Title: METHOD AND APPARATUS FOR HANDLING AN INCOMING CALL

(54) Title: METHOD AND APPARATUS FOR HANDLING AN INCOMING CALL

(57) Abstract: A method for handling an incoming call received at an inbound terminal via an analog line is described. The method comprises receiving the incoming call at the inbound terminal; storing caller ID data enabling identification of incoming call; comparing a stored existing caller ID with the stored current caller ID to determine if an earlier incoming call is being signaled to an application; if the earlier incoming call is being signaled, disconnecting the earlier incoming call; and presenting the incoming call to the application thereby reducing the risk of conflict between incoming calls.

Published:
— with international search report
— before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.
METHOD AND APPARATUS FOR HANDLING AN INCOMING CALL

TECHNICAL FIELD
[0001] This invention relates to the field of telecommunications. More precisely, this invention pertains to the field of communication on analog lines.

BACKGROUND OF THE INVENTION
[0002] In the case of an incoming call on analog lines, no defined event exists for signaling the end of a call establishment phase. Such limitation may create various problems as explained below.

[0003] For instance, as shown in Fig. 1, there is shown a diagram which discloses how a conflict may occur due to the limitation.

[0004] In the case where a first incoming call is provided by an outbound switch to an Application Programming Interface (API) of an inbound terminal, a ring signal for the first incoming call is issued to an application at the inbound terminal. The skilled addressee will appreciate that the incoming call is provided using a ringing voltage on the line. The application may be any type of application such as for instance a voicemail managing application, an authentication application based on incoming call data, Unified Messaging Applications, Automatic Call Distribution (ACD) Server, Voice over IP (VoIP) Gateway, Point of Sales Server (POS), etc. In response to the ring for the first call, the application issues a "Call Accept Command" (i.e., an AT Answer (ATA) command if a port driver or a TTY driver is used as Application Programming Interface (API)) for instance.
Server (POS), etc. In response to the ring for the first call, the application issues a "Call Accept Command" (i.e., an AT Answer (ATA) command if a port driver or a TTY driver is used as Application Programming Interface (API)) for instance.

[0006] If while the "Call Accept Command" is being issued to the API, the party issuing the first incoming call hangs up and therefore causes the first incoming call to be terminated and if a second incoming call issued by another party is being provided to the application, the "Call Accept Command" issued to the API will be applied against the second incoming call causing a conflict.

[0007] Such conflict may be the source of Denial of Service (DoS) attacks in the case for instance where an access to an application is based upon a calling or called identity. Incoming calls may also be directed to wrong directions by an application. In the case where the application is an answering machine, a user issuing a call may leave a message in a wrong voicemail.

[0008] There is a need for a method and apparatus that will overcome at least one of the above-identified drawbacks.

SUMMARY OF THE INVENTION

[0009] The invention provides a method and apparatus for handling an incoming call.

[0010] According to an aspect of the invention, there is provided a method for handling an incoming call received via an analog line, the method comprising receiving the incoming call, checking if an earlier incoming call is being signaled to an application, if the earlier incoming
call is being signaled, disconnecting the earlier incoming call and presenting the incoming call.

[0011] According to another aspect of the invention, there is provided an apparatus for handling an incoming call signal received via an analog line. The apparatus comprises a communication port receiving the incoming call signal and providing a received call signal comprising incoming call information representative of the incoming call signal; a memory unit; and a processing unit receiving the received call signal and accessing the memory unit using the incoming call information to find out if the memory unit comprises another incoming call information signal representative of an earlier incoming call signal being signaled. The processing unit further provides a signaling signal if the memory unit does not comprise another incoming call information signal.

[0012] According to yet another aspect of the invention, there is provided a method for handling an incoming call received at an inbound terminal via an analog line. The method comprises receiving the incoming call at the inbound terminal; storing caller ID data enabling identification of incoming call; comparing a stored existing caller ID with the stored current caller ID to determine if an earlier incoming call is being signaled to an application; if the earlier incoming call is being signaled, disconnecting the earlier incoming call; and presenting the incoming call to the application.

BRIEF DESCRIPTION OF THE DRAWINGS

[0013] Further features and advantages of the present invention will become apparent from the following detailed
description, taken in combination with the appended drawings, in which:

[0014] Fig. 1. is a diagram showing a case where a conflict occurs due to existing limitations; an answer command is issued by an application of an inbound terminal for a wrong incoming call;

[0015] Fig. 2 is a block diagram showing an apparatus for handling an incoming call according to an embodiment of the invention.

[0016] Fig. 3 is a flowchart showing how an incoming call is handled according to one embodiment of the invention; and

[0017] Fig. 4 is a diagram showing how the handling of an incoming call according to the invention overcomes the above-identified limitation.

[0018] It will be noted that throughout the appended drawings, like features are identified by like reference numerals.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

[0019] Now referring to Fig. 2, there is shown a block diagram showing an apparatus 8 for handling an incoming call at an inbound terminal according to an embodiment of the invention.

[0020] The apparatus 8 comprises a communication port 12, a processing unit 14 and a memory unit 16.

[0021] The communication port 12 is adapted for receiving an incoming call signal originating from an outbound switch, not shown, located on a network 10 and further for providing a received signal to the processing unit 14.
[0022] The communication port 12 is further adapted for receiving a signal to send and providing an outgoing phone signal to the network 10.

[0023] In an embodiment, the communication port 12 comprises a Direct Access Arrangement (DAA) chip as analog front end (AFE) to terminate the network 10.

[0024] The processing unit 14 is adapted for receiving the received signal provided by the communication port 12 and further adapted for providing a signal to send to the communication port 12. The processing unit 14 is further adapted for storing a call information signal in the memory unit 16 and further for retrieving the call information signal from the memory unit 16.

[0025] It should be understood by the skilled addressee that in one embodiment, the communication port 12, the processing unit 14 and the memory unit 16 are embedded into a single card referred to as an "active" embedded system card. Such card may be then plugged to a computer for instance. In another embodiment, the processing unit of a computer as well as at least one part of the memory unit of the computer are used which is referred to as a "passive" design.

[0026] The memory unit 16 is adapted for storing a call information signal. It should be appreciated that the call information signal may be any type of data enabling the identification of a call such as for instance caller ID data. It should be further appreciated that the memory unit 16 may be used to store additional information provided in the case where an SMDI (Simplified Message Desk Interface) interface is used. Such additional information may comprise additional call related information like Redirecting Number.
or receive/send Message Waiting signal. As known by the skilled addressee, using SMDI requires an extra serial cable connected to some specific switch types. In fact, as known by the skilled addressee, with most networks the caller ID information may be provided using in-band tones (e.g. like FSK modem tones or DTMF tones) after or before the first ring. As explained previously, the memory unit 16 may be a dedicated memory unit comprised in an embedded system card while alternatively, the memory unit of a computer may be used.

[0027] It should be understood that the communication port 12, the processing unit 14 and the memory unit 16 may already be comprises in an existing communication device such as a modem for instance.

[0028] Now referring to fig. 3, there is shown how an incoming call is handled according to one embodiment of the invention.

[0029] According to step 20, an incoming call is received. The incoming call is received from the network 10 by the processing unit 14 via the communication port 12. Alternatively, at least one part of the incoming call, the incoming call information, may be received from an external serial interface (e.g. a SMDI interface), while the call comes in at the communication port 12.

[0030] According to step 22, a check is performed using the received incoming call in order to find out if an earlier incoming call is being signaled. The check is performed by the processing unit 14 disclosed in Fig. 2. More precisely, the processing unit 14 checks in the memory unit 16 if the latter comprises an existing call information signal indicative of an earlier incoming call. It should be
appreciated that preferably, the memory unit 16 comprises
an existing call information signal if an earlier incoming
call is being signaled. Still in the preferred embodiment,
the check is performed by comparing a stored existing call
information signal, if any, with the current call
information signal.

[0031] In the case where an earlier incoming call is being
signaled, i.e., in the case where the current call
information signal is different from the earlier incoming
call information signal, the earlier call is disconnected.
Preferably, the earlier call is disconnected using the
processing unit 14.

[0032] In the case where no earlier incoming call is being
signaled and according to step 26, an indication of the
incoming call is provided. In the preferred embodiment, the
indication of the incoming call is stored in the memory
unit 16 by the processing unit 14. The incoming call is
then presented to the application.

[0033] Now referring to Fig. 4, there is shown how the
handling of an incoming call according to the invention
overcomes the above-identified limitation.

[0034] More precisely, a first incoming call is provided to
an Application Programming Interface (API), the first
incoming call is signaled to an application.

[0035] The first incoming call is accepted by the application
and a command to that effect is issued by the application
and is directed to the API.

[0036] A second incoming call is issued prior the command to
the effect that the first incoming call is accepted is
received by the API.
A check is performed by the API as disclosed at step 22 of Fig. 3 and it is therefore detected that the first incoming call is being signaled.

A notice to the effect that the first call is disconnected is then sent to the application and a notice indicating that the second incoming call is presented to the application.

While illustrated in the block diagrams as groups of discrete components communicating with each other via distinct data signal connections, it will be understood by those skilled in the art that the preferred embodiments are provided by a combination of hardware and software components, with some components being implemented by a given function or operation of a hardware or software system, and many of the data paths illustrated being implemented by data communication within a computer application or operating system. The structure illustrated is thus provided for efficiency of teaching the present preferred embodiment.

It should be noted that the present invention can be carried out as a method, can be embodied in a system, a computer readable medium or an electrical or electromagnetic signal.

The embodiments of the invention described above are intended to be exemplary only. The scope of the invention is therefore intended to be limited solely by the scope of the appended claims.
WE CLAIM:

1. A method for handling an incoming call received via an analog line, said method comprising:
 receiving said incoming call;
 checking if an earlier incoming call is being signaled to an application;
 if said earlier incoming call is being signaled, disconnecting said earlier incoming call; and presenting said incoming call.

2. The method as claimed in claim 1, wherein said checking comprises accessing a memory unit comprising
 incoming call information, further wherein said presenting of said incoming call comprises storing
 corresponding incoming call information in said memory unit.

3. The method as claimed in claim 1, wherein said incoming call is presented to an application.

4. The method as claimed in claim 3, wherein said application is selected from the group consisting of:
 voicemail applications, incoming call-based authentication applications, unified messaging
 applications, automatic call distribution (ACD) servers, Voice over IP (VoIP) gateways and Point of
 Sales (POS) servers etc.

5. An apparatus for handling an incoming call signal received via an analog line, said apparatus comprising:
a communication port receiving said incoming call signal and providing a received call signal comprising incoming call information representative of said incoming call signal;

a memory unit; and

a processing unit receiving said received call signal and accessing said memory unit using said incoming call information to find out if said memory unit comprises another incoming call information signal representative of an earlier incoming call signal being signaled, said processing unit further providing a signaling signal if said memory unit does not comprise another incoming call information signal.

6. The apparatus as claimed in claim 3, wherein said signaling signal is provided to an application.

7. The apparatus as claimed in claim 4, wherein said application is selected from a group consisting of voicemail applications, incoming call-based authentication applications, unified messaging applications, automatic call distribution (ACD) servers, Voice over IP (VoIP) gateways, Point of Sales (POS) Servers.

8. A method for handling an incoming call received at an inbound terminal via an analog line, said method comprising:

receiving said incoming call at said inbound terminal;
storing caller ID data enabling identification of incoming call;

comparing a stored existing caller ID with the stored current caller ID to determine if an earlier incoming call is being signaled to an application;

if said earlier incoming call is being signaled, disconnecting said earlier incoming call; and

presenting said incoming call to said application.
FIGURE 1 (PRIOR ART)
BEGIN

RECEIVE AN INCOMING CALL

CHECK IF AN EARLIER CALL IS BEING PRESENTED

YES

DISCONNECT THE EARLIER CALL

NO

PROVIDE AN INDICATION OF THE INCOMING CALL

END

FIGURE 3
FIGURE 4
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
 IPC: H04M 1/64 (2006.01), H04M 3/02 (2006.01)
 According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED
 Minimum documentation searched (classification system followed by classification symbols)

 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
 WPI, Delphion, Pluspat, Canadian Patent Database, USPTO, Qweb, Epoline, Espacenet.

 Electronic database(s) consulted during the international search (name of database(s) and, where practicable, search terms used)
 Keywords: handling incoming call, communication port, memory, processor, inbound terminal, disconnecting switch, telephone.

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A)</td>
<td>US6,246,889 (Boltz et al.) 12 Jun., 2001 (12-06-2001) see the whole document</td>
<td>1</td>
</tr>
<tr>
<td>(A)</td>
<td>WO0205527 (Wilk) 17 Jan., 2002 (17-01-2002) see the whole document</td>
<td>1,5</td>
</tr>
<tr>
<td>(A)</td>
<td>US6,654,615 (Chow et al.) 25 Nov., 2003 (25-11-2003) see Abst.</td>
<td>1</td>
</tr>
<tr>
<td>(A)</td>
<td>US5,999,611 (Tatchell et al.) 7 Dec., 1999 (07-12-1999) see Abst.</td>
<td>1</td>
</tr>
</tbody>
</table>

[X] See patent family annex

Further documents are listed in the continuation of Box C.

Date of the actual completion of the international search: 17 March 2006 (17-03-2006)
Date of mailing of the international search report: 31 March 2006 (31-03-2006)

Name and mailing address of the ISA/CA
Canadian Intellectual Property Office
Place du Portage I, C114 - 1st Floor, Box PCT
50 Victoria Street
Gatineau, Quebec K1A 0C9
Facsimile No.: 001(819)953-2476

Authorized officer
Sivantha Chhit (819) 997-2238

Form PCT/ISA/210 (second sheet) (April 2005)
<table>
<thead>
<tr>
<th>Patent Document Cited in Search Report</th>
<th>Publication Date</th>
<th>Patent Family Member(s)</th>
<th>Publication Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>WO02078309</td>
<td>03-10-2002</td>
<td>CA2377198 A1</td>
<td>23-09-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP1378510 A1</td>
<td>07-01-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US6941131 B2</td>
<td>06-09-2005</td>
</tr>
<tr>
<td>US6246889</td>
<td>12-06-2001</td>
<td>AU1928699 A</td>
<td>05-07-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO9931909 A1</td>
<td>24-06-1999</td>
</tr>
<tr>
<td>WO0205527</td>
<td>17-01-2002</td>
<td>AU7041001 A</td>
<td>21-01-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA2313974 A1</td>
<td>07-01-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN1451224 A</td>
<td>22-10-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP1299992 A2</td>
<td>09-04-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP2004803164 T</td>
<td>29-01-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MXPA02012699 A</td>
<td>20-04-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US6768789 B1</td>
<td>27-07-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU1620500 A</td>
<td>07-08-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA2359934 A1</td>
<td>27-07-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP1146920 A1</td>
<td>24-10-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IL144244D D0</td>
<td>23-05-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP20002535004 T T</td>
<td>22-10-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US6217541 B1</td>
<td>17-04-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US6374102 B1</td>
<td>16-04-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US6535730 B1</td>
<td>18-03-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US6574470 B1</td>
<td>03-06-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US6160877 A</td>
<td>12-12-2000</td>
</tr>
</tbody>
</table>