(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date (10) International Publication Number
17 November 2005 (17.11.2005) PCT WO 2005/109167 A2
(51) International Patent Classification’: GOG6F 3/06 (74) Agent: SEKAR, Anita; IBM United Kingdom Limited,

Intellectual Property Law Hursley Park, Winchester Hamp-

(21) International Application Number: shire SO21 2JN (GB).

PCT/EP2005/051862 (81) Designated States (unless otherwise indicated, for every

kind of national protection available): AE, AG, AL, AM,

(22) International Filing Date: 26 April 2005 (26.04.2005) AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
(25) Filing Language: English GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,

KG, KM, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA,
MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM,

(26) Publication Language: English PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY,
TI, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU,
(30) Priority Data: ZA, 7M, ZW.
10/842,047 6 May 2004 (06.05.2004) US

(84) Designated States (unless otherwise indicated, for every

.) kind of regional protection available): ARIPO (BW, GH,

(71) Applicant (for all designated States except US): INTER- GM, KE, LS, MW, MZ, NA, SD, SL, SZ. TZ, UG, ZM,
NATIONAL BUSINESS MACHINES CORPORA- ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),

TION [US/US]; New Orchard Road, Armonk, NY 10504 European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI

US). FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO,
SE, SI, SK, TR), OAPI (BF, BJ, CE, CG, CI, CM, GA, GN,
(71) Applicant (for MG only): IBM UNITED KINGDOM GQ, GW, ML, MR, NE, SN, TD, TG).
LIMITED [GB/GB]; PO. Box 41, North Harbour,
Portsmouth Hampshire PO6 3AU (GB). Published:

— without international search report and to be republished

(72) Inventor; and upon receipt of that report
b

(75) Inventor/Applicant (for US only): HAJJI, Amine For two-letter codes and other abbreviations, refer to the "Guid-
[US/US]; 1211 Quail Creek Circle, San Jose, CA 95120 ance Notes on Codes and Abbreviations” appearing at the begin-
(Us). ning of each regular issue of the PCT Gagzette.

71091677 A2 | IOV YO0 O 0O

(54) Title: METHOD AND SYSTEM FOR STORING DATA IN AN ARRAY OF STORAGE DEVICES WITH ADDITIONAL
W) AND AUTONOMIC PROTECTION

00

o (57) Abstract: One aspect of the present invention is a method for storing data in an array of storage devices. An example of the
method includes writing a first strip to a first storage device and a second storage device. This example also includes writing a second
strip to the second storage device and a third storage device. This example further includes writing a third strip to a third storage
device and a fourth storage device.

WO 2005/109167 PCT/EP2005/051862

Description

METHOD AND SYSTEM FOR STORING DATA IN AN ARRAY

[001]

[002]

[003]

[004]

OF STORAGE DEVICES WITH ADDITIONAL AND

AUTONOMIC PROTECTION
Technical Field

The present invention relates to storing data in a computing system. More par-
ticularly, some examples of the present invention concern storing data in array of

storage devices in a manner that provides enhanced protection from data loss.

Background Art

Important data is often stored in storage devices in computing systems. Because
storage devices can fail and data in failed storage devices can be lost, techniques have
been developed for preventing data loss and restoring data when one or more storage
devices fail.

One technique for preventing data loss comprises storing parity information on a
storage device (such as a disk drive), which is a member of a storage array, and storing
customer data on one or more of the other remaining storage devices in the array.
(Herein a disk drive may be referred to as a “disk”, which is a simplification in
common use.) With this technique, if a storage device fails, parity information can be
used to reconstruct the data that was on the failed storage device. Moreover, if
sufficient parity information is added to another storage device, the additional parity
information may be used to reconstruct data from more than one failed storage device.
Another technique for preventing data loss, called data mirroring, comprises making a
duplicate copy of data on a separate storage device. If a storage device fails, data can
be restored from the copy of the data.

A Redundant Array of Inexpensive (or Independent) Disks (RAID), may be used to
provide a data storage system that has increased performance and capacity. Data
mirroring and parity information storage, or a combination of the two, may be im-
plemented on a RAID array to provide data protection. Also, a technique called
striping may be utilized, wherein data records and parity information are divided into
strips such that the number of strips equals the number of disks in the array. Each strip
is written or “striped” to each of the different disks in the RAID array to balance the
load across the disks and to improve performance. A group of strips comprising one
pass across all of the drives in a RAID is called a stride. Several RAID protocols have
been devised, wherein different mirroring, parity, and striping arrangements are
employed. As an example, in a RAID 5 array consisting of six disks, five data strips
and one parity strip are striped across the six disks, with the parity information rotated

WO 2005/109167 PCT/EP2005/051862

[005]

[006]

[007]

across the disks. The rotation of the parity across the disks ensures that parity updates
to the array are shared across the disks. RAID 5 provides a redundancy of one, which
means that all data can be recovered if any one and only one of the disks in the array
fails.

Although techniques are known for providing greater storage device redundancy to
permit data recovery after the failure of more than one storage device, these techniques
generally require storing additional parity information on additional storage devices
(for example, by using higher Hamming codes), or require additional mirroring on
additional storage devices. RAID 6 has an arrangement similar to RAID 5, but requires
two parity strips in each stride, to provide a redundancy of two. The storage efficiency
for a RAID 6 array for the same data storage capacity is lower than for a RAID 5 array,
because a RAID 6 array requires an additional disk. Further, reconstructing lost data
from parity information can be time consuming. Consequently, known techniques have
undesirable capacity and performance tradeoffs that must be weighed against the need
for increased fault tolerance and quick data recovery.

Disclosure of Invention

According to a first aspect, there is provided a method for storing data in an array of
storage devices, the method comprising the steps of: writing a first strip to a first
storage device and a second storage device; writing a second strip to the second storage
device and a third storage device; and writing a third strip to a third storage device and
a fourth storage device.

Preferably, at least one of the strips is a parity strip. In a preferred embodiment, the
method further comprises the steps of setting a value for a parameter N, wherein each
storage device in the array of storage devices has at least N strip LBAs; identifying a
number, j, of a stride to be stored; determining if 3] is less than N-1; and if so: writing
a strip s1j to a LBA in a first storage device in the array, and toaLBA ina second
storage device in the array, and to a LBA in a third storage device in the array; writing
a strip s2j to a LBA in the second storage device, and to a LBA in the third storage
device, and to a LBA in a fourth storage device in the array; and writing a strip s3j to a
LBA in the third storage device, and to a LBA in the fourth storage device, andto a
LBA in a fifth storage device in the array. Preferably, if it is determined that 3j is not
less than N-1, then the operations further comprise: writing the strip s1j to a LBA in
the first storage device; writing the strip s2j to a LBA in the second storage device; and
writing the strip s3j to a LBA in the third storage device. More preferably, the
operations further comprise: determining, for each storage device in the array of
storage devices, the total number of strip LBAs in the storage device; and identifying
the smallest total number of strip LBAs; and wherein the operation of setting a value

WO 2005/109167 PCT/EP2005/051862

[008]

[009]

[010]

[011]

for the parameter N comprises setting N equal to the smallest total number of strip
LBAs.

Preferably, if it is determined that 3j is less than N-1, then the operations further
comprise: writing a strip s4j to a LBA in the fourth storage device, and to a LBA in the
fifth storage device, and to a LBA in a sixth storage device in the array; writing a strip
$5j to a LBA in the fifth storage device, and to a LBA in the sixth storage device, and
to a LBA in the first storage device; and writing a strip s6j to a LBA in the sixth
storage device, and to a LBA in the first storage device, and to a LBA in the second
storage device. More preferably, if it is determined that 3] is not less than N-1, then the
operations further comprise: writing the strip s4j to a LBA in the fourth storage device;
writing the strip s5j to a LBA in the fifth storage device; writing the strip s6j to a LBA
in the sixth storage device.

In a preferred embodiment, the method further comprises the steps of: setting a
value for a parameter N, wherein each storage device in the array of storage devices
has at least N strip LBAs; identifying a number, j, of a stride to be stored; determining
if 3j is less than N-1; and if so: writing a strip s1j to a LBA] in a first storage device in
the array, and to a LBAj+2 in a second storage device in the array, and to a LBAj+1 in
a third storage device in the array; writing a strip s2j to a LBAj in the second storage
device, and to a LBAj+2 in the third storage device, and to a LBAj+1 in a fourth
storage device in the array; and writing a strip s3j to a LBA]j in the third storage device,
and to a LBAj+2 in the fourth storage device, and to a LBAj+1 in a fifth storage device
in the array.

Preferably, if it is determined that 3j is not less than N-1, then the operations further
comprise: writing the strip s1j to LBA(3j-N+2) in the first storage device; writing the
strip s2j to LBA(3j-N+2) in the second storage device; and writing the strip s3j to
LBA(3j-N+2) in the third storage device. More preferably, the operations further
comprise: determining, for each storage device in the array of storage devices, the total
number of strip LBAs in the storage device; and identifying the smallest total number
of strip LBAs; and wherein the operation of setting a value for the parameter N
comprises setting N equal to the smallest total number of strip LBAs.

Preferably, if it is determined that 3j is less than N-1, then the operations further
comprise: writing a strip s4j to a LBA] in the fourth storage device, and to a LBAj+2 in
the fifth storage device, and to a LBAj+1 in a sixth storage device in the array; writing
a strip s5j to a LBA] in the fifth storage device, and to a LBAj+2 in the sixth storage
device, and to a LBAj+1 in the first storage device in the array; and writing a strip s6j
to a LBAj in the sixth storage device, and to a LBAj+2 in the first storage device, and
to a LBAj+1 in the second storage device. More preferably, if it is determined that 3j is
not less than N-1, then the operations further comprise: writing the strip s4j to

WO 2005/109167 PCT/EP2005/051862

[012]

[013]

[014]

[015]

[016]

[017]

LBA(3j-N+2) in the fourth storage device; writing the strip s5j to LBA(3j-N+2) in the
fifth storage device; and writing the strip s6j to LBA(3j-N+2) in the sixth storage
device.

According to a second aspect, there is provided a storage system for storing data in
an array of storage devices, the system comprising: means for writing a first strip to a
first storage device and a second storage device; means for writing a second strip to the
second storage device and a third storage device; and means for writing a third strip to
a third storage device and a fourth storage device.

According to a third aspect, there is provided a computer program comprising
program code means adapted to perform all the steps of the method above, when said
program is run on a computer.

One aspect of the invention is a method for storing data in an array of storage
devices. An example of the method includes writing a first strip to a first storage
device and a second storage device. This example also includes writing a second strip
to the second storage device and a third storage device. This example further includes
writing a third strip to a third storage device and a fourth storage device.

Some alternative examples of the method aspect of the invention include striping
data strides across a disk array, writing or updating a first strip of the stride on a first
disk in the array, writing or updating a second strip on a second disk, and so on for
additional strips and disks. The method additionally includes making a copy of each of
the strips, rotated by one disk such that the first disk has a copy of the strip of the last
disk in the array, and the second disk has a copy of the strip on the first disk, etc.

Other aspects of the invention are described in the sections below, and include, for
example, a storage system, and a signal bearing medium tangibly embodying a
program of machine-readable instructions executable by a digital processing apparatus
to perform operations for storing data in an array of storage devices.

Some examples of the invention advantageously provide higher storage device fault
tolerance than is provided by base RAID configurations, without using storage devices
other than the storage devices in the base RAID configurations. Thus, some examples
of the invention add additional redundancy on top of the base RAID code for a given
number of disks, using only the available disk space in the RAID. Additionally, some
examples of the invention beneficially provide high fault tolerance during the early
usage of a storage device, which is a usage period characterized by high failure rates.
Further, some examples of the invention permit data to be recovered quickly. The
invention also provides a number of other advantages and benefits, which should be
apparent from the following description.

Brief Description of the Drawings

WO 2005/109167 PCT/EP2005/051862

[018]

[019]

[020]

[021]

[022]

[023]

[024]

[025]

[026]

[027]

[028]

[029]

[030]

[031]

[032]

[033]

[034]

FIG. 1 is a block diagram of the hardware components and interconnections of a
storage system in accordance with an example of the present invention.

FIG. 2 is a block diagram of the hardware components and interconnections of a
computing apparatus in accordance with an example of the present invention.

FIG. 3 is an example of a signal-bearing medium in accordance with an example of
the present invention.

FIG. 4 is a flowchart of an operational sequence for backing up data in accordance
with an example of the present invention.

FIG. 5 is a mapping algorithm for providing a rotated copy of strips in a stride in
accordance with an example of the present invention.

FIG. 6 is a mapping table for providing a rotated copy of strips in a stride in
accordance with an example of the present invention.

FIG. 7 is a mapping algorithm for providing two rotated copies of strips in a stride
in accordance with an example of the present invention.

FIG. 8 is a mapping table for providing two rotated copies of sirips in a stride in
accordance with an example of the present invention.

FIG. 9 is an example of reservea LBA band mapping in accordance with an
example of the present invention.

FIG. 10 is a mapping table using a reserved band and a FIFO algorithm for
providing a rotated copy of strips in a stride, in accordance with an example of the
present invention.

FIGS. 11A-11B are a flowchart of an operational sequence for backing up data in
accordance with an example of the present invention.

FIG. 12 is a representation of storing data and copies of data in a disk array in
accordance with an example of the present invention.

FIG. 13 is a representation of a rebuild of data in a disk array in accordance with an
example of the present invention.

FIG. 14 is a representation of a rebuild of data in a disk array in accordance with an
example of the present invention.

FIG. 15 is a representation of a rebuild of data in a disk array in accordance with an
example of the present invention.

FIG. 16 is graph showing the percentage of data protected for any two hard disk
drive failures in accordance with an example of the present invention with one rotated
copy.

FIG. 17 is graph showing the percentage of data protected for any three hard disk
drive failures in accordance with an example of the present invention with two rotated

copies.

WO 2005/109167 PCT/EP2005/051862

[035]

[036]
[037]

[038]

[039]

Best Mode for Carrying Out the Invention

The nature, objectives, and advantages of the present invention will become more
apparent to those skilled in the art after considering the following detailed description
in connection with the accompanying drawings.

I. HARDWARE COMPONENTS AND INTERCONNECTIONS

One aspect of the present invention is a storage system for storing data in an array

~ of storage devices. As an example, the storage system may be embodied by all, or

portions of, the storage system 100 shown in FIG. 1. As an example, the storage
system 100 may be implemented primarily with a model 800 Enterprise Storage Server
(ESS), manufactured by International Business Machines Corporation.

The storage system 100 includes a first cluster 102, and a second cluster 104. In al-
ternative embodiments, the storage system 100 may have a single cluster or more than
two clusters. Each cluster has at least one processor. As an example, each cluster may
have four or six processors. In the example shown in FIG. 1, the first cluster 102 has
six processors 106a, 106b, 106¢, 106d, 106e, and 106f, and the second cluster 104 also
has six processors 108a, 108b, 108c, 108d, 108e, and 108f. Any processors having
sufficient computing power may be used. As an example, each processor 106a-f,
108a-f, may be a PowerPC RISC processor, manufactured by International Business
Machines Corporation. The first cluster 102 also includes a first memory 110, and
similarly, the second cluster 104 includes a second memory 112. As an example, the
memories 110, 112, may be RAM. The memories 110, 112 may be used to store, for
example, data, and application programs and other programming instructions executed
by the processors 106a-f, 108a-f. The two clusters 102, 104 may be located in a single
enclosure or in separate enclosures. In alternative embodiments, each cluster 102, 104
could be replaced with a supercomputer, a mainframe computer, a computer
workstation, and/or a personal computer.

The first cluster 102 is coupled to NVRAM 114 (non-volatile random access
memory), which is included with a first group of device adapters DA1, DA3, DAS5,
DA7 (discussed below). Similarly, the second cluster 104 is coupled to NVRAM 116,
which is included with a second group of device adapters DA2, DA4, DA6, DA8
(discussed below). Additionally, the first cluster 102 is coupled to the NVRAM 116,
and the second cluster 104 is coupled to the NVRAM 114. As an example, data
operated on by cluster 102 is stored in memory 110, and is also stored in NV RAM 116,
so that if cluster 102 becomes unoperational, the data will not be lost and can be
operated on by cluster 104. Similarly, as an example, data operated on by cluster 104 is
stored in memory 112, and is also stored in NVRAM 114, so that if cluster 104
becomes unoperational, the data will not be lost and can be operated on by cluster 102.

WO 2005/109167 PCT/EP2005/051862

[040]

[041]

[042]

[043]

[044]

The NVRAM 114, 116 may, for example, be able to retain data for up to about 48
hours without power.

Within the first cluster 102, two or more of the processors 106a-f may be ganged
together to work on the same tasks. However, tasks could be partitioned between the
processors 106a-f. Similarly, within the second cluster 104, two or more of the
processors 108a-f may be ganged together to work on the same tasks. Alternatively,
tasks could be partitioned between the processors 108a-f. With regard to the interaction
between the two clusters 102, 104, the clusters 102, 104 may act on tasks inde-
pendently. However, tasks could be shared by the processors 106a-f, 108a-f in the
different clusters 102, 104.

The first cluster 102 is coupled to a first boot device, for example first hard drive
118. Similarly, the second cluster 104 is coupled to a second boot device, for example
second hard drive 120.

Each of the clusters 102, 104 is coupled to shared adapters 122, which are shared by
the clusters 102, 104. The shared adapters 122 can also be called host adapters. The
shared adapters 122 may be, for example, PCI slots, and bays hooked to PCI slots,
which may be operated by either cluster 102, 104. As an example, the shared adapters
122 may be SCSI, ESCON, FICON, or Fiber Channel adapters, and may facilitate
communications with one or more PCs and/or other hosts, such as host 124. As an
example, host 124 may be a zSeries server, or a Netfinity server, available from IBM
Corporation.

Additionally, the first cluster 102 is coupled to a first group of device adapters
DA, DA3, DAS, DA7, (which may also be called dedicated adapters), and the second
cluster 104 is coupled to a second group of device adapters DA2, DA4, DA6, DAS.
Each of the device adapters DA1, DA3, DA5, DA7 is an interface between the first
cluster 102 and one of the storage device groups 126a, 126b, 126c, 126d, and similarly,
each of the device adapters DA2, DA4, DAG, DAS is an interface between the second
cluster 104 and one of the storage device groups 126a, 126b, 126¢, 126d. More
specifically, device adapters DA1 and DA2 are coupled to storage device group 126a,
device adapters DA3 and DA4 are coupled to storage device group 126b, device
adapters DA5 and DAG are coupled to storage device group 126¢, and device adapters
DA7 and DAS are coupled to storage device group 126d. In other embodiments, larger
or smaller numbers of device adapters DA1-8, and storage device groups 126a-d could
be used. The storage device groups 126a-d are shared by the clusters 102, 104. In an
alternative embodiment, one or more of the storage device groups could be located at a
different site than the first cluster 102 and the second cluster 104.

As an example, each (storage) device adapter DA1-8 may be a Serial Storage Ar-
chitecture (SSA) adapter. Alternatively, one or more of the device adapters DA1-8

WO 2005/109167 PCT/EP2005/051862

[045]

[046]

could be implemented with other types of adapters, for example SCSI or Fiber Channel
adapters. Each adapter DA1-8 may include software, firmware, and/or microcode, for
carrying out one or more examples of the present invention or portions of the present
invention. As an example, Common Parts Interconnect (CPT) may be used to couple
each device adapter DA1-8 to a respective cluster 102, 104.

Each pair of device adapters (DA1 and DA2, DAS3 and DA4, DAS5 and DA6, DA7
and DAR), is coupled to two loops of storage devices. For example, device adapters
DA1 and DA?2 are coupled to a first loop of storage devices that includes a first string
of storage devices Al, A2, A3, A4, A5, A6, A7, A8, and a second string of storage
devices B1, B2, B3, B4, B5, B6, B7, B8. The first and second strings of storage
devices in a loop will usually have the same number of storage devices, to keep the
loop balanced. Similarly, device adapters DA1 and DA2 are also coupled to a second
Joop of storage devices that includes a first string of storage devices C1, C2, C3, C4,
C35, C6, C7, C8, and a second string of storage devices D1, D2, D3, D4, D5, D6, D7,
D8. A collection of eight storage devices such as storage devices Al, A2, A3, A4, A5,
A6, A7, and A8 may be referred to as an 8-pack. Although not required, a loop will
generally have a minimum of sixteen storage devices. In alternative embodiments,
larger or smaller numbers of storage devices could be included in each loop. For
example, thirty-two, forty-eight, or other numbers of storage devices could be included
in each loop. Usually, the strings of storage devices in a loop have equal numbers of
storage devices. Each loop of storage devices forms a serial loop with each device
adapter that the loop of storage devices is coupled to. For example, the loop of storage
devices that includes storage devices Al, A2, A3, A4, AS, A6, A7, A8, and B1, B2,
B3, B4, B5, B6, B7, B8 forms a serial loop with device adapter DAL1, and also forms a
serial loop with device adapter DA2. This arrangement increases reliability because
each serial loop provides redundant communication paths between each storage device
in the loop and each device adapter coupled to the loop.

The storage devices within each group of storage devices 126a, 126b, 126¢, 126d
may be grouped into one or more storage device arrays, each of which may be, for
example, a Redundant Array of Inexpensive (or Independent) Disks (RAID). RAID
arrays may also be called RAID ranks. Responsive to read and write requests received
from the first and second clusters 102, 104, (or from host 124), the (storage) device
adapters DA1-8 are able to individually address each storage device in the RAID
arrays to which they are coupled. The storage devices in a particular RAID array may
be in the same loop, or in different loops, between a pair of device adapters. As an
example where RAID arrays are made from storage devices that are in a single loop, a
first RAID array may include storage devices Al, A2, A3, A4, B1, B2, and B3, and a
second RAID array may include storage devices A6, A7, A8, B5, B6, B7, and B8, with

WO 2005/109167 PCT/EP2005/051862

[047]

[048]

storage devices B4 and A5 designated as spares that can be used by either RAID array.
In this example, each RAID array includes storage devices from the Al, A2, A3, A4,
A5, A6, A7, A8, 8-pack, and from the B1, B2, B3, B4, B5, B6, B7, B3, 8-pack, so that
each RAID array is close to one of the device adapters DA1, DA2. As an example
where RAID arrays are made from storage devices that are in different loops, a first
RAID array may include storage devices Al, A2, B1, B2, C1, C2, and D1, a second
RAID array may include storage devices A3, A4, B3, B4, C3, D3, and D4, a third
RAID array may include storage devices A5, A6, B6, C5, C6, D5, and D6, and a fourth
RAID array may include storage devices A8, B7, B8, C7, C8, D7, and DS, with storage
devices D2, C4, B5, and A7 designated as spares that can be used by any of the four
RAID arrays. In these examples, RAID arrays and spare storage devices that are
available for the RAID arrays, are coupled to the same pair of device adapters.
However, a RAID array, and spare storage devices that are available for the RAID
array, could be coupled to different pairs of device adapters. Also, a RAID array and
spare storage devices that are available for the RAID array may be in a single loop, or
in different loops.

Data, and if desired, parity information, may be stored on the storage devices of a
RAID array in any desired arrangement, which may include striping and/or mirroring
across all, or some, of the storage devices in a RAID array. As an example, six storage
devices in a RAID array may be used to store data, and a seventh storage device in the

~RAID array may be used to store parity information. In another example, seven storage

devices in a RAID array may be used to store data, and an eighth storage device in the
RAID array may be used to store parity information. As another example, both data
and parity information may be stored on all of the storage devices in a RAID array. In
other embodiments RAID arrays could have less than seven, or more than eight storage
devices. For example, a RAID array could consist of five or six storage devices that are
each used to store both data and parity information. Also, double parity information
may be stored to permit recovery from a second storage device failure that occurs
before completing a rebuild after a first storage device failure. For example, a RAID
array could consist of six storage devices that are used to store data, and two storage
devices that are used to store parity information. As another example, seven storage
devices could be used for data, another seven storage devices could be used to mirror
the data on the first seven storage devices, and two more storage devices could be used
to store parity information, which all together could provide for recovery from the
failure of nine storage devices (a failure tolerance of nine).

The storage devices in the storage device groups 126a-d generally may be any
suitable devices for storing data, and may use magnetic, optical, magneto-optical,
electrical, or any other suitable technology for storing data. For example, the storage

WO 2005/109167 PCT/EP2005/051862

[049]

[050]

[051]
[052]

[053]
[054]

10

devices could be hard disk drives, optical disks or discs (for example, CD-R, CD-RW,
WORM, DVD-R, DVD+R, DVD-RW, or DVD+RW)), floppy disks, magnetic data
storage disks or diskettes, magnetic tape, digital optical tape, EPROMSs, EEPROMs, or
flash memory. The storage devices do not each have to be the same type of device or
use the same type of technology. As an example, each storage device may be a hard
drive, having a capacity, for exampole, of 146 Giga Bytes. In one example, each
storage device group 126a-d may be a storage enclosure in a model 2105 Enterprise
Storage Server, manufactured by International Business Machines Corporation.

The first cluster 102 and/or the second cluster 104 together with at least one device
adapter DA1-8 and at least a portion of at least one storage device group 126a-d may
be referred to as a storage system or storage apparatus. One or more device adapters
DA1-8, with or without a portion of at least one storage device group 126a-d, may also
be referred to as a storage system or storage apparatus.

An exemplary computing apparatus 200 is shown in FIG. 2. As an example, host
124, (and in alternative embodiments) cluster 102 and/or cluster 104, could be im-
plemented with an embodiment of the computing apparatus 200. The computing
apparatus 200 includes a processor 202 (which may be called a processing device), and
in some examples could have more than one processor 202. As an example, the
processor may be a PowerPC RISC processor, available from International Business
Machines Corporation, or a processor manufactured by Intel Corporation. The
processor 202 may run any suitable operating system, for example, Windows 2000,
ATX, Solaris™, Linux, UNIX, or HP-UX™. The computing apparatus 200 may be im-
plemented on any suitable computer, for example a personal computer, a workstation,
a mainframe computer, or a supercomputer. The computing apparatus 200 also
includes a storage 204, a network interface 206, and an input/output 208, which are all
coupled to the processor 202. The storage 204 may include a primary memory 210,
which for example, may be RAM, and a non volatile memory 212. The non-volatile
memory 212 could be, for example, a hard disk drive, a drive for reading and writing
from optical or magneto-optical media, a tape drive, non-volatile RAM (NVRAM), or
any other suitable type of storage. The storage 204 may be used to store data and ap-
plication programs and/or other programming instructions executed by the processor.
The network interface 206 may provide access to any suitable wired or wireless
network or communications link.

II. OPERATION

In addition to the hardware embodiments described above, other aspects of the
present invention concern operations for storing data in an array of storage devices.

A. Signal-Bearing Media

In the context of FIGS. 1 and 2, the method aspects of the present invention may be

WO 2005/109167 PCT/EP2005/051862

[055]

[056]
[057]
[058]

11

implemented, for example, by having one or more of the device adapters DAI-8,
cluster 102, and/or cluster 104 (and/or host 124), execute a sequence of machine-
readable instructions, which can also be referred to as code. These instructions may
reside in various types of signal-bearing media. In this respect, some aspects of the
present present invention concern a programmed product, comprising a signal-bearing
medium or signal-bearing media tangibly embodying a program of machine-readable
instructions executable by a digital processing apparatus to perform operations for
storing data in an array of storage devices.

This signal-bearing medium may comprise, for example, RAM 110, RAM 112,
NVRAM 114, NVRAM 116, primary memory 210, non-volatile memory 212, and/or
firmware in device adapters DA1-8. Alternatively, the instructions may be embodied in
a signal-bearing medium such as the optical data storage disc 300 shown in FIG. 3.
The optical disc can be any type of signal bearing disc or disk, for example, a CD-
ROM, CD-R, CD-RW, WORM, DVD-R, DVD+R, DVD-RW, or DVD+RW. Ad-
ditionally, whether contained in the storage system 100, or elsewhere, the instructions
may be stored on any of a variety of machine-readable data storage mediums or media,
which may include, for example, a "hard drive", a RAID array, a magnetic data storage
diskette (such as a floppy disk), magnetic tape, digital optical tape, RAM, ROM,
EPROM, EEPROM, flash memory, programmable logic, any other type of firmware,
magneto-optical storage, paper punch cards, or any other suitable signal-bearing media
including transmission media such as digital and/or analog communications links,
which may be electrical, optical, and/or wireless. For example, in some embodiments
the instructions or code may be accessible from a file server over a network, or from
other transmission media, and the signal bearing media embodying the instructions or
code may comprise a transmission media, such as a network transmission line, wireless
transmission media, signals propagating through space, radio waves, and/or infrared
signals. Alternatively, the signal bearing media may be implemented in hardware logic,
for example, an integrated circuit chip, a Programmable Gate Array (PGA), or an Ap-
plication Specific Integrated Circuit (ASIC). As an example, the machine-readable in-
structions may comprise microcode, or may comprise software object code, compiled
from a language such as "C++".

B. Overall Sequence of Operation

1. First Example of Sequence of Operation

For ease of explanation, but without any intended limitation, exemplary method
aspects of the present invention are described with reference to the storage system 100
described above and shown in FIG. 1. An example of the method aspect of the present
present invention is illustrated in FIG. 4, which shows a sequence 400 for a method for

storing data in an array of storage devices.

WO 2005/109167 PCT/EP2005/051862

[059]

[060]

[061]

[062]

[063]

12

Operations of the sequence 400 may be performed by one or more of the device
adapters DA1-8, cluster 102, and/or cluster 104 (and/or host 104). Referring to FIG. 4,
sequence 400 may include, and may begin with, operation 402. Operation 402
comprises determining, a value “N” for the array, which is the maximum number of
strips, identified by their associated Logical Block Addresses (LBAs), that can be
stored on each of the storage devices in the array. As an example, the array of storage
devices may include some, or all of the storage devices in one or more of the storage
device groups 126a-d. As mentioned above, in some examples the storage devices may
be hard disk drives.

To determine the maximum number of strips, N, that can be written to storage
devices in the array of storage devices, a storage adapter may query each device in the
array and then set the number of strips, N, equal to the maximum value that the
smallest capacity storage device in the array can support. However, in other examples
the storage adapter may limit the maximum value to a smaller value. In most instances
all of the storage devices in a RAID array will have the same storage capacity and he
nce will have the same number of available strip LBAs.

Each strip typically includes a number of blocks of data, wherein each block of data
is stored at a corresponding LBA. The LBA of the first block of the strip is called the
strip LBA. For example, each strip may include 64 blocks, wherein each block
includes, for example, 512 bytes of data. Each block of data in the strip may be
addressed at the corresponding strip LBA-plus a block offset, where the strip LBA is
the address of the first data block of the strip and the offset is the number of blocks
from the strip LBA to the target data block LBA. Because the strips typically have a
common length, the starting LBA of each strip in a stride will typically have the same
value for each storage device in the array. Hence, all data blocks of a stride can be
addressed by identifying the target storage device (a disk for example), the strip LBA,
and the offset. The phrase “writing to a strip LBA” can be used as a shorthand for
describing a write to any or all of the blocks associated with the strip which starts at
the given strip LBA.

Sequence 400 may also include operation 404, which comprises setting a counter to
an initial value, such as 1, for keeping a count of the number of writes to new LBAs in
the array of storage devices.

Sequence 400 may also include operation 406, which comprises establishing a one-
to-one mapping between random incoming write LBAs, and ordered LBAs that are
written to the storage devices in the array. Operation 406 may comprise setting up a
mapping table, which may be based on a mapping algorithm. Setting up a mapping
table may also be called designating the mapping table, and may include reserving
space in a cache. As an example, a mapping table may be stored in an adapter memory.

WO 2005/109167 PCT/EP2005/051862

[064]

[065]

13

The adapter memory, may be a nonvolatile memory, so the mapping table will not be
lost if the storage device (for example, a disk) is reset.

Establishing the one-to-one mapping between random incoming write LBAs, and
ordered LBAs that are written to the storage devices in the array may include using an
algorithm that reserves adjacent LBAs for rotated copies. The algorithm illustrated in
FIG. 5, is an example of an algorithm for writing data and a single rotated copy of the
data in a five disk array. Using such an algorithm, wherein adjacent LBAs are reserved
for rotated copies, provides improved read and write efficiency. However, generally
any one-to-one mapping algorithm may be used. With regard to FIG. 5, slj, s2j, s3],
s4j and s5j are the constituent strips of stride Sj, such that Sj=sl j+s2j+s3j+s4j+s5j.
Also, LBAm is the mapped LBA for a stride Sj as determined by the mapping
algorithm and table (shown in FIG. 6). With regard to FIG. 5, writing a stride Sj
comprises writing to two strip LBAs in each disk, wherein the write to the second LBA
is a rotated copy of data that is written to another disk. For example, on disk 1, when
writing stride Sj, strip s1j is written starting at LBAm, and a copy of strip s5j is written
starting at LBAm+1. On disk 2, strip s2j is written starting at LBAm, and a copy of
strip s1j is written starting at LBAm+1. On disk 3, strip s3j is written starting at
LBAm, and a copy of strip s2j is written starting at LBAm+1. On disk 4, strip s4j is
written starting at LBAm, and a copy of strip s3;j is written to LBAm+1. On disk 5,
strip s3] is written starting at LBAm, and a copy of strip s4j is written to LBAm+1. The
starting LBAs are a function of number of blocks in each strip. As an example, stride 1
could start at LBA 0, and stride 2 could start with LBA 128. FIG. 6 shows a LBA
mapping table, based on the algorithm illustrated in FIG. 5, for storing a single rotated
copy of each sirip in each stride, which uses a first-in-first-out (FIFO) approach for all
of the available strip LBAs.

As another example, FIG. 7 shows a mapping algorithm, and FIG. 8 shows a cor-
responding mapping table, wherein a FIFO approach is used for implementing storage
of two rotated copies of data in a five disk array. (In other embodiments, more than
two rotated copies could be stored.) Referring to FIG. 7, slj, s2j, s3], s4j and s5j are the
constituent strips of stride Sj, such that Sj=s1j+s2j+s3j+s4j+s5j. Also, LBAm is the
mapped LBA for stride Sj as determined by the mapping algorithm and table.
Referring to FIG. 8, writing a stride Sj comprises writing to three LBAs in each disk,
wherein the writes to the second and third LBAs are rotated copies of strips written to
other disks. For example, on disk 1, when writing stride Sj, strip s1j is written starting
at LBAm, and a copy of strip s5] is written starting at LBAm+1 and a copy of strip s4j
is written starting a LBAm+2. On disk 2, strip s2j is written starting at LBAm, and a
copy of strip s1j is written starting at LBAm-+1 and a copy of strip s5j is written
starting at LBAm+2. On disk 3, strip s3] is written starting at LBAm, and a copy of

WO 2005/109167 PCT/EP2005/051862

[066]

[067]

[068]

14

strip s2j is written starting at LBAm-+1 and a copy of strip sl j is written starting at
LBAm+2. On disk 4, strip s4j is written starting at LBAm, and a copy of strip s3jis
written to LBAm-+1 and a copy of strip s2j is written starting at LBAm+2. On disk 5,
strip s5j is written starting at LBAm, and a copy of strip s4j is written to LBAm-+1 and
a copy of strip s3j is written starting at LBAm+2.

In another example, the mapping algorithm may reserve a mapped set of LBAs fora
band or a set of bands of incoming write LBAs. As an example, the LBAs may be
reserved in a fashion so that incoming write LBAs remain close to each other logically.
Tn some examples, the algorithm could be modified for operation with a particular ap-
plication and/or operating system. In this example wherein a band of LBAs are
reserved, LBAs that are not in the reserved band may use, for example, the FIFO
approach. FIG 9 shows an example of a reserved LBA band mapping for the first ten
LBAs. FIG. 10 shows a mapping table, for one rotated copy, wherein the reserved
mapping of the band of ten LBAs illustrated in FIG. 10, and FIFO mapping, are
combined. In this example, the mapping table is updated only when an incoming write
LBA is not already in the table. The FIFO algorithm is used for LBAs that are outside
of the reserved band. The concept of using reserved bands may be generalized and
expanded to include more than one band.

For embodiments wherein the original and one copy of each stride are stored, the
operations may also include reserving half of the available LBAs for primary data, and
reserving half of the available LBAs for rotated copies of data. For embodiments
wherein the original and two copies of each stride are stored, the operations may also
include reserving one third of available LBAs for primary data, and reserving two
thirds of available LBAs for rotated copies of data. The reservation of storage space
may be implicitly carried out by a storage device adapter DA1-8 using a one-to-one
mapping algorithm and table, such as the algorithms and tables shown in FIGS. 5-10.
In response to a request to write data received from a cluster 102, 104, a storage device
adapter DA1-8 may perform the write of the primary copy of the data and any
secondary copies, and may also keeps track of what is written and where it is written
using the mapping table.

Referring again to FIG. 4, sequence 400 may also include operation 408, which
comprises determining if a write command has been received. If a write command has
not been received, operation 408 may be repeated until a write command is received. If
a write command is received, sequence 400 may also include operation 410, which
comprises determining if the write is to a LBA that has not previously been written to
(anew LBA). If it is determined that the write is to an LBA that has previously been
written to, then the sequence 400 may also include operation 412, which comprises
checking a mapping table, and operation 413, which comprises executing the write to

WO 2005/109167 PCT/EP2005/051862

[069]

[070]

[071]
[072]

15

write the strips in accordance with the mapping table. Executing the write comprises,
for each strip in the stride, writing the strip to the LBA indicated in the mapping table,
and if the value of the corresponding copy flag is “yes”, also includes writing one or
more rotated copies of each strip as indicated in the mapping table.

If in operation 410 it is determined that the write is to an LBA that has not
previously been written to, then the sequence 400 may also include operation 414,
which comprises incrementing the counter. Sequence 400 may also include operation
416, which comprises updating the mapping table to indicate the mapping between the
incoming strip LBA and the mapped strip LBA. Operation 416 may also include
setting a “yes” or “no” value for the copy flag for the corresponding entry in the
mapping table. Setting a “yes” or “no” value may include determining which value to
set. As an example, determining if a copy flag should be set to a “no” value may
comprise determining if the counter has a value that is greater than or equal to (which
may also be described as “not less than”) a no-copy threshold value. As an example,
the no-copy threshold value may be a percentage of N, wherein the percentage isa
function of a mapping algorithm. For example, for the mapping table in FIG. 6, the
copy flag will be set to “no” when the counter reaches a value of N/2+1. Sequence 400
may also include operation 418, which comprises determining if the copy flag is “yes”
or “no” for the corresponding value of the counter. If the value of the copy flag is
“yes”, then the sequence 400 may include operation 420, which comprises, for each
strip in the stride, writing the-strip and a rotated copy of the strip to the LBAs indicated
in the mapping table. Sequence 400 may also include operation 422, which comprises
determining if the counter has a value equal to N, and if so, the sequence may end, and
if not, the sequence may continue at operation 408.

If in operation 418 it is determined that the copy flag has a value of “no” for the
corresponding value of the counter, then the sequence 400 may also include operation
424, which comprises, for each strip in the stride, writing the strip to the LBA
indicated in the mapping table, without writing any copies of the strips. Sequence 400
may also include operation 426, which comprises determining if the counter has a
value equal to N, and if so, the sequence may end, and if not, the sequence may
continue at operation 408.

2. Second Example of Sequence of Operation

FIG. 11 is a flowchart for a sequence 1100 for a method for storing data in an array
of storage devices. Operations of the sequence 1100 may be performed by one or more
of the device adapters DA1-8, cluster 102, and/or cluster 104 (and/or host 104).
Referring to FIG. 11A, sequence 1100 may include, and may begin with, operation
1102, which comprises determining, for each storage device in an array of storage
devices, the total number of strips, identified by their associated Logical Block

WO 2005/109167 PCT/EP2005/051862

[073]

[074]

[075]

16

Addresses (LBAs), that can be stored in the storage device. This may also be described
as determining the total number of strip LBAs on each storage device in the array. As
an example, the array of storage devices may include some, or all of the storage
devices in one or more of the storage device groups 126a-d.

Sequence 1100 may also include operation 1104, which comprises identifying the
maximum number of strips that can be stored in the storage device(s) in the array that
have the smallest capacity. This may also be described as identifying the number of
strip LBAs on the storage device(s) in the array that have the smallest capacity.
Sequence 1100 may also include operation 1106, which comprises setting a parameter
N equal to the maximum number of strips that can be stored in the smallest capacity
storage device(s) in the array, which may also be described as setting N equal to the
number of strip LBAs.

For embodiments where the original and one copy of each stride are stored, the
operations may also include reserving half of available strip LBAs for primary data,
and reserving half of available strip LBAs for rotated copies of data. For embodiments
where the original and two copies of each stride are stored, the operations may also
include reserving one third of available strip LBAs for primary data, and reserving two
thirds of available strip LBAs for rotated copies of data. The reservation of storage
space may be implicitly carried out by a storage device adapter DA1-8, for example by
using a one-to-one mapping algorithm and table, such as those shown in FIGS. 5-10 .
Generally, in response to a request to write data received from a cluster 102, 104, (or
host 124) a storage device adapter DA1-8 performs the write of the primary copy of
the data and any secondary copies, and also keeps track of what is written and where it
is written, for example, by using a mapping table.

Sequence 1100 may also include operation 1108, which comprises identifying a
number, j, of a stride Sj to be stored. Sequence 1100 may also include operation 1110,
which comprises, for an example where an original and a single copy of each strip are
stored, determining if 2j is less than or equal to N-1. If in operation 1110 itis
determined that 2] is less than or equal to N-1, then the sequence 1100 may include one
or more of operations 1112, 1114, 1116, and 1118. Operation 1112 comprises writing a
strip s1j to a LBA in a first storage device in the array, for example LBAj, and to a
LBA in a second storage device in the array, for example LBAj+1. As an example, the
first and second storage devices may be included in the storage device groups 126a-d.
Operation 1114 comprises writing a strip s2j to a LBA in the second storage device, for
example LBAj, and to a LBA in a third storage device in the array, for example
LBAj+1. Operation 1116 comprises writing a strip s3j to a LBA in the third storage
device, for example LBAj, and to a LBA in a fourth storage device in the array, for
example LBAj+1. The strips s1j, s2j, s3j may be members of the stride j identified in

WO 2005/109167 PCT/EP2005/051862

[076]

[077]

17

operation 1108. One or more of the strips s1j, s2j, s3j may be a parity strip. Further, if
the stride j has additional strips, additional strips in the stride j may be stored. For
example, a strip s4j may be written to a LBA in the fourth storage device in the array,
for example LBAj, and to a LBA in a fifth storage device in the array, for example
LBAj+1, and a strip s5j may be written to a LBA in the fifth storage device, for
example LBAj, and to a LBA in a sixth storage device in the array, for example
LBAj+1, and a strip s6j may be written to a LBA in the sixth storage device, for
example LBAj, and to a LBA in the first storage device, for example LBAj+1. One or
more of the strips s1j, s2j, s3j, s4j, s5j, s6j may be a parity strip. In other embodiments,
greater than or less than 3 strips of the stride j, or greater than or less than 6 strips of
the stride j, may be written to storage devices in a similar manner, wherein each strip is
written to two or more storage devices.

Operation 1118 comprises determining if there is an additional stride to store in the
array, and if there is, one or more of operations 1108 to 1118 may be performed again.
If in operation 1118 it is determined that there is not an additional stride to store, the
sequence 1100 may end.

In an alternative embodiment, operation 1110 may comprise determining if 3j is
less than N-1. In this alternative embodiment, if in operation 1110 it is determined that
3j is less than N-1, then the sequence 1100 may include alternative embodiments of
operations 1112, 1114, 1116, and 1118. For example, operation 1112 may comprise
writing the strip s1j to a LBA in a first storage device in the array, for example LBA;j,
and to a LBA in a second storage device in the array, for example LBAj+2, and to a
third a third storage device in the array, for example LBAj+1. In this alternative
embodiment, operation 1114 may comprise writing a strip s2j to a LBA in the second
storage device, for example LBAj, and to a LBA in the third storage device, for
example LBAj+2, and to a LBA in a fourth storage device in the array, for example
LBAj+1. In this alternative embodiment, operation 1116 may comprise writing the
strip s3j to a LBA in the third storage device, for example LBAj, and to a LBA in the
fourth storage device, for example LBAj+2, and to a LBA in a fifth storage device in
the array, for example LBAj+1. In this alternative embodiment, additional strips in the
stride j may be stored in a similar manner. For example, a strip s4j may be written to a
LBA in the fourth storage device in the array, for example LBAj, and to a LBA in the
fifth storage device in the array, for example LBAj+2, and to a LBA in a sixth storage
device in the array, for example LBAj+1; and a strip s5j may be written to a LBA in
the fifth storage device, for example LBAj, and to a LBA in a sixth storage device in
the array, for example LBAj+2, and to a LBA the first storage device in the array, for
example LBAj+1; and a strip s6j may be written to a LBA in the sixth storage device,
for example LBAj, and to a LBA in the first storage device, for example LBAj+2, and

WO 2005/109167 PCT/EP2005/051862

[078]

[079]

18

to a LBA in the second storage device, for example LBAj+1. In other embodiments,
the stride j may have a number of strips that is greater than or less than 3 (or greater or
less than 6), and in these embodiments the strips of the stride j may be written to
storage devices in the manner described in operations 1112, 1114, 1116, wherein each
strip is written to three storage devices. In other alternative embodiments, additional
copies of each stride could be stored in a similar manner. Operation 1118 comprises
determining if there is an additional stride to store in the array, and if there is, one or
more of operations 1108 to 1118 may be performed again as described above for this
alternative embodiment. If in operation 1118 it is determined that there is not an
additional stride to store, the sequence 1100 may end.

Referring again to the primary embodiment illustrated in FIGS. 11A-B, wherein an
original copy and one additional copy of each stride is written, if in operation 1110 it is
determined that 2j is not less than or equal to N-1, then the sequence 1100 may include
one or more of operations 1120, 1122, 1124, and 1 126. Referring to FIG. 11B,
operation 1120 comprises writing the strip s1j to a LBA in the first storage device, for
example LBA(2j-N+1). Operation 1122 comprises writing the strip s2j to a LBA in the
second storage device, for example LBA(2j-N+1). Operation 1124 comprises writing
the strip s3j to a LBA in the third storage device, for example LBA(2j-N+1). If there
are additional strips in the stride j, they may be stored in a similar manner. For
example, a strip s4j may be written to a LBA in the fourth storage device, for example
LBA(2j-N+1), and a strip s5j may be written to an LBA in the fifth storage device, for
example LBA(2j-N+1), a strip s6j may be written to a LBA in the sixth storage device,
for example LBA(2j-N+1). In other embodiments, the stride j may have a number of
strips that is greater than or less than 3 (or greater or less than 6), and in these em-
bodiments the strips of the stride j may be written to storage devices in the manner
described in operations 1120, 1122, and 1124. Operation 1126 comprises determining
if there is an additional stride to store in the array, and if the is, one or more of
operations 1108-1126 may be performed again. If there is not an additional stride to
store, the sequence 1100 may end.

In the alternative embodiment wherein operation 1110 comprises determining
whether 3j is less than N-1, if 3j is not less than N-1, then the sequence 1100 may
include alternative embodiments of operations 1120, 1122, 1124, and 1126. For
example, referring to FIG. 11B, operation 1120 may comprise writing the strip s1j to a
LBA in the first storage device, for example LBA(3j-N+2). In this alternative
embodiment, operation 1122 may comprise writing the strip s2j to a LBA in the second
storage device, for example LBA(3j-N+2). Also, in this alternative embodiment,
operation 1124 may comprise writing the strip s3j to a LBA in the third storage device,
for example LBA(3j-N+2). If there are additional strips in the stride j, they may be

WO 2005/109167 PCT/EP2005/051862

[080]

[081]
[082]

[083]

19

stored in a similar manner. For example, a strip s4j may be written to a LBA in the
fourth storage device, for example LBA(3j-N+2), and a strip s5j may be written to an
LBA in the fifth storage device, for example LBA(3j-N+2), and a strip s6j may be
written to a LBA in the sixth storage device, for example LBA(3j-N+2). In other em-
bodiments, the stride j may have a number of strips that is greater than or less than 3
(or greater or less than 6), and in these embodiments the strips of the stride j may be
written to storage devices in the manner described in operations 1120, 1122, and 1124
for this alternative embodiment. Operation 1126 comprises determining if there is an
additional stride to store in the array, and if the is, one or more of operation 1108-1126
may be performed again as described for this alternative embodiment. If there is not an
additional stride to store, the sequence 1100 may end.

One example of the sequence discussed above may be summarized as follows: The
process may be carried out on an array of m disk drives with N available LBAs,
wherein each stride S is composed of m strips (s1, s2, . . . s) including a parity strip:
Sj=(slj+s2j+...+smj). Anew stride Sj is written starti?lg at LBAj, wherein j = 0,
1,2,...N-1, wherein N = the number of available LBAs for recording, including
metadata. A variable n may be set equal to 2j. To store the data in the desired pattern,
if n is less than or equal to N-1, then starting at LBAn, write s1j and smj to disk 1, then
write s2j and s1j to disk 2, . . . and write smj and s(m-1)j to disk m. If n is greater than
N-1, then starting at LBA (n-N+1), write s1j to disk 1, write s2j to disk 2, . . . and write
smj to disk m. The preceding process is merely one example, and the pattern for
writing the data and the copies of the data could be generalized with other storage
patterns that also have a one-to-one mapping.

C. Additional Discussion

The secondary copies that are utilized in different examples of the present invention
may be written using various techniques. For example, one or more of the device
adapters DA1-8 attached to the RAID array may be used to make the array copies in
real time mode. In real time, the device adapter buffer may be used to hold the prior
data strip and destage it paired with the original data strip targeted for the array
member. New primary data strides may be written over the oldest of the copy strips
when there is no space left to make dual copies of new data. Each new stride further
encroaches on the space formerly allocated to the copies in a sequentially FIFO
manner. The primary strides of the old data whose copies have been overwritten
remain untouched so the RAID protection offered by the base RAID code is still
guaranteed. The primary strides whose copies have not yet been overwritten continue
to have the higher redundancy protection. Eventually all of the copy strides will be
overwritten, leaving the minimum base RAID protection.

Rather than writing the copies of the data in real time, one or more device adapters

WO 2005/109167 PCT/EP2005/051862

[084]

[085]

[086]

[087]

20

DA1-8 attached to the RAID array may be used to make the array copies in
background mode. In background mode, the device adapter DA1-8 could read the
strips from each array member and write them in a shifted sequence relative to the
original stride.

Some examples of the present invention comprise striping a dual or higher set of
copies of RAID strides across a given number of disks. Each primary stride is
composed of m sequential strips and each strip is written to one of the m drives in the
array. At least one of the strips may be a parity strip constructed, for example, by
XORing the remaining strips. Secondary copies of the strips in the primary stride are
rotated with respect to the disks in the array to provide secondary quasi-physical
mirror(s) of the disks in the array.

FIG. 12 shows an example of an implementation of the present invention wherein a
single copy of each stride is made for a six disk array, wherein RAID 5 is the base
array. Other parity RAID schemes (RAID 51, Double Parity, etc.) could also be
enhanced with this redundancy increase (or with further redundancy such as double or
triple mirroring in other embodiments of the present invention). The primary storage
strides are designated as A, B, C ..., and a copy, secondary set of strides that have been
rotated by one drive (i.e. a stretch equal to one), are designated A', B, C' Thus, A’,
B’, and C’ are secondary data strides which are mirror images of their unprimed
counterparts A, B, C. As mentioned above, additional copies could be used to provide
higher redundancy, such as a second (or third) copy also rotated by one drive (or
rotated by some other number of drives). Each stride in this example has a parity strip,
for example Ap, which represents the parity strip associated with the data strips Al,
A2, A3, A4 and A5. Thus, Al,B1,Cl, ..., fori=1, 2, 3, 4, 5 are primary data strips,
and Ap, Bp, Cp . . . are the associated parity strips. In this example both primary and
secondary strips have a respective stretch of 1 (each successive stride is rotated by one
disk). However, other stretches, for example 2, 3, 4, or 5, could be used.

FIG. 13 shows an example of a rebuild after a one disk failure without using parity
reconstruction (parity recovery) of lost data. Each lost strip is rebuilt on a spare drive
by copying from adjacent drives, starting with a rebuild of primary strips A2, B1, Cp, .
.. from secondary strips A’2,B’1,C’p,

FIG. 14 shows an example of a rebuild after two non-adjacent disk failures, without
using parity reconstruction. This figure illustrates the ability to recover from any two
non adjacent failures, which is a higher tolerance than base RAID 5. Each strip is
rebuilt on spare drives by copying from adjacent drives. For example, first primary
strips A2, B1, Cp, . . . are rebuilt from secondary strips A’2, B’1, C’p, . . ., followed by
rebuild of primary strips on the second spare A4, B3, C2, In this example, data re-
construction using parity strips Ap, Bp, Cp. . . . is not needed, because the failed drives

WO 2005/109167 PCT/EP2005/051862

[088]

[089]

[090]

[091]

21

are non-adjacent.

FIG. 15 shows an example of a rebuild after two adjacent disk failures, wherein
parity reconstruction is utilized. This figure illustrates the ability to recover from any
two failures, even when the failures are adjacent, which is a higher tolerance than base
RAID 5. The rebuild uses parity reconstruction minimized to one spare disk drive’s
primary strip. In FIG. 15, depiction (a) identifies the two failed drives in the array.
Depiction (b) shows that primary strips are recovered by copying from an adjacent
drive. Depiction (c) shows that primary strips A2, B1, Cp, . . . are reconstructed using
parity reconstruction. Depiction (d) shows that secondary strips A’1, B’p, C’5, .. . are
recovered by copying from adjacent spare secondary strips Al, Bp, CS5, ... onan
adjacent hard disk drive, and that secondary strips A’2, B’1, C’p, . . . are recovered by
copying from adjacent spare secondary strips A2, B1, Cp, . . . on an adjacent hard disk
drive.

As described herein for some examples of the present invention, for a given number
of disks in a RAID array, the use of rotated copies of the primary RAID strides
provides a higher drive fault tolerance (redundancy) than the base RAID. Some
examples of the present invention also provide a self tuning process for optimum
redundancy that progressively reduces the drive fault tolerance to a level no worse than
the base RAID array as the primary RAID storage overlaps the secondary copies (or
tertiary or other numbers of copies in other embodiments). Some examples of the
present invention provide an autonomic RAID system wherein a given number of disks
provide greater self protection for customer data than in a base RAID system, and that
tune the self protection as the amount of used disk space grows, and that provide
efficient self healing when one or more drives fail.

For a given number of disk drives in a RAID array, some examples of the present
invention exploit free disk space to increase the effective drive fault tolerance of the
RAID array through redundancy recording above that provided by the base RAID
code. For a set number of array drives, each RAID copy provides 1 more drive fault
tolerance than the base RAID. For example, for a 6 member array with RAID 5 base
code, when the present invention is not used, data may be recovered only if no more
than one drive member fails. In contrast, with some examples of the present invention,
wherein there is a single copy of rotated RAID strips, data may be recovered even if
two drive members fail. With examples of the present invention wherein two copies of
rotated RAID strips are saved, data may be recovered even when 3 disk failures occur
concurrently.

Some examples of the present invention provide higher RAID protection during the
early usage of a RAID array, which is when protection is most needed and the most
free space is available. The early usage of a new disk array has exposure to data loss

WO 2005/109167 PCT/EP2005/051862

[092]

(093]

[094]

[095]

22

because the infant mortality rate of new hard disk drives (HDDs) is higher than the
HDD failure rate after the drives have been running for many Power On Hours
(POHs).

Some example of the present invention allow the use of 100% of the effective data
capacity of a base RAID array for a given number of disks in the array. This comes at
the price of gradually exposing older (customer) data to the fault tolerance of the base
RAID code. The array disk fault tolerance monotonically decreases with additional
disk space usage but never goes below the fault tolerance of the primary RAID. Hence
the protection of data is always at least that of the base RAID code.

With some examples of the present invention, the rotated copies of the data,
beginning with the oldest data, will eventually be written over by new (customer) data,
and therefore only the primary data will remain. For the subset of data for which only
the primary data remains, RAID 5, for example, would allow only 1 disk failure for
data recovery. The data in the array for which the rotated copy has not been written
over by new data, will still have the higher disk fault tolerance. The subset of data for
which only the primary data remains will grow as additional customer data is stored in
the array, until all the data capacity of the array has been used. In some examples, if an
operating system wants to write to the location of existing secondary copy, and if the
disk is not full, the storage device adapter DA1-8 may move the existing secondary
copy to another location, or may reassign storage locations without reading and re-

-storing the previously stored secondary copy.

The protection for a "single mirror” (one rotated copy of each strip), for RAID 5is
shown in FIG. 16. More specifically, FIG. 16 shows the percent of data protected for
any two hard disk drive failures, for “autonomic RAID 5" in accordance with an
example of the present invention wherein a single mirror is utilized. Generally, some
examples of the present invention may be called “RAID storage for autonomic
customer data protection”. When used with RAID 5, some examples of the present
invention may be called “autonomic RAID 5”. As shown in FIG. 16, two disk fault
tolerance exists for all data until fifty percent of the available disk space has been used.
In contrast, the fault protection of base RAID 5 is represented by the zero percent
horizontal line at the bottom of FIG. 16. Thus, this single mirror example provides a
maximum of two disk fault tolerance, which is a significant improvement over the
single disk fault tolerance of base RAID 5.

The protection for a "double mirror"(two rotated copies of each strip), is shown in
FIG. 17. More specifically, FIG. 17 shows the percent of data protected for any three
hard disk drive failures, for “autonomic RAID 5” in accordance with an example of the
present invention wherein a double mirror is utilized. As shown in FIG. 17, three disk
fault tolerance exists for all data until approximately 33.3 percent of the available disk

WO 2005/109167 PCT/EP2005/051862

[096]

[097]

[098]
[099]

23

space has been used. In contrast, the fault protection of base RAID 5 is represented by
the zero percent horizontal line at the bottom of FIG. 17. Thus, this double mirror
example provides a maximum of three disk fault tolerance, which is a significant im-
provement over the single disk fault tolerance of base RAID 5.

Some examples of the present invention provide additional RAID robustness
against (customer) data loss during rebuild by significantly reducing the rebuild time in
the event of one or more drive failures. As an example, data loss may occur as the
result of an array loss or the loss of one or more strips (which may be called killstrip).
The secondary copies provided by examples of the present invention either eliminate
recovering lost primary data via parity recovery or substantially reduce the number of
times parity recovery needs to be used to recover primary data, depending on the
number of failures and whether failures occur on adjacent drives. Some examples of
the present invention reduce the rebuild time because the time required to copy strips
from the surviving disks onto a hot spare is much less than the time required to re-
construct each lost strip via parity reconstruction by reading the strips on each of the
surviving drives in a stride and then XORing the data to recover the missing strips.

Some examples of the present invention also are also faster than a Preemptive re-
construct, for reading data, in the event that one of the drives is slow in responding to a
read request. Data can be read faster because a copy of data in a lost strip can be read
from the adjacent drive, along with the primary strip, rather than reading all the
remaining data strips in a stride and XORing them with the parity strip to reconstruct
the data in the slow-to-respond-strip.

10 OTHER EMBODIMENTS

While the foregoing disclosure shows a number of illustrative embodiments of the
present invention, it will be apparent to those skilled in the art that various changes and
modifications can be made herein without departing from the scope of the present
invention as defined by the appended claims. Furthermore, although elements of the
present invention may be described or claimed in the singular, the plural is con-
templated unless limitation to the singular is explicitly stated.

WO 2005/109167 PCT/EP2005/051862

[001]

[002]

[003]

[004]

[005]

[006]

[007]

[008]

24

Claims

A method for storing data in an array of storage devices, the method comprising
the steps of: writing a first strip to a first storage device and a second storage
device; writing a second strip to the second storage device and a third storage
device; and writing a third strip to a third storage device and a fourth storage
device.

The method of claim 1, wherein the first strip, the second strip, and the third
strip, are members of a stride.

The method of claim 1 or claim 2, further comprising the steps of: determining a
maximum strip LBA for the array of storage devices; reserving half of available
strip LBAs for primary data; and reserving half of available strip LBAs for
rotated copies of data.

The method of claim 1 or claim 2, further comprising the steps of: writing a first
strip to a first storage device, and to a second storage device, and to a third
storage device; writing a second strip to the second storage device, and to the
third storage device, and to a fourth storage device; and writing a third strip to
the third storage device, and to the fourth storage device, and to a fifth storage
device.

The method of claim 4, further comprising the steps of: determining a maximum
strip LBA for the array of storage devices; reserving at least 33 percent of
available strip LBAs for primary data; and reserving at least 66 percent of
available strip LBAs for rotated copies of data.

The method of claim 1 or claim 2, further comprising the steps of: setting a value
for a parameter N, wherein each storage device in the array of storage devices
has at least N strip LBAs; identifying a number, j, of a stride to be stored; de-
termining if 2j is less than or equal to N-1; and if so: writing a strip s1j to a LBA
in the first storage device in the array, and to a LBA in the second storage device
in the array; writing a strip s2j to a LBA in the second storage device, and to a
LBA in the third storage device in the array; and writing a strip s3j to a LBA in
the third storage device, and to a LBA in the fourth storage device in the array.
The method of claim 6, wherein if it is determined that 2j is not less than or equal
to N-1, comprising the steps of: writing the strip s1j to a LBA in the first storage
device; writing the strip s2j to a LBA in the second storage device; and writing
the strip s3j to a LBA in the third storage device.

The method of claim 6 or 7, further comprising the steps of: determining, for
each storage device in the array of storage devices, the total number of strip
LBA:s in the storage device; and identifying the smallest total number of strip

WO 2005/109167 PCT/EP2005/051862

[009]

[010]

[011]

[012]

[013]

[014]

[015]

25

LBAs; and wherein the operation of setting a value for the parameter N
comprises setting N equal to the smallest total number of strip LBAs.

The method of any of claims 6 to 8, wherein if it is determined that 2j is less than
or equal to N-1, comprising the steps of: writing a strip s4j to a LBA in the fourth
storage device, and to a LBA in a fifth storage device in the array; writing a strip
s5j to a LBA in the fifth storage device, and to a LBA in a sixth storage device in
the array; and writing a strip s6j to a LBA in the sixth storage device, and to a
LBA in the first storage device.

The method of any of claims 6 to 8, wherein if it is determined that 2j is not less
than or equal to N-1, further comprising the steps of: writing a strip s4jto aLBA
in the fourth storage device; writing a strip s5j to a LBA in the fifth storage
device; and writing a strip s6j to a LBA in the sixth storage device.

The method of any of claims 6 to 10, further comprising the steps of: writing a
strip s1j to a strip LBA] in the first storage device in the array, and to a strip
L.BAj+1 in the second storage device in the array; writing a strip s2jtoa strip
LBA] in the second storage device, and to a strip LBAj+1 in the third storage
device in the array; and writing a strip s3j to a strip LBAj in the third storage
device, and to a strip LBAj+1 in the fourth storage device in the array.

The method of claim11, wherein if it is determined that 2j is not less than or
equal to N-1, further comprising the steps of: writing the strip s1j to strip
LBA(2j-N+1) in the first storage device; writing the strip s2j to strip
LBA(2j-N+1) in the second storage device; and writing the strip s3j to strip
LBA(2j-N+1) in the third storage device.

The method of claim 11, wherein if it is determined that 2j is less than or equal to
N-1, further comprising the steps of: writing a strip s4j to a strip LBAj in the
fourth storage device in the array, and to a strip LBAj+1 in a fifth storage device
in the array; writing a strip s5j to a strip LBAj in the fifth storage device, and to a
strip LBAj+1 in a sixth storage device in the array; and writing a strip s6j to a
strip LBAj in the sixth storage device, and to a strip LBAj+1 in the first storage
device.

The method of claim 11, wherein if it is determined that 2j is not less than or
equal to N-1, then the operations further comprise: writing a strip s4j to strip
LBA(2j-N+1) in the fourth storage device; writing a strip s5j to strip
LBA(2j-N+1) in the fifth storage device; and writing a strip s6j to strip
LBA(2j-N+1) in the sixth storage device.

The method of any of claims 6 to 14, comprising the steps of : establishing a
mapping table; receiving a write command; determining if a copy flag has a
“yes” value; and if so: writing each strip of a stride to a corresponding storage

WO 2005/109167 PCT/EP2005/051862

[016]

[017]

[018]

[019]

[020]

[021]

[022]

[023]

[024]

[025]

26

device in the array of storage devices in accordance with the mapping table; and
writing at least one copy of each strip of the stride to at least one corresponding
storage device in the array of storage devices in accordance with the mapping
table; and if not: writing each strip of the stride to a corresponding storage device
in the array of storage devices in accordance with the mapping table.

The method of claim 15, wherein, further comprising the step of updating the
mapping table, wherein the updating step further comprises the step of: de-
termining if a copy flag should be set to a “no” value.

The method of claim 15 or claim 16, further comprising the steps of: setting a
counter to an initial value; and incrementing the counter after receiving the write
command.

The method of claim 17, wherein the step of determining if a copy flag should be
set to a “no” value comprises the step of: determining if the counter has a value
that is not less than a no-copy threshold value.

The method of any of claims 15 to 17, wherein the no-copy threshold value is a
percentage of N which is a function of a mapping algorithm.

A storage system for storing data in an array of storage devices, the system
comprising: means for writing a first strip to a first storage device and a second
storage device; means for writing a second strip to the second storage device and
a third storage device; and means for writing a third strip to a third storage device
and a fourth storage device. -

The system of claim 20, wherein the first strip, the second strip, and the third
strip, are members of a stride.

The system of claim 20 or claim 21, further comprising: means for determining a
maximum strip LBA for the array of storage devices; means for reserving half of
available sirip LBAs for primary data; and means for reserving half of available
strip LBAs for rotated copies of data.

The system of claim 20 or claim 21, further comprising: means for writing a first
strip to a first storage device, and to a second storage device, and to a third
storage device; means for writing a second strip to the second storage device, and
to the third storage device, and to a fourth storage device; and means for writing
a third strip to the third storage device, and to the fourth storage device, and to a
fifth storage device.

The system of claim 23, further comprising: means for determining a maximum
strip LBA for the array of storage devices; reserving at least 33 percent of
available strip LBAs for primary data; and reserving at least 66 percent of
available strip LBAs for rotated copies of data.

The system of claim 20 or claim 21, further comprising: means for setting a

WO 2005/109167 PCT/EP2005/051862

[026]

[027]

[028]

[029]

[030]

[031]

27

value for a parameter N, wherein each storage device in the array of storage
devices has at least N strip LBAs; means for identifying a number, j, of a stride
to be stored; means for determining if 2j is less than or equal to N-1; and if so:
means for writing a strip s1j to a LBA in the first storage device in the array, and
to a LBA in the second storage device in the array; means for writing a strip s2j
to a LBA in the second storage device, and to a LBA in the third storage device
in the array; and means for writing a strip s3j to a LBA in the third storage
device, and to a LBA in the fourth storage device in the array.

The system of claim 25, wherein if it is determined that 2j is not less than or
equal to N-1, comprising: means for writing the strip s1j to a LBA in the first
storage device; means for writing the strip s2j to a LBA in the second storage
device; and means for writing the strip s3j to a LBA in the third storage device.
The system of claim 25 or 26, further comprising: means for determining, for
each storage device in the array of storage devices, the total number of strip
LBAs in the storage device; and means for identifying the smallest total number
of strip LBAs; and wherein the means for setting a value for the parameter N
comprises means for setting N equal to the smallest total number of strip LBAs.
The system of any of claims 25 to 27, wherein if it is determined that 2j is less
than or equal to N-1, comprising: means for writing a strip s4j to a LBA in the
fourth storage device, and to a LBA in a fifth storage device in the array; means

. for writing a strip s5j to a LBA in the fifth storage device, and to a LBAina

sixth storage device in the array; and means for writing a strip s6jto aLBA in
the sixth storage device, and to a LBA in the first storage device.

The system of any of claims 25 to 27, wherein if it is determined that 2 is not
less than or equal to N-1, further comprising: means for writing a strip s4j to a
LBA in the fourth storage device; means for writing a strip s5j to a LBA in the
fifth storage device; and means for writing a strip s6j to a LBA in the sixth
storage device.

The system of any of claims 25 to 29, further comprising: means for writing a
strip s1j to a strip LBA] in the first storage device in the array, and to a strip
LBAj+1 in the second storage device in the array; means for writing a strip s2j to
a strip LBA]j in the second storage device, and to a strip LBAj+1 in the third
storage device in the array; and means for writing a strip s3j to a strip LBAj in
the third storage device, and to a strip LBAj+1 in the fourth storage device in the
array.

The system of claim 30, wherein if it is determined that 2j is not less than or
equal to N-1, further comprising: means for writing the strip s1 j to strip
LBA(2j-N+1) in the first storage device; means for writing the strip s2j to strip

WO 2005/109167 PCT/EP2005/051862

[032]

[033]

[034]

[035]

[036]

[037]

[038]

[039]

28

LBA(2j-N+1) in the second storage device; and means for writing the strip s3] to
strip LBA(2j-N+1) in the third storage device.

The system of claim 30, wherein if it is determined that 2j is less than or equal to
N-1, further comprising: means for writing a strip s4j to a strip LBAj in the
fourth storage device in the array, and to a strip LBAj+1 in a fifth storage device
in the array; means for writing a strip s5j to a strip LBA]j in the fifth storage
device, and to a strip LBAj+1 in a sixth storage device in the array; and means
for writing a strip s6j to a strip LBA] in the sixth storage device, and to a strip
LBAj+1 in the first storage device.

The system of claim 30, wherein if it is determined that 2j is not less than or
equal to N-1, then the system further comprises: means for writing a strip s4j to
strip LBA(2j-N+1) in the fourth storage device; means for writing a strip s5j to
strip LBA(2j-N+1) in the fifth storage device; and means for writing a strip s6j to
strip LBA(2j-N+1) in the sixth storage device.

The system of any of claims 25 to 33, comprising: means for establishing a
mapping table; means for receiving a write command; means for determining if a
copy flag has a “yes” value; and if so: means for writing each strip of a stride to a
corresponding storage device in the array of storage devices in accordance with
the mapping table; and means for writing at least one copy of each strip of the
stride to at least one corresponding storage device in the array of storage devices
in accordance with the mapping table; and if not: means for writing each strip of
the stride to a corresponding storage device in the array of storage devices in
accordance with the mapping table. .

The system of claim 34, wherein, further comprising: means for updating the
mapping table, wherein the updating means further comprise: means for de-
termining if a copy flag should be set to a “no” value.

The system of claim 34 or claim 35, further comprising: means for setting a
counter to an initial value; and means for incrementing the counter after
receiving the write command.

The system of claim 36, wherein the means for determining if a copy flag should
be set to a “no” value comprises means for determining if the counter has a value
that is not less than a no-copy threshold value.

The system of any of claims 34 to 37, wherein the no-copy threshold value is a
percentage of N which is a function of a mapping algorithm.

A computer program comprising program code means adapted to perform all the

steps of any of claims 1 to 19, when said program is run on a computer.

WO 2005/109167 PCT/EP2005/051862

113

[Fig.]

-
o
o

i Host 124
Cluster 102,

Cluster 104
[1062 }+{ 106 | 106¢c | p— (1082 }- 108b | 108¢
[Zoea }H{ 106e] 106t | Q:D Adjsf?ers <:> [z08a | 108e H{ 10et]

[RAM 110 |
|

:

—fl\ /1263
Hessseapo
cCTHEHSEHGEHE HSEHST HEE
DA3 STORAGE DEVICE GROUP 126b DA4
| |
DAS STORAGE DEVICE GROUP 126¢ DAB
| i
DAY STORAGE DEVICE GRQUP 126d DAS

|

FIG. 1

WO 2005/109167 PCT/EP2005/051862

2113

[Fig.]

Computing Apparatus
200

Storage 204
Memory 210

Nonvolatile 1o
Memory 212 208

ﬁroce 8501 ZQJ

Network Interface
208

FIG. 2

300

FIG. 3

WO 2005/109167
3/13
[Fig.]
02 FIG. 4
DETERMINE N, THE MAXIMUM
NUMBER OF STRIFS THAT CAN BE 400
STORED ON EACH STORAGE ¥
DEVICE
v 7 404
[SET COUNTER EQUAL TO 1 I
‘ 406
ESTABLISH LBA MAPPING TABLE
408 v
RECEIVE WRITE
COMMAND? —
410 + yes
Z New LBA? >”_°_j a2
414 yes CHECK
N v MAPPING
r INCREMENT COUNTER | TABLE
S N— ,,
MAPPING TABLE
r UPDATE MAPFING TAB 4| WRITE STRIPS
318 C
¥eS /IS COPY FLAG SETTO YES? % 413
420~ 424
WRITE STRIPS AND WRITE STRIPS, DO
COPIES OF STRIPS NOT WRITE COPIES
no,
COUNTER =N?

12 yes

PCT/EP2005/051862

WO 2005/109167 PCT/EP2005/051862

4/13

[Fig.]

Write + Rotated Copy of stride Sj for a 5 disk amay

| LBA Disk 1 Disk 2 Disk3 Disk 4 Disk 5
I: Strip LBAM s1] s2j = s4] 5]
Rotated Copy] LBAmM+1 s5) slj s2j 53 sdj
FIG. 5
LBA Mapping Table for 1 Rotated Copy
FIFO Algorithm
Random new R
incoming strip Mapp ed: stop Mapped Capy Flag
Counter LEAs fom LBA using rotated copy YN
Host FIFO algorithm{ LBA
1 LBA 21 LBA1 LBA 2 YES
2 LBA N-7 LBA3 LBA 4 YES
3 LBA N-1 LBAS LBA 6 YES
4 LBA 4 LBA 7 LBA 8 YES
5 LBA N-88 1BA9 LBA 10 YES
6 LBAN LBA.11 LBA 12 YES
LBA1 LBA 13 LBA 14 YES
N/2 LBA 15 LBA (N-1} LBAN YES
N/2+1 LBA 42 LBA2 NA (eopy NO
overwiitten)
LBA 50 LBA 4 NA NO
LBAG NA NO
LBA N-25 LBA.8 NA NG
LBA 22 LBA 10 NA NO
N-3 LBA N-73 LBAN-6 NA NO
N-2 1LBA 30 LBA N4 NA NO
N-1 LBA & LBAN-2 NA NO
N LBA 100 IBAN NA NO

FIG. 6

WO 2005/109167 PCT/EP2005/051862

513

[Fig.]

Write + 2 Rotated Copies of stride Sj for a 5 disk array

LBA Disk 1 Disk 2 Disk 3 Disk 4 Disk5
Stip TBAm i) s7) s3] sdj 5]
Rotat#ettil CopY| | pAm+1 5 sij 2 s3j s4j
RomtedCort L Bam+2 4 s5j s1j s2 s3]

FIG.7

LBA Mapping Table for 2 Rotated Copies

FIFC Algorithm

Random Mapped Mapped Mapped
Caunter new strip strip LBA rotated Copy#1 | rotated Copy#2

LBAs from | using FIFO | copy &1 flag copy #2 flag

Host algorithm LBA LBA
1 LBA 41 LBA1 LBA 2 YES LBA3 YES
2 LBA N-76 LBA4 LBA S YES LBAB YES
3 LBA N-1 LBAY LBA 8 YES LBAD YES
4 LBA 4 LBA 10 LBA 11 YES LBA12 YES
5 LBA N-4 LBA 13 LBA 14 YES LBA 15 YES
N7 LBA101 | LBA3 NA NO NA NO
(imteger)
N+ LBA T LBAG NA NO NA NO
N3+2 1BA 311 LBAS NA NO NA NO
NA3+3 LBA B67 LBA 12 NA NO NA NO
N/3-+4 LBA 2 LBA 15 NA NO NA NO
2NI3
{integenr) LBA 12 LBA2 A NO HA NO
2NI3+1 LBA N LBA 5 NA NO NA NO
2N{3+2 LBA 1 LBA H NA NO NA NO
2N3+43 LBA N-43 LBA 11 N& NO NA NO
2N3+4 LBA 366 LBA 14 NA NO NA NO
N=2 LBA 479 LBAZN/S | NA NO NA NO
N-1 LBA 174 LBAZN/3-Z | NA NO NA NO
N LBA 9 LBAZ2N/3+1| NA NO NA NO

FIG. 8

WO 2005/109167

6/13

[Fig.]

Reserved LBA Band Mapping
{Reserved LBAs 1-m, table shows case form = 10)

Rotated Copy LBA
in':f:i:; ::;"SB‘X o Mapped strip LBA | if counter is no
greater than N/2
LBA 1 LBA 1 LBA 2
LBA 2 LBA3 LBA4
LBA 3 LBAS LBA 6
LBA 4 LBA 7Y LBA &
LBAS LBA S LBA 10
LBA 6 LBA 11 LBA 12
LBA7 LBA 13 LBA 14
LBAB LBA 1% LBA 16
[BAS [BA7 LBA 1B
LBA 10 LBA 19 LBA 20
LBA Kk LBA 2i-1 LBA 2k

FIG. 9

PCT/EP2005/051862

WO 2005/109167

713

[Fig.]

LBA Mapping Table for 1 Rotated Copy
Reserved Band + FIFQ Algorithm
(Reserved LBAs 1, 2, ... m, table shows case for m= 10)

Mapped strip
LBAs within a
ﬁf:ﬂ";g“:tzp reserved LBA | Mapped Copy Flag
Counter LBAs from band plus FIFO| rotated copy YN
algorithm for | LBA
Host
non reserved
LBAs
1 LBA33 LBA 21 LBA 22 YES
2 LBAN-7 LBA 23 LBA 24 YES
3 LBAN-1 LBA 25 LBA 26 YES
4 1LBA3 LBAS L.BA 6 YES
5 LBA N-83 LBA 27 LBA.28 YES
[LBA9 LBA17 LBA 18 YES
ILBA1 LBA1 LBAZ YES
N/2 LBAYY LBA XX LBA X3{+1 YES
NA (copy
N/2+1 LBA 42 LBA 22 overwritien) NO
LBA 50 LBA 24 NA NO
LBA2 LBA3 NA NO
LBA N-25 LBA 28 NA NO
LBA 22 LBA 30 NA NO
N-3 LBA N-73 LBA N-6 NA NO
N-2 LBA 30 LBA N-4 NA NO
N-1 LBA7 LBA. 13 NA NO
N LBA 100 LBAN NA NO

FIG. 10

PCT/EP2005/051862

WO 2005/109167

8/13

[Fig.

FIG. 11A

11
Vs 02

DETERMINE TOTAL NUMBER OF
STRIP LBAs FOR EACH STORAGE
DEVICE

IDENTIFY NUMBER OF STRIP LBAs
ON SMALLEST STORAGE
DEVICE(S)

¥ r-1106

SET N EQUAL TO THE SMALLEST
NUMBER OF STRIP LBAs

¢ f1 108

IDENTIFY A NUMBER, j, OF A

4

STRIDE TO BE STORED

yes

! 7 1104

1100

¥

+ /1110

< 3 < N-17 >_2.. To
1120

yes

A J

WRITE STRIPslj TO FIRST
STORAGE DEVICE AND TG
SECOND STORAGE DEVICE

3 1114

,.-1112

'WRITE STRIP s2j TO SECOND
STORAGE DEVICE AND TO THIRD
STORAGE DEVICE

¥ PR

o))

WRITE STRIP s3] TO THIRD
STORAGE DEVICE AND TO
FOURTH STORAGE DEVICE

v £

no

18

ADDITIONAL STRIDE TO
STORE?

PCT/EP2005/051862

WO 2005/109167 PCT/EP2005/051862

9/13
[Fig.]
1100
71120 '
WRITE STRIP s1j N FIRST
STORAGE DEVICE
v 71122
WRITE STRIP s2j IN SECOND
STORAGE DEVICE
' 124
WRITE STRIP §3j IN THIRD
STORAGE DEVICE
] 1126
ADDITIONAL STRIDE TO yes ™
STORE?
1108
no
¥

END

WO 2005/109167

10/13

[Fig.]

SIX DISK ARRAY WITH RAID 5 AND SINGLE SHIFTED COPY

A1 1A'p Az | A A3 A2 A4 A3 A5 |A'4 Ap |AS
Bp | BS B1|Bp B2 | B'1 B3 |B2 B4 | B3 B5 | B'4
C5|C4 Cp |C5 C1|C'p czj|c1 C3{C2 C4|C3
REBUILD AFTER ONE DISK FAILURE WITHOUT USING PARITY
Al |Ap A2 | A1 A3 A2 A4 |A'S A5 |A'4 Ap |A'5
Bp | B'S B1|Bp B2 | B B3 |B2 B4 B3 B5 | B4
C5 |C4 Cp |C5 Ci1|Cp Cc2|CH c3|c2 C41C3
FAILED
HDD
Al |AD A2 | A1 A3 |A2 A4 |A3 A5 A4 Ap {AS
Bp |BS B1|BPp B2 | B'1 B3 |82 B4 | B'3 B5 | B4
C5|C4 Cp |C6 G1|Cp c2|cH G3|c2 C4 |C3
SPARE
HDD

FIG. 13

PCT/EP2005/051862

WO 2005/109167

REBUILD AFTER TWO NON-ADJACENT DISK FAILURES

1113

[Fig.]

WITHOUT USING PARITY
a1 |apl [Azfa1] [a3(az2] [as]as] [as|aa] Ap|As
Bp|B5| [B1(Bp| [B2|B1]| [BR{B2] |B4[B3| |B6|P4
cs|cal |oples| |[cilcp] [c2lc1] [calcz] [calcs
FAILED FAILED
HDD HDD
A Japl [A2a1] [asTaz] [a4]as] [As|a4] |Ap|AS
Bp B8] [B1|Bp| |B2|B1| |B3[B2} |B4[B3| |B5|B4
cslca] lcelos| [ci]op] {c2]c1] [cs|cz2] [calcs
SPARE SPARE
HDD1 HDD2

FIG. 14

PCT/EP2005/051862

WO 2005/109167

12/13

[Fig.]

REBUILD AFTER TWO ADJACENT DISK FAILURES USING PARITY

{a)

(b)

(c)

(d)

Al [Ap| [A2]a1] [as]az]. [aa]a3] [Aas[a4]| [Ap|AS
Bp|B5| |[B1|Bp| [B2|B1| |B3|E2| [B4|B3] [B5][B4
cs|cal [cplcs| [ci|cp| [cz]ct] [c3]cz] [ca]cs
FAILED FAILED
HDD HDD
A1 AP A3 Az|a3] [as[Aaa] [ap[As
Bp |BS B2 B3 |B2| |[B4|B3| [B5|B4
C5 |C'4 C1 cz|c1| [calc2| [calcs
SPARE SPARE
HDD1 HDD2
A1 [ap] [az A3 Az |a3] [as[aa] [ap]As
Bp | BS B1 B2 B3 | B2 B4 | B3 B5 | B'4
c5|C4| [cp Ci cz|c1| [c3|c2] [ca]cs
SPARE SPARE
HDD1 HDD2
a1 [ap]| [Az[a1] [As[az2] [A«]a3] [As]aa] [Ap]as
Bp|B5| [B1|Bp| [B2|B1]| [B3|E2]| [B4|R3] [BS5|B4
cs|ca| [cplos| [ci|op| [c2]ci]| [calcz| [cafcs

SPARE
HDDA

SPARE
HDD2

FIG. 156

PCT/EP2005/051862

WO 2005/109167

om-HO0Om-10aTR

om—1om-A0amDR

100
20
80
70
80
50
40
30
20
10

100
20
80
70
50
50
40
30
20
10

13/13

[Fig.]

SINGLE MIRROR, 2 DISK FAULT TOLERANCE

| | | { | | | I—"I;

10 20 30 40 50 60 70 80 %0 100
PERCENTAGE QF DISK AVAILABLE SPACE USED

Autonomic RAID 5
FIG. 16 YN[y J——

DOUBLE MIRROR, 3 DISK FAULT TOLERANCE

{ I I | | | | | 1 ;

10 20 30 40 80 80 70 80 o0 100

PERCENTAGE OF DISK AVAILABLE SPACE USED
Autonomic RAID § eemmesmmm—

FIG. 17 VNG Y P——

PCT/EP2005/051862

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

