COMBINED LAUNDRY MACHINE

Inventors: Sang Ho Park, Changwon-si (KR); Phal Jin Lee, Jinhae-si (KR)

Correspondence Address:
MCKENNA LONG & ALDRIDGE LLP
1900 K STREET, NW
WASHINGTON, DC 20006 (US)

Appl. No.: 11/892,937
Filed: Aug. 28, 2007

ABSTRACT
A combined laundry machine including a new conceptional pedestal dryer that is capable of performing a drying operation while serving as a base for supporting a washer or a dryer is disclosed. The combined laundry machine includes a washer, a first pedestal dryer including a first container for supporting the washer, the first container having a drying space for drying an object to be dried using hot air supplied from a first hot air supply unit, a clothes dryer, and a second pedestal dryer including a second container for supporting the clothes dryer, the second container having a drying space for drying an object to be dried using hot air supplied from a second hot air supply unit.
COMBINED LAUNDRY MACHINE

CROSS-REFERENCE TO RELATED APPLICATION

[0001] This application claims the benefit of Korean Patent Application No. 10-2006-0082283, filed on Aug. 29, 2006, which is hereby incorporated by reference in its entirety as if fully set forth herein.

BACKGROUND OF THE INVENTION

[0002] 1. Field of the Invention

[0003] The present invention relates to a combined laundry machine, and more particularly, to a combined laundry machine including a new conceptional pedestal dryer that is capable of performing a drying operation while serving as a base for supporting a washer or a dryer.

[0004] 2. Discussion of the Related Art

[0005] Generally, laundry treating apparatuses are electric home appliances that are capable of washing and/or drying laundry. Specifically, the respective laundry treating apparatuses perform a washing operation, a drying operation, or a washing-and-drying operation. Recently, there has been increasingly used a laundry treating apparatus, including a steam supply unit, that is capable of performing a refreshing operation to remove wrinkles, smells, and static electricity from laundry.

[0006] Based on the direction in which laundry is removed, the conventional laundry treating apparatuses are classified into a front loading type laundry treating apparatus and a top loading type laundry treating apparatus. Based on the washing method, on the other hand, the conventional laundry treating apparatuses are classified into a vertical-shaft type laundry treating apparatus, in which a pulsator or a washing tub is rotated, and a horizontal type laundry treating apparatus. A representative example of the horizontal type laundry treating apparatus is a drum type washing machine or a drum type drying machine.

[0007] The sizes of the laundry treating apparatuses have been gradually increased to satisfy consumers’ demand. Specifically, the exterior sizes of the laundry treating apparatuses for home use have been gradually increased.

[0008] However, the large-sized laundry treating apparatuses are operated even to dry a small quantity of laundry, with the result that energy consumption is excessively increased.

[0009] For the drum type drying machine, on the other hand, a drum is rotated to tumble an object to be dried. Consequently, the drum type drying machine is not suitable for drying shoes. When shoes are necessary to be washed, a small number of shoes, for example one pair or two pairs of shoes, are normally washed. When the conventional drying machine is used to dry such a small quantity of something to be dried, it is required to drive a drum and, in addition, to drive a large-capacity heater and a large-capacity fan. Consequently, it is very inefficient in an energy saving aspect.

[0010] In addition, some consumers may have a desire for a system completely equipped with all the related machines and apparatuses. However, conventional washing-related systems have come into the market very restrictively.

[0011] FIG. 1 is a perspective view illustrating a conventional laundry treating apparatus 1.

[0012] As shown in FIG. 1, the conventional laundry treating apparatus 1 includes a main body 10 forming the external appearance of the laundry treating apparatus and a control panel 11 mounted at the front or the top of the main body. Here, the control panel 11 may include a control unit for controlling the operation of the laundry treating apparatus. Consequently, a user manipulates the control panel for the laundry treating apparatus to perform a laundry treating operation, such as washing or drying.

[0013] Here, the laundry treating apparatus may be a washing machine, a drying machine, or a washing-and-drying machine.

[0014] On the other hand, the conventional laundry treating apparatus may further include a base 20 for supporting the main body 10 on the floor. The main body 10 is mounted on the base 20.

[0015] However, the base 20 is utilized only to support the conventional washing machine or drying machine. In other words, the utilisability of the base 20 is very low.

SUMMARY OF THE INVENTION

[0016] Accordingly, the present invention is directed to a combined laundry machine that substantially obviates one or more problems due to limitations and disadvantages of the related art.

[0017] An object of the present invention is to provide a combined laundry machine completely equipped with all the washing-related apparatuses, especially with at least one new conceptional pedestal dryer.

[0018] Another object of the present invention is to provide a combined laundry machine, including a clothes dryer and two pedestal dryers having different capacities, that is capable of efficiently and effectively performing a drying operation depending upon the amount of an object to be dried or the kind of the object.

[0019] Additional advantages, objects, and features of the invention will be set forth in part in the description which follows and in part will become apparent to those having ordinary skill in the art upon examination of the following or may be learned from the practice of the invention. The objectives and other advantages of the invention may be realized and attained by the structure particularly pointed out in the written description and claims hereof as well as the appended drawings.

[0020] To achieve these objects and other advantages and in accordance with the purpose of the invention, as embodied and broadly described herein, a combined laundry machine includes a washer, a first pedestal dryer including a first container for supporting the washer, the first container having a drying space for drying an object to be dried using hot air supplied from a first hot air supply unit, a clothes dryer, and a second pedestal dryer including a second container for supporting the clothes dryer, the second container having a drying space for drying an object to be dried using hot air supplied from a second hot air supply unit.

[0021] Preferably, the first pedestal dryer and the second pedestal dryer have different drying capacities. Conse-
quently, it is possible to suitably select and use any one of the clothes dryer, the first pedestal dryer, and the second pedestal dryer, depending upon the amount of the object.

[0022] Also, when it is necessary to dry a small quantity of something to be dried, the pedestal dryers may be operated selectively depending upon the kind of the object. For example, shoes may be dried by the first pedestal dryer, whereas underclothes may be dried by the second pedestal dryer.

[0023] The first hot air supply unit may be provided at the first container, and the second hot air supply unit may be provided at the second container. Alternatively, the first hot air supply unit and the second hot air supply unit are configured of a hot air supply provided at the clothes dryer in the form of an integrated hot air supply unit.

[0024] When the integrated hot air supply unit is provided at the clothes dryer, it is necessary to provide a transfer member, such as a pipe, through which hot air is transferred from the integrated hot air supply unit to the first container or the second container.

[0025] Each hot air supply unit may include a heater for heating air and a blowing fan for guiding the heated air into the drying space of the corresponding container.

[0026] Generally, the blowing fan serves to blow the air, heated by the heater, into the drying space. According to circumstances, however, the blowing fan may serve to discharge air from the drying space to the outside such that the heated air is introduced into the drying space. The latter case is suitable when the respective hot air supply units are provided at the corresponding containers.

[0027] Also, the combined laundry machine further includes a first steam supply unit for supplying steam into the drying space of the first container and a second steam supply unit for supplying steam into the drying space of the second container.

[0028] In the same manner, the first steam supply unit is provided at the first container, and the second steam supply unit is provided at the second container. However, the first steam supply unit and the second steam supply unit may be configured of a steam supply unit provided at the washer or the clothes dryer. For example, the first steam supply unit may be provided at the washer, and the second steam supply unit may be provided at the clothes dryer.

[0029] Preferably, the first and second pedestal dryers are securely fixed to the washer and the dryer, which is located on the first and second pedestal dryer by coupling units. The washer and the dryer vibrate while the drums of the washer and the dryer are rotated, and therefore, it is necessary to securely support the washer and the dryer on the corresponding pedestal dryers.

[0030] Each pedestal dryer includes an input unit, a display unit, and a main control unit. Consequently, each pedestal dryer may be independently operated without reliance on other machines, such as the washer or the clothes dryer. Any one of the input unit, the display unit, and the main control unit may be mounted to the washer or the clothes dryer.

[0031] When a user wishes to use each pedestal dryer, the user inputs a command for a drying operation through the input unit, the main control unit controls the corresponding pedestal dryer based on the inputted command. Also, information related to the operation of the pedestal dryer is displayed on the display unit.

[0032] Preferably, each container includes a drawer that can be withdrawn outward. The drawer has advantages in that the drawer allows convenient insertion and withdrawal of an object to be dried, and, in addition, the washing of the drawer is very easy.

[0033] The main body of each pedestal dryer may be provided at the upper part of the rear wall thereof with an inlet port, through which air is introduced. Also, the main body of each pedestal dryer may be provided at the lower part of the rear wall thereof with an outlet port, through which air is discharged. Preferably, the upper part of the rear wall of each drawer communicates with the corresponding inlet port, and the lower part of the rear wall of each drawer communicates with the corresponding outlet port.

[0034] Also preferably, the respective heaters are located in front of the corresponding inlet ports, and the respective blowing fans are located in front of the corresponding outlet ports.

[0035] When the hot air supply unit and the steam supply unit are provided at each container, on the other hand, the hot air supply unit and the steam supply unit are preferably provided between the rear wall of the corresponding drawer and the rear wall of the main body of the corresponding pedestal dryer.

[0036] Each pedestal dryer may further include a shelf, on which laundry is placed. Preferably, the shelf divides the inner space of the corresponding drawer into upper and lower spaces such that the upper and lower spaces communicate with each other. For example, the shelf may be provided with a plurality of through-holes, through which the upper and lower spaces communicate with each other.

[0037] Preferably, each shelf is mounted in an inclined fashion. More preferably, the shelf is inclined downward toward the region where air is introduced. In this case, hot air is uniformly supplied to the laundry placed on the shelf, and therefore, the laundry is effectively dried.

[0038] When the shelf is inclined as described above, water contained in each shoe flows downward and is collected in the lower part of the shoe, and therefore, the shoe is more effectively dried.

[0039] When the shelf is inclined as described above, on the other hand, the introduced hot air collides with the shelf and flows downward through the through-holes of the shelf, and therefore, the circulation of hot air is smoothly accomplished.

[0040] Preferably, each drawer is provided at the rear wall thereof with an air guide for guiding air to the upper part of the drawer. In this case, the air, introduced into the upper part of the rear wall of the drawer, is not directed downward but is guided to an object to be dried. Consequently, the drying operation is more effectively performed.

[0041] It is to be understood that both the foregoing general description and the following detailed description of the present invention are exemplary and explanatory and are intended to provide further explanation of the invention as claimed.
BRIEF DESCRIPTION OF THE DRAWINGS

[0042] The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of this application, illustrate embodiment(s) of the invention and together with the description serve to explain the principle of the invention. In the drawings:

[0043] FIG. 1 is a perspective view illustrating a conventional laundry treating apparatus including a base;

[0044] FIG. 2 is a perspective view illustrating a clothes dryer and a second pedestal dryer included in a combined laundry machine according to the present invention;

[0045] FIG. 3 is an exploded perspective view of the second pedestal dryer;

[0046] FIG. 4 is a sectional view of the second pedestal dryer; and

[0047] FIG. 5 is a front view illustrating the combined laundry machine according to the present invention.

DETAILED DESCRIPTION OF THE INVENTION

[0048] Reference will now be made in detail to the preferred embodiments of the present invention, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts.

[0049] First, a combined laundry machine according to the present invention, especially a clothes dryer 100 and a second pedestal dryer 120 of the combined laundry machine, will be described below in detail with reference to FIGS. 2 to 4.

[0050] A first pedestal dryer of the combined laundry machine is not very different from the second pedestal dryer 120, and therefore, the details of the first pedestal dryer will not be given because the overall structure of the first pedestal dryer can be fully understood from the following description of the second pedestal dryer 120.

[0051] As shown in FIG. 2, the second pedestal dryer 120 serves as a base for supporting a main body 110 of the clothes dryer 100.

[0052] The second pedestal dryer 120 includes a second container 121 having a space defined therein for receiving clothes, and a coupling unit 130 mounted to the upper part of the second container 121 for coupling the main body 110 of the clothes dryer 100 and the second container 121 to each other. Here, the second pedestal dryer 120 supports the main body 110 of the clothes dryer 100 on the floor.

[0053] Also, the second pedestal dryer 120 is provided at the top thereof with leg supporters 125 for supporting lower legs 116 of the clothes dryer 100.

[0054] Each leg supporter 125 includes a panel having a first fitting hole 126, in which a corresponding leg 116 of a washer is fitted when the leg supporter 125 supports the washer instead of the clothes dryer, and a second fitting hole 127, in which the corresponding leg 117 of the clothes dryer is fitted.

[0055] The respective leg supporters 125 are fixed to the top of the second container 121 by screws.

[0056] Specifically, the leg supporters 125 are fixed to the top of the second container 121 at the respective corners of the second container 121. The first fitting holes 126 and the second fitting holes 127 formed in the two leg supporters fixed to the front corners of the second container 121 are connected to each other. On the other hand, the first fitting holes 126 and the second fitting holes 127 formed in the two leg supporters fixed to the rear corners of the second container 121 are separated from each other. This is to accomplish easy and convenient fitting of the legs 116 and 117 in the corresponding fitting holes of the leg supporters 125.

[0057] Also, the first fitting holes 126 are positioned outside the corresponding second fitting holes 127 on diagonal lines at the bottom of the main body 110 of the clothes dryer 100. This is because the size of the main body of the washer is generally greater than that of the main body of the clothes dryer.

[0058] The coupling unit 130 includes a plurality of coupling members 138 mounted to the side of the washer or the clothes dryer and to the side of the second container 121 disposed below the washer or the clothes dryer, and a plurality of fixing members 135 for fixing the coupling members 138 to the side of the washer or the clothes dryer and to the side of the second container 121.

[0059] As shown in FIG. 3, the coupling members 138 may be provided such that two coupling members 138 fix the second container 121 and the main body 110 of the clothes dryer 100 to each other at each lateral side of the second container 121 and the main body 110 of the clothes dryer 100, especially at the interface between the second container 121, which is constructed in a hexahedral shape, and the main body 110 of the clothes dryer 100, which is constructed in a hexahedral shape.

[0060] In addition, additional coupling members (not shown) may be mounted to the rear of the second container 121 and to the rear of the main body 110 of the clothes dryer 100 for fixing the second container 121 and the main body 110 of the clothes dryer 100 to each other.

[0061] The coupling unit 130 may be modified depending upon the change in height of the legs 116 of the washer or the legs 117 of the clothes dryer.

[0062] Each fixing member 135 includes a first fixing member 136 for fixing the upper part of the corresponding coupling member 138 to the lower part of the washer or the clothes dryer at each lateral side of the washer or the clothes dryer, and a second fixing member 137 for fixing the lower part of the corresponding coupling member 138 to the upper part of the second container 121 at each lateral side of the second container 121.

[0063] Here, at least one of the first fixing member 136 and the second fixing member 137 may be a member having an adhesive material applied to opposite major surfaces thereof, for example, a double-sided adhesive tape.

[0064] On the other hand, at least one of the first fixing member 136 and the second fixing member 137 may be a connecting member, such as a screw.
When the fixing member is the screw, connection holes are preferably formed at the corresponding coupling member while the connection holes are spaced a predetermined distance from each other.

Unlike the above description, on the other hand, the means for coupling between the main body of the clothes dryer and the second container may be modified in various forms.

In consideration of the safety and the external design, it is preferable that at least one of the left-to-right width and the front-to-rear width of the second container be equal to or greater than the left-to-right width or the front-to-rear width of the main body of the clothes dryer.

Hereinafter, the structure of the second pedestal dryer will be described in detail with reference to FIG. 4.

FIG. 4 is a sectional view schematically illustrating the structure of the second pedestal dryer.

The second pedestal dryer has a drying space for receiving an object to be dried. Here, the drying space may be constructed in the form of a drawer that can be withdrawn outward from the front of the second container. The second pedestal dryer includes a second hot air supply unit mounted in the second container for forcibly supplying hot air into the drying space.

Also, the second pedestal dryer further includes a second steam supply unit mounted in the second container for supplying steam into the drying space. The second steam supply unit includes a spray port, through which the steam is sprayed into the drying space from the upper part or the rear part of the second container.

The operation of the second hot air supply unit and the second steam supply unit is controlled by a main control unit included in the controller.

The controller further includes an input unit and a display unit. As shown in FIG. 2, the input unit includes a knob for allowing a user to select a drying course and various selection buttons. The display unit includes a liquid crystal display (LCD) screen and a liquid emitting diodes.

The second hot air supply unit includes a blowing fan for blowing air and a heater for heating air. When the blowing fan is operated, external air is introduced into the drawer, and is then discharged out of the drawer. The external air is heated by the heater, and is then introduced into the drawer.

The heater may be an electric heater or a gas heater. Preferably, however, the heater is an electric heater in consideration of the installation space of the pedestal dryer.

Consequently, the second pedestal dryer may perform a drying function through the second hot air supply unit. Here, the heater is preferably a heater with a capacity of which is adjustable to change the temperature of air heated by the heater. This is because specific clothes have a low heat resistance, and rubber products, such as shoes, have a lower heat resistance.

The second steam supply unit supplies steam into the drawer. The steam is brought into contact with clothes received in the drawer to sterilize the clothes and remove wrinkles from the clothes. Consequently, it is possible to perform a refreshing function through the second steam supply unit. Of course, the above-described drying function may be performed in addition to the refreshing function.

On the other hand, the second container is preferably provided at the upper part of the rear wall thereof with an inlet port through which air is introduced. Also, the second container is preferably provided at the lower part of the rear wall thereof with an outlet port through which air is discharged. The upper part of the rear wall of the drawer communicates with the inlet port, and the lower part of the rear wall of the drawer communicates with the outlet port. Consequently, external air is introduced into the drawer through the upper part of the rear wall of the second container and the upper part of the drawer, and is then discharged out of the drawer through the lower part of the drawer and the lower part of the rear wall of the second container.

Here, the blowing fan, which moves air, and the heater, which heats air, may be mounted between the rear wall of the drawer and the rear wall of the second container. However, the present invention is not limited to the above-specified position, and therefore, the second hot air supply unit, including the blowing fan and the heater, may be mounted at any position on a channel along which air is introduced and discharged.

FIG. 4 illustrates a structure in which air is introduced through the upper part of the drawer and is discharged through the lower part of the drawer. However, it is also possible to provide a structure in which air is introduced through the lower part of the drawer and is discharged through the upper part of the drawer.

As shown in FIG. 4, on the other hand, laundry is put in the drawer. The inner space of the drawer is divided into upper and lower spaces. In the drawer, a shelf is mounted for allowing the upper and lower spaces to communicate with each other. The shelf is provided to smoothly discharge air supplied to the laundry placed on the shelf.

Preferably, the shelf is provided with a plurality of through-holes, through which air is introduced from the upper part to the lower part of the drawer.

Also, the shelf may be mounted in an inclined fashion. In this case, it is preferable for the shelf to be inclined downward toward the region where air is introduced. As a result, air is uniformly supplied to the laundry placed on the shelf.

Preferably, the drawer is provided at the upper part of the rear wall thereof with an air guide. The air guide serves to guide air such that the air can be smoothly supplied toward the front of the drawer, and, at the same time, to divide the air introduction channel and the air discharge channel from each other. Consequently, the collision between the introduced air and the discharged air is minimized, and therefore, the drying efficiency is improved.

On the other hand, it is possible to perform various kinds of drying modes through the second pedestal dryer.
First, a user withdraws the drawer 122 and places a small quantity of clothes, shoes, or hats, on the shelf 160. For the clothes, it is preferable for the user to spread the clothes on the shelf.

Subsequently, the user selects a desired operation mode based on the kind of the laundry through the input unit of the controller 123. The operation mode may include various drying modes and a refreshing mode.

The various drying modes may be classified based on drying time or drying temperature. This may be different depending upon the kinds of laundry to be dried. For example, a drying mode having a short drying time and a high drying temperature may be selected to dry a small quantity of clothes made of cotton. On the other hand, a drying mode having a long drying time and a lower drying temperature may be selected to dry shoes.

Specifically, air is forcibly supplied into the laundry receiving space based on the operation mode selected by the user; however, the air temperature or the air supply time may be changed.

When the operation mode is the refreshing mode, on the other hand, high-temperature steam is supplied to the laundry. Consequently, the laundry is refreshed by the steam. Specifically, smells or wrinkles are removed from the laundry, or the laundry is sterilized. Subsequently, air may be supplied to dry the laundry, if necessary.

The first pedestal dryer, constituting the combined laundry machine according to the present invention, is constructed in the same structure as the second pedestal dryer. However, the first pedestal dryer may have a drying capacity different from that of the second pedestal dryer. Preferably, the drying capacity of the first pedestal dryer is greater than that of the second pedestal dryer.

Because the first pedal dryer and the second pedestal dryer have different drying capacities, a first hot air supply unit of the first pedestal dryer has a capacity greater than that of the second hot air supply unit. At least, the capacity of a heater constituting the first hot air supply unit is greater than that of the heater constituting the second hot air supply unit.

Except for the difference in capacity between the first pedal dryer and the second pedestal dryer, the first pedestal dryer is substantially identical in construction and operation to the second pedestal dryer, and therefore, a detailed description of the first pedestal dryer will not be given.

The coupling between the washer and the first pedestal dryer is very similar to the coupling between the clothes dryer and the second pedestal dryer, and therefore, a detailed description of the coupling between the washer and the first pedestal dryer will not be given.

FIG. 5 is a view illustrating the overall structure of the combined laundry machine according to the present invention.

As shown in FIG. 5, the first pedestal dryer 320 is disposed below the washer 300 to support the washer 300 as a base for the washer 300, and the second pedestal dryer 120 is disposed below the clothes dryer 100 to support the clothes dryer 100 as a base for the clothes dryer 100.

The first pedestal dryer 320 has a drying capacity greater than that of the second pedestal dryer 120.

After washing clothes using the washer 300, a user may sort the clothes and then dry the clothes using the clothes dryer 100, the first pedestal dryer 320, and the second pedestal dryer 120.

While general clothes are being dried by the clothes dryer 100, the user may wash shoes and then dry the shoes using the first pedestal dryer 320 or the second pedestal dryer 120.

According to circumstances, the user may use the clothes dryer 100 to dry general clothes, the second pedestal dryer 120, having a relatively small capacity, to dry underclothes, and the first pedestal dryer 320, having a relatively large capacity, to dry shoes.

As apparent from the above description, the present invention provides a new conceptional combined laundry machine including a washer, a clothes dryer, a first pedestal dryer, and a second pedestal dryer.

According to the present invention, object to be dried can be sorted and individually dried. For example, it is possible to sort laundry into underclothes, general clothes, and shoes, and to individually dry the underclothes, the general clothes, and the shoes. Consequently, it is possible to conveniently and sanitarily dry the laundry.

It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the spirit or scope of the inventions. Thus, it is intended that the present invention covers the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents.

What is claimed is:

1. A combined laundry machine comprising:

 a washer;
 a first pedestal dryer including a first container for supporting the washer, the first container having a drying space for drying an object to be dried using hot air supplied from a first hot air supply unit;
 a clothes dryer; and
 a second pedestal dryer including a second container for supporting the clothes dryer, the second container having a drying space for drying an object to be dried using hot air supplied from a second hot air supply unit.

2. The combined laundry machine according to claim 1, wherein the first pedestal dryer and the second pedestal dryer have different drying capacities.

3. The combined laundry machine according to claim 1, wherein the first hot air supply unit is provided at the first container, and the second hot air supply unit is provided at the second container.

4. The combined laundry machine according to claim 1, wherein the first hot air supply unit and the second hot air supply unit are configured of a hot air supply unit provided at the clothes dryer.

5. The combined laundry machine according to claim 1, further comprising:
a first steam supply unit for supplying steam into the drying space of the first container; and

a second steam supply unit for supplying steam into the drying space of the second container.

6. The combined laundry machine according to claim 5, wherein the first steam supply unit is provided at the first container, and the second steam supply unit is provided at the second container.

7. The combined laundry machine according to claim 5, wherein the first steam supply unit and the second steam supply unit are configured of a steam supply unit provided at the washer or the clothes dryer.

8. The combined laundry machine according to claim 5, wherein the first steam supply unit is configured of a steam supply unit provided at the washer, and the second steam supply unit is configured of a steam supply unit provided at the clothes dryer.

9. The combined laundry machine according to claim 3, wherein

the first hot air supply unit includes a heater for heating air and a blowing fan for guiding the heated air to the drying space, and

the second hot air supply unit includes a heater for heating air and a blowing fan for guiding the heated air to the drying space.

10. The combined laundry machine according to claim 9, wherein

the first container includes a drawer for receiving the object, and

the second container includes a drawer for receiving the object.

11. The combined laundry machine according to claim 10, wherein

the first container is provided at predetermined positions thereof with an inlet port for allowing air to be introduced therethrough and an outlet port for allowing air to be discharged therethrough,

the second container is provided at predetermined positions thereof with an inlet port for allowing air to be introduced therethrough and an outlet port for allowing air to be discharged therethrough,

the respective heaters are located in front of the corresponding inlet ports, and

the respective blowing fans are located in front of the corresponding outlet ports.

12. The combined laundry machine according to claim 11, wherein

the respective inlet ports are formed at the upper part of a rear wall of the first container and at the upper part of a rear wall of the second container, and

the respective outlet ports are formed at the lower part of the rear wall of the first container and at the lower part of the rear wall of the second container.

13. The combined laundry machine according to claim 12, wherein

the first pedestal dryer further includes a shelf, on which the object is placed, the shelf dividing the inner space of the corresponding drawer into upper and lower spaces such that the upper and lower spaces communicate with each other, and

the second pedestal dryer further includes a shelf, on which the object is placed, the shelf dividing the inner space of the corresponding drawer into upper and lower spaces such that the upper and lower spaces communicate with each other.

14. The combined laundry machine according to claim 13, wherein the respective shelves are mounted in an inclined fashion.

15. The combined laundry machine according to claim 13, wherein

the drawer of the first container is provided at the upper part of a rear wall thereof with an air guide for guiding air introduced through the corresponding inlet port, and

the drawer of the second container is provided at the upper part of a rear wall thereof with an air guide for guiding air introduced through the corresponding inlet port.

* * * * *