APPARATUS FOR SEVERING A RIBBON FROM SHEET METAL STOCK

Robert M. Stikleather, Holbrook, Mass., assignor to Aerofin Corporation, Syracuse, N. Y., a corporation of New Jersey

Application October 12, 1950, Serial No. 189,853

19 Claims. (Cl. 164—61)

This invention relates to slitting apparatus and more particularly to apparatus for severing a ribbon from wide sheets of metal stock, the cost of stock since wide stock can be procured from a manufacturer at greatly decreased cost over an equivalent amount of stock in the form of narrow strips or ribbons.

The chief object of the present invention is to provide a device for severing a ribbon from an edge of a coil or roll of sheet metal stock during its passage from a supporting disk to a second rotatable supporting disk.

An object of the present invention is to provide a device for severing a ribbon from an edge of sheet metal stock which includes mechanism for guiding the stock into the nip of the cutting rolls and means for varying the speed of ribbon formation.

A further object is to provide a device for severing a ribbon from sheet metal stock having two rotatable disks, the sheet stock being moved from one disk to the other, a ribbon being severed from the edge of the stock during its passage from one disk to the other, in which means are provided to drive the disks alternately to pass the stock from one to the other.

A still further object is to provide ribbons severing mechanism including braking mechanism to discontinue substantially simultaneously rotation of a driven disk when rotation of a driving disk is discontinued.

A still further object is to provide ribbons severing mechanism including braking mechanism for feeding the ribbon to a roll of use, the length of the loop regulating the speed of rotation of the disk.

Other objects of my invention will be readily perceived from the following description, reference being made to the accompanying drawings in which:

Figure 1 is a sectional view in elevation illustrating a modification of the invention; Figure 6 is a plan view of the machine shown in Figure 5; Figure 7 is a fragmentary sectional view of the disk adjusting mechanism; and Figure 8 is a fragmentary view in elevation of the mechanism shown in Figure 7.

Referring to the attached drawings, there is shown a device for severing a ribbon 2 from sheet metal stock 3. The sheet metal stock is in the form of a coil or roll and is supported on a rotatable disk as hereinafter described.

The device includes a horizontally disposed rotatable disk 4 placed above a second horizontally disposed rotatable disk 5, the disks serving to support the coil of sheet stock as hereinafter described. Cores 6 are held on the surfaces of the disks to assure accurate placement of the sheet stock. Disks 4 and 5 are supported by a table 7, serving as a portion of the framework of the device, which in turn rests upon and is supported by base 8.

Rotatable shaft 9 extends vertically and is connected by suitable bevel gears (not shown) to shaft 10. Chuck 11 is provided to connect shaft 10 to shaft 9, and guide 12 by means of belt 13. The prime mover 12 may be a suitable electrical motor which is connected to a desired source of electrical current. Thus shaft 9 is rotated by means of motor 12.

Disk 4 includes a hub 14 having a plurality of teeth 15 formed therein. Disk 5 includes a hub 16 having a plurality of teeth 17 formed therein. A rod 18 extends through shaft 9 and carries a key 19. An opening 20 is provided in shaft 9 through which the key extends. When rod 18 is raised to an upper position, key 19 fits in the openings between teeth 15 of hub 14, thereby connecting disk 4 to shaft 9 to rotate the disk. When rod 18 is moved to a lower position, key 19 fits within the openings between teeth 17 of hub 16 thereby connecting disk 5 to shaft 9 to rotate disk 5. When rod 18 is in an intermediate position, the disks 4, 5 are not connected to the driving mechanism.

Cooperating adjustable cutting rolls 21 and 22 are supported by the framework at one side of the device in a plane intermediate the planes of disks 4, 5 and serve to sever ribbon 2 from sheet metal stock 3 passing from disk 4 to disk 5 or vice versa. Rolls 21, 22, preferably, are disposed at an angle to assure that stock 3, passing from one disk to the other, is fed accurately into the nip of the rolls. Shear stock 3 is passed from disk 4 through cutting rolls 21, 22 in a vertical plane and between disks 4 and 5.

When the sheet stock has been wound completely on disk 5, the direction of movement of the stock may be reversed by raising rod 18 thereby connecting disk 4 to the prime mover 12, through the cutting rolls in the reverse direction and actuating disk 4 to pass the stock in the reverse direction from disk 5 through the cutting rolls 21, 22 to disk 4.

Sheet metal stock 3 passes from disk 4 about the periphery of a guide roll 23, through guide 24, over the periphery of a guide roll 25 similar to guide 23, then through the nip of vertically extending guide rolls 26.

The sheet stock then passes through edge rolls 27 and 28, roll 27 being at the upper edge of the stock and roll 28 being at the lower edge of the stock, through another set of vertically extending guide rolls 29 and into the nip of cutting rolls 21, 22. If desired, an edge guide roll 30 may be placed at the upper edge of the sheet stock at the nip of the cutting rolls to aid in holding the stock in desired position during the severing operation. Guide roll 31 is provided below the lower edge of the stock to guide it into the nip of the rolls, and guide roll 32 supports the sheet stock as it passes through the cutting rolls. Thereafter, the ribbon 2 severing the ribbon rolls 20, 21 passes to loop mechanism 35 hereinafter described, while the remaining sheet stock passes over guide roll 33 similar to roll 25 to disk 5 and is wound about core 6 thereon.

When the direction of movement of the stock is reversed, the stock passes from disk 5 about the periphery of guide roll 23', over the periphery of guide roll 24', vertically extending rolls 26', vertically extending rolls 27', 28', vertically extending rolls 29', guide roll 30', guide roll 34 similar to roll 31, guide roll 32', over guide 25 and is wrapped about a core 6 placed on disk 4.
Loop mechanism 35 is provided to assure that the ribbon is not torn during its supply to a place of use since the severing device and a finning device for example, to which the ribbon may be supplied operate at different speeds when the respective devices are placed in operation. Thus, the ribbon passes through a loop mechanism 35 which comprises a plurality of upper and lower pulleys 36 about which the ribbon is looped. Pulley 36 is a non-rotating pulley. When the speed of the mechanism along which the ribbon is more rapid than the speed of the severing device, the loops rapidly decrease in length. It is desirable, accordingly, that the speed of the severing device be increased to supply ribbon more rapidly. For example, the severing device is operating at a speed greater than the speed of the ribbon utilizing machine, it is desirable to decrease its speed to prevent formation of more ribbon than is required and the consequent storage of the ribbon.

For this purpose, clutch 11 is connected to a lever 49 pivoted as shown at 41. The opposite end of lever 40 is connected to a link 42 secured to an arm 43 attached to a shaft 44, 40 attached to the framework of the device. Shaft 44 is secured to a link 45 which carries a pulley 46 at its opposite end. A wire or cord 47 passes under pulley 46 and has its end attached to the framework of the drive. Where the wires over pulley 49, over pulley 50 mounted on the loop mechanism 35, and is connected to a weight 51 riding on a roll 52. Moving the weight 51 upward or downward on roll 52 decreases or increases the speed of the driving disk, respectively, and decreases the length of the loops. Thus, the speed of the disks 5 and 4 and varies the speed thereof in accordance with the demand for ribbon.

During operation of the device when operation of the driving disk is discontinued, inertia of the driven disk is such that its rotation may continue for some slight time thereafter. This is undesirable since a roll wound on the disk to unwind or slip. To eliminate this disadvantage, suitable braking mechanism is provided adjacent disks 4 and 5. It will be appreciated that similar braking mechanism is provided adjacent each disk. Braking mechanism comprises plates 56, 57 placed above and below disk 4 and extending in part over the surfaces of the disk. Friction material 58 is attached to the side of each plate adjacent the disk. Rod members 59, 69 extend through the plates beyond the periphery of the disk. Springs 61 and 62 support the plates 59 and 69, and are held in place by collars 63 on the shafts. Springs 61 and 62 are of such a length that plates 57 toward each other. Plates 56 and 57 are supported in position by arms 64 fastened to the frame of the device. Arms 65 and 66 are desired to rotate freely. In other words, arm 65 and 66 to eliminate friction as hereinafter described.

A link 67 supports guide roll 23 and is pivoted at its opposite end as shown at 68. Link 67 carries a wedge 69 adapted to be formed between plates 56, 57 to urge the plates apart, moving friction material 58 from the surfaces of the disk, and permitting free rotation of the disk. Guide roll 23 is held in desired position by means of links 23, 24 attached to the framework of the device. As pointed out above, sheet stock passes around guide roll 23, through the cutting mechanism to the driving disk, assuming the lower disk 5 is the driving disk. The passage of stock about guide roll 23 toward the periphery of disk 4 against the resistance of spring 70 thereby pivoting link 67 about pivot point 68 and forcing wedge 69 between plates 56, 57 to urge such plates apart. Disk 4 is thereby permitted to rotate freely. When rotation of the driving disk is discontinued, forces are no longer applied to the sheet stock being pulled from the disk 4 so that spring 70 retracts roll 23 from the periphery of disk 4, again permitting the passage of stock about guide roll 23.

Considering the operation of the ribbon severing device, assuming disk 5 is connected to the prime mover 12 and hence is the driving disk, the roll or coil of sheet stock being supported on disk 4, rotation of disk 5 pulls sheet stock from disk 4 around guide roll 23, through guide 24, about roll 28 and through guides 26, 27, 29, 30, 31 and through cutting rolls 21, 22, the sheet stock then passes over roll 33 to the driven disk 5 upon the core 6 thereon. The ribbon, as it is severed, passes to loop mechanism 35 and from the loop mechanism to its place of use, which may be for example, a finning device. As the ribbon is drawn from the finning machine and the severing device is operating, the length of the loops is larger or smaller in accordance with the respective speeds. Assuming the speed of the finning machine to be greater than the speed of the driving disk, the loop decreases in length. Upon a decrease in length, weight 35 is raised, thereby through intervening mechanism moving clutch 11 toward a closed position to increase the speed of the driving disk.

The operation is similar when the sheet stock is fed from disk 5 to roll 24, except the direction of movement of the stock is reversed. As described above, braking mechanism 55 permits the driven disk to be stopped substantially instantaneously when rotation of the driving disk is discontinued.

Considering operation of the machine when the end of a coil of stock is reached, the stock unwinds completely from one disk to another. Immediately, the operator stops the machine and disconnects the driven disk from the power source. The operator then leads the stock in the reverse direction through the cutting rolls to the second disk and winds several turns of the stock about the core on the second disk. The second disk is then connected to the power source. When the second disk is driven, it pulls the stock through the cutting rolls to the second disk and winds the stock about the core on the second disk. Since the length of the stock passes through the cutting rolls, in all cases the ribbon is severed from the stock.

In Figs. 5–8 inclusive, a modification of the invention is illustrated. This modified device is generally similar to the device described except that the disks are placed in vertical rather than in horizontal position. Referring to Figures 5 and 7, there are shown vertically extending stock or roll carriers 110, 111 each consisting of spaced disks 112, 113. The disks 112, 113 are adjustable, disk 112 being movable horizontally along the line 114, while disk 113 is movable vertically along the line 115. Figure 7 to vary the space therebetween to accommodate different widths of stock. Carriers 110, 111 are driven alternately by motor 116 and 117 as shown. Similar guide rolls 117, 118 and 119, 120 are provided adjacent carriers 110, 111. Preferably, rolls 118, 120 and 117, 119 may be connected by rods 121 to hold rolls 118, 117 in a position to avoid application of brake 119 to the drum of its disk when such disk is driven by motor 114, as hereinafter explained.

The stock 123 passes, as shown in Figure 5, from carrier 111 to the roll 117; roll 119, and through horizontal guide rolls 124 and vertical guide rolls 125 to the nip of the cutting rolls 126, 127 which sever ribbon 128 from stock 123. Ribbon 128 is supplied to the place of use by means of roll 28 on which it is wound. After passage through cutting rolls 126, 127, the stock passes about guide roll 120 and is wound on carrier 111. Similar guide rolls are provided when the stock is moved in the reverse direction through the cutting rolls. The loop mechanism may be employed as previously described to vary the speed of the severing device. If desired, lubricant may be applied to the stock by means of sump 129 and weir 130 and delivered to the carrier by roll 127, which in turn applies the lubricant to the stock.

Braking mechanism is provided to assure immediate stoppage of the driven disk. Brake 122 is pivoted at 121 and is connected by rod 131 to arm 134 which carries guide roll 117 or 118 as the case may be. The passage of stock about the guide roll moves the upward thereby releasing brake 123 through the connecting mechanism and permitting the carrier to rotate freely. In other words, arm 134 is fastened to link 133 which is pivoted at a central point. Since arm 134 is
attached to link 133 movement of arm 134 upward or downward pivots link 133 about its pivot point. If arm 134 is raised, it will pull the lower portion of link 133 toward the right, thereby rotating link 133, about its pivot point, by 90° clockwise about its pivot 131 and removing the brake surface from contact with the hub of the carrier.

As explained previously, the carriers are driven alternately from the gear train of the cutting mechanism to receive ribbon severed by the cutting rolls and to supply such ribbon to a place of use, and means are provided actuated by the loop mechanism to vary the speed of the driving rotatable member. 6. In apparatus for severing a ribbon from sheet stock, the combination of a rotatable disk like member for supporting sheet stock, a second rotatable disk like member for supporting sheet stock, means for driving the supporting members alternately to pass stock from one member to the other, cooperating cutting rolls to sever a ribbon from the stock during its passage from one member to the other, member, guide members for directing the sheet stock into the nip of the cutting rolls, and braking mechanism for automatically rotating the driven support member substantially instantaneously when rotation of the driving support member is discontinued.

7. Apparatus according to claim 6 in which the braking mechanism includes plates disposed above and below the rotatable member, friction material carried on the surfaces of the plate adjacent the rotatable member, and means to move the plates toward the rotatable member when rotation of the driving member is discontinued.

8. Apparatus according to claim 7 in which the braking mechanism includes a resilient member urging the plates toward one another, a lever, a wedge member carried on the lever, the lever being pivoted at one end to permit the wedge to be moved to a first position to force the plates apart, the lever carrying one of the guide members and a second resilient member urging the guide member away from the rotatable member whereby passage of stock under driving forces about the guide member pivots the lever to move the wedge member to a first position between the plates to force them apart while release of the stock from driving forces permits the second resilient member to again pivot the lever to move the wedge member to a second position permitting the first resilient member to urge the plates toward the rotatable member to apply braking forces to the driving member.

9. In apparatus for severing a ribbon from sheet stock, the combination of a rotatable member for supporting sheet stock, a second rotatable member for supporting sheet stock, stock passing from one member to the other member, cooperating cutting rolls to sever a ribbon from the stock during its passage from one member to the other member, guide members for directing the sheet stock into the nip of the cutting rolls, means for driving the supporting members alternately to wind the stock on one member and then on the other member, and loop mechanism to receive the ribbon severed from the cutting rolls and to supply such ribbon to a place of use, and means actuated by the loop mechanism to vary the speed of the driving rotatable member, said means for varying the speed of the driving member comprising a clamping arm cooperating with a clutch to move the clutch to closed or open positions, a link connected to the arm, and means connecting the loop mechanism with the link whereby an increase or decrease in the length of ribbon to be severed from the stock is caused to move the clutch toward closed or open positions.

10. In apparatus for severing a ribbon from a roll of sheet metal stock, the combination of a horizontally extending rotatable disk member, a second horizontally extending rotatable disk member placed below the first member, a prime mover, means alternatingly connecting the prime mover to the disks to pass stock from one disk to the other disk, cooperating cutting rolls to sever a ribbon from the stock during its passage from one disk to the other disk, and guide members for directing the sheet stock into the nip of the cutting rolls.

11. Apparatus according to claim 10 which includes an idler roll adapted to receive stock from the first disk, a second idler roll placed adjacent the first disk over which the stock passes, vertically extending guide rolls to receive stock from the second idler roll to cooperate with the cutting rolls, and guide rolls adjacent the cutting rolls in contact with the lower edge of stock during its passage into and through the nip of the cutting rolls.

12. Apparatus according to claim 10 including braking mechanism for automatically discontinuing substantially instantaneous rotation of the driven disk when rotation of the driving disk is discontinued.

13. Apparatus according to claim 12 in which the braking mechanism is provided adjacent each disk, the braking mechanism comprising plate members disposed above and below each disk, friction material carried by said plates adjacent the surfaces of the disk, and means automatically operable to move the friction material to
ward the surfaces of the driven disk when operation of the driving disk is discontinued.

14. Apparatus according to claim 13 in which loop mechanism is provided to supply the severed ribbon to a place of use, and means are provided operated automatically in response to the length of the loop to vary the speed of the driving disk.

15. In apparatus for severing a ribbon from a roll of sheet metal stock, the combination of a vertically extending rotatable stock carrier, a second vertically extending rotatable stock carrier placed adjacent the first carrier, a prime mover, means connecting the prime mover to the carriers to drive one or the other carrier alternately to pass the stock from one to the other, cooperating cutting rolls to sever a ribbon from the stock during its passage from one carrier to the other, and guide members for directing the sheet stock into the nip of the cutting rolls.

16. Apparatus according to claim 15 in which braking mechanism is provided for discontinuing rotation of the driven carrier substantially instantaneously when rotation of the driving carrier is discontinued.

17. In apparatus for severing a ribbon from sheet stock, the combination of a rotatable disk like member for supporting sheet stock, a second rotatable disk like member for supporting metal sheet stock, means for passing the stock from the first member to the second member, or from the second member to the first member, cooperating cutting rolls to sever a ribbon from the stock during its passage from one of said members to the other member, guide members for directing the sheet stock into the nip of the cutting rolls, loop mechanism to receive ribbon severed by the cutting rolls and to supply such ribbon to a place of use, and means actuated by the loop mechanism to vary the speed of passage of the stock from one member to the other member.

18. In apparatus for severing a ribbon from sheet stock, the combination of a rotatable member for supporting sheet stock, a second rotatable member for supporting sheet stock, stock passing from one member to the other member, cooperating cutters to sever a ribbon from the stock during its passage from one member to the other member, guide members for directing the sheet stock to the cutters, and means for driving the supporting members, and means for alternately connecting the driving means to said supporting members to wind the stock on one member and then on the other member.

19. In apparatus for severing a ribbon from a roll of sheet metal stock, the combination of a vertically extending rotatable disk member, a second vertically extending rotatable disk member placed adjacent the first member, a prime mover, means alternately connecting the prime mover to the disks to pass stock from one disk to the other disk, cooperating cutters to sever a ribbon from the stock during its passage from one disk to the other, and guide members for directing the sheet stock into the nip of the cutters.

References Cited in the file of this patent

UNITED STATES PATENTS

<table>
<thead>
<tr>
<th>Number</th>
<th>Name</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>602,235</td>
<td>Brady</td>
<td>Apr. 12, 1898</td>
</tr>
<tr>
<td>723,375</td>
<td>Fales</td>
<td>Mar. 24, 1903</td>
</tr>
<tr>
<td>2,277,514</td>
<td>Elser</td>
<td>Mar. 24, 1942</td>
</tr>
<tr>
<td>2,286,675</td>
<td>Gibbons</td>
<td>June 16, 1942</td>
</tr>
<tr>
<td>2,527,468</td>
<td>Stocker</td>
<td>Aug. 24, 1943</td>
</tr>
<tr>
<td>2,458,538</td>
<td>Socke</td>
<td>Jan. 11, 1948</td>
</tr>
<tr>
<td>2,539,401</td>
<td>Carl et al.</td>
<td>Jan. 30, 1951</td>
</tr>
</tbody>
</table>