IMPLANTABLE MEDICAL CATHETER HAVING REINFORCED SILICONE ELASTOMER COMPOSITION

Inventor: James M. Olsen, Plymouth, MN (US)

Correspondence Address:
BANNER & WITCOFF, LTD.
TEN SOUTH WACKER DRIVE
SUITE 3000
CHICAGO, IL 60606 (US)

Assignee: Medtronic, Inc., Minneapolis, MN

Appl. No.: 10/831,998
Filed: Apr. 26, 2004

Related U.S. Application Data
Continuation of application No. 10/128,000, filed on Apr. 23, 2002, now Pat. No. 6,743,831.

Publication Classification

Int. Cl. C08J 3/00
U.S. Cl. 523/105

ABSTRACT

An implantable medical catheter comprising at least one fluid passageway and a cured elastomer composition is disclosed. The cured elastomer composition is obtained by cross-linking an uncured blend composition that comprises an intimately admixed mixture that comprises the following components: (A) silica that had been silylated by treatment and contains trialkylsilyl groups; (B) a polysiloxane copolymer; (C) a catalyst, and (D) an organohydrogen polysiloxane cross-linker, the catalyst and the cross-linker being present in the uncured blend composition in sufficient amount to cause the cross-linking reaction to occur.
NOTE: AVERAGE PROPERTIES OF DISTAL AND PROXIMAL TUBING.

CATHETER WITH DOWETR (LINE B) VS CATHETER OF PRESENT INVENTION (LINE A)

TENSILE STRESS (PSI)

TENSILE STRAIN (ELONGATION) (%)
FIG. 3

CREEP

TIME (HOURS)

PERCENT ELONGATION

0

50

100

150

200

300

250

200

100

0
IMPLANTABLE MEDICAL CATHETER HAVING REINFORCED SILICONE ELASTOMER COMPOSITION

RELATED APPLICATION

[0001] This is a continuation of U.S. Ser. No. 10/128,000, filed Apr. 23, 2002, which is incorporated by reference herein in its entirety.

FIELD OF THE INVENTION

[0002] The present invention is directed to medical catheters having improved mechanical properties.

BACKGROUND OF THE INVENTION

[0003] Various types of materials are used for catheters, such as Dow Corning HP (high performance) or Dow Corning ETR (extra tear resistance) material. These types of materials have relatively high tear resistance. However, it would be desirable to have a catheter material that had a higher crush and creep resistance than Dow Corning HP or Dow Corning ETR.

[0004] Crush resistance and creep resistance are important properties for catheters because they can be subjected to various forces, such as compression and stretching forces after they are implanted within a patient. For example, a catheter that is implanted within a patient so that it can come into contact with the spinous processes can be frequently subjected to compression from the spinous processes.

[0005] Other materials have higher crush and creep resistance than Dow Corning HP and Dow Corning ETR. An example of such a material is Dow Corning MDX. While this type of material has relatively high crush and creep resistance, it is not considered to be suitable material for a catheter because a higher tear resistance material is believed to be necessary for such a catheter.

[0006] Tear resistance is important for catheters because they can be “nicked” or cut on the introducer needle during placement. Notably, this can occur without the physician implanting the catheter knowing that a nick or cut had occurred. Tear resistance is a mechanical property that indicates how quickly a cut or tear progresses to a fracture or break.

[0007] As it will be readily appreciated by those skilled in the art of medical catheters, certain mechanical properties, such as tear strength, abrasion resistance, resistance to shredding, compression set, crush and creep resistance are of great importance in the materials for any catheter device that is implanted into the human body. It should also be readily appreciated by those skilled in the art that catheters having improved mechanical properties, and particularly improved tear resistance, crush resistance and creep resistance provide higher performance and better results than catheters having lesser such mechanical properties.

[0008] The need still exists for catheters having improved mechanical properties, including improved tear resistance, crush resistance and creep resistance. The present invention provides such a catheter.

SUMMARY OF THE INVENTION

[0009] It is an object of the present invention to provide a catheter having improved overall mechanical properties over prior catheters.

[0100] It is another object of the present invention to provide tubular material for implantable medical catheters, which material has improved overall mechanical properties, including improved tear resistance, crush resistance and creep resistance.

[0111] The implantable medical catheter disclosed herein attains the foregoing and other objects of the present invention. More specifically, the implantable medical catheter of the present invention comprises a catheter defining at least one fluid passageway and a cured elastomer composition obtained by cross-linking an uncured blend composition that comprises an intimately admixed mixture that comprises the following components: (A) silica that had been silylated by treatment and contains trialkylsilyle groups comprising approximately 23 to 45 percent by weight of the mixture; (B) a polysiloxane copolymer composed of divalent $-R_1R_2SiO-$, divalent $-R_3R_4SiO-$ and end-blocking $R_5R_6R_7SiO-$ units, comprising approximately 55 to 77 percent by weight of the mixture, where R_1 and R_2 independently are lower alkyl of 1 to 6 carbons, phenyl or trifluoropropyl, R_3 is vinyl, allyl, or other olefinic group having up to 4 carbons, R_4 is lower alkyl of 1 to 6 carbons, phenyl or trifluoropropyl, and R_5, R_6, and R_7 independently are lower alkyl of 1 to 6 carbons, phenyl, vinyl, allyl, or other olefinic group having up to 4 carbons and one double bond, the polysiloxane copolymer has a degree of polymerization (D.P.) approximately in the range of 3500 to 6500, and the olefin containing $-R_5R_6R_7SiO-$ groups are present randomly distributed in the polysiloxane copolymer and approximately in the 0.05 to 0.3 mol percent range, with the proviso that when R_5, R_6, or R_7 or both represent phenyl groups then proportion of the phenyl-containing divalent siloxane units does not exceed 15 mol percent and when R_5 or R_6 or both represent trifluoropropyl groups, then the proportion of the trifluoropropyl-containing divalent siloxane units does not exceed approximately 40 mol percent in the polysiloxane copolymer; (C) a catalyst, and (D) an organohydrogen polysiloxane cross-linker, the catalyst and the cross-linker being present in the uncured blend composition in sufficient amount to cause the cross-linking reaction to occur.

[0112] In one embodiment, the polysiloxane copolymer, the $-R_5R_6R_7SiO-$ group is $-(CH_3)(CH_3)SiO-$, the $-R_5R_6SiO-$ group is $-CH_3(CH==CH)SiO-$, and the R_5R_6SiO- group is $-(CH_3)(CH==CH)SiO-$.

[0113] In one embodiment, the $-CH_3(CH==CH)SiO-$ group is present in the proportion of 0.142 mol percent in the polysiloxane copolymer.

[0114] In one embodiment, the silylated silica includes trimethylsilyl groups in such quantity that the carbon content of the silylated silica is in the range of approximately 4 to 8 percent by weight of the silylated silica.

[0115] In one embodiment, the carbon content of the silylated silica is approximately 7.3 percent by weight of the silylated silica.

[0116] In one embodiment, the catheter includes barium sulfate (BaSO_4).

BRIEF DESCRIPTION OF THE DRAWINGS

[0117] FIG. 1 illustrates an embodiment of the present invention that is implanted within a patient and can come into contact with the spinous processes of the patient.
FIG. 2 is a graph illustrating tensile stress (psi) versus tensile strain (%) for a catheter of the present invention versus a prior art catheter.

FIG. 3 is a graph illustrating creep resistance for the elastomer of the present invention versus two prior art materials.

FIG. 4 illustrates an access port connected to a catheter of the present invention.

FIG. 5 illustrates a pump connected to a catheter of the present invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The implantable medical catheter of the present invention comprises a catheter defining at least one fluid passageway and a cured elastomer composition. As shown in FIG. 1, the catheter is implanted within a patient using an introducer needle. FIG. 1 shows that the catheter is implanted so that it can come into contact with spinoous processes.

The cured elastomer composition is obtained by cross-linking an uncured blend composition that comprises an intimately admixed mixture that comprises the following components: (A) silica that had been silylated by treatment and contains trialkysilyl groups comprising approximately 23 to 45 percent by weight of the mixture; (B) a polysiloxane copolymer composed of divalent $-R_1R_2SiO-$, divalent $-R_3R_4R_5SiO-$ and end-blocking $R_6R_7R_8SiO-$ units, comprising approximately 55 to 77 percent by weight of the mixture, where R_1, R_2, R_3, R_4, R_5, R_6, R_7, and R_8 independently are lower alkyl of 1 to 6 carbons, phenyl or trilfluoropropyl, R_3 is vinyl, allyl, or other olefinic group having up to 4 carbons, R_4 is lower alkyl of 1 to 6 carbons, phenyl or trilfluoropropyl, and R_6, R_7, and R_8 independently are lower alkyl of 1 to 6 carbons, phenyl, vinyl, allyl, or other olefinic group having up to 4 carbons and one double bond, the polysiloxane copolymer has a degree of polymerization (DP) approximately in the range of 3500 to 6500, and the olefin containing $-R_3R_4R_5SiO-$ groups are present randomly distributed in the polysiloxane copolymer and approximately in the 0.05 to 0.3 mol percent range, with the proviso that when R_7 or R_8, or both represent phenyl groups then the ratio of the phenyl-containing divalent siloxane units does not exceed 15 mol percent and when R_1 or R_2 or both represent phenyl groups then the ratio of the phenyl-containing divalent siloxane units does not exceed 0.05 mol percent in the polysiloxane copolymer, (C) a catalyst, and (D) an organohydroxy polysiloxane cross-linker, the catalyst and the cross-linker being present in the uncured blend composition in sufficient amount to cause the cross-linking reaction to occur.

In one embodiment, the polysiloxane copolymer, the $-R_1R_2SiO-$ group is $-(CH_3)SiO-$, the $-R_3R_4R_5SiO-$ group is $-CH_2(CH_2=CH)SiO-$, and the $R_6R_7R_8SiO-$ group is $-CH_2(CH_2=CH)SiO-$.

In one embodiment, the $-CH_2(CH_2=CH)Si-$ group is present in the proportion of 0.142 mol percent in the polysiloxane copolymer.

In one embodiment, the silylated silica includes trimethylsilyl groups in such quantity that the carbon content of the silylated silica is in the range of approximately 4 to 8 percent by weight of the silylated silica.

In one embodiment, the carbon content of the silylated silica is approximately 7.3 percent by weight of the silylated silica.

In one embodiment, the catheter includes barium sulfate ($BaSO_4$). The barium sulfate provides a radiopacity feature to the catheter of the present invention. In a preferred embodiment, the catheter of the present invention comprises about 15% by weight barium sulfate.

U.S. Pat. Nos. 5,948,539 and 6,040,369 are incorporated herein by reference. More specifically, FIG. 2 and Col. 2, line 40 through Col. 11, line 3 of U.S. Pat. No. 5,948,539, and FIG. 2 and Col. 2, line 40 through Col. 11, line 3 of U.S. Pat. No. 6,040,369 are incorporated herein by reference. Thus, the elastomeric compositions and the methods of making those elastomeric compositions disclosed in U.S. Pat. Nos. 5,948,539 and 6,040,369 are incorporated herein by reference. These patents disclose a medical electrical lead and reinforced silicone elastomer compositions wherein these patents disclose the reinforced silicone elastomer compositions for use as insulation for electrical leads of implantable medical devices, and which have improved overall mechanical properties over prior art insulators for leads. However, it was not expected that use of these reinforced elastomer compositions as catheter material would provide a difference in kind over catheters not having the reinforced elastomer compositions of the present invention.

The following test data shows the unexpected and surprising difference in kind between a catheter having the reinforced elastomer compositions of the present invention over catheters not having the reinforced elastomer compositions of the present invention.

EXAMPLE 1

FIG. 2 is a graph illustrating tensile stress (psi) versus tensile strain (%) for a catheter of the present invention versus a prior art catheter having the same dimensions (i.e., outside and inside diameters, and length). The catheter of the present invention used in this example was made with a material made in the same manner as described in the “Specific Example” in U.S. Pat. Nos. 5,948,539 and 6,040,369, which are incorporated herein by reference. The prior art catheter used in this example was made using Dow Corning ETR, and had the same outside and inside diameters as the catheter of the present invention. Both of these catheters also included 13% by weight barium sulfate by mixing barium sulfate in a suitable amount and manner prior to or during the forming of the catheters. Two different sizes of both catheters were made—a distal tubing (having an inside diameter of 0.021 inches and an outside diameter of 0.055 inches) and a proximal tubing (having an inside diameter of 0.021 inches and an outside diameter of 0.085 inches).

Tensile strain per unit stress, sometimes called axial stiffness, is an elongation property. As shown in FIG. 2, between a tensile stress of 0% to about 200%, the catheter of the present invention (identified as line “A”, which is an average of the distal and proximal tubing made in accordance with the present invention) is more elastic than a prior
art catheter (identified as line “B,” which is an average of the distal and proximal tubing made using Dow Corning ETR). In other words, less force, i.e., tensile stress (psi) is needed to achieve a tensile strain up to about 200% for the catheter of the present invention over a prior art catheter. This is an unexpected and surprising result because the catheter of the present invention, as shown below, also has better crush resistance and creep resistance (i.e., toughness) than the prior art catheter. Typically, the tougher a material is, the less elastic the material is. Thus, it was unexpected and surprising that the catheter of the present invention has superior toughness and elasticity over the prior art catheter between a tensile strain of 0% to about 200%. Moreover, these results were unexpected and surprising in view of the presence of 13% by weight barium sulfate, which would be expected to reduce crush and creep resistance and increase axial stiffness.

[0033] Since an implanted catheter typically does not experience a tensile strain or elongation of more than 50%, the catheter of the present invention provides a substantial improvement over the prior art catheter in the applicable range of tensile strain or elongation. At a tensile strain of about 50%, the tensile stress for the catheter of the present invention is about 35% lower than the tensile stress of a prior art catheter made with Dow Corning ETR. This means, for example, that for a catheter of the same dimensions (outside and inside diameters), the force at the spinal anchor (not shown) due to the independent motion of an implantable fluid access port 40 (as shown in FIG. 4) or implantable pump 50 (as shown in FIG. 5) will be about 35% less for the catheter of the present invention than for a prior art catheter made with Dow Corning ETR. Since the catheter of the present invention has this improved property over prior art catheters, the catheter of the present invention will be less likely to become dislodged from the spine than prior art catheters.

[0034] The crush resistance of the catheter of the present invention and the prior art catheter were also compared. More specifically, the crush resistance of the two catheters having the same dimensions, and both including 13% by weight barium sulfate, were compared by subjecting each catheter to 50% compression during cyclic loading. Crush resistance is defined herein as the number of cycles of compressing each catheter so that the two walls of each catheter were compressed to the thickness of one wall of the catheter until large cracks appeared. This test is designed to simulate the loading for the midline placement of a catheter within a patient’s spine where it is compressed between spinous processes, and/or subject the loading of a vascular catheter between the clavicle and the first rib of a patient. In this test, the catheter of the present invention had a crush resistance of more than 20 times greater than the crush resistance of the prior art catheter.

[0035] The creep resistance for the elastomer of the present invention and two prior art materials Dow Corning ETR and Dow Corning MDX were also compared. The creep resistance of the three materials was compared by subjecting each material to an applied load over time. As shown in FIG. 3, the elastomer of the present invention (identified as line “A”) had substantially more resistance to strain under an applied load than the prior art Dow Corning ETR (identified as line “B”) or the prior art Dow Corning MDX (identified as line “C”).

[0036] The Examples and disclosure are intended to be illustrative and not exhaustive. These examples and description will suggest many variations and alternatives to one of ordinary skill in this art. All these alternatives and variations are intended to be included within the scope of the attached claims. Those familiar with the art may recognize other equivalents to the specific embodiments described herein which are also intended to be within the scope of the invention. Therefore, the scope of the present invention should be interpreted solely from the following claims, as such claims are read in light of the disclosure.

I claim:

1. An implantable medical catheter, the catheter having at least one fluid passageway and comprising a cured elastomer composition obtained by cross-linking an uncured blend composition that comprises an admixed mixture that comprises the following components:

 (A) silica that had been silylated by treatment and contains trialkylsilyl groups comprising approximately 23 to 45 percent by weight of the mixture;

 (B) a polysiloxane copolymer composed of divalent

 \(-R_1R_2SiO-, \) divalent \(-R_1R_2O-, \) and end-blocking \(-R_1R_2O-,\) units, comprising approximately 55 to 77 percent by weight of the mixture,

 where \(R_1\) and \(R_2\) independently are lower alkyl of 1 to 6 carbons, phenyl or trifluoropropyl, \(R_3\) is vinyl, allyl, or other olefinic group having up to 4 carbons, \(R_4\) is lower alkyl of 1 to 6 carbons, phenyl or trifluoropropyl, and \(R_5, R_6,\) and \(R_7\) independently are lower alkyl of 1 to 6 carbons, phenyl, vinyl, allyl, or other olefinic group having up to 4 carbons and one double bond, the polysiloxane copolymer has a degree of polymerization (D.P) approximately in the range of 3500 to 6500, and the olefin containing \(-R_1R_2O-,\) groups are present randomly distributed in the polysiloxane copolymer and approximately in the 0.05 to 0.3 mol percent range, with the provisos that when \(R_1\) or \(R_2\) or both represent phenyl groups then proportion of the phenyl-containing divalent silicon-containing units does not exceed 15 mol percent and when \(R_1\) or \(R_2\) or both represent trifluoropropyl groups, then the proportion of the trifluoropropyl-containing divalent silicon-containing units does not exceed approximately 40 mol percent in the polysiloxane copolymer;

 (C) a catalyst;

 (D) an organoxygen polysiloxane cross-linker, the catalyst and the cross-linker being present in the uncured blend composition in sufficient amount to cause the cross-linking reaction to occur; and

 (E) a radiopaque material.

2. The implantable medical catheter of claim 1 wherein in the polysiloxane copolymer the \(-R_1R_2SiO-\) group is

 \(-(CH_2)_xSiO-,\) the \(-R_1R_2O-\) group is

 \(-(CH_3)_xSiO-,\) and the \(R_1R_2R_3SiO-\) group is

 \(-(CH_3)_xSiO-\)
3. The implantable medical catheter of claim 2 where the —CH₃(CH=CH)SiO— group is present in the proportion of 0.142 mol percent in the polysiloxane copolymer.

4. The implantable medical catheter of claim 1 where the silylated silica includes trimethylsilyl groups in such quantity that the carbon content of the silylated silica is in the range of approximately 4 to 8 percent by weight of the silylated silica.

5. The implantable medical catheter of claim 4 where the carbon content of the silylated silica is approximately 7.3 percent by weight of the silylated silica.

6. The implantable medical catheter of claim 1, wherein the radiopaque material comprises about 13% by weight of the catheter.

7. The implantable medical catheter of claim 1, further comprising an implantable fluid access port.

8. The implantable medical catheter of claim 1, wherein the catheter is in fluid communication with an implantable access port.

9. The implantable medical catheter of claim 1, wherein the catheter is in fluid communication with an implantable pump.

10. An implantable medical device comprising a catheter and an implantable access port, the catheter being in fluid communication with the implantable fluid access port, the catheter having at least one fluid passageway, the fluid passageway having an open proximal region and an open distal region, and comprising a cured elastomer composition obtained by cross-linking an uncured blend composition that comprises an admixed mixture that comprises the following components:

 (A) silica that had been silylated by treatment and contains trialkylsilyl groups comprising approximately 23 to 45 percent by weight of the mixture;

 (B) a polysiloxane copolymer composed of divalent —R₁R₂SiO—, divalent —R₃R₄SiO— and end-blocking R₅R₆R₇SiO— units, comprising approximately 55 to 77 percent by weight of the mixture,

 where R₁ and R₂ independently are lower alkyl of 1 to 6 carbons, phenyl or trifluoropropyl, R₃ is vinyl, allyl, or other olefinic group having up to 4 carbons, R₄ is lower alkyl of 1 to 6 carbons, phenyl or trifluoropropyl, and R₅, R₆, and R₇ independently are lower alkyl of 1 to 6 carbons, phenyl, vinyl, allyl, or other olefinic group having up to 4 carbons and one double bond, the polysiloxane copolymer has a degree of polymerization (D.P.) approximately in the range of 3500 to 6500, and the olefin containing —R₃R₄SiO— groups are present randomly distributed in the polysiloxane copolymer and approximately in the 0.05 to 0.3 mol percent range, with the provisos that when R₁ or R₂, or both represent phenyl groups then proportion of the phenyl-containing divalent siloxane units does not exceed 15 mol percent and when R₃ or R₄ or both represent trifluoropropyl groups, then the proportion of the trifluoro propyl-containing divalent siloxane units does not exceed approximately 40 mol percent in the polysiloxane copolymer;

 (C) a catalyst;

 (D) an organohydrogen polysiloxane cross-linker, the catalyst and the cross-linker being present in the uncured blend composition in sufficient amount to cause the cross-linking reaction to occur; and

 (E) a radiopaque material.

11. The implantable medical device of claim 10 wherein in the polysiloxane copolymer the —R₃R₄SiO— group is —CH₂(CH=CH)SiO—, the —R₅R₆SiO— group is —CH₂(CH=CH)SiO—, and the R₅R₆R₇SiO— group is —CH₂(CH=CH)SiO—.

12. The implantable medical device of claim 11 where the —CH₂(CH=CH)SiO— group is present in the proportion of 0.142 mol percent in the polysiloxane copolymer.

13. The implantable medical device of claim 10 where the silylated silica includes trimethylsilyl groups in such quantity that the carbon content of the silylated silica is in the range of approximately 4 to 8 percent by weight of the silylated silica.

14. The implantable medical device of claim 13 where the carbon content of the silylated silica is approximately 7.3 percent by weight of the silylated silica.

15. The implantable medical device of claim 10 further comprising at least one spinal anchor, the force at the spinal anchor due to independent motion of the implantable fluid access port being about 35% less for the catheter than a catheter made of an elastomer not having the admixture of components (A) through (D).

16. An implantable medical device comprising a catheter and an implantable pump, the catheter being in fluid communication with the implantable pump, the catheter having at least one fluid passageway, the fluid passageway having an open proximal region and an open distal region, and comprising a cured elastomer composition obtained by cross-linking an uncured blend composition that comprises an admixed mixture that comprises the following components:

 (A) silica that had been silylated by treatment and contains trialkylsilyl groups comprising approximately 23 to 45 percent by weight of the mixture;

 (B) a polysiloxane copolymer composed of divalent —R₃R₄SiO—, divalent —R₅R₆SiO— and end-blocking R₇R₈R₉SiO— units, comprising approximately 55 to 77 percent by weight of the mixture,

 where R₃ and R₄ independently are lower alkyl of 1 to 6 carbons, phenyl or trifluoropropyl, R₅ is vinyl, allyl, or other olefinic group having up to 4 carbons, R₆ is lower alkyl of 1 to 6 carbons, phenyl or trifluoropropyl, and R₇, R₈, and R₉ independently are lower alkyl of 1 to 6 carbons, phenyl, vinyl, allyl, or other olefinic group having up to 4 carbons and one double bond, the polysiloxane copolymer has a degree of polymerization (D.P.) approximately in the range of 3500 to 6500, and the olefin containing —R₃R₄SiO— groups are present randomly distributed in the polysiloxane copolymer and approximately in the 0.05 to 0.3 mol percent range, with the provisos that when R₃ or R₄, or both represent phenyl groups then proportion of the phenyl-containing divalent siloxane units does not exceed 15 mol percent and when R₅ or R₆ or both represent trifluoropropyl groups, then the proportion of the trifluoro propyl-containing divalent siloxane units does not exceed approximately 40 mol percent in the polysiloxane copolymer;

 (C) a catalyst;
an organohydrogen polysiloxane cross-linker, the catalyst and the cross-linker being present in the uncured blend composition in sufficient amount to cause the cross-linking reaction to occur; and

(e) a radiopaque material.

17. The implantable medical device of claim 16 wherein in the polysiloxane copolymer the \(-\text{R}_1\text{R}_2\text{SiO}-\) group is
\(-\text{(CH}_3\text{)}_{2}\text{SiO}-\), the \(-\text{R}_3\text{R}_4\text{SiO}-\) group is
\(-\text{CH}_3\text{(CH}==\text{CH})\text{SiO}-\), and the \(-\text{R}_5\text{R}_6\text{R}_7\text{SiO}-\) group is
\(-\text{(CH}_3\text{)}_2\text{(CH}==\text{CH})\text{SiO}-\).

18. The implantable medical device of claim 17 where the
\(-\text{CH}_3\text{(CH}==\text{CH})\text{SiO}-\) group is present in the proportion of 0.142 mol percent in the polysiloxane copolymer.

19. The implantable medical device of claim 16 where the silylated silica includes trimethylysilyl groups in such quantity that the carbon content of the silylated silica is in the range of approximately 4 to 8 percent by weight of the silylated silica.

20. The implantable medical device of claim 19 where the carbon content of the silylated silica is approximately 7.3 percent by weight of the silylated silica.

21. The implantable medical device of claim 16 further comprising at least one spinal anchor, the force at the spinal anchor due to independent motion of the implantable fluid access port being about 35% less for the catheter than for a catheter made of an elastomer not having the admixture of components (A) through (D).

22. An uncured elastomer blend composition suitable for curing by cross linking, the composition comprising two aliquots and a radiopaque material in combination:

the first aliquot comprising an admixed mixture of the following components:

(1) approximately 23 to 45 percent by weight of silica that had been silylated by treatment and contains trialkylsilyl groups;

(2) approximately 55 to 77 percent by weight of a polysiloxane copolymer composed of divalent
\(-\text{R}_1\text{R}_2\text{SiO}-\), divalent \(-\text{R}_3\text{R}_4\text{SiO}-\) and end-blocking \(-\text{R}_5\text{R}_6\text{R}_7\text{SiO}-\) units,

where \(\text{R}_1\) and \(\text{R}_2\) independently are lower alkyl of 1 to 6 carbons, phenyl or trfluoropropyl, \(\text{R}_3\) is vinyl, allyl, or other olefinic group having up to 4 carbons, \(\text{R}_4\) is lower alkyl of 1 to 6 carbons, phenyl or trifluoropropyl, and \(\text{R}_5\), \(\text{R}_6\), and \(\text{R}_7\) independently are lower alkyl of 1 to 6 carbons, phenyl, vinyl, allyl, or other olefinic group having up to 4 carbons and one double bond, the polysiloxane copolymer has a degree of polymerization (D. P.) approximately in the range of 3500 to 6500, and the olefin containing \(-\text{R}_3\text{R}_4\text{SiO}-\) groups are present randomly distributed in the polysiloxane copolymer and approximately in the 0.05 to 0.3 mol percent range, with the provisos that when \(\text{R}_1\) or \(\text{R}_2\) or both represent phenyl groups then proportion of the phenyl-containing divalent siloxane units does not exceed 15 mol percent, and when \(\text{R}_5\) or \(\text{R}_6\) or both represent trifluoropropyl groups, then the proportion of the trifluoropropyl-containing divalent siloxane units does not exceed approximately 40 mol percent in the polysiloxane copolymer, and

(3) a catalyst,

the second aliquot comprising an admixed mixture of the following components:

(1) approximately 23 to 45 percent by weight of silica that had been silylated by treatment and contains trialkylsilyl groups;

(2) approximately 55 to 77 percent by weight of a polysiloxane copolymer composed of divalent
\(-\text{R}_1\text{R}_2\text{SiO}-\), divalent \(-\text{R}_3\text{R}_4\text{SiO}-\) and end-blocking \(-\text{R}_5\text{R}_6\text{R}_7\text{SiO}-\) units,

where \(\text{R}_1\) and \(\text{R}_2\) independently are lower alkyl of 1 to 6 carbons, phenyl or trfluoropropyl, \(\text{R}_3\) is vinyl, allyl, or other olefinic group having up to 4 carbons, \(\text{R}_4\) is lower alkyl of 1 to 6 carbons, phenyl or trifluoropropyl, and \(\text{R}_5\), \(\text{R}_6\), and \(\text{R}_7\) independently are lower alkyl of 1 to 6 carbons, phenyl, vinyl, allyl, or other olefinic group having up to 4 carbons and one double bond, the polysiloxane copolymer has a degree of polymerization (D. P.) approximately in the range of 3500 to 6500, and the olefin containing \(-\text{R}_3\text{R}_4\text{SiO}-\) groups are present randomly distributed in the polysiloxane copolymer and approximately in the 0.05 to 0.3 mol percent range, with the provisos that when \(\text{R}_1\) or \(\text{R}_2\) or both represent phenyl groups then proportion of the phenyl-containing divalent siloxane units does not exceed 15 mol percent and when \(\text{R}_5\) or \(\text{R}_6\) or both represent trifluoropropyl groups, then the proportion of the trifluoropropyl-containing divalent siloxane units does not exceed approximately 40 mol percent in the polysiloxane copolymer, an

(3) an organohydrogen polysiloxane cross-linker,

the catalyst and the cross-linker being present in the first and second aliquots respectively in sufficient amounts to cause the cross-linking reaction to occur after the first and second aliquots are mixed.

23. The uncured elastomer blend composition of claim 22 wherein in the polysiloxane copolymer of each aliquot the
\(-\text{R}_1\text{R}_2\text{SiO}-\) is \(-\text{(CH}_3\text{)}_2\text{SiO}-\), the \(-\text{R}_3\text{R}_4\text{SiO}-\) group is
\(-\text{CH}_3\text{(CH}==\text{CH})\text{SiO}-\), and the \(-\text{R}_5\text{R}_6\text{R}_7\text{SiO}-\) group is
\(-\text{(CH}_3\text{)}_2\text{(CH}==\text{CH})\text{SiO}-\).

24. The uncured elastomer blend composition of claim 23 wherein in the polysiloxane copolymer of each aliquot the silylated silica includes trimethylysilyl groups in such quantity that the carbon content of the silica is in the range of approximately 4 to 8 percent by weight.

25. The uncured elastomer blend composition of claim 22 wherein the second aliquot further comprises a volatile inhibitor in such quantity that the cross-linking reaction occurs rapidly after mixing the first and second aliquots and substantially removing the inhibitor by heat.

26. The uncured elastomer blend composition of claim 23 wherein in the polysiloxane copolymer the \(-\text{CH}_3\text{(CH}==\text{CH})\text{SiO}-\) group is present in the proportion of 0.142 mol percent in the polysiloxane copolymer.

27. The uncured elastomer blend composition of claim 24 wherein the carbon content of the silylated silica is approximately 7.3 percent by weight of the silylated silica.
28. The uncured elastomer blend composition of claim 22, wherein the radiopaque material comprises about 13% by weight of the uncured elastomer blend composition.

29. The uncured elastomer blend composition of claim 22, wherein the radiopaque material comprises barium sulfate.

30. The uncured elastomer blend composition of claim 29 wherein in the polysiloxane copolymer of each aliquot the \(-\text{R,RSiO}--\) is \(-(\text{CH}_3)_2\text{SiO}--\), the \(-\text{R,RSiO}--\) group is \(-\text{CH}_3(\text{CH}_3=\text{CH})\text{SiO}--\), and the \(\text{R,RSiO}--\) group is \(-\text{CH}_3(\text{CH}_3=\text{CH})\text{SiO}--\).

31. The uncured elastomer blend composition of claim 30 wherein in the polysiloxane copolymer of each aliquot the silylated silica includes trimethylsilyl groups in such quantity that the carbon content of the silica is in the range of approximately 4 to 8 percent by weight.

32. The uncured elastomer blend composition of claim 29 wherein the second aliquot further comprises a volatile inhibitor in such quantity that the cross-linking reaction occurs rapidly after mixing the first and second aliquots and substantially removing the inhibitor by heat.

33. The uncured elastomer blend composition of claim 30 where the \(-\text{CH}_3(\text{CH}=\text{CH})\text{SiO}--\) group is present in the proportion of 0.142 mol percent in the polysiloxane copolymer.

34. The uncured elastomer blend composition of claim 31 where the carbon content of the silylated silica is approximately 7.3 percent by weight of the silylated silica.

35. The uncured elastomer blend composition of claim 29, wherein the radiopaque material comprises about 13% by weight of the uncured elastomer blend composition.

* * * * *