WO 2005/020088 A2 || 0000000 0 000 O O 0 A

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
3 March 2005 (03.03.2005)

A O 0 O

(10) International Publication Number

WO 2005/020088 A2

(51) International Patent Classification’: GOG6F 15/80

(21) International Application Number:
PCT/US2004/026814

(22) International Filing Date: 18 August 2004 (18.08.2004)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
10/643,754 18 August 2003 (18.08.2003) US
10/643,741 18 August 2003 (18.08.2003) US
10/643,585 18 August 2003 (18.08.2003) US
10/643,758 18 August 2003 (18.08.2003) US
10/643,586 18 August 2003 (18.08.2003) US
10/643,742 18 August 2003 (18.08.2003) US

(71) Applicant (for all designated States except US): CRAY
INC. [US/US]; 411 First Avenue South, Suite 600, Seattle,
WA 98104-2860 (US).

(72)
(75)

(74)

(81)

Inventors; and

Inventors/Applicants (for US only): SCOTT, Steven, L.
[US/US]; 1301 State Street, Eau Claire, WI 54701 (US).
FAANES, Gregory, J. [US/US]; 3005 Deerfield Drive,
Eau Claire, WI 54703 (US).

Agents: STEFFEY, Charles, E. et al.; P.O. Box 2938,
Minneapolis, MN 55402 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD,
MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG,
PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM,
ZW.

[Continued on next page]

(54) Title: DECOUPLED STORE ADDRESS AND DATA IN A MULTIPROCESSOR SYSTEM

12.1 \ 12.N\

(57) Abstract: In a computer system

10 having a plurality of processors connected
’[to a shared memory, a system and method
of decoupling an address from write

data in a store to the shared memory. A

write request address is generated for a

memory write, wherein the write request

address points to a memory location

in shared memory. A write request is

issued to the shared memory, wherein the
write request includes the write request
address. The write request address is
noted in the shared memory and addresses
in subsequent load and store requests
are compared in share memory to the
write request address. The write data is

B sas B

transferred to the shared memory and
matched, within the shared memory, to
the write request address. The write data
is then stored into the shared memory as
a function of the write request address.

18

WO 2005/020088 A2

0 0000 000 O O

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, 7ZM,
ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,

FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI,
SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,

GW, ML, MR, NE, SN, TD, TG).

Published:
— without international search report and to be republished

upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gagzette.

WO 2005/020088 PCT/US2004/026814

10

15

20

25

30

DECOUPLED STORE ADDRESS AND DATA
IN AMULTIPROCESSOR SYSTEM

Related Applications
This application is related to U.S. Patent Application No. 10/643,742
entitled “Decoupled Store Address And Data In A Multiprocessor System”, filed
on even date herewith; to U.S. Patent Application No. 10/643,586, entitled
“Decoupled Vector Architecture”, filed on even date herewith; to U.S. Patent
Application No. 10/643,585 entitled “Latency Tolerant Distribﬁted Shared

Memory Multiprocessor Computer”, filed on even date herewith; to U.S. Patent
Application No. 10/643,754, entitled “Relaxed Memory Consistency Model”,
filed on even date herewith; to U.S. Patent Application No. 10/643,758 entitled
“Remote Translation Mechanism for a Multinode System”, filed on e{ren date
herewith; and to U.S. Patent Application No. 10/643,741, entitled “Multistream
Processing Memory-And-Barrier-Synchronization Method and Apparatus”, filed
on even date hérewith, each of which is incorporated herein by reference.

Field of the Invention

The present invention is related to multiprocessor computers, and more
particularly to a system and method for decoupling a write address from write
data.

Background Information

As processors run at faster speeds, memory latency on éccesses to
memory looms as a large problem. Commercially available microprocessors
have addressed this problem by decoupling memory access from manipulation of
the data used in that memory reference. For instance, it is common to decouple
memory references from execution based on those references and to decouple
address computation of a memory reference from the memory reference itself. In
addition, Scalar processors already decouple their write addresses and data

internally. Write addresses are held in a "write buffer” until the data is ready,

WO 2005/020088 PCT/US2004/026814

10

15

20

25

30

and in the mean time, read requests are checked against the saved write addresses
to ensure ordering.

With the increasing pervasiveness of multiprocessor systems, it would be
beneficial to extend the decoupling of write addresses and write data across more
than one processor, or across more than one functional unit within a processor.
What is needed is a system and method of synchronizing separate write requests
and write data across multiple processors or multiple functional units within a
microprocessor which maintains memory ordering without collapsing the
decoupling of the write address and the write data.

Brief Description of the Drawings

Fig. 1a illustrates a multiprocessor computer system according to the
present invention;

Fig. 1b illustrates another example of a multiprocessor computer system
according to the present invention;

Fig. 2 illustrates a method of decoupling store address and data in a
multiprocessor system according to the present invention;

Fig. 3 illustrates a processor having a plurality of processing units
connected to a shared memory according to the present invention; and

Fig. 4 illustrates a processor node having a plurality of processors
connected to a shared memory according to the present invention.

Description of the Preferred Embodiments

In the following detailed description of the preferred embodiments,
reference is made to the accompanying drawings which form a part hereof, and
in which is shown by way of illustrétion specific embodiments in which the
invention may be practiced. It is to be understood that other embodiments may
be utilized and structural changes may be made without departing from the scope
of the present invention.

A multiprocessor computer system 10 is shown in Fig. la.
Multiprocessor computer system 10 includes N processors 12 (where N>1)
connected by a interconnect network 18 to a shared memory 16. Shared memory

16 includes a store address buffer 19.

WO 2005/020088 PCT/US2004/026814

10

15

20

25

30

Not all processors 16 have to be the same. A multiprocessor computer
system 10 having different types of processors connected to a shared memory 16
is shown in Fig. 1b. Multiprocessor computer system 10 includes a scalar
processing unit 12, a vector processing unit 14 and a shared memory 16. Shared
memory 16 includes a store address buffer 19.

In the example shown, scalar processing unit 12 and vector processing
unit 14 are connected to memory 16 across an interconnect network 18. In one
embodiment, vector processing unit 14 includes a vector execution unit 20
connected to a vector load/store unit 22. Vector load/store unit 22 handles
memory transfers between vector processing unit 14 and memory 16.

The vector and scalar units in vector processing computer 10 are
decoupled, meaning that scalar unit 12 can run ahead of vector unit 14, resolving
control flow and doing address arithmetic. In addition, in one embodiment,
computer 10 includes load buffers. Load buffers allow hardware renaming of
load register targets, so that multiple loads to the same architectural register may
be in flight simultanéously. By pairing vector/scalar unit decoupling with load
buffers, the hardware can dynamically unroll loops and get loads started for
multiple iterations. This can be done without using extra architectural registers
or instruction cache space (as is done with software unrolling and/or software
pipelining). These methods of decoupling are discussed in Patent Application
No. 10/643,586, entitled “Decoupled Vector Architecture”, filed on even date
herewith, the description of which is incorporated herein by reference.

In one embodiment, both scalar processing unit 12 and vector processing
unit 14 employ memory/execution decoupling. Scalar and vector loads are
issued as soon as possible after dispatch. Instructions that depend upon load
values are dispatched to queues, where they await the arrival of the load data.
Store addresses are computed early (in program order interleaving with the
loads), and their addresses saved for later use.

Methods of memory/execution decoupling are discussed as well in Patent
Application No. 10/643,586, entitled “Decoupled Vector Architecture”, filed on

even date herewith, the description of which is incorporated herein by reference.

WO 2005/020088 PCT/US2004/026814

10

15

20

25

30

In one embodiment, each scalar processing unit 12 is capable of decoding
and dispatching one vector instruction (and accompanying scalar operand) per
cycle. Instructions are sent in order to the vector processing units 14, and any
necessary scalar operands are sent later after the vector instructions have flowed
through the scalar unit's integer or floating point pipeline and rea'd the specified
registers. Vector instructions are not sent speculatively; that is, the flow control
and any previous trap conditions are resolved before sending the instructions to
vector processing unit 14.

The vector processing unit renames loads only (into the load buffers).
Vector operations are queued, awaiting operand availability, and issue in order.
No vector operation is issued until all previous vector memory operations are
known to have completed without trapping (and as stated above, vector
instructions are not even dispatched to the vector unit until all previous scalar
instructions are past the trap point). Therefore, vector operations can modify
architectural state when they execute; they never have to be rolled back, as do the
scalar instructions.

In one embodiment, scalar processing unit 12 is designed to allow it to
communicate with vector load/store unit 22 and vector execution unit 20
asynchronously. This is accomplished by having scalar operand and vector
instruction queues between the scalar and vector units. Scalar and vector
instructions are dispatched to certain instruction queues depending on the
instruction type. Pure scalar instructions are just dispatched to the scalar queues
where they are executed out of order. Vector instructions that require scalar
operands are dispatched to both vector and scalar instruction queues. These
instructions are executed in the scalar unit. They place scalar operands required
for vector execution in the scalar operand queues that are between the scalar and
vector units. This allows scalar address calculations that are required for vector
execution to complete independently of vector execution.

The vector processing unit is designed to allow vector load/store
instructions to execute decoupled from vector execute unit 20. The vector

load/store unit 22 issues and executes vector memory references when it has

4

WO 2005/020088

10

15

20

25

30

received the instruction and memory operands from scalar processing unit 12.
Vector load/store unit 22 executes independently from vector execute unit 20 and
uses load buffers in vector execute unit 20 as a staging area for memory load
data. Vector execute unit 20 issues vector memory and vector operations from
instructions that it receives from scalar processing unit 12.

When vector execution unit 20 issues a memory load instruction, it pulls
the load data from the load buffers that were loaded by vector load/store unit 22.

This allows vector execution unit 20 to operate without stalls due to having to
wait for load data to return from main memory 16. |

A method for reducing delays when synchronizing the memory references
of multiple processors (such as processors 12 and 14) will be discussed next.
The method is useful when a processor is performing writes that, due to default
memory ordering rules or an explicit synchronization operation, are supposed to
be ordered before subsequent references by another processor.

It is often the case that the address for a write operation is known many
clocks (perhaps 100 or more) before the data for the write operation is available.

In this case, if another processor's memory references must be ordered after the
first processor's writes, then a conventional system may require waiting until the
data is produced and the write is performed before allowing the other processor's
references to proceed.

It is desirable to split the write operations up into two parts-- a write
address request and a write data request--and send each out to memory system 16
separately. One embodiment of such a method is shown in Fig. 2. In the
embodiment shown in Fig. 2, write address requests are sent to memory 16 at 50,
where they are held in the memory system at 52,: either by changing the state of
the associated cache lines in a cache, or by saving them in some structure. The
purpose of the write address request is to provide ordering of the write request
with subsequent requests. Once the write address request has been sent out to
the memory system, requests from other processors that are required to be
ordered after the write can be sent out to the memory system, even though the

data for the write request has not yet been produced.

5

PCT/US2004/026814

WO 2005/020088 PCT/US2004/026814

10

15

20

25

30

As the subsequent requests by other processors are processed by the
memory system, they are checked at 54 against the stored write addresses. If, at
56, there is no match, then the subsequent requests can be serviced immediately
at 60. If, however, there is a match at 56, control moves to 58, where the
requests are held in the memory system until the write data arrives, and then
serviced.

Not all stores have to be ordered with other memory references. In many
cases, the compiler knows that there is no possible data dependence between a
particular store reference and subsequent references. And in those cases, the
references proceed it just lets the hardware do its own thing and the two
references may get re-ordered.

Where, however, the compiler thinks that there may be a dependence,
computer system 10 must make sure that a store followed by a load, or a load
followed by a store, gets ordered correctly. In one embodiment, each processor
12 and 14 includes an instruction for coordinating references between processors
12 and 14. One such synchronization system is described in Patent Application
No. 10/643,741, entitled “Multistream Processing Memory-And-Barrier-
Synchrbnization Method and Apparatus”, filed on even date herewith, the
description of which is incorporated herein by reference.

In one embodiment, computer system 10 takes the store address and runs
it past the other processor’s data cache to invalidate any matching entries. This
forces the other processor to go to memory 16 on any subseqluent reference to
that address.

Processor 12 then sends the store addresses out to memory 16 and saves
the addresses in memory 12. Then, when another processor 12 (or 14) executes a
load that would have hit out of the data cache, it will miss because that line has
been invalidated. It goes to memory 16 and gets matched against the stored store
addresses. If the reference from the other processor does not match one of the
store addresses stored in memory 16, it simply reads its corresponding data from

memory. Ifit does, however, match one of the store addresses stored in memory

WO 2005/020088 PCT/US2004/026814

10

15

20

25

30

16, it waits until the data associated with that store address is written. Memory
16 then reads the data and returns it to the processor that requested it.

The method of the present invention therefore minimizes the delay
waiting for the write data in the case there is an actual conflict, and avoids the
delay in the case when there is not a conflict.

As an example, consider the case where processor A performs a write X,
then processors A alnd B perform a synchronization operation that guarantees
memory ordering, and then processor B performs aread Y. The method of the
present invention will cause processor A to send the address for write X out to
the memory system as soon as it is known, even though the data for X may not
be produced for a considerable time.

Then, after synchronizjng, processor B can send its read Y out to the
memory system. If X and Y do not match, the memory system can return a value
for Y even before the data for X has been produced. The synchronization event,
therefore, did not require processor B to wait for processor A's write to complete
before performing its read.

If, however, read Y did match the address of write X, then read Y would
be stalled in the memory system until the data for write X arrived, at which time
read Y could be serviced.

In one embodiment, even though the write data and write address are sent
at different times, they are received in instruction order at memory 16. In such
an embodiment, you don’t have to send an identifier associating an address with
its associated data. Instead, the association is implied by the ordering.

In one embodiment, memory 16 includes a store address buffer 19 for
storing write addresses while the memory waits for the associated write data.

The method according to the present invention requires that the
participating processors share a memory system. In one embodiment, the
processors share a cache, such as is done in chip-level multiprocessors (e.g., the
IBM Power 4). In one such embodiment, store address buffer 19 is located

within the cache.

WO 2005/020088

10

15

20

25

30

In the embodiment shown in Fig. 1b, vector stores execute in both the
vector load/store unit 22 and the vector execute unit 20. As noted above, the
store addresses are generated in the vector load/store unit 22 independently of the
store data being available. The store addresses are sent to memory 16 without the
vector store data. When the store data is generated in vector execute unit 20, the
store data is sent to memory 22 where it is paired up with the store address.

The method for reducing delays when synchronizing the memory
references of multiple processors can be extended as well to multiple units
within a single processor (such as the vector and scalar units of a vector
processor).

A computer 10 having a processor 28 connected across an interconnect
network 18 to a memory 16 is shown in Fig. 3. Processor 28 includes three
functional units, all of which share access to memory 16. Vector processing
computer 10 in Fig. 3 includes a processor 28. Processor 28 includes a scalar
processing unit 12 and two vector processing units (14.0 and 14.1). Scalar
processing unit 12 and the two vector processing units 14 are connected to
memory 16 across interconnect network 18. In the embodiment shown, memory
16 is configured as cache 24 and distributed global memory 26. Vector
processing units 14 include a vector execution unit 20 connected to a vector
load/store unit 22. Vector load/store unit 22 handles memory transfers between
vector processing unit 14 and memory 16.

In the embodiment shown in Fig. 3, store address buffer 19 is stored in
cache 24. In contrast to commercial microprocessors, which store write
addresses locally in order to compare them to subsequent accesses to the same
memory location, system 10 in Fig. 3 keeps store address buffer 19 in cache 24.
This allows synchronization across more than one processor and/or more than
one decoupled functional unit executing in a single processor.

For instance, in one embodiment, four processors 28 and four caches 24
are configured as a Multi-Streaming Processor (MSP) 30. An example of such
an embodiment is shown in Fig. 4. In one such embodiment, each scalar

processing unit 12 delivers a peak of 0.4 GFLOPS and 0.8 GIPS at the target

8

PCT/US2004/026814

WO 2005/020088 PCT/US2004/026814

10

15

20

25

30

frequency of 400 MHz. Each processor 28 contains two vector pipes, running at
800 MHz, providing 3.2 GFLOPS for 64-bit operations and 6.4 GFLOPS for 32-
bit operations. The MSP 30 thus provides a total of 3.2 GIPS and 12.8/25.6
GFLOPS. Each processor 28 contains a small Dcache used for scalar references
only. A 2 MB Ecache 24 is shared by all the processors 28 in MSP 30 and used
for both scalar' and vector data. In one embodiment processor 28 and cache 24
are packaged as separate chips (termed the “P” chip and “E” chips, respectively).

In one embodiment, signaling between processor 28 and cache 24 runs at
400 Mb/s on processor-cache connection 32. Each processor to cache
connection 32 shown in Fig. 4 uses an incoming 64-bit path for load data and an
outgoing 64-bit péth for requests and store data. Loads can achieve a maximum
transfer rate of 51 GB/s from cache 24. Stores can achieve up to 41 GB/s for
stride-one and 25 GB/s for non-unit stride stores.

In one embodiment, global memory 26 is distributed to each MSP 30 as
local memory 48. Each Ecache 24 has four ports 34 to M chip 42 (and through
M chip 42 to local memory 48 and to network 38). In one embodiment, ports 34
are 16 data bits in each direction. MSP 30 has a total of 25.6 GB/s load
bandwidth and 12.8-20.5 GB/s store bandwidth (depending upon stride) to local
memory.

In the embodiment shown in Fig. 4, the store address buffer could be

- stored in either cache 24 or shared memory 26. This allows synchronization

across more than one processor 28 and/or more than one decoupled functional
unit executing in a single processor 28. ’
In some systems, a load needed to produce store data could potentially be
blocked behind a store dependent on that data. In such systems, processors 28
must make sure that loads whose values may be needed to produce store data,
cannot become blocked in the memory system behind stores dependent on that
data. In one embodiment of system 10, processing units within processor 28
operate decoupled from each other. It is, therefore, possible, for instance, for a

scalar load and a vector store to occur out of order. In such cases, the processor

must ensure that load request which occur earlier (in program order) are sent out

9

WO 2005/020088 PCT/US2004/026814

10

15

20

25

30

before store address requests that may depend upon the earlier load results. In
one embodiment, therefore, issuing a write request includes ensuring that all
vector and scalar loads from shared memory for that processor have been sent to
shared memory prior to issuing the write request.

In one embodiment, the method according to the present invention is
used for vector write operations, and provides ordering between the vector unit
14 and the scalar unit 12 of the same processor 28, as well as between the vector
unit of one processor 28 and both the vector and scalar units of other processors
28.

Write addresses could be held by the memory system in several different
formats. In one embodiment, a write address being tracked alters the cache state
of a cache line in a shared cache within a processor 28. For example, a cache
line may be changed to a "WaitForData" state. This indicates that a line
contained in the cache is in a transient state in which it is waiting for write data,
and is therefore inaccessible for access by other functional units.

In another embodiment, a write address being tracked alters the cache
state of cache line in cache 24. For example, a cache line may be changed to a
"WaitForData" state. This indicates that a line contained in cache 24 isin a
transient state in which it is waiting for write data, and is therefore inaccessible
for access by other processors 28.

In another embodiment, write addresses to be tracked are encoded in a
structure which does not save their full address. In order to save storage space,
the write addresses simply cause bits to be set in a bit vector that is indexed by a
subset of the bits in the write address. Subsequent references check for conflicts
in this blocked line bit vector using the same subset of address bits, and may
suffer from false matches. For example, a write address from one processor to
address X may cause a subsequent read from another processor to address Y to
block, if X and Y shared some common bits.

In an alternate embodiment of such an approach, a write address being
tracked is saved in a structure that holds the entire address for each entry.

Subsequent references check which detect a conflict with an entry in the blocked

10

WO 2005/020088 PCT/US2004/026814

10

15

20

25

30

line bit vector, access the structure to obtain the whole write address. In this
embodiment, only true matches will be blocked.

This invention can be used with multiple types of synchronization,
including locks, barriers, or even default memory ordering rules. Any time a set
of memory references on one processor is supposed to be ordered before memory
references on another processor, the system can simply ensure that write address
requests of the first processor are ordered with respect to the other references,
rather than wait for the complete writes, and the write addresses can provide the
ordering guarantees via the matching logic in the memory system.

The method according to the present invention reduces latency for
multiprocessor synchronization eveﬁts, by allowing processors to synchronize
with other processors before waiting for their pending write requests to
complete. They can synchronize with other processors as soon as their previous
write request addresses have been sent to the memory system to establish
ordering,

Definitions

In the above discussion, the term “computer” is defined to include any
digital or analog data processing unit. Examples include any personal computer,
workstation, set top box, mainframe, server, supercomputer, laptop or personal
digital assistant capable of embodying the inventions described herein.

Examples of articles comprising computer readable media are floppy
disks, hard drives, CD-ROM or DVD media or any other read-write or read-only
memory device.

Portions of the above description have been presented in terms of
algorithms and symbolic representations of operations on data bits within a
computer memory. These algorithmic descriptions and representations are the
ways used by those skilled in the data processing arts to most effectively convey
the substance of their work to others skilled in the art. An algorithm is here, and
generally, conceived to be a self-consistent sequence of steps leading to a desired
result. The steps are those requiring physical manipulations of physical

quantities. Usually, though not necessarily, these quantities take the form of

11

WO 2005/020088 PCT/US2004/026814

10

15

20

electrical or magnetic signals capable of being stored, transferred, combined,
compared, and otherwise manipulated. It has proven convenient at times,
principally for reasons of common usage, to refer to these signals as bits, values,
elements, symbols, characters, terms, numbers, or the like. It should be borne in
mind, however, that all of these and similar terms are to be associated with the
appropriate physical quantities and are merely convenient labels applied to these
quantities. Unless specifically stated otherwise as apparent from the following
discussions, terms such as “processing” or “computing” or “calculating” or
“determining” or “displaying” or the like, refer to the action and processes of a
computer system, or similar computing device, that manipulates and transforms
data represented as physical (e.g., electronic) quantities within the computer
system'’s registers and memories into other data similarly represented as physical
quantities within the computer system memories or registers or other such
information storage, transmission or display devices.

Although specific embodiments have been illustrated and described
herein, it will be appreciated by those of ordinary skill in the art that any
arrangement which is calculated to achieve the same purpose may be substituted
for the specific embodiment shown. This application is intended to cover any
adaptations or variations of the present invention. Therefore, it is intended that

this invention be limited only by the claims and the equivalents thereof.

12

WO 2005/020088 PCT/US2004/026814

10

15

20

25

30

What is claimed is:
1. In a computer system having a plurality of processors connected to a
shared memory, a method of decoupling an address from write data in a store to
the shared memory, comprising:

generating a write request address for a memory write, wherein the write
request address points to a memory location in shared memory;

issuing a write request to the shared memory, wherein the write request
includes the write request address;

noting the write request address in the shared memory;

comparing, in the shared memory, addresses in subsequent load and store
requests to the write request address;

transferring the write data to the shared memory;

matching, within the shared memory, the write request address to the
write data; and

storing the write data into the shared memory as a function of the write

request address.

2. / The method according to claim 1, wherein the shared memory includes a
store address buffer and wherein noting the write request address includes

writing the address in the store address buffer.

3. The method according to claim 2, wherein comparing addresses in
subsequent read and write requests includes stalling subsequent read requests to

the write request address until the write data is written into the shared memory.

4. The method according to claim 1, wherein the shared memory includes a
cache, wherein noting the write request address includes changing a state in a
cache line associated with the write request address to “WaitForData”, and
wherein comparing addresses in subsequent load and store requests to the write
request address includes accessing the cache and stalling if a cache line hit

returns a “WaitForData” state.

13

WO 2005/020088 PCT/US2004/026814

10

15

20

25

5. The method according to claim 1, wherein the shared memory includes a
bit vector, wherein noting the write request address in the shared memory
includes setting one or more bits in the bit vector corresponding to the write
request address, and wherein comparing addresses in subsequent load and store
requests to the write request address includes comparing bits that would be set
corresponding to the load and store request addresses the bits set for the write
request address and stalling servicing of the load and store requests if there is a
match.

6. The method according to claim 1, wherein comparing addresses in
subsequent read and write requests includes stalling subsequent read requests to

the write request address until the write data is written into the shared memory.

7. The method according to claim 6, wherein comparing addresses in
subsequent read and write requests includes servicing the load and store requests
to addresses other than the write request address without waiting for the write

data to be written to the write request address.

8. The method according to claim 1, wherein comparing addresses in
subsequent read and write requests includes servicing the load and store requests
to addresses other than the write request address without waiting for the write

data to be written to the write request address.

9. The method according to claim 1, wherein comparing addresses in
subsequent read and write requests includes enforcing memory ordering in
subsequent read and write requests to the write request address until the write

data associated with the first write request is written into the shared memory.

14

WO 2005/020088 PCT/US2004/026814

10

15

20

25

30

10. The method according to claim 1, wherein issuing a write request
includes ensuring that all vector and scalar loads from shared memory for that

processor have been sent to shared memory prior to issuing the write request.

11. In a computer system having a plurality of processors connected to a
shared memory, a method of decoupling an address from write data in a write to
the shared memory, comprising:

generating a write request address for a memory write, wherein the write
request address points to a memory location in shared memory;

issuing a first write request to the shared memory, wherein the first write
request includes the write request address; i

noting the write request address in the shared memory;

comparing, in the shared hemory, addresses in subsequent read and write
requests to the write request address;

stalling subsequent read requests to the write request address until the
write data is written into the shared memory; and

if the address in a subsequent write request matches the write request
address stored in shared memory and there are no stalled read requests to the

write request address, discarding the first write request.

12. The method according to claim 11, wherein the shared memory includes
a store address buffer and wherein noting the write request address includes

writing the address in the store address buffer.

13. The method according to claim 12, wherein comparing addresses in
subsequent read and write requests includes stalling subsequent read requests to

the write request address until the write data is written into the shared memory.

14, The method according to claim 11, wherein the shared memory includes
a cache, wherein noting the write request address includes changing a state in a

cache line associated with the write request address to “WaitForData”, and

15

WO 2005/020088 PCT/US2004/026814

10

15

20

25

30

wherein comparing addresses in subsequent load and store requests to the write
request address includes accessing the cache and stalling if a cache line hit

returns a “WaitForData” state.

15. The method according to claim 11, wherein the shared memory includes
a bit vector, wherein noting the write request address in the shared memory
includes setting one or more bits in the bit vector corresponding to the write
request address, and wherein comparing addresses in subsequent load and store
requests to the write request address includes comparing bits that would be set
corresponding to the load and store request addresses the bits set for the write
request address and stalling servicing of the load and store requests if there is a

match.

16. The method according to claim 11, wherein comparing addresses in
subsequent read and write requests includes stalling subsequent read requests to

the write request address until the write data is written into the shared memory.

17. The method according to claim 16, wherein comparing addresses in
subsequent read and write requests includes servicing the load and store requests
to addresses other than the write request address without waiting for the write

data to be written to the write request address.

18. The method according to claim 11, wherein comparing addresses in
subsequent read and write requests includes servicing the load and store requests
to addresses other than the write request address without waiting for the write

data to be written to the write request address.

19. The method according to claim 11, wherein comparing addresses in
subsequent read and write requests includes enforcing memory ordering in
subsequent read and write requests to the write request address until the write

data associated with the first write request is written into the shared memory.

16

WO 2005/020088 PCT/US2004/026814

10

15

20

25,

30

20. The method according to claim 11, wherein issuing a write request
includes ensuring that all vector and scalar loads from shared memory for that

processor have been sent to shared memory prior to issuing the write request.

21. Inacomputer system having a plurality of processors connected to a
shared memory, a method of decoupling an address from write data in a store to
the shared memory, comprising:

generating a write request address for a vector store to memory, wherein
the write request address points to a memory location in shared memory;

issuing a vector store request to the shared memory, wherein the write
request includes the write request address;

noting the write request address in the shared memory;

comparing, in the shared memory, addresses in subsequent load and store
requests to the write request address;

transferring the write data from a vector register to the shared memory;

matching, within the shared memory, the write request address to the
write data; and

storing the write data into the shared memory as a function of the write
request address.
22. The method according to claim 21, wherein the shared memory includes
a store address buffer and wherein noting the write request address includes

writing the address in the store address buffer.

23. The method according to claim 22, wherein comparing addresses in
subsequent read and write requests includes stalling subsequent read requests to

the write request address until the write data is written into the shared memory.

24. The method according to claim 21, wherein the shared memory includes

a cache, wherein noting the write request address includes changing a state in a

17

WO 2005/020088 PCT/US2004/026814

10

15

20

25

30

cache line associated with the write request address to “WaitForData”, and
wherein comparing addresses in subsequent load and store requests to the write
request address includes accessing the cache and stalling if a cache line hit

returns a “WaitForData” state.

25. The method according to claim 21, wherein the shared memory includes
a bit vector, wherein noting the write request address in the shared memory
includes setting one or more bits in the bit vector corresponding to the write
request address, and wherein comparing addresses in subsequent load and store
requests to the write request address includes comparing bits that would be set
corresponding to the load and store request addresses the bits set for the write
request address and stalling servicing of the load and store requests if there is a

match.

26. The method according to claim 21, wherein comparing addresses in
subsequent read and write requests includes stalling subsequent read requests to

the write request address until the write data is written into the shared memory.

27. The method according to claim 26, wherein comparing addresses in
subsequent read and write requests includes servicing the load and store requests
to addresses other than the write request address without waiting for the write

data to be written to the write request address.

28. The method according to claim 21, wherein comparing addresses in
subsequent read and write requests includes servicing the load and store requests
to addresses other than the write request address without waiting for the write

data to be written to the write request address.

29. The method according to claim 21, wherein comparing addresses in

subsequent read and write requests includes enforcing memory ordering in

18

WO 2005/020088 PCT/US2004/026814

5

10

15

20

25

30

subsequent read and write requests to the write request address until the write

data associated with the first write request is written into the shared memory.

30. The method according to claim 21, wherein issuing a write request
includes ensuring that all vector and scalar loads from shared memory for that

processor have been sent to shared memory prior to issuing the write request.

31. A method of decoupling vector data stores from vector instruction
execution, comprising:

executing a vector instruction on vector data stored in a vector register,
wherein executing a vector instruction includes storing result vector data in a
rvector register;

generating a vector write address for a vector store;

issuing a vector store request to memory, wherein the vector store request
includes the vector write address;

transferring result vector data from the vector registerlto memory;

matching the vector store request and result vector data in memory; and

storing the result vector data into memory as a function of the address in

the vector store request.

32. The method according to claim 31, wherein matching includes comparing
addresses in subsequent read and write requests to the vector write address and
stalling subsequent read requests to the vector write address until the result

vector data is written into the memory.

33. The method according to claim 31, wherein matching includes comparing
addresses in subsequent read and write requests received from other processing
units to the vector write address and stalling subsequent read requests to the

vector write address until the result vector data is written into the memory.

19

WO 2005/020088 PCT/US2004/026814

10

1S

20

25

30

34. Inaprocessor having a plurality of processing units connected to a shared
memory, a method of decoupling an address from write data in a write to the
shared memory, comprising:

generating a write request address for a memory write, wherein the write
request address points to a memory location in shared memory;

issuing a write request to the shared memory, wherein the write request
includes the write request address;

storing the write request address in the shared memory;

comparing addresses in subsequent read and write requests to the write
request address stored in shared memory;

transferring the write data to the shared memory;

matching, within the shared memory, the write request address to the
write data; and

storing the write data into the shared memory as a function of the write

request address.

35. The method according to claim 34, wherein issuing a write request
includes ensuring that all vector and scalar loads from shared memory for that

processor have been sent to shared memory prior to issuing the write request.

36. The method according to claim 34, wherein comparing addresses in
subsequent read and write requests includes stalling subsequent read requests to

the write request address until the write data is written into the shared memory.
37. The method according to claim 34, wherein comparing addresses in
subsequent read and write requests includes enforcing memory ordering in
subsequent read and write requests to the write request address until the write

data associated with the first write request is written into the shared memory.

38. A computer system, comprising:

20

WO 2005/020088 PCT/US2004/026814

a plurality of processors, wherein the processors includes means for
issuing a write address separate from data to be written to the write address; and
a shared memory connected to the plurality of processors, wherein the
shared memory includes: (
5 means for receiving a write request including a write address; and
means for stalling subsequent loads and stores to the write address in shafed
memory until the data to be written to the write address is received and w(ritten

by the shared memory.

21

WO 2005/020088 PCT/US2004/026814
1/5

10

12.1\ 12,Nw

| saB N

FIG. 1A

WO 2005/020088 PCT/US2004/026814
2/5

10

12~ 147
VEU T
s -20.
VLS [T™
22

19
—1 sSAB M\

FIG. 1B

WO 2005/020088
3/5

PCT/US2004/026814

ISSUE STORE REQUEST TO
SHARED MEMORY I
l 50
ISSUE MEMORY REQUEST TO
SHARED MEMORY T\
l 52
COMPARE MEMORY REQUEST
ADDRESS TO WRITE REQUEST |\
ADDRESS 54
YES
MATCH?

56 / |
587\

NO YES

PERFORM MEMORY REQUEST

END

FIG. 2

WO 2005/020088

4/5

PCT/US2004/026814

10

12 14.0 14.1
N) B
20| | vEU || 20|] VEU
S R
2[lVus || 22|] Vs 28
A U1
19 I L18
o4 SAB
- EC
e
16
26 M
(U
| J

FIG. 3

PCT/US2004/026814

WO 2005/020088

5/5

92

i/

v "old

fr e domm wmefe Gute e i et e chen Gwels tamme Shan G| G E— ot AT G aepn Gm] G St e {e———

—— v S— . — S G— S —— G ——— t—— —— — i — G— — — —— — Sw— — S V— — — — —.

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

