
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2009/0282097 A1

Alberti et al.

US 20090282097A1

(43) Pub. Date: Nov. 12, 2009

(54)

(75)

(73)

(21)

(22)

1OO

METHOD AND SYSTEM FOR ENSURING
CONSISTENCY OVER TIME OF DATA
GATHERED BY DISTINCT SOFTWARE
APPLICATIONS

Enrica Alberti, Roma (IT); Mauro
Arcese, Fontana Liri (IT): Fabio
Cerri, Roma (IT); Rosario
Gangemi, Lavinio (IT)

Inventors:

Correspondence Address:
IBM CORPORATION
INTELLECTUAL PROPERTY LAW
115O1 BURNET ROAD
AUSTIN, TX 78758 (US)

International Business Machines
Corporation, Armonk, NY (US)

Assignee:

Appl. No.: 12/306,311

PCT Fled: Mar. 13, 2007

11O

NY

105

115

DATA
COMMUNICATION

NETWORK

(86). PCT No.: PCT/EP2007/052355

S371 (c)(1),
(2), (4) Date: Dec. 23, 2008

(30) Foreign Application Priority Data

Jun. 26, 2006 (EP) O6116047.9
Publication Classification

(51) Int. Cl.
G06F 5/16 (2006.01)

(52) U.S. Cl. .. 709/203
(57) ABSTRACT

A method for keeping synchronized data collected by a first
and at least one second software applications from respective
information sources and stored in a respective first and second
data repositories. The method comprises: a) receiving a
request to refresh data stored in the first data repository; b)
causing the at least one second software application to collect
data from the respective information source; c) receiving the
data collected by the first and the at least one second software
applications from the respective information Sources, and d)
uploading the received data to the respective first and second
repositories.

12O

Patent Application Publication Nov. 12, 2009 Sheet 1 of 6 US 2009/0282097 A1

s s

Z

k
SSS is 2s egg Z
s
O

S

4.
3

OI072 *\N92 OG2#72ºº _

XRJO/W LBN NOI LVDIN?n WWOO y LyÇ]

US 2009/0282097 A1 Nov. 12, 2009 Sheet 2 of 6

R2

CR

Sn8 TypOT -|

•---------922
|39QIRJ8 GO2|092

_^

G92
002

Patent Application Publication

Patent Application Publication Nov. 12, 2009 Sheet 3 of 6 US 2009/0282097 A1

y

-aa

S

y
va

US 2009/0282097 A1 Nov. 12, 2009 Sheet 4 of 6 Patent Application Publication

?JETOJNVHÍ Jo |

INES)\/ Zd »JO ? NEOV ?d

OEfy

?JETOJN\/H 1 SETTOEN CIV/OTGITT
-TV/AE | BdAL VIVO

8B/\TOSE}} | AONBONEdBO
G29 do O2S

US 2009/0282097 A1

METHOD AND SYSTEM FOR ENSURING
CONSISTENCY OVER TIME OF DATA
GATHERED BY DISTINCT SOFTWARE

APPLICATIONS

TECHNICAL FIELD

0001. The present invention generally relates to the field of
data processing and data processing apparatuses and systems,
and particularly to distributed data processing and distributed
data processing systems, particularly to computer networks.
More specifically, the present invention relates to the aspects
of gathering of data by different Software applications from a
same or different information sources.

BACKGROUND ART

0002 Distributed data processing and computer networks
are nowadays pervasive.
0003) A successful paradigm in distributed data process
ing is the client-server architecture. A client-server software
product generally comprises a client application component,
intended to be installed on, and executed by one or more
endpoints, i.e. target data processing apparatuses (e.g., Per
Sonal Computers—PCs—, workstations, and the like) of a
computer network, and a server application component,
intended to be installed on and executed by a server data
processing apparatus of the network, in data communications
relationship with then endpoints.
0004 Some known distributed software products have a
client component that comprises a Software agent, intended to
be installed on and to be executed by several endpoints, and a
server component, installed on a network server. The soft
ware agents running on the different endpoints are adapted to
gather information from one or more information sources
available at the respective endpoints, and to upload the gath
ered information to the server component. The server com
ponent manages an information repository, which is a data
base on which the information gathered and uploaded by the
different software agents running on the different endpoints is
stored. The server component also includes a specifically
designed user interface through which a user can access the
information stored in the repository.
0005. It happens more and more frequently that it is nec
essary, or at least desirable to integrate two or more already
existing, distinct software products into a combined solution,
adapted to put together the functionalities offered by each
single product, so as to make a more complete and powerful
suite available to the customers.
0006. The integration of the two or more existing products
into a Suite should involve the minimum possible modifica
tions to the products themselves, so as to minimize costs and
time to market of the integrated Suite.
0007 When integrating two or more existing software
products, the necessity may arise of guaranteeing that the data
generated by one software application are kept synchronized,
and stored in a respective repository at the same time as the
data generated by the other software application(s) of the
suite. This is for example the case when it is desired to
integrate two or more software products of the type described
above, each of which is adapted to gather data from an infor
mation source available at the endpoint where the software
agentis installed, and to upload the data gathered to the server
component, for their storage in the proper central repository.

Nov. 12, 2009

0008 Assuming for example the case that two such prod
ucts need to be integrated, the scenario to be considered is that
of two different software agents that are installed on and
executed by an endpoint, and that gather data on the endpoint,
either from a same or from different information sources; the
data gathered by the two software agents are then indepen
dently uploaded to the respective server component, that
stores the collected data into the respective repository. Being
the two software products distinct, the two software agents
installed on and executed by the generic endpoint are each
unaware of the existence of the other; they in general start the
data collection mechanism in different ways and at different
times; in other words, they behave in a totally uncorrelated
way. Whenauser accesses the two repositories, exploiting the
respective user interfaces, he/she may note that the informa
tion gathered by the two Software agents and stored in the two
repositories, albeit relating to the same endpoint, tend to
differ with the passage of time, because the data are collected
at the endpoint at different times.
0009. In the pursuit of the achievement of an integration of
the two products, this is regarded as undesirable. This kind of
data inconsistency should be avoided, and the data main
tained by the two or more software products in the respective
repositories should be kept synchronized.
0010. One possible way to synchronize the data is at the
server component level; this usually calls for exploiting a
database synchronization mechanism, also referred to as
“data replication”. Each of the two or more software applica
tions to be integrated is responsible of uploading and storing
its own data into the respective repository, in the usual way,
i.e. in a way totally unaware of the presence of the other
application(s). A tool external to the Software applications to
be integrated together is provided, that is in charge of moving
the updated information from one database to the other(s).
0011. Another possible way to keep data synchronized
between two or more software applications is at the client
component level: in this case, the synchronization of the data
is accomplished at the level of the client component, instead
of at the level of the server component of the software prod
ucts. Referring to the above example, let it be assumed that
when the software agent of one of the two software products
to be integrated collects data also collected by the software
agent of the other software product, the upload of the data is
also triggered in respect of the data gathered by the other
Software agent. In other words, every time a software agent,
running on a generic endpoint, has to collect data and upload
them to the server, so that they are stored in the respective
repository, it notifies the other software agent(s) running on
that endpoint about its activity, so that also the other software
agent(s) can start the data gathering and upload. In this way,
overtime the information that is stored in the different central
repositories and that can be accessed by a user through the
user interfaces of the two software products is the same.

SUMMARY OF THE INVENTION

0012. The Applicant has observed that the data replication
method discussed above is affected by some drawbacks.
0013. A first drawback is that there is no sharing of the
synchronized data at the endpoint(s); in the practice, it may
happen that the client component of a Software product,
installed on and executed by an endpoint, in addition to gather
data from an information Source, also performs some process
ing on the collected data, before uploading them to the server
component, for their storage in the respective central reposi

US 2009/0282097 A1

tory. In the data replication method, only the client compo
nent that uploaded the data was able to process them.
0014. A second drawback is that, in order to enable the
server component exploit the uploaded data, changes to the
server component's code are required; in fact, the server
component usually performs operations on the incoming data
uploaded by the client components running at the endpoints.
When the incoming data are replicated directly from a differ
ent database, then a different processing flow needs to be
implemented, triggered when the changes to the data stored in
the database are not performed by the server component
itself.
0015 Concerning the second method discussed above,
that involves Synchronization at the client component level, a
drawback is that it requires modifying the single products to
be integrated, e.g. the two software agents intended to be
executed by the generic endpoint, so that they know how to
inter-operate. In particular, the code of every software agent
of the products to be integrated in the suite needs to be
changed so as to embed the procedures necessary for invoking
and notifying the other software agents.
0016. Another drawback is that when another software
product is to be integrated into a previously created Suite of
Software products, the code of the applications already inte
grated in the products Suite needs to be changed again, to take
into account the fact that the new application is included in the
Suite.
0017. A still further drawback is that if one of the software
products that are part of the products Suite is enhanced in its
functionalities, for example to manage additional types of
data; and these new data types are to be part of the integration,
the other software products of the suite needs to be modified
So as to trigger the generation of these new types of data.
0.018. In view of the state of the art outlined above, the
Applicant has tackled the problem of providing a method for
guaranteeing consistency over time of data gathered by dif
ferent Software products when these products are integrated
into a suite, that were not affected by the above-mentioned
drawbacks.
0019. According to an aspect of the present invention, a
method as set forth in the appended claim 1 is provided, for
keeping synchronized data collected by a first and at least one
second software applications from respective information
Sources and stored in a respective first and second data reposi
tories.
0020. The method comprises:
0021 a) receiving a request to refresh data stored in the

first data repository;
0022 b) causing the at least one second software applica
tion to collect data from the respective information source:

0023 c) receiving the data collected by the first and the at
least one second software applications from the respective
information Sources, and

0024 d) uploading the received data to the respective first
and second repositories.

0025. According to a second aspect of the present inven
tion, a system as set forth in the appended claim 10 is pro
vided.
0026. According to a third aspect of the present invention,
a computer program as set forth in the appended claim 11 is
provided.

BRIEF DESCRIPTION OF THE DRAWINGS

0027. The features and advantages of the present invention
will be made apparent by the following detailed description of

Nov. 12, 2009

an embodiment thereof, provided merely by way of non
limitative example, which will be made in conjunction with
the attached drawing sheets, wherein:
0028 FIG. 1 is a schematic view of a computer network
scenario wherein the present invention can be applied;
0029 FIG. 2 schematically shows, in terms of functional
blocks, the structure of a generic computer of the network;
0030 FIG. 3 pictorially shows, in terms of functional
blocks, the main modules of a server-side Software compo
nent, and of a client-side component of an integrated Suite of
Software products according to an embodiment of the present
invention;
0031 FIG. 4 pictorially shows in greater detail an upload
manager module included in the client-side Software compo
nent, according to an embodiment of the present invention;
0032 FIG. 5 is a schematic flowchart illustrating a phase
of registration to the upload manager module of a new client
Software component to be integrated in the Suite, in an
embodiment of the present invention; and
0033 FIG. 6 is a schematic flowchart illustrating a data
upload procedure, in an embodiment of the present invention.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENT

0034. With reference to the drawings, in FIG. 1 a distrib
uted data processing system 100, particularly a computer
network is schematically shown, wherein the present inven
tion can be applied.
0035. The data processing system 100 may for example be
the data processing infrastructure of an enterprise, a corpora
tion, a state agency, a university or a research institute, a small
office, or the like. The data processing system can be for
example a Local Area Network (LAN), a Metropolitan Area
Network (MAN), a Wide Area Network (WAN), or a network
of networks such as the Internet.
0036. The data processing system 100 comprises a plural
ity of data processing apparatuses, particularly computers,
workstations, storage devices, output devices (e.g., printers),
Smartphones, personal digital assistants and in general every
type of data processing apparatus, interconnected to each
other by means of a data communication network 105. For
example, the data communication network 105 may be or
include an Ethernet network, a WiFi network, a GPRS net
work, an optical communications network, a Bluetooth net
work.
0037 For the sake of simplicity, only three computers of
the data processing system 100 are shown in FIG. 1: a server
computer 110 and two computers 115 and 120 forming the
endpoints. The scenario considered by way of example in the
present description is one in which two (or generally more)
distinct software products, providing different (possibly over
lapping) functionalities, and having a client-server architec
ture need to be integrated into a Suite, forming a new software
product adapted to provide richer functionalities. Thus, for
the purposes of the present description, the server computer
110 is intended to be the computer on which there are
installed and run server components of two (or more) distinct
Software products to be integrated into a Suite. The endpoints
115 and 120 are intended to be the computers on which there
are installed and run client components of the two (or more)
distinct software products to be integrated into the Suite.
0038. As shown in FIG. 2, a generic computer of the data
processing system 100. Such as any one of the endpoints 115,
120, or the server computer 110, comprises several intercon

US 2009/0282097 A1

nected units, denoted globally 200. In particular, some of the
units are connected in parallel to a system bus 205. In detail,
one or more microprocessors (uP) 210 control the operation
of the computer 200; a RAM (Random Access Memory) 215
is directly used as a working memory by the microprocessors
200, and a ROM (Read Only Memory) 220 (possibly includ
ing an EPROM and/or an EEPROM and/or a flash memory)
stores the basic code for a bootstrap of the computer 200.
Peripheral units are connected (by means of respective inter
faces) to a local bus 225. Particularly, mass storage devices
comprise a hard disk 230 and a CD-ROM/DVD-ROM drive
235 for reading and, possibly, writing CD-ROMs/DVD
ROMs 240. Moreover, the computer 200 typically includes
input devices 245, for example a keyboard and a mouse or
similar pointing device, and output devices 250. Such as a
display device (monitor) and a printer. A Network Interface
Card (NIC) 255, e.g. an Ethernet adapter and/or a WiFi
adapter, is used to connect the computer 200 to the network
105. A bridge unit 260 interfaces the system bus 205 with the
local bus 225. Each microprocessor 210 and the bridge unit
260 can operate as master agents requesting an access to the
system bus 205 for transmitting information; an arbiter 265
manages the granting of the access to the system bus 205.
0039 Reference is now made to FIG.3, wherein the server
component and the client components of the two distinct
software products to be integrated into the suite are depicted
in greater detail. It is observed that any of the functional
blocks depicted in FIG.3 may either represent one or more
Software modules, one or more hardware resources, or a mix
of software modules and hardware resources. Programs and
data are typically stored on the hard disk of the computers and
are (at least partially) loaded into the computer working
memory when the programs are executed (in the drawing, an
operating system as well as other basic application programs
concurrently running on a generic computer are not shown,
for the sake of clarity).
004.0 Assuming the above-mentioned scenario, let P1 and
P2 denote the two, distinct software products that need to be
integrated to form the suite. Each of the two products P1 and
P2 has a client-server architecture, and comprises a client
component, intended to be installed and be executed on a
generic endpoint, e.g. the endpoint 115, and a server compo
nent, intended to be installed and executed on the server 110.
0041. The client component of each one of the two soft
ware products comprises a software agent 305 (“P1 agent')
and 310 ("P2 agent'), respectively, adapted to gather data
from a same or from different information sources 315 avail
able at the endpoint 115, and to upload the data gathered to the
respective server component.
0042. The server component of each one of the two soft
ware products comprises a server module 320 (“P1 server')
and 325 (“P2 server') adapted to receive from the respective
software agents 305 and 310 installed on the various end
points the data that the software agents have collected at the
respective endpoints; the server module 320 and 325 is
adapted to manage the storage of the received data into a
respective central repository 330 and 335. The server com
ponent of each one of the two software products further
comprises a user interface module 340 (“P1 interface') and
345 (“P2 interface'), adapted to allow one or more users,
schematized by a computer 350, to access the respective
central repository 330 and 335.
0043. As discussed in the background section of the
present description, being the two software products P1 and

Nov. 12, 2009

P2 distinct, the two software agents 305 and 310 installed on
and executed by the generic endpoint are generally each
unaware of the existence of the other; they in general start the
data collection mechanism in different ways and at different
times; in other words, they, taken on their own, behave in a
totally uncorrelated way.
0044. In order to guarantee that the data related to same
endpoints and stored in the central repositories 330 and 335
managed by the server 110 for the two software products P1
and P2 and are kept consistent over time, according to an
embodiment of the present invention an upload manager
module 355 is provided. In particular, the upload manager
module 355 is intended to be installed on and be executed by
each of the endpoints. The upload manager module 355 is
interposed between the generic software agent of the software
product intended to be part of the integrated suite, like the
software agents 305 and 310, and the respective server com
ponent. In particular, the upload manager module 355 is
adapted to intercept data upload requests issued by the
generic Software agent of the Suite running on the endpoint, to
consequently command the collecting of data, from the
respective information source, to the other software agent(s)
running on that endpoint, and then to upload the data gathered
by each Software agent to the respective server component.
0045 FIG. 4 schematically shows in greater detail the
structure of the upload manager module 355, in an embodi
ment of the present invention. A registration manager module
405 receives and handles registration requests from client
components of new software products to be integrated into a
products Suite; in particular, the registration requests are
issued when the client component of a new software product
is installed on the considered endpoint. The registration man
ager module 405 manages a dependencies table 410, wherein,
for each registered software application, information con
cerning the type of data handled by Such application, and the
type of data in which that application is interested is stored,
together with the procedure, e.g. the command(s) adapted to
cause the software agent collect the data from the respective
information source. An upload request handler module 415
intercepts and handles requests of upload of data issued by the
client components of the Software applications of the Suite,
installed and running on the endpoint. The upload request
handler module 415 comprises in particular a data type evalu
ator module 420, adapted to evaluate the type of data involved
in the request of upload issued by the generic Software agent,
and a dependency resolver module 425 that, based on the
indications provided thereto by the data type evaluator mod
ule 420, is adapted to look up in the dependencies table 410 so
as to determine, when a request of upload is received by the
generic Software agent, which other software agents are to be
instructed to gather data and upload them to the respective
server components, in order to maintain data synchroniza
tion. The upload request handler module 415 may also be
adapted to receive request of data upload by the server com
ponents 320 and 325; these requests are treated in essentially
the same way as upload request received from the Software
agents. The dependencies resolver module 425 feeds a data
collector module 430, which, based on the information
retrieved by the dependencies resolver module 425 from the
dependencies table 410, is adapted to invoke the proper com
mand so as to cause the software agents interested in the type
of data specified in the received upload request to gather data
from the respective information sources. The data collector
module 430 passes the data collected by and received from

US 2009/0282097 A1

the invoked software agents to a data uploader module 435,
adapted to upload the data to the proper server components,
individually for each software agent that has been invoked by
the data collector module. A failure handler module 440 is
preferably provided, adapted to manage failure situations.
0046. The operation of the upload manager module
according to an embodiment of the present invention will be
now described. Firstly, the procedure by which a new soft
ware product to be added to the integrated products Suite
registers to the upload manager module is described; then, a
detailed description of a method by which the upload man
ager module manages the upload of data from the client
components to the server components of the Software prod
ucts of the suite is described.
0047 Referring to the schematic flowchart of FIG.5, let it
be assumed that a new software product is to be integrated
into a products Suite; the product Suite may be an already
existing Suite of products, or a Suite to be created; for
example, let it be assumed that the software product P2 is to
be integrated with the software product P1. Let it also be
assumed that the upload manager module 355 is already
installed and running on the considered endpoint (e.g., the
endpoint 115). Upon installing the client component of the
software product P1 on the endpoint, the client component
being installed, e.g. the software agent 305, issues to the
upload manager module 355 a registration request; for
example, the client component of the software product P1
may invoke a Command Line Interface (CLI) of the upload
manager module 355, passing thereto indications about the
type(s) of data the software agent 305 is interested in, and a
command that the upload manager module355 can issue so as
to cause the gathering of the specified type of data by the
software agent 305, and the upload of the gathered data to the
respective server component 320. The registration request is
received by the upload manager module355 (block 505). The
upload manager module 355 processes the received registra
tion request, and updates the dependencies table 410 with the
information included in the received registration request. In
particular, the upload manager module 355 creates a new
entry 550 in the dependencies table 410, for the new applica
tion; the new table entry is used to store an indication 515 of
the new client component, indications 520 of the type(s) of
data the new client component is interested in, and the com
mand(s) 525 that has to be invoked to cause the software agent
start a data collection and upload. By registering to the upload
manager module 355, the software product being installed
declares to be interested in the synchronization of the gath
ered data with the data gathered by other applications.
0048. A similar procedure is followed for registering the
software product P2, as well as any other software product
that may have to added at Subsequent times.
0049 Reference is now made to the flowchart of FIG. 6.
Let it be assumed that, at a generic time, the (upload request
handler module 415 of the) upload manager module 355
receives an upload request issued by one of the client com
ponents installed and running on the considered endpoint, for
example by the software agent 305, or issued by one of the
server components, for example the server component 320
(block 605). The (data type evaluator module 420 of the)
upload manager module 355 evaluates the type of data
involved in the upload request (block 610), then the (depen
dencies resolver module 425 of the) upload manager module
355 looks in the dependencies table 410 so as to determine
which client components installed on the endpoint are inter
ested in the same type of data specified in the received regis
tration request, i.e. it resolves the dependencies (block 615).
The (data collector module 430 of the) upload manager mod

Nov. 12, 2009

ule355 then invokes each of the client components (i.e., each
of the Software agents) that, according to the information
stored in the dependencies table 410, is interested in the same
type of data specified in the upload request (block 620); this is
done exploiting the specific commands that are stored in the
dependencies table 410. In this way, data are collected by all
the relevant client components. For example, let it be assumed
that the upload manager module 355 receives an upload
request from the software agent 305 of the software product
P1; let it also be assumed that the software product P2 is also
interested in the same type of data as the software product P1:
then, the upload manager module 355 invokes the software
agent 310 and causes it to gather data from the respective
information source.

0050. The (data collector module 430 of the) upload man
ager module 355 receives the data collected by the software
agents running on the endpoint as they become available
(block 625).
0051. When all the data have been collected, from all the
invoked software agents, the (uploader module 435 of the)
upload manager module 355 uploads (block 630) the data to
the proper server component, which will then store them into
the respective central repository.
0052. In case of failure in the invocation of one of the
Software agents (for example, in case the upload manager
module 355 receives no responses from an invoked software
agent within a specified time-out, possibly after having per
formed a predefined number of retries), the (failure handler
module 440 of the) upload manager module 355 may abort
completely the upload of the data, or upload only those data
that have been successfully gathered from the invoked soft
ware agents, discarding the other data.
0053. It is pointed out that the upload manager module
355, instead or in addition to being triggered by the receipt of
an upload request, may carry out the operations described
above as a periodic activity, according to a time-out that may
be configured within the upload manager in association for
example to each type of data; in this case, when the time-out
for a given type of data elapses, the upload manager module
355 automatically invokes the registered software agents that
are interested in that specific type of data, so as to collect the
data, and then uploads them to the respective server compo
nentS.

0054 An advantage of the present invention is that the
generic Software product needs not be made aware of the
existence of other software products, and it continues to oper
ate as if it were the only entity that is interested in a certain
type of data: in the context of a data upload operation, the
upload manager module handles the existence of more than
one software product interested in a same type of data, and
invokes the proper commands to cause the collection and
upload of data also from the other software products.
0055 Another advantage is that the central repositories of
the different software products to be integrated in the suite can
be kept separated and do not share any common part. Thus,
from this point of view, each software product is independent
from all the others. Only the data are kept synchronized.
0056 Furthermore, only the upload manager module
knows all the registered applications with the related man
aged data types. The addition of a new client component to the
environment of an endpoint does not require any change to the
existing applications.
0057 The implementation of the solution according to the
present invention for already existing software applications
requires only minimal changes; these changes are related to
the registration phase with the upload manager module (the

US 2009/0282097 A1

generic application has to issue a proper registration request)
and to the invocation of the upload manager module to request
the upload of data.
0058. The data synchronization does not require any
change to the server component code. All the application
flows remain the same at the server component level. There is
no difference between the situation when the application is
integrated with another one and when the application is work
ing in a stand alone way.
0059. The implementation of the present invention has
been described making reference to an exemplary embodi
ment thereof, however those skilled in the art will be able to
envisage modifications to the described embodiment, as well
as to devise different embodiments, without however depart
ing from the scope of the invention as defined in the appended
claims.
0060. The invention can take the form of an entirely hard
ware embodiment, an entirely software embodiment or an
embodiment containing both hardware and software ele
ments. In a preferred embodiment, the invention is imple
mented in software, which includes but is not limited to
firmware, resident software, micro-code, etc. Furthermore,
the invention can take the form of a computer program prod
uct accessible from a computer-usable or computer-readable
medium providing program code for use by or in connection
with a computer or any instruction execution system. For the
purposes of the present description, a computer-usable or
computer-readable medium can be any apparatus, device or
element that can contain, store, communicate, propagate, or
transport the program for use by or in connection with the
computer or instruction execution system.
0061. The medium can be an electronic, magnetic, optical,
electromagnetic, infrared, or semiconductor storage medium,
network or propagation medium. Examples of a storage
medium include a semiconductor memory, fixed storage disk,
moveable floppy disk, magnetic tape, and an optical disk.
Current examples of optical disks include compact disk-read
only memory (CD-ROM), compact disk-read/write (CD-R/
W) and digital versatile disk (DVD). Examples of a propaga
tion medium include wires, optical fibers, and wireless trans
mission.
0062) The invention can be applied in a data processing
system having a different architecture or based on equivalent
elements; each computer can have another structure or it can
be replaced with any data processing entity (such as a PDA, a
mobile phone, and the like).

1. A method of keeping synchronized data collected by a
first and a second software applications from information
source and stored in a respective first and second data reposi
tories, comprising:

receiving a request to refresh data stored in the first data
repository;

causing the second software application to collect data
from the information source:

receiving the data collected by the first and the at least one
second software applications from the information
source, and

uploading the received data to the respective first and sec
ond repositories.

2. The method of claim 1, wherein said request to refresh is
received from the first software application.

Nov. 12, 2009

3. The method of claim 2, wherein said request is received
after the first software application has collected data from the
respective information source.

4. The method of claim 1, wherein each of the first and
second software applications is a client component of a client
server software product comprising a server component
adapted to manage the respective first or second data reposi
tory.

5. The method of claim 4 as depending on claim 1, wherein
said request to refresh is received from the first server com
ponent.

6. The method of claim 1, wherein uploading is addition
ally performed at predetermined times.

7. The method of any one of the preceding claims, wherein
said causing at least the second software application to collect
data from the respective information source is performed
conditionally to the fact that the data collected by the first and
second software applications have a predetermined correla
tion.

8. The method of any one of the preceding claims, com
prising:
upon installing a third software application adapted to col

lect data from a respective information source to be
stored in a respective third data repository, establishing
whether the data collected by the third software appli
cation have a predetermined correlation with the data
collected by the first or the second software application.

9. The method of claim 8, further comprising:
upon installing the third software application, storing a
command for causing the third software application col
lect data from the respective information source.

10. (canceled)
11. (canceled)
12. A system including processor and memory for keeping

synchronized data collected by first and second software
applications from an information source and stored in respec
tive first and second data repositories, wherein the system
memory contains instructions which when executed cause the
system to perform the method comprising:

receiving a request to refresh data stored in the first data
repository;

causing the second software application to collect data
from the information source:

receiving the data collected by the first and the second
software applications from the information source, and

uploading the received data to the respective first and sec
ond data repositories.

13. A computer program product in a computer storage
medium for keeping synchronized data collected by first and
second software applications from an information source and
stored in respective first and second data repositories,
wherein the product contains instructions which when
executed cause the system to perform the method comprising:

receiving a request to refresh data stored in the first data
repository;

causing the second software application to collect data
from the information source:

receiving the data collected by the first and the second
software applications from the information source, and

uploading the received data to the respective first and sec
ond data repositories.

ck ck ck ck :

