

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(10) International Publication Number

WO 2015/065177 A1

(43) International Publication Date

7 May 2015 (07.05.2015)

WIPO | PCT

(51) International Patent Classification:

A61M 5/31 (2006.01) *A61M 5/34* (2006.01)
A61M 5/178 (2006.01) *A61M 5/315* (2006.01)
A61M 5/32 (2006.01)

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(21) International Application Number:

PCT/NL2014/050743

(22) International Filing Date:

28 October 2014 (28.10.2014)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

2011699 29 October 2013 (29.10.2013) NL

(71) Applicant: TSK LABORATORY EUROPE B.V.
[NL/NL]; Krukkerd 5A, NL-5688 LH Oirschot (NL).

(72) Inventor: DE BEER, Isodoris Angelinus Quirinus Maria; c/o Krukkerd 5A, NL-5688 LH Oirschot (NL).

(74) Agent: JANSEN, C.M.; V.O., Johan de Wittlaan 7, NL-2517 JR Den Haag (NL).

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Published:

— with international search report (Art. 21(3))

(54) Title: NEEDLE HUB ASSEMBLY FOR A SYRINGE AND A SYRINGE COMPRISING SUCH NEEDLE HUB ASSEMBLY

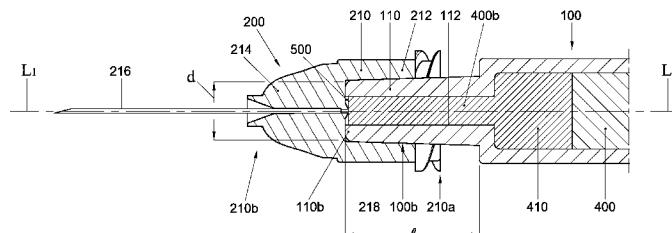


Fig. 1

(57) Abstract: Needle hub assembly (200) for a syringe (100), said assembly having a longitudinal axis (L1) comprising: - a needle hub body (210) having a syringe connector (212) for receiving an attachment member (110) of a syringe (100) at a first end (210a) of the body (210) and a needle receiving portion (214) at a second opposing end (210b) of the body (210), - a needle (216) extending from the needle receiving portion (214), wherein the syringe connector (212) comprises a substantially conical receiving opening (218) for receiving a syringe attachment member (110), at least a distal end (110b) thereof, wherein a length (A) of said opening (218), measured along the longitudinal axis (L1), is approximately 6.1+0.05mm.

WO 2015/065177 A1

Title: Needle hub assembly for a syringe and a syringe comprising such needle hub assembly

5 Field of the invention

The present invention relates to the field of dosage devices such as syringes, and more in particular to a needle hub assembly for a syringe suitable for, *inter alia*, the injection of fluids in medical applications, and the dosing of chemicals in non-medical applications.

10

Background

Botulinum toxin, popularly known by one of its trade names, Botox, is a protein and neurotoxin that is used in various cosmetic and medical procedures. In cosmetic applications, a botulinum toxin injection 15 may be used to prevent the development of wrinkles by paralizing facial muscles. In non-cosmetic applications, botulinum toxin may be used to treat conditions of excessive and inappropriate muscle contraction, migraine, spasticity (persistent states of muscle contraction), sphincter contraction, eye-movement disorders, tics and tremors.

20

Botulinum toxin is administered to a patient by means of an injection using a suitable syringe with a needle hub assembly. The needle of the needle hub assembly is passed through the skin to reach subcutaneous tissue and subsequently, the botulinum toxin is injected by pushing the plunger of the syringe inside the barrel of the syringe such that the toxin is 25 expelled from the syringe at the distal end thereof via the needle hub assembly.

Summary of the invention

Syringes used to administer botulinum toxin injections normally 30 comply with ISO standards. This enables the use of every suitable needle hub assembly with every suitable syringe to inject the botulinum toxin.

However, although certain properties of the respective needle hub assembly and the syringe are standardized, the used needle hub assembly and the used syringe do not need to be designed for optimal use of the fluid inside the syringe. This means that, for instance when using a certain 5 needle hub assembly with a certain syringe, an amount of botulin toxin may remain inside the syringe and/or the needle hub assembly after completely inserting the plunger into the barrel of the syringe. Since botulinum toxin is a rather expensive product, it is desirable that only as little as possible botulinum toxin remains inside the needle hub assembly and/or the syringe.

10 Therefore, it is an object of the present invention to provide for an improved needle hub assembly for use on a syringe that enables improved emptying of the syringe and/or the needle hub during administering of the botulinum toxin to a patient.

15 To this end, a first aspect of the invention is directed to a needle hub assembly for a syringe, said assembly having a longitudinal axis. The needle hub assembly may comprise a needle hub body having a syringe connector for receiving an attachment member of a syringe at a first end of the body and a needle receiving portion at a second opposing end of the body. The needle hub assembly may also comprise a needle extending from 20 the needle receiving portion. The syringe connector may comprises a substantially conical receiving opening for receiving a syringe attachment member, at least a distal end thereof, wherein the length of said opening, measured along the longitudinal axis is between 3-7mm, preferably approximately 6.1 +0.05mm.

25 The needle hub assembly according to the invention does not strictly comply with the relevant ISO standard ISO594-1. According to said ISO standard, the length of the receiving opening is of sufficient length to ensure proper engagement of the needle hub assembly to the attachment member of the syringe. However, applicant found that the engagement of 30 the needle hub assembly with a syringe, when the length of the receiving

opening has the above indicated dimension, is adequate. In order to further enhance the extent of engagement, the needle hub body may be made of a material that has a greater hardness than the material of the syringe to be used. Using harder material provides for a further reduced disengagement 5 risk of the needle hub assembly. However, it is noted that the needle hub body may instead be of a material with a hardness similar to the material of the syringe. The extent of engagement between said parts, when complying with the above indicated length of the receiving opening according to the invention, is sufficient for a proper functioning of the syringe.

10 With the needle hub assembly according to the invention, when connected to a syringe in order to administer botulinum toxin to a patient, substantially no, or at least as little as possible, toxin is left in the syringe and/or needle hub assembly after completely sliding the plunger into the barrel of the syringe. Since no, or at least as little as possible, toxin is left in 15 the syringe substantial cost savings may be obtained.

According to a further aspect of the invention, a syringe having a longitudinal axis may be provided, wherein the syringe is provided with a needle hub assembly as presently disclosed. The syringe may comprise a barrel extending longitudinally between a proximal end and a distal end of 20 the syringe, said barrel comprising an attachment member for attaching to the needle hub assembly. The syringe may further comprise a plunger that is slidably received in the barrel, wherein the plunger comprises a sealing element that is arranged at a distal end of the plunger and configured to at least cooperate with an inner side of the attachment member. The syringe 25 connector, the attachment member and the sealing element may be configured to cooperate such that, when the plunger is completely inserted in the barrel, a space enclosed by the syringe connector, the attachment member and the sealing element has a volume that is less than 30 μ l. Preferably, the space has a volume that is between 4 μ l and 30 μ l. For 30 instance, the space may have a volume that is less than 14 μ l. By optimally

gearing the designs and dimensions of the syringe connector, the attachment member and the sealing element to another, an enclosed space is obtained with a volume that approaches zero. With such syringe, the amount of botulinum toxin left in the syringe after administering the 5 injection, is minimized. Applicant has found that with the above described syringe a reduction of approximately 86% of botulinum toxin losses can be obtained in comparison with the use of a standard syringe with a standard needle hub assembly. Optimally, the enclosed space may have such a volume that zero fluid is left in said volume after inserting the plunger 10 completely in the barrel.

Since during treatment with botulinum toxin, a patient is subjected to multiple injections, providing a 20G-35G needle, for example a 33G needle, to the needle hub assembly as presently disclosed, adds to minimizing the trauma for the patient during said injections.

15

The aforementioned and other features and advantages of the invention will be more fully understood from the following detailed description of certain embodiments of the invention, taken together with the accompanying drawings, which are meant to illustrate and not to limit the 20 invention.

Brief description of the drawings

Fig. 1 shows a schematic cross sectional view of an exemplary embodiment of a needle hub assembly according to the present invention;

25

Fig. 2 shows a schematic cross sectional view of a needle hub body of the needle hub assembly shown in Fig. 1; and

Fig. 3 shows a cross sectional view of a syringe comprising the needle hub assembly shown in Fig. 1

It is noted that identical or corresponding elements in the different drawings are indicated with identical or corresponding reference numerals.

5 Detailed description

Figs. 1-3 schematically illustrate an exemplary embodiment of a needle hub assembly 200 and a syringe 100 comprising such assembly 200 according to the present invention. Below, the presently disclosed syringe 100 with the needle hub assembly 200 will be described in general terms, 10 where appropriate with reference to Figs. 1-3.

The needle hub assembly 200 according to the presently disclosed invention is configured to cooperate with a syringe 100 suitable for injection of fluids in medical applications and the dosing of chemicals in non-medical applications. The needle hub assembly 200 is for instance suitable for 15 injecting botulinum toxin into subcutaneous tissue.

The needle hub assembly 200 has a longitudinal central axis L1. The needle hub assembly may comprise a needle hub body 210 having a syringe connector 212 for receiving an attachment member 110 of the syringe 100. The syringe connector 212 is provided at a first end 210a of the 20 needle hub body 210. At a second, opposing, end 210b of the needle hub body 210 a needle receiving portion 214 may be provided. The needle receiving portion 214 is configured to receive and hold a hypodermic needle 216. The needle 216 extends from the needle hub body 210 in a direction substantially parallel to the longitudinal axis L1 of the hub assembly 200. 25 In the depicted embodiment, the needle 216 may for instance be a 33G x 13 needle 216. Preferably, 20G – 35G needles may be received in the needle receiving portion 214. A 33G needle 216 is a very thin needle with a cross sectional dimension of approximately 0.2 mm. Therefore, when using such needle 216, the trauma to a patient during injecting the botulinum toxin 30 into the determined tissue is relatively low. Since with a botulinum toxin

treatment the patient may be subjected to multiple injections and since the injections may need to be repeated after a while due to the diminishing effect of said botulinum toxin treatment, using such a thin needle 216 decreases the discomfort to a patient.

5 The needle hub body 210 may be of a material with a greater hardness than the material of the syringe 100. The needle hub body 210 may for instance be of a polycarbonate.

The syringe connector 214 may include a substantially conical receiving opening 218 as is clearly visible in Fig. 2. The receiving opening 10 218 may be adapted to receive a syringe attachment member 110, at least a distal end 110b thereof. A length A of said receiving opening 218 (see Fig. 2), measured along the longitudinal axis L1, may be between 3-7mm, in the shown embodiment approximately 6.1 +0.05mm. The attachment member 110 receiving opening 218 may comprise an entrance area 220, an upper 15 surface 222 and an inner circumferential wall 224 that extends between an entrance area perimeter 220a and an upper surface perimeter 222a. The inner circumferential wall 224 may taper from the entrance area 220 towards the upper surface 222 with approximately 6%. Preferably, the entrance area 220 of the receiving opening 218 has, at the most proximal 20 end 210a of the needle hub body 210, a cross sectional dimension D of 4.315-0.045mm. In the centre 222b of the upper surface 222, a convex centre part 226 is provided that has a width W that extends from said upper surface 222 approximately 0.2 mm along the longitudinal axis L1 in a direction away from the needle 216.

25 As is visible in Fig. 3, the syringe 100 may include a barrel 300 and a plunger 400. The barrel 300 may include an elongate tubular, e.g. cylinder jacket-shaped, body 312 that extends along a longitudinal axis L2 of the syringe 100, between a proximal end 312a and a distal end 312b, and that defines a central bore 314 in which the plunger 300 is at least partially 30 slidably and rotatably receivable. At its proximal end 312a, the barrel body

312 may be provided with two finger wings 316 to allow a clinician to press an extended plunger 400 into the bore 314 of the barrel 300 with a thumb, while supporting two fingers distally against the finger wings 316 in a conventional manner of syringe operation. In another, not shown exemplary 5 embodiment, the barrel 300 may include a collar. The barrel 300 and the collar may be manufactured separately and optionally releasably connected first during assembly, or be integrally formed. Both the barrel 300 and the collar may be made from plastic, for instance from a polypropylene by means of injection moulding. The finger wings 316 may also serve to 10 facilitate attachment of the collar to the barrel body 312. At the distal end 312b of the barrel body 312, the central bore 314 may end in a fluid port 318 through which fluid may be drawn into and/or ejected from the bore 314. The distal end 312b of the barrel body 312 itself may taper into a hollow tip, which may provide the attachment member 110 for attaching the needle 15 hub assembly 200 thereto. The attachment member 110 may be a Luer-Slip tip, as shown in the Figures.

The barrel body 312 of the syringe 100 shown in the Figures is opaque. In different embodiments, however, the barrel body 312 may be transparent to enable a clinician to visually assess the contents of the barrel 20 bore 314, for instance to confirm a state/condition or identity of a fluid contained therein. In embodiments featuring a transparent barrel body 312, the barrel body 312 may be provided with a volume graduation, for instance in millilitres.

The plunger 400 may include a sealing element 410 and a handle 25 420. The sealing element 410, which may be made of a suitably flexible and fluid impermeable material, may be attached to a distal end 400b of the plunger 400, and be dimensioned to enable slidably, sealing contact with an inner wall of the central bore 314 of the barrel 300. The fluid port 318, an inner wall of the central bore 314 and the sealing element 410 may thus 30 delimit a portion of the central bore 314 that serves as a fluid chamber

configured to contain a fluid to be delivered by the syringe 100. The size of the fluid chamber may be varied by slidably displacing the plunger 400 relative to the barrel 300. This way, the fluid chamber can be varied in size from nearly the entire volume of the central bore 314 to approximately zero.

5 The handle 420 of the plunger 400 may be provided at the proximal end 400a of the plunger 400, and, at its proximal end 400a, provide a support surface 422 for a finger or thumb.

10 A longitudinal sliding motion of the plunger 400 in and relative to the barrel 300 may increase or decrease the volume of the fluid chamber, and thus enable aspiration or ejection of fluid into or from the barrel bore 314.

15 The syringe connector 218, the attachment member 110 and the sealing element 410 may be configured to cooperate such that, when the plunger 400 is completely slid into the barrel 300, a space 500 enclosed by the syringe connector 218, the attachment member 110 and the sealing element 410 may have a volume that is less than 30 μ l. Preferably, the space 500 may have a volume between 4 μ l and 30 μ l for example approximately less than 14 μ l. Furthermore, the distal end 400b of the plunger 400 has a substantially elongate shape that extends through the 20 attachment member 110 such that the distal end 400b of the plunger 400, in an inserted position, substantially completely occupies an inner space 112 of the attachment member 110. Consequently, the syringe 100 including the needle hub assembly 200 provides a substantially zero dead space dosage device that enables minimizing the toxin loss that usually may occur when 25 injecting botulinum toxin. Since the needle hub body 210 material, i.e. polycarbonate, may be harder than the material of the syringe 100, i.e. polypropylene, disconnection of the needle hub body 210 from the attachment member 110 may be prevented. The attachment member 110 may have a length l of at least 7.5 mm, preferably of 9 ± 0.3 mm. The

diameter d of the distal end 110b of the attachment member 110 is approximately 3.900 – 4.000 mm.

The syringe 100 may be part of a kit, for instance a sterilized kit, comprising a packaging such as a hard shell blister packaging. Such a 5 packaging may contain a syringe 100 and at least one needle hub assembly 200 according to the described exemplary embodiment.

Although illustrative embodiments of the present invention have been described above, in part with reference to the accompanying drawings, it is to be understood that the invention is not limited to these embodiments.

10 In the present application use of the needle hub assembly for a syringe that is used to inject botulinum toxin has been described. However, the needle hub assembly for a syringe and a syringe comprising such needle hub assembly according to the invention may also be used to advantage to inject other fluids. Variations to the disclosed embodiments can be understood and 15 effected by those skilled in the art in practicing the claimed invention, from a study of the drawings, the disclosure, and the appended claims. Reference throughout this specification to “one embodiment” or “an embodiment” means that a particular feature, structure or characteristic described in connection with the embodiment is included in at least one embodiment in 20 the present invention. Thus, the appearances of the phrases “in one embodiment” or “in an embodiment” in various places throughout this specification are not necessarily all referring to the same embodiment. Furthermore, it is noted that particular features, structures or 25 characteristics of one or more embodiments may be combined in any suitable manner to form new, not explicitly described embodiments.

Claims

1. Needle hub assembly (200) for a syringe (100), said assembly having a longitudinal axis (L1) comprising:

- a needle hub body (210) having a syringe connector (212) for receiving an attachment member (110) of a syringe (100) at a first end (210a) of the body (210) and a needle receiving portion (214) at a second opposing end (210b) of the body (210),

5 - a needle (216) extending from the needle receiving portion (214), wherein the syringe connector (212) comprises a substantially conical receiving opening (218) for receiving a syringe attachment member (110), at least a distal end (110b) thereof, wherein a length (A) of said opening (218), measured along the longitudinal axis (L1), is between 3-7 mm, for instance 10 approximately 6.1+0.05mm.

2. Needle hub assembly (200) according to claim 1, wherein an upper surface (222) of the receiving opening (218) of the syringe connector (212) 15 comprises a convex center part (226) extending from the upper surface (222) approximately 0.2 mm along the longitudinal axis (L1) in a direction away from the needle (216).

3. Needle hub assembly (200) according to claim 1 or 2, wherein an entrance area (220) of the receiving opening (218) has a cross sectional 20 dimension (D) of approximately 4.315-0.045mm.

4. Needle hub assembly according to any one of claims 1-3, wherein an inner circumferential wall (224) of the receiving opening (218) that extends between an entrance area perimeter (220a) and an upper surface perimeter (222a) tapers from the entrance area (220) towards the upper 25 surface (222) with 6%.

5. Needle hub assembly (200) according to any one of claims 1-4, wherein the syringe connector (212) comprises a 6% Luer taper.

6. Needle hub assembly (200) according to any one of the preceding claims, wherein the needle is one of a 20G-35G needle, for instance a 33G x 13 mm needle (216).

7. Syringe (100) comprising a needle hub assembly (200) according 5 to any one of the preceding claims, wherein the syringe (100), having a longitudinal axis (L2), comprises:

- a barrel (300) extending longitudinally between a proximal end (100a) and a distal end (100b) of the syringe (100), said barrel (300) comprising an attachment member (110) for attaching to the needle hub 10 assembly (200) and

- a plunger (400) that is slidably received in the barrel (300), the plunger (400) comprising a sealing element (410) that is arranged at a distal end (400b) of the plunger 400 and configured to at least cooperate with an inner side (112) of the attachment member (110),

15 wherein the syringe connector (212), the attachment member (110) and the sealing element (410) are configured to cooperate such that, when the plunger (400) is completely inserted in the barrel (300), a space (500) enclosed by the syringe connector (212), the attachment member (110) and the sealing element (410) has a volume that is less than 30 μ l.

20 8. Syringe according to claim 7, wherein the space (500) has a volume that is between 4 μ l and 30 μ l, for instance 14 μ l.

9. Syringe according to claim 7 or 8, wherein the material of the needle hub body (210) has a greater hardness than the material of the 25 syringe (100), at least than the material of the attachment member (110) of the syringe (100).

10. Syringe according to any one of claims 7-9, wherein the syringe (100), or at least the attachment member (110) of the syringe (100), is of polypropylene and the needle hub body (210) is of polycarbonate.

11. Syringe according to any one of claims 7-10, wherein a length (l) 30 of the attachment member (110) is at least 7.5 mm, preferably 9 \pm 0.3 mm.

12. Syringe according to any one of claims 7-11, wherein a diameter (d) of the distal end (110b) of the attachment member (110) is 3.900-4.000 mm.

13. Syringe according to any one of claims 7-12, wherein the distal 5 end (400b) of the plunger (400) has a substantially elongate shape to extend through the attachment member (110) such that the distal end (440b) of the plunger (400b), in an inserted state, substantially completely occupies an inner space (112) of the attachment member (110).

14. A syringe (100) and a needle hub assembly kit comprising a 10 packaging, preferably a hard shell blister packaging, that houses a syringe (100) and at least one needle hub assembly (200) according to any one of the claims 1-6.

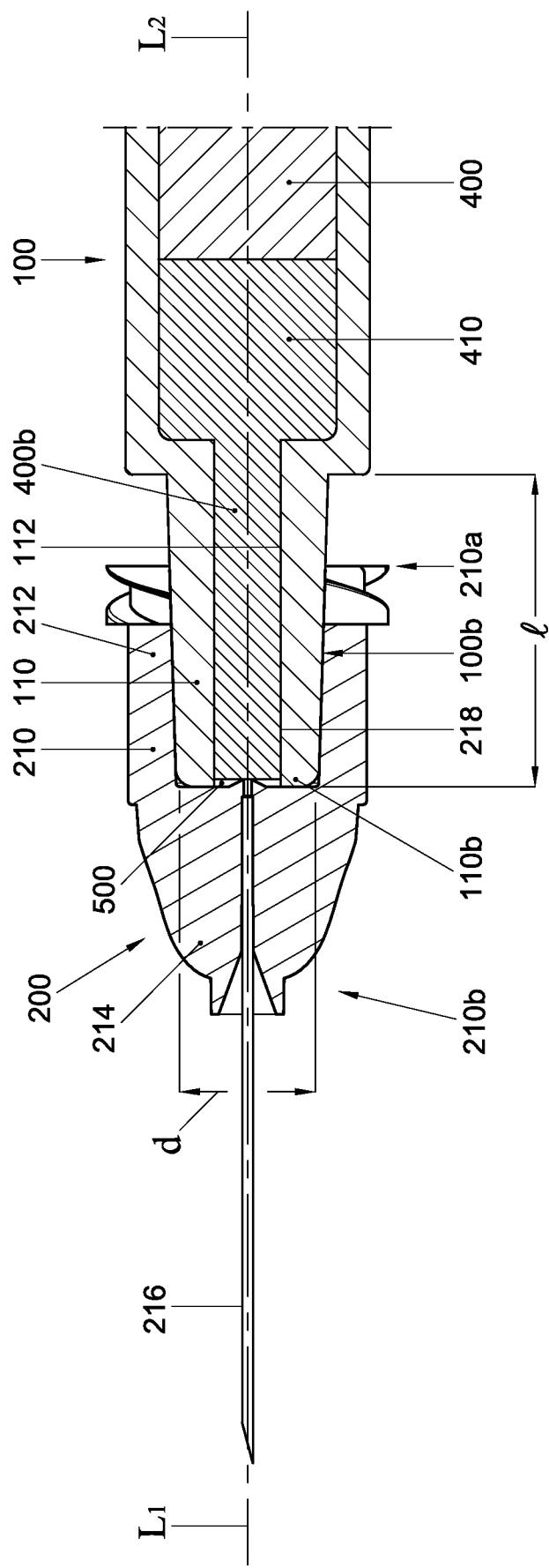


Fig. 1

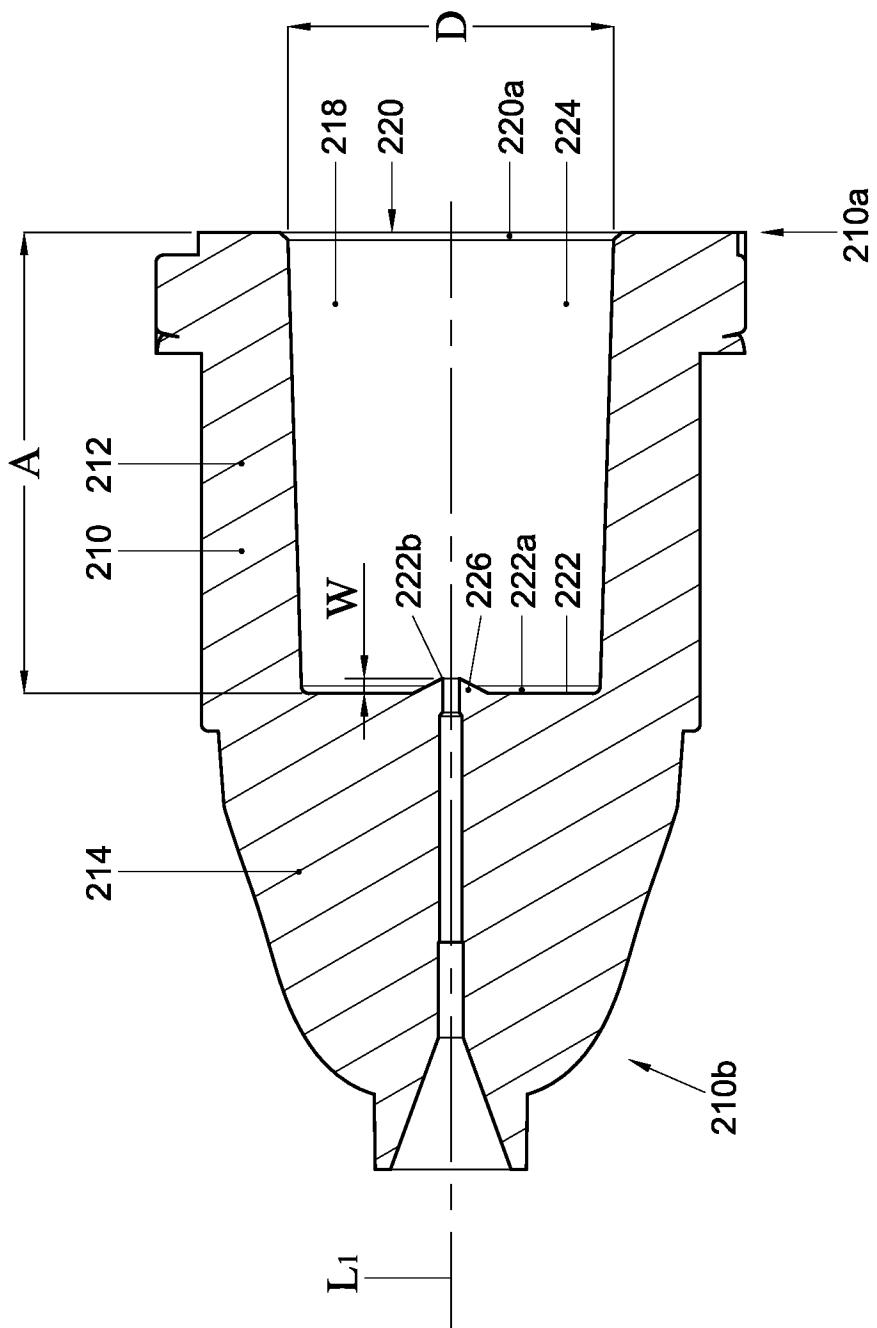


Fig. 2

3/3

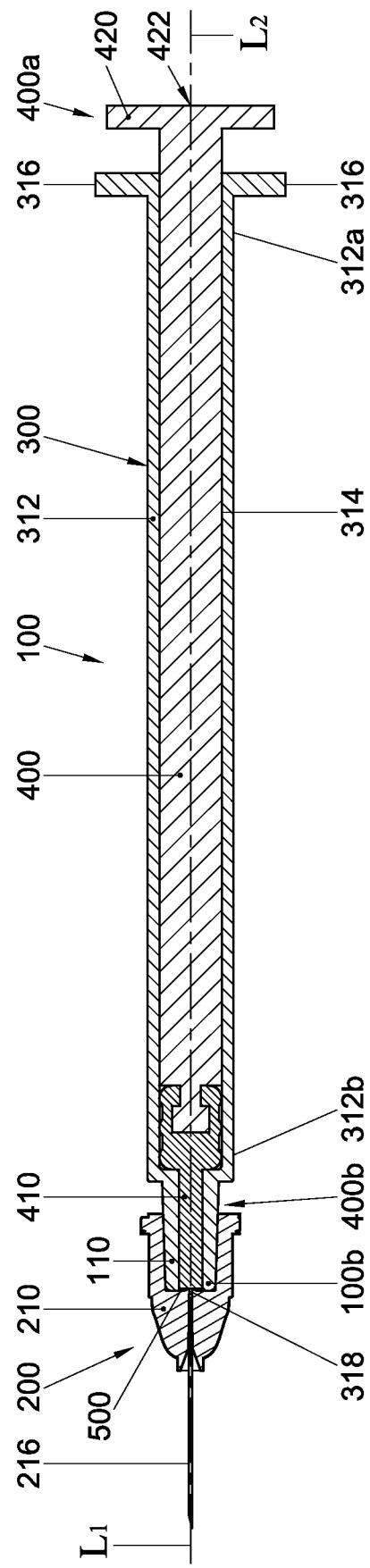


Fig. 3

INTERNATIONAL SEARCH REPORT

International application No

PCT/NL2014/050743

A. CLASSIFICATION OF SUBJECT MATTER

INV. A61M5/31 A61M5/178 A61M5/32 A61M5/34 A61M5/315
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

A61M

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EP0-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	US 2007/197977 A1 (SHUE MING-JENG [TW] ET AL) 23 August 2007 (2007-08-23) paragraphs [0005], [0007], [0025] - [0030]; figures 1-3 -----	1,3-5,7, 8,11-13
Y	WO 03/018091 A2 (SHERWOOD SERV AG [CH]; WEILBACHER EUGENE E [US]; STEUBE GREGORY A [US]) 6 March 2003 (2003-03-06) page 7, lines 10-22; figures 2, 5, 6 -----	2,6,9, 10,14
Y	US 5 782 803 A (JENTZEN S WILLIAM [US]) 21 July 1998 (1998-07-21) column 1, lines 49-51 column 4, lines 40-67; figures 4, 5 -----	2
A	----- -/-	2,13

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered to be of particular relevance

"E" earlier application or patent but published on or after the international filing date

"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other means

"P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

Date of mailing of the international search report

11 December 2014

19/12/2014

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040,
Fax: (+31-70) 340-3016

Authorized officer

Pypen, Claire

INTERNATIONAL SEARCH REPORT

International application No

PCT/NL2014/050743

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	US 2012/245564 A1 (TEKESTE GIRUM YEMANE [US] ET AL) 27 September 2012 (2012-09-27) paragraphs [0003], [0048] - [0050], [0054], [0055], [0070]; figures 13-18 -----	3-5,11, 12
A	WO 2009/144583 A1 (BECTON DICKINSON FRANCE [FR]; DAVID OLIVIER [FR]; MERMET EMERIC [FR]) 3 December 2009 (2009-12-03) page 4, lines 24-29; figure 1 -----	4,5
Y	US 2006/276755 A1 (SULLIVAN VINCENT J [US] ET AL) 7 December 2006 (2006-12-07) paragraph [0031] -----	6
A	US 4 215 701 A (RAITTO RUSSELL G [US]) 5 August 1980 (1980-08-05) column 6, lines 57-60; figure 3 -----	7,8
Y	US 2010/152679 A1 (TEZEL AHMET [US] ET AL) 17 June 2010 (2010-06-17) paragraphs [0002], [0008], [0025], [0028], [0043] - [0045] -----	6,9,10
Y	US 4 078 565 A (GENESE JOSEPH NICHOLAS) 14 March 1978 (1978-03-14) column 5, lines 1-7 -----	9,10
Y	US 2003/018301 A1 (SHEPPARD IAN GRAHAM [CA] ET AL) 23 January 2003 (2003-01-23) paragraphs [0041] - [0046]; figure 7 -----	14

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/NL2014/050743

Patent document cited in search report		Publication date		Patent family member(s)		Publication date
US 2007197977	A1	23-08-2007	TW US	I284546 B 2007197977 A1		01-08-2007 23-08-2007
WO 03018091	A2	06-03-2003	CA CN EP JP MX US WO ZA	2458369 A1 1561238 A 1418966 A2 2005525836 A PA04001621 A 2003040720 A1 03018091 A2 200401462 A		06-03-2003 05-01-2005 19-05-2004 02-09-2005 07-03-2005 27-02-2003 06-03-2003 18-05-2005
US 5782803	A	21-07-1998	US	5782803 A 5902269 A 5902270 A 5902271 A 5902277 A		21-07-1998 11-05-1999 11-05-1999 11-05-1999 11-05-1999
US 2012245564	A1	27-09-2012	AU CA CN EP JP US WO	2011363503 A1 2831040 A1 103517728 A 2688615 A1 2014514051 A 2012245564 A1 2012134513 A1		17-10-2013 04-10-2012 15-01-2014 29-01-2014 19-06-2014 27-09-2012 04-10-2012
WO 2009144583	A1	03-12-2009	CN EP FR JP US WO	102089030 A 2320992 A1 2931681 A1 2011521693 A 2011130717 A1 2009144583 A1		08-06-2011 18-05-2011 04-12-2009 28-07-2011 02-06-2011 03-12-2009
US 2006276755	A1	07-12-2006	NONE			
US 4215701	A	05-08-1980	CA US	1131530 A1 4215701 A		14-09-1982 05-08-1980
US 2010152679	A1	17-06-2010	AU CA CN EP JP KR RU US US WO	2009322463 A1 2743583 A1 102231995 A 2384210 A1 2012510346 A 20110111395 A 2011127067 A 2010152679 A1 2011092916 A1 2010065649 A1		10-06-2010 10-06-2010 02-11-2011 09-11-2011 10-05-2012 11-10-2011 10-01-2013 17-06-2010 21-04-2011 10-06-2010
US 4078565	A	14-03-1978	AU AU BR CA DE FR GB IT JP	511376 B2 2871677 A 7706442 A 1093409 A1 2744439 A1 2366025 A1 1567799 A 1087726 B S5345092 A		14-08-1980 22-03-1979 18-04-1978 13-01-1981 06-04-1978 28-04-1978 21-05-1980 04-06-1985 22-04-1978

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/NL2014/050743

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
		MX	143959 A	26-08-1981
		PH	15063 A	03-06-1982
		US	4078565 A	14-03-1978
<hr/>				
US 2003018301	A1	23-01-2003	AT 472296 T	15-07-2010
			AU 2002354520 B2	14-09-2006
			CA 2451531 A1	23-01-2003
			EP 1406547 A1	14-04-2004
			NZ 530475 A	26-01-2007
			US 2003018301 A1	23-01-2003
			WO 03005912 A1	23-01-2003
<hr/>				