09/006023 A2 | N OO N 0 R0

WO

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization Vd”Ij

) IO O T OO O A 0

International Bureau

(43) International Publication Date
8 January 2009 (08.01.2009)

(10) International Publication Number

WO 2009/006023 A2

(51) International Patent Classification:
GOG6F 12/00 (2006.01)

(21) International Application Number:

PCT/US2008/067343
(22) International Filing Date: 18 June 2008 (18.06.2008)
(25) Filing Language: English
(26) Publication Language: English

(30) Priority Data:

11/824,379 29 June 2007 (29.06.2007) US
(71) Applicant (for all designated States except US): MI-
CROSOFT CORPORATION [US/US]; One Microsoft

Way, Redmond, Washington 98052-6399 (US).

(72) Inventor: TAILLEFER, Martin; One Microsoft Way,
Redmond, Washington 98052-6399 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AO, AT, AU, AZ,BA, BB, BG, BH, BR, BW, BY, BZ, CA,
CH, CN, CO, CR, CU, CZ,DE, DK, DM, DO, DZ, EC, EE,

EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID,
1L, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC,
LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN,
MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH,
PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV,
SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN,
ZA, 7M, 7ZW.
(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB,GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL,
NO, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG,
CIL, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

— asto applicant’s entitlement to apply for and be granted a
patent (Rule 4.17(ii))

as to the applicant’s entitlement to claim the priority of the
earlier application (Rule 4.17(iii))

Published:
without international search report and to be republished
upon receipt of that report

(54) Title: MEMORY TRANSACTION GROUPING
106

100

COMPUTING DEVICE

REMOVABLE
STORAGE s

NON-REMOVABLE

108

- 102

SYSTEM MEMORY
VOLATILE PROCESSING UNIT
NON-VOLATILE

S S —

STORAGE ™
110

OUTPUT DEVICE(S) .
111

200

. TRANSACTIONAL
- MEMORY
APPLICATION

INPUT DEVICE(S) <112 115
A4
" OMMER *. ., OTHRR
COMMUNICATION ¢ COMPUTERS/
CONNECTION(S) APPLICATIONS

FIG. 1

(57) Abstract: Various technologies and techniques are disclosed for providing a transaction grouping feature for use in programs
& operating under a transactional memory system. The transaction grouping feature is operable to allow transaction groups to be
€ created that contain related transactions. The transaction groups are used to enhance performance and/or operation of the programs.
For example, different locking and versioning mechanisms can be used with different transaction groups. When running transactions,
a hardware transactional memory execution mechanism can be used for one transaction group while a software transactional memory

execution mechanism used for another transaction group.

10

15

20

25

30

WO 2009/006023 PCT/US2008/067343

MEMORY TRANSACTION GROUPING
BACKGROUND

[001] Steadily over time computers have become much more powerful, with more
processing power and memory to handle advanced operations. This trend has
recently shifted away from a focus on ever-increasing single-processor clock rates
and towards an increase in the number of processors available in a single computer.
Software developers want to take advantage of improvements in computer
processing power, enabling their software programs to be executed faster as new
hardware is adopted. With the new hardware trends, however, this requires a
different approach: developers must arrange for one or more tasks of a particular
software program to be executed “concurrently” (sometimes called “in parallel”),
so that the same logical operation can utilize many processors at one time, and
deliver better performance as more processors are added to the computers on which
such software runs.
[002] Transactional memory is designed to ease development of concurrent
programs by providing atomicity and isolation to regions of program code.
Transactional memory (TM) is a concurrency control mechanism analogous to
database transactions for controlling access to shared memory in concurrent
computing. A transaction in the context of transactional memory is a piece of code
that executes a series of reads and writes to shared memory. TM is used as an
alternative to traditional locking mechanisms. TM allows concurrent programs to
be written more simply. A transaction specifies a sequence of code that is
supposed to execute as if it were executing in isolation, whereas in reality it
executes in a normal multithreaded environment with many concurrent activities.
This illusion of isolation may be achieved by fine-grained locking of objects or
memory ranges, and by executing in a mode that allows the effects of the
transaction to be rolled back if the transaction is discovered to be in conflict with
some other transaction. We say that a data access is “transacted” if the access is
protected by these locking and rollback mechanisms.
[003] Different locking and versioning mechanisms are possible, including several

software-based and hardware-based approaches. Different mechanisms have

10

15

20

25

30

WO 2009/006023 PCT/US2008/067343

features and qualities making each suitable or preferable in different situations.
Combining different mechanisms within a single process generally is not possible,
leading to the selection of generic mechanisms which typically compromise on
performance in order to achieve general applicability.
SUMMARY

[004] Various technologies and techniques are disclosed for providing a
transaction grouping feature for use in programs operating under a transactional
memory system. The transaction grouping feature is operable to allow transaction
groups to be created that contain related transactions. The transaction groups are
used to enhance operation of the programs. Transaction groups are defined such
that the transactions in each group are known to operate on disjoint data, which
enables incompatible locking and versioning mechanisms within each such group,
in turn allowing fine-tuning of the specific mechanisms for each particular group.
[005] This Summary was provided to introduce a selection of concepts in a
simplified form that are further described below in the Detailed Description. This
Summary is not intended to identify key features or essential features of the
claimed subject matter, nor is it intended to be used as an aid in determining the
scope of the claimed subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS
[006] Figure 1 is a diagrammatic view of a computer system of one
implementation.
[007] Figure 2 is a diagrammatic view of a transactional memory application of
one implementation operating on the computer system of Figure 1.
[008] Figure 3 is a high-level process flow diagram for one implementation of the
system of Figure 1.
[009] Figure 4 is a process flow diagram for one implementation of the system of
Figure 1 illustrating the stages involved in allowing a programmer to group
transactions.
[010] Figure 5 is a process flow diagram for one implementation of the system of
Figure 1 illustrating the stages involved in providing a language compiler that

automatically groups transactions based on specific heuristics.

10

15

20

25

30

WO 2009/006023 PCT/US2008/067343

[011] Figure 6 is a process flow diagram for one implementation of the system of
Figure 1 illustrating the stages involved in providing a runtime environment that
automatically groups transactions.
[012] Figure 7 is a process flow diagram for one implementation of the system of
Figure 1 that illustrates the stages involved in providing specialized contention
management for different transaction groups.
[013] Figure 8 is a process flow diagram for one implementation of the system of
Figure 1 that illustrates the stages involved in providing specialized locking and
versioning mechanisms for different transaction groups.
[014] Figure 9 is a process flow diagram for one implementation of the system of
Figure 1 that illustrates the stages involved in naming a grouping of related
transactions to enhance debugging or other processes.
[015] Figure 10 is a diagrammatic view of multiple transaction groups.
DETAILED DESCRIPTION
[016] The technologies and techniques herein may be described in the general
context as a transactional memory system, but the technologies and techniques also
serve other purposes in addition to these. In one implementation, one or more of
the techniques described herein can be implemented as features within a framework
program such as MICROSOFT® .NET Framework, or from any other type of
program or service that provides platforms for developers to develop software
applications. In another implementation, one or more of the techniques described
herein are implemented as features with other applications that deal with
developing applications that execute in concurrent environments.
[017] In one implementation, a transaction grouping feature is provided for use in
programs operating under a transactional memory system. The transaction
grouping feature allows transactions to be placed into groups. If it can be
determined that a set of transactions access data (e.g. read/write data) which is
demonstrably disjoint from the data accessed by any other transactions, then this set
can be considered as a “transaction group”.
[018] By the above definition, transactions that are part of a group are known to

operate on read/write data which is disjoint from the read/write data accessed by

10

15

20

25

30

WO 2009/006023 PCT/US2008/067343

other transactions within other groups. As a result, it becomes possible to
implement distinct locking and versioning mechanisms for each such group,
allowing each transaction group to leverage specially-selected locking and
versioning algorithms most appropriate for the data accessed by the transactions in
the group.

[019] In addition to the particular data accessed by the transactions in a group,
many other factors can influence the particular selection of locking and versioning
algorithms used within a group. For example, the duration of the transactions or
the nature of the code within the transactions are two other such factors. In one
implementation, locking and versioning mechanisms that are normally
incompatible can be used concurrently within a process, leading to potentially
increased performance.

[020] Determining when transactions can be grouped can be accomplished through
a plurality of means. One implementation may leverage programmer-supplied
annotations to demark the groups, as described in Figure 4. Another
implementation may use compiler heuristics to automatically infer groups and
group membership, as described in Figure 5. Still another implementation may use
a runtime environment to dynamically and automatically infer groups and group
membership, as described in Figure 6. It should be appreciated that the specific
mechanisms involved in creating groups and assigning group membership are many
and can be combined in various ways.

[021] As shown in Figure 1, an exemplary computer system to use for
implementing one or more parts of the system includes a computing device, such as
computing device 100. In its most basic configuration, computing device 100
typically includes at least one processing unit 102 and memory 104. Depending on
the exact configuration and type of computing device, memory 104 may be volatile
(such as RAM), non-volatile (such as ROM, flash memory, etc.) or some
combination of the two. This most basic configuration is illustrated in Figure 1 by
dashed line 106.

[022] Additionally, device 100 may also have additional features/functionality.

For example, device 100 may also include additional storage (removable and/or

10

15

20

25

30

WO 2009/006023 PCT/US2008/067343

non-removable) including, but not limited to, magnetic or optical disks or tape.
Such additional storage is illustrated in Figure 1 by removable storage 108 and non-
removable storage 110. Computer storage media includes volatile and nonvolatile,
removable and non-removable media implemented in any method or technology for
storage of information such as computer readable instructions, data structures,
program modules or other data. Memory 104, removable storage 108 and non-
removable storage 110 are all examples of computer storage media. Computer
storage media includes, but is not limited to, RAM, ROM, EEPROM, flash
memory or other memory technology, CD-ROM, digital versatile disks (DVD) or
other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or
other magnetic storage devices, or any other medium which can be used to store the
desired information and which can accessed by device 100. Any such computer
storage media may be part of device 100.

[023] Computing device 100 includes one or more communication connections
114 that allow computing device 100 to communicate with other
computers/applications 115. Device 100 may also have input device(s) 112 such as
keyboard, mouse, pen, voice input device, touch input device, etc. Output device(s)
111 such as a display, speakers, printer, etc. may also be included. These devices
are well known in the art and need not be discussed at length here. In one
implementation, computing device 100 includes transactional memory application
200. Transactional memory application 200 will be described in further detail in
Figure 2.

[024] Turning now to Figure 2 with continued reference to Figure 1, a
transactional memory application 200 operating on computing device 100 is
illustrated. Transactional memory application 200 is one of the application
programs that reside on computing device 100. However, it will be understood that
transactional memory application 200 can alternatively or additionally be embodied
as computer-executable instructions on one or more computers and/or in different
variations than shown on Figure 1. Alternatively or additionally, one or more parts

of transactional memory application 200 can be part of system memory 104, on

10

15

20

25

30

WO 2009/006023 PCT/US2008/067343

other computers and/or applications 115, or other such variations as would occur to
one in the computer software art.

[025] Transactional memory application 200 includes program logic 204, which 1s
responsible for carrying out some or all of the techniques described herein.
Program logic 204 includes logic for providing a transaction grouping feature that
allows related transactions in a particular program to be grouped together 206 (as
described below with respect to Figures 3-6); logic for providing specialized
contention management using transaction groups 210 (as described below with
respect to Figure 7); logic for providing different locking and versioning
mechanisms for different transaction groups 212 (as described below with respect
to Figure 8); logic for naming a transaction group to enhance debugging or other
processes 214 (as described below with respect to Figure 9); and other logic for
operating the transactional memory application 220.

[026] Turning now to Figures 3-10 with continued reference to Figures 1-2, the
stages for implementing one or more implementations of transactional memory
application 200 are described in further detail. In some implementations, the
processes of Figures 3-10 are at least partially implemented in the operating logic
of computing device 100. Figure 3 is a high level process flow diagram for
transactional memory application 200. The process begins at start point 240 with
providing a transactional memory system using software, hardware, and/or
combinations thereof (stage 242). The system provides a transaction grouping
feature that allows related transactions in a particular program to be grouped
together either manually (as described in Figure 4), and/or programmatically (as
described in Figures 5 and 6) (stage 244). The system uses the transaction groups
to improve program performance or otherwise enhance program operation, as
described in Figures 7-10 (stage 246). The process ends at end point 248.

[027] Figure 4 illustrates one implementation of the stages involved in allowing a
programmer to group transactions. The process begins at start point 270 with
receiving input from a programmer to access the source code of a particular
program that executes under a transactional memory system (stage 272). The

programmer adds declarations or otherwise assigns groups to transactions (stage

10

15

20

25

30

WO 2009/006023 PCT/US2008/067343

274). The system uses the specified groups to enhance program operation, as
described in further detail in Figures 7-9 (stage 276). The process ends at end point
278.

[028] Figure 5 illustrates one implementation of the stages involved in providing a
language compiler that automatically groups transactions. The process begins at
start point 290 with providing a language compiler for compiling programs that
execute under a transactional memory system (stage 292). At compile time of a
particular program, logic is used to determine if any transactions may be grouped
together (stage 294). As a few non-limiting examples, transactions may be grouped
together by a compiler by leveraging the particular semantics of the programming
language or through global analysis that demonstrates that groups are possible. The
system creates the identified groups in the program (stage 296) and then uses the
specitfied groups to enhance the program operation (stage 298). The process ends at
end point 300.

[029] Figure 6 illustrates one implementation of the stages involved in providing a
runtime environment that groups transactions. The process begins at start point
310 with providing a runtime environment for running programs under a
transactional memory system (stage 312). When running a particular program,
logic is used to identify transactions that should be grouped together (stage 314).
As a few non-limiting examples, transactions may be grouped together by a
runtime environment by identifying sets of transactions which must by construction
operate on disjoint read/write data. The runtime may operate on hints supplied by
the compiler to hone its analysis process. The runtime groups the identified
transactions together (stage 316) and uses the grouped transactions to improve
operation of the particular program (stage 318). The process ends at end point
320.

[030] Turning now to Figures 7-9, examples will be used to describe how program
operation can be enhanced using grouped transactions. Figure 7 illustrates one
implementation of the stages involved in providing specialized contention
management using grouped transactions. The process begins at start point 340 with

allowing one or more specialized contention management policies to be defined by

10

15

20

25

30

WO 2009/006023 PCT/US2008/067343

a programmer (stage 342). For each policy, the system allows transaction
execution scheduling settings, transaction abort handling settings, and/or other
settings to be specified (stage 344). The previously defined policy can then be
assigned to each transaction group in a process (stage 346). The system uses the
policies to implement specialized contention management for the grouped
transactions (stage 348).

[031] Contention management is the mechanism used by a runtime system to
select appropriate behavior whenever a conflict is detected between multiple
concurrently executing transactions. Contention management decides which of the
conflicting transactions, if any, to preserve and which to abort. It further decides
how to reschedule execution of the individual transactions such that they can run to
completion. Specialized contention management as used herein refers to the ability
to apply contention management heuristics which are distinct from the default
heuristics of a given runtime.

[032] In one implementation, by applying different policies to different groups,
enhanced performance of the program can be achieved. For example, one type of
specialized contention management policy can be assigned to a particular
transaction group that will give the best performance for the types of operations
those transactions contain. Another specialized contention management policy can
be assigned to another transaction group that will get the best performance for the
types of operations that the other transaction group contains. The process ends at
end point 350.

[033] Figure 8 illustrates one implementation of the stages involved in providing
different locking and versioning mechanisms for different groups of transactions.
The process begins at start point 370. The system uses logic to determine what
type of locking and versioning to use for each transaction group (stage 372) and
then adjusts the locking and versioning used on each transaction group as necessary
(stage 374). The process ends at end point 376.

[034] As an example, one transactional memory locking and versioning

mechanism can be used with one particular transaction group while another

10

15

20

25

30

WO 2009/006023 PCT/US2008/067343

potentially incompatible transactional memory locking and versioning mechanism
1s used with another transaction group.

[035] Let’s look at a non-limiting example to further illustrate how different
transactional memory mechanisms can be combined together when there are
multiple transaction groups. One transaction group could use a butfered update
scheme for versioning, while another group could use an in-place update scheme
with undo logging. By grouping transactions, the data can be isolated in ways that
enable the combinations of such incompatible transactional memory locking and
versioning mechanisms to be used, which may enable improved overall
performance. As another example, fast but limited hardware-based transactional
memory mechanisms can be used in some transaction groups, while incompatible
and slower software transactional memory mechanisms can be used in other
transaction groups when the hardware limitations are not acceptable for the
transactions of the group.

[036] While the previous hypothetical example just mentioned using this
technique with two transaction groups, the concept can be used with more than two
groups and with various combinations of transactional memory locking and
versioning mechanisms, including both hardware and software approaches.

[037] Figure 9 illustrates one implementation of the stages involved in naming a
grouping of related transactions to enhance debugging or other processes. The
process begins at start point 450 with allowing related transaction to be grouped
together by a user and/or programmatically (stage 452). A naming feature is
provided that allows each transaction group to be given a name by a user and/or
programmatically (stage 454). The system then displays or uses the group names to
enhance debugging, profiling, or other processes (stage 456). For example, the
group names can be displayed in a debugger or profiler to allow a user to more
easily identify the particular transaction group. The process ends at end point 458.
[038] Figure 10 1s a diagrammatic view of multiple transaction groups. In the
example shown, a first transaction group 500 contains four transactions, one of
which is nested within the other. The second transaction group 502 just contains a

single transaction. Numerous other transactional grouping scenarios are also

10

WO 2009/006023 PCT/US2008/067343

possible that contain a different number of transaction groups and/or a different
number of transactions within each group.

[039] Although the subject matter has been described in language specific to
structural features and/or methodological acts, it is to be understood that the subject
matter defined in the appended claims is not necessarily limited to the specitic
features or acts described above. Rather, the specific features and acts described
above are disclosed as example forms of implementing the claims. All equivalents,
changes, and modifications that come within the spirit of the implementations as
described herein and/or by the following claims are desired to be protected.

[040] For example, a person of ordinary skill in the computer software art will
recognize that the examples discussed herein could be organized differently on one
or more computers to include fewer or additional options or features than as

portrayed in the examples.

10

10

15

20

25

30

WO 2009/006023 PCT/US2008/067343

What is claimed is:
1. A computer-readable medium having computer-executable instructions for
causing a computer to perform steps comprising:
providing a transaction grouping feature for use with a transactional memory
system, the transaction grouping feature being operable to allow transaction groups
to be created where all transactions within a particular group are known to only
access data which is disjoint from that accessed by any transaction outside of the
group (200).
2. The computer-readable medium of claim 1, further having computer-
executable instructions for causing a computer to perform steps comprising:
providing different locking mechanisms for at least some of the transaction
groups (212).
3. The computer-readable medium of claim 2, where some locking
mechanisms are implemented through software methods while others are
implemented using hardware methods (372).
4. The computer-readable medium of claim 2, further having computer-
executable instructions for causing a computer to perform steps comprising:
using locking mechanisms which are not functionally compatible with one
another (372).
S. The computer-readable medium of claim 1, further having computer-
executable instructions for causing a computer to perform steps comprising:
providing different versioning mechanisms for at least some of the
transaction groups (212).
6. The computer-readable medium of claim 5, where some versioning
mechanisms are implemented using hardware methods while others are
implemented using software methods (372).
7. The computer-readable medium of claim 5, further having computer-
executable instructions for causing a computer to perform steps comprising:
using versioning mechanisms which are not functionally compatible with

one another (372).

11

10

15

20

25

30

WO 2009/006023 PCT/US2008/067343

8. The computer-readable medium of claim 1, further having computer-

executable instructions for causing a computer to perform steps comprising;:
providing specialized contention management using the transaction groups

(210).

9. The computer-readable medium of claim 1, further having computer-

executable instructions for causing a computer to perform steps comprising;:
provide a naming feature that is operable to allow transaction groups to be

named (454).

10. The computer-readable medium of claim 9, wherein the naming feature is

used in a debugger (456).

11. The computer-readable medium of claim 9, wherein the naming feature is

used in a profiler (456).

12. The computer-readable medium of claim 1, wherein at least some of the

transaction groups are assigned manually (274).

13. The computer-readable medium of claim 12, wherein the transaction

grouping feature is operable to allow a programmer to manually specify the

transaction groups within source code (274).

14. The computer-readable medium of claim 1, wherein at least some of the

transaction groups are assigned automatically (294).

15. The computer-readable medium of claim 14, wherein the transaction

grouping feature is operable to allow the transaction groups to be automatically

identified by a compiler (294).

16. The computer-readable medium of claim 14, wherein the transaction

grouping feature is operable to allow the transaction groups to be automatically

identified by a runtime environment (294).

17. The computer-readable medium of claim 1, wherein the transaction grouping

feature is operable to improve performance of the programs (246).

18. A method for using different locking and versioning mechanisms with

different transaction groups comprising the steps of:

creating a plurality of transaction groups (500);

12

10

WO 2009/006023 PCT/US2008/067343

using a hardware transactional memory execution mechanism for executing
transactions within a first one of the transaction groups (500); and

using a software transactional memory execution mechanism for executing
transactions within a second one of the transaction groups (502).
19. A computer-readable medium having computer-executable instructions for
causing a computer to perform the steps recited in claim 18 (200).
20. A method for supporting transaction grouping comprising the steps of:

providing a transaction grouping feature that allows transactions which
access data disjoint from all other transactions in programs operating under a
transactional memory system to be grouped together into transaction groups (244);
and

using the transaction groups to make performance of the programs faster

than without using the transaction groups (246).

13

PCT/US2008/067343

WO 2009/006023

1/10

| "Old

SNOILYOINddY
/SH43LNdNOD
d4H10

f

Gl1

001 %01

NOILYOI1ddY
AJOWAN
TYNOILOVSNVHL 4/
(S)NOILOINNOD 002
"\ NOILVOINNWWOD
7, YIHLO N
an . JTILYTOA-NON
z11 > (S)301A3Q LNdNI
1INN ONISSID0Hd JILYTOA
m
4 (9)301A3Q LNALNO ol \. AYONIN W3LSAS
J
a
Ohl)
d 39v40LS
J19YAONIY-NON
301A3A ONILNAWOD
50} 4 JOVHOLS
J19vAONTY

PCT/US2008/067343

WO 2009/006023

2/10

¢ Ol

022
NOILVYIIddV FHL ONILYHIdO 404 J190T d3H10

{244
§3SS3004d "3H10 HO ONI99NG3A FIONVHNT OL dNOYO NOILOVSNYHL V ONINVYN H04 J1901

ZIZ SdNOYO NOILOVSNYYL
1IN3434410 904 SINSINVHOIIN ONINOISHIA ANV ONIMOOT AIZITVIOdS ONIAIAOEd 404 J1901

012
SdNOYO NOILOVSNYYL INJH344Id 04 INJNIDVNVIN NOILNILNOD d3ZITVID3dS ONIAINOHd d04 J190T

902
d3H19901 d3dN0d9O 39 O1 WVHO0Hd dvINJILdYd
V NI SNOILOVSNVYL d31V13d SMOTIV LVHL FdN1V34 ONIdNOYO NOILOVSNYHL V ONIAIAOHd 404 219071

y0¢C
19071 AVHO0dd

002
NOILVII'lddV AHOW3N TVNOILOVSNVYHL

WO 2009/006023 PCT/US2008/067343

3710

START
240

PROVIDE A TRANSACTIONAL MEMORY SYSTEM
242

i

PROVIDE A TRANSACTION GROUPING FEATURE THAT
ALLOWS RELATED TRANSACTIONS IN A PARTICULAR
PROGRAM TO BE GROUPED TOGETHER
244

|

USE THE TRANSACTION GROUPS TO IMPROVE PROGRAM
PERFORMANCE OR OTHERWISE ENHANCE PROGRAM
OPERATION
246

END
248

FIG. 3

WO 2009/006023 PCT/US2008/067343

4/10

START
270

RECEIVE INPUT FROM A PROGRAMMER TO ACCESS A PARTICULAR
PROGRAM THAT EXECUTES UNDER A TRANSACTIONAL MEMORY
SYSTEM
272

l

RECEIVE INPUT FROM THE PROGRAMMER TO ADD DECLARATIONS OR
TO OTHERWISE ASSIGN GROUPS TO TRANSACTIONS
274

i

USE THE SPECIFIED GROUPS TO ENHANCE PROGRAM OPERATION
276

END
278

FIG. 4

WO 2009/006023 PCT/US2008/067343

5/10

PROVIDE A LANGUAGE COMPILER FOR COMPILING PROGRAMS THAT
EXECUTE UNDER A TRANSACTIONAL MEMORY SYSTEM
292

/

AT COMPILE TIME OF A PARTICULAR PROGRAM, USE LOGIC TO DETERMINE IF
ANY TRANSACTIONS MAY BE GROUPED TOGETHER
294

i

CREATE THE IDENTIFIED GROUPS IN THE PROGRAM
296

USE THE IDENTIFIED GROUPS TO ENHANCE PROGRAM OPERATION
298

END

300
FIG. 5

WO 2009/006023 PCT/US2008/067343

6/10

START
310

/

PROVIDE A RUNTIME ENVIRONMENT FOR RUNNING PROGRAMS
UNDER A TRANSACTIONAL MEMORY SYSTEM
312

/

WHEN RUNNING A PARTICULAR PROGRAM, USE LOGIC TO
IDENTIFY TRANSACTIONS THAT MAY BE GROUPED TOGETHER
314

'

GROUP THE IDENTIFIED TRANSACTIONS TOGETHER
316

'

USE THE GROUPED TRANSACTIONS TO ENHANCE PROGRAM
OPERATION
318

END
320

FIG. 6

WO 2009/006023 PCT/US2008/067343

7710

START
340

/

ALLOW ONE OR MORE CONTENTION MANAGEMENT POLICIES TO
BE DEFINED
342

/

FOR EACH POLICY, ALLOW EXECUTION SCHEDULING SETTINGS,
ABORT HANDLING SETTINGS, AND/OR OTHER SETTINGS TO BE
SPECIFIED
344

i

ALLOW A POLICY TO BE ASSIGNED TO EACH TRANSACTION
GROUP IN A PROCESS
346

i

USE THE POLICIES TO IMPLEMENT SPECIALIZED CONTENTION
MANAGEMENT FOR THE TRANSACTION GROUP
348

END
350

FIG. 7

WO 2009/006023 PCT/US2008/067343

8/10

START
370

USE LOGIC TO DETERMINE WHAT TYPE OF LOCKING AND
VERSIONING MECHANISM TO USE FOR EACH TRANSACTION
GROUP
372

|

ADJUST THE LOCKING AND VERSIONING MECHANISM USED FOR
EACH TRANSACTION GROUP AS NECESSARY
374

END
376

FIG. 8

WO 2009/006023 PCT/US2008/067343

9/10

START
450

ALLOW RELATED TRANSACTIONS TO BE GROUPED TOGETHER
452

|

ALLOW EACH TRANSACTION GROUP TO BE GIVEN A NAME
454

DISPLAY OR USE THE GROUP NAMES TO ENHANCE DEBUGGING OR
OTHER PROCESSES
456

END
458

FIG.9

PCT/US2008/067343

WO 2009/006023

10/10

0l "Old

d dNOdO

G

NOILOVSNVYHL

14
NOILOVSNVYHL

€
NOILOVSNVYL

VY dNOdO

NOILOVSNVYL

NOILOVSNVYL

y
'\— 'C\l

¢09

v/\oom

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - claims
	Page 13 - claims
	Page 14 - claims
	Page 15 - drawings
	Page 16 - drawings
	Page 17 - drawings
	Page 18 - drawings
	Page 19 - drawings
	Page 20 - drawings
	Page 21 - drawings
	Page 22 - drawings
	Page 23 - drawings
	Page 24 - drawings

