 2 hours of administering the formulation comprising migalastat or a salt thereof.

20 [00115] In some embodiments, the patient does not consume caffeine within a time interval from at least 3 hours prior to and at least 2 hours after administering the migalastat or salt thereof.

25 [00116] In some embodiments, the patient does not consume caffeine within a time interval from at least 3 hours prior to and at least 3 hours after administering the migalastat or salt thereof, i.e. the patient does not consume caffeine within about 3 hours of administering the formulation comprising migalastat or a salt thereof.

30 [00117] In some embodiments, the patient consumes caffeine outside of the time interval for abstaining from caffeine. For example, if the time interval for abstaining from caffeine is at least 2 hours prior to and at least 2 hours after administering the migalastat or salt thereof, then in some embodiments the patient consumes caffeine at least 2 hours prior to and/or at least 2 hours after administering the migalastat or salt thereof. In various embodiments, the patient consumes caffeine at least 30 minutes, at least 60 minutes (1 hour), at least 90 minutes (1.5

hours), at least 2 hours, at least 2.5 hours, at least 3 hours or at least 4 hours prior to administering the migalastat or salt thereof. In various embodiments, the patient consumes caffeine at least 30 minutes, at least 60 minutes (1 hour), at least 90 minutes (1.5 hours), at least 2 hours, at least 2.5 hours, at least 3 hours or at least 4 hours after administering the 5 migalastat or salt thereof.

[00118] In some embodiments, not consuming caffeine within a certain time interval of administering the formulation comprising migalastat or a salt thereof provides improvements in the pharmacokinetics of migalastat, such as avoiding a decrease in migalastat area under the curve (AUC) and/or maximum plasma concentration (C_{max}). In some embodiments, the patient 10 does not consume caffeine within 2 hours of administering the formulation comprising migalastat or a salt thereof to avoid a decrease in AUC and C_{max} for migalastat of about 57% and about 60%, respectively.

[00119] In some embodiments, the patient fasts during the time interval for abstaining from caffeine. In some embodiments, the patient does not consume food for at least 2 hours 15 before and at least 2 hours after administering the migalastat or salt thereof and the patient does not consume caffeine for at least 2 hours before and at least 2 hours after administering the migalastat or salt thereof.

[00120] In some embodiments, the patient fasts for a different time interval than the time interval for abstaining from caffeine.

20 **[00121]** In some embodiments, the patient does not consume caffeinated beverages during the time interval. In some embodiments, the caffeinated beverages include coffee, espresso, tea, caffeinated energy drinks and caffeinated sodas.

[00122] In some embodiments, the patient consumes non-caffeinated beverages during 25 the time interval that caffeine is not consumed. Examples of suitable non-caffeinated beverages include, but are not limited to, water (plain, flavored, sweetened), fruit juices without pulp, and caffeine-free carbonated beverages. In some embodiments, the non-caffeinated beverage includes a sweetened beverage. In some embodiments, the non-caffeinated beverage comprises an artificially sweetened beverage. In some embodiments, the artificial sweetener comprises aspartame or acesulfame potassium. Other artificial sweeteners and/or sugar substitutes 30 include, but are not limited to, sucralose, stevia and saccharin. In some embodiments, non-caffeinated and/or low caffeinated beverages include decaffeinated coffee or decaffeinated tea.

5 [00123] In some embodiments, rather than a complete abstention from caffeine, the patient consumes only a small amount of caffeine during the time interval that caffeine is not consumed. In various embodiments, the patient limits total caffeine intake to less than 200 mg, less than 190 mg, less than 180 mg, less than 170 mg, less than 160 mg, less than 150 mg, less than 140 mg, less than 130 mg, less than 120 mg, less than 110 mg, less than 100 mg, less than 95 mg, less than 90 mg, less than 85 mg, less than 80 mg, less than 75 mg, less than 70 mg, less than 65 mg, less than 60 mg, less than 55 mg, less than 50 mg, less than 45 mg, less than 40 mg, less than 35 mg, less than 30 mg, less than 25 mg, less than 20 mg, less than 15 mg, less than 10 mg, less than 5 mg, less than 4 mg, less than 3 mg, less than 2 mg or less than 1 mg during the time interval that caffeine is not consumed.

10

15 [00124] Other aspects of the present invention relate to informing patients about the effect of caffeine consumption on migalastat pharmacokinetics (e.g. AUC and C_{max}) and/or instructing patients that caffeine should not be consumer within a certain time interval of the migalastat administration. In some embodiments, this information and/or instruction is orally provided to the patient by a health care provider. In some embodiments, this information and/or instructions is provided to the patient in written form, such as in the prescribing information, product label, product characteristics, product monograph, patient information or the like. In various embodiments, this information and/or instructions is provided in the product characteristics and/or prescribing information for GALAFOLD® in various countries in 20 which GALAFOLD® is approved for use, or at a website such as www.galafoldamenabilitytable.com or www.fabrygenevariantsearch.com, each of which is hereby incorporated by reference in its entirety.

25 [00125] In some embodiments, the information and/or instructions include one or more of the following:

30

- A pharmacokinetic study showed that administration of coffee containing approximately 190 mg of caffeine resulted in a significant decrease in migalastat systemic exposure (mean reduction in $AUC_{0-\infty}$ by 57% and mean reduction in C_{max} by 60%) when compared to water.
- A single-dose, 6-way crossover pharmacokinetic study was conducted in 20 healthy subjects to evaluate plasma the bioavailability of a 150 mg migalastat HCl capsule when administered with coffee and sweetened beverages relative to administration with water. The rate of absorption (t_{max}) of migalastat was not

affected by administration of coffee or sweetened beverages in comparison to water. However, consumption of 280 mL of coffee containing approximately 190 mg caffeine at the time of dosing resulted in significant decrease in migalastat systemic exposure (mean reduction in $AUC_{0-\infty}$ by 57% and mean reduction in C_{max} by 60%) when compared to water. The bioavailability of migalastat did not appreciably differ when administered with natural (sucrose: 8027 ng·h/mL $AUC_{0-\infty}$ and 1265 ng/mL C_{max}) and artificial (aspartame or acesulfame K: 9075 ng·h/mL, 8641 ng·h/mL $AUC_{0-\infty}$ and 1374 ng/mL, 1225 ng/mL C_{max} respectively) sweeteners when compared to water (8613 ng·h/mL $AUC_{0-\infty}$ and 1328 ng/mL C_{max}).

- In addition to not consuming food at least 2 hours before and 2 hours after taking migalastat, caffeine should not be consumed during this period.
- Caffeine in any form should not be consumed during the 4-hour fasting period.
- Consuming caffeine-containing beverages or other products containing caffeine could affect the way migalastat works.
- Water (plain, flavored, sweetened), fruit juices without pulp, and caffeine-free carbonated beverages can be consumed during the 4-hour fasting period.
- Migalastat exposure is decreased by approximately 40% when taken with food and therefore it should be taken on an empty stomach. Food should not be consumed at least 2 hours before and 2 hours after taking migalastat to give a minimum 4 hours fast. Clear liquids can be consumed during this period, for example water, fruit juices without pulp, carbonated drinks, tea or coffee without milk or cream.

25 Monitoring Lyso-Gb3 and Migalastat Levels

[00126] Lyso-Gb3 (globotriaosylsphingosine) can be monitored to determine whether substrate is being cleared from the body of a Fabry patient. Higher levels of lyso-Gb3 correlate with higher levels of substrate. If a patient is being successfully treated, then lyso-Gb3 levels are expected to drop. One dosing regimen for Fabry disease is administering to the patient about 20 mg to about 300 mg FBE of migalastat or salt thereof at a frequency of once every other day.

[00127] In some embodiments, the method further comprises measuring migalastat levels. In one or more embodiments, migalastat concentration (e.g., ng/mL) is measured. In some embodiments, the total area under the curve (AUC_{0-∞}) is measured. In one or more embodiments, the lowest concentration the migalastat reaches before the next dose (C_{trough}) is 5 measured.

[00128] Migalastat levels can be measured via methods known in the art. For example, if measuring migalastat from tissue samples, tissue aliquots may be homogenized (7 μL water per 1 mg tissue) using a homogenizer (e.g., FastPrep-24 from MP Biomedical, Irvine, CA). Microcentrifuge tubes containing 100 μL of the tissue homogenate or 50 μL of plasma may then 10 be spiked with 500 ng/mL ¹³C d2-AT1001 HCl internal standard (manufactured by MDS Pharma Services). A 600 μL volume of 5 mM HCl in 95/5 MeOH:H₂O can then be added and the tubes vortexed for 2 minutes, followed by centrifugation at 21000 x g for 10 minutes at room temperature. The supernatants may then be collected into a clean, 96-well plate, diluted 15 with 5 mM HCl in dH₂O and applied to a 96-well solid phase extraction (SPE) plate (Waters Corp., Milford MA). After several wash steps and elution into a clean, 96-well plate, the extracts may be dried down under N₂ and reconstituted with mobile phase A. Migalastat levels can then be determined by liquid chromatography – tandem mass spectroscopy (LC-MS/MS) (e.g., LC: Shimadzu; MS/MS: ABSciex API 5500 MS/MS). The liquid chromatography can be conducted using an ACN:water:formate binary mobile phase system (mobile phase A: 5 mM 20 ammonium formate, 0.5% formic acid in 95:5 ACN:water; mobile phase B: 5 mM ammonium formate, 0.5% formic acid in 5:47.5:47.5 ACN:MeOH:water) with a flow rate of 0.7 mL/minute on an Halo HILIC column (150x4.6 mm, 2.7 μm) (Advanced Materials Technology, Inc.). MS/MS analysis may be carried out under APCi positive ion mode. The same procedure may be followed for migalastat determination in plasma except without 25 homogenization. The following precursor ion→product ion transitions may be monitored: mass/charge (m/z) 164.1→m/z 80.1 for migalastat and m/z 167.1→m/z 83.1 for the internal standard. A 12-point calibration curve and quality control samples may be prepared. The ratio of the area under the curve for migalastat to that of the internal standard is then determined and final concentrations of migalastat in each sample calculated using the linear least squares fit 30 equation applied to the calibration curve. To derive approximate molar concentrations, one gram of tissue may be estimated as one mL of volume.

[00129] In some embodiments, samples may be taken at 0, 1, 2, 3, 4, 6, 8, 12, 24, 48, 72, 96, 120, 144 and/or 168 hours after administration. In some embodiments, the migalastat concentration 48 hours after administration is measured. In some embodiments, the administration of the second time period is begun after more than about 5, 10, 15, 20, 25, 40, 5 50, 60, 70, 80, 90, 100, 125, 150, 175 or 200 ng/mL of migalastat is measured 48 hours after administration of the migalastat during the first time period is measured.

[00130] In some embodiments, Lyso-Gb3 can be measured via methods known in the art using validated assays. As with migalastat, lyso-Gb3 levels may be determined using liquid chromatography – tandem mass spectroscopy (LC-MS/MS) (e.g., LC: Shimadzu; MS/MS: 10 ABSciex API 5500 MS/MS). For example, one process of measuring plasma lyso-Gb3 is described in Hamler, Rick, *et al.* "Accurate quantitation of plasma globotriaosylsphingosine (lyso-Gb3) in normal individuals and Fabry disease patients by liquid chromatography–tandem mass spectrometry (LC–MS/MS)." *Molecular Genetics and Metabolism*, Volume 114.2 (2015):S51. In one or more embodiments, lyso-Gb3 is measured in samples from a patient's 15 urine.

Dose Adjustment

[00131] In some embodiments, the dosing frequency of migalastat or salt thereof is adjusted in response to a change in the patient's eGFR. In exemplary embodiments, when the patient's eGFR is reduced below 60 mL/min/1.73 m², below 45 mL/min/1.73 m², below 30 20 mL/min/1.73 m² or below 15 mL/min/1.73 m², the dosing frequency can be reduced. In some embodiments, the patient is not administered migalastat or salt thereof, when the patient's eGFR is reduced below 60 mL/min/1.73 m², below 45 mL/min/1.73 m², below 30 mL/min/1.73 m² or below 15 mL/min/1.73 m².

[00132] Migalastat concentration can be measured from plasma samples at various times 25 to monitor clearance from the body. A clinically relevant increase in C_{trough} suggests significant accumulation of plasma migalastat concentration. If the migalastat is not cleared from the body enough prior to the next dose administration, then the levels of migalastat can build up, possibly leading to an inhibitory effect. Thus, in one or more embodiments, a change in the dosing frequency occurs after a 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 30 2.5, 2.6, 2.7, 2.8, 2.9 or 3.0-fold increase in C_{trough} compared to normal renal function C_{trough}.

[00133] In one or more embodiments, a change in the dosing frequency occurs after a 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9 or 3.0-fold increase in $AUC_{0-\infty}$ compared to normal renal function $AUC_{0-\infty}$.

[00134] In some embodiments, the method further comprises measuring lyso-Gb3 in one 5 or more plasma samples from the patient. A first baseline lyso-Gb3 level may be determined during the first time period. As used herein, "baseline lyso-Gb3 level" refers to the lowest plasma lyso-Gb3 value measured during a given time period or dosing regimen. Thus, if the lyso-Gb3 levels go up significantly from the baseline lyso-Gb3 levels, this may indicate kidney 10 disease progression and/or improper clearance of migalastat. Thus, in further embodiments, the administration of the second time period is begun after an increase (e.g., of at least about 20, 25, 30, 33, 35, 40, 45 or 50% and/or 1, 1.25, 1.5, 1.75, 2, 2.25, 2.5 or 3 nM) above the first 15 baseline lyso-Gb3 level is measured. A 33% and/or 2 nM increase from baseline in plasma lyso-Gb3 has been deemed clinically relevant based upon Phase 3 data in Fabry patients signaling either inhibition-induced migalastat exposure from decline in renal function and/or progression of disease condition. Lyso-Gb3 levels may be measured at varying frequencies (e.g., about once every 2, 3, 4 or 5 months). It is thought that it takes about 3 months for a baseline lyso-Gb3 level to be established once a dosing regimen has been started.

[00135] In some embodiments, the administration of the second time period may begin after an increase above the first baseline lyso-Gb3 level is at least about 30, or 33% and/or 20 2nM and/or more than about 50 ng/mL of migalastat is measured 48 hours after administration of the migalastat during the first time period is measured. In some embodiments, the administration of the second time period may begin after an increase above the first baseline lyso-Gb3 level is at least about 30, or 33% and/or 2nM and/or more than about 50 ng/mL of migalastat is measured 48 hours after administration of the migalastat during the first time 25 period is measured, or there is a greater than 1.5-fold increase in $AUC_{0-\infty}$ and/or C_{trough} compared to normal renal function during the first time period.

EXAMPLES

Example 1: Study of Effect of Caffeine and Sweeteners on Migalastat Pharmacokinetics

[00136] The example describes the AT1001-045 study, which was an open-label study of the bioavailability, safety and tolerability of migalastat in combination with caffeine and sweeteners.

Objectives and Endpoints

[00137] The primary objective was to evaluate plasma migalastat bioavailability of the 150 mg migalastat HCl capsule in a caffeinated beverage, a sucrose beverage, a combination caffeinated and sucrose beverage, an aspartame artificial sweetener beverage, and an acesulfame potassium artificial sweetener beverage relative to water in healthy subjects.

[00138] The secondary objective was to assess the safety and tolerability of migalastat HCl in healthy subjects.

[00139] The primary endpoints were ANOVA comparisons of interest between each test treatment and reference treatment for C_{max} , AUC_{0-t} and $AUC_{0-\infty}$. The comparisons of interest were point estimate ratios and lower/upper 90% confidence intervals.

Study Design

[00140] This was a single-center, single dose, randomized, open-label, 6-way crossover study. Each subject received a single oral dose of migalastat HCl 150 mg for each of 6 periods. The study schematic is shown in FIG. 4.

[00141] In randomized sequence, each subject received a 150 mg migalastat HCl capsule with a caffeinated beverage, a sucrose drink, a combination caffeinated and sucrose beverage, an aspartame artificial sweetener drink, an acesulfame potassium artificial sweetener drink, or water.

[00142] All study treatments were administered in the fasted condition (overnight + 4 hours post-dose).

[00143] Each single dose administration was followed by a 72-hour PK sampling period which also served as the between-treatment washout interval.

[00144] Subjects were domiciled for duration of the 6 treatment periods through the Period 6 72-hour blood sample (approximately 19 days, including Day -1).

[00145] Approximately 7 days after Period 6 dosing (Day 23), subjects returned to the clinic for a follow-up visit.

[00146] The entire duration of the study, including screening was approximately 7.5 weeks.

5 [00147] Subjects who discontinued from the study were not be replaced.

[00148] Appropriate migalastat exposure ratios (Cmax and AUC) with corresponding 90% confidence intervals will be used to address the comparisons of interest:

- Caffeine (test) vs. water (reference)
- Sucrose (test) vs. water (reference)
- Caffeine + Sucrose (test) vs. water (reference)
- Aspartame (test) vs. water (reference)
- Acesulfame K (test) vs. water (reference)

Study Population, Sample Size and Dose

15 [00149] Study Population: male and female healthy subjects 18 to 45 years of age.

[00150] Sample Size: 20 subjects balanced for gender.

[00151] Dose: A single 150 mg capsule of migalastat hydrochloride, provided as GALAFOLD®.

Preparation of Test Treatments

20 [00152] The following test treatments were prepared:

[00153] Caffeinated beverage: 8 oz of caffeinated tea; nothing added; administered warm (40 to 50 degrees C) and consumed within 10 minutes

[00154] Sucrose drink: 8 oz sucrose solution prepared with 26 grams sucrose, chilled before drug administration, and consumed within 10 minutes

25 [00155] • Equivalent to sucrose content in one 8 oz serving of cane sugar-containing Coca-Cola®

[00156] Caffeinated + Sucrose drink: 8 oz caffeinated/sucrose beverage, chilled before drug administration, and consumed within 10 minutes (e.g., Jolt ®)

[00157] Aspartame: 8 oz aspartame solution prepared with 125 mg aspartame, chilled before drug administration, and consumed within 10 minutes

- Equivalent to aspartame content in one 8 oz can of Diet Coke®

[00157] Acesulfame K: 8 oz acesulfame K solution prepared with 30 mg acesulfame K, chilled before drug administration, and consumed within 10 minutes

- Equivalent to acesulfame K content in one 8 oz can of Diet Coke® or Coca-Cola® Zero Sugar

5 Results

[00158] The pharmacokinetics of migalastat for each treatment are shown in FIG. 5 and Table 2 below. For a treatment to be considered bioequivalent to water, the 90% confidence intervals must be within 80% to 125% of the values with water.

10 **[00159] Table 2 – Migalastat Pharmacokinetics**

Treatment	C _{max} (ng/mL)		AUC _{0-t} (ng·h/mL)		AUC _{0-∞} (ng·h/mL)		t _{max} (h)	t _{1/2} (h)
	GeoMean (CV%) [N]	Ratio (90% CI's)	GeoMean (CV%) [N]	Ratio (90% CI's)	GeoMean (CV%) [N]	Ratio (90% CI's)	Median (Min – Max) [N]	Mean (CV%) [N]
Reference (water)	1328 (33.4) [20]	-	8616 (29.0) [20]	-	8570 (30.8) [17]	-	4 (2.0 – 4.0) [20]	7.5 (59.2) [17]
Acesulfame K	1225 (35.7) [20]	92.3 (81.0, 105.0)	8117 (36.5) [20]	93.9 (82.7, 106.6)	8621 (35.9) [15]	96.1 (82.7, 111.8)	4 (2.0 – 6.0) [20]	7.2 (51.3) [15]
Aspartame	1374 (33.7) [20]	103.3 (90.7, 117.6)	9081 (30.4) [20]	104.9 (82.7, 106.6)	9043 (30.5) [18]	102.9 (89.3, 118.7)	4 (2.0 – 4.0) [20]	8.1 (63.3) [18]
Sucrose	1265 (31.5) [20]	95.3 (83.7, 108.5)	7959 (29.8) [20]	92.2 (81.2, 104.7)	8008 (30.2) [19]	91.8 (79.7, 105.8)	3 (2.0 – 4.0) [20]	7.8 (80.5) [19]
Caffeine	529 (41.3) [20]	39.9 (35.0, 45.4)	3717 (48.3) [20]	43.1 (38.0, 49.0)	4100 (53.5) [15]	45.8 (39.4, 53.4)	3 (2.0 – 4.0) [20]	10.2 (84.9) [15]
Caffeine + Sucrose	611 (39.8) [20]	45.9 (40.3, 52.3)	4052 (39.3) [20]	46.9 (41.3, 53.2)	4268 (44.5) [15]	47.7 (40.9, 55.5)	3 (2.0 – 4.0) [20]	8.8 (87.8) [15]

[00160] As can be seen from FIG. 5 and Table 2, the artificial sweeteners acesulfame K and aspartame are bioequivalent to water. Accordingly, in some embodiments, drinks containing these artificial sweeteners may be administered with migalastat.

15 **[00161]** Sucrose was very close to bioequivalent; the mean difference in AUC was only an 8% decrease with sucrose which is not considered clinically relevant. Accordingly, in some embodiments, drinks containing sucrose may be administered with migalastat.

[00162] There was a major caffeine-migalastat interaction; C_{max} was decreased by 60%, and AUC was decreased by 57% for caffeine alone; similar decreases were observed for caffeine + sucrose. Accordingly, in some embodiments, migalastat should not be administered with caffeinated beverages.

5 **[00163]** The patent and scientific literature referred to herein establishes the knowledge that is available to those with skill in the art. All United States patents and published or unpublished United States patent applications cited herein are incorporated by reference. All published foreign patents and patent applications cited herein are hereby incorporated by reference. All other published references, documents, manuscripts and scientific literature cited
10 herein are hereby incorporated by reference.

[00164] While this invention has been particularly shown and described with references to preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the scope of the invention encompassed by the appended claims.

15 **[00165]** The embodiments described herein are intended to be illustrative of the present compositions and methods and are not intended to limit the scope of the present invention. Various modifications and changes consistent with the description as a whole and which are readily apparent to the person of skill in the art are intended to be included. The appended claims should not be limited by the specific embodiments set forth in the examples, but should
20 be given the broadest interpretation consistent with the description as a whole.

[00166] Patents, patent applications, publications, product descriptions, GenBank Accession Numbers, and protocols are cited throughout this application, the disclosures of which are incorporated herein by reference in their entireties for all purposes.

What is claimed is:

1. Formulation comprising a therapeutically effective dose of migalastat or a salt thereof for use in the treatment of Fabry disease in a human patient in need thereof, wherein the formulation comprising migalastat or a salt thereof is administered without concurrent administration of caffeine.
5
2. The formulation according to claim 1, wherein the formulation comprising migalastat or a salt thereof is administered orally to the patient.
10
3. The formulation according to any one of claims 1 and 2, wherein the patient does not consume caffeine within a certain time interval of administering the formulation comprising migalastat or a salt thereof to avoid a decrease in AUC and Cmax for migalastat of about 57% and about 60%, respectively, is avoided.
15
4. The formulation according to any one of claims 1 to 3, wherein the patient does not consume caffeine within a time interval from at least 2 hours prior to, to at least 2 hours after administering the formulation comprising migalastat or a salt thereof.
20
5. The formulation according to any one of claims 1 to 4, wherein the patient does not consume caffeine within a time interval from at least 3 hours prior to, to at least 2 hours after administering the formulation comprising migalastat or a salt thereof.
25
6. The formulation according to any one of claims 1 to 5, wherein the patient does not consume caffeine within a time interval from at least 3 hours prior to, to at least 3 hours after administering the formulation comprising migalastat or a salt thereof.
30
7. The formulation according to any one of claims 1 to 6, wherein the patient consumes caffeine outside of the time interval for abstaining from caffeine.

8. The formulation according to any one of claims 1 to 7, further comprising administering caffeine to the patient at least 4 hours prior to administering the formulation comprising migalastat or a salt thereof.
- 5 9. The formulation according to any one of claims 1 to 8, further comprising administering caffeine to the patient at least 4 hours after administering the formulation comprising migalastat or a salt thereof.
- 10 10. The formulation according to any one of claims 1 to 9, wherein the patient consumes non-caffeinated beverages during the time interval for abstaining from caffeine.
11. The formulation according to any one of claims 1 to 10, wherein the patient fasts during the time interval for abstaining from caffeine.
- 15 12. The formulation according to any one of claims 1 to 11, wherein the patient fasts within a time interval from at least 2 hours prior to, to 2 hours after administering the formulation comprising migalastat or a salt thereof.
- 20 13. The formulation according to any one of claims 1 to 12, wherein the salt of migalastat is migalastat hydrochloride.
14. The formulation according to any one of claims 1 to 13, wherein the therapeutically effective dose of migalastat or a salt thereof is in a range of from 100 mg to 150 mg every other day.
- 25 15. The formulation according to any one of claims 1 to 14, wherein the therapeutically effective dose of migalastat or a salt thereof is about 123 mg free base equivalent (FBE) every other day.
- 30 16. The formulation according to any one of claims 1 to 15, wherein the therapeutically effective dose of migalastat hydrochloride is about 150 mg every other day.

FIG.1A

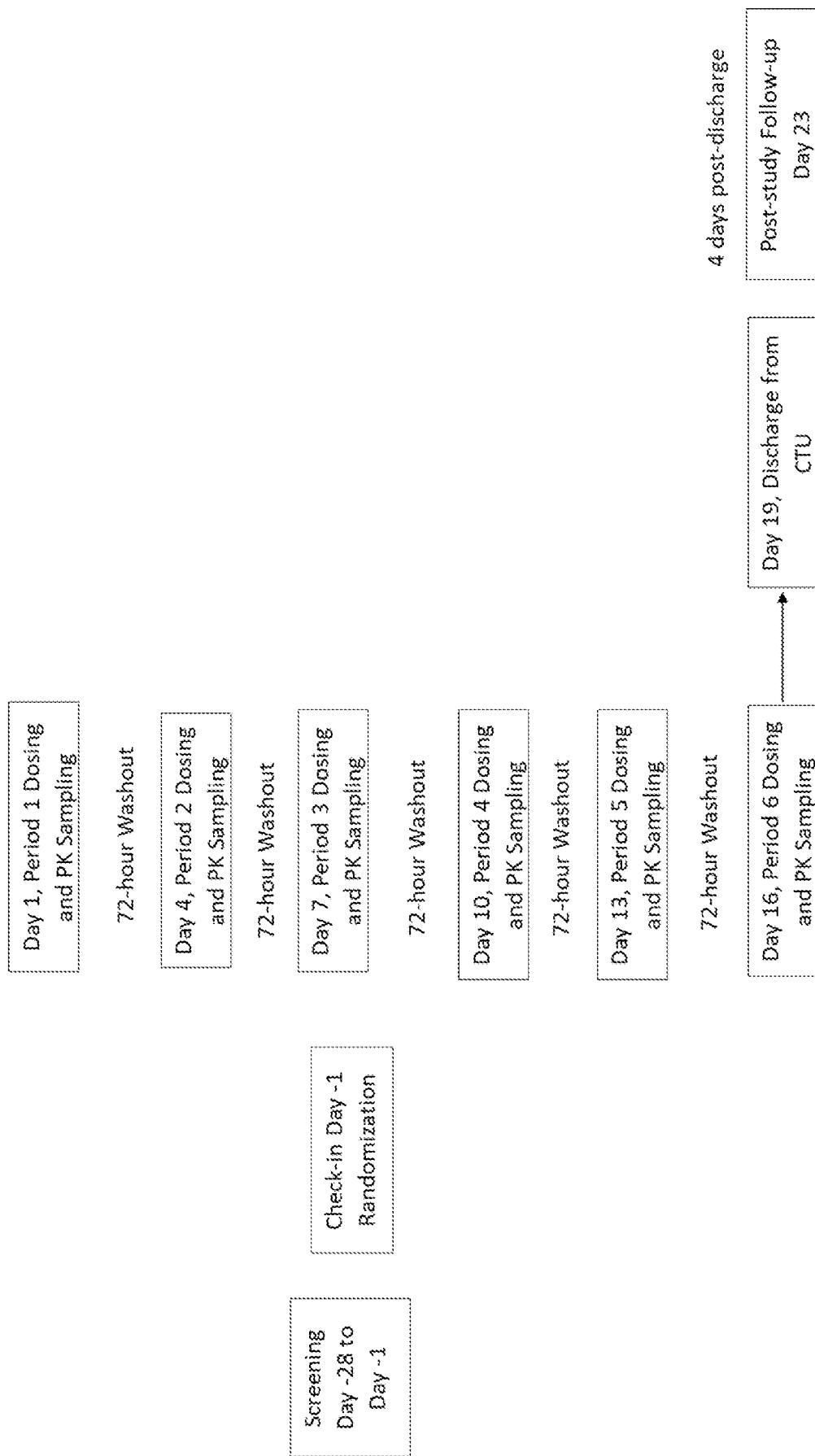
FIG.1B

FIG.1C

tctatcaacagtccctccaccagtatctctaaaatatctcctgaatcagccccacttcctt	8700
ccatctcactacatgcaccctggccttccaagctactatcggctctcaaccagactgct	8760
gggaccacctgatctctgcttccactctgtctcaaccccatctatccaaagcagc	8820
actagagttatcatattaaatgtaaatatcagttttttaaagaaaaaaacctga	8880
gacttaacagagtataaaaatataatgtcatcatcagttccctgcttaaaacctta	8940
actcgcttccaattgcacttggaatgaaaccactgcactgatccagccctgctgcc	9000
tcccaaagtccaaagggtcatggctcttccctggctacactggtttctgtccc	9060
tcaacactgcaaggctattgctccccaggcccttacactgcttttctgcctaga	9120
acagttctcccaaagattttaaaggccggctcttaacattgaagtcgcagacca	9180
aacgcccacatatgcagacaggcttctctaactactttaaatagccctgtccattca	9240
ttcttcatcacatataacctgttaatttcttcagagctccacactatttggaaagtat	9300
ttgttgacttggattaccatgtctccccactagagttaagttcatgagggcagggacctt	9360
gtctgacttgcactgtatctctgcataatggtaagttaaatagttattatggaatg	9420
aatccctattattccctcattatctctgcaaaatagtcttttctcaacatcttaaacc	9480
tgatattcccacctgcctatctacaaaacttttttgcgacagagtctcaactgtcaccca	9540
ggctagagtgcagtgccatctcggtcactgcaacctccgcctccgggttaagcg	9600
attctctgcctcagcctccagtagctggattataggcgtgcgtaccacatctggct	9660
aattttgtattttagtagagatggttcaccatgttggcaggcttgcgaactcc	9720
tgacctcagatgatccacctgcctcgccctccaaagtgcctggattacaggcatgagcc	9780
accgtgcccagcctctacaaacttttattccattaacaaactatatgctgggatthaag	9840
ttttcttaataactgtatggagtctatgttaatttcgagcttttaatttactaagacca	9900
tttttagttctgattatagaagtaattaaacttaaggattcaagttatatggcctact	9960
tctgaagcaaactcttacagtggaaattcattataagggttagaccccttatggaga	10020
cgttcaatctgttaactcaagagaaggctacaagtgcctcccttaactgtttcatctc	10080
acaaggatgttagtagaaagtaacacagaagagtcatatctgtttcacagccaaattata	10140
cagaaatccgacagttactgcaatcactggcgaaatttgcgtacattgtatgcattctgg	10200
aaagtataaagagtagtcttgactggacatctttaaccaggagagaattgttgatgttg	10260
ctggaccagggggttggaatgaccagatatggtaaaaactgtgagccctctgtcaag	10320
accctgcggtaggttgcattttctatgttgcattcaaggtaatacagtaagttcctg	10380
ggaggaggctttagtggagacttagagcaggatgtgtggaaagtggttctccata	10440
tgggtcatctaggttaactttaagaatgtttctctctttgttgcattttcattct	10500
ttttctcagtttagtgattggcaactttggcctcagctggatcagcaagtaactcagatg	10560
gcctctggctatcatggctgccttattcatgtctaaatgacccctggacacatcagc	10620
cctcaaggccaaagctctcctcaggataaggacgtaattgcattcaatcaggacccttg	10680
ggcaagaagggtaccagcttagacaggttaaaagagtatataatttaagatggctta	10740
tatacccaataccaaactttgtcttggcccttaatctatttttccctgtcttgatgt	10800
tactatcagtaataaagcttctgttagaaacattactttatttccaaaataatgctaca	10860
ggatcatttaattttcttacaagtgcgtatgttctgcattaaagaatgaatgcca	10920
actaacaggccacttatcacttagtgcataagcaaccacacttctgttttcaaggaa	10980
gacaacttgaagtgtggaaacgaccctctcagcttagcgtggctgttagctatgata	11040
aaccggcaggagattggtgacccctgcgttataaccatgcagttgcgtccctggtaaa	11100
ggagtggctgtatccctgcgttcatcacacagctccctccctgtgaaaaggaaagcta	11160
gggttctatgaatggacttcaaggtaagaagtcacataatcccacaggcactgttttgc	11220
cttcagctagaaatacaatgcagatgtcattaaagacttactttaaaatgtttat	11280
atggccaaactacttctgtccaccttttctccattcactttaaaagctcaaggct	11340
ggtggtcatgcctgtatcccagcacttgggaggctgaggcggcagatcacctgagg	11400
tcgggactttgagaccgcctggacaaacatggtaaaacccatttctaataaaaataaa	11460
aaatttaqccagggtgtgtggqgcqccactgtgtggcccaactctggggqctgaggcatqa	11520

FIG. 1D

gaatcgcttgaacccgggagtggaggttgcattgagctgagatcatgccacactcactcca	11580
gcctggcaacaaagattccatctcaaaaaaaaaaaaaagccaggcacagtggctcatg	11640
cctggaatcccagcacttttggaaagctgaggcaggcagatcacttgaggtaggatttca	11700
agaccagcctggctaacatagtagaaagccctgtctactaaaaataaaaaattagccag	11760
gtatggtggcgagcttctgttagccccagctactcaggagactgaggcaggagaatcactt	11820
gaacccgggaagtgggggggtgcagtgacccaaagatcacgccactgcattccagcctggg	11880
caacagagcaagactccatctcaaaaaaaaaagttctatttccttgaataaaaatttccg	11940
aagtttaactttaggaataaaaactattaaaccgtattactcatccagataaccaccc	12000
cccttgtttagattctctccaaattatcaaaatgtgttagcatatttaactaccaagagct	12060
aaacatcattaagactgaaatgttataagaaggatgtataggccaggcacggtgcac	12120
gcctgtaatcccaacactttggaggccaagtcggcggatcacgaggtcaggagatgga	12180
gaccatcctggccaacatggtaaaccctctactaaaaataaaaaattagccagg	12240
caggtggcaggcacctgtaatcccagctactccagaggctgaggcaggacaatcactga	12300
acctgggaggcagaggctgcagtgagctgaggtaggtgttccaattgcactccagcctaggt	12360
acgagcaacactccatctcaaaaaaaaaaaaaagatgtataatttggaaactgtta	12420
agaggcattttaaaga	12436


FIG.1E

MQLRNPELHL	GCALALRFLA	LVSWDIPGAR	ALDNGLARTP	TMGWLHWERF	MCNLDCQEEP	60
DSCISEKLFM	EMAELMVSEG	WKDAGYEYLC	IDDCWMAPQR	DSEGRLQADP	QRFPHGIRQL	120
ANYVHSKGLK	LGIYADVGNK	TCAGFPGSFG	YYDIDAQTFA	DWGVDLLKFD	GCYCDSELENL	180
ADGYKHMSLA	LNRTGRSIVY	SCEWPLYMW	FQKPNYTEIR	QYCNHWRNFA	DIDDSWKSIEK	240
SILDWTSFNQ	ERIVDVAGPG	GWNDPDMV	GNFGLSWNQQ	VTQMALWAIM	AAPLFMSNDL	300
RHISPQAKAL	LQDKDVIAIN	QDPLGKQGYQ	LRQGDNFEVW	ERPLSGLAWA	VAMINRQEIG	360
GPRSYTIAVA	SLGKGVACNP	ACFITQLLPV	KRKLGFYEW	SRLRSHINPT	GTVLLQLENT	420
MQMSLKDLL						429

FIG.2

Atgcagctgaggaatccc gagctccacctgggctgtgctctggctctgcggttcctggcc	60
Ctcgtgtcctgggacatccctggcgctagggccctcgataacggactggccggacccccc	120
Acaatgggatggctccactggaaagggtcatgtcaatctggactgtcaggaggaaccc	180
Gactcctgcatacgaaaaagcttcatggagatggccgagctgatggtgagcggagggc	240
Tggaaggacgcccggctacgagtatctgtcatcgatgactgctggatggccctaaagg	300
Gactccgaaggcaggctgcaggctgatccccaaagggttccccacggaatccggcagctc	360
Gccaactacgtgcattccaaggcctcaagctggcatctacgcccacgtggcaacaaa	420
Acatgcgcggattccccggcagttcggtactacgacatcgacgcccagacattcgct	480
Gattggggagtggacctgctgaagttcgacggctgttactgcatcgattccctggaaaacctg	540
Gccgacggctacaaaacacatgtccctccctgaaccggacaggcaggccatcgatgtac	600
Agctgcgagtggccctgtacatgtggccttcagaagcccaactacacagagatcagg	660
Cagtactgcaccactggaggaacttcgctgacatcgacgactcctgaaagagcatcaag	720
Agcatcctggactggaccagcttcaaccaggagaggatcgatggacgtggctggacccgg	780
GgctggAACGACCCGATATgctgggattggcaacttcgactgagctggaccaggcag	840
Gtggaccagatggccctgtggccattatggccctccctgttcatgtccaaacgacactg	900
Aggcacatcagccccaggccaaggctctgctgcaggacaaggatgtgatcgccatcaac	960
Caggacccctggcaagcaggctaccagctgaggcaaggagataactcgagggtgtgg	1020
Gagaggccctgtccggactggcttggccgtgccatgtcaatcgacaggagatcgcc	1080
Ggaccggcttacaccattgtgtggccagcctggaaaaggagtcgcctgcacccccc	1140
Gcctgcttattaccagctgctccctgtgaagcggaaagctggcttcatgtggacc	1200
Agcaggctgaggcccataatcaatcctaccggcaccgtccctccagctcgagaataacc	1260
Atgcagatgagcctcaaggatctgctgtga	1290

FIG.3

FIG. 4

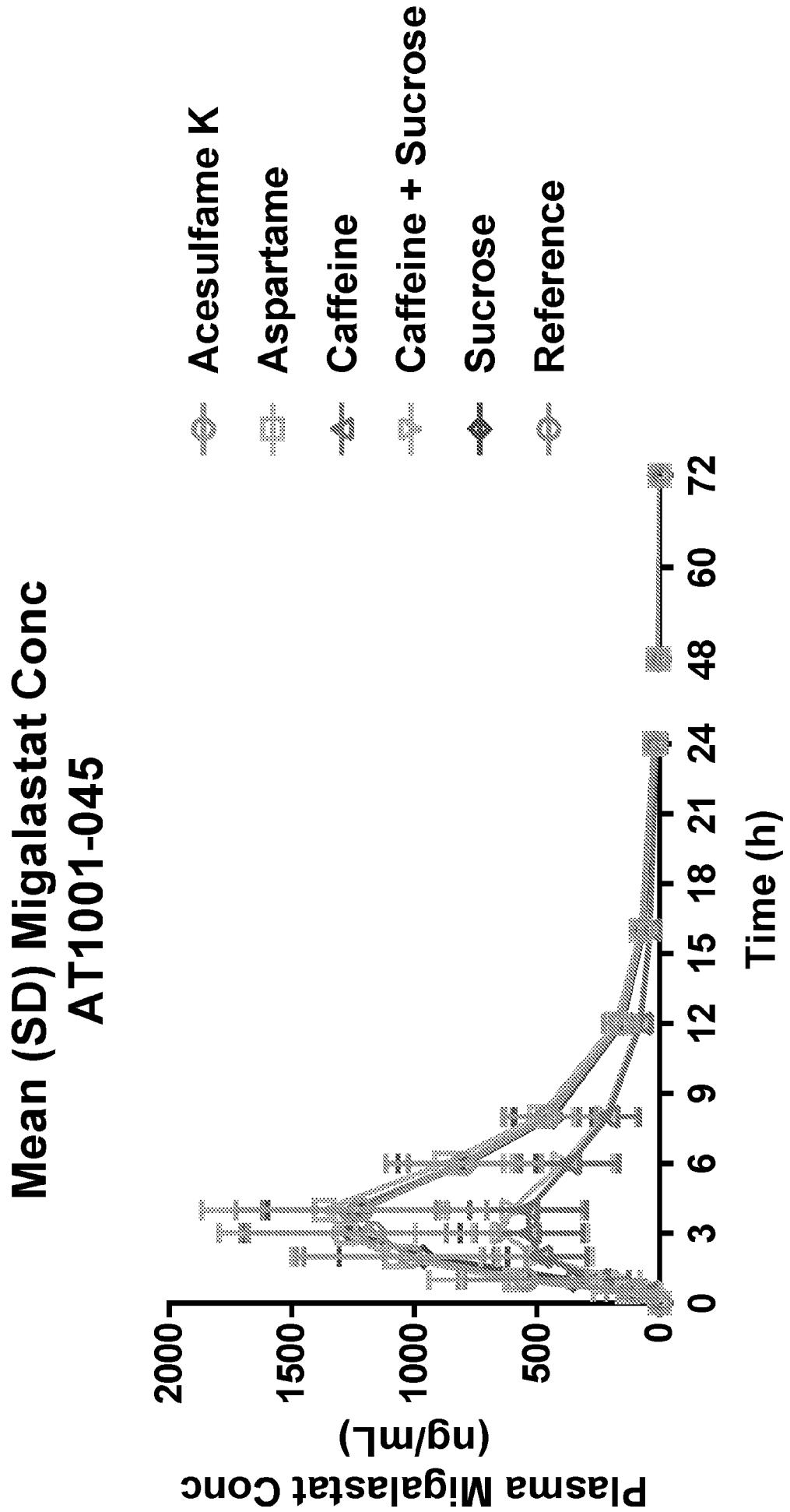


FIG. 5

Sequence Listing

1	Sequence Listing Information	
1-1	File Name	AT22-004-US.xml
1-2	DTD Version	V1_3
1-3	Software Name	WIPO Sequence
1-4	Software Version	2.3.0
1-5	Production Date	2023-05-11
1-6	Original free text language code	
1-7	Non English free text language code	
2	General Information	
2-1	Current application: IP Office	US
2-2	Current application: Application number	
2-3	Current application: Filing date	
2-4	Current application: Applicant file reference	AT22-004-US
2-5	Earliest priority application: IP Office	US
2-6	Earliest priority application: Application number	63432235
2-7	Earliest priority application: Filing date	2022-12-13
2-8en	Applicant name	AMICUS THERAPEUTICS, INC.
2-8	Applicant name: Name Latin	
2-9en	Inventor name	Franklin Johnson
2-9	Inventor name: Name Latin	
2-10en	Invention title	METHODS OF IMPROVING THE PHARMACOKINETICS OF MIGALASTAT
2-11	Sequence Total Quantity	3

3-1	Sequences	
3-1-1	Sequence Number [ID]	1
3-1-2	Molecule Type	DNA
3-1-3	Length	12436
3-1-4	Features Location/ Qualifiers	source 1..12436 mol_type=genomic DNA organism=Homo sapiens
3-1-5	NonEnglishQualifier Value Residues	cccttctgt a gggcagaga ggttctactt cattactgcg ttcctggg aggccatcg 60 gactgctggc taaagtggg accaggactc tttgtgagtt aagaattttgt gtatttatat 120 gtgtgttata cacattttt aaaaaactgt aacgacatca ggttgagcg tcgtctccgg 180 gtggtaatt atgtgttattt taaaattttt tactatattt ttattttca aatgttcgaa 240 atgaaatag tagattgtt ttatcagcg aaaaataaac attattcaaa tactctattc 300 agtaaagta ttatattggc gccttgtca agcacgcatt tgccctagatg tgactctaca 360 gataaaattc acttggggcc tcccttaca gacaatcagg cagtggagac tgagtgcctg 420 aatggataga ccagcaactca gaccactatt ttcagttatct gttttctta actcaggggcc 480 gtggtttca aacgttttc gccttacggt caccctttagg gtccccccgg accggcccg 540 acagacagat atacaaaaac acatacacag tcatgagcg tccaccattt cccaccaggc 600 gcagcacagg cggctcccg gcaactgagat gggggggagg agggagagag cgccgggggg 660 gaggggaaag cagagaacga aagaggcgga ggcggccccc gaaccggct ctggtttca 720 tcatcaccac ccctgggtcc ccagttccca cccacacacc aacctctaacc gataccgggt 780 aattttccctt cttctccctt caaacggcta tagcgagacg ttagacgacg accagaacta 840 cttctgtca cgtaagcgag taatcacgtg agccctacg tcatgtgaga ttcgtgtcac 900 gtgagcaact ctccgtttaa actcgggatc actaagggtgc cgcaacttct tctggatgg 960 aaatagggcg ggtcaatatac aagaaaggaa gaggggtgatt ggttagcgga acgtcttacg 1020 tgactgatta ttggtctacc tctgggata accgtcccag ttgccagaga aacaataacg 1080 tcattattta ataagtcatc ggtgatttggt ccgccttgc ggttaatctt aaaaagcccg 1140 gttaccccg gaaattttatg ctgtccggc accgtgacaa tgcaagctgag gaaccggaa 1200 ctacatctgg gtcgcgcgt tgcgttgc ttcctggccc tgcgttcttggcatccct 1260 ggggcttagag cactggacaa tggattggca aggacgccta ccatggctg gtcgcactgg 1320 gagcgcttca tgcaccccttgc tgcgttgcg gaagagcccg attcctgcatt caggtatcg 1380 atattggta ctcccttccc ttgcgttgc tgcgttgc ttcctggccc tgcgttcttggcatccct 1440 gagtctcaac gggaaacagtt gagccccgagg gagagctccc ccacccgact ctgcgtctgc 1500 ttttttatcc ccagcaaact gtcccaatc aggactagcc ctaaaacttcc tctgtgtcac 1560 ctttcctggg atgggagtcc ggccagcgcc ccctgtttct ttctctctct ctctctctct 1620 cgttctccctt ctctttctct ttctcttctt ttctctctct ttctctctct ccctgcccgg 1680 ttctctttt tcactgctcc ttgcagagca gggccacccc ataggcagtg tgcccaaagt 1740 agccctgccc ggttctatttcc agacccttgc tgcgttgc tgcgttcttgc 1800 ctaacggta gaacatcttag ggtgggttgg aggaatgggg aactaagatt cgtgcattt 1860 tttctctttt tggggctgt gatttctcg cagttctcg agggagttttag agagaccata 1920 aggtcgctga gatctctccc acctcgccca tgacgtggc atcaggctgg aagtttgaca 1980 tggaggaact ttatcacattt acaccttgc tgagggttg aggctggatt agataggtat 2040 tgaacatatac tgaccctcac aatccttatac tgtaaattgg gattacaacc ttttaatttc 2100 agggagctga caaaaaaaat ctggaaaataa gttcttatct cacacagtg agtttcaag 2160 gagataacccat attaaagta catagcacag cgcttgcacca ttcaactcg tttacagacg 2220 aaatgttcaa tggggaaaatg aatgttaatc tacaatctgt aatgaatatg ttttgcattt 2280 tggagagagg atatttaccc ttcttcaaat tctcaaaagg ctctgtgatt taaaaaaagg 2340 taggaatcac tgatagatgt tggtaaaagg tggcgttgc acgtacatttgc tgcgttccata 2400 agtttattctt atgaatatctt ttatagatataa agtcaggatg ttggcagac atcacagaag 2460 aaattggct tgcgttgc atgtgaccct tggttgcacgt atgtgtggca attttgcacc 2520 tcacggatt ttttttattt gatatttgcattt ctgattataa aactaatgc tgcgttccata 2580 aaaaaatgtt gataaagaag agccaaatgtt aatggatgtt ttcccccac cggttccacca 2640 cccagaaata atcatgtttaa aatgttaatc tacaacccctt acaattgttt tctatataaa 2700 tgaaaacata gatttcttta ttccattttt ttccataaaa aatggatcat gtttgcatttgc 2760 tggttggctt atggcaagac cctggcaccc agtctggctt cttttttttt tagtacagac ggggtttcac 2820 cttagccctt tgacattggg taaatttacac tttttttttt tttttttttt tgagacgggg 2880 tctcgctctg tgcggccaggc tggagtgcag tggcacgatc tggcgttgcact gcaagtcgc 2940 ctccctgggtt cacgcacattt ttctgcctca gcctcccgag tagctggac tacaggcc 3000 tgccaccacg cctggcttctt tttttttttt tttttttttt tagtacagac ggggtttcac 3060 catgttagcc aggggtgtt cttttttttt tttttttttt tgagacgggg 3120 aagtgtgtt gttttttttt tttttttttt tttttttttt tgagacgggg 3180 ctgtcaccctt ggttggatgtt cttttttttt tttttttttt tgagacgggg 3240 ggtttaagca gttttttttt tttttttttt tgagacgggg 3300 cgccagacta atttttgtat ttttgcatttgc gacgggttgc accatgttgc ccaagtcgttgc 3360 ctcgacttcc tggccctcaag tgatctgcctt ccctggccctt cccagacttcc 3420

cctcgcgcagg cttccctggg agttttggat actacgcacat tgatgcccg acctttgctg 7380
actggggagt agatctgcta aaatttgcgt tggttactg tgacagttt gaaaatttgg 7440
cagatggtaa tgttcattc cagagattt gccacaaagg aaagaactt gaggccatgg 7500
tagctgagcc aaagaaccaa tcttcagaat tttaaatacc ctgtcacaat actggaaata 7560
attattctcc atgtgcaga gctccatct cttctcttc agttcattaa ttaattaattt 7620
aattcatgta aaatccatgc atacctaacc atagctaata ttgtgcactt ataattcaag 7680
agggctctaa gagtttaattt gtaattgtaa ctctctataa catcatttag gggagttccag 7740
gttgcataatc ggtcacagag aaagaagcat cttcattctt gccttcctt aatatacaca 7800
ccatctctgc actacttcct cagaacaatc ccagcagtct gggaggtact ttacacaattt 7860
taagcacaga gcaactgcct gtcctgtct ctagttttaa catgaacctt ccaggtagcc 7920
tcttcattaa atatacagcc ccagctggc atgatggctc atgcctgtttt tcttagact 7980
ttgggaggtt gaggcgggtt gattacttga ggtcaggagt tcgagaccac cctggccaac 8040
atggtaaaac cccatctcta gtaaaaatac aaaaatttagc tgactttgtt ggcacatgcc 8100
tgtatccca gctacttggg aagctgagac agaagagtca cttgaacctt gggaaacagag 8160
gttgcagtga gccaagatcg caccactgca ctccaccctt gatgacagac tgaacccat 8220
ctcaaaaaat taaaataaaaaa taaaataaaaaa taactatata tatagccccca gctggaaattt 8280
catttcatttcc ctttattttt cccattgttt tctcatacag gttataagca catgtcctt 8340
gcccgtgataa ggactggcag aagcattgtg tactcctgtg agtggcctt ttatatgtgg 8400
cccttcatttttcaaa aggtgagata gtgagcccg aatccaatag aactgtactt atagatagaa 8460
cttgacaaca aaggaaacca aggtctccctt caaaagtccaa cgttacttac tatcatccctt 8520
ccatctctcc caggttccaa ccacttctca ccattttccac tgctgttattt atagcctaag 8580
ctaccatcac ctggaaagtc atccttgcgtt cttcccccattt atttcacccat tcatgtcctt 8640
tctatcaaca gtccttccac cagtatcttcaaaaatcttctt cttttttttt cttttttttt 8700
ccatcttcac tacatgcacc ctggcccttcc aagctacttacat cttttttttt cttttttttt 8760
gggaccacccctt gatctctgtt cttccacttctt cttttttttt cttttttttt 8820
actagagttt tcatattttttt atgtaatattt cttttttttt cttttttttt 8880
gacttaacag agtttataaaaaa aatataatgt tcatcatcag tttttttttt cttttttttt 8940
actcgcttcc aatttgcactt ggaatgaaac cttttttttt cttttttttt 9000
tccccaaatg ccaaggggcctt atggctctttt ccctggctac actggttttt tttttttttt 9060
tcaacacttgc aaggccttattt ctggcccttcc aagttttttt cttttttttt 9120
acagttcttc cccaaagattt tttttttttt cttttttttt 9180
aacggccacat atgcagacat ttcttcttca actactttttt cttttttttt 9240
ttcttcttca cattttttttt cttttttttt 9300
ttgttgactt gttttttttt cttttttttt 9360
gtctgactt gactgtatctt cttttttttt 9420
aatccctattt atcccttcat tatctcttca actactttttt cttttttttt 9480
tgatatccca cttttttttt 9540
ggcttaggtt cttttttttt 9600
attcttgc cttttttttt 9660
aattttttttt 9720
tgacctcaga tttttttttt 9780
accgtgccccccca gcttcttacaa actttttttt 9840
ttttttttt 9900
ttttttttt 9960
tctgaagccaa acttcttaca gttttttttt 10020
cgttcaatctt gtaaaacttca gttttttttt 10080
acaaggatgtt tagtagaaag taaacagaag agtcatatctt cttttttttt 10140
cagaaatccg acagtacttgc aatctacttgc gttttttttt 10200
aaagtataaaa gttttttttt 10260
ctggaccagg ggggttggat gaccagata tttttttttt 10320
accctgcggg aggcttgcgtt cttttttttt 10380
ggaggaggtt ttatgttggat gttttttttt 10440
tgggttcatctt aggttactttt aagttttttt 10500
ttttttttt 10560
ccctctggg cttttttttt 10620
cctcaagccaa aagctcttgc tttttttttt 10680
ggcaagccaa ggttccaggctt tagacaggtt aataaggtt tttttttttt 10740
tatacccaat accaacttttgc tttttttttt 10800
tactatcatgtt aataaaagttt cttttttttt 10860
ggatcattttt aattttttttt 10920
actaacaggcccaacttcatca cttttttttt 10980
gacaactttt aagttttttt 11040
aaccggccagg agttttttt 11100
ggagtggctt gtaatcttgc tttttttttt 11160
gggttctatg aatggacttca aaggtaaga agtccacataa atcccacagg cttttttttt 11220

		cttcagctag aaaatacaat gcagatgtca ttaaaagact tactttaaa tgtttatttt 11280 atggccaact actacttcct gtccacccctt ttctccattc actttaaaag ctcaggcata 11340 ggtggtctat gcctgtatcc ccagcacttt gggaggctga ggcgggcaga tcacctgagg 11400 tcgggacttt gagacccgccc tggacaacat ggtaaaccc catttctaat aaaaataaa 11460 aaatttagcca ggtgtgggtt cgacacgtgt gtcccagcta ctctggggc tgaggcatga 11520 gaatcgctt aacccgggg tggagggtgc attgagctga gatcatgcca cctcactcca 11580 gcctggcaaa caaagattcc atctcaaaaa aaaaaaaaaa gccaggcaca gtggctcatg 11640 cctggaatcc cagcacttt ggaagctgag gcaggcagat cacttgagg taggattca 11700 agaccaggct ggcttaacata gtaaagccct gtctctacta aaaataaaaa aattagccag 11760 gtatgggtgc gagcttctgt agccccagct actcaggaga ctgaggcagg agaatcactt 11820 gaacccggga agtgggggg tgcagtgacc caagatcagc ccactgcatt ccagcctggg 11880 caacagagca agactccatc tcaaaaaaaaaa aagttctatt tccttgaata aaatttccg 11940 aagtttaaac tttagaata aaactattaa accgttattt actcatccag ataccaccc 12000 cccttggtaa gattctctcc caattatcaa aatgtgttagc atatthaact accaagagct 12060 aaacatcatt aagactgaaa tgttataaga aggtatgtata ggccaggcac ggtgtctcac 12120 gcctgtatcc ccaacacttt gggaggccaa gtcgggccc tcacgagtc aggagatgga 12180 gaccatctg gccaacatgg tgaaaccccc tctctactaa aaataaaaa attagccagg 12240 caggtggcag gcacctgtaa tccagctac tccagaggct gaggcaggac aatcacttga 12300 acctgggagg cagaggctgc agtgagctga gttgttacca attgcactcc agcctaggt 12360 acgagcaaca ctccatctca aaaaaagaaa aaaaaaaaaa tgtataattt ggaactgtta 12420 agaggcattt taaaga 12436
3-2	Sequences	
3-2-1	Sequence Number [ID]	2
3-2-2	Molecule Type	AA
3-2-3	Length	429
3-2-4	Features Location/ Qualifiers	source 1..429 mol_type=protein organism=Homo sapiens
3-2-5	NonEnglishQualifier Value Residues	MQLRNPELHL GCALALRFLA LVSDWIPGAR ALDNGLARTP TMGWLHWERF MCNLDCQEEP 60 DSCISEKLFM EMAELMVSEG WKDAGYEYLC IDDCWMAQQR DSEGRLOQADP QRFPHIGRQL 120 ANYVHSKGLK LGIYADVGNK TCAGFPGSFG YYDIDAQTFA DWGVDLLKFD GCYCDSLENL 180 ADGYKHMSLA LNRTGRSIVY SCEWPLYMWPF QKPNYTEIR QYCNHWRNFA DIDDSWKSIIK 240 SILDWTSFNQ ERIVDVAGPG GWNDPDMVLI GNFGLSWNQQ VTQMALWAIM AAPLFMSNDL 300 RHISPQAKAL LQDKDVIAIN QDPLGKQGYQ LRQGDNFEVW ERPLSGLAWA VAMINRQEIG 360 GPRSYTIAVA SLGKGVACNP ACFITQLLPV KRKLGFYEWL SRLRSHINPT GTVLLQLENT 420 MQMSLKDIL 429
3-3	Sequences	
3-3-1	Sequence Number [ID]	3
3-3-2	Molecule Type	DNA
3-3-3	Length	1290
3-3-4	Features Location/ Qualifiers	source 1..1290 mol_type=genomic DNA organism=Homo sapiens
3-3-5	NonEnglishQualifier Value Residues	atgcagctga ggaatcccgaa gctccacccgt ggctgtgtc tggctctggcg gttcttggcc 60 ctcggtcttccc gggacatccc tggcgctagg gcccctcgata acggactggc ccggacccccc 120 acaatggat ggctccactg ggaaagggttc atgtcaatc tggactgtca ggaggaaaccc 180 gactcctgca tcagcgaaaa gctcttcatg gagatggccg agctgtatggt gagcgaggcc 240 tggaggacg ccggctacga gtatctgtgc atcgtatgact gctggatggc ccctcaaagg 300 gactccgaaag gcaggctgca ggctgatccc caaagggttc cccacggaaat ccggcagctc 360 gccaactacg tgcattccaa gggcctcaag ctggcatct acggcgcacgt gggcaacaaa 420 acatgcggcc gattccccgg cagcttcggc tactacgaca tgcacgcccc gacattcgct 480 gattggggag tggacctgtc gaagttcgac ggctgttact gcgattccct ggaaaaacctg 540 ccgcacggct acaaacacat gtccctcgcc ctgaacccgaa caggcagtc catcgatc 600 agctgcgagt gggccctgtt catgtggctt ttccagaagg ccaactacac agagatcagg 660 cagttactgca accactggag gaacttcgtc gacatcgacg actctctggaa gagcatcaag 720 agcatcctgg actggaccag cttaaccagg gagaggatcg tggacgtggc tggaccggaa 780 ggctggaaacg accccgatata gctgggtattt ggcaacttcg gactgagctg gaaccaggac 840 gtgaccggaga tggccctgtt gggcattatg gcccgtcccc ttgttcatgtc caacggaccc 900 aggcacatca gccccccggc caaggctctg ctgcaggaca aggtatgtat cgccatcaac 960 caggacccccc tggggcaagca gggcttcccg ctgaggcaag gagataactt cgagggttgg 1020 gagaggcccc tggccctgtt ggtttggcc gttggccatgtcaatcgca ggagatcgcc 1080 ggaccccccgtt cttacaccat tggctgtggcc agcctggaa aaggagtcgc ctgcaaccccc 1140 gcctgtttca ttaccatgt gctccctgtt aaggcggaaagc tgggtttcta tgagtggacc 1200

		agcaggctga ggtcccatat caatcctacc ggcaccgtcc tcctccagct cgagaatacc 1260	
		atgcagatga gcctcaagga tctgctgtga	1290