(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date

8 March 2001 (08.03.2001)

(10) International Publication Number

WO 01/16727 A2

(51) International Patent Classification’: GO6F 9/44

(21) International Application Number: PCT/US00/24189

(22) International Filing Date: 31 August 2000 (31.08.2000)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

09/387,064 31 August 1999 (31.08.1999) US
(71) Applicant: ANDERSEN CONSULTING, LLP
[US/US]; 1661 Page Mill Road, Palo Alto, CA 94304

(US).

(72) Inventor: BOWMAN-AMUAH, Michel, K.; 6426 Peak
Vista Circle, Colorado Springs, CO 80918 (US).

(74) Agent: HICKMAN, Paul, L.; Hickman Coleman &
Hughes, LLP, P.O. Box 52037, Palo Alto, CA 94303-0746
(US).

(81) Designated States (national): AL, AM, AT, AU, AZ, BA,
BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES,
FIL, GB, GE, GH, GM, HR, HU, ID, 1L, IS, JP, KE, KG, KP,
KR,KZ,LC,LK, LR, LS, LT, LU, LV, MD, MG, MK, MN,
MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK,
SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,
IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG,
CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:
Without international search report and to be republished
upon receipt of that report.

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: A SYSTEM, METHOD AND ARTICLE OF MANUFACTURE FOR A LOCALLY ADDRESSABLE INTERFACE IN
A COMMUNICATION SERVICES PATTERNS ENVIRONMENT

~~ (57) Abstract: A system, method, and article of manufacture are provided for delivering service via a locally addressable interface.
A plurality of globally addressable interfaces and a plurality of locally addresable interfaces are provided. Access is allowed to a
plurality of different sets of services from each of the globally addressable interfaces and the locally addressable interface. Each
interface has a unique set of services associated therewith. The globally addressable interfaces are registered in a naming service
for facilitating access thereto. Use of the locally addressable interfaces is permitted only via the globally addressable interfaces or

1/16727 A2

another locally addressable interface.

10

15

20

25

30

WO 01/16727 PCT/US00/24189

A SYSTEM, METHOD AND ARTICLE OF MANUFACTURE FOR A LOCALLY
ADDRESSABLE INTERFACE IN A COMMUNICATION SERVICES PATTERNS
ENVIRONMENT

FIELD OF THE INVENTION

The present invention relates to software patterns and more particularly to aiding a system in need of
service by locating a service provider capable of delivering the required service, wherein this is

accomplished by way of a locally addressable interface.

BACKGROUND OF THE INVENTION

An important use of computers is the transfer of information over a network. Currently, the
largest computer network in existence is the Internet. The Internet is a worldwide interconnection
of computer networks that communicate using a common protocol. Millions of computers, from

low end personal computers to high-end super computers are coupled to the Internet.

The Internet grew out of work funded in the 1960s by the U.S. Defense Department's Advanced
Research Projects Agency. For a long time, Internet was used by researchers in universities and
national laboratories to share information. As the existence of the Internet became more widely
known, many users outside of the academic/research community (e.g., employees of large

corporations) started to use Internet to carry electronic mail.

In 1989, a new type of information system known as the World-Wide-Web ("the Web") was
introduced to the Internet. Early development of the Web took place at CERN, the European
Particle Physics Laboratory. The Web is a wide-area hypermedia information retrieval system
aimed to give wide access to a large universe of documents. At that time, the Web was known to
and used by the academic/research community only. There was no easily available tool which

allows a technically untrained person to access the Web.

In 1993, researchers at the National Center for Supercomputing Applications (NCSA) released a

10

15

20

WO 01/16727 PCT/US00/24189

Web browser called "Mosaic" that implemented a graphical user interface (GUI). Mosaic’s
graphical user interface was simple to learn yet powerful. The Mosaic browser allows a user to
retrieve documents from the World-Wide-Web using simple point-and-click commands. Because
the user does not have to be technically trained and the browser is pleasant to use, it has the

potential of opening up the Internet to the masses.

The architecture of the Web follows a conventional client-server model. The terms "client" and
"server" are used to refer to a computer's general role as a requester of data (the client) or
provider of data (the server). Under the Web environment, Web browsers reside in clients and
Web documents reside in servers. Web clients and Web servers communicate using a protocol
called "HyperText Transfer Protocol" (HTTP). A browser opens a connection to a server and
initiates a request for a document. The server delivers the requested document, typically in the
form of a text document coded in a standard Hypertext Markup Language (HTML) format, and
when the connection is closed in the above interaction, the server serves a passive role, i.e., it

accepts commands from the client and cannot request the client to perform any action.

The communication model under the conventional Web environment provides a very limited
level of interaction between clients and servers. In many systems, increasing the level of
interaction between components in the systems often makes the systems more robust, but
increasing the interaction increases the complexity of the interaction and typically slows the rate
of the interaction. Thus, the conventional Web environment provides less complex, faster

interactions because of the Web's level of interaction between clients and servers.

10

15

20

25

WO 01/16727 PCT/US00/24189

SUMMARY OF THE INVENTION

A system, method, and article of manufacture are provided for delivering service via a locally
addressable interface. A plurality of globally addressable interfaces and a plurality of locally
addressable interfaces are provided. Access is allowed to a plurality of different sets of services
from each of the globally addressable interfaces and the locally addressable interface. Each
interface has a unique set of services associated therewith. The globally addressable interfaces
are registered in a naming service for facilitating access thereto. Use of the locally addressable
interfaces is permitted only via the globally addressable interfaces or another locally addressable

interface.

In an aspect of the present invention, the use of the locally addressable interfaces may be
facilitated by structured-based communication. In another aspect of the present invention, the
access may be allowed via a customer interface proxy, a customer server and a database of the

globally addressable interface.

In one embodiment of this aspect of the present invention, a request may be received by the
customer interface proxy for a reference to one of the locally addressable interfaces. The request
may then be forwarded across a network to the database of a server of the globally addressable
interface. Also, Data from the database may be returned in response to the request.
Additionally, an object may be instantiated and populated it with the data by the server of the
globally addressable interface. The object may also be associated with one of the locally
addressable interfaces. Also, the locally addressable interface may be forwarded to the globally
addressable interface. Also in this embodiment of this particular aspect of the present invention,
a reference may be forwarded to the locally addressable interface across the network and to the
customer interface proxy. In addition, this aspect may further allow the use of the customer

interface proxy to access the locally addressable interface across the network.

10

15

20

25

30

WO 01/16727 PCT/US00/24189

BRIEF DESCRIPTION OF THE DRAWINGS

The invention will be better understood when consideration is given to the following detailed

description thereof. Such description makes reference to the annexed drawings wherein:

Figure 1 is a schematic diagram of a hardware implementation of one embodiment of the present

invention;

Figure 2 is a flow diagram illustrating a high level overview of an architecture;

Figure 3 shows the dependencies of three architecture frameworks;

Figure 4 illustrates a delivery vehicle matrix;

Figure 5 illustrates a Delivery Vehicle Cube;

Figure 6 is a flow diagram depicting considerations to be taken into consideration when

identifying the core technologies to be used in an architecture;

Figure 7 is a chart that can be utilized to determine whether to use Netcentric technology;

Figure 8 is a chart that can be utilized to determine whether to use Client Server technology;

Figure 9 is a chart that can be utilized to determine whether to use Host technology;

Figure 10 illustrates the services of a Netcentric Architecture Framework in accordance with one

embodiment of the present invention;

Figure 11 is a detailed diagram of some of the components of the Netcentric Architecture

Framework found in Figure 10;

10

15

20

25

30

WO 01/16727 PCT/US00/24189

Figure 12 is a detailed diagram of other components of the Netcentric Architecture Framework

found in Figure 10;

Figure 13 illustrates several components of the Presentation area of the Netcentric Architecture

Framework;
Figure 14 illustrates several components of the Information Services of the present invention;

Figure 15 depicts the four major categories of functionality that the Network services provided

by the Communications Services are grouped into;

Figure 16 illustrates File Sharing services;

Figure 17 depicts Message Passing services;

Figure 18 depicts Message Queuing services;

Figure 19 illustrates Publish and Subscribe’ services;

Figure 20 depicts Streaming, in which a real-time data stream is transferred;
Figure 21 illustrates CORBA-based Object Messaging;

Figure 22 illustrates COM Messaging;

Figure 23 represents CTI Messaging;

Figure 24 illustrates various components of the Communication Fabric of the present invention;
Figure 25 illustrates the two categories of the Physical Media;

Figure 26 illustrates several of the components of the Transaction areas of the Netcentric

Architecture Framework;

10

15

20

25

30

WO 01/16727 PCT/US00/24189

Figure 27 illustrates various components of the Environmental Services of the Netcentric

Architecture Framework;

Figure 28 illustrates the Base Services of the Netcentric Architecture Framework;

Figure 29 shows the major components of the reporting application framework;

Figure 30 illustrates an example of how a custom report architecture relates to a workstation

platform technology architecture;

Figure 31 describes the relationships between the major components of the report process and

the report writer process;

Figure 32 shows the module hierarchy for the custom report process;

Figure 33 depicts the various components of the Business Logic portion of the Netcentric

Architecture Framework;

Figure 34 illustrates a relationship between major themes that impact aspects of software

development and management;

Figure 35 illustrates how components are viewed from different perspectives;

Figure 36 shows a relationship between business components and partitioned business

components;

Figure 37 shows how a Billing Business Component may create an invoice;

Figure 38 illustrates the relationship between the spectrum of Business Components and the

types of Partitioned Business Components;

10

15

20

25

30

WO 01/16727 PCT/US00/24189

Figure 39 illustrates the flow of workflow, dialog flow, and/or user interface designs to a User

Interface Component;

Figure 40 is a diagram of an Application Model which illustrates how the different types of

Partitioned Business Components might interact with each other;
Figure 41 illustrates what makes up a Partitioned Business Component;
Figure 42 illustrates the role of patterns and frameworks;

Figure 43 illustrates this Business Component Identifying Methodology including both Planning

and Delivering stages;

Figure 44 shows a high level picture of application component interaction for an Order Entry

system;

Figure 45 illustrates a traditional organization structure including an activities component, a

credit/collections component, a billing component, and a finance component;
Figure 46 provides an illustration of a horizontal organization model;

Figure 47 illustrates a workcell organization approach including an activities component, a

credit/collections component, a billing component, and a finance component;
Figure 48 illustrates the Enterprise Information Architecture (EIA) model;
Figure 49 illustrates a V-model of Verification, Validation, and Testing;

Figure 50 portrays of a development architecture with a seamless integration of tools which can

be plugged in for the capture and communication of particular deliverables;

Figure 51 shows a design architecture with the compromises made for today's component

construction environment;

10

15

20

25

30

WO 01/16727 PCT/US00/24189

Figure 52 illustrates a business process to object mapping;
Figure 53 is a diagram which illustrates a graph of resilience to change;

Figure 54 illustrates a flowchart for a method for providing an abstraction factory pattern in

accordance with an embodiment of the present invention;

Figure 55 illustrates a flowchart for a method for representing a plurality of batch jobs of a

system each with a unique class in accordance with an embodiment of the present invention;
Figure 56 illustrates a class diagram of the batch job hierarchy;

Figure 57 illustrates an object interaction graph of a possible implementation of the class

diagram of Figure 56;

Figure 58 illustrates a flowchart for a method for controlling access to data of a business object

via an attribute dictionary in accordance with an embodiment of the present invention;

Figure 59 illustrates a flowchart for.a method for structuring batch activities for simplified

reconfiguration in accordance with an embodiment of the present invention;

Figure 60 illustrates the manner in which the AttributeDictionaryClient is the facade which
delegates to the AttributeDictionary;

Figure 61 depicts the use of the containsKey() method on the HashMap to ensure that the value

will exist before the get() method is used;

Figure 62 illustrates a method that dictates that any nullPointerException that is thrown would be
caught and rethrown as the more user-friendly exception in the attribute dictionary pattern

environment;

10

15

20

25

30

WO 01/16727 PCT/US00/24189

Figure 63 illustrates the Get the Attribute Names method in the attribute dictionary pattern

environment;

Figure 64 illustrates a flowchart for a method for managing constants in a computer program in

accordance with an embodiment of the present invention;

Figure 65 illustrates a flowchart for a method for providing a fixed format stream-based

communication system in accordance with an embodiment of the present invention;

Figure 66 illustrates two systems communicating via a stream-based communication and using a

common generic format to relay the meta-data information;

Figure 67 illustrates an example of a Fixed Format message associated with the fixed format

stream patterns;

Figure 68 depicts the complete Fixed Format Stream pattern associated with the fixed format

stream patterns;

Figure 69 illustrates fixed format contracts containing meta-data information for translating

structured data onto and off of a stream;
Figure 70 illustrates a Customer object in an object-based system streaming itself into a stream,
the stream being sent to a non-object system, this stream being read and the data inserted into a

relational database;

Figure 71 illustrates a flowchart for a method for delivering service via a globally addressable

interface in accordance with an embodiment of the present invention;

Figure 72 depicts a client that is unable to find the services provided by a server via a network;

Figure 73 illustrates the grouping of services using interfaces;

Figure 74 illustrates a customer server publicly announcing its interfaces;

10

15

20

25

30

WO 01/16727 PCT/US00/24189

Figure 75 illustrates a method including the registering and then locating of a globally

addressable interface;

Figure 76 illustrates the present invention using a method wherein a globally addressable

interface is used to obtain data from a server;

Figure 77 illustrates a flowchart for a method for affording access to a legacy system in

accordance to an embodiment of the present invention;

Figure 78 depicts the communication difficulties associated with Legacy Systems attempting to

communicate with a client via a component integration architecture;

Figure 79 illustrates homogenous interfaces from components which rectify the problems with

Legacy Systems attempting to communicate with a client via a component integration

architecture;

Figure 80 shows how a Legacy Component is integrated into a component-based model;
Figure 81 illustrates Legacy Wrapper Components of a Pure Legacy Wrapper Component
including a Legacy Wrapper Component, a Component Adapter, a Legacy Integration
Architecture, a Legacy Adapter, and a Legacy System;

Figure 82 illustrates a Hybrid Component type of Legacy Wrapper Component;

Figure 83 shows an abstract example of the control flow in a Legacy Component;

Figure 84 illustrates a flowchart for a method for for delivering service via a locally addressable

interface in accordance with an embodiment of the present invention;

Figure 85 illustrates Problems with Globally Addressable Interfaces in a system including clients

and servers with a plurality of interfaces;

10

10

15

20

25

30

WO 01/16727 PCT/US00/24189

Figure 86 illustrates the manner in which the present invention uses a Locally Addressable

Interface to hide functionality and lessen the load on the Naming or Trading Service;

Figure 87 illustrates the manner in which the present invention obtains a Locally Addressable

Interface;

Figure 88 illustrates the method in which the present invention registers and then locates a

Globally Addressable Interface;

Figure 89 illustrates the manner in which the present invention uses a Globally Addressable

Interface to obtain a Locally Addressable Interface to a specific Customer Object;

Figure 90 illustrates a flowchart for a method for communicating a null value in accordance with

an embodiment of the present invention;

Figure 91 illustrates the problem associated with sending a NULL across many types of

middleware;

Figure 92 illustrates the manner in which the present invention passes a “null” structure across

the middleware;
Figure 93 depicts conversations with a “null” data structure;
Figure 94 depicts conversations with a non-“null” data structure;

Figure 95 illustrates a flowchart for a method for transmitting data from a server to a client via

pages in accordance with an embodiment of the present invention;

Figure 96 depicts the response time for a User Interface to display a list of customers in a list

box;

Figure 97 shows a request that returns a large amount of data;

11

10

15

20

25

30

WO 01/16727 PCT/US00/24189

Figure 98 shows a graphical depiction of a paging communication pattern;

Figure 99 illustrates a message trace diagram showing the interactions between a Client and a

Server using Paging Communication to satisfy the previously mentioned scenario;

Figure 100 illustrates a flowchart for a method for interfacing a naming service and a client with
the naming service allowing access to a plurality of different sets of services from a plurality of
globally addressable interfaces in accordance with an embodiment of the present invention;
Figure 101 illustrates repeated requests to the Trader Service for the same interfaces;

Figure 102 illustrates how a pool can be created that reuses GAI proxies;

Figure 103 illustrates the implementation of a Refreshable Proxy Pool;

Figure 104 illustrates the class relationships between the patterns primary classes;

Figure 105 illustrates a flowchart for a method for providing a self-describing stream-based

communication system in accordance with an embodiment of the present invention;

Figure 106 illustrates two systems communicating via Stream-Based Communication and using a

shared generic format to relay the meta-data information;

Figure 107 illustrates an object-b‘ased system with a frequently changing object model

communicating via Stream-Based Communication;

Figure 108 illustrates a stream-based message that contains both message data and descriptive

meta-data;

Figure 109 illustrates the manner in which a message language defines how to parameterize the

meta-data and put it on the stream;

12

10

15

20

25

30

WO 01/16727 PCT/US00/24189

Figure 110 illustrates a Customer object in an object-based system streaming itself into a stream,
the stream being sent to a non-object system, this stream being read and the data inserted into a

relational database;

Figure 111 illustrates a flowchart for a method for providing a stream-based communication

system in accordance with an embodiment of the present invention;

Figure 112 illustrates how systems of the present invention communicate over a communication

mechanism that cannot inherently convey meta-data information;

Figure 113 is an illustration of an object-based system communicating with a non-object system

using a communication mechanism that cannot convey meta-data information;

Figure 114 depicts an example of Stream Based Communication with two disparate systems

communicating via stream-based communication;
Figure 115 is an illustration of a Customer object in an object-based system streaming itself into
a stream, the stream being sent to a non-object system, this stream being read and the

information is inserted into a relational database;

Figure 116 illustrates a flowchart for a method for efficiently retrieving data in accordance with

an embodiment of the present invention;

Figure 117 illustrates the manner in which a client requests information from server objects via a

network;

Figure 118 illustrates the method of the present invention in which a client requests attributes

from a server object via a network;

Figure 119 illustrates the transmitting of all data in a Data Structure from a client to a server and

visa-versa;

13

10

15

20

25

30

WO 01/16727 PCT/US00/24189

Figure 120 illustrates the method in which a client finds and instantiates a Customer Object from

a customer component;

Figure 121 illustrates a Structure Based Communication that builds upon the method of Figure

120 and depicts the flow of control during Structure Based Communication;
Figure 122 shows Five Styles of Client/Server Computing;

Figure 123 illustrates a flowchart for a method for providing an activity module in accordance

with an embodiment of the present invention;

Figure 124 illustrates multiple interfaces to an application including a handheld device, a desktop

PC, and a telecommunications device;

Figure 125 illustrates an activity entity relationship diagram;

Figure 126 illustrates a roles and responsibilities diagram;

Figure 127 illustrates a typical implementation between a user interface and its activity;

Figure 128 illustrates a flowchart for a method for structuring validation rules to be applied to a
user interface for maximum maintainability and extensibility in accordance with an embodiment
of the present invention;

Figure 129 illustrates widgets with their validation requirements;

Figure 130 illustrates a user interface validator association diagram,;

Figure 131 illustrates a validation rule class diagram,;

Figure 132 illustrates a rule validation interaction diagram,;

14

10

15

20

25

30

WO 01/16727 PCT/US00/24189

Figure 133 illustrates a flowchart for a method for assigning a view to an activity in accordance

with an embodiment of the present invention;

Figure 134 illustrates a manner in which the maintain customer activity operation of the present

invention launches its view;

Figure 135 illustrates the view configurer launching the maintain customer view operation;
Figure 136 illustrates a flowchart for a method for testing successfulness of an operation having
pre-conditions and post-conditions that must be satisfied for the operation to be successful in

accordance with an embodiment of the present invention;

Figure 137 illustrates an operation diagram depicting an example of pre-conditions and post-

conditions;

Figure 138 illustrates a flowchart for a method for detecting an orphaned server context in

accordance with an embodiment of the present invention;

Figure 139 illustrates a Client 1 that has instantiated A and C, deletes C but fails to delete A;
Figure 140 illustrates a GarbageCollector requesting for interest in context A;

Figure 141 illustrates a GarbageCollector requesting for interest in context B;

Figure 142 illustrates a flowchart for a method for creating a common interface for exception

handling in accordance with an embodiment of the present invention;

Figure 143 illustrates how having many different exception types will cause the exception

handling logic to grow;

Figure 144 illustrates that groupings are not always exclusive;

15

10

15

20

25

30

WO 01/16727 PCT/US00/24189

Figure 145 illustrates a flowchart for a method for recording exception handling requirements for
maintaining a consistent error handling approach in accordance with an embodiment of the
present invention;

Figure 146 illustrates a flowchart for a method for minimizing the amount of changes that need
to be made to exception handling logic when new exceptions are added in accordance with an

embodiment of the present invention;

Figure 147 depicts a program (i.e., the exception handler of the present invention) with a few try-
catch blocks;

Figure 148 depicts a program (the polymorphic exception handler) with smaller catch blocks;
Figure 149 illustrates a flowchart for a method for distributing incoming requests amongst server
components for optimizing usage of resources in accordance with an embodiment of the present
invention;

Figure 150 illustrates server components receiving service requests;

Figure 151 illustrates a load balancer mediating the requests of Figure 150;

Figure 152 illustrates a flowchart for a method for maintaining a security profile throughout
nested service invocations on distributed components in accordance with an embodiment of the

present invention;

Figure 153 illustrates a component interaction diagram showing an interaction between a number.

of components in a financial system;
Figure 154 illustrates a user manger/user context relationship diagram;

Figure 155 illustrates a flowchart for a method for translating an object attribute to and from a

database value in accordance with an embodiment of the present invention;

16

10

15

20

25

30

WO 01/16727 PCT/US00/24189

Figure 156 illustrates that an attribute cannot be saved directly into the persistent store;
Figure 157 illustrates the use of an Attribute Converter to save an attribute into a database;

Figure 158 illustrates a flowchart for a method for controlling data in accordance with an

embodiment of the present invention;

Figure 159 illustrates the data retrieval mechanism calls being placed directly within the domain

object;
Figure 160 shows the interrelationship between a database, a persist, and an account;

Figure 161 illustrates that the database retrieval mechanism is separated from the business object

by encapsulating the logic within a data handler;

Figure 162 illustrates the TiPersistenceStream and TiMapper of an embodiment of the present

invention;

Figure 163 illustrates a flowchart for a method for organizing data access among a plurality of

business entities in accordance with an embodiment of the present invention;
Figure 164 illustrates retrieving data piecemeal,
Figure 165 illustrates the manner in which the present invention retrieves whole objects;

Figure 166 illustrates a flowchart for a method for retrieving multiple business objects across a

network in one access operation in accordance with an embodiment of the present invention;
Figure 167 illustrates an example of an implementation of the Multi-Fetch Object;

Figure 168 illustrates the Fetching of a Household object along with the other related objects

using the multi object fetch results;

17

10

15

20

25

30

WO 01/16727 PCT/US00/24189

Figure 169 is an interaction diagram showing when the multi object fetch is not used;
Figure 170 illustrates a flowchart for a method for implementing an association of business
objects without retrieving the business objects from a database on which the business objects are

stored in accordance with an embodiment of the present invention;

Figure 171 illustrates a flowchart for a method for mapping of retrieved data into objects in

accordance with an embodiment of the present invention;

Figure 172 illustrates an Object Identity Cache in accordance with one embodiment of the

present invention,
Figure 173 illustrates a flowchart for a method for separating logic and data access concerns
during development of a persistent object for insulating development of business logic from

development of data access routine in accordance with an embodiment of the present invention;

Figure 174 illustrates a flowchart for a method for providing a warning upon retrieval of objects

that are incomplete in accordance with an embodiment of the present invention;

Figure 175 illustrates an Entity-Based Data Access System,;

Figure 176 illustrates a Retrieving Data Piecemeal System,;

Figure 177 illustrates a Commit and Rollback routine;

Figure 178 illustrates Nested Logical Units of Work;

Figure 179 illustrates a flowchart for a method for allowing a batched request to indicate that it
depends on the response to another request in accordance with an embodiment of the present

invention;

Figure 180 illustrates a Batching Retrievals and Dependency;

18

10

15

20

25

30

WO 01/16727 PCT/US00/24189

Figure 181 illustrates the Dynamically Setting Dependency;

Figure 182 illustrates a flowchart for a method for sending a single message to all objects in a

logical unit of work in accordance with an embodiment of the present invention;

Figure 183 illustrates a Hand-crafted Message Forwarding scheme;

Figure 184 illustrates a Generic Message Forwarding feature;

Figure 185 illustrates a flowchart for a method for batching logical requests for reducing network

traffic in accordance with an embodiment of the present invention;

Figure 186 illustrates the manner in which the present invention sends requests independently;

Figure 187 illustrates a manner in which the present invention registers requests;

Figure 188 illustrates a flowchart for a method for sorting requests that are being unbatched from

a batched message in accordance with an embodiment of the present invention;

Figure 189 illustrates an Ad Hoc Registration feature;

Figure 190 illustrates a manner in which the present invention sorts requests by weight;

Figure 191 illustrates a flowchart for a method for assigning independent copies of business data
to concurrent logical units of work for helping prevent the logical units of work from interfering
with each other in accordance with an embodiment of the present invention;

Figure 192 illustrates the MVC Implementation with Global Model;

Figure 193 illustrates the Separate Models for Separate Business LUWs;

Figure 194 illustrates the Canceling of one LUW Independently of Another LUW; and

19

WO 01/16727 PCT/US00/24189

Figure 195 illustrates the Context Copying Protects Context Boundaries.

20

10

15

20

25

WO 01/16727 PCT/US00/24189

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

A preferred embodiment of a system in accordance with the present invention is preferably
practiced in the context of a personal computer such as an IBM compatible personal computer,
Apple Macintosh computer or UNIX based workstation. A representative hardware environment
is depicted in Figure 1, which illustrates a typical hardware configuration of a workstation in
accordance with a preferred embodiment having a central processing unit 110, such as a
microprocessor, and a number of other units interconnected via a system bus 112. The
workstation shown in Figure 1 includes a Random Access Memory (RAM) 114, Read Only
Memory (ROM) 116, an I/O adapter 118 for connecting peripheral devices such as disk storage
units 120 to the bus 112, a user interface adapter 122 for connecting a keyboard 124, a mouse
126, a speaker 128, a microphone 132, and/or other user interface devices such as a touch screen
(not shown) to the bus 112, communication adapter 134 for connecting the workstation to a
communication network (e.g., a data processing network) and a display adapter 136 for
connecting the bus 112 to a display device 138. The workstation typically has resident thereon
an operating system such as the Microsoft Windows NT or Windows/95 Operating System (OS),
the IBM OS/2 operating system, the MAC OS, or UNIX operating system. Those skilled in the
art will appreciate that the present invention may also be implemented on platforms and

operating systems other than those mentioned.

A preferred embodiment is written using JAVA, C, and the C++ language and utilizes object
oriented programming methodology. Object oriented programming (OOP) has become
increasingly used to develop complex applications. As OOP moves toward the mainstream of
software design and development, various software solutions require adaptation to make use of
the benefits of OOP. A need exists for these principles of OOP to be applied to a messaging
interface of an electronic messaging system such that a set of OOP classes and objects for the

messaging interface can be provided.

21

10

15

20

25

30

WO 01/16727 PCT/US00/24189

OORP is a process of developing computer software using objects, including the steps of
analyzing the problem, designing the system, and constructing the program. An object is a
software package that contains both data and a collection of related structures and procedures.
Since it contains both data and a collection of structures and procedures, it can be visualized as a
self-sufficient component that does not require other additional structures, procedures or data to
perform its specific task. OOP, therefore, views a computer program as a collection of largely
autonomous components, called objects, each of which is responsible for a specific task. This
concept of packaging data, structures, and procedures together in one component or module is

called encapsulation.

In general, OOP components are reusable software modules which present an interface that
conforms to an object model and which are accessed at run-time through a component
integration architecture. A component integration architecture is a set of architecture
mechanisms which allow software modules in different process spaces to utilize each others
capabilities or functions. This is generally done by assuming a common component object
model on which to build the architecture. It is worthwhile to differentiate between an object and
a class of objects at this point. An object is a single instance of the class of objects, which is
often just called a class. A class of objects can be viewed as a blueprint, from which many

objects can be formed.

OOP allows the programmer to create an object that is a part of another object. For example, the
object representing a piston engine is said to have a composition-relationship with the object
representing a piston. In reality, a piston engine comprises a piston, valves and many other
components; the fact that a piston is an element of a piston engine can be logically and

semantically represented in OOP by two objects.

OOP also allows creation of an object that “depends from” another object. If there are two
objects, one representing a piston engine and the other representing a piston engine wherein the
piston is made of ceramic, then the relationship between the two objects is not that of
composition. A ceramic piston engine does not make up a piston engine. Rather it is merely one
kind of piston engine that has one more limitation than the piston engine; its piston is made of
ceramic. In this case, the object representing the ceramic piston engine is called a derived object,

and it inherits all of the aspects of the object representing the piston engine and adds further

22

10

15

20

25

30

WO 01/16727 PCT/US00/24189

limitation or detail to it. The object representing the ceramic piston engine “depends from” the
object representing the piston engine. The relationship between these objects is called

inheritance.

When the object or class representing the ceramic piston engine inherits all of the aspects of the
objects representing the piston engine, it inherits the thermal characteristics of a standard piston
defined in the piston engine class. However, the ceramic piston engine object overrides these
ceramic specific thermal characteristics, which are typically different from those associated with
a metal piston. It skips over the original and uses new functions related to ceramic pistons.
Different kinds of piston engines have different characteristics, but may have the same
underlying functions associated with it (e.g., how many pistons in the engine, ignition sequences,
lubrication, etc.). To access each of these functions in any piston engine object, a programmer
would call the same functions with the same names, but each type of piston engine may have
different/overriding implementations of functions behind the same name. This ability to hide
different implementations of a function behind the same name is called polymorphism and it

greatly simplifies communication among objects.

With the concepts of composition-relationship, encapsulation, inheritance and polymorphism, an
object can represent just about anything in the real world. In fact, one’s logical perception of the
reality is the only limit on determining the kinds of things that can become objects in object-
oriented software. Some typical categories are as follows:

. Objects can represent physical objects, such as automobiles in a traffic-flow simulation,
electrical components in a circuit-design program, countries in an economics model, or
aircraft in an air-traffic-control system.

. Objects can represent elements of the computer-user environment such as windows,
menus or graphics objects.

. An object can represent an inventory, such as a personnel file or a table of the latitudes
and longitudes of cities.

. An object can represent user-defined data types such as time, angles, and complex

numbers, or points on the plane.

With this enormous capability of an object to represent just about any logically separable

matters, OOP allows the software developer to design and implement a computer program that is

23

10

15

20

25

30

WO 01/16727 PCT/US00/24189

a model of some aspects of reality, whether that reality is a physical entity, a process, a system,
or a composition of matter. Since the object can represent anything, the software developer can

create an object which can be used as a component in a larger software project in the future.

If 90% of a new OOP software program consists of proven, existing components made from
preexisting reusable objects, then only the remaining 10% of the new software project has to be
written and tested from scratch. Since 90% already came from an inventory of extensively tested
reusable objects, the potential domain from which an error could originate is 10% of the
program. As a result, OOP enables software developers to build objects out of other, previously

built objects.

This process closely resembles complex machinery being built out of assemblies and sub-
assemblies. OOP technology, therefore, makes software engineering more like hardware
engineering in that software is built from existing components, which are available to the
developer as objects. All this adds up to an improved quality of the software as well as an

increased speed of its development.

Programming languages are beginning to fully support the OOP principles, such as
encapsulation, inheritance, polymorphism, and composition-relationship. With the advent of the
C++ language, many commercial software developers have embraced OOP. C++ is an OOP
language that offers a fast, machine-executable code. Furthermore, C++ is suitable for both
commercial-application and systems-programming projects. For now, C++ appears to be the
most popular choice among many OOP programmers, but there is a host of other OOP
languages, such as Smalltalk, Common Lisp Object System (CLOS), and Eiffel. Additionally,
OOQP capabilities are being added to more traditional popular computer programming languages

such as Pascal.

The benefits of object classes can be summarized, as follows:

. Objects and their corresponding classes break down complex programming problems into
many smaller, simpler problems.

. Encapsulation enforces data abstraction through the organization of data into small,

independent objects that can communicate with each other. Encapsulation protects the

24

10

15

20

25

30

WO 01/16727 PCT/US00/24189

data in an object from accidental damage, but allows other objects to interact with that
data by calling the object’s member functions and structures.

. Subclassing and inheritance make it possible to extend and modify objects through
deriving new kinds of objects from the standard classes available in the system. Thus,
new capabilities are created without having to start from scratch.

. Polymorphism and multiple inheritance make it possible for different programmers to
mix and match characteristics of many different classes and create specialized objects
that can still work with related objects in predictable ways.

o Class hierarchies and containment hierarchies provide a flexible mechanism for modeling
real-world objects and the relationships among them.

. Libraries of reusable classes are useful in many situations, but they also have some
limitations. For example:

. Complexity. In a complex system, the class hierarchies for related classes can become
extremely confusing, with many dozens or even hundreds of classes.

. Flow of control. A program written with the aid of class libraries is still responsible for
the flow of control (i.e., it must control the interactions among all the objects created
from a particular library). The programmer has to decide which functions to call at what
times for which kinds of objects.

. Duplication of effort. Although class libraries allow programmers to use and reuse many
small pieces of code, each programmer puts those pieces together in a different way.
Two different programmers can use the same set of class libraries to write two programs

* that do exactly the same thing but whose internal structure (i.e., design) may be quite
different, depending on hundreds of small decisions each programmer makes along the
way. Inevitably, similar pieces of code end up doing similar things in slightly different

ways and do not work as well together as they should.

Class libraries are very flexible. As programs grow more complex, more programmers are
forced to reinvent basic solutions to basic problems over and over again. A relatively new
extension of the class library concept is to have a framework of class libraries. This framework
1s more complex and consists of significant collections of collaborating classes that capture both
the small scale patterns and major mechanisms that implement the common requirements and

design in a specific application domain. They were first developed to free application

25

10

15

20

25

30

WO 01/16727 PCT/US00/24189

programmers from the chores involved in displaying menus, windows, dialog boxes, and other

standard user interface elements for personal computers.

Frameworks also represent a change in the way programmers think about the interaction between
the code they write and code written by others. In the early days of procedural programming, the
programmer called libraries provided by the operating system to perform certain tasks, but
basically the program executed down the page from start to finish, and the programmer was
solely responsible for the flow of control. This was appropriate for printing out paychecks,
calculating a mathematical table, or solving other problems with a program that executed in just

one way.

The development of graphical user interfaces began to turn this procedural programming
arrangement inside out. These interfaces allow the user, rather than program logic, to drive the
program and decide when certain actions should be performed. Today, most personal computer
software accomplishes this by means of an event loop which monitors the mouse, keyboard, and
other sources of external events and calls the appropriate parts of the programmer’s code
according to actions that the user performs. The programmer no longer determines the order in
which events occur. Instead, a program is divided into separate pieces that are called at
unpredictable times and in an unpredictable order. By relinquishing control in this way to users,
the developer creates a program that is much easier to use. Nevertheless, individual pieces of the
program written by the developer still call libraries provided by the operating system to
accomplish certain tasks, and the programmer must still determine the flow of control within

each piece after it’s called by the event loop. Application code still “sits on top of”’ the system.

Even event loop programs require programmers to write a lot of code that should not need to be
written separately for every application. The concept of an application framework carries the
event loop concept further. Instead of dealing with all the nuts and bolts of constructing basic
menus, windows, and dialog boxes and then making these things all work together, programmers
using application frameworks start with working application code and basic user interface
elements in place. Subsequently, they build from there by replacing some of the generic

capabilities of the framework with the specific capabilities of the intended application.

26

10

15

20

25

30

WO 01/16727 PCT/US00/24189

Application frameworks reduce the total amount of code that a programmer has to write from
scratch. However, because the framework is really a generic application that displays windows,
supports copy and paste, and so on, the programmer can also relinquish control to a greater
degree than event loop programs permit. The framework code takes care of almost all event
handling and flow of control, and the programmer’s code is called only when the framework

needs it (e.g., to create or manipulate a proprietary data structure).

A programmer writing a framework program not only relinquishes control to the user (as is also
true for event loop programs), but also relinquishes the detailed flow of control within the
program to the framework. This approach allows the creation of more complex systems that
work together in interesting ways, as opposed to isolated programs, having custom code, being

created over and over again for similar problems.

Thus, as is explained above, a framework basically is a collection of cooperating classes that
make up a reusable design solution for a given problem domain. It typically includes objects that
provide default behavior (e.g., for menus and windows), and programmers use it by. inheriting
some of that default behavior and overriding other behavior so that the framework calls

application code at the appropriate times.

There are three main differences between frameworks and class libraries:

e - Behavior versus protocol. Class libraries are essentially collections of behaviors that you
can call when you want those individual behaviors in your program. A framework, on
the other hand, provides not only behavior but also the protocol or set of rules that govern
the ways in which behaviors can be combined, including rules for what a programmer is
supposed to provide versus what the framework provides.

. Call versus override. With a class library, the code the programmer instantiates objects
and calls their member functions. It’s possible to instantiate and call objects in the same
way with a framework (i.e., to treat the framework as a class library), but to take full
advantage of a framework’s reusable design, a programmer typically writes code that
overrides and is called by the framework. The framework manages the flow of control
among its objects. Writing a program involves dividing responsibilities among the
various pieces of software that are called by the framework rather than specifying how

the different pieces should work together.

27

10

15

20

25

30

WO 01/16727 PCT/US00/24189

. Implementation versus design. With class libraries, programmers reuse only
implementations, whereas with frameworks, they reuse design. A framework embodies
the way a family of related programs or pieces of software work. It represents a generic
design solution that can be adapted to a variety of specific problems in a given domain.
For example, a single f)ramework can embody the way a user interface works, even
though two different user interfaces created with the same framework might solve quite

different interface problems.

Thus, through the development of frameworks for solutions to various problems and
programming tasks, significant reductions in the design and development effort for software can
be achieved. A preferred embodiment of the invention utilizes HyperText Markup Language
(HTML) to implement documents on the Internet together with a general-purpose secure
communication protocol for a transport medium between the client and the Newco. HTTP or
other protocols could be readily substituted for HTML without undue experimentation.
Information on these products is available in T. Berners-Lee, D. Connoly, "RFC 1866: Hypertext
Markup Language - 2.0" (Nov. 1995); and R. Fielding, H, Frystyk, T. Berners-Lee, J. Gettys and
J.C. Mogul, "Hypertext Transfer Protocol -- HTTP/1.1: HTTP Working Group Internet Draft"
(May 2, 1996). HTML is a simple data format used to create hypertext documents that are
portable from one platform to another. HTML documents are SGML documents with generic
semantics that are appropriate for representing information from a wide range of domains.
HTML has been in use by the World-Wide Web global information initiative since 1990.
HTML is an application of ISO Standard 8879; 1986 Information Processing Text and Office
Systems; Standard Generalized Markup Language (SGML).

To date, Web development tools have been limited in their ability to create dynamic Web
applications which span from client to server and interoperate with existing computing resources.
Until recently, HTML has been the dominant technology used in development of Web-based

solutions. However, HTML has proven to be inadequate in the following areas:

. Poor performance;

° Restricted user interface capabilities;

. Can only produce static Web pages;

. Lack of interoperability with existing applications and data; and
. Inability tolscale.

28

10

15

20

25

30

WO 01/16727 PCT/US00/24189

Sun Microsystem's J ava language solves many of the client-side problems by:

. Improving performance on the client side;
. Enabling the creation of dynamic, real-time Web applications; and
. Providing the ability to create a wide variety of user interface components.

With Java, developers can create robust User Interface (UI) components. Custom "widgets" (e.g.,
real-time stock tickers, animated icons, etc.) can be created, and client-side performance is
improved. Unlike HTML, Java supports the notion of client-side validation, offloading
appropriate processing onto the client for improved performance. Dynamic, real-time Web
pages can be created. Using the above-mentioned custom Ul components, dynamic Web pages

can also be created.

Sun's Java language has emerged as an industry-recognized language for "programming the
Internet." Sun defines Java as: “a simple, object-oriented, distributed, interpreted, robust,
secure, architecture-neutral, portable, high-performance, multithreaded, dynamic, buzzword-
compliant, general-purpose programming language. Java supports programming for the Internet
in the form of platform-independent Java applets.” Java applets are small, specialized
applications that comply with Sun's Java Application Programming Interface (API) allowing
developers to add "interactive content” to Web documents (e.g., simple animations, page
adomments, basic games, etc.). Applets execute within a Java-compatible browser (e.g.,
Netscape Navigator) by copying code from the server to client. From a language standpoint,
Java's core feature set is based on C++. Sun's Java literature states that Java is basically, "C++

with extensions from Objective C for more dynamic method resolution.”

Another technology that provides similar function to JAVA is provided by Microsoft and
ActiveX Technologies, to give developers and Web designers wherewithal to build dynamic
content for the Internet and personal computers. ActiveX includes tools for developing
animation, 3-D virtual reality, video and other multimedia content. The tools use Internet
standards, work on multiple platforms, and are being supported by over 100 companies. The
group's building blocks are called ActiveX Controls, small, fast components that enable
developers to embed parts of software in hypertext markup language (HTML) pages. ActiveX

Controls work with a variety of programming languages including Microsoft Visual C++,

29

WO 01/16727 PCT/US00/24189

Borland Delphi, Microsoft Visual Basic programming system and, in the future, Microsoft's
development tool for Java, code named "Jakarta." ActiveX Technologies also includes ActiveX
Server Framework, allowing developers to create server applications. One of ordinary skill in
the art readily recognizes that ActiveX could be substituted for JAVA without undue

experimentation to practice the invention.

30

10

15

20

25

WO 01/16727 PCT/US00/24189

OVERVIEW

ARCHITECTURE BASICS

Architecture Overview

What is architecture?

Architecture - whether the word is applied to work with a city skyline or an information system
-- is both about designing something and about making, building, or constructing something. An

architect is literally a "master builder" - from the Greek words archi (primary or master) and

 tekton (builder or carpenter). In good Greek fashion, however, it would be unthinkable for

something to be built without a sound theoretical basis. So architecture involves theory, but
there is nothing merely theoretical about it. Conversely, architecture is also eminently practical,
but there is nothing merely practical about it. Ideas about form and structure lie behind
architecture. Ultimately one must let go of a mindset that tries to separate the designing from the

making; they exist together as a whole, and to extract one without the other is to kill the whole.

Architecture also is an engineering discipline. It creates and also depends on a structured manner
to analyze and design whatever is to be built. Like all living disciplines, architecture continues to
grow and evolve. Engineering discoveries move the field forward. Certain design and
engineering principles clearly show themselves to be successful in practice, and these then
become repeatable components of additional work. The ability to continue to master each
component, as well as the interrelations among components, is a distinguishing characteristic of

architecture.

So architecture is about designing and building something from a set of basic components, and
also about the interrelations among the components. And it is a discipline whereby all these
things come together - materials, space, people - to bring something into being that was not there

before.

Although building architects have not always been pleased about it, architectural concepts have

influenced other kinds of "building" projects for some time. Over the past twenty years,

31

10

15

20

25

WO 01/16727 PCT/US00/24189

developers of information systems, for example, have used concepts from the field of

architecture not only to describe their work but to execute it, as well.

The use of architectural thinking implies that the work is about creating certain kinds of
structures that can be engineered or at least influenced, and that the work can be organized and
performed in a structured, systematic manner. Moreover, use of architectural concepts implies
that there is something repeatable about the work: architects can create a structure, then use

components of that structure again in the future when they come across a similar situation.

An architectural paradigm should not be lightly used. It makes demands. To use architectural
concepts implies that clients are ready to do so - that is, that the field is sufficiently mature in its

work to see patterns and to organize future work according to those patterns.

Finally, architecture must be understood as a process 200, not just a thing. This process can be

described at a very high level using Figure 2.

Step 1: Analyze 202. The architect must begin by listening to and researching the needs
of the client. What is the function of the building? What is its environment? What are the

limitations set by budget and use?

Step 2: Design 204. This is a blueprint stage. The architect creates one or several designs
‘showing the layout of the structure, how different spaces fit together, how everything

looks from different views, what materials are to be used, and so forth.

Step 3: Model & Test 206. Not every architectural project has this step, but in many
cases, the architect will create a scale model/prototype of the finished product, allowing
the client a clearer sense of what the ultimate solution will look like. A model is a kind of

test stage, allowing everyone to test the design in a near-real-life setting.

Step 4: Build 208. This is the actual construction of the building, in general accord with
the blueprints and prototype.

Step 5: Operate and Evolve 210. The building is to be lived in and used, of course, and

so an important step is to ensure that the finished product is tended and operated

32

WO 01/16727 PCT/US00/24189

effectively. Architects themselves may not be involved in the operation of their building,
but they certainly would be involved in future expansions or evolutions of the building.
Stewart Brand's recent text, How Buildings Learn, argues that effective architecture takes
into account the fact that buildings "learn™: as people live and work in them over time;

5 those people will seek to alter the building in subtle, or not so subtle, ways.

Also, when architects design a building, they have in their heads a primary conceptual
framework for all the components that go into that building: the plumbing, the electric, the
sewers, stairs/elevators, framing structure, and so forth. The tacit step for an architect is, "Based
on my knowledge of the generic components that go into a building, how will these components
10 fit together in this particular building? Which of these components will require special attention

because of the functional demands of the building?"

Oxford English Dictionary Definition:

The conceptual structure and overall logical organization of a computer or
computer-based system from the point of view of its use or design, a particular

15 realization of this.

Gartner Group Definition:

The manner or structure in which hardware or software is constructed. Defines
how a system or program is structured, how various components and parts
interact, as well as what protocols and interfaces are used for communication and

20 cooperation between modules and components which make up the system.
Gartner Group sets forth seven general characteristics of successful architectures.
Delimitation of the problem to be addressed

Decomposition of the solution to components with clearly assigned

responsibilities

33

10

15

20

WO 01/16727 PCT/US00/24189

Definition of interfaces, formats, and protocols to be used between the
components. These should be sufficiently clear and robust in order to permit

asynchronous development and ongoing re-implementation of the components.

Adequate documentation to permit compliance by implementors

An auditing mechanism that exercises the specified interfaces to verify that

specified inputs to components yield specified results

An extendibility mechanism to enable response to changing requirements and

technologies

Policies, practices, and organizational structures that facilitate adoption of the

architecture

What types of architectures are discussed in the following description?

Standard Architecture Framework (SAF) 300 provides access to the user's thought leadership
and architecture frameworks for Execution, Development and Operations environments
302,304,306. For a more detailed discussion on these architectures, please see Standard
Architecture Summaries (below). Figure 3 shows the dependencies of the three architecture

frameworks and is described in more detail in the Delivery Vehicle Overview (below).

The following lists are starting points for considering the range of components and activities that
must be covered by each architectural view of the system. They are not a definitions of the

environments.

34

WO 01/16727 PCT/US00/24189

Standard architecture summaries

Execution architecture 302

The execution architecture is a unified collection of run-time technology services, control

structures, and supporting infrastructure upon which application software runs.

It includes components such as:

Application messaging

Batch processing architecture

Middleware

Reporting

Error handling

On-line architecture

Security

Code / decode

Data access methods

Integrated help

File transfer capabilities

Directory services

Load balancing
35

WO 01/16727 PCT/US00/24189

Workflow services

State management

“Special” requirements (e.g., workflow, telephony, groupware)

Development architecture 304

The development architecture is a unified collection of technology services, tools, techniques,

and standards for constructing and maintaining application software.

It includes components such as:

Design /documentation tools

Information repository

Project Management tools

Program Shells

GUI Window painter

Prototyping tools

Programmer APIs

Testing tools

Source code control / build process

Performance test tools’
36

10

15

20

WO 01/16727 PCT/US00/24189

Productivity tools
Design tools
Compiler/debugger
Editor

Refer to the Development Architecture Framework application (referenced above) for more

information.

Operations architecture 306

A unified collection of technology services, tools, standards and controls required to keep a
business application production or development environment operating at the designed service
level. It differs from an execution architecture in that its primary users are system administrators

and production support personnel.
It includes components such as:
Job scheduler
Software distribution
Error monitor
Data backup and restore
Help desk
Security administration

High-Availability

37

10

15

WO 01/16727 PCT/US00/24189

Hardware management
Performance monitors

Startup / shutdown procedures
Report management tool
Disaster Recovery

Network Monitoring Tools

Cross Platform Management Tools

Considerations—all environments

To ensure that you are asking the right questions about the technology architecture, you must

refer to the Architecture Checklist (available from the Content Finder). Questions will include:
For all technology componeﬁts, have the following characteristics been addressed:
Performance according to specifications?
Reliability of operation?
Ease of operation?
Maintenance requirements?
Ability to interface with other components, particularly those from other vendors?
Delivery schedule to provide adequate pre-conversion testing?

Backup procedures?
38

10

15

20

WO 01/16727 PCT/US00/24189

Vendor reliability and financial stability?
Future proofing against business change?
Have the versions of system software been live at another site for at least six to twelve months?

This time frame varies by product. Have reference sites been verified?

What is a framework?

It is a major challenge to design the complex infrastructure that is needed to satisfy the
requirements of today's distributed, mission-critical applications. As such, it is helpful to have an
inventory of the components that may be required for the design, build, installation and operation
of systems. It is also helpful to have an understanding of how the components fit together

conceptually.

A Framework should be thought of as a conceptual structure used to frame the work about to be
done. It should be used as a thought trigger or as a completeness check. You cannot build from a

framework directly but instead should use it as a starting point for understanding and designing.

Frameworks are used to help practitioners understand what components may be required and
how the components fit together. Based on the inventory of components and the description of
their relationships, practitioners will select the necessary components for their design. An
architect extracts components from one or more Frameworks to meet a specific set of user or
application requirements. Once an architecture has been implemented it is often referred to as an

architecture or an infrastructure.

The scope of what a framework addresses can vary widely. One framework, for instance, may
outline the components for a technical infrastructure in its entirety whereas another framework
may focus explicitly on the network. A thorough understanding of a framework's scope is crucial

to its use during the design phase of a project.

39

10

15

20

25

WO 01/16727 PCT/US00/24189

It is also important to understand whether the framework is vendor specific in nature

(proprietary) or whether it is available for use by a large number of vendors (open).

Why is architecture important?

One has seen the benefits of an architectural approach to information systems development:
better productivity and less reinvention of the wheel. An architecture provides a completeness
check, ensuring that all relevant components of a possible solution have been considered. It
ensures consistent, reliable, high-quality applications. It gives everyone - the developers and

their clients - a common framework and common language with which to talk about the work.

Perhaps most important, it allows developers to leverage successful solutions when performing
additional work. Architecture involves repeatable concepts, and so it reduces the time and cost

by which a solution is delivered.

Some of the specific technical benefits of a good architecture are:

Simplified Application Development

Provides common set of application services. Removes application programmers from
the complexities of the underlying technology and development tools, allowing less

experienced developers to be more productive

Quality

Usually more experienced developers implement the often complex technical
components in an architecture. These components are then reused, avoiding duplicated
complex logic in the applications. Iterations during design, implementation and testing
often result in refinement and improvement of the architecture components. All users of -
these components benefit from such improvements, reducing the risk of failure and

ensuring better overall quality in the final application.

Integration
40

10

15

20

25

WO 01/16727 PCT/US00/24189

An architecture often ties together disparate software, platforms and protocols into one

comprehensive framework.
Extensibility

The architecture is established by experienced personnel who can predict with some
confidence whether a given architecture will fulfill current and future requirements. Code
extensions are easily integrated. A well-balanced architecture consists of the "right"
components, where the components are tied together by simple interrelationships, since
complex relationships increase the architecture's complexity faster than modularization

can reduce it.
Location Transparency

Divorces application from the details of resource location. This is however not always
true or required. For performance reasons designers and developers still often need to be

aware of process and data locations.
Horizontal Scaling

Assist in optimal utilization of existing infrastructure resulting in increased application

performance and stability
Isolation

An architecture can be used to isolate the applications from particular products. This
ensures that products can more easily be replaced later. This characteristic can be
important if there is risk associated with a product's or product vendor's future, or the rate
of change in a particular technology area is particularly high. An evident example is
looking back at changes in past user interface standards. Applications that did not
separate user interface logic from business logic, had to be completely rewritten to take
advantage of new user interfaces, such as MS Windows and more recently Web

browsers.

Portability
41

10

15

20

25

WO 01/16727 PCT/US00/24189

Increases portability and reusability within and across different platforms or protocols.

The use of architecture frameworks during analysis and design can reduce the risks of an IT
solution. It should improve development productivity through reuse, as well as the IT solution's

reliability and maintainability.

One key challenge for today's IT managers is the need for change. Architectures provide a basic
framework for major change initiatives. Clients' core business is performed by strategic
applications that will most likely require frequent and rapid development to handie changes in
technology capability and business requirements. A properly defined and intelligently developed
architecture delivers an infrastructure on which clients can build and enhance applications that

support their current and future business needs. This is how one helps clients to manage change.

A key benefit of an architecture is that it divides and conquers complexity. Simple applications
benefit less from architecture than complex ones do; fewer decisions are needed in these cases,
and fewer people need to know about them. During maintenance, a poorly architected small
application is tolerable because it is still relatively easy to locate a fault and to anticipate the side
effects of correcting it. Conversely, complex applications are more difficult to understand and to
modify. Complexity is reduced by subdividing the application in layers and components, each
layer having a specific functionality. The layers are strongly cohesive and de-coupled: A given

layer does not need to know the internals of any other layer.

The following quote from a recent study of Large Complex Systems (LLCS) stress the importance

of a stable architectures in large systems:

Successful delivery of an LCS solution depends on the early definition and use of

common data applications and technology architecture.

There is a high failure rate when the architecture is not defined, stabilized, and

delivered early in an LCS effort.

All significant LCS efforts involved the use of common or shared architectures. A
successful effort, however, depended on early definition and delivery of a stable common

architecture.

42

WO 01/16727 PCT/US00/24189

Significant changes to the data, application, or technology architectures had severe
negative effects on the timeliness of project deliverables, and on the reliability of

what was delivered.

PROJECT1 and PROJECT?2, for example, experienced unusual circumstances. While the
client evaluated whether to proceed, one defines and designs the architecture. As a result,
the teams had nine months to define, design, and begin implementation of required data,
applications, and development architectures. Although in each case these architectures
continued to evolve with business and technology needs, they remained largely consistent
with the initial design. This consistency proved to be essential to the timely delivery of

the applications.

At PROJECT3 and PROJECT4, on the other hand, the architectures went through major
evolutions as the developers created the applications. The overall result was that those

efforts experienced delays relative to plan.

Although it is not realistic for every project to have nine months to define required
architectures, it does suggest that early focus on definition and design of the architectural

components is essential.

The risk of failure is greatly increased if essential architectures are being defined or

changed significantly in parallel with application development.

What are the benefits of an architecture?

The benefits derived from a technology architecture may allow a user to be in the forefront of the
development of many leading edge business solutions. The investment in a reliable and flexible

architecture can result in one or more of the following:

Preservation of investments in applications and technology by isolating each from
changes in the other (e.g. upgrades in hardware or third-party software do not impact

applications).

43

10

15

20

WO 01/16727 PCT/US00/24189

Leveraging scarce technical skills (e.g. the need for people with detailed skills in a

specific communications protocol or aspects of SQL).

Enhancements in productivity, flexibility and maintainability because common and often
complex and error-prone components (e.g. error handling or cross-platform

communications) are created within the architecture, and then reused by all applications.

Increases in the predictability of application performance because the run-time behavior

of common components is familiar and consistent.

Serves as a construction blueprint and discussion agenda and ensures consistency across
systems. This can have a big impact on the operability and maintenance of the delivered

applications.

What is an architect?

Architects must have deep understanding of a project, business and/or technical environment.
Architects are involved across business integration projects, managing their complexities and

intricacies.
How advanced should an architect be?

It 1s easy to go overboard when designing and implementing a technology architecture. Ideally
the architecture should be a thin, well-defined layer that ensures development productivity,

maintenance flexibility, performance and stability.

A key issue is maintainability and operability. Keep in mind that others may have to understand

the rationale behind the architecture design in order to correctly maintain it.

Architecture logic can quickly become very abstract and hard to maintain by others than those
who built it. A carefully designed architecture can quickly be destroyed by maintenance

personnel that do not understand how it was designed and developed.

44

10

15

WO 01/16727 PCT/US00/24189

You should make your architecture as light-weight as possible only addressing the requirements
that drive it. Avoid "nice to have" flexibility and additional levels of abstractions that are

intellectually interesting but not strictly required.

Delivery Vehicle Overview

A Delivery Vehicle is an integrated collection of technology services that supports an

application style, implemented on a distinct architecture generation.

Application style

An application style defines a unique class of processing type, which is used by applications, and
thus end-users. Delivery Vehicle Reference set of Application Styles include batch, on-line

transaction processing, collaboration, data warehouse, knowledge management and integration.

The Application Style is the primary dimension of a Delivery Vehicle, and most people use the

terms Application Style and Delivery Vehicle to mean the same thing.

A key goal with a delivery vehicle is that it can be reused across many applications. It is still part
of the Technology Architecture, not involving application specific logic. An Application

Architecture on the other hand, will be specific for a particular application.

Architecture generation

45

10

15

20

25

WO 01/16727 PCT/US00/24189

An architecture generation is a broad classification scheme for placing technology components
within a technology era. Delivery Vehicles are physically implemented on a distinct
architecture generation. Examples of architecture generations include host-based, client-server

and netcentric.

Note: Defining a clear line between what falls under the client/server and a Netcentric
technology generation is difficult; typically different people tend to have different opinions.
Technologically, the Netcentric generation may be an evolution of the client/server generation.
In the context of the Delivery Vehicles, the technology generation discussion may be intended to
be a logical discussion that aims to highlight the new business capabilities enabled by new
technologies. So for example, there could be a PowerBuilder application executing from a Web
Browser using a plug-in. Whether this is called a client/server or Netcentric application is up to
the reader. When presenting technology architecture information to clients, focus on the
business capabilities that are offered by technologies rather than just on definitions for what is

client/server or what is Netcentric technology.

Delivery vehicle matrix

Figure 4 illustrates a delivery vehicle matrix 400. One way of looking at a Delivery Vehicle is
therefore as an intersection of a technology generation 402 and application style 404. This is the

presentation method currently adopted for navigation in SAF.

Delivery vehicle cube

The Delivery Vehicle Cube 500, illustrated in Figure 5, represents the "full” picture of what a
Delivery Vehicle is. In addition to the Application Styles and the Technology generations it
introduces a distinction between Execution, Development and Operations Environments

502,504,506.

46

10

15

20

25

WO 01/16727 PCT/US00/24189

The cube has the following dimensions, or cube “faces:

1. On the bottom left face of the cube are the core technology components and services

508 that are common across all delivery vehicles.

These core services may be implemented using one or several of the Technology Generations;
currently Host, Client/Server or Netcentric. Most major enterprises have legacy systems that
include both host based and distributed client/server applications. Netcentric applications may

extend the mix of system technologies.

2. On the top left of the cube are the technology components 510 that are required to

support a distinct delivery vehicle.

These components extend the technology architecture with services that are specific for each

distinct delivery vehicle. Some of the components may extend some of the core services

3. On the right face of the cube are the three environments each delivery vehicle will

affect: execution, development and operations 502,504,506.

Both the core services and the delivery vehicle extensions require support in all three
environments. The cube illustrates that different delivery vehicles may require different
extensions to a core development or operations environment, not just the execution architecture.
A mission-critical high-volume transaction delivery vehicle may require special performance
tuning tools in the development architecture, as well as real-time monitoring tools in the:

operations architecture.

Also different technology generations may require special services in all three environments.
When working in a multi-platform environment, there may be duplicated services across
platforms. This usually complicates development, operations and execution architectures and

may require special focus on providing an integration architecture.

The following figure illustrates the relationship between the three environments and the overall

business system:

47

10

15

20

WO 01/16727 PCT/US00/24189

Typically, one may focus on engagements regarding the execution environment. The main
dependency between these three environments is that the execution architecture to a large degree
drives the requirements for the development and operations architectures. For example if a
heterogeneous, distributed execution architecture is selected, both the development and

operations environments must reflect this.

How can the delivery vehicle framework be useful?

Refocus users and clients toward business solutions and away from technology issues.
Help you link architecture planning deliverables to delivering.

Create an enterprise-wide view of the busineés capabilities enabled by technologies.

Provide new architecture frameworks needed today to meet you’re a user’s client’s business

needs.
Provide guidance to define what architecture best meets you’re a user’s client’s business needs.
Provide standard architecture frameworks and best practices to build these architectures.

During a high-level architecture design, help the user identify architecture services the user will
need to address, by providing a logical level discussion one can use to assess types of base

services and products needed for the specific situation.

When Delivery Vehicles are implemented, they reduce time to implement business solutions by

providing “Starter Kits” architectures.
When Delivery Vehicles are implemented, they leverages technology across the business by:

reducing operations and maintenance costs by limiting the number of different

technologies and skills required to support these technologies.

48

10

15

20

25

WO 01/16727 PCT/US00/24189

reducing technology costs for execution & development.

Note: The Delivery Vehicle Framework presents a way to organize technology architecture
information. When presenting this type of contentclient, one may need to tailor the information

they present based on the client’s background and the terminology they are familiar with.

Technology Generation Selection

Introduction

This section should assist an architect in understanding the characteristics of, and the
implications from selecting, a specific technology generation. The strengths and weaknesses of
each technology generation should be understood when planning and designing a system. When -
identifying the core technologies to be used in an architecture, a view of the client's existing IT
architecture 600, guiding principles 602 and business imperatives 604 should be taken into

consideration, as depicted in Figure 6.

It is important to realize that a distinct, static division does not exist between the different
technology generations. It is possible that an architecture may consist of components from more

than one generation.

The goal should be to understand the pros and cons of the different technology options available

for each component and to select the most appropriate one based on the client's requirements.

It is becoming more important to leverage existing systems and integrate them with new
applications. A typical scenario can involve mainframe legacy systems acting as servers in a
client server architecture, application servers being accessed from both traditional GUI clients
built in Powerbuilder and Visual Basic and from Web-based front ends accessing the application

servers via a Web-server.

General considerations
49

10

15

20

25

WO 01/16727 PCT/US00/24189

From a technology point of view a new custom-made application should generally use the most
recent Architecture Generation to assure that the application will live longer by better being able

to adapt to future changes.

This implies that most applications should ideally be based on a Netcentric Architecture, rather

than on a traditional client/server or a host-based architecture.

However choosing a generation is not just a technical decision. Often key technology
architecture decisions are made as a result of factors which are completely non-technical in
nature, such as financial factors, internal and client politics (say no more), and

implementation/operational considerations.

When deciding whether to employ a Netcentric solution, i.e. incorporating Web-based user
interfaces and Internet application styles, keep in mind that these technologies are not a panacea
and should be used only when there is solid business reason. They require new investments in
skills, tools, development and operations processes. Due to the relative immaturity of tools and
products, they also represent additional risks both in technical terms, such as performance and

reliability, and in strategic terms, such as vendor and product quality and stability.

Regardless today each prbj ect should always consider the prospect of utilizing Netcentric
technologies. It is important to evaluate whether the application can benefit from a Netcentric

style implementation immediately or in the future.

Even if a traditional client/server approach (e.g. using Visual Basic or PowerBuilder) is decided
upon, the use of Netcentric concepts to produce significant reductions in software packaging and
distribution costs should be considered. Such concepts include three- or multi-tier architectures
with more business logic residing on server, flexible security architecture, and user interface

concepts that can be ported to a Web Browser at a later stage.

A Netcentric architecture will usually still support development of client/server applications. The
opposite is not often true since traditional client/server systems usually keep a substantial portion
of the business logic on a fat client, while Netcentric architectures still favor keeping most
business logic at the server side. Also Netcentric architectures tend to be more loosely coupled

than (the still dominant two-tier) client/server systems.

50

10

15

20

WO 01/16727 PCT/US00/24189

The following sections identify the main characteristics associated with a Netcentric, Client
Server or Host based technology generation. This list should in no way be considered complete
and exhaustive but is included as a starting point from which the identification process may

begin.

Network centric architecture generation

If, based upon one’s client's requirements, most of the statements in Figure 7 are true, one should

consider an application based upon the Netcentric technology generation.

The following details the importance of each of the statements in Figure 7 and should assist one

in identifying the appropriate answer for the specific client engagement.

Existing architecture and infrastructure 700
El. Other Netcentric applications been developed and placed in production.

The user community is often less resistant to accept the use of new technology to address
changing business drivers if they are not completely unfamiliar with the characteristics of
the technology. If an application based on a Netcentric architecture has already been

successfully piloted or deployed, acceptance of additional systems will be eased.
E2. The client has significant technology skills within its IT department.

This is especially important if the client plans on developing or operating the application
themselves. A significant investment in training and changes to internal organizations
may be necessary for successful deployment of this type of system. The client must have
a culture that supports change. Some organizations are very conservative and strong,

making it difficult to deliver a successful project using new technology.

51

10

15

20

25

WO 01/16727 PCT/US00/24189

E3. The client has multiple hardware/operating system configurations for their

client machines.

In traditional client/server environments, distributing an application internally or
externally for an enterprise requires that the application be ported, recompiled and tested
for all specific workstation operating systems. Use of a Universal Client or web-browser
may eliminate many of these problems by providing a consistent and familiar user

interface on many different operating systems and hardware platforms.
E4. The application will run on a device other than a PC.

The momentum of the Internet is putting a lot of pressure on vendors of various devices
to be web-enabled. Having the Internet infrastructure in place makes it more feasible for
vendors to create new physical devices from which electronic information can be
accessed. For example, Web televisions are gaining momentum. Now users can access
the Internet from a television set. Network Computers, thin-client devices that download
and run applications from a centrally maintained server are generating a lot of interest.
Also, users want to have access to the same information from multiple physical devices.
For example, a user might want to have access to his/her e-mail from a cellular phone,

from a Web TV or their portable PC.

E5. The current legacy systems can scale to serve a potentially large new

audience.

Expanding the user community of a legacy host or client/server system by including an
audience which is external to the company can result in dramatic increases in system
usage. The additional demand and increased usage placed on existing legacy systems is
often difficult to estimate or predict. Analysis must be conducted to ensure existing

legacy systems and infrastructure can absorb this increase.

Business imperatives 702

Bl. The client needs to reach a new external audience with this application.

52

10

15

20

25

WO 01/16727 PCT/US00/24189

This is probably the main reason for selecting a Netcentric architecture. Through
appropriate use of a Netcentric architecture it is often possible to gain exposure to new
customers and markets. The client can often achieve significant competitive advantage
by providing new services and products to its customers. Also this new channel makes it
technically possible to develop a new generation of "market-of-one" products, where
each customer can repeatedly and easy customize a product according to own

preferences.

B2. The client needs to reach a large or diverse internal audience with this

application.

Configuration management of traditional client/server applications, which tend to be
physically distributed across both the client and server, is a major issue for many
corporations. The software distribution of such applications which are packaged as one
large or a combination of a few large executables makes minor updates difficult for even
a small scale user population. Every time an update is made, a process must be initiated
to distribute new code to all client machines. The browser-centric application style offers
an alternative to this traditional problem of distributing functionality to both internal and

external users.

IT guiding principles 704

G1. The client is an early adopter of new technology.

Implementation of a Netcentric architecture can help the client realize a number of
business benefits. However, the introduction of new technology into an organization
does have inherent risks and can result in a significant amount of change. The client

should have a culture which can embrace these necessary changes.

G2. Applications should be developed to handle non-dedicated or occasional

users.

Non-expert users need a simple to use and familiar interface in order to be able to use the

application. As people grow accustomed to Web—bfowsers, this will be their preferred

53

WO 01/16727 PCT/US00/24189

user-interface. The consistent interface provided by the Web-browsers will help reduce

the learning curve necessary for becoming familiar with new applications.

G3. Where appropriate, applications should be developed with multi-media

capabilities for the presentation of data (text, sound, video, etc.).

5 The ability to digitize, organize, and deliver textual, graphical and other information (e.g.,
video, audio, etc.) in addition to traditional data to a broader audience, enables new
methods for people and enterprises to work together. Netcentric technologies (e.g.,
HTML documents, plug-ins, Java, etc.) and standardization of media information formats
enable support for these types of complex documents and applications. Network
10 bandwidth remains a performance issue. However advances in network technologies and
compression techniques continue to make richer media-enabled documents and

applications more feasible on the Web.

G4. The Execution, Operation and Development architectures will be designed to
support frequent releases of enhancements/modifications to production

15 applications.

It is imperative that companies in the current market place be able to quickly modify their
business processes in order to address changes in the industry. A Netcentric architecture

simplifies frequent software releases for both internal and external users of the systems.

20 Client/server network generation

If, based upon a client's requirements, most of the statements of Figure 8 are true, one should

consider an application based upon the Client Server technology generation.

54

10

15

20

WO 01/16727 PCT/US00/24189

The following section details the importance of each of the statements found in Figure 8 and

should assist one in identifying the appropriate answer for your specific client engagement.

Existing architecture and infrastructure 800

E1. Other Client Server applications been developed and placed in production
and the client IT organization contains personnel familiar with client server

architecture concepts.

As with any new technology, there is a learning curve related to attaining client server
development skills. The development process is often much more efficient when familiar
tools and environments are used. The introduction of new technology can also create
instability in the operations environment. Client/server systems still represent a new

technology to many IT departments.

Business imperatives 802

Bl. The application will be used only by an internal user community.

Software distribution is a concern for traditional client server computing environments
due to the fact that executable and data files need to reside on the client hard drive.
Distribution to a user community outside of the client's organization is even more
difficult to implement and manage and will probably be limited to a few key business

partners.

B2. The application requires an advanced, dynamic, and integrated user

interface for expert users.

State of the art 4GL and 3GL development languages will support advanced user
interfaces which require a significant degree of context management between fields and

windows. Web-based user interfaces do not support such interfaces well yet.

55

10

15

20

WO 01/16727 PCT/US00/24189

B3. Session performance is critical to the application or sub-second response

times are required for successful use.

Client server applications can provide response times necessary to support transaction
intensive mission critical systems. Application logic and business data can be distributed
between the client and server for optimal efficiency. Web-based interfaces still have an
inherent overhead due to the connectionless communication and constant downloading of

data, formatting information and applet code.
B4. The application needs to support off-line mobile users.

Mobile computing is becoming more prevalent in the work place, therefore, connectivity
to a server can not be assumed for all user classes. A client server architecture allows for
the distribution of application logic and/or data between the server and client. Replication

of data and logic is usually necessary for applications that are run on portable computers.

IT guiding principles 804

G1. The client maintains their applications internally and the IT department has
the necessary resources, organizations and processes to maintain a Client Server

application.

Introduction of a Client Server application to a company's production environment can
require a great deal of change to the Execution, Operations and Development
architectures required to develop, run and support the production systems. Before a
Client Server application is developed, it is important that the client identify how a

system of this type will fit within the company's strategic technology plan.

Host architecture generation

56

10

15

20

WO 01/16727 PCT/US00/24189

If yclients business and technical requirements meet the following system characteristics, you

should consider an application based upon the Host technology generation.

The following section details the importance of each of the statements found in Figure 9 and

should assist you in identifying the appropriate answer for your specific client engagement.

Existing architecture and infrastructure 900

El. The client currently maintains and operates host based applications and the
IT organization contains personnel familiar with the development and operation of

these types of applications.

Few organizations introduce solely host based production systems. Usually the
infrastructure for this type of systems already exists. New development is uncommon,

typically existing legacy systems need to be extended.

Host systems usually have a mature and stable operations environment. Note that

mainframe expertise may be expensive and in high demand
Business imperatives 902

B1. The application will only be used by a dedicated, expert user community

where a GUI is not needed.

A dedicated work force with low turnaround, skilled in the use of character based 3270

applications, eliminates the need for a GUI interface.
B2. The application requires a high volume of repetitive transactions.

The high degree of processing power provided by mainframes allows for the

development of applications with very high performance requirements.

B3. The application has a requirement for significant batch processing.

57

10

15

20

WO 01/16727 PCT/US00/24189

Mainframes are probably still the most powerful platforms for large scale batch
processing. Mature tools exist for scheduling, recovery/restart, sorting, merging, and

moving large sets of data.

B4. End users can maintain a physical connection to the host at all times.

Physical connection to the host is required for use of the applications. Methods of mobile

computing with distribution of data or business logic is not possible.

B5. The application will need to support a large number of users (>1000).

The processing power of today's mainframe lends itself well to the development of large

scale, mission critical applications with a large user base.

IP guiding principles 904

G1. The Client has the resources, organizations and processes necessary for the

development and operation of a Host based application.

Before a Host based application is developed, it is important that the client identify how a

system of this type will fit within the company's strategic technology plan.

G2. Reliance upon a single vendor (IBM) for technology solutions is acceptable.

Selection of a host based architecture inherently locks the client into dependence upon
one vendor for its technology solutions. While IBM is a reputable, stable company it
may be important to ensure that the client's long term business strategy will be supported

by IBM's technology vision and direction.

G3. Centralized application and data is an acceptable strategy.

A pure host based architecture eliminates the possibility of distributing data or business
logic to the client. This removes some of the application performance benefits which can
be seen by a distribution strategy, however, centralized access to the business logic and

business data can improve operational stability and lower costs.
58

WO 01/16727 PCT/US00/24189

A current trend is to transform mainframe based legacy systems into data- and

application servers in a multi-tiered client/server or Netcentric architecture.

Overview of the Frameworks

5 One may ask: what frameworks one should use? This portion of the specification should help

one understand:
when the various frameworks in SAF can be useful

how the frameworks are related

10 Frameworks related to delivery vehicles
Most of the frameworks in SAF address various aspects of Delivery Vehicle architectures.

SAF provides access to the user’s thought leadership and architecture frameworks for

Execution, Development and Operations environments. Very briefly, SAF covers:

The Core Execution Architecture frameworks for the different architecture generations
15 ~ (Host, Client/Server and Netcentric). Most users will primarily use the Netcentric

framework.

The Execution Architecture Extensions. This is a collection of the most common
delivery vehicles that are built for clients. These frameworks extend the core frameworks

with services specific for a particular delivery vehicle.

20 The Development Architecture Framework. Should help one establish and operate a

high-quality development environment.

59

10

15

20

WO 01/16727 PCT/US00/24189

The Operations Architecture Framework. Should help one establish and operate a high-

quality operations environment.

To learn more about what Delivery Vehicles are, see the Delivery Vehicle Overview
section. This page explains the relationships between Architecture Generations,

Application Styles and Environments.

Framework extensions and other frameworks

The remaining frameworks in SAF are special purpose frameworks that may not directly fit into

the current Delivery Vehicle definition.

They may be extensions to the delivery vehicle frameworks such as Call Center, Mobile,

eCommerce Application Framework, Middleware or Component Technologies.

Framework recommendations

The frameworks in SAF address different aspects and areas of technology and application
architecture. No single framework may cover this scope. Depending on the phase of one’s
project and the type of applications one’s project will deliver, one may need to use different

specialized frameworks.

Most implementations today may begin by considering the Netcentric Execution framework,
then adding extensions for the delivery vehicles or specific technologies that your project will
use. Keep in mind, however, the Development and Operations frameworks. Also, remember
that some architectures will need to be built on multiple frameworks, most likely involving the

Integration framework to bridge between them.

This section lists all the frameworks currently available in SAF, indicates when they may be

useful, and how it relates to other frameworks:

60

10

15

20

25

WO 01/16727 PCT/US00/24189

Netcentric

When is it useful?

This framework constitutes the core of a modern netcentric and client/server execution
architecture. It will help one plan and design one’s architecture by understanding what

components a typical netcentric architecture should consist of.

NETCENTRIC ARCHITECTURE FRAMEWORK

FRAMEWORK OVERVIEW

Introduction

The Netcentric Architecture Framework identifies those run-time services required when an
application executes in a Netcentric environment. As shown in Figure 10, the services can be
broken down into logical areas: Presentation Services 1000, Information Services 1002,1004,
Communication Services 1006,1008, Communication Fabric Services 1010, Transaction
Services 1012,1014, Environment Services 1016,1018, Base Services 1020 and Business Logic
1022,1024. This framework is an evolution of the Client Server New Age Systems Framework
and is useful for technical architects involved in the selection, development and deployment of
technical architectures in a Netcentric environment. More discussion of each of these logical
areas is provided below. See also Figures 11 and 12, which are detailed diagrams of the

components of the Netcentric Architecture Framework found in Figure 10.

Netcentric Computing Top 10 Points

Netcentric computing represents an evolution -- it builds on and extends, rather than

replaces, client / server.

61

10

15

20

WO 01/16727 PCT/US00/24189

Netcentric computing has a greater impact on the entire business enterprise, hence greater

opportunity and risk.

Definitions of Netcentric may vary. One is about reach and content.

Netcentric is not just electronic commerce; it can impact enterprises internally as well.

You can begin identifying Netcentric opportunities for clients today.

There are three basic types of Netcentric applications: advertise; inquiry; and fully

interactive.

One can underestimate the impact of Netcentric on infrastructure requirements.

Build today's client / server engagements with flexibility to extend to Netcentric.

Netcentric Computing Definition:

Netcentric Computing also called Netcentric Architecture, Netcentric Technology, etc. is an
emerging architecture style which expands the reach of computing both within and outside the
enterprise. Netcentric enables sharing of data and content between individuals and applications.
These applications provide capabilities to publish, interact or transact. Netcentric represents an
evolution of Client/Server which may utilize internet technologies to connect employees,

customers, and business partners.

Client/Server vs. Netcentric Computing (NCC)

NCC is a new style of computing that expands on the technological base already provided by
traditional client/server systems. Many of the traditional client/server design concepts and

considerations still apply to NCC.

62

10

15

20

WO 01/16727 PCT/US00/24189

The important differences between client/server systems and NCC systems are:

Tiers

The way in which the application logic is distributed to clients is different in NCC and
traditional client/server systems. In NCC systems, application logic can be packaged into
components and distributed from a server machine to a client machine over a network. In
traditional client/server systems, the application logic is split between the client and the

server on a permanent basis; there is no dynamic distribution of application logic.

The number of tiers in NCC and traditional client/server systems is different. NCC

extends the traditional two-tier client/server architecture to a n-tier architecture.

The client in NCC systems is different from a client in traditional client/server systems.
The client in a NCC system is a standardized universal one; a NCC application can
execute within a client that can run on multiple operating systems and hardware
platforms. In traditional client/server systems, the client is custom-made for a specific

operating system and hardware platform.

The way in which NCC and traditional client/server systems can be extended and adapted
is different. Components enable NCC systems to be adaptable to a variety of distribution
styles, from a “thin client” to a “fat client”. In comparison, traditional client/server

systems, once designed and built, cannot be adapted for use on more than one computing

style

Similarly to traditional client/server architectures, Netcentric architectures support a style of

computing where processes on different machines communicate using messages. In this style,

"client" processes delegate business functions or other tasks (such as data manipulation logic) to

one or more server processes. Server processes respond to messages from clients.

63

10

15

20

WO 01/16727 PCT/US00/24189

Business logic can reside on both client and server. Clients are typically PCs or Workstations
with a graphical user interface running in a Web browser. Servers are usually implemented on

UNIX, NT or mainframe machines.

A key design decision for a client/server system is whether it should be two-tiered or multi-tiered
and how business logic is distributed across the tiers. In Netcentric architectures there is a
tendency to move more business logic to the server tiers, although "fatter" clients are becoming

more popular with newer technologies such as Java and ActiveX.
Two-Tiered Architectures

Two-tiered architecture describes a distributed application architecture in which business
applications are split into front-ends (clients) and back-ends (servers). Such a model of
computing began to surface in the late 1980s and is the prominent configuration in use today by

companies which have attempted to migrate to client/server based computing.
Advantages

At a minimum, a two-tiered client/server architecture assumes that an application’s presentation
logic resides on the client and its data management logic resides on the server. This style of
computing became attractive to early adopters of client/server because it clearly addresses the
inadequacies of a character-based interface. That is, it allows PC-based clients to introduce a

graphical user interface (GUI) into the application environment.
Allows rapid development “out-of-the-box”

Decreased communication overhead because of a direct connection (for a small number

of users)

Allows the distribution of the program’s logic (application, presentation, data

management)

Limitations of Two-Tiered Architecture

64

10

15

20

WO 01/16727 PCT/US00/24189

The use of two-tier tools has resulted in a defacto “client-heavy” or “fat-client” two-tiered model
where the presentation and application logic resides on the client and data management resides
on the server. In fact, the use of these tools “out-of-the-box” assumes the adoption of such a
model. Unfortunately, such an architectural model falls short of addressing many important
issues required of an enterprise-wide information architecture. This model of computing was
actually developed for less-demanding PC environments where the database was simply a tool

for decision support.

Limitations:

Limited/cost prohibitive Scalability

Limited availability

Limited reliability

Security Deficiencies

Network/Database bottlenecks

Low implementation flexibility

Limited Asynchronous processing

Three-Tiered or multi-tiered Architectures

Three-tiered architecture describes a distributed application architecture in which business
applications are separated into three logical components: presentation and control, application
logic, and data management. These logical components are “clean layered” such that each runs

on a different machine or platform, and communicates with the other components via a network.

A three-tiered architecture is often enhanced by the integration of distributed transaction
processing middleware. This model of computing is often termed the “enhanced” client/server

65

10

15

20

25

WO 01/16727 PCT/US00/24189

model. Most Netcentric architectures use a three- or four tiered approach with a web server and

potentially a separate application server layer.

In the enhanced client/server model, all presentation and control logic resides on the client, all
application logic resides on multiple back-end application servers, and all data management logic

resides on multiple back-end database servers.

Advantages

In contrast to mainframe and two-tiered client/server computing models, the principle advantage
with a three-tiered enhanced client/server architecture is that it provides the benefits of a GUI
application, but also provides a level of integrity and reliability found in mainframe centralized
computing. That is, it will evolve to serve high-volume, high-integrity, and high-availability

environments.

Location and implementation transparency - The use of a transaction manager such as

Tuxedo allows for service location independence.

Distribution of logic to optimal resource - Since the application and database functions
reside on their own physical devices, each can be optimally tuned for the work they

perform.

Database scaleable on throughput - In the enhanced three-tiered client/server model,
client applications no longer connect directly to database servers. Instead, only

application servers connect to the database servers.

Security over service resources - With the application logic residing on back-end

application servers, security over the applications is made possible at various levels.

Redundancy and resiliency of services - A major disadvantage prominent in other models

of computing is “single point of failure

Optimization of personnel resources - Developers can be utilized for specific talents in

each tier.

66

WO 01/16727 PCT/US00/24189

Allows for asynchronous and standardized messaging - The enhanced client/server model
is really a superset of the RPC-based function shipping model which provides features

such as asynchronous, event-driven programming.

Administration, configuration, prioritization - The use of a transaction manager enables
5 servers to be added, removed, or restarted dynamically. This allows for very robust,

scaleable, and flexible applications.
Disadvantages

Three-tier architectures are highly flexible. This flexibility comes with the cost of being more

complex to implement.

10
Limitations:
Additional tool (middleware) selection
Longer implementation times
Greater development costs associated with additional tier
15 More complex planning

Additional Skills

Extra Hardware

Greater complexity for maintenance, configuration management

20 PRESENTATION 1000

67

10

15

20

25

WO 01/16727 PCT/US00/24189

Presentation Services enable an application to manage the human-computer interface. This
includes capturing user actions and generating resulting events, presenting data to the user, and
assisting in the management of the dialog flow of processing. Figure 13 illustrates several

components of the Presentation area of the Netcentric Architecture Framework.

Exemplary products that may be used to enable this component include Visual Basic;
PowerBuilder; C++; Windows 3.x/NT/95; X-Windows/Motif;, Visual C++; Borland Delphi; AC
FOUNDATION for FCP.

The products listed as candidates for specific components here and below should be used with
care. These examples do not provide an all-inclusive list, nor do they necessarily represent the
current market leaders. They are there to provide an example of products that may enable the

component services.

Window System 1300

Typically part of the operating system, the Window System Services provide the base
functionality for creating and managing a graphical user interface (GUI) -- detecting user actions,

managing windows on the display, and displaying information in windows.

Implementation considerations

Windowing systems expose their functionality to application programs through a set of
application programming interfaces (APIs). For the Microsoft windowing platform, this API is
called Win32. The Win32 APl is a documented set of over 500 C functions that allow
developers to access the functionality of the windowing system as well as various other
operating system functions. While it is possible for developers to directly call the Win32 API or
its equivalent on other platforms using a C language compiler, most business application

development is done using higher level development languages such as Visual Basic or

68

10

15

20

25

WO 01/16727 PCT/US00/24189

PowerBuilder which make the lower level calls to the operating systems on behalf of the

developer.

Exemplary products that may be used to enable this component include Microsoft Windows;
Windows 95; Windows NT; Macintosh OS; Program Manager for OS/2; X-Windows/Motif;
JavaOS

Desktop Manger 502

Desktop Manager Services implement the desktop metaphor. The desktop metaphor as the name
suggests is a style of user interface that tries to emulate the idea of a physical desktop allowing
you to place documents on the desktop, launch applications by clicking on a graphical icon, or
discard files by dragging them onto a picture of a waste basket. Most Window Systems contain
elementary Desktop Manager functionality (e.g., the Windows 95 desktop), but often more user

friendly or functional Desktop Manager Services are required.

Microsoft Windows 95 task bar; Norton Navigator; Xerox Tabworks; Starfish Software
Dashboard

Product considerations

Exemplary products that may be used to enable this component include:

Microsoft Windows 95 task bar - provides a launch bar which allows users to access
recently used documents, launch applications, or switch between active applications. The
Windows 95 desktop and launch bar are programmable allowing users to extend and
customize the desktop manager for their specific application. For example, the desktop
can be extended with icons or Start Menu options for creating a new customer account or

finding an order.

Norton Navigator - provides multiple virtual desktops, enhanced file management

including direct FTP connectivity, long file name support for some 16-bit applications,

69

10

15

20

25

WO 01/16727 PCT/US00/24189

file un-erase, and other features; targeted at users who often interact with the Windows

95 desktop.

Xerox Tabworks - presents the user with a notebook metaphor for application and
document access; allows creation of tabbed sections which contain related files (e.g.,

Winston Account or New Product Launch) for easier access.

Starfish Software Dashboard - a desktop utility designed to simplify
application and system management; provides quick launch buttons, system

resource gauge, drag-and-drop printing and faxing, calendar, etc.

Form 1304

Form Services enable applications to use fields to display and collect data. A field may be a
traditional 3270-style field used to display or input textual data, or it may be a graphical field

such as a check box, a list box or an image. Form Services provide support for:

Display - support the display of various data types (e.g., text, numeric, date, etc.) in various

formats (e.g., American/European date, double-byte characters, icons, etc.)

Input/Validation - enable applications to collect information from the user, edit it according to

the display options, and perform basic validation such as range or format checks.

Mapping Support - eliminate the need for applications to communicate directly with the
windowing system; rather, applications retrieve or display data by automatically copying the
contents of a window's fields to a copybook structure in memory. These Services may also be

used to automate the merging of application data with pre-defined electronic form templates.

Field Interaction Management - coordinate activity across fields in a window by managing field
inter-dependencies and invoking application logic based on the state of fields and user actions.
For example, the Field Interaction Manager may disable the "OK" button until all required input
fields contain valid data. These services significantly reduce the application logic complexity

inherent to an interactive windowed interface.
70

10

15

20

25

WO 01/16727 PCT/US00/24189

Implementation considerations

In traditional client/server applications, Forms are windows that contain widgets (text fields,
combo-boxes, etc.) and business logic. Form development tools such as Visual Basic,
PowerBuilder, etc. allow the Form designer to specify page layout, entry fields, business logic,
and routing of forms. From a developers perspective, these products typically expose Form and

control handling functionality as a set of proprietary or product specific APIs.

In addition to the traditional tools (e.g., Visual C++, Visual Basic, PowerBuilder), Netcentric
technologies have introduced new tools that can be used to develop Forms. For example, a
developer can use Symantec Visual Café to create a Java application that will execute directly on

the users desktop without any interaction with a browser.

Today most Netcentric applications are Web based and are launched from the Web browser.
Additionally, one is now beginning to see other types of Netcentric solutions. For example,
PointCast is a Netcentric application located on the users machine; it relies on the Internet to
deliver stock prices, news headings, sports updates, etc. to the user. However, it is not launched
from the Web browser - it is its own application. In the future there will be more Netcentric

applications that use this approach for delivering information.

Product considerations

What level of technical support, documentation, and training is required to ensure the

productivity of developers?

The extent of support (on-site, phone, bulletin board, world-wide, etc.), quality of

documentation, and availability and location of education/training should be considered.

What functions are required in the control set?
71

10

15

20

WO 01/16727 PCT/US00/24189

At the minimum a tool should support basic widgets (push buttons, list boxes, etc.), window
styles, (multi-window, multi-document, paned-window), and menu styles, along with validation
and inter-application communication. Consideration should also be given as to the extensibility

of the toolset via add-ons and third party products.

Can the tool be used for both prototyping and GUI design?

The ability to use a single tool for both prototyping and GUI design will reduce the development
learning curve. One should also consider how well the tool integrates will all other development

tools.

‘What platform(s) are supported?

The platform(s) that must be supported, i.e., MS-DOS, Windows, IBM OS/2, UNIX, or UNIX

Motif, is an important consideration, as are any hardware restrictions.

What type of learning curve is associated with the tool?

Developers using the product should be able to become productive quickly. Factors which
reduce the learning curve include an easy to learn and intuitive interface, thorough and clear

documentation, and on-line help.

If the tool is also going to be used for application development, how well does the tool

perform during production?

72

10

15

20

WO 01/16727 PCT/US00/24189

Computational, network, data retrieval, and display speeds differ for products. Factors to
consider are whether the application will consist of heavy data entry, transaction processing, or a

large user base.

How much does the tool cost?

Product components, maintenance agreements, upgrades, run-time licenses, and add-on packages

should be considered.

Does the product integrate with other tools and/or support other tools in the development

and execution environments?

It is important to determine how well the product integrates with other design and development
tools, presentation services (graphics, multi-media, etc.), data access services (databases and
database API libraries), distribution services (distributed TP monitor), transmission services
(SNA, HLLAP]I, etc.), data dictionary, desktop applications, and programming languages for
call-out/call-in. Additional consideration should be given to add-on and third-party

products/enhancements such as specialized widgets, report writers and case tools.

Will the tool be used with a large development team?

If the development team is more than 5 people, a tool should provide support for multiple
developers. This support includes features such as object check-in/check-out, a central design
repository for the storage of application objects and user interface definitions, and version
control. Additionally, the development team should be able to cleanly divide the application(s)

into pieces which can be worked on by multiple people.

73

10

15

20

WO 01/16727 PCT/US00/24189

What protocols are used to communicated with the database?

Important considerations include the supported databases and protocols used to communicated
with the databases. The tool must support the selected database. Additionally, if the database
selection may change, it is important that the tool have the ability to support other databases with
minimal impact on the application development. Native database interfaces tend to have better

performance than open standards such as ODBC.

Will the design tool be used for programming of client applications? What programming

language is supported?

If the design tool is used for programming, there are several features of a tool which must be
considered. These features can have an impact on the productivity of programmers, performance
of the applications, skill sets required, and other tools required for development. These features

include:

‘What programming language is supported? Is the programming language interpretive or

compiled? Is it object oriented or structured procedural language?
Does the tool support programming extensions to Dynamic Link Libraries?

What are the debugging capabilities of the tool?

Is the tool scalable?

The tool should be scalable to support growth in application size, users, and developers.

Exemplary products that may be used to implement this component include JetForms JetForm
Design; Lotus Forms; Visual Basic.

74

WO 01/16727 PCT/US00/24189

JetForms JetForm Design - provides tools to design, fill, route, print and
manage electronic forms, helping organizations reduce costs and increase
efficiency by automating processing of forms across local and wide area
networks as well as the Internet. Lotus Forms - Lotus Development
Corporations electronic forms software provides tools to design, route and track
forms to automate business processes for the workgroup or the extended
enterprise. Lotus Forms is designed to run with Lotus Notes or as a standalone
application. It is comprised of two parts: Forms Designer, an application-
development version, and Forms Filler, a runtime version for users. Visual
Basic - a development tool that provides a comprehensive development

environment for building complex applications.

User Navigation 1306

User Navigation Services provide a user with a way to access or navigate between functions
within or across applications. Historically, this has been the role of a text-based menuing system

that provides a list of applications or activities for the user to choose from.

Client/server technologies introduced new navigation metaphors. A method for allowing a user
to navigate within an application is to list available functions or information by means of a menu
bar with associated pull-down menus or context-sensitive pop-up menus. This method conserves
screen real-estate by hiding functions and options within menus, but for this very reason can be
more difficult for first time or infrequent users. This point is important when implementing
electronic commerce solutions where the target customer may use the application only once or

very infrequently (e.g., purchasing auto insurance).

Additionally, client/server development tools such as Visual Basic and PowerBuilder do not

provide specific services for graphical navigation, but the effect can be recreated by selecting

75

10

15

20

WO 01/16727 PCT/US00/24189

(i.e., clicking on) graphical controls, such as picture controls or iconic push-buttons,

programmed to launch a particular window.

A major advantage of the graphical user interface is the fact that it allows multiple windows to

be open at one time.

Implementation considerations

Is there a need to manage multiple instances of a window object?

Windows Interaction Manager provides the application with facilities to open multiple instances
of the same window. This component provides an option parameter that will let the application
developers enable or disable the ability to open the same window with the same key data (that is,

a duplicate instance).

Do you need to pass messages between windows?

Windows Interaction Manager provides the facility to pass messages between windows within

one application. This allows one window to trigger an event/action on another related window.

Do multiple applications need to pass messages between each other?

Windows Interaction Manager provides the facility to pass messages between windows from
different applications residing on the same machine. This allows one window to trigger an

event/action on an related window when certain actions (user or environment) occur.

If information needs to be shared between applications on different machines, Window
Interaction Management cannot be used. This type of data sharing requires a special architecture
component called Communication, which is more network orientated.

76

10

15

20

25

WO 01/16727 PCT/US00/24189

Is there a need for object registration/de-registration?

Windows Interaction management allows the application to control and manage the opening and
closing of multiple windows by - maintaining the parent-child relationship, controlling multiple
instances of similar windows, maintaining key data-window relationship. This allows the user to

work in a controlled and, well managed, environment.

Web Browser 1308

Web Browser Services allow users to view and interact with applications and documents made
up of varying data types, such as text, graphics, and audio. These services also provide support
for navigation within and across documents no matter where they are located, through the use of
links embedded into the document content. Web Browser Services retain the link connection,
i.e., document physical location, and mask the complexities of that connection from the user.
Web Browser services can be further subdivided into: Browser Extension, Form, and User

Navigation.

Parlez-vous Internet?
The Elements of Web Style

Language philosopher Benjamin Whorf once said, "We dissect nature along lines laid down by
our native language. Language is not simply a reporting device for experience, but a defining
framework for it." This notion is especially true when applied to the World Wide Web. The
evolution of the Web from a rigid, text-centric village to an elastic, multimedia-rich universe has
been driven by modifications to the languages behind it. The Internet is at a crucial point in its
development as a number of enhancements for extending Web technology come under scrutiny
by Internet standards groups. These enhancements will ultimately push the Web into the realms

of distributed document processing and interactive multimedia.
' 77

10

15

20

25

WO 01/16727 PCT/US00/24189

SGML: in the beginning...

Although the World Wide Web was not created until the early 1990s, the language behind it
dates back to the genesis of the Internet in the 1960s. Scientists at IBM were working on a
Generalized Markup Language (GML) for describing, formatting, and sharing electronic
documents. Markup refers to the practice in traditional publishing of annotating manuscripts

with layout instructions for the typesetters.

In 1986, the International Standards Organization (ISO) adopted a version of that early GML
called Standard Generalized Markup Language (SGML). SGML is a large and highly-
sophisticated system for tagging documents to ensure that their appearance will remain the same
regardless of the type of platform used to view them. Designers use SGML to create Document
Type Definitions (DTDs), which detail how tags (also known as format codes) are defined and
interpreted within specified documents. These tags can be used to control the positioning and
formatting of a document's text and images. SGML 1is used for large, complex, and highly-
structured documents that are subject to frequent revisions, such as dictionaries, indexes,

computer manuals, and corporate telephone directories.

HTML: SGML for dummies?

While creating the World Wide Web in the early 1990s, scientists at CERN discovered that in
spite of its power and versatility, SGML's sophistication did not allow for quick and easy Web
publishing. As a result, they developed HyperText Markup Language (HTML), a relatively
simple application of SGML. This simplicity has contributed to the exponential growth of the
Web over the last few years. HTML files are written in plain text and can be created using any
text editor from the most robust Web page authoring software (such as Microsoft's FrontPage or
Sausage Software's HotDog) to the anemic Notepad utility included with Microsoft's Windows

operating system.

As with many languages, HTML is in a state of constant evolution. The World Wide Web
Consortium W3C oversees new extensions of HTML developed by both software companies
(such as Microsoft and Netscape Communications) and individual Web page authors and ensures
that each new specification is fully-compatible with previous ones. Basic features supported by

HTML include headings, lists, paragraphs, tables, electronic forms, in-line images (images next

78

10

15

20

25

WO 01/16727 PCT/US00/24189

to text), and hypertext links. Enhancements to the original HTML 1.0 specification inclﬁde

banners, the applet tag to support Java, image maps, and text flow around images.

The W3C also approved the specification for version 4.0 of HTML
(http://www.w3.0org/TR/REC-html40). This specification builds upon earlier iterations of
HTML by enabling Web authors to include advanced forms, in-line frames, and enhanced tables
in Web pages. HTML 4.0 also allows authors to publish pages in any language, and to better

manage differences in language, text direction, and character encoding.

Perhaps most significantly, HTML 4.0 increases authors’ control over how pages are organized
by adding support for Cascading Style Sheets CSS Style sheets contain directions for how and
where layout elements such as margins, fonts, headers, and links are displayed in Web pages.
With CSS, authors can use programming scripts and objects to apply multiple style sheets to
Web pages to create dynamic content. CSS can also be used to centralize control of layout
attributes for multiple pages within a Web site, thus avoiding the tedious process of changing

each page individually.
Dynamic HTML: Dyn-o-mite!

HTML's simplicity soon began to limit authors who demanded more advanced multimedia and

page design capabilities. Enter Dynamic HTML DHTML As an extension of HTML, DHTML
allows Web pages to function more like interactive CD-ROMs by responding to user-generated
events. DHTML allows Web page objects to be manipulated after they have been loaded into a
browser. This enables users to shun plug-ins and Java applets and avoid bandwidth-consuming
return trips to the server. For example, tables can expand or headers can scurry across the page

based on a user's mouse movements.

Unfortunately, the otremendous potential offered by DHTML is marred by incompatible
standards. At the heart of the DHTML debate is a specification called the Document Object
Model DOM The DOM categorizes Web page elements--including text, images, and links--as
objects and specifies the attributes that are associated with each object. The DOM makes Web
document objects accessible to scripting languages such as JavaScript and VisualBasic Script
(VBScript), which can be used to change the appearance, location, and even the content of those

objects in real-time.

79

10

15

20

25

WO 01/16727 PCT/US00/24189

Microsoft's Internet Explorer 4.0 supports a W3C "Working Draft" DOM specification that uses
the CSS standard for layout control and Web document object manipulation. In contrast,
Netscape's implementation of DHTML in Communicator 4.0 uses a proprietary "Dynamic
Layers" tag, which assigns multiple layers to a page within which objects are manipulated. As a
result, Web pages authored using either version of DHTML may not be viewed properly using

the other's browser. XML: X marks the spot

HTML 4.0 and Dynamic HTML have given Web authors more control over the ways in which a
Web page is displayed. But they have done little to address a growing problem in the developer

community: how to access and manage data in Web documents so as to gain more control over

document structure. To this end, leading Internet developers devised Extensible Markup

Language (XML), a watered-down version of SGML that reduces its complexity while
maintaining its flexibility. Like SGML, XML is a meta-language that allows authors to create
their own customized tags to identify different types of data on their Web pages. In addition to
improving document structure, these tags will make it possible to more effectively index and

search for information in databases and on the Web.

XML documents consist of two parts. The first is the document itself, which contains XML tags
for identifying data elements and resembles an HTML document. The second part is a DTD that
defines the document structure by explaining what the tags mean and how they should be
interpreted. In order to view XML documents, Web browsers and search engines will need
special XML processors called "parsers." Currently, Microsoft's Internet Explorer 4.0 contains

two XML parsers: a high-performance parser written in C++ and another one written in Java.

A number of vendors plan to use XML as the underlying language for new Web standards and
applications. Microsoft uses XML for its Channel Definition Format, a Web-based "push”
content delivery system included in Internet Explorer 4.0. Netscape will use XML in its Meta
Content Framework to describe and store metadata, or collections of information, in forthcoming
versions of Communicator. XML is currently playing an important role the realm of electronic
commerce via the Open Financial Exchange, an application developed by Microsoft, Intuit, and
CheckFree for conducting electronic financial transactions. Similarly, HL7, a healthcare

information systems standards organization, is using XML to support electronic data interchange

80

10

15

20

25

WO 01/16727 PCT/US00/24189

EDI of clinical, financial, and administrative information

(http://www.mcis.duke.edu/standards/HL7/s1gs/sgml/index.html).

Meet cousin VRML

In 1994, a number of Internet thought leaders, including Tim Berners-Lee--the "father" of the
Web--met to determine how they could bring the hot, new technology known as virtual reality
VR to the Web. VR refers to the use of computers to create artificial and navigable 3-D worlds
where users can create and manipulate virtual objects in real time. This led to the creation of
Virtual Reality Modeling Language (VRML--pronounced "ver-mul"). VRML is technically not

a markup language because it uses graphical rather than text-based file formats.

In order to create 3-D worlds and objects with VRML, users need a VRML editor such as Silicon
Graphics’ Cosmo Worlds (http://cosmo.sgi.com/products/studio/worlds). To view VRML
content, users need either a VRML browser or a VRML plug-in for standard HTML browsers.
Leading VRML plug-ins include Cosmo Player from Silicon Graphics
(http://vrml.sgi.com/cosmoplayer), Liquid Reality from Microsoft's DimensionX subsidiary
(http://Wwww.microsoft.com/dimensionx), OZ Virtual from OZ Interactive
(http://www.oz.com/ov/main_bot.html), and WorldView from Intervista
(http://www.intervista.com/products/worldview/index.html), These plug-ins can typically be
downloaded for free from the Web.

VRML is capable of displaying static and animated objects and supports hyperlinks to
multimedia formats such as audio clips, video files, and graphical images. As users maneuver
through VRML worlds, the landscape shifts to match their movements and give the impression
that they are moving through real space. The new VRML 2.0 specification finalized in August
1996 intensifies the immersive experience of VR worlds on the Web by enabling users to interact
both with each other and with their surroundings. Other new features supported by VRML 2.0
include richer geometry description, background textures, sound and video, multilingual text,
Java applets, and scripting using VBScript and JavaScript. VRML will become a significant
technology in creating next-generation Internet application as the language continues to mature

and its availability increases.

The future: give us a big SMIL

81

10

15

20

25

WO 01/16727 PCT/US00/24189

The Web has come a long way since the codification of HTML 1.0. It has moved from simple
text-based documents that included headings, bulleted lists, and hyperlinks to dynamic pages that
support rich graphic images and virtual reality. So what next for the Web? The answer resides
in a Synchronized Multimedia Integration Language (SMIL), a new markup language being
developed by the W3C. SMIL will allow Web authors to deliver television-like content over the

Web using less bandwidth and a simple text editor, rather than intricate scripting.

SMIL is based on XML and does not represent a specific media format. Instead, SMIL defines
the tags that link different media types together. The language enables Web authors to sort
multimedia content into separate audio, video, text, and image files and streams which are sent to
a user's browser. The SMIL tags then specify the "schedule" for displaying those components by
determining whether they should be played together or sequentially. This enables elaborate

multimedia presentations to be created out of smaller, less bandwidth-consuming components.

Implementation considerations

Many features such as graphics, frames, etc. supported by Web Browsers today were not
available in initial releases. Furthermore, with every new release the functionality supported by

Web Browsers keeps growing at a remarkable pace.

Much of the appeal of Web Browsers is the ability to provide a universal client that will offer
users a consistent and familiar user interface from which many types of applications can be
executed and many types of documents can be viewed, on many types of operating systems and

machines, as well as independent of where these applications and documents reside.

Web Browsers employ standard protocols such as Hypertext Transfer Protocol (HTTP) and File
Transfer Protocol (FTP) to provide seamless access to documents across machine and network

boundaries.

The distinction between the desktop and the Web Browser narrowed with the release of

Microsoft IE 4.0, which integrated Web browsing into the desktop, and gave a user the ability to

82

10

15

20

WO 01/16727 PCT/US00/24189

view directories as though they were Web pages. Web Browser, as a distinct entity, may even

fade away with time.

Exemplary products that may be used to implement this component includes Netscape
Navigator; Netscape Communicator; Microsoft Internet Explorer; Netscape LiveWire; Netscape
LiveWire Pro; Symantec Visual Cafe; Microsoft Front Page; Microsoft Visual J++ ; IBM ‘
VisualAge.

Execution products:

Netscape Navigator or Communicator - one of the original Web Browsers, Navigator
currently has the largest market share of the installed browser market and strong
developer support. Communicator is the newest version with add-on collaborative

functionality

Microsoft Internet Explorer (IE) - a Web Browser that is tightly integrated with
Windows and supports the major features of the Netscape Navigator as well as

Microsoft’s own ActiveX technologies.
Development products:

Web Browsers require new or at least revised development tools for working with new
languages and standards such as HTML, ActiveX and Java. Many browser content

development tools are available. The following are several representative products:

Netscape LiveWire and LiveWire Pro - visual tool suite designed for building and

managing complex, dynamic Web sites and creating live online applications.

83

10

15

20

25

WO 01/16727 PCT/US00/24189

Symantec Visual Café - the first complete Rapid Application Development (RAD)
environment for Java; it allows developers to assemble complete Java applets and
applications from a library of standard and third party objects. Visual Caf¢ also

provides an extensive set of text based development tools.

Microsoft FrontPage - Web site management tool that supports web page

creation, web site creation, page and link management and site administration.

Microsoft Visual J++ - a product similar to Visual C++, VJ++ allows the
construction of Java and ActiveX applications through an integrated graphical

development environment.

IBM VisualAge for Java - a product similar to VisualAge for Smailtalk, VJ++
allows the construction of Java applications through an integrated graphical
development environment. It supports JavaBeans. Used by Eagle team for the

Eagle JavaBeans reference application

Browser extension 1310

Browser Extension Services provide support for executing different types of applications from
within a Browser. These applications provide functionality that extend Browser capabilities. The

key Browser Extensions are:

Plug-in - a term coined by Netscape, a plug-in is a software program that is specifically written
to be executed within a browser for the purpose of providing additional functionality that is not
natively supported by the browser, such as viewing and playing unique data or media types.
Typically, to use a plug-in, a user is required to download and install the Plug-in on his/her client
machine. Once the Plug-in is installed it is integrated into the Web browser. The next time a
browser opens a Web page that requires that Plug-in to view a specific data format, the browser
initiates the execution of the Plug-in. Until recently Plug-ins were only accessible from the
Netscape browser. Now, other browsers such as Microsoft's Internet Explorer are beginning to

support Plug-in technology as well. Also, Plug-ins written for one browser will generally need to

84

10

15

20

25

WO 01/16727 PCT/US00/24189

be modified to work with other browsers. Plug-ins are also operating system dependent.
Therefore, separate versions of a Plug-in may be required to support Windows, Macintosh, and

Unix platforms.

Helper Application/Viewer - is a software program that is launched from a browser for the
purpose of providing additional functionality to the browser. The key differences between a

helper application or sometimes called a viewer and a plug-in are:

* How the program is integrated with the Web browser - unlike a plug-in, a helper
application is not integrated with the Web Browser, although it is launched from a Web
browser. A helper application generally runs in its own window, contrary to a plug-in

which is generally integrated into a Web page.

* How the program is installed - like a plug-in, the user installs the helper application.
However, because the helper application is not integrated with the browser, the user tends
to do more work during installation specifying additional information needed by the

browser to launch the helper application.

* How the program is initiated - the user tends to initiate the launching of the helper

application, unlike a plug-in where the browser does the initiation.

* From where the program is executed - the same helper application can be executed
from a variety of browsers without any updates to the program, unlike a plug-in which
generally needs to be updated for specific browsers. However, helper applications are still

operating system dependent.

Java applet - a program written in Java that runs within or is launched from the client's browser.
This program is loaded into the client device's memory at runtime and then unloaded when the
application shuts down. A Java applet can be as simple as a cool animated object on an HTML

page, or can be as complex as a complete windows application running within the browser.

85

10

15

20

25

WO 01/16727 PCT/US00/24189

ActiveX control - 1s also a program that can be run within a browser, from an application
independent of a browser, or on its own. ActiveX controls are developed using Microsoft
standards that define how re-usable software components should be built. Within the context of
a browser, ActiveX controls add functionality to Web pages. These controls can be written to

add new features like dynamic charts, animation or audio.

Implementation considerations

Viewers and plug-ins are some of the most dynamic segments of the browser market due to
quickly changing technologies and companies. What was yesterday a plug-in or a viewer add-on

often becomes a built-in capability of the browser in its next release.

Exemplary products that may be used to implement this component include Real Audio Player;
VDOLive; Macromedia Shockwave; Internet Phone; Web 3270.

Real Audio Player - a plug-in designed to play audio and video in real-time on the

_ Internet without requiring to download the entire audio file before you can begin
listening, or a video file before you can begin viewing. Macromedia Shockwave - a
plug-in used to play back complex multimedia documents created using Macromedia

Director or other products.

Internet Phone - one of several applications which allow two-way voice conversation

over the Internet, similar to a telephone call.

Web3270 - a plug-in from Information Builders that allows mainframe 3270-based
applications to be viewed across the Internet from within a browser. The Web3270 server
provides translation services to transform a standard 3270 screen into an HTML-based
form. Interest in Web3270 and similar plug-ins has increased with the Intemnets ability to

provide customers and trading partners direct access to an organizations applications and

86

10

15

20

25

WO 01/16727 PCT/US00/24189

data. Screen scraping plug-ins can bring legacy applications to the Internet or intranet

very quickly.

Form 1312

Like Form Services outside the Web Browser, Form Services within the Web Browser enable
applications to use fields to display and collect data. The only difference is the technology used
to develop the Forms. The most common type of Forms within a browser are Hypertext Markup
Language (HTML) Forms. The HTML standard includes tags for informing a compliant browser,
that the bracketed information is to be displayed as an editable field, a radio button, or other
fonh-type control. Currently, HTML browsers support only the most rudimentary forms -.
basically providing the presentation and collection of data without validation or mapping
support. When implementing Forms with HTML, additional services may be required such as

client side scripting (e.g., VB Script, JavaScript).

Additionally Microsoft has introduced ActiveX documents which allow Forms such as Word
documents, Excel spreadsheets, Visual Basic windows to be viewed directly from Internet

Explorer just like HTML pages.

Different technologies may be used to create Forms that are accessible outside of the browser
from those that are accessible within the browser. However, with the introduction of ActiveX

documents these differences are getting narrower.

Exemplary products that may be used to implement this component include JetForms JetForm

Design; Lotus Forms; Visual Basic; Front Page.

FrontPage - Web site management tool that supports web page creation, web

site creation, page and link management and site administration.

87

10

15

20

25

WO 01/16727 PCT/US00/24189

User Navigation 1314

Like User Navigation Services outside the Web Browser, User Navigation Services within the
Web Browser provide a user with a way to access or navigate between functions within or across

applications. These User Navigation Services can be subdivided into three categories:

Hyperlink - the Internet has popularized the use of underlined key words, icons and pictures that
act as links to further pages. The hyperlink mechanism is not constrained to a menu, but can be

used anywhere within a page or document to provide the user with navigation options. It can take
a user to another location within the same document or a different document altogether, or even a

different server or company for that matter. There are three types of hyperlinks:

Hypertext is very similar to the concept of Context Sensitive Help in Windows, where the reader

can move from one topic to another by selecting a highlighted word or phrase.

Icon is similar to the hypertext menu above, but selections are represented as a series of icons.
The HTML standard and popular browsers provide hyperlinking services for non-text items such

as graphics.

Image Map is also similar to the hypertext menu above, but selections are represented as a series
of pictures. A further evolution of the image map menu is to display an image depicting some

place or thing (e.g., a picture of a bank branch with tellers and loan officers).

Customized Menu - a menu bar with associated pull-down menus or context-sensitive pop-up
menus. However, as mentioned earlier this method hides functions and options within menus and
is difficult for infrequent users. Therefore, it is rarely used directly in HTML pages, Java applets
or ActiveX controls. However, this capability might be more applicable for intranet
environments where the browsers themselves need to be customized (e.g., adding custom pull-

down menus within Internet Explorer) for the organizations specific business applications.

88

10

15

20

WO 01/16727 PCT/US00/24189

Virtual Reality - A virtual reality or a virtual environment interface takes the idea of an image
map to the next level by creating a 3-dimensional (3-D) environment for the user to walk around
in. Popularized by PC games like Doom, the virtual environment interface can be used for
business applications. Imagine walking through a shopping mall and into and around virtual

stores, or flying around a 3-D virtual resort complex you are considering for a holiday.

To create sophisticated user navigation interfaces such as these requires additional architectural
services and languages. The Virtual Reality Modeling Language (VRML) is one such language

gaining in popularity.

Implementation considerations

The hyperlink metaphor makes it possible for the user to jump from topic to topic instead of
reading the document from beginning to end. For many types of applications, this can create a

more user-friendly interface, enabling the user to find information faster.

An image map menu can be useful where all users share some visual model for how business is
conducted, and can be very engaging, but also painfully slow if even a moderate speed
communications connection is required. Additional Image Map Services are required to map the
location of user mouse clicks within the image to the corresponding page or window which is to

be launched.

Exemplary products that may be used to implement this component include Silicon Graphics
Open Inventor; VREAM VRCreator; DimensionX Liquid Reality.

89

10

15

20

WO 01/16727 PCT/US00/24189

There are many toolkits and code libraries available to speed development of applications

utilizing Reality services. Below are some representative products:

Silicon Graphics Open Inventor - an object-oriented 3-D toolkit used to build
interactive 3-D graphics using objects such as cameras, lights and 3-D viewers; provides

a simple event model and animation engine.

VREAM VRCereator - a toolkit for building interactive virtual reality environments;
supports gravity, elasticity, and throw-ability of objects, textured and colored 3-D objects

and construction of networked multi-participant worlds. Provides support for ActiveX.

DimensionX Liquid Reality - VRML 2.0 platform written in Java, which provides both
a viewer for viewing VRML content and a toolkit of Java classes for creating powerful 3-

D applications. It supports more than 250 classes for 3-D content creation.

Report and Print 1316

Report and Print Services support the creation and on-screen previewing of paper or

photographic documents which contain screen data, application data, graphics or images.

Implementation considerations

Printing services must take into consideration varying print scenarios common in Netcentric
environments, including: varying graphics/file types (Adobe .PDF, .GIF, .JPEG), page margins
and breaks, HTML constructs including tables and frames, headers/titles, extended character set

support, etc.

Is there a need for reporting or decision support?

90

10

15

20

WO 01/16727 PCT/US00/24189

Use report writers when you need to transform user data into columnar reports, forms, or mailing
lists that may require sophisticated sorting and formatting facilities. This generally occurs for
two reasons. The first is building "production reports” (i.e., reports that are built once and then
used repeatedly, generally on a daily/weekly/monthly basis). The second is ad hoc reporting and
decision support. Products targeted at one or the other use will have different facilities. (source

1s market research)

Is there a need to ease access to corporate data?

Use report writers when users require easy and quick access to corporate data. Since developers
can deliver reports as run-time applications, users are shielded from having to learn complicated
databases in order to access information. All a user has to do to retrieve the data is click on an
icon to launch a report. Because these run-time applications are smaller than normal
applications, they launch faster and require very little training to operate. (source is market

research)

Product considerations

Buy vs. Build

There are numerous packaged controls on the market today that support basic report and print
capability. However, a careful evaluation of both functions and features and vendor viability
must be completed before a decision can be made. Architects must additionally be sure to
evaluate that controls will support all required environments, are small in size and extensible as

requirements demand.

How important is performance?

91

10

15

20

WO 01/16727 PCT/US00/24189

In general, performance of data access and printing should be considered. Some typical
benchmark tests include table scan, single-table report, joined table report, and mailing label

generation times. (source is market research)

What is the budget?

Per developer costs as well as run time licensing fees, maintenance costs, support fees, and

¢

upgrade charges should be considered.

Do I have another component that satisfies this requirement?

Many databases and application development tools are shipped with built in or add-on report
writing capability. However, stand-alone report writers: (1) are more powerful and flexible,
especially when dealing with multiple data sources and a wide variety of formats; (2) can
retrieve information from more data sources than the bundled report writers and can create
reports from several data sources simultaneously; (3) excel in ease of use, both in designing and
generating reports; (4) offer better tools and more predefined reports; and (5) have faster engines..

(source is market research)

Does the product integrate with the existing or proposed architecture?

It is important to consider how well a product integrates with desktop tools (word processing,
spreadsheet, graphics etc.) and application development programs. These items can be used to

extend the capabilities of the reporting package.

What databases does the product support?

92

10

15

20

WO 01/16727 PCT/US00/24189

A product should support the most widely used PC file formats and Client/Server databases. It
may be necessary to consider the type of support. For example, native database interfaces tend
to have better performance than open standards such as ODBC. Another possible consideration

is how well the product accesses multiple files or databases. (source is market research)

What are the required features of the tool?
Features to look for include but are not limited to:
WYSIWYG print preview

Ability to create views - prevents users from getting overwhelmed with choices when
selecting a table, acts as a security system by controlling which users have access to
certain data, and increases performance since only the data users need gets downloaded to

the report engine, thereby reducing network traffic.

Data dictionary - store predefined views, formats, and table and field name aliases

User friendly query tool

Scripting or macro language

Supported data types and formats

Formatting capabilities (page orientation, fonts, colors, margins, condensed printing, etc.)
Supported report types

Aggregate functions.

Is the intention to create production reports or facilitate end user queries?

93

10

15

20

WO 01/16727 PCT/US00/24189

Ease of use will be of major importance for end user query and decision support type
applications. In contrast, functionality that allows for the implementation of complex reporting
requirements will outweigh ease of use for applications whose objective is creating production

reports.

Direct Manipulation 1318

Direct Manipulation Services enable applications to provide a direct manipulation interface
(often called "drag & drop™). A direct manipulation interface allows users to manage multiple
"application objects" by manipulating visual representations of those objects. For example, a
user may sell stock by dragging "stock" icons out of a "portfolio" icon and onto a "trading floor"

icon. Direct Manipulation Services can be further divided as follows:

Display: These services enable applications to represent application objects as icons and control

the display characteristics (color, location, etc.) of these icons.

Input/Validation: These services enable applications to invoke validation or processing logic
when an end user "acts on" an application object. "Acting on" an object may include single

clicking, double clicking, dragging, or sizing.

Input Device 1320

Detect user input from a variety of input technologies (i.e. pen based, voice recognition, touch-

screen, mouse, digital camera, etc.).

Implementation considerations

94

10

15

20

25

WO 01/16727 PCT/US00/24189

Voice response systems are used to provide prompts and responses to users through the use of
phones. Voice response systems have scripted call flows which guide a caller through a series of
questions. Based on the users key pad response, the voice response system can execute simple
calculations, make database calls, call a mainframe legacy application or call out to a custom C

routine. Leading voice response system vendors include VoiceTek and Periphonics.

Voice recognition systems are becoming more popular in conjunction with voice response
systems. Users are able to speak into the phone in addition to using a keypad. Voice recognition
can be extremely powerful technology in cases where a key pad entry would be limiting (e.g.,
date/time or location). Sophisticated voice recognition systems have been built which support

speaker-independence, continuous speech and large vocabularies.

INFORMATION 1002,1004

Figure 14 illustrates several components of the Information Services of the present invention.
Information Services manage electronic data assets and enable applications to access and
manipulate data stored locally or remotely in documents or databases. They minimize an
application's dependence on the physical storage and location within the network. Information

Services can be grouped into two categories: Database Services, and Document Services

Database Services 1402

Database Services are responsible for providing access to a local or a remote database,
maintaining integrity of the data within the database and supporting the ability to store data on

either a single physical platform, or in some cases across multiple platforms. These services are
95

10

15

20

25

WO 01/16727 PCT/US00/24189

typically provided by DBMS vendors and accessed via embedded or call-level SQL variants and
supersets. Depending upon the underlying storage model, non-SQL access methods may be used

instead.

Many of the Netcentric applications are broadcast-type applications, designed to market products
and/or publish policies and procedures. Furthermore, there is now a growth of Netcentric
applications that are transaction-type applications used to process a customers sales order,
maintenance request, etc. Typically these type of applications require integration with a database
manager. Database Services include: Storage Services, Indexing Services, Security Services,

Access Services, and Replication/Synchronization Services

Implementation considerations

The core database services such as Security, Storage and Access are provided by all major
RDBMS products, whereas the additional services of Synchronization and Replication are

available only in specific products.

Product considerations
Oracle 7.3; Sybase SQL Server; Informix; IBM DB/2; Microsoft SQL Server

Oracle 7.3 - market leader in the Unix client/server RDBMS market, Oracle is available
for a wide variety of hardware platforms including MPP machines. Oracles market
position and breadth of platform support has made it the RDBMS of choice for variety of
financial, accounting, human resources, and manufacturing application software
packages. Informix - second in RDBMS market share after Oracle, Informix is often
selected for its ability to support both large centralized databases and distributed
environments with a single RDBMS product. Sybase SQL Server - third in RDBMS

96

10

15

20

25

WO 01/16727 PCT/US00/24189

market share, Sybase traditionally focused upon medium-sized databases and distributed
environments; it has strong architecture support for database replication and distributed

transaction processing across remote sites.

IBM DB2 - the leader in MVS mainframe database management, IBM DB2 family of
relational database products are designed to offer open, industrial strength database
management for decision support, transaction processing and line of business
applications. The DB2 family now spans not only IBM platforms like personal
computers, AS/400 systems, RISC System/6000 hardware and IBM mainframe

computers, but also non-IBM machines such as Hewlett-Packard and Sun Microsystems.

Microsoft SQL Server - the latest version of a high-performance client/server relational
database management system. Building on version 6.0, SQL Server 6.5 introduces key
new features such as transparent distributed transactions, simplified administration, OLE-
based programming interfaces, improved support for industry standards and Internet

integration.

Replication/Synchronization 1404

Replication Services support an environment in which multiple copies of databases must be
maintained. For example, if ad hoc reporting queries or data warehousing applications can work
with a replica of the transaction database, these resource intensive applications will not interfere
with mission critical transaction processing. Replication can be either complete or partial. During
complete replication all records are copied from one destination to another, while during partial
replication, only a subset of data is copied, as specified by the user or the program. Replication
can also be done either real-time or on-demand (i.e., initiated by a user, program or a scheduler).
The following might be possible if databases are replicated on alternate server(s): better
availability or recoverability of distributed applications; better performance and reduced network

cost, particularly in environments where users are widely geographically dispersed; etc.

Synchronization Services perform the transactions required to make one or more information
sources that are intended to mirror each other consistent. This function may especially valuable

97

10

15

20

WO 01/16727 PCT/US00/24189

when implementing applications for users of mobile devices because it allows a working copy of
data or documents to be available locally without a constant network attachment. The emergence
of applications that allow teams to collaborate and share knowledge has heightened the need for

Synchronization Services in the execution architecture.

The terms Replication and Synchronization are used interchangeably, depending on the vendor,
article, book, etc. For example, when Lotus Notes refers to Replication, it means both a
combination of Replication and Synchronization Services described above. When Sybase refers

to Replication it only means copying data from one source to another.

Implementation consideration

Replication/Synchronization Services are sometimes supplied as part of commercial databases,
document management systems or groupware products such as Lotus Notes, Microsoft

Exchange, Oracle, etc.

With Windows 95 and Windows NT 4.0, Microsoft has also introduced the concept of
Replication/Synchronization Services into the operating system. Through the briefcase
application users can automatically synchronize files and SQL data between their Windows PC
and a Windows NT server. Underlying this application is the user-extensible Win32

synchronization services API which can be used to build custom synchronization tools.

Are changes in data usage anticipated?

Data can be dynamically changed to accommodate changes in how the data is used.

Is it desirable to shield the user from the data access process?

98

10

15

20

WO 01/16727 PCT/US00/24189

A replicated database often consolidates data from heterogeneous data sources, thus shielding the

user from the processes required to locate, access and query the data.

What are the availability requirements of the system?

Replication provides high availability. If the master database is down, users can still access the

local copy of the database.

Is there a business need to reduce communication costs?

Depending on the configuration (real time vs. nightly replication, etc.), there is a potential to

reduce communications costs since the data access is local.

Is scalability an issue?

With users, data, and queries spread across multiple computers, scalability is less of a problem. .

Can users benefit from the increased performance of local data access?

Access to replicated data is fast since data is stored locally and users do not have to remotely
access the master database. This is especially true for image and document data which cannot be
quickly accessed from a central site. Making automatic copies of a database reduces locking
conflicts and gives multiple sets of users better performance than if they shared the same

database.

99

10

15

20

WO 01/16727 PCT/US00/24189

Product considerations

What is the current or proposed environment?

Platforms supported as well as source and target DBMS should be considered.

What are the technical requirements?

Products differ in features such as complete refresh vs. differential refresh (replication of
changes), replication granularity (row, table, database), method of capturing changes (snapshot,
SQL statement intercept, trigger-based, log-based), method of propagating copies (push, pull),
propagation timing controls (database event-driven, scheduled based on interval, scheduled
based on application event-driven, manually invoked), and conflict resolution mechanisms. Also

important is what management utilities are available with the product.

Are available resources and issue?

Products vary in the amount of resources required to install and operate the system.

What are the business requirements?

Three key considerations are:

Who owns and uses the data? Replication products support one or more of the three
ownership models: Primary site ownership - data is owned by one site; Dynamic site
ownership - data owned by one site, however site location can change; and Shared site

ownership - data ownership is shared by multiple sites.

100

10

15

20

WO 01/16727 PCT/US00/24189

Which of the four basic types of replication style is appropriate? The four styles are:
Data dissemination - portions of centrally maintained data are replicated to the
appropriate remote sites; Data consolidation - data is replicated from local sites to a
central site where all local site data is consolidated; Replication of logical partitions -
replication of partitioned data; and Update anywhere - multiple remote sites can possible

update same data at same time.

What is the acceptable latency period (amount of time the primary and target data can be
out of synch)? There are three basic replication styles depending on the amount of
latency that is acceptable: Synchronous - real-time access for all sites (no latency);
Asynchronous near real-time - short period of latency for target sites; Asynchronous

batch/periodic - predetermined period of latency for all sites.

Do I already have a component that satisfies this criteria?

Many DBMS vendors ship replication products as either part of the base package or as an

additional feature.

Possible Product Options

Sybase Replication Server; Oracle Symmetric Replication; CA-Ingres Replicator; InfoPump;
DataPropagator Relational; Informix Replicator

Access 1408

101

WO 01/16727 PCT/US00/24189

Access Services enable an application to retrieve data from a database as well as manipulate
(insert, update, delete) data in a database. SQL 1s the primary approach for accessing records in

today's database management systems.

Client-server systems often require data access from multiple databases offered by different
vendors. This is often due to integration of new systems with existing legacy systems. The key
architectural concern is in building the application where the multi-vendor problem is transparent
to the client. This provides future portability, flexibility and also makes it easier for application
developers to write to a single database access interface. Achieving database access

transparency requires the following:

Standards Based SQL API - this approaches uses a single, standards based set of APIs
to access any database, and includes the following technologies: Open Database
Connectivity (ODBC), Java Database Connectivity (JDBC), and Object Linking and
Embedding (OLE DB).

SQL Gateways provide a mechanism for clients to transparently access data in a variety
of databases (e.g., Oracle, Sybase, DB2), by translating SQL calls written using the
format and protocols of the gateway server or primary server to the format and protocols
of the target database. Currently there are three contending architectures for providing

gateway functions:

Distributed Relational Data Access (DRDA) is a standard promoted by IBM for
distributed.data access between heterogeneous databases. In this case the conversion of
the format and protocols occurs only once. It supports SQL89 and a subset of SQL92
standard and is built on top on APPC/APPN and TCP/IP transport stacks.

IBI's EDA/SQL and the Sybase /MDI Open Server use SQL to access relational and
non-relational database systems. They use API/SQL or T-SQL respectively as the
standard interface language. A large number of communication protocols are supported
including NetBIOS, SNA, DecNET, TCP/IP. The main engine translates the client
requests into specific server calls. It handles security, authentication, statistics gathering

and some system management tasks.

102

10

15

20

WO 01/16727 PCT/US00/24189

Implementation considerations

Gateways may create bottlenecks, because all the clients go through a single gateway.

Security 1410

Security Services enforce access control to ensure that records are only visible or editable by
authorized people for approved purposes. Most database management systems provide access

control at the database, table, or row level as well as concurrency control.

Implementation considerations
Will the application be used in a distributed environment?

In a distributed environment, the need exists to provide access to the corporate data and
resources in a secure and controlled manner. This access depends on the role of the user, the
user group, etc. within that environment. Since security is an architecture component where
functionality and robustness vary across engagements, the architectures usually provide a base
set of security functions. These functions target securing the systems corporate data and

resources, as opposed to securing an applications detailed functions.

The security component prevents unauthorized users from accessing corporate data/resources by
providing the users with access codes - password & ID - that allows the user to login to the

system or execute any (or a particular) application.

Security components can restrict access to functions within an application based on a users
security level. The highest level security is whether the user has access to run the application.

The next level checks if the user has access to functions within the application, such as service

103

10

15

20

25

WO 01/16727 PCT/US00/24189

calls or windows. At an even lower level, the security component could check security on more

granular functions, such as widgets on a window.

Security usually resides on both the client and server platform in a distributed environment.
True security should always be placed on the server platform, to protect the system through

access outside of a client application.

Is there a direct/indirect relationship between the user role/group and the data/services?

There are situations where it is required for the system to maintain the relationship of the users
role and the users access to specific system services/resources. For example, a database
administrator will have read-write-delete access to the database, whereas a sales manager will
have only read access to it for viewing the data in various forms. The security component should
provide the functionality for validating the users resource access privileges based on the role of

the user.

Indexing 1412

Indexing Services provide a mechanism for speeding up data retrieval. In relational databases
one or more fields can be used to construct the index. So when a user searches for a specific
record, rather than scanning the whole table sequentially the index is used to find the location of

that record faster.

Storage 1414

Storage Services manage data physical storage. These services provide a mechanism for saving
information so that data will live beyond program execution. Data is often stored in relational
format (an RDBMS) but may also be stored in an object-oriented format (OODBMS) or other

formats such as IMS, VSAM, etc.
104

10

15

20

25

WO 01/16727 PCT/US00/24189

Document Services 1416

Document Services provide similar structure and control for documents that database
management systems apply to record oriented data. A document is defined as a collection of
objects potentially of different types (e.g., structured data, unstructured data, images, multi-
media) a business user deals with. An individual document might be a table created using a
spreadsheet package such as Microsoft Excel, a report created using a word processing package
such as Lotus AmiPro, a Web page created using an HTML authoring tool, unstructured text or a
combination of these object types. Regardless of the software used to create and maintain the

component parts, all parts together constitute the document, which is managed as a single entity.

Netcentric applications that are executed from a browser are particularly well suited for serving
up document style information. If the Web application consists of more than just a few HTML
documents, integration with a document management system should be considered. Document
Services include: Storage Services, Indexing Services, Security Services, Access Services,

Replication/Synchronization Services, and Versioning Services

Possible Product Options

Documentum Server; Saros; PC Docs

Documentum - Documentum Enterprise Document Management System (EDMS)
automates and accelerates the creation, modification, and reuse of business-critical
documents, Web pages, and other unstructured data and all of the collaborative efforts

involved.

Saros - Saros Discovery Suite is the next generation client/server solution that integrates
Saros Document Manager, FileNet Ensemble and Watermark Client to provide powerful,
tightly-integrated electronic document management, workflow, and document-imaging

capabilities.

105

10

15

20

25

WO 01/16727 PCT/US00/24189

Versioning 1418

Versioning Services maintain a historical record of the changes to a document over time. By
maintaining this record, these services allow for the re-creation of a document as it looked at any
given point in time during it's evolution. Additional key versioning features record who made

changes when and why they were made.

Replication/Synchronization 1404

Replication Services support an environment in which multiple copies of documents must be
maintained. A key objective is that documents should be shareable and searchable across the
entire organization. Therefore, the architecture needs to provide logically a single repository,
even though the documents are physically stored in different locations. The following might be
possible if documents are replicated on alternative server(s): better availability or recoverability

of a distributed application; better performance; reduced network cost; etc.

Synchronization Services perform the transactions required to make one or more information
sources that are intended to mirror each other consistent. They support the needs of
intermittently connected users or sites. Just like for databases, these services are especially
valuable for users of mobile devices that need be able to work locally without a constant network

connection and then be able to synchronize with the central server at a given point in time.

Implementation considerations

Products such as Lotus Notes and Microsoft Exchange allow remote users to replicate documents
between a client machine and a central server, so that the users can work disconnected from the
network. When reattached to the network, users perform an update that automatically exchanges

information on new, modified and deleted documents.

106

10

15

20

25

WO 01/16727 PCT/US00/24189

Note: Both Lotus Notes and MS Exchange provide a limited subset of the Document Services
described in this section. This should be carefully evaluated when considering these products to

provide document management services.

Access 1408

v

Access Services support document creation, maintenance and retrieval. These services allow
users to capture knowledge or content through the creation of unstructured information, i.e.
documents. Access Services allow users to effectively retrieve documents that were created by
them and documents that were created by others. Documents can be comprised of many different

data types, including text, charts, graphics, or even audio and video.

Security 1410

Documents should be accessed exclusively through the document management backbone. If a
document is checked-in, check-out, routed, viewed, annotated, archived, or printed it should be
done only by users with the correct security privileges. Those access privileges should be able to
be controlled by user, role, and group. Analogous to record locking to prevent two users from
editing the same data, document management access control services include check-in/check-out

services to limit concurrent editing.

Indexing 1412

Locating documents and content within documents is a more complex problem and involves
several alternative methods. The Windows file manager is a simplistic implementation of a
hierarchical organization of files and collection of files. If the user model of where documents
should be stored and found can be represented in this way, the use of structure and naming
standards can be sufficient. However, a hierarchical document filing organization is not suitable

for many types of document queries (e.g., retrieving all sales order documents for over $1,000).
107

WO 01/16727 PCT/US00/24189

Therefore, most document management products provide index services that support the

following methods for searching document repositories:

10

15

20

25

Attribute Search - scans short lists (attributes) of important words that are associated
with a document and returns documents that match the search criteria. For example, a
user may query for documents written by a specific author or created on a particular date.
Attribute search brings the capabilities of the SQL-oriented database approach to finding
documents by storing in a database the values of specially identified fields within a
document and a reference to the actual document itself. In order to support Attribute
Search an index maintains documents' attributes, which it uses to fnanage, find and

catalog documents. This is the least complicated approach of the searching methods.

Full-text Search - searches repository contents for exact words or phrases and returns
documents that match the search criteria. In order to facilitate Full-text Search, full-text
indexes are constructed by scanning documents once and recording in an index file which
words occur in which documents. Leading document management systems have full-text

services built-in, which can be integrated directly into applications.

Context Search - searches repository contents for exact words or phrases. Also, searches -
for related words or phrases by using synonyms and word taxonomies. For example, if
the user searches for auto, the search engine should look for car, automobile, motor

vehicle, etc.

Boolean Search - searches repository contents for words or phases that are joined
together using boolean operators (e.g., AND, OR, NOT). Same type of indexes are used

for Boolean Search as for Full-Text Search.

The following products are used to index and search Web and non-Web documents:

Verity Topic - delivers accurate indexing, searching and filtering of a wide variety of
information sources and formats. Verity Topic is integrated directly into several

document management products, allowing systems to full-text index its unstructured

108

WO 01/16727 PCT/US00/24189

information. Verity Topic also offers a variety of products to help full-text index Web

sites.

Fulcrum - provides a variety of robust, multi-platform indexing and retrieval products
that deliver full-function text retrieval capabilities. Fulcrums products are typically

integrated with custom databases, Web sites and document management systems.
The following products are mainly used for Web documents:

Microsoft Index Server 1.1 - allows for search of Web documents, including Microsoft
Word and Microsoft Excel. It works with Windows NT Server 4.0 and Internet
Information Server 2.0 or higher to provide access to documents stored on an intranet or
Internet site. Index Server supports full-text searches and retrieves all types of
information from the Web browser including HTML, text, and all Microsoft Office

documents, in their original format.

Netscape Catalog Server 1.0 - provides an automated search and discovery server for
creating, managing, and keeping current an online catalog of documents residing on
corporate intranets and the Internet. Catalog Server offers query by full text, category, or
attributes such as title, author, date, etc. It also supports multiple file formats, including

HTML, Word, Excel, PowerPoint, and PDF.

Storage 1414

Storage Services manage the document physical storage. Most document management products
store documents as objects that include two basic data types: attributes and content. Document
attributes are key fields used to identify the document, such as author name, created date, etc.
Document content refers to the actual unstructured information stored within the document.

Generally, the documents are stored in a repository using one of the following methods:

Proprietary database - documents (attributes and contents) are stored in a proprietary

database (one that the vendor has specifically developed for use with their product).

109

10

15

20

25

WO 01/16727 PCT/US00/24189

Industry standard database - documents (attributes and contents) are stored in an
industry standard database such as Oracle or Sybase. Attributes are stored within
traditional database data types (e.g., integer, character, etc.); contents are stored in the

database's BLOB (Binary Large Objects) data type.

Industry standard database and file system - Documents’ attributes are stored in an
industry standard database, and documents' contents are usually stored in the file-system
of the host operating system. Most document management products use this document
storage method, because today, this approach provides the most flexibility in terms of

data distribution and also allows for greater scalability.

COMMUNICATION 1006,1008

As illustrated in Figure 15, Network services provided by the Communications Services layer are
grouped into four major categories of functionality: Virtual Resource, Directory, Messaging, and

Security services 1502,1504,1506,1508.

Virtual Resource services proxy or mimic the capabilities of specialized, network connected
resources. This allows a generic network node to emulate a specialized physical device. In this

way, network users can interface with a variety of specialized resources.

Directory services play a key role in network architectures because of their ability to unify and
manage distributed environments. Managing information about network resources involves a
variety of processes ranging from simple name/address resolution to the logical integration of

heterogeneous systems to create a common view of services, security, etc.

Messaging services transfer formatted information from one process to another. These services

shield applications from the complexity of the network transport services.

Call centers and customer service centers are integral parts of many business operations. Call
centers have enhanced business processes by managing telephone contact with potential

customers, with the objective of improving the Quality of Service (QoS). Several customer and

110

10

15

20

WO 01/16727 PCT/US00/24189

business drivers are motivating a transition from traditional cost-based call centers to more

strategic centers focused on customer interaction.

Communications Security services control access to network-attached resources. Combining
network Security services with security services in other parts of the system architecture (e.g.,

application and database layers) results in robust security.

Implementation Considerations

Is data translation required?

Communications middleware can translate data into a format that is compatible with the

receiving process. This may be required in a heterogeneous environment. An example is data

- translation from ASCII-to-EBCDIC. It is important to note that data translation may not be

provided by all middleware products.

Are additional communications services required?

Communications middleware can provide additional communications services that may be
required by the applications. Additional services include dynamic message routing, guaranteed
delivery, broadcasting, queuing, and priority delivery. These common services are usually
provided in the communications middleware rather than addressing them in each application
separately. Different communications middleware products provide different services.

Additionally, many middleware packages, such as Tuxedo, provide OLTP functionality.

Is a packaged middleware solution desired?

111

10

15

20

25

WO 01/16727 PCT/US00/24189

Depending on the functionality required, communications middleware can be very complex to
custom develop. In addition, products have evolved to a point where proven solutions exist.
Based on this, it can be desirable to buy communications middleware rather than to build it.
Considerations of time, budget, skills, and maintenance should be taken into account when
selecting between a packaged middleware product and custom developed middleware. In some

instances, custom developed middleware may still be preferred.

What is the clients middleware direction?

There is a definite functionality overlap between communications middleware and several other
middleware components such as transaction services and information access. In addition,
communications middleware may be provided by various CASE tools. An example of this is the
Distribution Services component of FCP. Because of this overlap, it is important to understand
the clients overall direction toward middleware and the specific middleware functionality

required by the overall solution.

Is a simplified developers interface important?

The simplified interface associated with communications middleware can help to reduce the
complexity of developing Netcentric applications. The simplified interface helps reduce the
development complexity by insulating the business applications from the network protocols.
Because of this, application developers do not need to understand the intricacies and somewhat

cryptic APIs associated with network transport protocols.

Is location transparency required?

Communication middleware allows the client application to access any service on any physical
server in the network without needing to know where it is physically located. This capability

may be required in an environment with many physical servers or in an environment that is very
112

10

15

20

WO 01/16727 PCT/US00/24189

dynamic. It is important to note that location transparency may not be provided by all

middleware products.

Does the application need to run on multiple platforms?

Communications middleware is designed to allow applications to access various transport
protocols from various vendors. From a network interface perspective, it should be easier to port
an application from one computing platform to another if the application is using

communications middleware. Of course, other porting issues will need to be considered.

Virtual Resources 1502

Virtual Resource services proxy or mimic the capabilities of specialized, network-connected
resources. This allows a generic network node to emulate a specialized physical device. In this
way, network users can interface with a variety of specialized resources. An examples of a
Virtual Resource service is the capability to print to a network printer as if it were directly

attached to a workstation.

Fax 1510

Fax Services provide for the management of both in-bound and out-bound fax transmissions. If
fax is used as a medium for communicating with customers or remote employees, in-bound fax
services may be required for centrally receiving and electronically routing faxes to the intended
recipient. Out-bound fax services can be as simple as supporting the sharing on the network of a

single fax machine or group of machines for sending faxes.

113

10

15

20

WO 01/16727 PCT/US00/24189

Fax services can provide centrally managed faxing capabilities, thus eliminating the need for fax
modems on every workstation. A fax server generally provides Fax services to clients, such as
receiving, queuing, and distributing incoming faxes and queuing and sending outgoing faxes.

Clients can view faxes and generate faxes to be sent.

Applications may compose and transfer faxes as part of notifying users or delivering
information. For example, an application may use Fax services to add customer-specific

information to a delivery receipt form and fax the form to a customer.

Implementation considerations

More sophisticated out-bound fax architecture services are required for supporting fax-back
applications. Fax-back applications, when coupled with Computer Telephone Integration (CTI)
are popular for automating customer requests for product or service information to be faxed to

them.

Possible Product Options

Cheyenne Softwares Faxserve; Lotus Fax Server for Lotus Notes; Sirens Siren Fax

The following are examples of fax servers:

The Lotus® Fax Server (LFS) - ﬁrovides fax services to users working on a network
running NotesMail®. In addition to combining outgoing and incoming fax capabilities in
a single product, the LFS provides additional features, such as automatic routing, and
print-to-fax driver software that extends fax capabilities to any Windows-based Notes
client. The LFS supports a wide variety of fax modems, fax cards and fax file formats

through the incorporation of device technologies from Optus Software, Inc.

114

10

15

20

WO 01/16727 PCT/US00/24189

Cheyenne Software's Faxserve
The following is an example of a product that allows applications to generate faxes:

Siren's Siren Fax

File sharing 1512

Figure 16 illustrates File Sharing services 1512. File Sharing services allow users to view,
manage, read, and write files that may be located on a variety of platforms in a variety of
locations. File Sharing services enable a unified view of independent file systems. This is

represented in Figure 16, which shows how a client can perceive remote files as being local.
File Sharing services can provide the following capabilities:
Transparent access - access to remote files as if they were local

Multi-user access - distribution and synchronization of files among multiple users,

including file locking to manage access requests by multiple users

File access control - use of Security services (user authentication and authorization) to

manage file system security
Multi-platform access - access to files located on various platforms (e.g., UNIX, NT, etc.)

Integrated file directory - a logical directory structure that combines all accessible file

directories, regardless of the physical directory structure

Fault tolerance - use of primary and replica file servers to ensure high availability of file

system

Scalability - ability to integrate networks and distributed file systems of various sizes

115

WO 01/16727 PCT/US00/24189

Possible Product Options

Novell’s NetWare/IntranetWare; Microsoft’s Windows NT Server; Sun Microsystems NFS and
WebNFS; Novell’s IntranetWare NFS Services; IBM/Transarcs Distribute File System (DFS);
Transarc's AFS

The following are examples of File Sharing products:

Novell's NetWare/IntranetWare - Novell's NetWare network operating system includes
distributed file services, supported by the NetWare Core Protocol (NCP). NetWare
Directory Services (NDS) manages naming and security for files on distributed

platforms.

Microsoft's Windows NT Server

Server Message Block (SMB) - native file-sharing protocol in Windows 95, Windows
NT, and OS/2.

Common Internet File System (CIFS) - an enhancement to SMB for distributed file

systems in a TCP/IP environment.

Distributed File System (Dfs) - a utility for Windows NT Server that provides file

services in a Microsoft environment.

Network File System (NFS) - NFS is a native UNIX file access protocol and is also
available as an operating system add-on product that provides distributed file services.
Sun Microsystems introduced NFS in 1985. NFS has been widely adopted and has been

ported to a variety of platforms.

116

10

15

20

WO 01/16727 PCT/US00/24189

The following are examples of products that provide NFS services.

Sun Microsystems' NFS and WebNFS Novell's IntranetWare NFS Services

AFS - A distributed file system for distributed UNIX networks; derived from Carnegie-Mellon
University's Andrew File System. Similar to NFS, but differs in terms of the name space, system

performance, security, etc. AFS is distributed by Transarc.

IBM/Transarc's Distribute File System (DFS) - a scaleable distributed file system that offers

replication, security, etc.

Paging 714

Wireless short messaging (i.e., paging) can be implemented through wireless systems such as
paging networks, GSM voice/data networks, PCS voice/data networks, and dedicated wireless
data networks. Paging virtual resource services provide the message formatting and display
functionality that allows network nodes to interface with wireless paging systems. This service
emulates the capabilities of one-way and two-way pagers. Paging systems allow pages to be

generated in various ways:

E-mail messages to a specified mailbox

DTMEF (touch tone) signaling to a voice response system

Encoded digital messages transferred into a paging provider gateway

Messages transferred to a locally attached two-way wireless pager

Possible Product Options

TelAlert; e-mail systems

117

10

15

20

WO 01/16727 PCT/US00/24189

e-mail systems - some e-mail systems and fax servers can be configured to generate

pages to notify users when a defined event occurs such as e-mail/fax arriving.

Telamon's TelAlert - TelAlert provides notification capabilities for UNIX systems. For

example, it can page support personnel in the event of system problems.

Phone 1516

Phone virtual resource services extend telephony capabilities to computer platforms. For
example, an application on a desktop computer can place and receive telephone calls for the user.
Phone virtual resource services may be used in customer care centers, help desks, or any other

environment in which it is useful for a computer to replace a telephone handset.

Phone services enable clients, servers, and specialized telephony nodes (PBXs, ACDs, etc.) to

control the telephony environment through the following telephony controls:

Call control

Controls telephone features

Controls recorded messages

Manipulates real time call activities (e.g., make call, answer, transfer, hold,

conference, mute transfer, release, route call, call treatments and digits collected)

Telephone status control

Controls telephone status functions

Logs users in and out of the system

Sets ready, not ready, and make busy statuses for users

118

WO 01/16727 PCT/US00/24189

The following are examples of uses of Phone virtual resources:

PC Telephony - PC telephony products allow desktop computers to act as conduits for

voice telephone calls.

Internet Telephony - Internet telephony products enable voice telephone calls (and

5 faxing, voice mail retrieval, etc.) through the Internet. For example, an Internet telephony
product can accept voice input into a workstation, translate it into an [P data stream, and
route it through the Internet to a destination workstation, where the data is translated back

into audio.

Desktop Voice Mail - Various products enable users to manage voice mail messages

10 using a desktop computer.

Possible Product Options

Lucent PassageWay; COM2001s TransCOM; NetSpeaks WebPhone; VocalTecs Internet Phone;
IDTs Net2Phone; Octel Communications Unified Messenger

15 The following are examples of vendors that provide PC telephony products:
Lucent PassageWay - suite of products that connect PCs to PBXs.

COM2001's TransCOM - voice, data and call-management system (dialing, voice mail,

faxing, voice recognition, caller ID, etc.) for personal computers.
The following are examples of Internet telephony products:
20 NetSpeak's WebPhone
VocalTec's Internet Phone

IDT's Net2Phone

119

10

15

20

WO 01/16727 PCT/US00/24189

The following is an example of a desktop voice mail product:

Octel Communication’s Unified Messenger

Terminal 1518

Terminal services allow a client to connect to a non-local host via a network and to emulate the
profile (e.g., the keyboard and screen characteristics) required by the host application. For
example, when a workstation application logs on to a mainframe, the workstation functions as a
dumb terminal. Terminal Services receive user input and send data streams back to the host
processor. If connecting from a PC to another PC, the workstation might act as a remote control

terminal (e.g., PCAnywhere).
The following are examples of Terminal services:

Telnet - a simple and widely used terminal emulation protocol that is part of the TCP/IP
communications protocol. Telnet operates establishing a TCP connection with the
remotely located login server, minicomputer or mainframe. The client’s keyboard strokes
are sent to the remote machine while the remote machine sends back the characters

displayed on the local terminal screen.

3270 emulation - emulation of the 3270 protocol that is used by IBM mainframe

terminals.

tn3270 - a Telnet program that includes the 3270 protocol for logging onto IBM
mainframes; part of the TCP/IP protocol suite.

X Window System - allows users to simultaneously access applications on one or more
UNIX servers and display results in multiple windows on a local display. Recent
enhancements to XWS include integration with the Web and optimization of network

traffic (caching, compression, etc.).

120

10

15

20

WO 01/16727 PCT/US00/24189

Remote control - While terminal emulation is typically used in host-based environments,
remote control is a sophisticated type of client/server Terminal service. Remote control
allows a client computer to control the processing on a remote desktop computer. The
GUI on the client computer looks as if it is the GUI on the remote desktop. This makes it

appear as if the remote applications are running on the client.

rlogin - a remote terminal service implemented under BSD UNIX. The concept behind
rlogin is that it supports “trusted” hosts. This is accomplished by having a set of
machines that share common file access rights and logins. The user controls access by

authorizing remote login based on a remote host and remote user name.

Possible Product Options

Hummingbird's Exceed; Network Computing Devices' PC-Xware; Citrix WinFrame; Carbon
Copy; pcANYWHERE; Stac's Reachout; Traveling Software's LapLink

The following are examples of X Window System products:
Hummingbird’s Exceed
Network Computing Devices’ PC-Xware

The following are examples of remote control products:
Citrix’s WinFrame
Microcom's Carbon Copy
Symantec’s pcANYWHERE
Stac’s Reachout

Traveling Software's LapLink

121

10

15

20

WO 01/16727 PCT/US00/24189

Printing 1520

Print services connect network workstations to shared printers. The administration of Print
Services is usually handled by a print server. Depending on the size of the network and the
amount of resources the server must manage, the print server may run on a dedicated machine or
on a machine that performs other server functions. A primary function of print servers is to
queue print jobs sent to network printers. The queued jobs are stored in a print buffer on the print
server and are sent to the appropriate network printer as it becomes available. Print services can
also provide the client with information including print job status and can manage in-progress

print jobs.

Possible Product Options

Novell’s Netware Distributed Print Services (NDPS); Novell’s Netware UNIX Print Services;
Microsoft ; Windows NT Server; Line Printer Daemon (LPD)

The following are examples of print server products:

Novell's Netware Distributed Print Services (NDPS) - provides central management of

print services for NetWare networks.

Novell's Netware UNIX Print Services - a supplement to Novell’s NetWare 4.1 server
which allows NetWare and UNIX clients to share UNIX or Netware printers.

Microsoft Windows NT Server - provides central management of print services for NT

networks.

Line Printer Daemon (LPD) - UNIX print management facilities, which include client
and server utilities for spooling print jobs. Related programs include Ipr (sends print job

to spool) and Ip (sends request to printer).

122

10

15

20

WO 01/16727 PCT/US00/24189

Audio/Video 1522

Audio/Video services allow nodes to interact with multimedia data streams. These services may

be implemented as audio-only, video-only, or combined audio/video:

Audio services - Audio services allow components to interface with audio streams such

as the delivery of music or radio content over data networks.

Video services - Video services allow components to interface with video streams such
as video surveillance. Video services can add simple video monitor capabilities to a
computer, or they can transform the computer into a sophisticated video platform with

the ability to generate and manipulate video.

Combined Audio/Video services - Video and audio content is often delivered
simultaneously. This may be accomplished by transferring separate audio and video
streams or by transferring a single interleaved stream. Examples include video

conferencing and television (traditional or interactive).

Audio/Video services can include the following functionality:

Streams content (audio, video, or both) to end users

Manages buffering of data stream to ensure uninterrupted viewing/listening

Performs compression and decompression of data

Manages communications protocols to ensure smooth delivery of content

Manages library of stored content and/or manages generation of live content

Audio/Video services draw upon lower-level services such as streaming and IP Multicast in

order to efficiently deliver content across the network.

123

10

15

20

WO 01/16727 PCT/US00/24189

Possible Product Options

Progressive Networks RealVideo; Microsoft’s NetShow; Vxtremes Web Theater; Intels
ProShare; Creative Labs Video WebPhone

The following products are examples of video servers:
Progressive Networks' RealVideo
Microsoft's NetShow
Vxtreme's Web Theater
The following products are examples of video conferencing systems:
Intel's ProShare

Creative Labs' Video WebPhone

Directory Services 1504

A full-featured Directory Service organizes, categorizes and names networked resources in order
to provide a comprehensive picture of clients, servers, users, applications and other resources.
The service typically includes a database of objects, representing all nodes and resources on a
network. The database manages relat/ionships between users and networks, network devices,
network applications, and information on the network. The Directory service can organize
network nodes to reflect the topology and organization of the enterprise and its policies. The
Directory service makes resources location and platform independent, since it allows users to
locate resources via the directory and regardless of their physical location. The Directory service
also maps between logical resource names (e.g., "Marketing_Printer") and physical resource
address (e.g., 10.27.15.56). (See Name service, below).

124

10

15

20

WO 01/16727 PCT/US00/24189

Directory service products utilize Security services to track access rights for access to network
resources and information. The Directory service is an efficient way to manage resource security,
since the directory offers a logical representation of all resources in the enterprise. In addition,
the Directory service can act as a single point of entry into the network, meaning users can
receive access to allowed resources by authenticating themselves a single time to the Directory
service. (For more information on authentication and authorization, refer to the Comm. Security

service.)

In summary, the Directory service performs the following functions:

Stores information about network resources and users and tracks relationships

Organizes resource access information in order to aid resources in locating and accessing

other resources throughout the network

Provides location transparency, since resources are accessed through a directory rather

than based on their physical location

Converts between logical resource names and physical resource addresses

Interacts with Security services such as authentication and authorization track identities

and permissions

Provides single network logon to file and print resources; can provide single network

logon for network applications that are integrated with the Directory service

Distributes directory information throughout the enterprise (for reliability and location-

independent access)
Synchronizes multiple directory databases
Enables access to heterogeneous systems (integration of various network operating

systems, platforms, etc.)

125

10

15

20

25

WO 01/16727 PCT/US00/24189

Directory Standards - There are a variety of standards for directories. Vendor-specific directory

products build upon (and extend) standards to provide a robust, full-featured enterprise directory.

The following are examples of standards related to Directory services:

X.500 an ITU-T standard for a hierarchical directory containing user and resource
information; includes Directory Access Protocol (DAP), which can be used to access

directory information.

Lightweight Directory Access Protocol (LDAP) a de facto standard for accessing X.500-

compatible directory information in an Internet/intranet environment.

Implementation considerations

One of the most popular network directory services is Novell Directory Services (NDS) used
with Netware 4.x. This system allows users to access services and resources with a single login,
regardless of where the user location is or where the resource location is. Another example of a
directory service is the ISO X.500 standard. This method is not widely used due to its high
overheads. In addition to these two protocols, Windows NT uses a similar system called Primary

Domain Control. This system allows for the same type of directory mapping as NDS and X.500.

Another protocol that has emerged is the Lightweight Directory Access Protocol (LDAP), which
is a shimmed-down version of the X.500 directory client and is seen as a possible replacement for
X.500. LDAP is a standard protocol for accessing and updating directory information in a
client/server environment; it has evolved into an emerging standard for directory replication for
the Internet, and is backed by vendors such as Netscape, Novell, Microsoft, IBM and AT&T that

can provide low-level compatibility among directory systems.

Another helpful feature to look out for is support for dynamic IP addressing via DHCP. This lets
the router handle the process of sharing a small number of IP addresses among the members of
the workgroup. Support for dynamic IP addressing is now part of Windows 95 and Macintosh

System 7.6, among other operating systems.

126

10

15

20

WO 01/16727 PCT/US00/24189

Possible Product Options

Novells Netware Directory Service; Netscapes Directory Server; Microsofts Active Directory;

Banyan Systems StreetTalk

The following are examples of products that provide full-featured Directory services.
Novell's Netware Directory Service
Netscape's Directory Server
Microsoft's Active Directory Banyan Systems' StreetTalk

The following is an example of a meta-directory product:

Zoomit VIA - integrates network operating system directories, application databases, and.
human resource databases (includes Lotus cc:Mail, Lotus Notes, Novell NDS, Microsoft
NT Domain Controller and Active Directory, Microsoft Exchange, Banyan VINES,

Netscape Directory Server), thus allowing unified access and maintenance.
The following are examples of Name services:

Domain Name Service - The most common and widely used Name Service on the
Internet is Domain Name Service (DNS) which resolves a pronounceable name into an IP
address and vice versa. For instance, DNS could resolve the domain name of
www.ac.com to be 204.167.146.195. DNS functionality is distributed across many

computers within the network.

Microsoft's Windows Internet Name Service (WINS) - WINS is Microsoft’s
proprietary method for mapping IP addresses to NetBIOS device names. WINS works
with Windows 3.x, Windows 95, and Windows NT clients.

127

10

15

20

WO 01/16727 PCT/US00/24189

The following are examples of products that provide Domain services:

Network Information Service (NIS) - Developed and licensed by Sun Microsystems for
use in UNIX environments, NIS tracks user names, passwords, user IDs, group IDs, and

host names (along with other system files) through a centralized NIS database.

Microsoft's Windows NT Server Domain Controller

Domain services 1524

A network domain is a set of network nodes under common control (i.e., common security and
logins, unified addressing, coordinated management, etc.). Domain services manage these types
of activities for the network nodes in a domain. Domain services may be limited in their ability

to support heterogeneous systems and in the ability to scale to support the enterprise.

Name service 1526

The Name service creates a logical "pronounceable" name in place of a binary machine number.
These services could be used by other communications services such as File Transfer, Message
Services, and Terminal Services. A Name service can be implemented on its own, or as part of a

full-featured Directory service.

Core Messaging 1528

Broadly defined, Messaging services enable information or commands to be sent between two or
more recipients. Recipients may be computers, people, or processes within a computer.
Messaging Services are based on specific protocols. A protocol is a set of rules describing, in
technical terms, how something should be done. Protocols facilitate transport of the message

stream. For example, there is a protocol describing exactly what format should be used for
128

10

15

20

25

WO 01/16727 PCT/US00/24189

sending specific types of mail messages. Most protocols typically sit “on top” of the following

lower level protocol:

TCP/IP - Transmission Control Protocol / Internet Protocol (TCP/IP) is the principle
method for transmitting data over the Internet today. This protocol is responsible for
ensuring that a series of data packets sent over a network arrive at the destination and are

properly sequenced.

Messaging services transfer formatted information from one process to another. By drawing
upon Messaging services, applications can shield themselves from the complexity of the low-
level Transport services. The Core Messaging services category includes styles of messaging
that support basic inter-process communication (IPC). There are a variety of architecture options
used to support IPC. They can be divided into Store and Forward, Synchronous and

Asynchronous Message Services.

Store and Forward Message Services - provide deferred message service processing. A Store
and Forward Message Service may use an E-Mail infrastructure upon which to build

applications. Common uses would be for forms routing and E-mail.

Synchronous Message Services - allow an application to send a message to another application
and wait for a reply before continuing. Synchronous messaging is typically used for update and
general business transactions. It requires time-out processing to allow the application to re-

acquire control in the event of failure.

Asynchronous Message Services allow an application to send a message to another application
and continue processing before a reply is received. Asynchronous messaging is typically used
for larger retrieval type processing, such as retrieval of larger lists of data than can be contained

in one message.

Additionally, inter-process messaging services are typically one of two messaging types:

Function Based - uses the subroutine model of programming. The message interface is built
upon the calling program passing the appropriate parameters and receiving the returned

information.

129

10

15

20

WO 01/16727 PCT/US00/24189

Message Based - message-based approach uses a defined message format to exchange
information between processes. While a portion of the message may be unstructured, a defined
header component is normally included. A message-based approach is not limited to the

call/return structure of the function-based model and can be used in a conversational manner.

Core Messaging services are categorized by the characteristics of the information being

transferred:

File Transfer

RPCs

Message-Oriented Middleware

Streaming

How do Messaging services compare to Transaction Processing (TP) services? TP services offer
broad functionality to support application management, administrative controls, and application-
to-application message passing. TP services may include global transaction coordination,
distributed two-phase commit, database support, coordinated recovery after failures, high
availability, security, and work load balancing. TP services may utilize Messaging services,

which provide basic interprocess communication.

Another category of Messaging services, Specialized Messaging services, includes services that

extend Core Messaging services to provide additional functionality.

Implementation considerations

Is guaranteed delivery required?

RPCs do not support guaranteed message delivery techniques such as store-and-forward and
queuing. Consequently, RPCs depend upon the availability of the physical network and server

processes. Therefore, network stability is important to consider when deciding to use RPCs.
130

10

15

20

WO 01/16727 PCT/US00/24189

How important is flexibility?

In general, RPCs work best with tightly coupled applications or in environments where
significant application modifications are unlikely. RPCs may be desirable if the application

being developed is intended to be shrink wrapped and sold.

Is synchronous or asynchronous program control required?

Function based middleware such as RPCs traditionally provide synchronous program control.
Therefore, they tend to pass control from the client process to the server process. When this
occurs, the client is dependent on the server and must wait to perform any additional processing
until the servers response is recetved. This type of program control is also known as blocking.
Some RPC vendors are enhancing their products to support asynchronous program control as

well.

What type of conversation control is required?

RPCs permit one side of the conversation (the client) to only make requests, while the other side
(the server) may only make replies. Conversation control is passed from the client to the server
since the client, for each request, causes one or more functions to execute on the server while it
waits for its reply. With RPCs, developers do not need to be concerned with the state of the
conversation between the client and the server. In most cases, the absence of conversation states

simplifies the design and development effort.

Is yclient interested in a stable or emerging technology?

RPCs have existed for many years and are considered to be a mature, stable, proven solution.
131

WO 01/16727 PCT/US00/24189

Is it important to minimize development complexity?

Due to the synchronous program control and the request/reply conversation control, RPCs can be
fairly straightforward to design and build. The complexity is also reduced since RPC calls are
5 = completely independent of any previous or future RPC call. On the other hand, RPCs usually

require a specific RPC compiler, which may add to the development complexity.

Are extended technical capabilities required?

If any of the following capabilities are required, message based middleware should be
10 considered. It may also be possible to incorporate these capabilities into a function based

middleware solution, but significant custom modification and development may be required.

Guaranteed Delivery

Store and Forward

Queuing

15 Priority Message Delivery

Dynamic Routing

Multicasting and Broadcasting

Load Balancing

20 Product considerations

132

10

15

20

WO 01/16727 PCT/US00/24189

What are the client’s budgetary constraints?

Costs may vary greatly among middleware products. There are many factors to consider when
looking at middleware. To begin, middleware products can require extensive consulting and
support services just to install. Therefore, understanding the set-up and configuration costs are
important. There are also additional products required to complete an environment such as
additional networking software which may be necessary for each individual client. In addition,

development seat costs and production seat costs must considered.

Is synchronous or asynchronous communications required?

All RPC products support synchronous program control. Some vendors are enhancing their
products to provide asynchronous capabilities as well. Asynchronous means that while
information is being passed via send and receive commands, programs can continue to process

other tasks while waiting for a response to a request.

What's the clients position on DCE?

DCE software, developed by Open Systems Foundation (OSF), is licensed to OSF-member
companies to form products that provide common services. The RPC is one of several DCE

common services. Some clients may desire to be aligned with DCE-based solutions.

Is the middleware compatible with the other technology architecture components?

Communications middleware products must integrate with other technology architecture
components, development tools, and operations tools. Therefore, it is necessary to understand the

compatibility between these tools and the communications middleware product.

133

10

15

20

25

WO 01/16727 PCT/US00/24189

Is it important for the product to support multiple platforms and operating systems?

The middleware products must support the required computing platform such as Windows,
UNIX, and Mainframe. It is common for vendors to claim that their product supports various
platforms and operating systems, when in reality, that platform and operating system may be
supported in a future release. It is important to request references of implementations of the

platforms and operating systems that are important to your specific environment.

What is the client’s vendor direction?

When evaluating a middleware product, its important to consider the clients relationships with
vendors in the technology market. For example, if the client has a strong relationship with a
vendor who is also in the middleware market, it would be wise to investigate and consider such a

vendor for the clients middleware solution.

Is it important for the product to support multiple network protocols?

The middleware products must support the network protocols such as TCP/IP, LU6.2, and
IPX/SPX that are important to your specific environment. It is important to note that protocols
can vary across platforms. Ensure that the clients specific transport protocol version is supported
by the communications middleware product. For example, communications middleware vendors
may support TCP/IP but they may not support the particular TCP/IP vendor that the client has

selected.

Is a quick response time critical?

RPC performance may vary between products based upon the internal mechanisms and
techniques of the product. For example, slow performance may be due to the processing

overhead associated with each RPC call. Some RPC products may improve performance by
134

WO 01/16727 PCT/US00/24189

utilizing special techniques used to invoke the server every time a client request arrives.

Performance should be considered as a product differentiator.

What level of security is required?

There are potential security issues associated with the execution of commands on a remote
system. Some vendors install security features into their products. It is also possible for the

architecture team to build additional security into the overall solution.

Is yclient interested in a stable or emerging product?

10 Vendors should be evaluated on the quality of service they offer, their market share, the age of

15

20

their product, the installed base of their product, and their financial stability. In addition, since
this market is still emerging, there are many small vendors in the market trying to offer solutions.

Vendor and product stability should be taken very seriously.

File transfer 1530

File Transfer services enable the sending and receiving of files or other large blocks of data
between two resources. In addition to basic file transport, features for security, guaranteed
delivery, sending and tracking sets of files, and error logging may be needed if a more robust file

transfer architecture is required. The following are examples of File Transfer standards:

File Transfer Protocol (FTP) allows users to upload and download files across the
network. FTP also provides a mechanism to obtain filename, directory name, attributes
and file size information. Remote file access protocols, such as Network File System
(NFS) also use a block transfer method, but are optimized for online read/write paging of

a file.

135

WO 01/16727 PCT/US00/24189

HyperText Transfer Protocol (HTTP) - Within a Web-based environment, Web servers
transfer HTML pages to clients using HTTP. HTTP can be thought of as a lightweight
file transfer protocol optimized for transferring small files. HTTP reduces the
inefficiencies of the FTP protocol. HTTP runs on top of TCP/IP and was developed
specifically for the transmission of hypertext between client and server. The HTTP

standard is changing rapidly.

Secure Hypertext Transfer Protocol (S-HTTP) - a secure form of HTTP, mostly for
financial transactions on the Web. S-HTTP has gained a small level of acceptance among
merchants selling products on the Internet as a way to conduct financial transactions
(using credit card numbers, passing sensitive information) without the risk of
unauthorized people intercepting this information. S-HTTP incorporates various
cryptographic message formats such as DSA and RSA standards into both the Web client

and the Web server.

File Transfer and Access Management (FTAM) - The OSI (Open Systems
Interconnection) standard for file transfer, file access, and file management across

platforms.

Implementation considerations

Additional options for File Transfer Services in a homogeneous environment could include the

native operating systems copy utility, i.e. Windows NT Copy features.

Possible Product Options

Computer Associates CA-XCOM; RemoteWare; Hewlett-Packards HP FTAM; IBMs Files On-

Demand gateway

The following are examples of File Transfer products:

136

10

15

20

25

WO 01/16727 PCT/US00/24189

Computer Associates CA-XCOM; RemoteWare; Hewlett-Packards HP FTAM; IBMs

Files On-Demand gateway

The following are examples of File Transfer products:

Computer Associates' CA-XCOM - provides data transport between mainframes,
midrange, UNIX, and PC systems. XcelleNet’s RemoteWare - retrieves, appends,

copies, sends, deletes, and renames files between remote users and enterprise systems.

Hewlett-Packard's HP FTAM - provides file transfer, access, and management of files

in OSI networks.

The following product provides File Transfer translation:

IBM'’s Files On-Demand gateway - acts as a gateway between Web-based and
mainframe-based FTP services to allow users to download mainframe-based files from a

World Wide Web browser.

RPC 1532

RPCs (Remote Procedure Calls) are a type of protocol by which an application sends a request to
a remote system to execute a designated procedure using the supplied arguments and return the
result. RPCs emulate the function call mechanisms found in procedural languages (e.g., the C
language). This means that control is passed from the main logic of a program to the called
function, with control returning to the main program once the called function completes its task.
Because RPCs perform this mechanism across the network, they pass some element of control
from one process to another, for example, from the client to the server. Since the client is
dependent on the response from the server, it is normally blocked from performing any
additional processing until a response is received. This type of synchronous data exchange is also

referred to as blocking communications.

137

WO 01/16727 PCT/US00/24189

Possible Product Options

Sun Microsystems ONC+; OpenGroups DCE RPC; Novells NetWare RPC; NobleNet's EZ-RPC,;
Transarcs DCE RPC; Microsofts Windows95/NT RPC

Sun Microsystems' ONC (Open Network Computing)

5 OpenGroup's DCE (Distributed Computing Environment)

Novell's NetWare RPC NobleNet EZ-RPC Transarc's DCE

Microsoft's Windows95/NT RPC

Message Oriented 1534

10 Message-Oriented Middleware (MOM) refers to the process of distributing data and control
throughout the exchange of records known as messages. MOM provides the application
developer with a set of simple verbs (e.g., connect, send, receive, and disconnect) that are used to

exchange information with other distributed applications.

Message-Oriented Middleware is responsible for managing the interface to the underlying
15 communications architecture via the communications protocol APIs and ensuring the delivery of

the information to the remote process. This interface provide the following capabilities:

Translating mnemonic or logical process names to operating system compatible format

Opening a communications session and negotiating parameters for the session

Translating data to the proper format

20 Transferring data and control messages during the session

Recovering any information if errors occur during transmission

138

10

15

20

25

WO 01/16727 PCT/US00/24189

Passing results information and status to the application.

An application continues processing after executing a MOM request, allowing the reply to arrive
at a subsequent time. Thus, unlike RPCs, MOM implements a "non-blocking" or asynchronous

messaging architecture.

Message-Oriented Middleware products typically support communication among various

computing platforms (e.g., DOS, Windows, OS/2, Macintosh, UNIX, and mainframes).
There are three types of Message-Oriented Middleware commonly implemented:
Message Passing
Message Queuing
Publish and Subscribe

Message Passing — as illustrated in Figure 17, is a direct, application-to-application
communication model. An application request is sent in the form of message from one
application to another. The communication method can be either synchronous like RPCs or
asynchronous (through callback routines). In a message-passing model, a direct link between two

applications that participate in the message exchange is always maintained.

Message Queuing (also known as Store and Forward) — as depicted in Figure 18, 1s an
indirect application to application communication model that allows applications to
communicate via message queues, rather than by calling each other directly. Message queuing is
asynchronous by nature and connectionless, meaning that the recipient need not be directly
available when the message is sent. Mdreover, it implies support for reliable, guaranteed and

assured (non-duplicate) message delivery.

Publish and Subscribe (also known as Push messaging) — as shown in Figure 19, is a special
type of data delivery mechanism that allows processes to register an interest in (i.e., subscribe
to) certain messages or events. An application then sends (publishes) a message, which is then

forwarded to all processes that subscribe to it.

139

WO 01/16727 PCT/US00/24189

Implementation considerations

When trying to decide whether to use MOM technology, keep the following characteristics of

this type of middleware in mind:

5 MOMs are high speed, generally connectionless and are usually deployed for executing

applications with a nonblocking sender

MOM solutions are especially useful for inter-application communication and are

increasingly popular for inter-enterprise work

MOMs support end-to-end business applications and process inter-operability

10 MOMs are designed for heavily used production applications and are generally capable
of high throughput rates and fast transfer times. Data is usually forwarded immediately,

although it is possible to store it for later processing

Possible Product Options

15 PeerLogics PIPES; IBM MQSeries; BEAs MessageQ; Momentum XIPC; Microsoft MQ

(Falcon) ; TibCo's Rendezvous

Message Passing

PeerLogic's PIPES

PIPES Platform applications communicate through a messaging interface that allows
20 asynchronous, non-blocking communications. The messaging model is well-suited to
complex multi-tier applications because it inherently supports asynchronous, event-

driven communications.

140

WO 01/16727 PCT/US00/24189

Message Queuing

IBM's MQSeries

New features found in version 5 include:

5 A new Internet gateway that allows customers and partners to run mission critical business

applications over an unreliable network.

Enhanced message distribution carries more business information, while minimizing use of

networks.

Performance improvements gives message transmission at least 8 times faster than previous

10 versions

Resource Coordination ensures that data held in databases is always updated completely - or

not at all, if processing cannot complete.

Additional developer features include further language support for C++, Java and PL/1, and

interoperability with current and previous MQSeries versions.

15 Easier implementation because MQSeries now has the same install and use characteristics as

other IBM Software Servers.

BEA's MessageQ

Key highlights of the MessageQ product include:

High performance—up to thousands of non-recoverable messages/second; hundreds of

20 recoverable messages/second

Both synchronous, and asynchronous message delivery

141

10

15

20

WO 01/16727 PCT/US00/24189

Broadest platform support in the industry including UNIX, Windows NT, OpenVMS, and

mainframes
Common Application Programming Interface (APT)
Publish and subscribe (broadcasting)

Microsoft Windows client product with support for DLLs (Dynamically Linked libraries),

Visual Basic, and Power Builder development environments
Message recovery on all BEA MessageQ clients and servers
Interoperability with IBM MVS/CICS and IBM MVS/IMS
Large message size—up to 4 MB—eliminates need for message partitioning
Momentum's XIPC

XIPC is an advanced software toolset for the development of multitasking and distributed
applications. XIPC provides fault-tolerant management of guaranteed delivery and real-
time message queuing, synchronization semaphores and shared memory, all of which are

network-transparent.

Microsoft Message Queue Server (MSMQ, formerly known as Falcon)

Publish and Subscribe
TibCo's Rendezvous

TIB/Rendezvous' publish/subscribe technology is the foundation of TIBnet, TibCos
solution for providing information delivery over intranets, extranets and the Internet. It is
built upon The Information Bus® (TIB®) software, a highly scaleable messaging

middleware technology based on an event-driven publish/subscribe model for

142

10

15

20

25

WO 01/16727 PCT/US00/24189

information distribution. Developed and patented by TIBCO, the event-driven,
publish/subscribe strategy allows content to be distributed on an event basis as it becomes
available. Subscribers receive content according to topics of interest that are specified
once by the subscriber, instead of repeated requests for updates. Using IP Multicast,
TIBnet does not clog networks, but instead, provides for the most efficient real-time

information delivery possible.

Streaming 1536

Streaming is the process of transferring time-sensitive data streams (e.g., video and/or audio) in
real-time. Streaming differs from the other types of Core Messaging services in that it delivers a
continuous, one-way stream of data, rather than the relatively short messages associated with
RPC and Message-Oriented Middleware messaging or the large, batch transfers associated with
File Transfer. (While the media stream is one-way from the server to the client, the client can
issue stream controls to the server.) Streaming may be used to deliver video, audio, and/or other

real-time content across the Internet or within enterprise networks.

Streaming is an emerging technology. While some multimedia products use proprietary
streaming mechanisms, other products incorporate standards. The following are examples of
emerging standards for streaming protocols. Data streams are delivered using several protocols

that are layered to assemble the necessary functionality.

Real-time Streaming Protocol (RTSP) — RTSP is a draft Internet protocol for establishing
and controlling on-demand delivery of real-time data. For example, clients can use RTSP
to request specific media from a media server, to issue commands such as play, record
and pause, and to control media delivery speed. Since RTSP simply controls media

delivery, it is layered on top of other protocols, such as the following.

Real-Time Transport Protocol (RTP) — Actual delivery of streaming data occurs through
real-time protocols such as RTP. RTP provides end-to-end data delivery for applications
transmitting real-time data over multicast or unicast network services. RTP conveys

encoding, timing, and sequencing information to allow receivers to properly reconstruct

143

WO 01/16727 PCT/US00/24189

the media stream. RTP is independent of the underlying transport service, but it is
typically used with UDP. It may also be used with Multicast UDP, TCP/IP, or IP
Multicast.

Real-Time Control Protocol (RTCP) — RTP is augmented by the Real-Time Control
Protocol. RTCP allows nodes to identify stream participants and communicate about the

quality of data delivery.
The following table summarizes the protocol layering that supports Streaming:

functionality sample protocol architecture service

options

controlling media delivery =~ RTSP or proprietary Streaming Messaging service

monitoring data stream RTCP or proprietary Streaming Messaging service

end-to-end delivery of RTP or proprietary Streaming Messaging service

stream

message transport UDP, Multicast UDP, Message Transport service

TCP

packet IP, IP Multicast Packet

forwarding/internetworking Forwarding/Internetworking
service

Figure 20 depicts Streaming, in which a real-time data stream is transferred.

Possible Product OptionsOptions

144

WO 01/16727 PCT/US00/24189

Netscape's Media Server; Progressive Networks Real Audio/Video; VXtremes WebTheater

The following are examples of products that implement Streaming Messaging (based upon RTSP

or other standards or proprietary approaches):

Netscape's Media Server

5 Progressive Networks' Real Video VXtreme's WebTheater

Specialized Messaging 1538

Specialized Messaging services extend the Core Messaging services to provide additional

functionality, including:

10 Provides messaging among specialized systems by drawing upon basic messaging

capabilities

Defines specialized message layouts

Defines specialized inter-system protocols

Suggests ways in which messaging draws upon directory and security services in order to

15 deliver a complete messaging environment

An example of a specialized messaging service is Mail Messaging. Mail Messaging is a
specialized implementation of store-and-forwarding MOM (message-oriented middleware)
messaging, in that Mail Messaging defines specialized, mail-related message layouts and

protocols that utilize store-and-forward messaging.

20

E-Mail 1540

145

10

15

20

25

WO 01/16727 PCT/US00/24189

E-Mail takes on a greater significance in the modemn organization. The E-Mail system, providing
it has sufficient integrity and stability, can function as a key channel through which work objects
move within, and between organizations in the form of messages and electronic forms. An E-
Mail server stores and forwards E-Mail messages. Although some products like Lotus Notes use
proprietary protocols, the following protocols used by E-Mail Services are based on open

standards:

X.400 - The X.400 message handling system standard defines a platform independent standard
for store-and-forward message transfers among mail servers. X.400 is often used as a backbone

e-mail service, with gateways providing interconnection with end-user systems.

SMTP - Simple Mail Transfer Protocol (SMTP) is a UNIX/Internet standard for transferring e-

mail among servers.

MIME - Multi-Purpose Internet Mail Extensions (MIME) is a protocol that enables Internet

users to exchange multimedia e-mail messages.

POP3 - Post Office Protocol (POP) is used to distribute e-mail from an SMTP server to the

actual recipient.

IMAP4 - Internet Message Access Protocol, Version 4 (IMAP4) allows a client to access and
manipulate electronic mail messages on a server. IMAP4 permits manipulation of remote
message folders, called "mailboxes", in a way that is functionally equivalent to local mailboxes.
IMAP4 also provides the capability for an off-line client to re-synchronize with the server.
IMAP4 includes standards for message handling features that allow users to download message

header information and then decide which e-mail message contents to download.

Implementation considerations

A number of E-mail servers from vendors including HP and Netscape are built around SMTP,

and most proprietary protocol E-Mail servers now provide SMTP gateways.

146

10

15

20

25

WO 01/16727 PCT/US00/24189

The Multi-part Internet Mail Extensions (MIME) standard has gained acceptance as the Internet
mechanism for sending E-mail containing various multimedia parts, such as images, audio files,
and movies. S/MIME, or secure MIME adds encryption and enables a secure mechanism for

transferring files.

Although currently POP3 is the popular Internet E-Mail message handling protocol, recently the
lesser known IMAP4 protocol has been gaining in adoption among mail server and mail client
software providers. IMAP was designed to add features beyond POP that allow users to store and
archive messages and support mobile users that need to keep messages on a central server as well

as on their laptop.

Organizations are looking to use vehicles like E-Mail and the Internet to enable communications
with customers and trading partners. The least common denominator E-mail capability today is
very rudimentary (ASCII text). But as the standards listed here as well as others become
integrated into most of the popular E-mail products and gateways this will change enabling a

more flexible and useful commercial communications medium.

Possible Product OptionsOptions

Microsoft Exchange Server; Lotus cc:mail; Lotus Notes; Qualcomm Eudora; TenFours TFS

Universal E-Mail Gateway; UUcoding; Netscape Mail Server; Post.Office; NTMail

The following E-Mail products are based on the open Internet standards defined above:

Netscape Mail Server - Netscapes implementation of an open standards-based
client/server messaging system that lets users exchange information within a company as
well as across the Intemet. It includes support for all standard protocols, and is packaged
with Netscapes SuiteSpot server line. Post.Office - one of the leading POP3/SMTP mail
servers for the Internet community as well as corporate intranets. This message transport
agent is based entirely on the open standards of the Internet, ensuring maximum

compatibility with other systems.

147

10

15

20

WO 01/16727 PCT/US00/24189

NTMail - an open SMTP and POP3 mail server for Windows NT.
The following are major proprietary E-mail servers used in large organizations today:

Lotus Notes - platform-independent client/server mail system. Notes Mail can support
over 1,500 active users per server, offering Internet integration, distributed replication
and synchronization. Lotus Notes also provides integrated document libraries, workflow,

calendaring and scheduling, and a cc:Mail user interface.

Microsofts Exchange Server - Exchange 4.0 provides a messaging and groupware
platform to support collaboration solutions on Windows machines. Microsoft Exchange
5.0 has support for all of the key Internet protocols. These include POP3 for mailbox
access, SMTP for mail sending and receiving, NNTP for newsgroups and discussion
forums, LDAP for directory access, HTTP and HTML for access via a web browser, and
SSL for security.

The following products are examples of e-mail systems:
Microsoft Mail
Lotus cc:mail
Qualcomm Eudora

The following products provides e-mail system translation:

TenFour's TFS Universal E-Mail Gateway - links users of Lotus Development Corp.'s
cc:Mail and Notes, Novell Inc.'s GroupWise, Microsoft Corp.'s Mail, MCI Mail, and
SMTP e-mail to Microsoft Exchange.

UUcoding - process for converting 8-bit binary files into 7-bit ASCII files for
transmission via e-mail over the Internet (the Internet only supports seven bit characters
in e-mail messages); UUencode and UUdecode utilities on end nodes perform the

conversion.

148

10

15

20

WO 01/16727 PCT/US00/24189

Database Access 1542

Database Messaging services (also known as Database Access Middleware) provide connectivity
for clients to access databases throughout the enterprise. Database messaging software draws
upon basic inter-process messaging capabilities (e.g., RPCs) in order to support database
connectivity. Database Messaging services typically provide single application seemless access
to mulitple data sources, both relational and non-relational. Additionally, database messaging
services can be used to facilitate migration of data from one environment to another (i.e.,
MVS/DB2 -> Sybase)

There are three types of database access middleware:

ODBC-like

Propietary

Gateway

Is there a projected growth in data requirements?

Storage of data in a database allows for more optimal future growth since databases scale better

than mechanisms such as flat files.

Should the data be secured and controlled?

Use databases to protect data integrity from multiple user access, and hardware and software

failures.

149

10

15

20

WO 01/16727 PCT/US00/24189

Is it desirable to limit the amount of viewed data?

Use databases to store large amounts of information and to access an individual record(s)

without having to inspect all the records of a given topic.

Is there a need to impose data standards?

Use a database when you wish to store and impose standards on data elements. This is important
when developing enterprise wide solutions, since it is desirable to have the different applications

access the same structured information.

Is there a current or potential requirement for a distributed architecture?

Databases allow for the potential of such architectural features as a data replication strategy

and/or distributed data access.

Is there a need to minimize data duplication?

Because of their normalized design, relational databases are used to reduce data redundancy.

This reduces maintenance and storage requirements.

Product considerations

What are the available administration or systems management features?

Administration and systems management features such as remote management, remote

configuration, backup and recovery, and disaster recovery should be considered.

150

10

15

20

WO 01/16727 PCT/US00/24189

What are the key business requirements?

Product selection may be influenced by business requirements such as replication and distributed
data, parallel processing, complex object support for such purposes as multimedia, OLTP,

decision support, VLDB, data warehousing, and availability (24/7 vs. 8/5).

What is the availability of market resources to support the product?

Personnel available for support (permanent hires, contractors), and third party support for skilled

resources/training should be considered.

Are the current data requirements expected to increase?

Products differ in their ability to scale with respect to hardware architecture, transaction

throughput, and user base.

How do the vendors compare against one another?

Issues to consider are type, quality and responsiveness of support, alliances/partnerships with
other companies, market presence (install base, customer list, number of production copies, etc.),
vendor industry, alignment of mission and vision with that of potential customer/evaluator,

product philosophy, long-term product plans/strategy, and vendor's training.

How well does a product integrate with the current or proposed architecture?

151

10

15

20

25

WO 01/16727 PCT/US00/24189

Issues to consider include supported operating systems, networks, and other database platforms,
availability of database utilities, application interfaces, development tools, and third party

products, and integration with legacy systems.

Possible Product Options

Oracles SQL*Net; Sybases EnterpriseConnectivity; Microsoft's Open Database Connectivity
(ODBC); Sun Java Database Connectivity (JDBC)

Oracle's SQL*Net - supports database interoperability across a variety of transport
protocols (e.g., TCP/IP, SPX/IPX, SNA, etc.); includes verbs such as connect, send,
receive, and disconnect; performs transparent protocol bridging by allowing multiple

protocols to reside simultaneously on each node.

Sybase's EnterpriseConnectivity - supports database interoperability across a variety of

platforms.

Microsoft's Open Database Connectivity (ODBC) - a database programming interface
that provides a common language for Windows applications to access databases on a

network.

Sun's Java Database Connectivity (JDBC) - a Java-based programming interface that

provide a common method for Java applications to access databases on a network

Object Messaging 1544

Object Messaging enables objects to transparently make requests of and receive responses from
other objects located locally or remotely. Objects communicate through an Object Request
Broker (ORB). An ORB enables client objects to access server objects either locally or remotely
over a network and invoke operations (i.e. functions and methods) on them. ORBs typically

provide interoperability between heterogeneous client and server environments: across languages
152

10

15

20

WO 01/16727 PCT/US00/24189

and/or operating systems and/or network protocols. In that respect some have said that ORBs
will become a kind of “ultimate middleware” for truly distributed processing. A standardized
Interface Definition Language (IDL) defines the interfaces that applications must use to access

the ORB Services. The two major Object Request Broker standards/implementations are:

Object Management Group's Common Object Request Broker Architecture (CORBA)

Microsoft's (Distributed) Component Object Model (COM/DCOM)

CORBA

Common Object Request Broker Architecture (CORBA) is a standard for distributed objects
being developed by the Object Management Group (OMG). The OMG is a consortium of
software vendors and end users. Many OMG member companies are developing commercial
products that support the CORBA standards and/or are developing software that use these
standards. CORBA provides the mechanism by which objects transparently make requests and
receive responses, as defined by OMG’s Object Request Broker (ORB). The CORBA ORB is an
application framework that provides interoperability between objects, built in different

languages, running on different machines in heterogeneous distributed environments.

Inter-ORB messaging

The OMGs Internet Inter-Orb Protocol (IIOP) specifies a set of message formats and common
data representations for communication between ORBs over TCP/IP networks. CORBA-based

Object Messaging is summarized in Figure 21.

COM/DCOM

1583

10

15

20

25

30

WO 01/16727 PCT/US00/24189

Component Object Model (COM) is a client/server object-based model, developed by Microsoft,
designed to allow software components and applications to interact with each other in a uniform
and standard way. The COM standard is partly a specification and partly an implementation. The
specification defines mechanisms for creation of objects and communication between objects.
This part of the specification is paper-based and is not dependent on any particular language or
operating system. Any language can be used as long as the standard is incorporated. The
implementation part is the COM library which provides a number of services that support a
mechanism which allows applications to connect to each other as software objects. COM is not a
software layer through which all communications between objects occur. Instead, COM serves
as a broker and name space keeper to connect a client and an object, but once that connection is
established, the client and object communicate directly without having the overhead of passing
through a central piece of API code. Originally conceived of as a compound document
architecture, COM has been evolved to a full object request broker including recently added
features for distributed object computing. DCOM (Distributed COM) contains features for
extending the object model across the network using the DCE Remote Procedure Call (RPC)
mechanism. In sum, COM defines how components should be built and how they should
interact. DCOM defines how they should be distributed. Currently COM/DCOM is only
supported on Windows-based machines. However, third-party vendors are in progress of porting
this object model to other platforms such as Macintosh, UNIX, etc. Figure 22 illustrates COM
Messaging.

Implementation considerations

Although ORBs provide a mechanism for transparently communicating among components
located locally or remotely, performance issues need to be thoroughly addressed before moving
components around the network Making requests and receiving responses among components
located on different machines will take longer that having the same communication between
components located on the same machine. Performance is dependent on what type of network is
available (LAN, type of LAN, WAN, type of WAN, dial-up, wireless, etc.), size of messages and

number of messages that go across the network.

154

WO 01/16727 PCT/US00/24189

Possible Product Options

Expersoft's CORBAplus; IBM's Component Broker; BEASystems ObjectBroker; Iona
Technology's Orbix; Inprise's Visibroker; Microsofts COM; Software AGs COM

CORBA-based ORB products
5 Expersoft's CORBAplus
IBM's Component Broker
BEA's Object Broker
Iona Technologies's Orbix
Inprise's VisiBroker(formerly Visigenic)
10 COM products

Microsoft's DCOM (Windows NT Server, Windows NT Workstation, Windows 95,
Apple Macintosh, Windows Java Virtual Machine)

Software AG's COM (current or planned availability on Sun, Digital UNIX, IBM, and
HP platforms)

15
CTI Messaging 1546

Computer-Telephone Integration (CTI) integrates computer systems and telephone systems to
coordinate data and telephony activities. For example, CTI can be used to associate a customers

database entry with the customers telephone call and route the call accordingly.

20 Referring to Figure 23, CTI Messaging supports communication among clients 2300, CTI
servers 2302, PBXs/ACDs 2304, hybrid platforms, networks 2306, and external telephony

155

10

15

20

WO 01/16727 PCT/US00/24189

devices. CTI Messaging relies upon proprietary PBX/ACD APIs, CTI vendor-specific APIs or

message sets, and industry-standard APIs.
CTI Messaging has two primary functions:
Device-specific communication
Manages direct communications between telephony devices and data devices

Allows applications to control PBXs, key télephone systems, ISDN, analog PSTN,
cellular, Centrex, etc. and supports features such as address translation, call setup, call

answering, call dropping, and caller ID.

Provides interface to carrier networks for call delivery and call-related messaging

Message mapping

Translates device-specific communication to generic API and/or message set

CTI products can be divided into the following categories:

CTI Platform-Specific Products — products that can only be implemented on the hardware

of a specific vendor.

CTI Telephony-based API Products — include proprietary PBX/ACD-based
messaging sets, which permit external devices to interface with the vendor’s

PBX/ACD call and station control logic

CTI Server/Workstation-based or Host-based API Products — operate on a
particular computer vendor’s hardware platform and provide call control and

messaging functionality.

156

WO 01/16727 PCT/US00/24189

CTI Cross-Platform Vendors — products that have been ported to multiple hardware

platforms/operating systems.

CTI Enabling Solutions — focus solely on call control and call/application

synchronization functions.

5 CTI Enterprise Solutions — provide all CTI business functions to varying degrees.

Possible Product Options
Novell’s Netware Telephony Services; Microsoft TAPI; Novell TSAPI
Industry-Standard Application Programming Interfaces (APIs):
10 Microsoft's TAPI
Novell's TSAPI

Novell's Netware Telephony Services - Based on Novell's Telephony
Services API (TSAPI), Netware Telephony Services is a CTI gateway that
integrates Novell networks with telephony networks.

15 Other vendors of CTI products include:
Aspect Telecommunications Corp.
Genesys Labs
IBM
Lucent

20 Nortel

157

10

15

20

WO 01/16727 PCT/US00/24189

Rockwell

EDI Messaging 1548

EDI (Electronic Data Interchange) supports system-to-system messaging among business
partners by defining standard message layouts. Companies typically use EDI to streamline

commercial transactions within their supply chains.

EDI standards (e.g., EDIFACT, ANSI X12) define record layouts for transactions such as
"purchase orders". EDI services include the generation and translation of EDI messages

according to the various public message layout standards.

EDI messaging can be implemented via electronic mail or customized message-oriented

architectures.

Implementation considerations

EDI messages have traditionally been sent between companies using a VAN (Value Added
Network). VANSs have been criticized for their relatively high cost in comparison to public
networks like the Internet. Recently, EDI messaging vendors such as Premenos have been
creating software with built-in encryption features to enable companies to send EDI

transmissions securely over the Internet.

Web server vendors including Microsoft, Netscape and OpenMarket are putting plans in place to
add EDI transmission capabilities into their Web server products. OpenMarket Inc. is working
with Sterling and Premenos to integrate their EDI management software with OpenMarkets
OMTransact electronic commerce server software. Netscape is working with GEIS in creating

Actra Business Systems to integrate EDI services with Netscape server products.

158

10

15

20

WO 01/16727 PCT/US00/24189

Possible Product Options

Digital Equipment Corp.s DEC/EDI; Sterling Commerces GENTRAN; IBM Global Services

Advantis; GE Information Services; Sterling Commerce
EDI applications

Digital Equipment Corp.'s DEC/EDI

Sterling Commerce's GENTRAN

EDI value-added networks (VANSs) - VANs link EDI trading partners and transmit EDI

messages through a central electronic clearinghouse
IBM Global Services' Advantis
GE Information Services

Sterling Commerce

Legacy Integration 1550

Legacy services provide gatewarys to mainframe legacy systems. The following protocol is

typically used:

Systems Network Architecture (SNA) is a networking connection-oriented protocol
architecture which was developed in the 1970s by IBM. Currently, SNA and TCP/IP are

two of hte most widely used networking protocol architectures.

Design techniques for integration with existing systems can be grouped into two broad

categories:

Front end access - discussed as part of Terminal Emulation

159

10

15

20

WO 01/16727 PCT/US00/24189

Back end access - tend to be used when existing data stores have information that is
needed in the client/server environment but accessing the information through existing
screens or functions is not feasible. Legacy Integration messaging services typically
include remote data access through gateways. A database gateway provides an interface
between the client/server environment and the legacy system. The gateway provides an

ability to access and manipulate the data in the legacy system.

Implementation considerations

Legacy systems hold critical data which must be accessible by new Netcentric computing
solutions. These legacy data sources often must be accessed in their current form so as to not

disrupt the legacy systems.

Communications Security 1508

Communications Security services control access to network-attached resources. Combining
network Security services with security services in other parts of the system architecture (e.g.,

application and database layers) results in robust security.

Possible Product Options

UkWeb's Stronghold; UkWeb's SafePassage

UkWeb's Stronghold

Stronghold was the first web server to support SSL Client Authentication. Regular expression-
based matching of client certificate information to determine access control is possible.
Stronghold also has an API for certificate to username mapping so that client certificates may be

mapped to standard usernames. CA certificates from both Thawte and Verisign can be utilized.
160

10

15

20

25

WO 01/16727 PCT/US00/24189

Uncompromised, full 128-bit symmetric encryption is provided in all versions. This provides

Netcentric systems used outside of the USA or Canada with secure encryption capabilities.

UkWebs's SafePassage

SafePassage is a full-strength, encrypting Web proxy. It is designed to supplement the security
of browsers whose authentication and encryption capabilities have been weakened to comply
with United States export regulations. For these types of browsers, SafePassage will provide

client authentication certificates and full-strength encryption (128 bit).

Encryption 1552

Encryption services encrypt data prior to network transfer to prevent unauthorized interception.
(Note that encryption can occur within the Communications Services layer, the Transport
Services layer, or the Network Media Services layer.) Within the Communications Services
layer, encryption occurs at the top of the protocol stack and is typically performed within an
application (e.g., an e-mail application, a Web browser). This is an end-to-end approach that can
leave the remainder of the protocol stack (i.e., the Transport services and the Network Media

services) unaffected.

Encryption has two main components: the encryption algorithm, which is the series of steps that
is performed to transform the original data; and the key, which is used by the algorithm in some
way to encrypt the message. Typically, the algorithm is widely known, while the key is kept

secret. There are several types of encryption in use today, including:

Secret key cryptography - uses one key (the secret key) both to encrypt the message on

one side and to decrypt the message on the other side.

Public key cryptography - uses two keys, the public key and the private key. The public
key and private key are mathematically related so that a message encrypted with the
recipient's public key may be decrypted with the recipient's private key. Therefore, the
public key can be widely published, while the private key is kept secret.

161

10

15

20

25

WO 01/16727 PCT/US00/24189

There are also varying methods of employing encryption types described above to encrypt data

sent across a network:

Data link layer - data is encrypted before it is placed on the wire. Data link encryptors

are generally hardware products.

Application layer - data is encrypted by the application. Netscape’s Secure Sockets
Layer (SSL) is one example of application-layer encryption for WWW browsers. SSL

uses RSA encryption to wrap security information around TCP/IP based protocols.

Network layer - data is encrypted inside the network layer header, therefore relying on
the network layer protocol.

Implementation considerations

The advantage of SSL over S/HTTP is that SSL is not restricted to HTTP but can also be used
for securing other TCP/IP based services such as FTP, Telnet, etc. SSL can provide session level
data encryption and authentication to enable secure data communications over public networks

such as the Internet.

The need for Encryption Services is particularly strong where electronic commerce solutions that
involve exchanging sensitive or financial data are to be deployed over public networks such as
the Internet. Cryptography can be used to achieve secure communications, even when the
transmission media (for example, the Internet) is untrustworthy. Encryption Services can also be
used to encrypt data to be stored (e.g., sensitive product information on a sales person's laptop) to

decrease the chance of information theft.

There are complex legal issues surrounding the use of encrypting in an international
environment. The US government restricts what can be exported (in terms of encryption
technology), and the French government defines encryption technology as a “weapon of war”
with appropriate legal and regulatory restrictions. This is a key issue in international e-commerce

today.

162

WO 01/16727 PCT/US00/24189

Possible Product Options
Netscape’s Secure Sockets Layer (SSL); S-HTTP; e-mail encryption; S-MIME
Encryption that is architected into Web-based solutions

5 Netscape's Secure Sockets Layer (SSL) — provides encryption for World Wide Web

browsers.

S-HTTP - a secure version of the HTTP data transfer standard; used in conjunction with
the World Wide Web.

Encryption that is embedded in e-mail products

10 e-mail encryption - products such as Lotus Notes and Microsoft Exchange can encrypt

e-mail messages and/or attachments.

S-MIME - a secure version of the MIME e-mail standard.

Authorization 1554

15 When a user requests access to network resources, the Authorization service determines if the
user has the appropriate permissions and either allows or disallows the access. (This occurs after

the user has been properly authenticated.)
The following are examples of ways to implement Authorization services:

Network Operating Systems - Authorization services are bundled with all network

20 operating systems in order to control user access to network resources.

163

WO 01/16727 PCT/US00/24189

Firewall Services protect sensitive resources and information attached to an Intxxnet
network from unauthorized access by enforcing an access control policy. A variety of

mechanisms exist for protecting private networks including:

Filters - World Wide Web filters can prevent users from accessing specified
content or Internet addresses. Products can limit access based on keywords,

network addresses, time-of-day, user categories, etc.

Application Proxies - An application-level proxy, or application-level gateway, is
a robust type of firewall. (A firewall is a system that enforces an access control
policy between a trusted internal network and an untrusted external network.) The
application proxy acts at the application level, rather than the network level. The
proxy acts as a go-between for the end-user by completing the user-requested
tasks on its own and then transferring the information to the user. The proxy
manages a database of allowed user actions, which it checks prior to performing

the request.

Servers, Applications, and Databases - Authorization can occur locally on a server to
limit access to specific system resources or files. Applications and databases can also
authorize users for specific levels of access within their control. (This functionality is

within the Environment Services grouping in the execution architecture.)

Possible Product Options

Microsoft Windows NT; Novell Netware; UNIX; Check Points Firewall-1; Raptor Systems
Eagle Firewall; Microsoft Proxy Server; Netscape Proxy Server; Microsystem Softwares Cyber

Patrol Corporate; Net Nanny Softwares Net Nanny

network operating systems

Microsoft Windows NT, Novell Netware, UNIX, etc.

application proxies
164

10

15

20

25

WO 01/16727 PCT/US00/24189

filters

Microsoft Proxy Server - allows for designation of who can access the Internet and
which services they can use. Administrators can establish additional credentials for
logging on, set specific dialing hours or days of the week, and restrict access to certain

sites altogether.

Netscape Proxy Server - high-performance server software for replicating and filtering
access to Web content on the Internet or an intranet. Provides access control, URL

filtering, and virus scanning.

Check Point FireWall-1 - combines Internet, intranet and remote user access control
with strong authentication, encryption and network address translation (NAT) services.

The product is transparent to network users and supports multiple protocols.

BorderWare Firewall - protects TCP/IP networks from unwanted external access as
well as provides control of internal access to external services; supports packet filters and

application-level proxies.

Raptor System's Eagle Firewall

Microsystem Software's Cyber Patrol Corporate

Net Nanny Software's Net Nanny

Authentication

Authentication services verify network access requests by validating that users are who they

claim to be. For secure systems, one or more authentication mechanisms can be used to validate

authorized users and to verify which functions and data they have access to. Within the corporate

network, authentication services are often included in directory services products like Novell’s

NDS. NDS requires the user to have an established account and supply a password before access

is granted to resources through the directory.

165

10

15

20

25

WO 01/16727 PCT/US00/24189

Authentication for accessing resources across an Internet or intranet is not as simple and is a
rapidly evolving area. When building e-commerce Web sites there may be a need to restrict
access to areas of information and functionality to known customers or trading partners. More
granular authentication is required where sensitive individual customer account information must

be protected from other customers.

Authentication can occur through various means:

Basic Authentication - requires that the Web client supply a user name and password
before servicing a request. Basic Authentication does not encrypt the password in any
way, and thus the password travels in the clear over the network where it could be
detected with a network sniffer program or device. Basic authentication is not secure
enough for banking applications or anywhere where there may be a financial incentive
for someone to steal someone’s account information. Basic authentication is however the
easiest mechanism to setup and administer and requires no special software at the Web

client.

ID/Password Encryption - offers a somewhat higher level of security by requiring that
the user name and password be encrypted during transit. The user name and password are
transmitted as a scrambled message as part of each request because there is no persistent

connection open between the Web client and the Web server.

Digital Certificates or Signatures - encrypted digital keys that are issued by a third

party "trusted” organization (i.e. Verisign); used to verify user's authenticity.

Hardware tokens - small physical devices that may generate a one-time password or that

may be inserted into a card reader for authentication purposes.

Virtual tokens - typically a file on a floppy or hard drive used for authentication (e.g.
Lotus Notes ID file).

Biometric identification - the analysis of biological characteristics to verify individuals

identify (e.g., fingerprints, voice recognition, retinal scans).

166

WO 01/16727 PCT/US00/24189

Related to authentication, non-repudiation is a means of tagging a message in order to prevent an

entity from denying that it sent or received the message.

Possible Product Options

5 Microsoft Windows NT; Novell NetWare; UNIX; Platinum Technologies AutoSecure SSO;
Axents Enterprise Access Control for Windows 95; SecurID; Racals TrustMe Authentication
Server; Visionics Facelt; Sensars IrisIdent; Keyware Technologies Voice Guardian; National

Registrys NRIdentity; Kerberos; VeriSign
The following are examples of products that perform authentication:
10 user IDs and passwords
operating systems: Microsoft Windows NT, Novell NetWare, UNIX, etc.
application level user IDs and passwords (e.g., e-mail system)
single sign-on software - manages user logins to multiple systems or resources.
Platinum Technologies' AutoSecure SSO
15 add-on administration packages - enhance the capabilities of native operating system security

Axent's Enterprise Access Control for Windows 95 - enforces password standards and

encrypts data.
hardware tokens
Security Dynamics' SecurID Authentication Tokens

20 Racal's TrustMe Authentication Server

167

WO 01/16727 PCT/US00/24189

biometric security

Visionics' Facelt - face recognition

Sensar's IrisIdent - iris identification

Keyware Technologies' Voice Guardian - voice recognition

5 National Registry's NRIdentity - fingerprint recognition

keys and certificates

Kerberos - an encryption and key management protocol for third party authorization;

vendors include CyberSAFE and Digital Equipment Corporation.

VeriSign - a company that manages digital certificates.

10

COMMUNICATION FABRIC 1010

As communication networks become increasingly complicated and interconnected, the services
provided by the network itself have by necessity increased as well. Clients and servers are rarely
directly connected to one another, but separated by a network of routers, servers and firewalls

15 providing an ever increasing number of network services such as address resolution, message

routing, security screening and many more.

The communications fabric provides common network services to the platform-specific network
services residing on the client and server nodes. These common network services can be used to

manage resources and translate capabilities within and across enterprises.

20 Short of interpreting the data being transmitted, the communications fabric is aware of the
different message-oriented information streams in order to help the client and server

communicate regardless of the different network functions implemented on each platform.

168

10

15

20

25

WO 01/16727 PCT/US00/24189

An intelligent communications fabric monitors and routes data flows and provides functionality
(security, directories, etc.) to clients and servers. An intelligent communications fabric provides

the following benefits:

An intelligent network can manage itself, including addressing, routing, security,

recovery, etc. It is inefficient for individual clients and servers to perform such tasks.

Specialized network components reduce the network-related processing that occurs on

clients and servers.

An intelligent network integrates heterogeneous clients, servers, and other resources by

resolving incompatible protocols and standards.

An intelligent network has the capability to actively manage the flow of information
rather than simply moving data. This allows the network to effectively deliver

multimedia and other network-sensitive traffic.

An intelligent network adds value to enterprise resources by presenting a cohesive view

of available resources and increasing the level of security associated with those resources.

Figure 24 illustrates various components of the Communication Fabric.

Transport Services 2402

Provides the underlying protocols responsible for transmitting and securing data
communications. Transport Services are responsible for establishing, maintaining and
terminating end-to-end communications between users and processes. Connection management
provides transfer services that ensure the delivery of data from sender to receiver, which support
the transferring of messages from a process running on one machine to a process running on
another machine. In addition, connection management provides services that initiate a
connection, gracefully terminate a connection, and handle abrupt termination. These services

take place for application before and after the data is formatted for transport over the network.

169

10

15

20

WO 01/16727 PCT/US00/24189

Messaging Transport 2404

The Message Transport service is responsible for the end-to-end delivery of messages. It can

include the following functionality:

End-to-End Data Transfer - The Message Transport Service formats messages for

sending and confirms the integrity of received messages.

Connection Control - The Message Transport service may establish end-to-end (client-
server) connections and track addresses and other associated information for the
connection. The service also tears down connections and handles hard connection

failures.

Reliable Transfer - The Message Transport service may manage reliable delivery of

messages through the use of acknowledgments and retransmissions.

Flow Control - The Message Transport service may allow the receiver to govern the rate

at which the sender transfers data.

Multiplexing - The Message Transport service may define multiple addresses or ports
within a single network node, allowing multiple processes on the node to have their own

communications paths.

(Some transport services do not implement all of the listed functionality. For example, the UDP

protocol does not offer connection control or reliable transfer.)

The following are examples of protocols that provide message transport:

SPX (Sequenced Packet eXchange)

TCP (Transmission Control Protocol)

UDP (User Datagram Protocol)
170

WO 01/16727 PCT/US00/24189

NetBIOS/NetBEUI (Network Basic Input/Output System / NetBIOS Extended User
Interface)

APPC (Advanced Program-to-Program Communications)

AppleTalk

Packet Forwarding/Internetworking 2406

The Packet Forwarding/Internetworking service transfers data packets and manages the path that

data takes through the network. It includes the following functionality:

10

15

20

25

Fragmentation/Reassembly - The Packet Forwarding/Internetworking service divides
an application message into multiple packets of a size suitable for network transmission.
The individual packets include information to allow the receiving node to reassemble
them into the message. The service also validates the integrity of received packets and

buffers, reorders, and reassembles packets into a complete message.

Addressing - The Packet Forwarding/Internetworking service encapsulates packets with

addressing information.

Routing - The Packet Forwarding/Internetworking service can maintain routing
information (a view of the network topology) that is used to determine the best route for
each packet. Routing decisions are made based on the cost, percent utilization, delay,

reliability, and similar factors for each possible route through the network.

Switching - Switching is the process of receiving a packet, selecting an appropriate
outgoing path, and sending the packet. Switching is performed by routers and switches

within the communications fabric. Switching can be implemented in the following ways:

For some network protocols (e.g., IP), routers draw upon dynamic routing
information to switch packets to the appropriate path. This capability is especially

important when connecting independent networks or subnets.
171

10

15

20

WO 01/16727 PCT/US00/24189

For other network protocols (e.g., Ethernet, Token Ring), switching simply directs
packets according to a table of physical addresses. The switch can build the table
by "listening" to network traffic and determining which network nodes are

connected to which switch port.

Some protocols such as Frame Relay involve defining permanent routes
(permanent virtual circuits PVCs) within the network. Since Frame Relay is

switched based upon PVCs, routing functionality is not required.

Multicasting - The Packet Forwarding/Intemetworking service may support
multicasting, which is the process of transferring a single message to multiple recipients
at the same time. Multicasting allows a sender to transfer a single copy of the message to

the communications fabric, which then distributes the message to multiple recipients.

The following are examples of protocols that provide Packet Forwarding/Internetworking:

IP (Internet Protocol)

IP Multicast (emerging standard that uses a special range of IP addresses to instruct

network routers to deliver each packet to all users involved in a multicast session)

IPX (Internetwork Packet Exchange)

ATM (Asynchronous Transfer Mode)

Frame Relay

X.25

SMDS (Switched Multimegabit Data Service)

The following are examples of network components that perform Packet

Forwarding/Internetworking:

routers

172

WO 01/16727 PCT/US00/24189

switches

ATM switches, Frame Relay switches, IP switches, Ethernet switches, Token Ring

switches, etc.

The following are examples of protocols that maintain routing information tables within routers:

5 Distance Vector Protocols - each router periodically informs neighboring routers as to the
contents of routing table (destination addresses and routing metrics); routing decisions

based on the total distance and other "costs" for each path.

IP and IPX Routing Information Protocols (RIP)

AppleTalk Routing Table Management Protocol (RTMP)

10 Ciscos Interior Gateway Routing Protocol (IGRP) and Enhanced IGRP

Link-State Protocols - each router periodically broadcasts changes to the routers and

directly attached networks that it can talk with.

Open Shortest Path First (OSPF)

ISOs Intermediate System to Intermediate System (IS-IS)

15 Novells NetWare Link Services Protocol (NLSP)

Policy Routing Protocols - allow Internet backbone routers to accept routing information
from neighboring backbone providers on the basis of contracts or other non-technical

criteria; routing algorithms are Distance Vector.

Border Gateway Protocol (BGR)

20 Interdomain Routing Protocol (IDR)

173

WO 01/16727 PCT/US00/24189
Circuit Switching 2408

While Message Transport services and Packet Forwarding/Internetworking services support the
transfer of packetized data, Circuit Switching services establish physical circuits for the transfer

of circuit-switched voice, fax, video, etc.

5 Circuit Switching

uses an end-to-end physical connection between the sender and the receiver that lasts for

the duration of the "call"
includes voice, video, fax, etc.
includes data in a circuit switched architecture (e.g., dial-up connections)
10 Packetized
transferred through brief, temporary, logical connections between nodes
includes data and packetized multimedia (video, voice, fax, etc.)
Circuit Switching includes the following functionality:

establishes end-to-end path for circuit (may involved multiple intermediate

15 nodes/switches)
manages end-to-end path (quality, billing, termination, etc.)
The following are examples of Circuit Switching:
analog dial-up telephone circuit
ISDN (Integrated Services Digital Network)

20

174

WO 01/16727 PCT/US00/24189
Possible Product Options

Lucent’s Definity; Nortels Meridian; Lucents ESS; Nortels DMS; Tellabs Titan products;
Lucents DSX products; Alcatels SX products; AltiGens AltiServ; Lucents Internet Telephony

Server

5 The following are examples of PBX products, which perform circuit switching within private

telephone networks:
Lucent's Definity
Nortel's Meridian

The following are examples of central office (telephone company) switches, which perform

10 circuit switching within the public telephone network:
Lucent's ESS
Nortel's DMS

The following are examples of Digital Access Cross-connect Systems (DACS), which are

configured to switch circuits among multiple ports.
15 Tellabs' Titan products
Lucent's DSX products
Alcatel's SX products
The following is an example of a PC-based PBX system:

AltiGen's AltiServ - PC-based PBX system for a small branch office or a low-volume

20 specialized call center.

The following is an example of a circuit-switching/packet-forwarding gateway:

175

10

15

20

WO 01/16727 PCT/US00/24189

Lucent's Internet Telephony Server - server software that routes calls from PBXs over

the Internet or intranets.

Transport Security 2410

Transport Security services (within the Transport Services layer) perform encryption and

filtering.

Transport-layer encryption

Encryption within the Transport Services layer is performed by encrypting the packets generated
by higher level services (e.g., Message Transport) and encapsulating them in lower level packets
(e.g., Packet Forwarding/Internetworking). (Note that encryption can also occur within the
Communications Services layer or the Network Media layer.) Encryption within the Transport
Services layer has the advantage of being independent of both the application and the
transmission media, but it may make network monitoring and troubleshooting activities more

difficult.

The following standards support transport-layer encryption:

Point to Point Tunneling Protocol

Layer 2 Tunneling Protocol

Transport-layer filtering

Network traffic can be controlled at the Transport Services layer by filtering data packets based
on source and/or destination addresses and network service. This ensures that only authorized
data transfers can occur. This filtering is one of the roles of a packet filtering firewall. (A firewall

176

10

15

20

WO 01/16727 PCT/US00/24189

is a system that enforces an access control policy between a trusted internal network and an

untrusted external network.)
The following IETF standard supports interoperability among security systems:

[PSec Allows two nodes to dynamically agree on a security association based on keys,
encryption, authentication algorithms, and other parameters for the connection before any
communications take place; operates in the [P layer and supports TCP or UDP. [PSec

will be included as part of [Png, or the next generation of IP.

Implementation considerations

Firewalls can also provide a single point of access to the companys network, which could be
used to maintain an audit trail. Some firewalls provide summaries to the administrator about the

type of traffic and amount of traffic passed through it, number of break in attempts, etc.

Most commercial firewalls are configured to reject all network traffic that has not been explicitly
allowed, thus enforcing the policy, Only allow traffic that has been categorically permitted,
otherwise prohibit. This policy provides much more control and is much safer than a policy

which allows traffic unless it has been explicitly prohibited.

Possible Product Options

Cisco Systems; Bay Networks; 3Com Corp.; Check Points Firewall-1; Raptor Systems Eagle
Firewall; Data Fellows F-Secure VPN; Racals Datacryptor 64F

The following are examples of vendors of products that perform Transport-level encryption:
routers:

Cisco Systems

177

10 -

15

20

WO 01/16727 PCT/US00/24189

Bay Networks

3Com Corp.

firewalls;

Check Point's Firewall-1

Secure Computing's BorderWare Firewall Server

Raptor Systems' Eagle Firewall

encryption devices:

Data Fellows' F-Secure VPN

Racal's Datacryptor 64F

The following are examples of products that perform Transport-level packet filtering:

firewalls:

Check Point FireWall-1 - combines Internet, intranet and remote user access
control with strong authentication, encryption and network address translation
(NAT) services. The product is transparent to network users and supports multiple

protocols.

Secure Computing's BorderWare Firewall Server protects TCP/IP networks
from unwanted external access as well as provides control of internal access to

external services; supports packet filters and application-level proxies.

Raptor Systems' Eagle Firewall

routers:

178

10

15

20

WO 01/16727 PCT/US00/24189

Cisco Systems

Bay Networks

3Com Corp.

Network Address Allocation 2412

Network Address Allocation services manage the distribution of addresses to network nodes.
This provides more flexibility compared to having all nodes assigned static addresses. This

service assigns addresses to nodes when they initially power-on and connect to the network.

The following are examples of standards that implement Network Address Allocation and allow

a network node to ask a central resource for the node_s network address (e.g., IP address):

DHCP (Dynamic Host Configuration Protocol)

BootP (Bootstrap Protocol)

Quality of Service 2414

Different types of network traffic (e.g., data, voice, video) have different quality of service
requirements. For example, data associated with video conferencing sessions is useless if it is not
delivered "on time". On the other hand, traditional best-effort data services, such as file or e-mail
transfer, are not affected by variations in latency. QoS (Quality of Service) services deliver a
defined network throughput for designated traffic by allocating dedicated bandwidth, prioritizing
data traffic, etc. (Note that as an alternative to predefined throughput, some QoS protocols can

also offer a best effort (i.e., variable) throughput QoS based on available network capacity.)

The following list provides a description of various Quality of Service parameters.

179

WO 01/16727 PCT/US00/24189

connection establishment delay - time between the connection request and a confirm

being received by the requester

connection establishment failure probability - chance that the connection will not be

established within the maximum establishment delay

5 throughput - bits per second (bps) of transmitted data

transit delay - time elapsed between when sender transfers packet and recipient receives

packet

residual error rate - number of lost or corrupted messages compared to total messages

in the sampling period

10 transfer failure probability - the fraction of the time when the throughput, transit delay,

or residual error were not those agreed upon at the start of the connection

connection release delay - time between when one node initiates a release and the other

node performs the release

connection release failure probability - fraction of release attempts which do not

15 succeed

protection - specifies a secure connection

priority - indicates traffic priority over the connection

resilience - probability that the transport layer spontaneously terminates

QoS can be achieved in various ways as listed below:

20 Specialized QoS Communications Protocols - provide guaranteed QoS.

Asynchronous Transfer Mode (ATM) - ATM is a connection-oriented wide

area and local area networking protocol that delivers QoS on a per-connection

180

10

15

20

25

WO 01/16727 PCT/US00/24189

basis. QoS is negotiated as part of the initial connection set up and as network
conditions change. Because of the small size of ATM data cells, QoS can be
better managed, compared to protocols such as Ethernet that have large frames
that can tie up network components. For ATM to deliver QOS to applications,
ATM must be used end-to-end.

Resource Reservation Protocol (RSVP) - The emerging RSVP specification,
proposed by the Internet Engineering Task Force (IETF), allows applications to
reserve router bandwidth for delay-sensitive IP traffic. With RSVP, QoS is
negotiated for each application connection. RSVP enables the network to reserve
resources from end to end, using Frame Relay techniques on Frame Relay
networks, ATM techniques on ATM, and so on. In this way, RSVP can achieve
QoS across a variety of network technologies, as long as all intermediate nodes

are RSVP-capable.

IP Stream Switching - improves network performance but does not guarantee QoS.

IP Switching - IP Switching is an emerging technology that can increase network
throughput for streams of data by combining IP routing software with ATM
switching hardware. With IP Switching, an IP switch analyzes each stream of
packets directed from a single source to a specific destination, and classifies it as
short- or long-lived. Long-lived flows are assigned ATM Virtual Channels (VCs)
that bypass the IP router and move through the switching fabric at the full ATM
line speed. Short-lived flows continue to be routed through traditional store-and-

forward transfer.

Tag Switching - Like IP Switching, emerging Tag Switching technology also
improves network throughput for IP data streams. Tag Switching aggregates one
or more data streams destined for the same location and assigns a single tag to all
associated packets. This allows routers to more efficiently transfer the tagged

data. Tag Switching is also known as Multiprotocol Label Switching.

Data Prioritization - improves network performance but does not guarantee QoS.

181

10

15

20

WO 01/16727 PCT/US00/24189

While not an example of end-to-end QoS, various network components can be
configured to prioritize their handling of specified types of traffic. For example,
routers can be configured to handle legacy mainframe traffic (SNA) in front of
other traffic (e.g., TCP/IP). A similar technique is the use of prioritized circuits
within Frame Relay, in which the Frame Relay network vendor assigns different

priorities to different permanent virtual circuits.

Prioritization techniques are of limited effectiveness if data must also pass
through network components that are not configured for prioritization (e.g.,

network components run by third party network providers).

Network Media Services 2416

The Network Media layer provides the following capabilities:
Final framing of data for interfacing with the physical network.
Performing, receiving, interpreting and acting on signals from the communications fabric.
Transferring data through the physical network.

The technologies used at the Network Media Services layer vary depending on the type of

network under consideration.

Media Access 2418

Media Access services manage the low-level transfer of data between network nodes. Media

Access services perform the following functions:

Physical Addressing - The Media Access service encapsulates packets with physical
address information used by the data link protocol (e.g., Ethernet, Frame Relay).
182

10

15

20

25

WO 01/16727 PCT/US00/24189

Packet Transfer - The Media Access service uses the data link communications protocol

to frame packets and transfer them to another computer on the same network/subnetwork.

Shared Access - The Media Access service provides a method for multiple network
nodes to share access to a physical network. Shared Access schemes include the

following:

CSMA/CD - Carrier Sense Multiple Access with Collision Detection. A method
by which multiple nodes can access a shared physical media by "listening" until
no other transmissions are detected and then transmitting and checking to see if

simultaneous transmission occurred.

token passing - A method of managing access to a shared physical media by
circulating a token (a special control message) among nodes to designate which

node has the right to transmit.

multiplexing - A method of sharing physical media among nodes by consolidating
multiple, independent channels into a single circuit. The independent channels
(assigned to nodes, applications, or voice calls) can be combined in the following

ways:

time division multiplexing (TDM) - use of a circuit is divided into a series
of time slots, and each independent channel is assigned its own periodic

slot.

frequency division multiplexing (FDM) - each independent channel is
assigned its own frequency range, allowing all channels to be carried

simultaneously.

Flow Control - The Media Access service manages the flow of data to account for
differing data transfer rates between devices. For example, flow control would have to
limit outbound traffic if a receiving machine or intermediate node operates at a slower
data rate, possibly due to the use of different network technologies and topologies or due

to excess network traffic at a node.

183

10

15

20

WO 01/16727 PCT/US00/24189

Error Recovery - The Media Access service performs error recovery, which is the
capability to detect and possibly resolve data corruption that occurs during transmission.

Error recovery involves the use of checksums, parity bits, etc.

Encryption - The Media Access service may perform encryption. (Note that encryption
can also occur within the Communications Services layer or the Transport Services
layer.) Within the Network Media Services layer, encryption occurs as part of the data
link protocol (e.g. Ethernet, frame relay). In this case, all data is encrypted before it is
placed on the wire. Such encryption tools are generally hardware products. Encryption at
this level has the advantage of being transparent to higher level services. However,
because it is dependent on the data link protocol, it has the disadvantage of requiring a

different solution for each data link protocol.
The following are examples of Media Access protocols:

Ethernet

token ring

FDDI

portions of the ATM standard

HDLC/SDLC

LAPB

T-carrier, E-carrier (e.g., T1, T3, E1, E3)

TDM and FDM (Time Division Multiplexing and Frequency Division Multiplexing; used

on T-carriers, etc.)
SONET, SDH

PPP, SLIP
184

WO 01/16727 PCT/US00/24189

V.32, V.34, V.34 bis, etc.

RS-232, EIA-232

TDMA and FDMA (Time Division Multiple Access and Frequency Division Multiple

Access; used on wireless links)

5 Specialized services convert between addresses at the Media Access level (i.e., physical
addresses like Ethernet) and the Packet Forwarding/Internetworking level (i.e., network

addresses like IP). The following protocols are examples of this functionality:

ARP (Address Resolution Protocol) - allows a node to obtain the physical address for

another node when only the IP address is known.

10 RARP (Reverse Address Resolution Protocol) - allows a node to obtain the IP address

for another node when only the physical address is known.

Possible Product Options

Semaphores Network Security System for Workgroups

15 Semaphore’s Network Security System for Workgroups - encrypts Ethernet.

Physical Media 2420

As illustrated in Figure 25, the Physical Media is divided into two categories:

1). the physical connectors 2502

20 2). the physical media (wired or wireless) 2504

185

WO 01/16727 PCT/US00/24189

Physical Connectors

The following are examples of wiring connectors used to connect network nodes to physical

media:
5 RJ-11, RJ-45
BNC
DB-9, DB-25

fiber optic connectors

10 Physical Media

Physical Media may be wired or wireless. Wired Physical Media includes wiring and cabling,

while wireless Physical Media includes antennas, connectors, and the radio frequency spectrum.

The following are examples of wired physical media:
15 twisted pair wiring, shielded twisted pair wiring
coaxial cable
fiber optic cable
4-pair voice-grade wiring

The following are examples of wireless physical media:

186

10

15

20

WO 01/16727 PCT/US00/24189

cellular antennas and the associated radio frequencies

wireless local area network antennas and the associated radio frequencies

satellite antennas and the associated radio frequencies

TRANSACTION 1012,1014

A transaction is a unit of work that has the following (ACID) characteristics:

A transaction is atomic; if interrupted by failure, all effects are undone (rolled back).

A transaction produces consistent results; the effects of a transaction preserve invariant

properties.

A transaction is isolated; its intermediate states are not visible to other transactions.

Transactions appear to execute serially, even if they are performed concurrently.

A transaction is durable; the effects of a completed transaction are persistent; they are

never lost (except in a catastrophic failure).

A transaction can be terminated in one of two ways: the transaction is either committed or rolled

back. When a transaction is committed, all changes made by the associated requests are made
permanent. When a transaction is rolled back, all changes made by the associated requests are

undone.

Transaction Services provide the transaction integrity mechanism for the application. This allows

all data activities within a single business event to be grouped as a single, logical unit of work.

In small to moderate scale environments of less than 150 simultaneous users on a single server,

this service may be provided by the DBMS software with its re-start/recovery and integrity

capabilities.

187

10

15

20

WO 01/16727 PCT/US00/24189

For larger client/server environments distributed on-line transaction managers might be more
applicable. These transaction managers provide sharing of server processes across a large

community of users and can be more efficient than the DBMSs.

Figure 26 illustrates several of the components of the Transaction areas of the Netcentric

Architecture Framework, each of which will be discussed in more detail below.

Transaction Monitor 2602

The Transaction Monitor Services are the primary interface through which applications invoke
Transaction Services and receive status and error information. Transaction Monitor Services, in
conjunction with Information Access and Communication Services provide for load balancing

across processors or machines and location transparency for distributed transaction processing.

Implementation considerations
Does the system access nonrelational data?

Some TP monitors provide a method of accessing nonrelational data, such as VSAM files or flat
files, independently of where the file physically resides. If write access is required for these data
sources, a TP monitor would provide more dependable messaging and two-phase commit

capabilities than the data source messaging capabilities alone.

Does the system require high throughput?

188

10

15

20

25

WO 01/16727 PCT/US00/24189

Because TP monitors provide load balancing functionality and because they effectively reduce
the number of connections that must be made to the database(s), they will help conserve the
resources of the data servers and, as a result, increase the throughput of the system. Systems with

high throughput requirements should consider using a TP monitor.

Do the on-line applications need the support of interoperability between autonomous,

heterogeneous processors?

Some TP monitors are available on multiple platforms and maintain interoperability
(communication, data translation, etc.) between heterogeneous resource managers (databases)
and clients (UNIX, MS Windows NT, etc.). For this reason, projects that intend to support a

heterogeneous hardware environment should consider using a TP monitor.

Is the system supposed to be highly available (i.e. 24x7), or mission critical?

TP monitors offer robust functionality: two-phase commit, recovery/rollback, naming services,
security services, can guarantee message delivery, can be maintained for high-availability
operation and provides audit trail logging. Therefore, the more mission critical the system, the

more likely it is that a TP monitor should be used.

Does the system require high availability?

Because of their fault tolerance, TP monitors make a valuable addition to systems that require
high availability. The automatic restart/recovery feature helps a system recognize when
components have failed and attempts to restart them. Also, because of the location transparency
feature of service calling, if an entire node in a system goes down, clients may be able to reach

the service they need on another node providing the same service.

189

10

15

20

WO 01/16727 PCT/US00/24189

Will the system be scaled in the future?

TP monitors offer multiple scalability options. TP monitors can run on machines ranging from
PCs to mainframes. Monitors also scale by allowing new machines to be added dynamically to
the system. Adding additional nodes in the production cycle is one TP monitor strength, although
some monitors are better at doing this than others. If it is anticipated that system volumes will
increase during the system's lifetime, scalability in itself is an excellent reason to use a TP

monitor.

Does the system have complex security requirements?

All of the TP monitors available today provide security authorization/ authentication services.
Most of them utilize the Kerberos security package, developed at the Massachusetts Institute of
Technology (MIT).

Does the system access legacy systems?

TP monitors can access databases and services running on mainframe systems. TP monitors
frequently include mainframe networking capability and maintain transaction rollback during
mainframe accesses. If access to the legacy system is read only, the messaging capabilities of the
data source will probably be sufficient. If access is write, however, the messaging and two-phase

commit capabilities of the TP monitor would be more dependable.

Is the system distributed across multiple nodes?

TP monitors provide common administrative facilities to manage groups of servers. These
facilities allow a system to be managed from one location with a common set of commands for

each machine.

190

10

15

20

WO 01/16727 PCT/US00/24189

How many users access the system concurrently?

Different sources give different answers as to the number of concurrent users that necessitates
the use of a TP monitor. The monitor vendors themselves give low values; the database vendors
give high values. The middle ground seems to be somewhere around 250 users. This is by no

means definitive, however; weigh each of the following questions when making the choice.

Do the on-line applications access/update more than one database or more than one type of

database?

The real strength of TP monitors is their ability to ensure a global two-phase commit over

multiple, heterogeneous databases. A system that has this quality is a candidate for a TP monitor.

Is the system not a transaction processing system?

Although TP monitors provide global two-phase commit "transaction processing" functionality,
systems that do not need this feature can also benefit by using TP monitors. For example, the
load-balancing feature in itself can help increase system performance. Also, the administrative

facilities can help simplify system management.

Is Data Dependent Routing Necessary?

Data Dependent Routing is the ability to route requests to a particular server based upon the data

passed within the request. TP monitors can provide this functionality.

191

10

15

20

25

WO 01/16727 PCT/US00/24189

e.g. A system has several servers accepting requests from clients dispersed across North
America. There are two groups of servers. One group of servers handles requests from all clients
located in the USA while the other group serves requests from Canada. When a client sends a
request to the system, a field in the request message, defining the location of the client, is passed
to the system. The TP monitor is then able to route the request to the correct group of servers

(USA or Canada) based upon information in the request message.

Is Reliable Queueing Necessary?
TP monitors provide the ability to enqueue and dequeue requests to and from a reliable

(stable storage) queue. Both the application and the administrator can control the order of the
messages (service requests) in the queue. Messages can be ordered LIFO, FIFO, time based,

priority, or by some combination of these keys.

Example:

A system updates a customer database. Suppose that the database has been partitioned such that
the information on customers most likely to use a branch office is stored locally at a branch
office. There is a requirement to maintain an up-to-date of the entire customer database at the
home office. The application that updates the local customer master can place a copy of the
update into a reliable queue. The queue can be forwarded to the home office via a WAN, and the
updates can be replicated in the home office database. The queuing system can be used to assure

that every update completed at the local office is completed at the home office.

Is The System Multi-tiered?

Transaction Services are typically used in three-tier and multi-tier architectures. Particularly in

Netcentric environments, applications might need to support getting and providing access to
192

10

15

20

WO 01/16727 PCT/US00/24189

multiple back-end services, across enterprises, as part of a single transaction or user activity.
This can be especially challenging if the user does not own some or all of the back-end services

and/or data that its application relies on.

Product considerations

Is the client interested in stable or emerging technologies?

TUXEDO has been in the TP marketplace for seven years and has the most installations of all TP
monitors. Encina, TOP END, and CICS/6000 are relatively new and emerging.

Does the client plan to use Windows NT?

On Which platforms/operating systems do the servers run?

TP monitor support for NT may be limited.

Some TP monitors are capable of running on a wider variety of platforms/operating systems than

others.

Is the project installing a new system or rehosting/downsizing an existing mainframe

system?

The UniKix, VIS/TP, and CICS/6000 monitors were developed specifically with rehosting in
mind. TUXEDO, Encina, and TOP END are best suited to fresh installations.

193

10

15

20

WO 01/16727 PCT/US00/24189

Does the system use PC-based clients?

Each TP monitor offers different support for PC-based clients. TUXEDO and TOP END
currently provide DOS, Windows, and OS/2 application programming interface (API) support.

Encina offers PC support, but this feature is still in beta test. Several vendors have PowerBuilder

and Visual Basic interfaces planned for their monitors, but as of this practice aid's printing,

nothing has been released.

On which platforms will client applications execute?

New and re-engineered systems may be required to execute on a previously installed base of

clients.

Does the system require integration with other 3rd party tools?

The client may expect the TP monitor to integrate with an already installed base of 3rd party

development tools.

Does the system require mainframe connectivity?

Of the four monitors that are evaluated in this practice aid, all of them offer varying levels of

mainframe connectivity.

Does the client have existing personnel with mainframes - CICS experience?

CICS/6000 has a programming interface similar to mainframe CICS. The learning curve for

mainframe CICS programmers to use CICS/6000 would be minimal; for these same personnel to

194

10

15

20

25

WO 01/16727

PCT/US00/24189

program using TUXEDO, Encina, or TOP END, the learning curve would be substantial. On the

other hand, because CICS/6000's administrative facilities are not similar to mainframe CICS,

administrative personnel will face a steep learning curve: they will need to leamm UNIX, DCE,
and Encina (the layers on which CICS/6000 is built). (NOTE: VIS/TP and UniKix are also

implementations of CICS in the UNIX environment, but they ere not included in this evaluation.)

Possible Product Options

Tuxedo; CICS/6000; Encina; MS Transaction Server; Sybase Jaguar; TOP END; openUTM;
TransIT Open/OLTP

Below are commonly used transaction monitors:

BEA TUXEDO - provides a robust middleware engine for developing and
deploying business-critical client/server applications. BEA TUXEDO handles
not only distributed transaction processing, but also application and the full
complement of services necessary to build and run enterprise-wide
applications. It enables developers to create applications that span multiple

hardware platforms, databases and operating systems.

IBMs CICS/6000 - an application server that provides industrial-strength,
online transaction processing and transaction management for mission-critical
applications on both IBM and non-IBM platforms. CICS manages and
coordinates all the different resources needed by applications, such as
RDBMSs, files and message queues to ensure completeness and integrity of

data.

Transarcs Encina - implements the fundamental services for executing
distributed transactions and managing recoverable data, and various Encina

extended services, which expand upon the functionality of the toolkit to

195

10

15

20

25

WO 01/16727 PCT/US00/24189

provide a comprehensive environment for developing and deploying

distributed transaction processing.

Microsofts Transaction Server (Viper) - a component-based transaction
processing system for developing, deploying, and managing high
performance, and scalable enterprise, Internet, and intranet server
applications. Transaction Server defines an application programming model
for developing distributed, component-based applications. It also provides a

run-time infrastructure for deploying and managing these applications.

Brief Product Considerations

Encina - The Encina DTP (OLTP) was built on top of OSF's DCE. This is both its
greatest asset and curse. DCE offers a very complete set of functions including security
services, RPC's, a directory service (like a yellow pages for clients to find services) and a
standard time service, and it is truly cross-platform and is endorsed by most vendors.

The problem is that it is a resource hog, and is fairly slow. DCE is also somewhat
immature in that there are not many tools to help you administer or program applications
(although many are on the way). Encina adds primarily a transactional element and some
load balancing services to RPC's. It also provides an easier interface to work with

(although it is still an administrative nightmare).

The good news is that the tools are getting better all of the time. Also, Encina is very
scalable and services can be on any machine in the network. Finally, Encina's load

balancing is quite good, much better then native DCE or Tuxedo.

Tuxedo

Functionality

Can handle a large number of concurrent client applications
196

10

15

WO 01/16727

Can handle a large volume of through-put (ex. 1000+ TPS)

Scaleable (handle many clients or a few without code rewrite)
Supports Transactions, including XA transactions

Has its own transaction resource manager

Guaranteed message delivery using a stable storage queue (/Q)

Future service delivery using /Q (usually for batch processing)

Can prioritize messages- most important get processed sooner.
Supports many platforms (all UNIX, NT, all common client platforms)
Tuxedo supports C, C++, and Cobol development

Can be used for basic c/s messaging

Supports conversational messaging between a client and a specific server
Peer-to-peer, client-to-client messaging is supported

Unsolicited messaging is supported for client processes

Asynchronous service calls can be made by client and server processes
Synchronous service calls can be made by client and server processes
Synchronous calls thaf receive no return message are supported

Very good security- must connect to access services

Security can be integrated w/ Kerberos

197

PCT/US00/24189

10

15

WO 01/16727 PCT/US00/24189

Has many different buffer types: view to pass C structs, FML to pass anything, carrays to

pass binary (sound, video), strings to pass strings

FML allows dynamic messages to be sent/received

Automatic error logging for Tuxedo components (ULOG, tagent log)

Application code can write to the ULOG with a Tuxedo API (error logging provided)

Automatic process monitor for process that die or machines that get partitioned

Service location independency (distribution/directory services)

Platform independency- handles data conversion

Built in data compression (if desired)

Built in performance measurement feature for services

Built in admin functions to monitor Tuxedo system online (tmadmin)

A server can be called based on data in the message (Data Dependent Routing)

Customizable server start-up and shutdown functions are automatically called.

/Domains allow independent Tuxedo regions to share services

Extensions to execute IMS and CICS transactions from UNIX (Open Transport)

Subscribe and Broadcast supported

APIs to get admin and system monitoring data for custom operation tools

JOLT (java to access Tuxedo servers)

198

10

15

WO 01/16727 PCT/US00/24189

Other Reasons to Use Tuxedo

Tuxedo is the market leader OLTP

Tuxedo is a proven product used in mission critical systems govt. and financial)
Tuxedo can be used to develop highly-available systems (24x7)

Has been implemented with PowerBuilder, VisualBasic, Motif clients, and unix batch

systems.

Cons of Using Tuxedo

Tuxedo for basic ¢/s messaging is overkill.

Expensive to purchase

Can be complicated to develop with and administer

System performance tuning requires an experienced Tuxedo administrator
Uses IPC resources and therefore should not be on same machine w/ other IPC products

Must be understood thoroughly before design starts. If used incorrectly, can be very

costly.

Single threaded servers requires an upfront packaging design.
Difficult to debug servers

Does not work well with Pure Software products: Purify, Quantify

Servers must be programmed to support client context data management

199

WO 01/16727 PCT/US00/24189

Difficult to do asynch messaging in 3rd party Windows 3.x client tools (ex.

PowerBuilder)

5 Resource Management 2604

A Resource Manager provides for concurrency control and integrity for a singular data resource
(e.g., a data base or a file system). Integrity is guaranteed by ensuring that an update is
completed correctly and entirely or not at all. Resource Management Services use locking,

commit, and rollback services, and are integrated with Transaction Management Services.

10

Transaction Management 2606

Transaction Management Services coordinate transactions across one or more resource managers
either on a single machine or multiple machines within the network. Transaction Management
Services ensure that all resources for a transaction are updated, or in the case of an update failure

15 on any one resource, all updates are rolled back.

This services that allow multiple applications to share data with integrity. The transaction
management services help implement the notion of a transaction -- a set of computations

producing changes to recoverable data which demonstrate the ACID properties:

Atomicity - all changes are made completely (committed) or not at all (roll-back).

20 Consistency - the effects of a transaction preserve invariant properties.

Isolation - intermediate data values are not visible to other transactions.

Durability - the effect of a completed transaction are persistent.

200

10

15

20

WO 01/16727 PCT/US00/24189

Two-Phase Commit is a feature found in distributed database management systems and online
transaction processing (OLTP) monitors to ensure information integrity across distributed
databases. With this feature, a transaction is only commited if two databases have the necessary
information. If a problem arises on a network connection or a computer, the software will roll the
transaction back so it will not be entered in either place. A restart mechanism may then retriy to

complete the transaction.

Possible Product Options

Tuxedo; Encina; TOP END; CICS/6000; openUTM; TransIT Open/OLTP

Transaction Partitioning 2608

Transaction Partitioning Services provide support for mapping a single logical transaction in an
application into the required multiple physical transactions. For example, in a package or legacy
rich environment, the single logical transaction of changing a customer address may require the
partitioning and coordination of several physical transactions to multiple application systems or
databases. Transaction Partitioning Services provide the application with a simple single

transaction view.

Implementation considerations

Must the system support logical transactions that occur across heterogenous

application servers and databases?
EXAMPLE:

In a given application, a single business process of updating a customer record requires

an update to a table in a UNIX based relational database and then an update to a table in a
201

10

15

20

WO 01/16727 PCT/US00/24189

MVS DB2 database. Although there are two physical transactions occurring, this entire
business process is represented as a single logical transaction. Transaction Partitioning
services allow the application to ensure that the individual transactions occurr across the
different UNIX and MVS systems and that the single logical transaction is completed and

successful when the individual physical transactions are completed and successful.

ENVIRONMENT 1016,1018

Figure 27 illustrates various components of the Environmental Services of the Netcentric
Architecture Framework. Environment Services provide miscellaneous application and system
level services that do not deal directly with managing the user-interface, communicating to other

programs, or accessing data.

Runtime Services 2702

Runtime services convert non-compiled computer languages into machine code during the

execution of a program.

Language Interpreter 2704

Language Interpreter Services decompose a 4th generation and/or a scripting languages into

machine code (executable code) at runtime.

Possible Product Options

202

10

15

20

WO 01/16727 PCT/US00/24189

VBRUN300.DLL

VBRUN300.DLL - runtime Dynamic Link Library that supports programs written in

Visual Basic.

Virtual Machine 2706

Typically, a Virtual Machine is implemented in software on top of an operating system, and is
used to run applications. The Virtual Machine provides a layer of abstraction between the
applications and the underlying operating system and is often used to support operating system

independence.

Possible Product Options

Java virtual machine; Smalltalk virtual machine

Virtual machines such as the Java virtual machine or the Smalltalk virtual machine implement
their own versions of operating system services in order to provide the application with complete

platform independence.

Java virtual machine - software implementation of a "CPU" designed to run compiled
Java byte code. This includes stand-alone Java applications as well as "applets" that are

downloaded and run in Web browsers.

Smalltalk virtual machine - runtime engine that interprets application code during

execution and supports platform independence.

System Services 2708

203

10

15

20

25

WO 01/16727 PCT/US00/24189

Services which applications can use to perform system-level functions. These services include:
System Security Services, Profile Management Services, Task and Memory Management

Services, and Environment Verification Services.

System Security 2710

System Security Services allow applications to interact with the operating system's native
security mechanism. The basic services include the ability to login, logoff, authenticate to the

operating system, and enforce access control to system resources and executables.

Profile Management 2712

Profile Management Services are used to access and update local or remote system, user, or
application profiles. User profiles, for example, can be used to store a variety of information
such as the user's language and color preferences to basic job function information which may be

used by Integrated Performance Support or Workflow Services.

Implementation considerations

Is there a need for the application to have its own profile file?

All MS Windows based application maintain their own profile file (XXXXXXXX.INI) that is
used during application startup, execution, and shutdown. This is a flat text file that contains
information that can be used by the application during various phases of execution. For
example, if an application needs to connect to a database engine/server, it needs to know, during
startup, various information like - database name, the server name, login ID, etc. Instead of hard
coding all these information in the application executable, this information can be stored in the
profile file for flexibility. In the future, if the database server name should change, this change

only needs to be entered in the applications profile file. In some cases, it has been seen that this
204

10

15

20

WO 01/16727 PCT/US00/24189

profile information has been hard coded in that applications executable itself. This will work,

but, it makes the application more rigid with no room for any flexibility.

Environment Verification 2714

Environment Verification Services ensure functionality by monitoring, identifying and validating
environment integrity prior and during program execution. (e.g., free disk space, monitor
resolution, correct version). These services are invoked when an application begins processing or
when a component is called. Applications can use these services to verify that the correct
versions of required Execution Architecture components and other application components are

available.

Implementation considerations

In client/server applications, it may be necessary to implement Environment Verification

Services to ensure that the client and server applications are of a compatible release level.

ActiveX framework provides services for automatic installation and upgrade of ActiveX
controls. When using IE, i.e., Microsoft’s Web browser, because of its integration with Windows
OS, ActiveX controls can be automatically installed and automatically upgraded on the users

machine without the developer adding any additional code.

Task and Memory Management 2716

Task & Memory Management Services allow applications and/or other events to control
individual computer tasks or processes, and manage memory. They provide services for

scheduling, starting, stopping, and restarting both client and server tasks (e.g., software agents).

205

10

15

20

WO 01/16727 PCT/US00/24189

Implementation considerations

Memory management, the allocating and freeing of system resources, is one of the more error
prone development activities when using 3GL development tools. Creating architecture services

for memory handling functions can reduce these hard to debug errors.

Java removes, in theory, the problem of memory management, by providing a garbage collector;
although, its implementation is not very efficient in current implementations of Java. Future
releases of the Java VM promise a background-running garbage collector with significantly

increased performance.

Application Services 2718

Application Services are miscellaneous services which applications can use for common
functions. These common functions can apply to one application or can be used across
applications. They include: Application Security Services, Error Handling/Logging Services,

State Management Services, Help Services , and Other Common Services.

Application Security 2720

Besides system level security such as logging into the network, there are additional security

services associated with specific applications. These include:

User Access Services - set of common functions that limit application access to specific

users within a company or external customers.

Data Access Services - set of common functions that limit access to specific data within

an application to specific users or user types (e.g., secretary, manager).

Function Access Services - set of common functions that limit access to specific

functions within an application to specific users or user types (e.g., secretary, manager).
206

10

15

20

WO 01/16727 PCT/US00/24189

Implementation considerations

In the Netcentric environment, application security becomes a more critical component primarily
because there are more types of users (e.g., employees, customers) and additional types of
transactions (e.g., e-commerce, help-desks). In traditional client/server environments most users
are employees of the company. In Netcentric environments there are typically also external users
(e.g., vendors, registered users) and the general public. Usually, different types of users have
different application security requirements limiting what data they can see and what functions
they can execute. Also, new types of transactions such as verifying credit when doing e-

commerce transactions also require additional application security services.

Error Handling/Logging 2722

Error Handling Services support the handling of fatal and non-fatal hardware and software errors
for an application. An error handling architecture takes care of presenting the user with an
understandable explanation of what has happened and coordinating with other services to ensure

that transactions and data are restored to a consistent state.

Logging Services support the logging of informational, error, and warning messages. Logging
Services record application and user activities in enough detail to satisfy any audit trail
requirements or to assist the systems support team in recreating the sequence of events that led to

an error.

Implementation considerations
Error Handling

Primarily there are three types of errors: system, architecture and application.

207

10

15

20

25

WO 01/16727 PCT/US00/24189

System errors occur when the application is being executed and some kind of serious
system-level incompatibility is encountered, such as memory/resource depletion,
database access problems, network problems or printer related problems, because of

which the application cannot proceed with its normal execution.

Architecture errors are those which occur during the normal execution of the application
and are generated in architecture functions that are built by a project architecture team to
isolate the developers from complex coding, to streamline the development effort by re-
using common services, etc. These architecture functions perform services such as

database calls, state management, etc.

Application errors are also those which occur during the normal execution of the
application and are generally related to business logic errors such as invalid date, invalid

price, etc.

Typically an application is written using a combination of various programming languages (e.g.,
Visual Basic and C). Therefore, a common error handling routine should be written in a

language that can be called from any other language used in the application.

Logging

Logging must be done, however to mitigate problems, centralize logs and create a standard,
usable log format. 3rd party logs should be mapped into the central format before any analysis 1s

attempted.

In a Netcentric environment, errors are rarely logged on the client machine (one exception may

be for an intranet type application).

Logging can add much stress to a Web server and logs can grow very large, very quickly, so do
not plan to log all errors - capture only those which are deemed necessary for processing

exceptions.

208

10

15

20

25

WO 01/16727 PCT/US00/24189

State Management 2724

State Management Services enable information to be passed or shared among windows and/or
Web pages and/or across programs. So lets say several fields in an application need to be passed
from one window to another. In pseudo-conversational mainframe 3270 style applications
passing data from one screen to another screen was done using Context Management Services
that provided the ability to store information on a host computer (in this paper the term Context
Management refers to storing state information on the server, not the client). Client/server
architectures simplified or eliminated the need for Context Management (storing state
information on the server), and created a need to store state information on the client. Typically,
in traditional client/server systems this type of state management (i.e., data sharing) is done on

the client machine using hidden fields, global variables, messages, files or local databases.

The popularity of the Internets HTTP protocol has revived the potential need for implementing
some form of Context Management Services (storing state information on the server). The HTTP
protocol is a stateless protocol. Every connection is negotiated from scratch, not just at the page
level but for every element on the page. The server does not maintain a session connection with
the client nor save any information between client exchanges (i.e., web page submits or
requests). Each HTTP exchange is a completely independent event. Therefore, information
entered into one HTML form must be saved by the associated server application somewhere

where it can be accessed by subsequent programs in a conversation.

Advances in Netcentric technologies now offer additional options for implementing state

management on both the client and server machines.

Possible Product Options

NetDynamics Inc. NetDynamics

NetDynamics Inc. NetDynamics

209

10

15

20

25

WO 01/16727 PCT/US00/24189

NetDynamics provides built-in, developer-definable session and state management. The
Persistence Engine (PE), part of the NetDynamics application server, stores all relevant
information about a user. Everything from the WebID to the exact table row the user is
currently viewing can be maintained in the PE. NetDynamics maintains state information
on both the server and on the client page. Application state information is maintained by
the application server, and local state information is maintained on the page.
NetDynamics provides manipulatable state objects for both server and page state

information.

Codes Table Service 2726

Codes Table Services enable applications to utilize externally stored parameters and validation
rules. For example, an application may be designed to retrieve the tax rate for the State of
Illinois. When the user enters "Illinois" on the screen, the application first validates the user's
entry by checking for its existence on the "State Tax Table", and then retrieves the tax rate for
Illinois. Note that codes tables provide an additional degree of flexibility. If the tax rates

changes, the data simply needs to be updated; no application logic needs to be modified.

Implementation considerations

Is there a need for the codes table functionality?

Most applications need code/decode facility. For example, an application may need to store
codes like - error severity codes, etc., stored in a table (may be a cached table) instead of in the
executable itself. In some cases, where there is a small amount of information that needs to be

stored in the codes table, the profile file (mentioned above) can be used instead of the codes

. table. But in cases where the codes table needs to be used quite extensively, then storing the

code/decode information in the profile file will slow down the performance of the application

because of the overhead of accessing flat files.

210

10

15

20

WO 01/16727 PCT/US00/24189

What basic services an architecture should provide in terms of managing/using

codes/decodes functionality?

In cases where the application requires extensive use of codes table, the architectures
Code/Decode component should provide the application developers with a set of API that can be
used to use code/decode tables. This component should also provide the option of caching all or

parts of the codes table in the application machines memory for easier and faster access.

Where should Code/Decode information be stored and maintained?

Code/decode information can be stored at any layer of an n-tier architecture - client, application
server, or database. The decision will need to be based upon codes table size and number,

information update frequency, and write-access to the client machine or device.

Active Help 2728

Active Help Services enable an application to provide assistance to a user for a specific task or
set of tasks. Context-sensitive help is most commonly used in applications today, howevet this
can imply more "active" support that just the F1 key. Typically, today's systems must be
architected to include Help that is aware of both the user's environment, process and context, and
in this sense can be called "active". Active Help services may include components like Wizards
for walking a user through a new process, stored or real-time multi-media support, on-demand

Computer Based Training, etc.

Other Common Services 2726

211

10

15

20

WO 01/16727 PCT/US00/24189

Catchall category for additional reusable routines useful across a set of applications (e.g., Date

Routines, Time Zone Conversions, Field Validation Routines).

Implementation considerations
Does the client operate in different date/time zone?

In most large scale distributed applications, the client and the server applications (or machines)
are scattered over different time zones. This forces the client applications and the server hosts to
deal with date and time zone conversions (like -CST to PST, etc.) in order to use or display their
local time accurately. Most of the architectures provide a base set of APIs that can be used by

the applications to convert the data/time as needed.

Does the system requires customized date/time format for display purposes?

Many systems, for certain business reasons, need customized date and time formats for display
and storage purposes. In order to do that, the architecture should provide a set of APIs that will

allow the system to convert data and time from one format to the other.

Does the system deal with high database accesses?

As mentioned in the Codes Table Component, sometimes it is necessary to cache the data in the
memory for faster access and less database hits. This a feature that some architectures provide as
a set of memory management APIs to create the cache area in the client platforms memory for

the data to reside.

Application Integration Interface 2734
212

10

15

20

25

WO 01/16727 PCT/US00/24189

An Application Integration Interface provides a method or gateway for passing context and
control of information to an external application. The Application Integration Interface specifies
how information will be passed and defines the interface by which other applications can expect
to receive information. External applications in this context could include anything from
Integration Performance Support systems to ERP systems like SAP or Peoplesoft to external

custom applications that have been previously developed by the client.

Implementation considerations

Where possible, Application Integration Interfaces should make use of the Component Model
defined by the project to broker information (i.e. OLE/COM interfaces) as opposed to custom

building data sharing modules.

Component Framework 2736

Component Framework Services provide an infrastructure for building components so that they
can communicate within an application and across applications, on the same machine or on
multiple machines across a network, to work together. COM/DCOM and CORBA described in

Communication Services are the two leading component industry standards. These standards

define how components should be built and how they should communicate.

Object Request Broker (ORB) services, based on COM/DCOM and CORBA, focus on how
components communicate. Component Framework Services, also based on CORBA and
COM/DCOM, focus on how components should be built. The currently 2 dominant Component

Frameworks include:

1. ActiveX/OLE - ActiveX and Object Linking and Embedding (OLE) are
implementations of COM/DCOM. ActiveX is a collection of facilities forming a
framework for components to work together and interact. ActiveX divides the world into

two kinds of components: controls and containers. Controls are relatively independent

213

10

15

20

25

WO 01/16727 PCT/US00/24189

components that present well defined interfaces or methods that containers and other
components can call. Containers implement the part of the ActiveX protocol that allows
for them to host and interact with components - forming a kind of back plane for controls
to be plugged into. ActiveX is a scaled-down version of OLE for the Internet. OLE
provides a framework to build applications from component modules and defines the way
in which applications interact using data transfer, drag-and-drop and scripting. OLE is a

set of common services that allow components to collaborate intelligently.

In creating ActiveX from OLE 2.0, Microsoft enhanced the framework to address some
of the special needs of Web style computing. Microsofts Web browser, Internet
Explorer, is an ActiveX container. Therefore, any ActiveX control can be downloaded
to, and plugged into the browser. This allows for executable components to be

interleaved with HTML content and downloaded as needed by the Web browser.

2. JavaBeans - is Sun Microsystems proposed framework for building Java components
and containers. The intent is to develop an API standard that will allow components
developed in Java (or beans), to be embedded in competing container frameworks
including ActiveX or OpenDoc. The JavaBeans API will make it easier to create

reusable components in the Java language.

Other component frameworks include:

OpenDoc - CI Labs was formed in 1993 and created the OpenDoc architecture to provide
a cross-platform alternative component framework--independent of Microsofts OLE.

The OpenDoc architecture is constructed from various technologies supplied by its
founding members - IBM, Apple and Word Perfect. The technologies include: Bento
(Apples object storage model), Open Scripting Architecture (OSA--Apples scripting
architecture) and SOM/DSOM (IBMs System Object Model/Distributed SOM). IBMs

SOM architecture provides analogous services to that of Microsofts DCOM architecture.

OpenDoc provides an open compound document infrastructure based on CORBA. It uses
CORBA as its object model for inter-component communications. OpenDoc architecture
provides services analogous to those provided by OLE and OpenDoc components can

also inter-operate with OLE components. The OpenDoc equivalent of an object is termed

214

10

15

20

25

WO 01/16727 PCT/US00/24189

apart. Each type of part has its own editor and the OpenDoc architecture has

responsibility for handling the communications between the distinct parts.

Supporters claim OpenDoc provides a simpler, more technically elegant solution for
creating and manipulating components than does OLE. The drawback is that OpenDoc is
not yet commercially proven, like OLE. Ironically, one of the more popular uses of
OpenDoc tools is for creating and implementing OLE clients and servers. Because
OpenDoc provides a more manageable set of APIs than OLE, it may be that OpenDoc
gains initial acceptance as an enabler of OLE applications before becoming recognized as

a complete component software solution itself.

ONE - Open Network Environment (ONE) is an object-oriented software framework
from Netscape Communications for use with Internet clients and servers, which enables
the integrating of Web clients and servers with other enterprise resources and data. By
supporting CORBA, ONE-enabled systems will be able to link with object software from
a wide array of vendors, including IBM, Sun Microsystems, Digital Equipment, and
Hewlett-Packard. Netscape is positioning ONE as an alternative to Microsoft's
Distributed Common Object Model (DCOM). ONE also complies with Sun

Microsystems Java technology.

Implementation considerations

An architecture that utilizes components brings many of the benefits of object orientation
to applications. Component-based or document-centric applications are composed of intelligent
components, each of which contains logic, possibly data and a set of well defined interfaces or
APIs to the services they provide (e.g., a customer component or an Excel chart component). The
similarities to object oriented are more than just coincidental. Component software is viewed by

many as a more viable object approach focusing on larger grain of modularity and reuse.

215

10

15

20

25

WO 01/16727 PCT/US00/24189

Two important issues driving the decision around what should be a component are software re-
use and software packaging. Software re-use will primarily stem from defining components at a
level at which they can be re-used within the same application and across many applications.
Although re-usable components can be at any level, more often they will probably be at an object
level where they are more granular. Software packaging will be driven by defining components
at a level at which they can be distributed efficiently to all users when business logic changes
occur. If the application is large, perhaps it is better to package the application by breaking it up
into process components such as customer maintenance, sales order maintenance, etc. So when a
change to one of the processes occurs, only the component which contains that process needs to
be distributed to client machines, rather than the whole application. For example, a developer
can create an ActiveX control that will encapsulate the Employee Maintenance Process, which
includes adding new employees, updating and deleting existing employees. This ActiveX control
can be a part of an overall human resource intranet application. When the functionality within the
Employee Maintenance Process changes, the next time the user accesses the human resource
application from the Web browser, ActiveX technology will automatically download the latest
version of the ActiveX control containing the most recent update of the Employee Maintenance

Process to the client machine, if the client machine does not have the latest version.

Component architectures typically employ of a three-tier component architecture utilizing

the following three types of components:

User Interface, Process, and Domain. While these three component types may go by different
names on different projects, they all follow the same basic pattern and are briefly explained

below:

User Interface components typically contain nothing more than the logic required to
manipulate input and output to the user. This can include input validétion requiring no
additional server data, as well as simple calculations associated with field display. In
addition, logic associated with dynamically changing the display (e.g., a checkbox entry

causes a field to become disabled) is placed here.

216

10

15

20

25

WO 01/16727 PCT/US00/24189

Process components typically contain the logic associated with business transactions
performed on data. This is often the point where transaction commit/rollback occurs.

These components are typically invoked by the User Interface components.

Domain components typically contain the logic associated with accessing and
maintaining business entities, i.e., data. These components are usually invoked by
Process components when requiring access to or manipulation of data. However, in
addition to data access, these components may often be used to perform manipulations
involving the processing of data within the domain of that component. For example, a
Customer Domain component might be requested to determine if it’s credit limit had

been exceeded when provided with a new invoice amount.

Build vs. Buy

There is an explosion of components available in the market place and the ease of accessing and
down loading components from the Internet; the deciston to buy or build a component is as real
as ever. In general clients expect more justification of a build decision v. a buy decision. Feel

out the client and the expectations and requirements they may have.

Components are a viable option and should be researched, even includingeven simple Ul
controls available on the Internet. Look at market trends to determine which

applications/components can meet the bulk of the system needs.

Operating System 2738

Operating System Services are the underlying services such as multi-tasking, paging, memory
allocation, etc., typically provided by today's modern operating systems. Where necessary, an
additional layer or APIs may be provided to gain either operating system independence or a

higher level of abstraction for application programmers.

217

10

15

20

WO 01/16727 PCT/US00/24189

Possible Product Options

Microsoft Windows; Windows 95; Windows NT; Macintosh OS; OS/2; Unix and Java OS

BASE SERVICES 1020

Component Description

Figure 28 illustrates the Base Services of the Netcentric Architecture Framework. Base Services
provide server-based support for delivering applications to a wide variety of users over the
Internet, intranet, and extranet. The information about these services in the Netcentric framework
may be limited based on the least common denominator. For more detailed information about

these components refer also to the following frameworks in SAF.

Batch Delivery Vehicle

Collaboration Framework for Structured Information (Workflow)

Web Services (2820)

Web Server Services enable organizations to manage and publish information and deploy
Netcentric applications over the Internet and intranet environments. These services support the

following:
Managing documents in most formats such as HTML, Microsoft Word, etc.

Handling of client requests for HTML pages. A Web browser initiates an HTTP request
to the Web server either specifying the HTML document to send back to the browser or
the server program (e.g., CGI, ASP) to execute. If the server program is specified, the

Web server executes the program which generally returns a formatted HTML page to the

218

10

15

20

25

WO 01/16727 PCT/US00/24189

Web Server. The Web server then passes this HTML page just as it would any standard
HTML document back to the Web browser.

Processing scripts such as Common Gateway Interface (CGI), Active Server Pages
(ASP). Server side scripting enables programs or commands to be executed on the server
machine providing access to resources stored both inside and outside of the Web server
environment. For example, server side scripts can be used to process requests for

additional information, such as data from an RDBMS.

Caching Web pages. The first time a user requests a Web page, the Web server retrieves
that page from the network and stores it temporarily in a cache (memory on the Web
server). When another page or the same page is requested, the Web server first checks to
see if the page is available in the cache. If the page is available, then the Web server
retrieves it from the cache, otherwise it retrieves it from the network. Clearly, the Web
server can retrieve the page from the cache more quickly than retrieving the page again
from its location out on the network. The Web server typically provides an option to
verify whether the page has been updated since the time it was placed in the cache, and if

it has to get the latest update.

Possible Product Options

Netscape Enterprise Web Server; Microsoft Internet Information Server (IIS); Oracle WebServer

The following are relevant products for providing or implementing HTTP Web Server Services:

Netscape Enterprise Web Server

An enterprise-strength Web server that enables organizations to manage and publish their
information and deploy Netcentric applications. Netscape Enterprise Web Server is built
on open Internet standards that enable information and applications to scale easily.

Supports S-HTTP, Java, and SNMP.

Microsoft Internet Information Server (IIS)
219

10

15

20

25

WO 01/16727 PCT/US00/24189

A free add-on product for NT Server that implements basic HTTP services. Future
versions of NT Server (4.0 and beyond) will have HTTP features built directly into the

operating system.

Oracle WebServer

A multi-threaded HTTP server that provides integrated features for translating and
dispatching client HTTP requests directly to the Oracle7 Server using PL/SQL.

Push Pull Services (2840)

Push/Pull Services allow for interest in a particular piece of information to be registered and then
changes or new information to be communicated to the subscriber list. Traditional Internet users
"surf" the Web by actively moving from one Web page to another, manually searching for
content they want and "pulling” it back to the desktop via a graphical browser. But in the push
model, on which subscription servers are based on, content providers can broadcast their
information directly to individual users' desktops. The technology uses the Internet's strengths as
a two-way conduit by allowing people to specify the type of content they want to receive.
Content providers then seek to package the requested information for automatic distribution to

the user's PC.

Depending upon requirements, synchronous or asynchronous push/pull services may be required.
Synchronous push/pull services provide a mechanism for applications to be notified in real time
if a subscribed item changes (e.g., a stock ticker). Asynchronous push/pull services do not
require that a session-like connection be present between the subscriber and the information.
Internet ListServers are a simple example. Subscribers use e-mail to register an interest in a topic
and are notified via e-mail when changes occur or relevant information is available.
Asynchronous push/pull services can be useful for pro-actively updating customers on changes
in order status or delivering information on new products or services they have expressed an

interest in.

220

10

15

-20

WO 01/16727 PCT/US00/24189

PointCast; Marimba; IBM/Lotus; Microsoft; Netscape; America Online; BackWeb; Wayfarer

Castanet from Marimba - distributes and maintains software applications and content
within an organization or across the Internet, ensuring subscribers always have the most

up-to-date information automatically.

PointCast - news network that appears instantly on the subscribers computer screen.

Batch Services (B2060)

Batch processing is used to perform large scale repetitive processing where no user involvement
is required as well as reporting. Areas for design attention include scheduling, recovery/restart,
use of job streams and high availability (e.g. 24 hour running). In addition close attention must

be paid to performance as batch systems usually must be processed within strict batch windows.

The design of batch architectures is often complicated considerably by the fact that batch jobs
must be able to run concurrently with on-line systems. The general globalization of companies
requires that he on-line systems must be available on a close to 24x7 hours basis, eliminating the
traditional batch windows. Concurrent batch and on-line processing poses serious challenges to

data integrity, throughput and performance.

Batch application programs can include business processing such payroll, billing, etc. and can
also include report generation. This is an often overlooked area in client/server architectures.

Traditional client/server solutions and Netcentric solutions often require batch processing, but
unlike the mainframe, the typical platforms and development environments used often do not

have built-in batch or reporting architecture facilities.

Batch processing should be used in preference to on-line modules when:

The same process, or set of processes, must be applied to many data entities in a

repetitive and predictable fashion.

221

10

15

20

WO 01/16727 PCT/US00/24189

There is either no manual element to the process or the manual element can be

completely separated from a batch element.

The volume of information to be presented to a user is too great to be processed on-line

or it can be better printed in batch.

Related Patterns

For more detailed information about component based batch design patterns, refer also to the

Batch patterns in the Patterns section:

Base Services Patterns Overview

Abstraction Factory

Batch Job

BUW - Batch Unit of Work

Processing Pipeline

Report Services (2880)

Report Services are facilities for simplifying the construction and delivery of reports or
generated correspondence. These services help to define reports and to electronically route
reports to allow for online review, printing, and/or archiving. Report Services also support the
merging of application data with pre-defined templates to create letters or other printed

correspondence. Report Services include:

Driver Services. These services provide the control structure and framework for the

reporting system.

222

10

15

20

WO 01/16727 PCT/US00/24189

Report Definition Services. These services receive and identify the report request,
perform required validation routines, and format the outputted report(s). After the request

is validated, the report build function is initiated.

Report Build Services. These services are responsible for collecting, processing,

formatting, and writing report information (for example, data, graphics, text).

Report Distribution Services. These services are responsible for printing, or otherwise

distributing, the reports to users.

FUNCTIONS AND FEATURES OF A REPORT ARCHITECTURE

The report architecture within Environment Services supports the generation and delivery of

reports. Applications request report services by sending a message to the reporting framework.

The following types of reports are supported by the reporting application framework:

Scheduled: Scheduled reports are generated based upon a time and/or date requirement.
These reports typically contain statistical information and are generated periodically

(invoices and bills, for example).

On-demand: Some reports will be requested by users with specific parameters. The
scheduling of these reports, the formatting, and/or the data requirements are not known

before the request is made, so these factors must be handled at request time.

Event-driven: This report type includes reports whose generation is triggered based on a

business or system event. An example here would be a printed trade slip.

REPORTING APPLICATION FRAMEWORK

Figure 29 shows the major components of the reporting application framework:

223

WO 01/16727 PCT/US00/24189

Report Initiation (2900)

The report initiation function is the interface for reporting applications into the report

architecture. The client initiates a report request to the report architecture by sending a message
5 to the report initiation function. The responsibility of report initiation is to receive, identify, and

validate the request and then trigger the report build process. The main components of reporting

initiation are the following.

Receive, identify, and validate a report request. The identification function determines
general information about the request, such as report type, requester, quantity to be

10 printed, and requested time. Based on the report type, a table of reports is examined in
order to gather additional report-specific information and perform required validation
routines for the report request. After the report identification and validation functions
have been successfully completed, the reporting process can continue. If any errors are
identified, the report initiation function will return an error message to the requester

15 application.

Initiate report execution. The initiate report execution function processes the report
profile and specific distribution requirements and determines the report to be created. It

then passes control to the report execution process.

20 Report Execution (2902)

Report execution is the core of the reporting application framework. The main components of

report execution include:

Format the report. This function is responsible for formatting the layout of the
outputted report, including standard headers, column headings, row headings, and other

25 static report information.

224

10

15

20

25

WO 01/16727 PCT/US00/24189

Collect the information. This function is responsible for collecting the information (for
example, data, text, image, graphics) that is required for the report. This function would

utilize the Information Access Services component of the client/server architecture.

Format the information. This function is responsible for formatting the collected
information into the appropriate display format based upon the report type and the report

distribution requirements.

Output the report. This function initiates the report distribution function in order to
distribute the created report to the specified devices (printers, disks, and so forth) and

individuals.

The process of collecting, processing, formatting, and outputting report data can be
accomplished in several different ways. For example, one method is to create a program in C for
each report format. Here, many aspects of report printing -- such as page size, headings, footings,
and printer control values -- would have to be programmed in function calls to facilitate the
report programming process. Information access to files or the database would be through

Information Access Services.

Another option is to use a third-party report tool, such as the SQR (Structured Query Report
Writer) from SQL Solutions. SQR is a robust report generator designed to be used with SQL-
based relational databases. SQR insulates the developer from programming in a third generation
language by providing a higher-level programming language. SQL queries (Information Access)
are placed directly into the SQR program.

Report Distribution (2904)

The final requirement of the reporting application framework is the report distribution function.

Once the report has been generated, it must be distributed to the specified targets (devices and/or

225

WO 01/16727 PCT/US00/24189

users). The report distribution function will locate completed report files and route them to the

appropriate devices within the client/server network.

Typically, a report distribution database is used to specify the destinations for each report
supported by the report architecture. The report distribution database specifies where, when,

5 how, and to whom to distribute the produced report. Specific destinations can include: printer(s),
user(s), user groups, archives (permanent storage), and/or specific display devices such as

workstations and terminals.

Several additional options exist for distributing reports including timed reporting, multiple copy
distribution, and report archiving. Also, a user interface function can be built to open and browse

10 report files.

CUSTOM REPORTING APPROACHES

If a commercially-available reporting product can not meet your report requirements, you may
have to consider a custom approach. Figure 30 illustrates an example of how a custom report

15 architecture relates to a workstation platform technology architecture.

This custom report process is responsible for processing all messages requesting generation,
manipulation, or distribution of reports. The following services are provided in an environment

including a pair of workstations 3000 and a server 3002:

Report generation

20 Report deletion

Report printing

Report status maintenance

Report generation is supported by an additional report writer process that contains all

application-defined report writer modules. These modules contain the logic to produce each of
226

10

15

20

WO 01/16727 PCT/US00/24189

the report types that may be requested. The report process receives generation requests and
ensures that they are forwarded to the report writer process at the current or specified time. All
report requests are processed in an asynchronous manner (for example, service requesters do not

wait for completion of report processing).

Figure 31 describes the relationships between the major components of the report process 3100

and the report writer process 3102.

Design Approach

For the report process in a client/server system, a set of APIs is provided for use within
application programs and within the application report writer modules. Each API requests a
specific report service (generation, printing, or deletion) which is performed by a report manager

module.

The report process maintains an internal database table, a report status table, containing

information about each report that has been requested for generation, including:
Requester ID
Report name
Date/time requested
Status (requested, in process, complete, or error)
Report-speciﬁc parameters.

The requester ID, report name, and date/time are used to uniquely identify the report. These
values are passed to APIs which request report status, print or delete a previously generated

report.

227

WO 01/16727 PCT/US00/24189

All application-defined report writer modules invoke an API to update the report status table
with a status of "completed" after a report has been produced or with "error" if the report cannot
be generated. An API is also provided to print the report after the generation if specified in the

original request.

5 Processed report records are removed from the table only after the output reports have been
archived. Implementation and frequency of this table cleanup is to be determined in systems

management design.

Report Process Flows

10 Report processing is message-driven. Each defined API sends a unique message to the report
process. The report process reads the messages from a queue and invokes the appropriate
modules to handle each request. Subsequent process flows differ based upon the requested

service. In the case of a report generation request, the process flow proceeds as follows:

A record is added to the report status table.

15 A message is sent to the report writer process for immediate generation or to the event

manager for generation at a specified time (report scheduling).

The appropriate application report writer module generates the report, prints it if

specified in the original API request, and updates the status in the report status table.

20 A request to print a report proceeds as follows:

The report status is retrieved from the report status table.

The output file is located on disk and sent to the specified or default printer or the request

1s sent to the event manager for report scheduling.

228

10

15

20

WO 01/16727 PCT/US00/24189

Report deletion proceeds as follows:

The report record is removed from the report status table.

The report file is removed from disk.

Status information requests are performed directly from the API using Information Access
Services APIs. No interaction with the report process is necessary, which results in improved

performance.

Modules

Figure 32 shows the module hierarchy for the custom report process. The Figure shows the
relationships between modules, not their associated processing flows. It should be used to
identify the calling module and the called modules for the process. Figure 32 illustrates the

Architecture Manager library 3200 which supports the report process.

The functions designed to support this process are:

Generate Report

Get Report Status

Control Reports

Request Report (b2402)

Delete Report (b2406)

Print Report (b2404)

229

WO 01/16727 PCT/US00/24189

Generate Report. This module is called to request report generation and printing (optional).

Input data blocks specify the following:

Report name

5 Report parameters

Report generation time (default is immediately)

Printer name.

The report name must be one of the defined application report types. Valid report parameters
vary depending on the report type. Reports may be requested for generation immediately or at a
10 designated future time. All reports are written to a reserved area on disk; however, specification

of a printer causes the output to be printed as well as stored on the file system.

Get Report Status. The Get Report Status function retrieves status information about all reports
that have been previously requested for generation by the calling process. Returned is a list

15 containing the requested data as well as the number of reports found.

Control Reports. The Control Reports function is responsible for performing various operations

on reports. The following services are provided:

Delete a report request and any associated output

20 Print a previously generated report.

Update report status.

230

10

15

20

WO 01/16727 PCT/US00/24189

In all cases, the report name is passed through an input data block. For the print service, a printer

name is passed. For status update, the new status code is passed.

Request Report. The Request Report function is responsible for processing report request
messages written to the report process queue. It creates a new entry in the report status table with
a status of "requested” and initiates the report writer process for immediate generation or sends a

message to the event manager for future report generation.

Delete Report. The Delete Report function is responsible for removing a report from the Report
Status list and deleting the generated output file (if any).

Print Report. The Print Report function sends a generated report output file to a specified or

default printer. The report name and requesting process ID is passed to identify the report.

EVALUATION CRITERIA

There are two primary approaches to implementing a reporting architecture: custom and
package. Evaluating custom and package solutions involves both functional and technical
criteria. The following is a discussion of various functional and technical criteria that should be
considered during the planning for a report architecture. Note that not all of the criteria may be

required by any particular organization.

231

10

15

20

25

WO 01/16727 PCT/US00/24189

Functional Criteria

1. Report Repository: The report architecture should work with, and support maintenance of, a
report repository on the platforms within the client/server architecture. The report repository

contains the detailed definitions of the reports.

2. Workgroup Report Support: The report architecture should work with and support

distribution of reports generated on the workgroup server.

3. On-Demand Reports: The report architecture must support distribution of reports requested
by users on demand. Typically, these reports will not have a set schedule or frequency for
distribution. The report architecture must support distribution of these reports without the

requirement of manual or user intervention (subsequent to initial set up and conversion).

4. Scheduled Reports: The report architecture must support distribution of regularly scheduled
reports. Typically, these reports will have a set schedule and frequency for distribution. The
report distribution package must support distribution of these reports without the requirement of

manual or user intervention (subsequent to set up and conversion).

5. Online Preview: The report architecture should allow preview of reports online from a user's
intelligent workstation prior to actual distribution. Ideally, the report architecture itself ' would
provide support for online preview of reports through software located on the intelligent

workstation.

6. Graphical User Interface: The architecture should provide users with a graphical user

interface.

7. Bilingual Support: For companies where two or more languages are used, the report
architecture must provide a multi-national user interface. (Note that large report runs targeted for

multiple users may require the ability to change languages during the report.)

8. Basic Preview Functions: The report architecture should support basic preview functions.

These include:

Scrolling up and down.
232

10

15

20

25

WO 01/16727 PCT/US00/24189

Scrolling left and right.
Advancing to end or beginning of report without scrolling through intermediate pages.

9. Advanced Preview Functions: In addition to the basic preview functions listed previously,

certain advanced preview functions may also be necessary:
Page indexing (allows users to jump to specific report pages).
Section indexing (allows users to jump to specific report sections).

Search capabilities (allows users to search report for occurrence of a specific data

stream).

10. Report Level Security: Reports may occasionally contain sensitive information. It is
therefore important that access to certain reports be restricted to authorized users. The report
architecture should provide a mechanism for implementing report level security. This security
must be in place on all platforms with the client/server architecture. At the workgroup level, the
security may consist of downloading sensitive report files to a secure directory, and having the

LAN administrator release the report as appropriate.

11. Section, Page, and Field Level Security: Defining security at the report section, page, or
field level would provide greater flexibility in determining and implementing report security.

This is a desirable, though not mandatory, requirement of the report architecture.

12. Background Processing: The report architecture should support the processing of reports in
the background while the application works in the foreground during online hours. In other
words, processing of reports should not negatively affect online response times, or tie up the

user's workstation.

13. Automatic Report Addressing: The report architecture should provide a "humanly
intelligible" address for all distributed reports. The address may be used by a print site operator,
LAN administrator, or other personnel to manually sort printed output (if required). This

criterion can be satisfied by automatic creation of banner pages or other means.

233

10

15

20

25

WO 01/16727 PCT/US00/24189

14. Delivery Costing: To provide sufficient information to users to avoid accidentally
downloading or printing very large reports during peak usage hours, a distribution costing
function can be useful. This function would warn users of reports that would overload the
network or a printer. This costing function might provide recipients with a rough estimate of the
amount of time that distribution might take. Finally, during the online day, the delivery costing

mechanism might disallow transmission of reports that exceed a predetermined cost.

15. Multiple Destinations: The report architecture should support distribution of a single report

to single or multiple destinations.

16. Destination Rationalization: For some systems, it is possible that multiple copies of a report
will be sent to the same site -- to several different users, for example. In these cases, it is highly
desirable to have the report architecture recognize these situations whenever possible and

distribute the specified report only once.

17. Automatic Printing: The report architecture should provide automatic print capabilities.
Once a report has been distributed for printing (either through a "push” distribution scheduling
mechanism or through a "pull" user request) no further user or operations personnel involvement

should be necessary to print the report at the specified location.

18. Multiple Print Destinations: The report architecture should support distribution of reports
for printing at centralized, remote, or local print sites without user or operations personnel

intervention.

19. Variable Printer Types: Printing on multiple types of printers, including line, impact, and
laser printers, should be supported. This should not require user intervention -- that is, the user
should not have to specify the type of target printer. Ideally, the report architecture would default
this information from the user's profile or the default printer defined in the local operating
system. This criterion requires that the report architecture support several print mechanisms,
such as postscript drivers and host/mainframe protocols (for example, Advanced Function
Printing [AFP)).

20. Variable Printer Destinations: The report architecture should default the destination printer

for a specific report (from the user's profile or operating system parameters). Additionally, the

234

10

15

20

25

WO 01/16727 PCT/US00/24189

architecture should allow the user to change the printer specified. Validation of the print

destination also should be included.

21. Special Forms Printing: The report architecture should support distribution of "regular”

reports and special forms reports.

22. Font Support: Some reports may be printed on laser printers and/or may support electronic
forms text (i.e., including the forms text in the report dataset as opposed to printing the report

dataset on a pre-printed form). The architecture should allow multiple fonts to be specified.

23. Report Archival: The report architecture should provide and/or facilitate archival or
disposition of report datasets. Ideally, the architecture would permit definition of retention

periods and disposition requirements.

24. Report Download: The report architecture should allow distribution of the information
contained in a report dataset to a user's intelligent workstation. The information should be in a
form that can be imported to a local word processing software, decision support software

package, or other appropriate application.

25. Application Transparency: It is desirable for the report architecture to appear to the users
as if it were part of the overall application. This does not necessarily mean that the architecture
must integrate seamlessly with the application; a message interface between the systems might

be acceptable.

26. Selective Printing: It would be desirable for the report architecture to provide users with the
ability to print only selected pages or sections of the report. This should reduce paper usage,

while still allowing users to obtain a hard copy of the information as required.

27. Print Job Restart: It would be desirable if the report architecture allowed a print job to be
restarted from the point of failure rather than having to reprint the entire report. This of particular

concern for very large reports.

235

10-

15

20

WO 01/16727 PCT/US00/24189

Technical Criteria

The following is a list of technical criteria that should be considered during the planning for a

report architecture:

1. Platform Compatibility: The report architecture must be compatible with the platform
architecture. It also should be compatible with local area networks and standalone workstation

technology specified in the platform architecture.

2. Wide Area Network Compatibility: Most systems will include support for WAN

communication, so the report architecture should be compatible with this environment.

3. Technology Standards: The report architecture should be compliant with existing formal and
de facto standards (for example, SQL Database Language, COBOL Programming Language, C
Programming Language).

4. External User Directory: The report architecture should make use of an external user

directory of preferences and locations.

5. Data Compression in Report Repository: To reduce the storage requirements for the report
repository, it is also desirable for the report architecture to support data compression in the

repository.

6. Code Page Compatibility: Code page compatibility must be considered when translating
characters to ASCIL

Workflow Services (2890)

Workflow services control and coordinate the tasks that must be completed in order to
process a business event. For example, at XYZ Savings and Loan, in order to receive a
promotion, you must complete an essay explaining why you should be promoted. This

essay and your personnel file must be routed to numerous individuals who must review

236

10

15

20

25

WO 01/16727 PCT/US00/24189

the material and approve your promotion. Workflow services coordinate the collection

and routing of your essay and your personnel file.

Workflow enables tasks within a business process to be passed among the appropriate
participants, in the correct sequence, and facilitates their completion within set times and
budgets. Task definition includes the actions required as well as work folders containing forms,
documents, images and transactions. It uses business process rules, routing information, role
definitions and queues. Workflow functionality is crucial for the customer service and
engineering applications to automate the business value chains, and monitor and control the

sequence of work electronically.

The business processes can be of a repetitive nature, eg automatically routing and controlling the
review of a work plan through the approval stages. These are called production workflows.
Conversely it can be an ad hoc process, eg generating and delivering a work order for a special
meter reading to a meter reader who is available to perform the task. In production workflows
the processes are predefined, whereas ad hoc workflows are created only for a specific
nonrecurrent situation. Often it is difficult to determine how much ad hoc functionality that
needs to be provided. An overly strict production workflow may not support necessary special

cases that must be handled in an ad hoc fasion.

Workflow provides a mechanism to define, monitor and control the sequence of work
electronically. These services are typically provided by the server as they often coordinate

activities between multiple users on multiple computers.

The following are some of the architectural and integration issues that must be addressed:

Process integration

The workflow system must achieve a seamless integration of multiple processes.
The workflow system must control the business process, eg it should be able to
open a word processor with the relevant data coming from a previous business

process;

Infrastructure integration from PC to mainframe

237

WO 01/16727 PCT/US00/24189

The ability to interface with the host-based hardware, system software, and
database management systems is critical. This is essential because the workflow
system is located between the client-based and host-based processes, ie it can

initiate client-based as well as host-based applications;

LAN and WAN connectivity

Connectivity must include all sites for the supported processes, enabling a large
number and variety of users to use the workflow system, and thus to execute the

business process;

Integration of peripherals

The workflow system should support many different types of printers, modems,
fax machines, scanners, and pagers. This is especially important because of the
diversity of the users that will be involved, from field crew to managers, each

with their own needs and preferences; and

Integration with workflow-participating applications

The key to the efficiency of the workflow system is its capability to integrate with

office automation, imaging, electronic mail, and legacy applications.

Workflow can be further divided into the following components:

Role management

Role management ie provides for the assignment of tasks to roles which can then

be mapped to individuals.

A role defines responsibilities which are required in completing a business
process. A business worker must be able to route documents and folders to a role,
independent of the specific person, or process filling that role. For example, a
request is routed to a supervisor role or to Purchasing, rather than to "Mary" or

"Tom." If objects are routed to Mary and Mary leaves the company or is
238

10

15

20

WO 01/16727 PCT/US00/24189

reassigned, a new recipient under a new condition would have to be added to an
old event. Roles are also important when a number of different people have the
authority to do the same work, such as claims adjusters; just assign the request to
the next available person. In addition, a process or agent can assume a role; it
doesn't need to be a person. Role Management Services provide this additional

level of directory indirection.

Route management

Route management enables the routing of tasks to the next role, which can be

done in the following ways:

Serial - the tasks are sequentially performed;

Parallel - the work is divided among different players;

Conditional - routing is based upon certain conditions; and

Ad hoc - work which is not part of a predefined process.

Workflow routing services route "work" to the appropriate workflow queues.

When an application completes processing a task, it uses these services to route

- the work-in-progress to the next required task or tasks and, in some cases, notify

interested parties of the resulting work queue changes.

The automatic movement of information and control from one workflow step to
another requires work profiles that describe the task relationships for completing
various business processes. The concept of Integrated Performance Support can
be exhibited by providing user access to these work profiles. Such access can be
solely informational - to allow the user to understand the relationship between
tasks, or identify which tasks need to be completed for a particular work flow - or

navigational - to allow the user to move between tasks.

239

WO 01/16727 PCT/US00/24189

Route Management Services also support the routing and delivery of necessary
information (e.g., documents, data, forms, applications, etc.) to the next step in

the work flow as needed.

Rule Management

A business process workflow is typically composed of many different roles and
routes. Decisions must be made as to what to route to which role, and when.
Rule Management Services support the routing of workflow activities by
providing the intelligence necessary to determine which routes are appropriate
given the state of a given process and knowledge of the organization's workflow
processing rules. Rule Management Services are typically implemented through
easily maintainable tables or rule bases which define the possible flows for a

business event.

Queue Management

These services provide access to the workflow queues which are used to schedule
work. In order to perform workload analysis or to create "to do lists" for users, an
application may query these queues based on various criteria (a business event,
status, assigned user, etc.). In addition, manipulation services are provided to

allow queue entries to be modified.

Workflow services allow users and management to monitor and access workflow

queue information and to invoke applications directly.

Is there a need for reporting and management facilities?

Typical workflow application requirements are better general management control and better
management of change. Proactive system action, audit trails and system administration features
like work queue reporting are important administration tools. Some of the areas for monitoring

for improvement are employee productivity, process performance, and forecasting/scheduling.

240

10

15

20

WO 01/16727 PCT/US00/24189

Where any form of customer service is involved, features like status reports on individual cases
can sharpen customer response times while performance monitoring of groups and individuals
can help quality improvement and efficiency exercises. Note that reports and reporting does not
necessarily mean paper reports that are distributed in a traditional manner, it can mean electronic

messages or even triggers based on specific events.

Are cooperative applications present?

Workflow management is frequently required in cooperative applications because the users are
generally professionals, the flow of work in the organization is frequently highly variable, the
application units of work (legal case, sales order) are processed for long periods of elapsed time,
and work often moves from one processing site to another. As data and application logic are

split, better control is needed to track processing/data status across location.

Will there be business process re-engineering?

Workflow is a logical complement to BPR and the trend is moving toward using workflow

software to re-engineer new business processes on a workgroup or project basis.

Is the business process well defined?

If rules or conditions can be identified which define the business process, with few exception
conditions, workflow tools can then automate areas such as information routing, task processing,

and work-in-process reporting.

Are fixed delays or deadlines involved?

241

10

15

20

WO 01/16727 PCT/US00/24189

Workflow has been used to regulate delays and deadlines such as those associated with
government regulations, contractual obligations, accounting periods, customer service, and sales

lead follow-up. Typical workflow goals are shorter time to market and quicker response times.

Are multiple people involved in the business process?

Workflow co-ordinates cross-functional, cross- departmental work activities and promotes

accountability. It also enables dynamic redistribution and reprioritization of work.

Is there a need for work scheduling?

Workflow management can be extended to automate work scheduling. A system may be able to
do as good a job, or better, in scheduling a users work. This might be due to a very large amount
of work to be assigned to a large pool, a complex method of assigning priorities, an extremely
dynamic environment, or some other reason. Another advantage to work scheduling is that the
system can initiate some needed activity automatically for the user in anticipation of the next

task.

Do integration issues exist?

It is important to determine how well the workflow system integrates with host-based hardware,
system software, database management systems, and communication networks. Examples of
items to consider include E-mail, database, GUI tool, PC applications, other office systems, and

business applications.

How scaleable is the product?

242

10

15

20

25

WO 01/16727 PCT/US00/24189

Number of workers the product could reliably support in a production environment. Two major
product factors characterize scalability: (1) Platform alternatives (hardware and operating
system); and (2) Message-based architecture (relying on specific mail systems for much of the

functionality) versus Database-based.

What is the nature of the workflow?

How an organization approaches the management of its workflow will determine which
workflow management tools are appropriate to the organization. In general, there are three types
of workflow, production, collaborative, and ad hoc. A production environment involves high
transaction rates and thousands of documents in which the rules for a certain document can be
defined for most of the time. Examples include accounts payable, insurance claims processing,
and loan processing. A collaborative environment involves multiple departments viewing a
single document with typically less number of documents than in the production environment.
One example is a sales order. Ad hoc workflows arise from the specific temporary needs of a

project team whose members become active and inactive depending on their function within the

group.

What is the relationship between the workflow and imaging components?

It may be important to determine whether or not the products work routing function is integrated

and inseparable from document storage and retrieval functions.

What are the necessary functions and features?

Issues to consider include the following: (1) samples and assists that are available to the
developer; (2) existence of a scripting or programming language; (3) granularity of the security,

or in other words, at what levels can security be added; (4) freedom of choosing productivity

243

10

15

20

WO 01/16727 PCT/US00/24189

applications; (5) existence of aggregate functions which allow for analysis of the workflow

efficiency; (6) existence/need for Business Processing Re-engineering tools.

How stable is the vendor?

One should consider the leadership and size characteristics of the products vendor compared to

the workflow software marketplace. Another consideration is whether the vendor is a member of

Workflow Management Coalition. This coaltion is beginning to have a bigger impact on the

direction of vendors workflow management products.

How mature is the product?

One should consider the age, release, and installed base of the product.

How flexible is the product?

A product should be able to support changing workflows at various levels of detail.

BUSINESS LOGIC 1022, 1024

The execution architecture services are all generalized services designéd to support the
applications Business Logic. How Business Logic is to be organized is not within the scope of
the execution architecture and must be determined based upon the characteristics of the
application system to be developed. This section is intended to serve as a reminder of the
importance of consciously designing a structure for Business Logic which helps to isolate the
impacts of change, and to point out that the underlying Netcentric architecture is particularly
well suited for enabling the packaging of Business Logic as components.

244

10

15

20

25

WO 01/16727 PCT/US00/24189

Business Logic is the core of any application, providing the expression of business rules and
procedures (e.g., the steps and rules that govern how a sales order is fulfilled). As such, the
Business Logic includes the control structure that specifies the flow for processing business
events and user requests. There are many ways in which to organize Business Logic, including:
rules-based, object-oriented, components, structured programming, etc. however each of these
techniques include, although perhaps not by name, the concepts of: Interface, Application Logic,
and Data Abstraction. Figure 33 depicts the various components of the Business Logic portion

of the Netcentric Architecture Framework.

Interface Logic (3302)

Interface logic interprets and maps the actions of users into business logic processing activities.
With the assistance of Presentation Services, Interface logic provides the linkage that allows

users to control the flow of processing within the application.

Application Logic (b2504)

Application Logic is the expression of business rules and procedures (e.g., the steps and rules
that govern how a sales order is fulfilled). As such, the Application Logic includes the control
structure that specifies the flow for processing for business events and user requests. The
isolation of control logic facilitates change and adaptability of the application to changing

business processing flows.

Data Abstraction (b2506)

Information Access Services isolate the Business Logic from the technical specifics of how
information is stored (e.g., location transparency, RDBMS syntax, etc.). Data Abstraction
provides the application with a more logical view of information, further insulating the

application from physical information storage considerations.
245

10

15

20

25

30

WO 01/16727 PCT/US00/24189

The developers of business logic should be shielded from the details and complexity of other
architecture services (e.g., information services, component services), and other business logic

for that matter.

It is important to decide whether the business logic will be separate from the presentation logic
and the database access logic. Today separation of business logic into its own tier is often done
using an application server. In this type of an environment, although some business rules such as
field validation might still be tightly coupled with the presentation logic, the majority of business
logic is separate, usually residing on the server. It is also important to decide whether the

business logic should be packaged as components in order to maximize software re-use and to

streamline software distribution.

Another factor to consider is how the business logic is distributed between the client and the
server(s) - where the business logic is stored and where the business logic is located when the
application is being executed. There are many ways to distribute business logic: (1) business
logic can be stored on the server(s) and executed on the server(s); (2) business logic can be
stored on the server(s) and executed on the client; (3) business logic can be stored and executed
on the client; (4) some business logic can be stored and executed on the server(s) and some

business logic can be stored and executed on the client; etc.

Having the business logic stored on the server enables developers to centrally maintain
application code; thereby eliminating the need to distribute software to client machines when
changes to the business logic occur. If all the business logic executes on the server, then the
application on the client will make requests to the server whenever it needs to execute a business
function. This could increase network traffic, which may degrade application performance. On
the other hand, having the business logic execute on the client, may require longer load times
when the application is initially launched. However, once the application is loaded, most
processing is done on the client until synchronization with the server is needed. This type of an
architecture might introduce complexities into the application that deal with the sharing of and

reliance on central data across many users.

If the business logic is stored and executed on the client, software distribution options must be
considered. Usually the most expensive option is to have a system administrator or the user
physically install new applications and update existing applications on each client machine.

246

10

15

20

25

WO 01/16727 PCT/US00/24189

Another option is to use a tool that performs automatic software distribution functions. However,
this option usually requires the software distribution tool to be loaded first on each client
machine. Another option is to package the application into ActiveX controls, utilizing the
automatic install/update capabilities available with ActiveX controls - if the application is

launched from a Web browser.

Currently, Internet applications house the majority of the business processing logic on the server,
supporting the thin-client model. However, as technology evolves, this balance is beginning to
shift, allowing business logic code bundled into components to be either downloaded at runtime
or permanently stored on the client machine. Today, client side business logic s supported
through the use of Java applets, JavaBeans, Plug-ins and JavaScript from Sun/Netscape and
ActiveX controls and VBScript from Microsoft.

The developers of business logic should be shielded from the details and complexity of other
architecture services (e.g., information services, component services), and other business logic

for that matter.

It is important to decide whether the business logic will be separate from the presentation logic
and the database access logic. Today separation of business logic into its own tier is often done
using an application server. In this type of an environment, although some business rules such as
field validation might still be tightly coupled with the presentation logic, the majority of business
logic is separate, usually residing on the server. It is also important to decide whether the
business logic should be packaged as components in order to maximize software re-use and to

streamline software distribution.

Another factor to consider is how the business logic is distributed between the client and the
server(s) - where the business logic is stored and where the business logic is located when the
application is being executed. There are many ways to distribute business logic: (1) business
logic can be stored on the server(s) and executed on the server(s); (2) business logic can be
stored on the server(s) and executed on the client; (3) business logic can be stored and executed
on the client; (4) some business logic can be stored and executed on the server(s) and some

business logic can be stored and executed on the client; etc.

247

10

15

20

25

WO 01/16727 PCT/US00/24189

Having the business logic stored on the server enables developers to centrally maintain
application code; thereby eliminating the need to distribute software to client machines when
changes to the business logic occur. If all the business logic executes on the server, then the
application on the client will make requests to the server whenever it needs to execute a business
function. This could increase network traffic, which may degrade application performance. On
the other hand, having the business logic execute on the client, may require longer load times
when the application is initially launched. However, once the application is loaded, most
processing is done on the client until synchronization with the server is needed. This type of an
architecture might introduce complexities into the application that deal with the sharing of and

reliance on central data across many users.

If the business logic is stored and executed on the client, software distribution options must be
considered. Usually the most expensive option is to have a system administrator or the user
physically install new applications and update existing applications on each client machine.
Another option is to use a tool that performs automatic software distribution functions. However,
this option usually requires the software distribution tool to be loaded first on each client
machine. Another option is to package the application into ActiveX controls, utilizing the
automatic install/update capabilities available with ActiveX controls - if the application is

launched from a Web browser.

Currently, Internet applications house the majority of the business processing logic on the server,
supporting the thin-client model. However, as technology evolves, this balance is beginning to
shift, allowing business logic code bundled into components to be either downloaded at runtime
or permanently stored on the client machine. Today, client side business logic is supported
through the use of Java applets, JavaBeans, Plug-ins and JavaScript from Sun/Netscape and
ActiveX controls and VBScript from Microsoft.

PATTERNS

248

10

15

20

25

30

WO 01/16727 PCT/US00/24189

OVERVIEW OF PATTERNS

Introducing Patterns

The goal of patterns within the software community is to create a body of literature to help
software developers resolve common difficult problems encountered throughout all of software
engineering and development. Patterns help create a shared language for communicating insight
and experience about these problems and their solutions. Formally codifying these solutions and
their relationships lets us successfully capture the body of knowledge which comprises one’s
understanding of good architectures that meet the needs of their users. Forming a common
pattern language for conveying the structures and mechanisms of architectures allows us to
intelligibly reason about them. The primary focus is not so much on technology as it is on

creating a culture to document and support sound engineering architecture and design.

What is a Pattern?

A pattern is a named nugget of insight that conveys the essence of a proven solution to a
recurring problem within a certain context amidst competing concerns. Patterns are a more

formal way to document codified knowledge, or rules-of-thumb.

Patterns represent the codified work and thinking of our object technology experts. While
experts generally rely on mental recall or rules-of-thumb to apply informal patterns as
opportunities are presented, the formalization of the patterns approach allows uniform

documentation and transfer of expert knowledge.

Patterns are not unique to object technology or even software development, having been
invented by Christopher Alexander, a building architect. However, they have not been applied to
other information technology development techniques. Thus, they are an exclusive feature of
object technology. Furthermore, patterns are becoming widely accepted by the worldwide

object community as an important element in successfully rolling out the technology, and

enabling the maturation of software development as an engineering process.

249

WO 01/16727 PCT/US00/24189

Patterns are usually concerned with some kind of architecture or organization of constituent parts

to produce a greater whole. Richard Gabriel; author of Patterns of Software: Tales From the

Software Community, provides a clear and concise definition of the term pattern:

10

15

20

25

30

Each pattern is a three-part rule, which expresses a relation between a certain context, a

certain system of forces which occurs repeatedly in that context, and a certain software

* configuration which allows these forces to resolve themselves.

As-an element in the world; each pattern is a relationship between a certain context, a
certain system of forces which occurs repeatedly in that context, and a certain spatial

configuration which allows these forces to resolve themselves.

As an element of language, a pattern is an instruction, which shows how this spatial

configuration can be used, over and over again, to resolve the given system of forces,

wherever the context makes it relevant.

The pattern is, in short, at the same time a thing, which happens in the world, and the rule
which tells us how to create that thing, and when one must create it. It is both a process
and a thing; both a description of a thing which is alive, and a description of the process

which may generate that thing.

In Software Patterns, Jim Coplien writes, a good pattern may do the following:

It solves a problem: Patterns capture solutions, not just abstract principles or strategies.

It is a proven concept: Patterns capture solutions with-a track record, not theories or

- speculation.

The solution isn't obvious: Many problem-solving techniques (such as software design
paradigms or methods) try to derive solutions from first principles. The best patterns
generate a solution to a problem indirectly -- a necessary approach for the most difficult

problems of design.

250

10

15

20

25

- 30

WO 01/16727 PCT/US00/24189

It describes a relationship: Patterns don't just describe modules, but describe deeper

system structures and mechanisms.

The pattern has a significant human component All software serves human

comfort or quality of life; the best patterns explicitly appeal to aesthetics and utility.

COMPONENT-BASED DEVELOPMENT

Introduction to Component Based Developfnent

Component systems model - how the business works

Component-orientation is a sfrategic technology that may significantly impact a user’s practice
and clients. Cdrnponent technologies are a natural evolution from object-oriented systems
providing a more mature way of packaging reusable software units. Object-oriented systems |
more closely support business integration framework for solution delivery by shifting design
focus away from an underlying technology toward a company’s business conduct and functional
behaviors. Business entities are represented as objects, which package data and functional
behavior. This is in distinct contrast to traditional development approaches that maintain a

ubiquitous split between functional behaviors and data.

Object-orientation has accelerated into the take-up curve. All of the major commercial

component models are object-oriented. In addition, all of the major vendors have adopted the
“Unified Modeling Language” (UML) as a standard notation for describing object models. A
tremendous reservoir of knowledge capital, practice aids and starter kits related to object and

component technology can be found on the Knowledge Exchange.

More and more, users are asking for assistance to déploy Netcentric eCommerce applications
based on components. These applications are frequently based on object-oriented languages like

Java, Visual Basic and C++.

Objects are an easy metaphor to understand and manage. There are still substantial risks
involved, particularly because component- and object-orientation has a pervasive impact on areas

as broad as analysis and design, planning, and development tools.

251

10

15

20

25

30

WO 01/16727 PCT/US00/24189

Component-Based Overview
Component technology impacts most aspects of development

Component and object technology impacts most aspects of software development and
management. Component technology is a new technology and a driving influence in the
evolution of object-oriented (OO) methodologies. The Management Considerations section of
the Introduction to Component-Based Development uses the Business Integration (BI) Model to

discuss the impact of OO, including:

Strategy and planning with a long-term view towards Building reusable, enterprise

software assets.

Technology and architecture approaches for building cohesive, loosely coupled systems

that provide long-term flexibility.

Processes that shift analysis/design techniques from functional, procedural
decomposition to business process modeling. These techniques are then used to

decompose the system into domain objects and processes.

People and organization strategies that emphasize greater specialization of skills within

structures that support inter-team collaboration.
Balancing tradeoffs is key to applying-.components for mission-critical systems

Tradeoffs are an important theme. Experience with large, mission-critical systems has shown
that the most complex issues require strategic tradeoffs between quality, cost, and time. These
tradeoffs usually involve interdependent considerations between strategy, technology, process,
and people. See Figure 34 which illustrates a relationship between major themes. For example,
how should an architecture be tailored to effectively support a specific methodology, for a given

organization’s skill set? Competing tensions also cloud decisions at a more detailed level. For

252

10

15

20

25

30

WO 01/16727 PCT/US00/24189

example, how should an architecture be customized to better support performance, at the

potential cost of increased coupling between components?

Many of these considerations have been addressed over the last few years. Most published
literature continues to focus on narrow technology issues, such as programming techniques or
generic methodologies, such as analysis and design approaches or notation. Still, a growing
number of publications and vendor strategies attack the enterprise needs within on-line netcentric
execution models. Real-world, client solutions involve making pragmatic decisions, in which
compromise occurs at the intersection of the four major OO themes. Experience with many
component client projects in diverse industries uniquely positions a user to effectively address

these complexities.

Management Considerations Overview

The Management Considerations section discusses the key benefits, risks, and issues introduced

by a component engagement. Key topics include:
Managing risk in balancing tradeoffs between strategy, people, process, and technology

Considering issues related to configuration management, testing, and performance of

object systems
Addressing the component development learning curve

Differences between development architecture considerations leveraging the advantages

of a component industry.

The Management Considerations section also address issues not unique to Component

technology, including:

Estimating, planning, and managing iteration

253

10

15

20

25

30

WO 01/16727 PCT/US00/24189

Organizing and managing to achieve reuse of both architecture and business logic

Netcentric Patterns Overview

Netcentric Patterns focus on application frameworks

Netcentric Patterns focus on how to design and leverage application frameworks, which are
pieces of reusable application architecture that provide a highly configurable, flexible and
maintainable system. They are aligned with SAF service layers. Alignment with SAF makes the

patterns easier to grasp the context for which they are solving problems.

There was no mandate to express implementation within any given particular OO language. Java
and Visual Basic have increased in popularity over the last few years and C++ continues to be a
solid foundation on which to build many types applications. In addition, some implementations
chose the design syntax of UML. One should see the value of the pattern regardless of the
implementation personality. Nowhere has this been more strongly demonstrated than in the
Eagle Starter Kits. Here, the Eagle Architecture Specification has been documented in patterns
and implemented in Visual Basic, Java, C++ and a host of execution environments within these

language offerings. The power is in the reusable design patterns.

For a high-level description of the context for the patterns within a service layer of SAF, click
the title of the section. Please refer to the SAF for more detailed descriptions of the service
layers. From the Frameworks Main Page, under Framework Extensions, the “Component
Technology Extension” describes, in the context of the Netcentric Architecture framework, the
additional, specialized, architecture services that are required when building a system using

component technologies.

Approach

254

10

15

20

25

30

WO 01/16727 PCT/US00/24189

Over the past years, component-based development has become an important, but often-
misunderstood concept in the IT world. Components in themselves don’t guarantee successful
business applications, but coupled with a proven methodology and continuous technological
advancements, they make it possible to realize a number of important benefits such as flexibility,

adaptability, maintainability, reusability, integration readiness, interoperability, and scalability.

Components have been around for a long time. The wheels on an ancient Roman chariot were
certainly components. When the local chariot maker invented a new wheel (one that promised
greater speeds and improved reliability on a wider variety of terrain), chariot owners would
replace their wom-out, inefficient, and out-dated wheels with the new ones, but only if the new
ones offered, at a minimum, the same function (i.e., rolling) through the same interface (i.e., the

connection between the wheel and the chariot).

Today components are used to build everything from cars to computers. In electronics, for
example, they have led to the proliferation of product features, disposability, miniaturization,
product selection, price reduction, and standard interfaces—all good for the consumer. This
example also draws attention to some of the challenges that accompany components: setting
standards, determining the right components, the need to change standard interfaces based on

new requirements, and the legal and commercial structure for selling components.

Throughout the industry the word “component” is used broadly and often loosely. Components
come in a wide variety of shapes and sizes. For example: JavaBeans, ActiveX controls, and
COM objects. And more generically: application, architecture, development, engineering, Web,

server, and business components.

Many industry experts have attempted to define “component.” Unfortunately, many of these
definitions are too abstract, too academic, or too specialized to be useful. Yet below the surface

of these definitions is some real business value for organizations.

Experience has shown that it’s quite common for people to view components from different
perspectives, as illustrated in Figure 35. Some of them—typically designers—take a logical

perspective. They view components as a means for modeling real-world concepts in the business

255

10

15

20

25

30

WO 01/16727 PCT/US00/24189

domain. These are Business Components. Others—typically developers—take a physical
perspective. They view components as independent pieces of software, or application building
blocks, that implement those real-world business concepts. These are Partitioned Business
Components. Developers also emphasize that Partitioned Business Components can be built
from other independent pieces of software that provide functionality that is generally useful

across a wide range of applications. These are Engineering Components.

To use an analogy, the designer of a PC workstation would initially think in terms of logical
components such as Disk Storage, Memory, Display, etc. These are analogous to Business
Components. At some point in the design process, however, this thinking must become more
precise. For example, Disk Storage might become a Hard Disk Drive and Disk Controller Card.
These are analogous to Partitioned Business Components. And finally, the designer might use
generic parts in the design of the Disk Controller Card, such as Memory Chips for cache, Bus

Adapters, etc. These are analogous to Engineering Components.

Establishing one definition to satisfy all of these perspectives is certainly not required to be
successful with components. What’s more important is to recognize the different perspectives
and to understand when it’s appropriate to talk about a particular type of component. Hence,

multiple definitions, one for each type of component:

Business Components represent real-world concepts in the business domain. They encapsulate
everything about those concepts including name, purpose, knowledge, behavior, and all other
intelligence. Examples include: Customer, Product, Order, Inventory, Pricing, Credit Check,
Billing, and Fraud Analysis. One might think of a Business Component as a depiction or portrait
of a particular business concept, and as a whole, the Business Component Model is a depiction
or portrait of the entire business. It’s also important to note that although this begins the process
of defining the application architecture for a set of desired business capabilities, the applicability

of the Business Component Model extends beyond application building.

Whereas Business Components model real-world concepts in the business domain, Partitioned
Business Components implement those concepts in a particular environment. They are the
physical building blocks used in the assembly of applications. As independent pieces of

software, they encapsulate business data and operations, and they fulfill distinct business

256

10

15

20

25

30

WO 01/16727 PCT/US00/24189

services through well-defined interfaces. Business Components are transformed into Partitioned
Business Components based on the realities of the technical environment: distribution
requirements, legacy integration, performance constraints, existing components, and more. For
example, a project team might design an Order Business Component to represent customer
demand for one or more products, but when it’s time to implement this concept in a particular
client/server environment, it may be necessary to partition the Order Business Component into
the Order Entry component on the client and the Order Management component on the server.

These are Partitioned Business Components.

Engineering Components are independent pieces of software that provide functionality that is -
generally useful across a range of applications. They come in all shapes and sizes, and they are
typically packaged as black box capabilities with well-defined interfaces. They are the physical
building blocks used in the assembly of Partitioned Business Components. Examples include: a
workflow engine, a JavaBean that encapsulates a reusable concept like address or monetary unit,
a complex widget that allows users to edit a list of order lines, a group of objects responsible for
persistence, a JavaBean that sorts a collection of objects, and a simple list box coded as an

ActiveX control. -

Components are useful throughout the development process. As a design artifact, early in the
process, Business Components provide an underlying logical framework for ensuring flexibility,
adaptability, maintainability, and reusability. They serve to break down large, complex problems
into smaller, coherent elements. They also model the business in terms of the real-world
concepts that make up the domain (e.g., entities, business processes, roles, etc.). Thus they
provide the application with conceptual integrity. That is, the logical Business Components
serve as the direct link between the real-world business. domain and the physical application. An
important goal is to build an application that is closely aligned with the business domain. Later
in the process, Partitioned Business Components and Engineering Components provide a means
for implementing, packaging, and deploying the application. They also open the door to

improved integration, interoperability, and scalability.

Figure 36 shows a relationship between business components 3600 and partitioned business
components 3602. Business Components are an integral part of the previously discussed

Framework Designs. Business Components represent real-world concepts in the business

257

10

15

20

25

30

WO 01/16727 PCT/US00/24189

domain. They encapsulate everything about those concepts including name, purpose,

knowledge, behavior, and all other intelligence.

In the Business Architecture stage 3604, a project team begins to define the application
architecture for an organization’s business capabilities using Business Components. Business
Components model real-world concepts in the business domain (e.g., customers, products,
orders, inventory, pricing, credit check, billing, and fraud analysis). This is not the same as data
modeling because Business Components encapsulate both information and behavior. At this
point in the process, an inventory of Business Components is sufficient, along with a definition,

list of entities, and list of responsibilities for each Business Component.

In Capability Analysis 3606and the first part of Capability Release Design 3608, the project team
designs Business Components in more detail, making sure they satisfy the application
requirements. The tearh builds upon its previous work by providing a formal definition for each
Business Component, including the services being offered. Another name for these services is
“Business Component Interfaces.” The team also models the interactions between Business

Components.

Throughout the remainder of Capability Release Design and into Capability Release Build and
Test 3610, Business Components are transformed into Partitioned Business Components based
on the realities of the technical environment. These constraints include distribution
requirements, legacy integration, performance constraints, existing components, and more.
Furthermore, to ensure the conceptual integrity of the Business Component model, a given
Partitioned Business Component should descend from one and only one Business Component.
In other words, it should never break the encapsulation already defined at the Business
Component level. Also at this time, the project team designs the internal workings of each
Partitioned Business Component. This could mean the Engineering Components that make up
the Partitioned Business Component, the “wrapper” for a legacy or packaged system, and other

code.

In Capability Release Build and Test, Partitioned Business Components are built and tested. The
build process varies depending upon the technology chosen to build the internal workings of

each Partitioned Business Component. Among the many tests that are performed during this

258

10

15

20

25

30

WO 01/16727 PCT/US00/24189

stage, the component, assembly, and performance tests are impacted the most by this style of
development. A component test addresses a Partitioned Business Component as a single unit by
testing its interfaces and its internal workings, while an assembly test addresses the interactions
between Partitioned Business Components by testing broader scenarios. The performance test is
impacted primarily by the techniques one would use to resolve the various performance issues.
For example, it’s common to run multiple copies of a Partitioned Business Component across

multiple servers to handle a greater transaction volume.

In Deployment 3612, the Partitioned Business Components are packaged and deployed as part of
the application into the production environment. The application parameters and the manner in
which the Partitioned Business Components are distributed are tweaked based on how well the

application performs.

Well designed Business Components are anthropomorphic. That is, they take on characteristics
and abilities as if they were alive. This means that Business Components should reflect directly
the characteristics and abilities (i.e., the information and behavior) of the business concepts they
represent. Therefore, only by examining the various types of business concepts will one

discover an acceptable way to classify Business Components.

Business concepts come in a wide variety. For example, a product represents something of value
that is up for sale, while a credit check represents the work that needs to be done to determine if
a customer’s credit is good. The former is centered around an entity—the product—while the

latter is centered around a process—credit check.

This line of thinking leads to two types of Business Components: entity-centric and process-
centric. Unfortunately, what commonly results from this paradigm is an argument over whether
or not a particular Business Component is entity-centric or process-centric. In reality, Business
Components are always a blend of both information and behavior, although one or the other
tends to carry more influence. An appropriate mental model is a spectrum of Business

Components.

Business Components on the entity-centric side of the spectrum tend to represent significant

entities in the business domain. Not only do they encapsulate information, but also the behaviors

259

10

15

20

25

30

WO 01/16727 PCT/US00/24189

and rules that are associated with those entities. Examples include: Customer, Product, Order,
and Inventory. A Customer Business Component would encapsulate everything an organization
needs to know about its customers, including customer information (e.g., name, address, and

telephone number), how to add new customers, a customer’s buying habits (although this might

belong in a Customer Account component), and rules for determining if a customer is preferred.

Business Components on the process-centric side of the spectrum tend to represent significant
business processes or some other kind of work that needs to be done. Not only do they
encapsulate behaviors and rules, but also the information that is associated with those processes.
Examples include: Pricing, Credit Check, Billing, and Fraud Analysis. A Pricing Business
Component would encapsulate everything an organization needs to know about how to calculate
the price of a product, including the product’s base price (although this might belong in a

Product component), discounts and rules for when they apply, and the calculation itself.

One might argue that the Pricing component is more entity-centric than process-centric. After
all, it’s centered around the concept of price, which is an entity. In reality, though, it depends on
the business requirements, but again, whether or not a given Business Component is entity-
centric or process-centric is not important yet. What is important is how well the Business
Component represents its corresponding real-world business concept. The fact that most
business concepts are a blend of information and behavior means that most Business
Components should also be a blend of information and behavior. Otherwise applications would

be much like they are today with a distinct separation of data and process.

Another way to think about the process-centric side of the spectrum is by asking, “What role
performs the process?” For example, it’s the picker-packer who picks inventory and packs it
into a shipment. This might lead to the Picker-packer component. Another example is a
Shopping Agent component that knows someone’s buying preferences, shops for the best deals,

and either reports back to the user or makes the purchase.

A pattern emerges when one examines the way these Business Components interact with each
other. Process-centric Business Components are “in control,” while entity-centric Business
Components do what they’re told. To be more explicit, a process-centric Business Component

controls the flow of a business process by requesting services in a specific sequence according to

260

10

15

20

25

30

WO 01/16727 PCT/US00/24189

specific business rules (i.e., conditional statements). The services being requested are generally
offered by entity-centric Business Components, but not always. Sometimes process-centric

Business Components trigger other process-centric Business Components.

Figure 37 shows how a Billing Business Component 3700 may create an invoice. The control
logic 3702 (i.e., the sequence of steps and business rules) associated with the billing process is
encapsulated within the Billing component itself. The Billing component requests services from
several entity-centric Business Components, but it also triggers Fraud Analysis 3704, a process-
centric Business Component, if a specific business rule is satisfied. Note also that “Step 6” is
performed within the Billing component itself. Perhaps this is where the invoice is created,
reflecting the design team’s decision to encapsulate the invoice within the Billing component.
This is one valid approach. Another is to model a separate entity-centric /nvoice component that
encapsulates the concept of invoice. This would effectively decouple the invoice from the

billing process which might be a good thing depending on the requirements.

It would be logical to conclude that the two types of Business Components translate to two types
of Partitioned Business Components, but a small adjustment is required. Entity-centric Business
Components translate directly to Business Entity Components, but a closer look at the ways in
which a business process can be implemented in an application reveals two possibilities for
process-centric Business Components. A business process can be: 1) automated, like a billing
process, or 2) controlled by a user, like an order entry process. The former results in a Business

Process Component, while the latter results in a User Interface Component.

Figure 38 illustrates the relationship between the spectrum of Business Components 3800 and
the types of Partitioned Business Components 3802. Business Entity Components 3804 and
Business Process Components 3806 are straightforward. The former is the physical
implementation of an entity-centric Business Component (e.g., Customer), while the latter is the
physical implementation of an automated process-centric Business Component (e.g., Billing).

User Interface Components 3808, on the other hand, require further explanation.

As mentioned above, a User Interface Component is the implementation of a business process
that is user controlled, but more explicitly it is a set of functionally related windows that supports

the process(es) performed by one type of user. Examples include: Customer Service Desktop,

261

10

15

20

25

30

WO 01/16727 PCT/US00/24189

Shipping Desktop, and Claim Desktop. These are not to be confused with low-level user
interface controls (e.g., Active X controls), rather User Interface Components are usually built
from low-level user interface controls. The reason for the dashed arrow in the diagram above is
a subtle one. It points to the fact that earlier in the development process User Interface
Components are generally not modeled as process-centric Business Components. Instead, they
typically originate from the workflow, dialog flow, and/or user interface designs. See Figure 39,
which illustrates the flow of workflow, dialog flow, and/or user interface designs 3902, 3904,
3906 to a User Interface Component 3908. This makes complete sense given their direct tie to

user controlled business processes.

Figure 40 is a diagram of the Eagle Application Model which illustrates how the different types
of Partitioned Business Components might interact with each other. Business Entity
Components 4002 and Business Process Components 4004 typically reside on a server, while

User Interface Components 4006 typically reside on a client.

Figure 41 illustrates what makes up a Partitioned Business Component 4100. As long as a
component does what it’s suppose to do, it doesn’t matter what kind of code is used to build the
component’s internal workings. It could be anything from COBOL to Java. This is a key benefit
of encapsulation. Classifying this code is a different matter. Some code 4102 is specific to the -

Partitioned Business Component. Other code is more widely reusable, both functionally and

technically; this is where one finds Engineering Components 4104. Another possibility is to

“wrap” existing code 4106 from legacy and packaged systems. Finally, it’s important to note
that patterns and frameworks are frequently used as starting points for designing and building

this code.

Engineering Components are physical building blocks used in the assembly of Partitioned
Business Components. They are independent pieces of software that provide functionality that is
generally useful across a range of applications, and they are usually packaged as black box
capabilities with well-defined interfaces. Engineering Components can be bought or built, and
they come in a wide variety. Examples include: a workflow engine, a JavaBean that
encapsulates a reusable concept like address or monetary value, a complex user interface control
that allows users to edit a list of order lines, a group of objects responsible for persistence, a

JavaBean that sorts a collection of objects, and a list box coded as an ActiveX control.

262

10

15

20

25

30

WO 01/16727 PCT/US00/24189

A pattern is “an idea that has been useful in one practical context and will probably be useful in
others.” Think of them as blueprints, or designs for proven solutions to known problems.

Having found the right pattern for a given problem, a developer must then apply it. Examples of
patterns include: an analysis pattern for hierarchical relationships between organizations and/or
people, a design pattern for maintaining an audit trail, a design pattern for applying different
levels of security to different user types, and a design pattern for composite relationships

between objects.

A framework is a template for the implementation of a particular function (similar to a shell
program). It usually embodies a known pattern (or group of patterns) in a specific technical
environment. Frameworks are available from a number of third-party vendors, and they are also
developed on projects. Developers are typically expected to customize and extend frameworks
to meet their specific requirements, but this involves a tradeoff. Customizing and extending a
framework may optimize its use, but the resulting framework tends to be less abstract, and
therefore less reusable in other contexts. Examples of frameworks include: a framework for
displaying an object and its properties in Smalltalk, a Java-specific framework for persisting

data, and a messaging and publish/subscribe framework for DCOM.

Figure 42 illustrates the role of patterns and frameworks. More specifically, it introduces the
Eagle Architecture Specification 4200 and the Component Solutions Handbook 4202, both of
which are groups of patterns. Eagle also offers technology-specific starter kits 4204, which

include frameworks for various environments.

The pace of change in today’s business world is increasing faster than ever before. Meanwhile,
advances in information technology have enabled businesses to better understand their
customers, provide greater value, and create new markets. However, as technology becomes
more complex, applications have become more difficult and time-consuming to build and
maintain. Looking forward, applications must be dramatically more responsive to change. They

must be more:

In theory... In practice...
Flexible Making it possible to quickly Making it possible to accommodate a

263

WO 01/16727

Adaptable

Maintainable

Reusable

Integration
Ready

Interoperable

Scalable

satisfy new business requirements
by replacing or modifying certain
components with minimal impact
to others.

Making it easy to deliver an
application to a variety of user
types through a variety of delivery
channels with minimal impact to
the core application.

Making it easy to update an
application by reducing the area of

impact for most changes.

Making it possible to quickly
assemble unique and dynamic
solutions from existing

components.

Making it possible to reuse the
functionality within existing
systems by wrapping them as
components within new
applications.

Making it possible to request

services across platforms.

Making is easy to distribute and
reconfigure components to satisfy

various transaction volumes.

PCT/US00/24189

new product line solely by updating

the Product component.

Making it easy to provide in-home
access to customer account
information by developing only a
new user interface while reusing
existing components.

Making it easy to add a new
customer attribute by isolating the
change to one component—the
Customer component.

Making it possible to assemble an
application at a fraction of the cost
because eight of the twelve
components that are needed already
exist.

Making it possible to absorb newly
acquired divisions by “wrapping”
their systems and “plugging” them

into the enterprise infrastructure.

Making it possible to integrate two
applications built on different
platforms.

Making it easy to accommodate the
holiday crunch by running multiple
copies of the Order component

across multiple servers.

Components will help an IT organization achieve these quality attributes. Through

encapsulation they make it possible to develop applications that are more responsive to change.

264

10

15

20

25

30

WO 01/16727 PCT/US00/24189

One can make this claim with confidence because a component that is well encapsulated (i.e., an
independent, black box component with predictable, well defined interfaces) can be used in any
situation, as long as it’s used for its intended purpose. It knows how to perform its services
without regard to what’s happening outside of its boundaries (e.g., the actions that precede or

follow it).

Another key to embracing change is the predictability and conceptual integrity of the parts that
make up an application. Fred Brooks, author of The Mythical Man-Month, writes, “...conceptual
integrity is zhe most important consideration in system design.” Therefore, components must be
conceptually whole, and they must perform functions that are aligned with their purpose and
within their sphere of knowledge. If they accurately reflect the real world, they are much easier

to develop and maintain. If the real world changes, so must the corresponding component.

Given a design with these characteristics, the opportunity for reuse is significantly enhanced, and
the time it takes to upgrade the system is dramatically reduced. The Gartner Group agrees that
component-based development will be a dominant method of application development in the
years to come. They say that “by 2001, at least 60 percent of all new applications development
will be based on assemblies of componentware, increasing speed to market and the ability to

cope with change (0.7 probability).”

Business Components and Partitioned Business Components represent a major improvement in
design capability—some might argue the first major change in design thinking since structured

design. There are several reasons for this breakthrough:

Business Components model entities and processes at the enterprise level, and they evolve into
Partitioned Business Components that are integrated into applications that operate over a
network. Consequently, they serve as an excellent first step in the development of scalable,
distributed enterprise applications that map closely to the business enterprise itself (i.e., the way

it operates and the information that defines it).

Business Components model the business, and thus they enable applications to more completely
satisfy the business needs. They also provide a business-oriented view of the domain and

consequently a good way to scope the solution space. This results in a good context for making

265

10

15

20

25

30

WO 01/16727 PCT/US00/24189

process and application decisions. Finally, Business Components provide a common vocabulary

for the project team. They educate the team in what’s important to the business.

When modeled correctly, entity-centric Business Components represent the most stable elements
of the business, while process-centric Business Components represent the most volatile.
Encapsulating and separating these elements contributes to the application’s overall

maintainability.

To manage the complexity of a large problem, it must be divided into smaller, coherent parts.
Partitioned Business Components provide an excellent way to divide and conquer in a way that
ties the application to the business domain. They provide the ability to “package software
capabilities into more manageable (and useful) chunks.” By contrast, traditional modules are too
cumbersome to be reusable in multiple contexts. On the other end of the spectrum, objects are

too small to effectively divide and conquer; there are simply too many of them.

Partitioned Business Components provide a greater emphasis on application layering—a well

known, but often neglected concept in application development.

Partitioned Business Components are application building blocks. As an application modeling
tool, they depict how various elements of an application fit together. As an application building

tool, they provide a means for systems delivery.

Proven processes, patterns, and frameworks offer a higher level of reuse. This is one of the key
advantages because it means greater agility. These mechanisms make it possible for hundreds of
developers to do things consistently and to benefit from previously captured, reusable knowledge

capital.

Business Components model the business. It sounds straightforward, but even with experience
it’s a challenge to identify the right components and to design them for flexibility and reuse.
Flexibility and reuse are certainly more achievable with Business Components, but they are not
inherent to Business Components. To accomplish these goals, as the previous examples suggest,
one must understand what’s happening within the enterprise and across the industry. One must

work with business experts who understand the factors that will influence the current and future

266

10

15

.20

25

30

WO 01/16727 PCT/US00/24189

evolution of the business domain. This will improve one’s ability to anticipate the range of
possible change (i.e., to anticipate the future). The Business Component Model will be more

flexible and reusable if it is challenged by scenarios that are likely to take place in the future.

Reuse becomes a reality more quickly if one plans for it. And it endures if one manages it over
time. However, both of these things are difficult to do, especially for large projects and large
enterprises. First of all, it’s easy for communication across one or more projects to break down.
It’s also common for individual projects to pay more attention to their requirements and
deadlines than to project-wide or enterprise-wide reuse. After all, their most important objective
is to deliver value to their customers. Reuse must be engrained into the culture. This could
mean teams responsible for project-wide and enterprise-wide reuse, but no matter how it’s done,

reuse must be one of the most important technology objectives.

Too much focus on low-level (i.e., code) reuse can be a trap. To draw an analogy, take a look at .
the recent history of the auto industry. Some auto makers were focused on inter-changeable
parts and low-level standardization. For example, they decided to use the same body style for all
of their cars. Unfortunately, when the industry began to move away from the boxy body style,
they were not well prepared, nor were they agile enough to react in a timely fashion. They had
invested too much in low-level standardization. Conversely, other auto makers were focused on
quality processes and frameworks (i.e., high-level reuse). As a result, they were able to respond
more quickly to the changing requirements. Engagement experience has shown that the same
thing can happen with components and objects (e.g., too much emphasis on low-level
inheritance). That’s why it’s important to focus appropriately on the high-level reuse enabled by

processes, patterns, and frameworks.

Although Business Components and Partitioned Business Components represent a significant
breakthrough in design capability, the architectural frameworks to support this breakthrough are
still maturing. Standards come to mind first: Will it be COM, JavaBeans, or CORBA? It’s still
not clear. Likewise with languages: Will it be Visual Basic, Java? Tools and repositories offer
another challenge. Clear winners have yet to emerge, and newcomers are constantly popping up
with promising products. Finally, the legal and commercial market for buying and selling
components is not mature. The market for high-level common business objects is just emerging,

while the market for low-level components is still chaotic.

267

10

15

20

25

30

WO 01/16727 PCT/US00/24189

One of the most important challenges is teaching a new application development style. Although
components and objects have been around for a while, they are new to most people.
Furthermore, component-based development requires a change in the way one thinks about
designing and building applications. Engagement experience has shown that it takes a couple of
months to feel comfortable with this paradigm—and longer for those pursuing deeper technical
skills. But this challenge is certainly not impossible to overcome. A combination of training and
mentoring has proven to be the best way to teach these concepts, and the more rigorous approach

that results from this education is well worth the journey.

The following tips and techniques provide an introduction to some of the issues surrounding the

design of Business Components.

What is the right number of Business Components? How big should they be?

The granularity of Business Components is a frequent topic of discussion. A fairly common
misconception is that Business Components are the same as applications, but in fact, applications
are assembled from Business Components (or Partitioned Business Components to be more
accurate). A typical application might have ten to twenty Business Components. On the other
end of the spectrum, Business Components are larger than business objects. In fact, some people

refer to Business Components as large-grained business objects.

So what is the right size for a Business Component?

Business Components should encapsulate concepts that are significant to the business domain.
Of course, this is subjective, and it certainly varies by business domain. In fact, business domain

experts, with help from component modelers, are in the best position to make this judgment.

Bigger Business Components hide more complexity, which in general is a good thing. However,
too much complexity in a component can lead to many of the problems that preceded
component-based development. For example, embedding too much policy information can lead
to a Business Component that is more difficult to maintain and customize. Another advantage is

the fact that the coupling between bigger components tends to be weaker. On the other hand,

268

10

15

20

25

30

WO 01/16727 PCT/US00/24189

bigger components are generally less cohesive and consequently less flexible. For example,
assume that the concepts of warehouse and inventory have been combined into one Business
Component. This could be problematic if a future application needs warehouse information, but

not inventory information.

Smaller Business Component tends to be more flexible. It’s also easier to reuse them in future
applications. Unfortunately, smaller components typically result in a higher degree of coupling.
One will find significantly more interactions between smaller components. This could also lead
to performance problems. If two or three small components send each other a lot of messages, it
might make sense to combine them into one. Smaller components may also be more difficult to

manage, simply because more of them exist.

It’s important to strike a balance, and keep in mind that the ideal size depends on the domain. If
there’s a question in one’s mind, it makes sense to lean toward smaller components. It’s easier

to combine them than to break them up.

What's the best way to identify Business Components?

During the Business Architecture stage, the project team defines its business capabilities. At this
point in the process, one can begin to search the business domain for Business Components.
Then again later, during Capability Release Design, when the project team documents scenarios

and workflows, one can perform a second iteration through the identification process.

The following steps describe one technique for identifying Business Components. Figure 43
illustrates this Business Component Identifying Methodology 4300 including both Planning and
Delivering stages 4302, 4304:

1. Start with entity-centric Business Components. For example, the customer is a
significant entity in most business domains, therefore a Customer component may be
included. A Customer Business Component would encapsulate everything an
organization needs to know about its customers, including customer information (e.g.,
name, address, and telephone number), how to add new customers, a customer’s buying

habits (although this might belong in a Customer Account component), and rules for

269

10

15

20

25

30

WO 01/16727 PCT/US00/24189

determining if a customer is preferred. Entities themselves can be physical or conceptual.
For example, customers and products are physical-—you can touch them. Orders, on the
other hand, are conceptual. An order represents a specific customer’s demand for a
product. You cannot touch that demand.

2. Look for process-centric Business Components next. Generally speaking, a process-
centric Business Component controls the flow of a business process. For example, in the
utility industry, a Billing component would process customer, product, pricing, and usage
information into a bill. Sometimes one will find an entity associated with the process—in
this case, a bill or invoice—but another option is to model this entity as a separate, entity-

centric Business Component, thus decoupling it from the process.
What's the best way to identify the responsibilities of a business component?

Review the business capabilities, business processes, business practices, scenarios, workflows,
and other requirements. Look for behaviors that will be supported by the application. In other
words, what are the business functions that will be performed by the system? Assign them as
responsibilities to the most appropriate component. If components were people and computers
didn’t exist, one might ask, “Who is responsible for this task?” In fact, sometimes it’s helpful to
assign component owners who speak up when they encounter a responsibility that should belong

€

to their components—“Hey, I should be responsible for that!”

This section addresses several frequently asked questions that more broadly apply to the physical
implementation of component- and object-based solutions. The answers are intended to increase
the awareness of the reader. Most of them only scratch the surface of issues that are somewhat

controversial within the component and object community.

What is the role of components in net-centric computing?

Physical components play a critical role in net-centric computing because they can be
distributed, as encapsulated units of executable software, throughout a heterogeneous

environment such as the Interet. They have the ability to make the Web more than a toy for

retrieving and downloading information. Robert Orfali, Dan Harkey, and Jeri Edwards, well-

270

10

15

20

25

30

WO 01/16727 PCT/US00/24189

known experts in the field of component- and object-based development, wrote the following

about distributed objects (same as “distributed components” for the purpose of this discussion):

The next-generation Web—in its Internet, intranet, and extranet incarnations—must be able to
deal with the complex requirements of multi-step business-to-business and consumer-to-business
transactions. To do this, the Web must evolve into a full-blown client/server medium that can
run your line-of-business applications (i.e., a delivery vehicle for business transaction

processing)... To move to the next step, the Web needs distributed objects.

What’s the difference between components and objects?

From a logical perspective, components and objects are the same. They both model concepts
from a particular domain, and they both encapsulate information and behavior. On this level,
good component models and good object models share the same characteristics: high cohesion,
low coupling, reusability, well defined services, and more. One might argue that granularity is a
key difference. After all, for an object-oriented design, components are made up of objects.

This may be true, but in reality both of them come in all sizes, thus making this difference rather

insignificant.

From a physical perspective, components and objects are similar, but different. The key

difference relates to the different ways in which they are implemented. As long as a

.component’s interfaces comply with an accepted standard like COM, JavaBeans, or CORBA, its

internal workings can be implemented using any technology (e.g., Java, Visual Basic, Smalltalk,
C, or even COBOL). The internal workings of an object, on the other hand, can only be
implemented using object technology. For the same reason (i.e., standard interfaces), it is
possible to request a component’s services from any platform. That’s not true of objects, unless
they are wrapped with interfaces that comply with the accepted standards, which would make

them distributed objects (i.e., components) instead.

Robert Orfali, Dan Harkey, and Jeri Edwards also wrote the book The Essential Distributed
Objects Survival Guide (1996). Chapter 2, “From Distributed Objects to Smart Component,” is
an excellent source of information about objects, components, and the differences between them.

They say the following about physical components:

271

10

15

20

25

30

WO 01/16727 PCT/US00/24189

A component is an object that’s not bound to a particular program, computer language, or
implementation... They are the optimal building blocks for creating the next generation of
distributed systems... Components are standalone objects that can plug-and-play across
networks, applications, languages, tools, and operating systems. Distributed objects are, by
definition, components... Unlike traditional objects, components can interoperate across
languages, tools, operating systems, and networks. But components are also object-like in the

sense that they support encapsulation, inheritance, and polymorphism.
What is a component model?

This is a common point of confusion. From a logical perspective, the term “component model”
is frequently used to refer to a Business Component Model in the same way that “object model”

is used to refer to a business object model.

From a physical perspective, a component model (or a component object model) defines a set of
conventions that provides a standard way to develop and use physical components, including
how to define properties, events, behaviors, etc. It also includes the standard structure of a
component’s interfaces, the mechanism by which a component interacts with other components,
patterns for asking a component about its features, a means for browsing active components, and

more. Some of the existing component models are COM, JavaBeans, and CORBA.

Example: A Grocery Store

A grocery store chain is creating an enterprise-wide Business Component model. Currently the
individual stores do not record specific customer information. Consequently, a model based on

today’s requirements would not retain customer information.

However, they are looking into pfeferred customer cards. Furthermore, while analyzing the
industry, the project team reads about a competitor with a pharmacy and video rental service. In
both cases, customer information becomes critical. So the project team creates scenarios
describing how they would use customer information to support these requirements. They create

one Business Component Model that supports both today's and tomorrow's view of the customer.

272

10

15

20

25

30

WO 01/16727 PCT/US00/24189

In the near future, when the chain adopts preferred customer cards, and in the more distant
future, if they decide to add a pharmacy or video rental service, the Business Component design
for their current application will provide a solid foundation for the future requirement of tracking
customer information. If they weren’t using Business Components, they would not have a model
that maps to their business domain, and introducing new requirements would require more

abrupt changes.

Example: Inventory Management

A telecommunications company in the paging business sells and leases pagers and services. One
part of the company is installing an inventory management system for tracking pagers, while
another part of the company is trying to determine how to track the frequencies that are owned
and leased by the company. What does this company mean by inventory? Does it simply mean

knowing what items are in a warehouse?

When the company thinks abstractly about the concept of inventory, they discover that it’s all
about managing anything of value. When they look at what they have in inventory, they
discover that it is countable, reservable, and has a cost associated with it. Inventory does not
require specific knowledge of the use of an item in inventory; that knowledge can be put into
another component, such as I/tem. If inventory does not need to know the specifics about its use,
then it could apply its ability to count, reserve, and value anything it is associated with.
Inventory could be used to manage a variety of things: conference rooms, fixed assets, work in

process, finished goods, and leased frequencies.

So one can start out building an inventory management application and then build the ready-to-
reuse Inventory component which, without modification, can support many other uses. In this
way one can unload the concept of inventory so that it can be reused outside the context it was

initially planned for.

This section highlights key messages for project management. The Management Lessons

discuss these points further.
273

10

15

20

25

30

WO 01/16727 PCT/US00/24189

Manage expectations-component technology is not a silver bullet

Components promise to enhance the ability to quickly build robust systems through the use of
reusable pre-built software components. Properly leveraged, components can provide the
foundation upon which one meet and exceed the demands of a global marketplace which
increasingly uses technology as a primary competitive advantage. Like object technology before,

components are often portrayed as the magic silver bullet to slay the ills of software technology.

Yet, the silver bullet mentality inevitably leads to unreasonable expectations. Intense media
attention fuels these expectations. For example, components are often compared to Lego blocks
that are simply plugged together to form complex systems. Experience has shown, however, that
component technology is not that simple and that payoffs are primarily in the long term. There

are several factors impede short-term payoffs.

Most important, demand exceeds supply for professionals with component and object-oriented
skills. Thus, many initial projects incur start-up costs related to recruiting, training, and learning
curve. Furthermore, after receiving investment in training, individuals find themselves in

demand, becoming higher risk to leave the organization.

Another unreasonable expectation is the belief that components may provide immediate software
reuse. Experience has shown that reuse is not automatically attained; it is necessary to establish

a disciplined approach to reuse and create a development culture that embraces reuse.

A client's view of component technology may vary depending on their previous experiences.
Client's with no component or object experiences may have the most unrealistic expectations for
what the technology can delivery. In contrast, clients that have attempted object-oriented
applications and failed may understand that components are not the "silver bullet" that many
have promised. In fact, these clients may require additional evidence of the viability of a
component approach. For these clients, a component approach can be very appealing since a
component-based architecture can combine both traditional and object technologies. And lastly,

there is the third category of clients that have achieved some measure of success with object

274

10

15

20

25

30

WO 01/16727 PCT/US00/24189

technology and view component technology as the natural evolution towards the goals that are

only partially delivered by object technology alone.

Component-based development's focus on the long-term is usually a good tradeoff

Component-based development is also inherently biased towards the long-term. For example,
the development process strives for a higher degree of quality and reuse, incorporating iteration
between design and code to support refinement. Striving for this higher design quality may
almost always, by definition, cost more up front. Despite these initial costs, component-based
development's focus on the long-term makes economic sense. Experience has shown that 60-

80% of development costs are in maintenance.

Recruit a project champion or sponsor with a long-term focus

To ensure that short-term concerns do not outweigh the potential benefits, project management
should maintain a realistic view of the benefits and risks of components. Thus, recruiting a

project champion or sponsor with a balanced, long-term view is a key to success.

Business benefits must support adoption of component technology

Establish clear goals for a component-based project

Component technologists sometimes promote component development for its own sake, without
regard for the business benefits. However, rarely may management justify something they do
not understand. Component technology introduces a daunting array of new terminology.
Furthermore, if a pilot component project is launched with unclear goals or mission, the
significant short-term costs and challenges may inevitably undermine the commitment to

components.

Thus, component technology must be justified in business rather than technology terms. In
many cases, a traditional client/server solution can deliver the benefits. This proves especially
true for short-lived, simple, or moderately complex applications. On the other hand, component

technology may benefit applications with characteristics such as:

275

10

15

20

25

30

WO 01/16727 PCT/US00/24189

a long maintenance life

complex processing or significant asynchronous logic

complex data relationships

very dynamic business requirements

multiple access channels

legacy evolution or replacement

functionality common across multiple applications

Firm clients have achieved business benefits

The number of engagements that have employed component and object technologies has
continued to grow over the last few years. These engagements have shown that object and

component-based approaches can lead to significant business benefits.

Reduces Maintenance Costs

Properly designed component-based systems should reduce maintenance costs. Encapsulating
implementation details and data make a system more resilient to changes in the business or
underlying technology. Furthermore, design decisions must rigorously consider what is likely to

change. Susceptible points should be hidden behind an abstract, public interface that decouples

their potential changes from impacting other components.

Component Reuse Reduces Development Time

276

10

15

20

25

30

WO 01/16727 PCT/US00/24189

Components are more easily reused because they provide well-defined interfaces and can often
be used through visual development tools. This make it more straightforward to develop
components for one project and share them across other projects. Furthermore, components can
be designed so that their properties can be tailored to meet varying requirements. Once a
reusable base of components has been established, the development time for subsequent projects

can be reduced.

In one utility company they saw significant gains in the reuse of components across initiatives.
Rather than copying and tailoring source code for new initiatives they were able to assemble

applications from already created components.

Another engagerﬁent estimated that new system development was reduced 25% once the first
application was released and a core set of components was established. Even though the
engagement ultimately realized the benefits of reuse, the client still had the expectation that
reusable components would save time and money for the first project. To manage this
expectation, the project team needed to re-emphasize that component-based development

requires an initial investment.

Leverage Existing Technology Investments

Many clients have existing technology assets that would require significant investments to
replace. Components can enable these legacy systems to be wrapped with component interfaces
so that new applications can easily interact with them. Later, these legacy applications could be
replaced without changes to the new applications.

Shields complexity and supports re-engineered processes

Objects raise the level of abstraction in the software solution

Object development enables closer integration between developing applications and

reengineering business processes. The first object-oriented language, Simula, was invented to

enable simulation. It and other object development environments provide capabilities that raise

277

10

15

20

25

30

WO 01/16727 PCT/US00/24189

the level of abstraction of the software. That is, object-oriented languages and design techniques

enable writing software in terms closer to the real-world business rather than the computer.

Enables improved usability

Object-oriented technology can support improved usability in two ways. First, objects
messaging each other lends itself to simplified programming of advanced, direct manipulation or
multi-media interfaces. Second, an object metaphor for designing the user interface may be a
more desirable interaction style for some types of users such as knowledge workers needing

flexible navigation.

Reduces system test complexity and cost

In a few different instances, the object-oriented development approach has significantly reduced
system test complexity. In all these cases the projects fell behind schedule due to learning curve,
the complexity of custom architecture development, and increased effort for component and
assembly testing. However, once core, reusable objects in the domain model and application
framework stabilized, system testing the functionality and performance was much easier. For
example, since less code and data knowledge was replicated throughout the system, global

changes could often be made by making a change in one place.

Component technology may help improve communications with users

The close tie that component and object modeling enables between the software solution and
business process may help software analysts and users or business analysts to better understand
each other, reducing errors in communications. This represents a significant opportunity,
because misunderstanding user requirements has been proven to be the most costly type of
mistake in systems development. A component model further improves the understanding of the

software design by providing a larger-grained model that is easier to digest.

Lastly, communication with users is often improved by using scenarios which convey

requirements through familiar business situations.

278

10

15

20

25

30

WO 01/16727 PCT/US00/24189

Multiple Access Channels

Component architectures are inherently service-oriented. Components provide their services
through interfaces which consist of operations. Because components are independent pieces of
software they can be reused by any number of applications. Thus, component-based
architectures are well suited to environments that need to provide multiple application
"personalities” or access channels. New personalities can be provided by creating a new user

interface layer that reuses the existing business components.

Managing risk is key

Component technology is still high risk, because it may often:

have a pervasive impact on the overall development approach

require immature technology or tools

implicitly involve complex functional requirements

Component-based development is not only new technology; it is a new approach to software

engineering

Component-based development should not be understood as just a technology decision; rather, it
is a new approach for software engineering. Thus, it affects almost all aspects of development
including methodology, tools, organization, and architecture approaches. This broad impact
creates multiple learning curves, complicating the migration of an organization. Finding

available skills is also difficult, because demand currently outweighs supply.

Component-based systems may also require immature technology or tools. Many of the core
development tools such as the programming language and environments for C++, Visual Basic,
Java and Smalltalk are actually very robust. However, some of the ancillary tools such as the
CASE tools and web development tools or technology architecture components such as

messaging middleware may not be as mature. Thus, the team may face a choice of managing

279

10

15

20

25

30

WO 01/16727 PCT/US00/24189

some risk exposure with a tool or library that simplifies development, or avoiding this tool risk

but facing a more complex development challenge.

Another, more subtle source of risk is the inherent functional complexity of applications often
chosen for component-based projects. Component technology's technical characteristics enable
dynamic, functionally complex systems. For example, business reengineering can capitalize on
the inherent flexibility of component-based systems. However, reengineering creates more
dynamic functional requirements, thereby increasing risk. Not to mention that business

reengineering is itself a risky venture.

Thus, proactive risk management is an essential practice in development. Traditional risk
management techniques apply to component-based projects. For example, a "top ten" risk list
can help focus management attention. This risk focus must then influence the development tasks

carried out by the team early in the project to ensure risks are addressed in a timely fashion.

Architecture is essential to delivering the benefits

Component technology enables application frameworks

Component-based systems extend the notion of architecture beyond that in a traditional system.
Much of the power of component-based systems is the ability to leverage application
frameworks. Frameworks are somewhat analogous to program shells found in a traditional
environment such as the INSTALL/1 online system with components like MES and CCP.
However, this is only an approximate analogy. An application framework goes beyond
traditional application architectures to provide a greater degree of default behavior and flow of

control in a skeleton of the application.

For example, traditional program shells rely heavily on cut-and-paste techniques to achieve
reuse. This places a heavier burden on the developer and exposes the structure of the
application. With an application framework, object-oriented capabilities minimize or eliminate
the need for cut-and-paste reuse. A well-designed framework reduces the burden on application
developers by providing an architecture environment that effectively says, "Don't call us, we'll

call you."

280

10

15

20

25

30

WO 01/16727 PCT/US00/24189

There are many frameworks within the Java programming environment. For example, Java
Security, a very important topic in new netcentric architectures, provides a Java Security
Framework. This is a plug and play framework that allows developers the option of plugging in a
security provider of their choice (DES, RSA, etc) or developing a custom security solution that
can be called by security clients. To create a new security provider, the developer must only
implement the required interfaces for the framework and provide a well-known name. Once

these requirements are met, the component can be plugged into the framework.

Component-based systems are distinguished by a business component model

The presence of a reusable business component model is a key characteristic

A component-based software architecture may have a domain component model shared by the
application processes. The component model contains the core business components that
represent the business directly in software. These components perform behaviors upon request

by windows, reports, or batch process control objects.

The presence of a component model distinguishes component-based systems from procedural,
client/server systems. In a procedural approach, there is no shared business component model.
This typically requires, for example, programs to pass data to each other in a context record.
Thus, any changes to the data may affect many programs. The extent of business logic reuse is

also usually less with the procedural approach.

The presence of a business component model also distinguishes a component-based architecture
from that produced by componentware tools. Specifically, many traditional and even
component-based tools provide data-aware controls that tie the user interface directly to the
database. This is indeed a powerful technique to rapidly build simpler, less strategic
applications. However, it suffers from a lack of smaller-grained business reuse and increased
coupling between presentation and data. This may increase maintenance costs and miss
opportunities to flexibly model complex business processes, as can be done with a component
model. On the other hand, producing a reusable component model requires a higher level of

abstraction and is therefore a more difficult approach.

281

10

15

20

25

30

WO 01/16727 PCT/US00/24189

Component systems are based on standards

Component-based systems are also usually distinguished by their use of one or more of the
leading component standards, i.e. CORBA, DCOM, or JavaBeans. These standards define the
mechanisms that business components may use to communicate with each other. However, a
system does not necessarily have to use one of these technologies to be considered component-
based. The most important criteria is that the application is made up of reusable, service-

oriented building blocks that encapsulate their functionality.

Component-based systems can incorporate a variety of technologies

Clients can select the most appropriate mix of technologies

Just as none of a user's client experience with objects has involved migration to a completely
pure object solution, components may involve a variety of technologies. This is even more true
for component-based systems since they provide the ability to integrate different technologies
through well-defined interfaces. The ease of integration is very appealing to clients since it
allows them to maintain their existing technology investments, leverage their existing skills, and

select a mix of technologies that best fit their tolerance for risk.

More diverse skills may be required

Because components can be implemented in a variety of programming languages on a number of
platforms, it is often necessary to have competencies in a number of technologies. For example,
one client used Visual Basic, Smalltalk, C++, and COBOL for different layers of the system.

The increasing number of technology combinations also increases the complexity associated

with development activities such as testing, debugging, and configuration management.

Component can wrap procedural applications

282

10

15

20

25

30

WO 01/16727 PCT/US00/24189

Wrapping is a technique to integrate traditional system components. It applies to both the
application and system levels. For example, a component can provide a public interface,

encapsulating a legacy application.

Wrapping can be effectively applied to integrate a legacy billing system with a large, object-

oriented customer care system.

At the architecture level, wrappers often provide database interface objects to shield the

application from the database vendor.

Architecture development must start early

A tension exists between scenarios and frameworks

As with client/server, architecture work must start early. As noted above, this is particularly
challenging because of the level of application reuse in a well-designed application framework
and domain component model. Because of this reuse, the framework must be heavily driven by
application requirements, or scenarios. Yet, the architecture team must stay one step ahead of
application development teams to ensure that the architecture and component model are ready in

time to be reused. Thus, a difficult tension exists between scenarios and frameworks.

The tension between scenarios and frameworks can be simplified to the extent that third-party or
standard architectures such as Eagle can be leveraged. In any case, the following guidelines

should be considered, particularly for custom architectures:

The architecture should be defined and prototyped, if necessary, early in the preliminary
design

The architecture should be complete-at the very least, the development architecture and
overall framework, prior to developers actually coding; the design must be in place
earlier when functional developers start detailed design; private architecture aspects may

be deferred

283

10

15

20

25

30

WO 01/16727 PCT/US00/24189

Time must be planned for architecture support based upon unforeseen scenarios,

performance tuning, documentation and developer mentoring

Developing a custom application framework should be estimated as a set of tasks in

addition to much of the traditional technology architecture development

New roles and organization strategies must be introduced

Component projects require modeling skills

Most traditional engagements divide roles into two basic categories, functional and technical, or
architecture. Component-based development introduces a third dimension by requiring an

extensive modeling role. Early experience has shown that the capability to draw abstractions in
modeling a business problem or application framework is a unique skill set distinct from purely

technical or functional skills.

Managing the domain component model requires new organization approaches

In addition, the extensive reuse of a core business component model requires an organization
structure that manages it as a shared resource. This creates a tension between the needs to
support consistent reuse of core components, and the desire to solve a business problem front-to-
back. Experience has shown this often requires some form of matrix organization, combining
vertical-based leadership along the lines of business functions, and horizontal-based leadership

along the lines of architecture layers.

Leveraging expert mentors and time are key to scaling the learning curve

The learning curve is greater, because it has multiple dimensions

Component-based development involves a longer learning curve than comparable software

technologies, because it has multiple dimensions. Component technology skills cover a wide

range of competencies -- from modeling and design skills to detailed programming syntax. Yet,

284

10

15

20

25

30

WO 01/16727 PCT/US00/24189

a user may have good success with people scaling the learning curve in a reasonable amount of

time.

Programmers can expect to perform simple tasks in 2-4 weeks when an architecture is in place.
More complete implementation skills may require 8-24 weeks. Design skills also typically
require the same amount of learning curve, 2-4 weeks for simple tasks and 8-24 weeks or slightly
more for complex design problems. Usually programming should precede design experience, if

possible.

Thus, leveraging experienced component and object technology skills is key to success. Even a
few skilled component developers can provide significant leverage to mentor and support an
inexperienced development team. Experience has shown that at least 20% of the development
team should have component technology or process skills at the outset. This represents a
minimal level for large engagement teams with projects of one year or more duration. Smaller
teams or shorter duration projects may typically require more. It is also extremely important to
have a significant percentage of the team with client/server skills, to reduce additional learning

curves such as GUI design or client/server architecture development.

Estimating and planning present new management challenges

Projects should allow time for start-up costs and contingencies

There is still not enough experience with component technology to support rigorous, detailed
metrics. One reasonable checkpoint for estimating an initial project is to use traditional
techniques, and then add time to adjust for contingency and start-up costs such as training,
learning curve, and architecture development. Early client engagements have demonstrated that

an initial project may almost always be more expensive due to these start-up costs.
Yet, care should be exercised in applying traditional estimating metrics. For example, traditional

metrics often use number of days per window or report. Component-based development can

result in significantly different window counts for similar functionality.

285

10

15

20

25

30

WO 01/16727 PCT/US00/24189

In addition, the fixed versus variable nature of costs should be considered. Start-up costs are
often not simply a variable percentage of the project size, because roughly the same architecture
components may be required independent of size. Thus, anecdotal evidence suggests that the

start-up costs usually have a greater effect on a small project.

Development requires a mix of waterfall and iteration

Systems development traditionally relies on a waterfall model. This approach manages
development in sequential phases of activity such as analysis, design, code, and test. The
waterfall provides control and discipline to development, particularly critical for large, mission-

critical efforts.

On the other hand, iteration enables proving out design assumptions in code early in the process,

and testing the validity of code before proceeding on a wide scale. The information and learning
gained from iteration are especially important for component-based development, because it is so
new. As component-based architecture and methodologies mature, the need to iterate may be

reduced

Significant planning and status monitoring is necessary to manage iteration

However, managing iteration on a large scale is difficult. The team can easily slip into hacking,
in which design is simply skipped before coding. Or, a team may use iteration as an excuse to
not exercise due diligence in completing tasks. Thus, a merging of waterfall and iterative
principles is beneficial. Yet, striking a compromise between waterfall and iteration is not easy.
Thus, significant effort must be invested for detailed workplanning and status monitoring.
Incremental development may help manage scope and risk

Incremental development partitions the system roll-out into releases

Perhaps the most effective way to mitigate the risks of a large project is to simply avoid being

large. Incremental development addresses risk by reducing the necessary team size and scope.

286

10

15

20

25

30

WO 01/16727 PCT/US00/24189

"Incremental” and "iterative" development are often used interchangeably, but they are different

approaches.

Incremental development partitions the system roll-out into successive releases. For example,
the initial release of a customer system might comprise order processing, followed by a
subsequent release for billing, and a third release for collections processing. Thus, incremental
development adds new functionality, while iterative development continuously refines existing

functionality.

Incremental development avoids the complexity of a big bang integration. Furthermore,
although an incremental approach delivers less in each successive release, it can deliver higher
priority portions of the system much earlier than a traditional approach, thereby recognizing

business benefits in a shorter time frame.

Despite these benefits, incremental development is not a panacea. Many times a big bang
conversion has proven necessary, if the cost and risks of having parallel systems and bridges,
performing conversion, and rolling out training are high. These costs must balance those
introduced by the delayed delivery of business benefits and the risks implied by increasing scope
and team size. The urgency of the business and the desire to manage development size may

sometimes favor an incremental approach.

Commercially available methodologies have a narrow focus

Most component-based methodologies focus primarily on analysis and design techniques. For
example, less guidance is available for configuration management or testing. Yet, both of these
aspects are more complex with component-based development, because of the greater level of
granularity of the software decomposition. Because the methodologies are generic, they also
typically do not address detailed architecture or design steps.

Configuration management and testing are more complex

As noted above, the increased granularity of a component-based system and the variety of
technologies associated with it complicate testing and configuration management. A

component-based system may often have more than ten times as many components as a

287

10

15

20

25

30

WO 01/16727 PCT/US00/24189

traditional system. While component-based systems are more granular than purely object-
oriented systems, configuration management is not necessary less complex. While the use of
components allows objects to be packaged into more comprehensible interfaces, it also increases
the number of elements that need to be managed. Typically, the following entities may be

tracked:

Methods

Classes

Packages (which are often aligned with components)

Components

Configurations

Applications
Configuration management requires a comprehensive approach of tools, procedures, and
organization approaches. Multiple levels of component ownership must be defined. The higher
level of reuse requires frequent roll-outs of updated component versions. This also typically
requires the workplan and other status monitoring techniques to track dependencies between
components at a much lower level of detail.
In addition, completing a set of processing requires many software components working
together. Thus, testing involves integrating many more components. The complexity is
magnified, because the integration work often cuts across different developers. The testing
strategy must generally include more testing phases, each specifying a lower level of detail.
Furthermore, automated regression testing has proven essential to address the complexity of

integration.

Address performance risks early, but defer application tuning

288

10

15

20

25

30

WO 01/16727 PCT/US00/24189

Timing when to address performance has subtle complexities for a component-based system.
Certainly, component-based development involves new technologies that introduce performance
risks. Prototyping architecture components should be initiated early to adequately address the

performance risks.

On the other hand, excessive application tuning should not be done to the exclusion of following
good design principles, especially if the components are built using object technology.
Experience has shown that dramatic performance improvements can be made late in object-
oriented development projects. Furthermore, following good design principles actually better

enables these tuning capabilities.

However, if more traditional approaches are used to implement the components, then it may be

more appropriate to tune performance throughout the development lifecycle.

Third-Party Components Have Increasing Importance

Third party components can play an important role in software development. Today's
development tools make it easy to incorporate off-the-shelf components and customize them to a
project's specific requirements. Thus far, off-the-shelf components have primarily consisted of
user interface or architecture components. One project bought third party components for the
user interface, device drivers, bar-coding, and database drivers. This project found that it saved a
significant amount of time, especially in areas that required specialized programming skills.
Unlike architecture components, it is not likely that third-party business components may be
available any time soon.

Staffing, Training and Skills Development

This chapter discusses management issues related to staffing, training, and skills development.

Component-based systems require a mix of technical skills

Object skills are common, but not required

289

10

15

20

25

30

WO 01/16727 PCT/US00/24189

Components and objects are frequently considered to be equivalent technologies; however, they
are not one in the same. While object-oriented systems may be developed using object-oriented
analysis, design, and programming, a component-based system can be developed using a wide
variety of languages, including procedural ones. As a result, the required depth of skills for a
component-based project may depend on the blend of technologies used. For example, one
project may require skills in COBOL, C++, and Smalltalk, while another may use Visual Basic
exclusively. Because many projects are building components with objects, deep object-oriented

skills may continue to be an essential ingredient in the success of a project.

Competencies in multiple technologies may be required

Since component technologies make it possible to integrate different platforms, languages, and
other technologies, it is often necessary to develop a broad portfolio of skills on a project. It is
important to develop an early understanding of the different skills required and how they can be

developed and leveraged across a project.

Leveraging experienced component practitioners is key

Leveraging experienced component technology skills is key to success. Even a few skilled
component developers can provide significant leverage to mentor and support an inexperienced

development team.

At least 20% of the implementation team should have component skills

Small teams or short projects likely require more

Experience has shown that at least 20% of the development team should have object/component
technology or process skills at the outset. These represent minimal levels for large engagement
teams with projects of one year or more duration. Smaller teams or shorter duration
engagements need a higher ratio of experienced component developers. Furthermore, custom
building the architecture from scratch may generally demand even more and deeper skills, unless
the team has exceptionally talented individuals, extensive client/server experience, and ample

time to scale the learning curve.

290

10

15

20

25

30

WO 01/16727 PCT/US00/24189

It is important to note that component technology skills cover a wide range of competencies --
from modeling and design skills to detailed programming syntax. Rarely may one individual
have the necessary expertise in all these areas. Thus, experience has shown that it is necessary to
find individuals that specialize in one of these areas to leverage across a large team. The key is

obtaining the right balance of technology and methodology skills.

One engagement used a 1:1:1 rule to leverage expertise

One large engagement found the most effective leveraging ratio was 1:1:1, comprising an
experienced object specialist, an experienced programmer without object skills, and an
inexperienced person. Note that this 1/3 ratio rule only applied to the team doing
implementation. Thus, even though the total team size was about 200, only 40-50 were doing

hands-on implementation, implying the need for about 13-17 skilled people.

Another engagement found the best mix to be one experienced developer to every four or five
new developers. This project had a well-defined architecture and used Visual Basic to develop
components. The relatively short learning curve of Visual Basic allowed this project to further

leverage its experienced developers.

Exercise caution when contracting external component specialists

In some cases, independent contractors have proven an effective solution for filling gaps with
specific niche skills. Experience has shown, however, these people may not be business-
oriented, adapt well to the structure of a large engagement, nor have experience with mission-
critical development.

Another problem has been having to fight object religion wars.

Managers must adopt new techniques, yet not forget fundamentals

It's often said that, a good manager can manage anything. Many management skills such as

planning, monitoring status, working with end-customer expectations, and managing risk

291

10

15

20

25

30

WO 01/16727 PCT/US00/24189

certainly apply to any domain. These blocking-and-tackling aspects of management must not be
forgotten on a component-based development project. Managers may, at times, be intimidated

by component experts, and ignore the basics of project management.

Managing iteration is difficult, but possible

In particular, object industry and academic gurus frequently suggest that object development and
iteration simply cannot be managed. Their recommended approach is usually some form of
time-boxing the development, simply declaring victory whenever time is up. However, this
represents a very unappealing approach to promising delivery of business benefits to clients.
Fortunately, experience has shown that this does not have to be the case. Managing iteration,

while certainly more difficult, is possible.

However, software development managers must recognize that component technology has a
pervasive impact on many aspects of the development process including estimating, planning,
methodology, and technology architecture. For example, iteration impacts many of the standard
rules-of-thumb for work completion. And the extensive reuse of a common business component
model requires more sophisticated organization strategies.

Managers must invest time in training

Thus, successful managers must be willing to invest the time to learn new terminology and
techniques to adapt to these changes. Traits common to those who have successfully scaled the
component management learning curve include:

Experience with client/server development and a technical orientation

Willingness and flexibility to learn new terminology, tools, and techniques

Strong communication and people skills.

Sound understanding of the system's development lifecycle and the risks at the various stages

292

10

15

20

25

30

WO 01/16727 PCT/US00/24189

Architecture roles require diverse skills

Complicating the search for architecture skills is the need to find developers who also possess
the necessary communications and teamwork skills. The architecture team must be capable of
both delivering an application framework, and giving people appropriate mentoring and support.
Many technology architects are simply not well equipped to handle the tutoring, coaching, and

communications demands inherent in component-based development.

Avoid starting inexperienced people in architecture roles. There are simply too many skills to
learn. Architects need to have a deep knowledge of design patterns, programming languages,
technical infrastructure, and methodologies. It is better to start new developers in application
development roles where they may have the opportunity to view the architecture as a consumer.

This perspective may make them more effective in future architecture roles.

While the dual role of building and supporting an architecture exists in a traditional client/server
system, it may be more pronounced with component technology. Component-based systems
require a higher degree of coordination by the framework developers partly because more
application developers may be inexperienced with the environment. However, even an
experienced team requires extensive coordination, because a greater level of consistency is

required.

Developing with component technology demands more consistency, because an application
framework and business or domain component model provide more reuse. In particular, much of
the business logic may be shared by a common domain component model, viewed by many
windows. To strive for this greater level of reuse across many business functions requires

coordination among many developers. The risk is that the components may not fit together.

This type of development approach requires a strong architecture vision that is clearly
communicated and supported through training, mentoring, and documentation. If a strong vision
does not exist, then the components may inevitably not fit together into a cohesive, integrated
architecture. In addition, this strong vision must include an understanding of the business

objectives and functions of the system to be effective.

293

10

15

20

25

30

WO 01/16727 PCT/US00/24189

Strong architecture direction must also be accompanied by a positive "bedside manner".
Application window developers may often perceive a framework somewhat restrictive of their
creativity, too limiting, or burdensome, particularly when bugs hold up their delivery. It's
important for the frameworks developers to be service-oriented; and, to realize that developing a

reusable component is hard work and requires iteration.
Do not organize all the component skills on the architecture team

Because of the significant technical challenges often faced, a team may be tempted to staff all the
experienced component developers on an architecture frameworks team. This strategy makes
some sense. However, it should not be followed to the exclusion of leveraging the application or
component modeling development team. Developing the functional business logic requires

component development and methodology skills, as well.
Staff an engagement team with a mix of backgrounds

Staffing an engagement with deep technical skills is clearly a challenge. However, the
engagement team should not overlook the importance of functional skills. Experience has shown
that technical backgrounds may sometimes be over-emphasized to the detriment of functional

expertise.

It is important to remember that many roles on the team are more demanding functionally than
technically. Interviewing users, analyzing business processes, and designing the user interface
all do not require extensive technical training. Moreover, not adequately understanding and
analyzing the functional requirements are the most expensive mistakes. Research has shown that

70-80% of a system's mistakes result from misunderstood requirements.
Component technology involves multiple learning curves

A component approach affects almost all aspects of the development lifecycle. For this reason
the component learning curve cannot be equated with a programming learning curve such as 'C'.
There are multiple, distinct learning curves that affect individuals at many different levels in the

organization:

294

10

15

20

25

30

WO 01/16727 PCT/US00/24189

Component and object-oriented concepts and terminology

Object analysis and design

Programming language

Programming environment and other development tools (e.g., browsers, debuggers, user

interface tools)

New architectures - such as how to use the project-specific application framework

Management - such as estimating and planning for work, and managing iteration and

prototyping

Educating management about the multiple learning curves helps manage expectations. It's also
important to avoid equating experience with pure elapsed time. For example, a person may be in
the implementation phase doing things unrelated to building their component skills such as

creating test conditions.

Component skills may take longer to transition to the client

As aresult of the many learning curves, it can take longer to successfully transition skills to the
client. It is essential to have client participation in all areas of the project to ensure the transfer
of skills. One of the most effective approaches is to have client personnel pair up with more
experienced developers. Of course, this may be more expensive and may required buy-in from
management.

The rate at which individuals scale the learning curve varies widely

Experience has shown that individuals scale the learning curve at very different rates. A user

may have good success with individuals becoming productive in a reasonable amount of time.

295

10

15

20

25

WO 01/16727 PCT/US00/24189

In some cases, people have learned extremely fast; on the other hand, a few have had

considerable difficulty.
A useful model of the expected leaming curve is outlined by Goldberg & Rubin [3]. These
results are based on their extensive experience training personnel, primarily in the Smalltalk

environment. Three primary levels of proficiency include:

Basic - capable of doing basic assignments with adequate supervision, usually attained

after formal training and some experience with simple assignments

Functional - capable of doing most assignments with a predictable level of productivity

and minimal supervision

Advanced - an expert resource capable of solving very difficult or unusual problems

They distinguish the learning curve in four different skill areas as shown below, measured in

months:

Category Basic Func Adv
Analysis and Design 4 wks 6-8 mos. 18-24 mos
Implementation 3 -4 wks 5-6 mos 18-24 mos
Frameworks Design 16 wks 12-24 mos + 24-48 mos
Management 3-4 wks 12-18 mos 24-36 mos

The above results are reasonably consistent with a user's experience on client engagements.
Some experience suggests that most firm personnel, on average, reach proficiency levels slightly
faster than the above figures. However, a user may experience a much larger deviation, both

positive and negative, than that reported above.

For example, some talented individuals reached a functionally competent level in

implementation skills in as little as 8 or 10 weeks, less than half that suggested above. On the

296

10

15

20

25

30

WO 01/16727 PCT/US00/24189

other hand, about 10-15% of individuals did not ever reach this level of expertise in a reasonable

amount of time.

Early experience has identified key predictors of success

As noted above, a user may experience a reasonable degree of success in training personnel on

engagements. Unfortunately, some clients have not been as successful.

Key predictors of success can be drawn from this experience and others. It is important to
recognize that the list below is drawn from a very small experience base. As one’s experience
grows, the list of traits may be refined with-hopefully-more objective measurability. This may

be key to helping both a user and clients to be more successful with components.

Ability to Deal with Change

Component-based development requires a high degree of change. Firm personnel deal with
change their entire career. Often, client personnel may not be as adaptive. They may have
worked with the same structured methodology and COBOL for 5 or 10 years. To change their
entire process can be a big culture shift. Individuals must have the right attitude and
interpersonal flexibility to change. This factor may help explain why less experienced people

have often scaled the learning curve faster than more seasoned developers.

Yet, the simple fact that someone has deep COBOL experience does not mean that they may fail.
There have been several examples of people on engagements who successfully made the
transition from COBOL to Smalltalk, including architecture roles. However, all of these

individuals were highly motivated with an open mind to change.
On the other hand, migrating to C++ may be a considerable challenge for people who do not

have experience with a pointer-based language. That is, C++ projects should favor staffing

people who have minimally programmed in languages such as C or assembly language.

297

10

15

20

25

30

WO 01/16727 PCT/US00/24189

Quick Study

Component technology involves multiple learning curves-people may need to learn fast. They
must be motivated self-starters, capable of learning quickly on their own, and willing to read and

perform supplemental tasks to improve their competencies.

Communications Skills

Component-based projects are very social endeavors. Because any given business function
requires several collaborating components, developers also have to collaborate with one another.
To ensure that components integrate smoothly, and to achieve the desired reuse, a high degree of
communications and teamwork is necessary. This is significantly different than many traditional
systems where a system is decomposed into larger, monolithic modules. These modules are

typically developed front-to-back by each developer in relative isolation.

Creativity - experience with custom systems development

A component-based development project requires creativity. The overall atmosphere is usually
very challenging with fewer, concrete rules. The answer to many analysis and design decisions
is, "it depends”. Similarly, the development environments encourage exploration and browsing.
Work Ethic)
Individuals must be motivated to undertake personal training. There often is not enough time to
support all the training needs during normal work hours for the system to meet a reasonable
schedule. Thus, at times, individuals must pursue personal study and experimentation after
hours. This type of commitment requires enthusiastic, hard-working individuals.

Initial training requires hands-on case studies to be effective

Initial training requires significant upfront investment. Project Eagle achieved very good results

with their multi-week Eagle University. Unfortunately, this represents a larger amount of upfront

298

10

15

20

25

30

WO 01/16727 PCT/US00/24189

time than many engagements can realistically support. In addition, timing may be difficult,

because often project team members may roll on the project at different times.

Thus, many engagements may need a more flexible model with training time staggered in
smaller chunks. For example, the training may be accomplished through some combination of
formal classroom training done in waves, self-study, case study experience with mentoring,
reading, and on-the-job training. The key point, however, is that a significant commitment to

training must be made-whether done upfront or spread throughout the project.

There are several other lessons learned that can be drawn from the Eagle experience. Perhaps
most important, training should be based on case studies. It should involve a significant degree
of learning-by-doing including both design and coding exercises. Examples can be taken from
the actual application to be built, thus reducing the perception of pure training investment.
However, care must be taken to ensure that day-to-day project demands do not detract from the

training. For example:

Simple examples from well-known domains (e.g., checkbook application) ensure that the

application requirements do not bog down the learning process.

People may need to be taken away from the project site, or firewalls created, to enable a

total immersion environment.

Individuals should work in teams to simulate the collaboration necessary on an

engagement.

If real portions of the application are used, the team should manage expectations so as not

to confuse training goals with producing deliverables.

Reuse should be taught and encouraged through exercises that force the developer to

browse.

On-going support is necessary for developers to scale the learning curve

299

10

15

20

25

30

WO 01/16727 PCT/US00/24189

On-going support is necessary to help developers continue building skills. On-going training is
important because the entire development lifecycle is affected, to some degree, by the shift to
components. An individual's first few assignments should be carefully planned to enable
growing skills, and to identify people who demonstrate aptitude. Time must also be allowed for
scaling the productivity learning curve, after initial skills are developed. This generally requires

a fair degree of commitment from experienced frameworks developers to provide mentoring.

A formal certification process supports on-going skills development

Since component technology can result in many new skills and competencies, an ongoing,
comprehensive skills assessment and certification process has proven beneficial. A certification
process defines areas of competence and then critically evaluates individuals' capability and
progression. This can extend across design and coding skills to include familiarity with portions
of the architecture. Peoples' skills can be assessed in compulsory design and code reviews. In

effect, this becomes a component-specific skills evaluation.

A skills certification process helped to:
More rigorously identify and describe competencies of what is really desired in terms of
skills and competence; and, what habits should be discouraged and flagged as
performance problems.
Track peoples' growth-it encourages improvement by challenging people.
Provide a more effective way to assign appropriate roles to people and offer up the
opportunity for people to grow into a more challenging role as quickly as they are

adequately prepared.

Support more effective communications of what resources had which skills (e.g., through

a wallchart)

Summary

300

10

15

20

25

30

WO 01/16727 PCT/US00/24189

Component-based development requires more time to scale the learning curve, because it has
multiple dimensions. Component technology skills cover a wide-range of competencies
including analysis, design, programming, and management. Thus, leveraging expert mentors

and skills, investing in adequate training, and ensuring continued support are all key to success.

Team Organizations and Roles

This chapter discusses the team organization and roles involved with component-based

development.
Manage the team size with care

Team size should be managed carefully. Component-based development involves difficult
coordination overhead. This stems from the higher degree of reuse and greater modularity of the
system. A greater number of common components are reused across business functions. In
addition, components are smaller than traditional modules. Thus, more work from multiple

people must integrate smoothly. This complicates increasing the team size.

If a project slips off- schedule, caution should be exercised in adding people. Brook's

fundamental law states:
Adding more people to a late project makes it later.

It is easy to underestimate the impact more people have on coordination and communications.
Start-up costs can also be significant. New developers may have a learning curve. Even
experienced developers must learn project-specific aspects such as the framework, business
requirements, and team structure. These initial costs not only impact a new team member's

productivity, they also reduce experts' availability for mentoring others.
Manage expectations regarding developer productivity

Industry gurus have created unrealistic expectations for the required team size

301

10

15

20

25

30

WO 01/16727 PCT/US00/24189

The need to manage team size must not create unrealistic expectations for developer
productivity. High expectations have been fueled by many object industry experts who
recommend a dramatically smaller team. Many have suggested that as little as 80-90% fewer

people can accomplish an equivalent amount of work as a traditional dévelopment team.

However, experience does not support these exaggerated claims. Initial engagements have
incurred considerable start-up costs such as training, architecture development, and building

reusable components.

Some compelling evidence suggests object/component technology can improve productivity
enough to reduce team size later in the software development lifecycle or for subsequent
projects. Brooklyn Union Gas cut their maintenance staff in half and still accomplished as much
or more work. Other firm experience has shown object technology reduced system test effort,
enabling a smaller team. Large engagements have also realized benefits of reuse, significantly
reducing development time for windows later in development. However, none of these

experiences reported an order of magnitude reduction in team size.
Use Components As Work Packages
Components can define work packages

Perhaps the most effective way to mitigate the risks of a large project is to simply avoid being
large. Partitioning a project into smaller sub-systems is one way to reduce size. Component-
based development is particularly well-suited to partitioning the development effort because the
constituent components can map directly to team responsibilities. This simplifies division of

responsibility and roles, because software and team organizations can mirror each other.

For example, Figure 44 shows a high level picture of application component interaction for an
Order Entry system. The boxes represent the application components of an application being
developed. Orders are fulfilled by interaction with the Product, Customer, and Warehouse
Application Components. These software application components can then serve to define the

structure of teams and their collaborations with each other.

302

10

15

20

25

30

WO 01/16727 PCT/US00/24189

Keep in mind, however, the benefits of this partitioning approach may be influenced by the
degree with which these components interact. Thus, determining the appropriate granularity of

the components is a key, strategic design decision.

Greater specialization of roles is necessary

Two recent engagements involved very large teams, in one case peaking at over 200 people
working with object-oriented technology. In both cases, the engagement teams leveraged
expertise in a manner somewhat similar to a traditional engagement. There were, however,

important differences in scaling object-oriented development to such a large size.

One important distinction is the categories of expertise to be leveraged. For a traditional
engagement, most developers tend to be divided in two basic categories - functional or technical.
These two dimensions represent the primary types of leveraged expertise. That is, guidance is

provided by functional and technical experts.

Component development requires functional, technical, and modeling competencies

A component-based project adds a third dimension - modeling. The skill set to model and
represent behaviors and relationships in components and objects is a distinct, complimentary
skill set to functional and technical skills. Thus, most projects find that they need a third type of

expert - €.g., a component/object modeling architect(s), to provide direction.

Four primary online development roles may be defined:

window team members developed the window-specific functionality. Their role was
biased towards consuming rather than providing common object behaviors, although

there was some degree of the latter.

object model team members developed complex behaviors in the common object model,
they also performed quality and consistency reviews for object model behaviors

implemented by window developers.

303

10

15

20

25

30

WO 01/16727 PCT/US00/24189

frameworks team members developed the overall architecture mechanisms, providing

structure and default behavior for the entire application.
server team members developed common data access and service routines on the server.

Architecture roles must be defined to support this greater degree of specialization. One

engagement used the following partitioning strategy:

Functional architect-responsible for resolving decisions for what the system should do.
This person is ideally a user with a solid understanding of systems, or a systems person

with a good understanding of, and relationship with, the users.

Technology architect-responsible for delivering the platform, systems software, and
middleware infrastructure to support execution, development, and operations

architectures.

User interface architect-responsible for setting direction of the user interface metaphor,

layout standards, and integrated performance support (IPS).

Application frameworks architect-responsible for designing, delivering, and supporting
the application framework that provides the overall structure, or template, of the

application.

Object model architect-responsible for identifying and resolving modeling issues

necessary to achieve a high degree of business reuse and modeling consistency.

Note that the last two roles are especially unique to object-oriented and component-based
systems. This means these architects have a learning curve to simply understand what their role
means in the organization. Furthermore, the architecture roles require the deepest technical skills

and should be staffed with the more experienced resources on the project.

304

10

15

20

25

30

WO 01/16727 PCT/US00/24189

One must be very careful in ensuring that application frameworks are not "over-architected".
Experience has shown that many frameworks fall by the way-side for the simple reason that they
were not built closely enough in conjunction with the application development. They become

too theoretical, complicated and over-engineered making them performance bottlenecks and

~ obstacles to simplifying the application architecture. It has been found that frameworks should

"fall out" of the application domain as candidates become obvious. Experienced developers that
work closely with the application can quickly identify repetitive constructs and abstract useful

frameworks from this context.

Data and object model architects must clearly define their roles

One issue that must be resolved early on is the relationship between the role of the data architect
and the object model architect. In traditional development environments data architects produce
deliverables such as Entity Relationship diagrams. Since an Object Model is a superset of an
E/R diagram, it is important to avoid treating the two as separate entities because this can lead to
development teams working from two separate schemas. Viewing the object model as the object
and data schema is very helpful in solving performance problems later and in promoting an

overall understanding of the information schema of the system.

One strategy that has been shown to work is to include the senior data modelers in the object

modeling team and give them appropriate object modeling training for their roles. This allows a
natural migration of the object model to be the logical schema for the database model. However,
this must be carefully managed so that good object model principles are not violated by a strong-

minded data modeler who has not transitioned through the paradigm shift.

Greater collaboration between roles is necessary

Another distinction is the necessary coordination of roles due to the impact reuse has on the
organization. In a traditional architecture, modules tend to be larger front-to-back slices of
functionality. Reuse is primarily confined to technical services. Thus, functional developers can
work independently, relatively speaking. The greater degree of reuse in a component

architecture, on the other hand, requires much more coordination of effort.

305

10

15

20

25

30

WO 01/16727 PCT/US00/24189

The organization structure must enable specialization and collaboration

Component development requires a more sophisticated organization structure to support the
increased specialization and collaboration of roles. Specialization is generally more important
because more is being custom created-and less of the answer is codified as a proven solution. As

noted above, well-defined roles are also important to ensure reusable components fit together.

At the same time, the structure must enable adequate collaboration of team members. Too many
specialists may result in an organization that requires extensive coordination to deliver anything -
e g., a completed window. The organization must then strike a balance between "vertical”
partitioning by function and "horizontal" partitioning by architecture layer. This is a classic

management problem at an enterprise or project level.
Vertical partitioning by business function better supports collaboration
Figure 45 illustrates a traditional organization structure including an activities component 4502,
a credit/collections component 4504, a billing component 4506, and a finance component 4510.
This traditional organization for most projects is vertically organized based upon business
function with a technology architecture team. In this organization model, there would be one or
more developers that are responsible for building a business function end to end. This works
well for the following reasons:

aligns well with the business process and software decomposition

enables clear work direction - i.e., complete a window or report, front-to-back

ensures that complete functions work in an integrated, end-to-end fashion

teams better align to application releases

However, there are several potential shortcomings with this approach for an object-oriented

system:

306

10

15

20

25

30

WO 01/16727 PCT/US00/24189

may force developers to learn multiple aspects of the framework (e.g., user interface and

persistence services) which does not enable as much specialization of skills

does not easily support consistency and reuse of business logic

does not readily enable cross-function leverage of expertise
Horizontal partitioning by architecture better supports specialization
Several object-oriented engagements have tried an alternative horizontal, or architecture-based,
organization. Figure 46 provides an illustration of a horizontal organization model 4600. In this
model, one or more developers are responsible for a horizontal layer of the system. Teams may
be organized around layers such as technology architecture, frameworks, user interface,
component/object model, or data access.
This approach offered the following advantages:

aligned with the object architecture

enabled cross-function consistency and reuse of business logic

supported developing and leveraging specialized expertise
However, the following drawbacks were experienced:

over-the-wall problems in coordinating hand-offs of work amongst multiple developers

providing work direction to people became more complicated since they were poorly

aligned with the business problem

managing completion of business functions becomes nearly impossible

A workcell organization combines the two approaches

307

10

15

20

25

30

WO 01/16727 PCT/US00/24189

Figure 47 illustrates a workcell organization approach including an activities component 4702, a
credit/collections component 4704, a billing component 4706, and a finance component 4710.
This approach combines the two previous approaches into a workcell. The primary orientation
can be aligned either way, but a functional orientation seems more natural for a business
application. A cell is comprised of a complete set of specialized skills such as functional analyst,
object modeler, application architect, and even user. Cross-cell architects then provide

specialized direction for a particular role.

This approach, while adding complexity to the organization structure, has been used successfully
on a number of engagements, and has been shown to combine the benefits of the two -
approaches. Of course, a drawback is simply an added level of organizational complexity - e.g.,

individuals at times taking direction from two different people.

Additional effort is needed to ensure consistency across workcells

Additional effort is needed to ensure that each workcell develops application components in a
consistent manner. It is important to define development standards and entry and exit criteria for
all workcells. In addition, it can be useful to have a single person or group perform design

reviews across the project.

A workcell's architect or frameworks developer can also help application developers better
understand the architecture and use it consistently. Furthermore, the workcell architect serves as
a good channel to feed new requirements -- based on the application developers experiences --

back to the architecture team.

Management may need to plan for at least one major re-organization

The most effective approach depends on the team size, relative experience, and even the phase of
the project. The dependence on development phase implies that management may need to plan

for at least one reorganization. Unfortunately, re-organizations create significant team

disruption, which must be considered.

308

10

15

20

25

30

WO 01/16727 PCT/US00/24189

Workcell organization may be influenced by other factors

Some additional guidelines include the following:

Larger teams generally need to favor increased specialization, because they may almost always
have a higher proportion of inexperienced developers. Thus, the specialized model supports

developing areas of competency.

Early in an engagement more specialization may be required as an infrastructure of common

components and frameworks is constructed.

Once components are stable and integration of functionality is more important, then a

collaborative, functionally-aligned or workcell organization may make sense.

The higher degree of custom development required in the architecture, the more specialization of
skills is necessary; likewise, the more stable the architecture, the less important is specialization

in favor of supporting collaboration

Complex, non-standard problems that cut across domains lend themselves to increased
collaboration. On the other hand, more standardized problems can be solved with the specialized
model. This experience is also consistent with management research of macro-organizations for

an enterprise.

Workceell alignment may be influenced by the needs of the client. If the client's objective is to
develop a highly reusable business component model, then it may be appropriate to have a single
team focused on developing the component model. On the hand, if the client is most concerned
about delivering business functionality, workcells should be aligned by business function.

The organization must support informal structures

Whatever the formal organization, the project must enable extensive informal communications.

Component development requires a tighter coupling between functional and technical design,

309

10

15

20

25

30

WO 01/16727 PCT/US00/24189

because more commonality is incorporated into the architecture as common services. Thus, few

important decisions can be made solely by one group within the project.

One large engagement combined several different strategies to ensure effective communications

across organizational boundaries:

cross-cell weekly integration meetings were used to discuss and resolve low-level issues

of global concemn

temporary, cross-cell teams were formed to address many special issues - e.g.,

integration with an external system, an approach to handle addresses, etc.

temporary scout teams were formed to pilot the approach for a global change before
rolling out to the entire team - e.g., the migration approach for moving sub-systems into

system test.

It's also important to consider the importance of informal sharing of information when many
developers are undergoing training or there are global architecture changes underway.

Geographic splits of a team can cause special problems.
Roles are changed for personnel at multiple levels

There often is not a direct mapping to the traditional roles that individuals expect. Analysts and
Consultants may be given tasks with less creative freedom than they expect. For example, an
Analyst role may involve less custom coding and more reusing, assembling, and testing of
components. Design tasks for a new Consultant may also seem overly restrictive, because the
challenge is to do things in a much more consistent, standard manner as dictated by the

framework.
On the other hand, because everything is often so new to the entire project team, in some ways

everyone is starting together from scratch. Thus, in a few cases, very talented Analysts with prior

component experience have assumed lead technical design roles.

310

10

15

20

25

30

WO 01/16727 PCT/US00/24189

Traditional hand-offs between designer and coder are problematic

The way roles work together is also different. For example, because of the iteration and coupling
required between design and code, hand-offs from designer to programmer generally do not
work well. One scenario used to leverage skills involved a lead designer creating the design,
prototyping the solution, and stubbing-out methods with comments. The details were then

flushed out by a junior developer. Leveraging by review and mentoring has also been key.

Summary

Crafting an organization structure for a component-based project involves balancing many
complex factors. The most effective approach may depend upon the size and skill set of the
team, the architecture structure and stability, and even the type of the application. Some

additional considerations include:

Regardless of the chosen organization, care must be taken to ensure walls do not build up

between teams

People's behavior may be influenced by the organization; that is, research has shown that
the organization model may be reflected in the software architecture. For example, one
engagement experience may shown that individuals may allocate behaviors to

inappropriate components to avoid having to collaborate with other developers

Workcells combine the benefits of horizontally and vertically aligned organization structures,

and have been used successfully on a number of engagements.

Planning and Managing Development

This section discusses strategies for managing a component-based development process. Two

alternative development strategies are:

Waterfall approach

311

10

15

20

25

30

WO 01/16727 PCT/US00/24189

Iterative approach

Much of the one’s experience may be with large, mission-critical projects. Moreover, large
projects introduce additional, inherent complexity. Therefore, these issues may be discussed
primarily from a large project perspective.

A tension exists between the waterfall and iterative development models

The waterfall is the traditional approach to managing software development

Systems development traditionally relies on a waterfall model. This approach manages
development in sequential phases of activity such as analysis, design, code, and test. The
waterfall model provides a controlled, orderly process for developing a system. Work is
sequenced to ensure that the design addresses the correct requirements, implementation is based
on upfront design, and system testing verifies and validates thoroughly unit tested components.

Despite these benefits, the waterfall model introduces potential problems. For example,

Requirements may be difficult for the user to understand without prototyping the user

interface or functionality

The design team may not be prepared to specify an effective design without gaining

implementation experience

A team may not be positioned to generate reusable components for itself, unless a team

works ahead to construct an architecture or component model during the design phase
Iteration helps a team address risks and gain experience
Because of the above shortcomings, much of the OO and component community recommends

some variation of iterative development, in which analysis, design, and coding activities overlap

to some degree. A theme in these variations is the need to address risk by proceeding further in

312

10

15

20

25

30

WO 01/16727 PCT/US00/24189

development sooner. Both the gained information and experience can influence the approach

taken in the current phase.

However, iteration also has drawbacks. The team may slip into hacking, by simply skipping
design before coding. Or, a team may use iteration as an excuse to not exercise due diligence in
completing tasks. Defining and estimating milestones is also hard.

A project must weigh the tradeoffs between waterfall and iterative models

Thus, a tension exists. The waterfall promotes discipline and control in the development
process. In contrast, iteration proves out assumptions, gains advance experience, and addresses
risks. Balancing these conflicting goals is difficult on a large scale.

Distinguish between the macro and micro process in the workplan

Both the waterfall and iteration have pros and cons. A hybrid capitalizes on the advantages of
both. If they are merged, one or the other must inevitably dominate the structure of the high-
level project plan. That is, the plan must start somewhere - either by defining iterations or

waterfall-like phases of completion.

For example, defining iterations of the system or sub-system would result in high-level project

phases such as:

first working version

refined working version

final, released working version

In contrast, a more traditional waterfall structure would result in high-level project phases such

as:

requirements definition

313

10

15

20

25

30

WO 01/16727 PCT/US00/24189

preliminary design

detailed design and/or coding

testing

A macro plan reflects the high-level development phases The micro plan shows the tasks of a

specific phase or team

Distinguishing between a macro and a micro process provides a practical compromise. The pure,
traditional waterfall has no distinction. There, the entire workplan and accompanying
development approach sequence analyzing everything, then designing everything, then coding
and testing everything, with no overlap. The same uniformity between macro and micro
processes applies to a pure iterative model. In this case, the workplan reflects multiple iterations
of the entire application. However, in either case, such extremism is not necessary. Instead, a

plan can merge the two approaches by distinguishing between the:

macro, high-level plan, and

micro, phase or team-specific plan.
In summary, an exclusively waterfall or wholly iterative model are, independently, too simple.
A balance is required. Distinguishing between the macro and micro process gives management
the intellectual freedom to craft a workplan that reflects a mix of the two styles. The downside is
that this introduces significantly more effort and complexity in the planning process.
The macro process for large projects should be waterfall in nature

Managers are averse to iteration, because it expects re-work, ipso facto

The previous section laid out two alternatives for combining the macro and micro process. For

large, custom development projects, experience has shown that defining the macro process along

314

10

15

20

25

30

WO 01/16727 PCT/US00/24189

the lines of a waterfall structure is most effective. Client and firm project management are
typically uncomfortable with defining milestones and estimating work with iterations. The
common statement is, "How do I know when I finished the current iteration?" This concern is
valid - on a large-scale, "complete” can be difficult to define. In addition, most managers have

trouble embracing a process that expects and even allows mistakes on such a large scale.
Iteration does not scale well due to communications overhead

Aside from these psychological considerations, large projects introduce significant risks due to
the complexity of coordination. A large team has a much greater inertia, because of the time
delay and errors introduced in human communications. Any change takes much greater effort
and time to implement. Correspondingly, once made, changes are more difficult to reverse.

Greater reliance on documentation is often necessary to avoid miscommunications.

Many decisions must then be considered from the vantage point of their ease of communication.
This complicates iteration. For example, if analysis, design, and code overlap extensively, then
by definition, requirements and design change later in the process. Communicating wide-scale
changes late in development can be inefficient, wreaking havoc on existing code. Thus, iteration

does not scale well to the macro level, because of communications overhead.

It's important to re-state, however, that a pure waterfall introduces many problems for component
development due to its intrinsic reuse and newness. Thus, many of the lessons below emphasize
variations of iteration and how they can be merged with a waterfall approach.

Incremental development may help manage scope and risk

Incremental development partitions the system roll-out into releases

Perhaps the most effective way to mitigate the risks of a large project is to simply avoid being
large. Incremental development addresses risk by reducing the necessary team size and scope.

"Incremental” and "iterative" development are often used interchangeably, but they are different

approaches.

315

10

15

20

25

30

WO 01/16727 PCT/US00/24189

Incremental development partitions the system roll-out into successive releases. For example,
the initial release of a customer system might comprise order processing, followed by a

subsequent release for billing, and a third release for collections processing. Thus, incremental
development adds new functionality, while iterative development continuously refines existing

functionality.

Incremental development is often more palatable to managers than iterative development,
because there is no explicit notion of repetition. Yet, the desirable benefits of iteration are often
realized. For example, releasing consecutive versions of the system creates the opportunity, and
often the requirement, to refine the initial release. The early implementation experience can also
provide important productivity benefits for subsequent releases. This experience may also help

drive out technical requirements for future releases, improving the analysis and design process.

Incremental development avoids the complexity of a big bang integration. Furthermore,
although an incremental approach delivers less in each successive release, it can deliver higher
priority portions of the system much earlier than a traditional approach, thereby recognizing

business benefits in a shorter time frame.

Despite these benefits, incremental development is not a panacea. Many times a big bang
conversion has proven necessary, if the cost and risks of having parallel systems and bridges,
performing conversion, and rolling out training are high. These costs must balance those
introduced By the delayed delivery of business benefits and the risks implied by increasing scope
and team size. The urgency of the business and the desire to manage development size may

sometimes favor an incremental approach.
Incremental development can also apply to a single development release

Even when incremental development does not prove feasible for entire application releases, the
approach can be effective on a smaller scale. For example, the development and release of a
single application may require extensive integration of diverse behaviors in a reusable domain
component model. The domain components must be put in place early to allow reuse; then,

behaviors are incrementally added as the business use cases are analyzed and designed. As in

316

10

15

20

25

30

WO 01/16727 PCT/US00/24189

the previous case, iteration naturally occurs; but, again, incremental proves to be a more

acceptable metaphor.

Enable top down and bottom up development

Different categories of tasks should proceed at different rates

Whether applying a more waterfall, iterative, or incremental process, the dependencies between
tasks require careful consideration. Different categories of tasks need to proceed from problem-

definition through solution at different rates.

Figure 48 illustrates the Enterprise Information Architecture (EIA) model 4800. This model
adapts to component terminology, with the relatively minor change in layer five from data

architecture to domain component model.

Both top-down and bottom-up models are necessary

This model incorporates the idea of simultaneous top-down and bottom-up development. Much
development effort may follow a relatively top-down, sequential approach. This includes
analyzing and designing: the business environment and processes, domain model, and then
application. Concurrently, an architecture effort proceeds bottom-up. This builds: the
technology architecture of platform system software, hardware and infrastructure services; and
then application architecture, or frameworks. Top-down and bottom-up efforts then conceptually

meet in the middle, integrating the application framework with the application.

Both the architecture and component model lead application development

The need to start architecture implementation early is well-understood for traditional or
component-based client/server development. What is different with component-based

development, however, is the need for the component model to lead the application and user

interface development.

317

10

15

20

25

30

WO 01/16727 PCT/US00/24189

Starting the component model early is essential to enabling reuse of a consistent, cross-
functional set of business components. These core domain components must be defined early, at
least in preliminary form. Otherwise, the simultaneous integration of functionality from many
windows or reports would be extremely chaotic. In addition, developers may implement
business logic in the user interface layer, rather than in the business components where it can be
reused. Furthermore, early design of the component model before user interface logic improves

the odds of creating a pure component model, decoupled from the interface.
Design Efforts Should Focus on Component Interfaces

Interfaces are the contracts for the services that a component provides. Clients of a component
are concerned with what the interface specifies, not how it is performed. It is the interface
provider that is concerned with the implementation. By correctly defining interfaces during
design, it is becomes possible to independently develop components. When interfaces are
changed, component assembly becomes much more difficult and rework is often required. Thus,

design efforts should pay additional attention to the completeness of interface specifications.
Architecture development must start early
A tension exists between use cases and frameworks

As with client/server, architecture work must start early. As noted above, this is particularly
challenging because of the level of application reuse in a well-designed application framework
and domain component model. Because of this reuse, the framework must be heavily driven by
application requirements, or use cases. Yet, the architecture team must stay one step ahead of
application development teams to ensure that the architecture and component model are ready in

time to be reused. Thus, a difficult tension exists between use cases and frameworks.

The tension between use cases and frameworks can be simplified to the extent that third-party or
standard architectures such as Eagle can be leveraged. In addition, experienced architects may
bring their knowledge of which services are common across applications and can be addressed
earlier than application-specific architecture services. In any case, the following guidelines

should be considered, particularly for custom architectures:

318

10

15

20

25

30

WO 01/16727 PCT/US00/24189

The architecture should be defined and prototyped, if necessary, early in the preliminary

design

The architecture should be complete-at the very least, the development architecture and
overall framework, prior to developers actually coding; the design must be in place
earlier when functional developers start detailed design; private architecture aspects may

be deferred

Time must be planned for architecture support based upon unforeseen use cases,

performance tuning, documentation and developer mentoring

Developing a custom application framework should be estimated as a set of tasks in

addition to much of the traditional technology architecture development
Failure to develop the architecture early may reduce its efficacy
If the architecture is not completed ahead of the application, developers may have the tendency
to build architecture services in the application layer. Clearly, this may lead to diminished
reusability and more difficult maintenance. By defining the architecture services early and

communicating them clearly to the application teams, these problems can be avoided.

A related problem with object architecture and frameworks is that the line between the

.application and architecture can become blurred. These architectures may provide so much

common functionality that it is difficult for teams to distinguish who is responsible for what. For
example, it may not be clear that a function should be provided by the application architecture
team, technology architecture team, or application team. This problem can be resolved by better
communication and coordination across teams. Workcells are one approach that has proven

effective in this area.

Component-based development requires more granular milestones

The macro process uses traditional milestones

319

10

15

20

25

30

WO 01/16727 PCT/US00/24189

The milestones used to track the macro process generally remain the same as for traditional
systems lifecycles. Project management may still be interested in monitoring the progress of

high-level milestones such as the start and end of design, or the start and end of construction.

The micro process may use more granular milestones

On the other hand, the micro process may have more granular milestones than traditional
systems. Whereas a business function in a traditional system may be composed of single front-
to-back module, a component-based system may provide the business function using several
collaborating components. Thus, component-based systems inherently have more work objects
to track. While the increasing number of work objects may seem to be a management burden, it

can provide a more fine-grained reading on the development process.

Another difference from traditional systems is that milestones may be more oriented around
elements of the systems (windows, business components, and architecture components), rather
than business functions. Furthermore, some types of milestones may be more important than
others. For example, if there is a significant amount of functionality in the business components,
then there may be more milestones associated with the business components than with the user

interface.

The micro process should vary with the type of development role

The micro process must compliment the macro process

Assuming a waterfall-like macro process, as described above, the challenge of the micro process

is incorporating an effective level of iteration into this management framework.

Different roles for team members require different development methodologies. For example,

possible roles are:

Application developer - responsible for implementing a particular business function, such

as accepting bill payment. This focuses on the application-specific design and

320

10

15

20

25

30

WO 01/16727 PCT/US00/24189

implementation tasks such as: working with a user to define requirements or use cases,

designing the user interface, and implementing application functionality.

Component Model developer - builds, refines, and supports the core, reusable business

components in the application.

Frameworks developer - responsible for the application and technology architecture that

provide common services and control logic for the application.

These roles do not necessarily correspond directly to organization assignments. Whether these
roles formalize as teams, identities within a workcell, or possibly different hats a single person
wears 1s an organization decision that depends on the project size, individual skill sets, and other

factors.

Within the micro process, more parallelism can be achieved

At the micro-level components make it more reasonable to execute more development tasks in
parallel. Components enable this by providing more discrete work objects that are more clearly
separated by their interfaces. Because interfaces are the contracts through which components
interact, the internals of a component can be developed independently as long as the interfaces

are respected.

Dependencies on shared components need to be managed

On the other hand, since some components may be reused throughout the application, it is a good
idea to start them earlier to provide a solid base for the rest of the system. Thus, a greater
dependency on certain reusable components may require additional planning effort to correctly

sequence the work.

Application developers can follow a relatively formal, sequential process

A significant portion of application development can execute in a sequential manner. This

excludes the development and maintenance of the core component model and application

321

10

15

20

25

30

WO 01/16727 PCT/US00/24189

frameworks discussed below. For the application developer driving out requirements, design,
and implementation of window functionality, development can proceed very similar to that of a
traditional, client/ server GUI project. Particularly early in development, many aspects of the
methodology can be very similar such as CAR (Control Action Response) diagrams.

During implementation, detailed design and coding steps may overlap. However, the rules and
guidelines for sequencing these should be spelled out in rigorous detail. Note that this does not
imply iteration per se, although that may be a desirable side-effect if controlled. Rather, this
approach merely suggests tactically interspersing the design and code activities, particularly to
aid in- experienced developers in transitioning from design to code.

Define concrete milestones with short intervals

An important difference in managing efforts with this type of overlap is the need to define much
more concrete milestones with shorter intervals. This is necessary because a detailed design or
coding phase definition loses meaning if they overlap extensively. Milestones represent more

concrete, visible accomplishments, such as:

all basic layout and behaviors designed; complex behaviors identified, but not completely

designed

view and application model integrate with domain model

window opens

data access from server coded and tested

full detailed design of special processing or complex behaviors

complex behaviors coded and tested

Incrementally add behaviors to the reusable component model

322

10

15

20

25

30

WO 01/16727 PCT/US00/24189

A previous point emphasized starting the component model development early, because many of
these components are reused in many business functions. Thus, their preliminary structure must
be available before multiple windows require their use. This implies that many different
behaviors may need to be continuously integrated into these components over and over. The

component model development, then, is very much event-driven like a factory.

Incremental is a good term for continuous integration of behaviors in the component model

The salient feature of this development style is that behaviors are incrementally added to the
reusable component model throughout the development. Iteration and refinement often occur
naturally in this process. However, incremental proves to be a more acceptable term for

management.

When developing in this fashion, tracking status is difficult. Management traditionally tracks
status by number of windows or reports complete. Yet, in this style of development, the
windows complete may fluctuate dramatically. Some windows may not achieve completion
until very late in the project, when the component model stabilizes. Yet, many behaviors may
indeed have been completed. This creates an illusion that the project is further behind than

reality. More sophisticated status tracking is therefore needed.

Iterate to address risks or high degrees of uncertainty

Prototypes "buy information" that reduces risk
/4 y

Iteration is required to address risks involving a high degree of unknown. These risks tend to
increase with component-based development, primarily because of its novelty. Thus, the need to
iterate is often less intrinsic to component-based development and more related to challenges
naturally resulting from unfamiliarity. What is now "traditional" client/server development faced

similar difficulties years ago.

In some cases, this unknown requires experimentation. For example, a throw-away prototype
has the explicit intent to "buy information" for reducing risk. Prototypes are a special case of

iteration involving less commitment to salvage the work. Whether the prototype is salvaged or

323

10

15

20

25

30

WO 01/16727 PCT/US00/24189

not becomes less relevant, because the primary value is in the information obtained in the

process.

Several different categories of risk require iteration. None of these are unique to component-
based development But they tend to be more important with component technology because,
again, so much of the underlying technology and methodology are new. Some of the types of

prototypes are (These are similar to other definitions):

usability, or user interface prototypes

performance prototype

proof-of-concept prototype

pilot process prototype

These categories may be addressed with throw-away prototypes, initial working models which
are later refined, or some combination. Use of "prototype" below generically refers to either

style.

User interface prototypes help users understand requirements

User interface prototypes address the difficulty that users have in defining requirements without
implementation examples. This phenomenon is analogous to the Heisenberg Uncertainty
Principle. This law of modem physics states that the simple act of trying to observe the position
or velocity of electrons affects the result itself. Likewise, users' perceptions of their
requirements may be changed, sometimes dramatically, by observing examples of the potential
solution. In many cases, these prototypes have been used as a standard design deliverable with

repeated review and refinement with the user.

An important consideration, however, is scope control. There is a very complex management
problem when iteration is used to drive out requirements with users. Experience has shown that

users may assume that exploring an alternative implies that the functionality may be

324

10

15

20

25

30

WO 01/16727 PCT/US00/24189

implemented. Thus, some change control procedures need to be defined and managed, even if

they do incorporate some flexibility to incorporate enhancements.

Performance prototypes address global architecture issues

Performance prototypes primarily address technology architecture questions. For example, the
architecture team may need to decide early on whether to use messaging, remote procedure calls,
or shipped SQL statements for distribution services between client and server. A prototype is

often the only way to identify the most effective solution.

Proof-of-concept prototypes address complexity

Proof-of-concept prototypes address areas of significant technical or functional complexity. In

the most extreme case, the team may be uncertain as to whether they can even develop the logic
within the specified quality parameters. Or, it may be too difficult to design a solution upfront,
because of a mix of technical, functional, and maintainability issues. In such cases, the team

may need to implement alternatives for evaluation.

Pilot process prototypes provide experience for the team

Pilot process prototypes are used primarily for the team to gain experience. They typically use a
front-to-back, slice of the application. This is similar to incremental development, which
delivers the solution to a portion of the business functionality. Such learning benefits are not
unique to pilot prototypes. The distinction of a pilot prototype, however, is that gaining
experience is the primary purpose of the effort. The learning may focus on technology, business

function, or methodology.

Confine highly iterative tasks to experienced framework developers

Iteration demands very experienced developers, to understand the criteria for completion. Thus,
tasks that require a very high degree of iteration, such as technical prototypes or development of
reusable components, should be confined to a small team of experienced developers. These

individuals usually comprise the architecture frameworks team.

325

10

15

20

25

30

WO 01/16727 PCT/US00/24189

One heuristic is to staff the frameworks team with the most experienced component developers,
comprising about 5-10% of the total team size. There is another reason to allow the most skilled
developers to iterate more - research has shown that very experienced software developers
naturally work more productively this way. Thus, productivity for very talented architects may
increase when given freedom to iterate as necessary. On the other hand, anecdotal evidence tells

us the opposite is likely true for inexperienced developers.

This is not to say that application developers should never iterate - it's really a question of
degree. One approach is to use selected application developers on scout teams that form for one-
time efforts and then disband. These efforts may, for example, address an initial pilot process or
other type of prototype mentioned above. Even then, these efforts are usually best coordinated
by an experienced developer, presumably from the frameworks team.

For difficult tasks plan three iterations

For those aspects of the system that require iteration, the question still remains, How do I know

when I am done? Experience has shown that three iterations are usually required, for example:

design and develop initial working model

refined working model and pilot

roll-out and support

The need for three iterations has been observed in so many cases that some consider it a magic

number. For example, the three iterations defined above parallel very closely a maxim quoted by

Kent Beck, a well-known Smalltalk expert, Make it run, make it right, make it fast.

Difficult components should be designed and then prototyped

An initial working model phase designs and prototypes the component or framework.

Prototyping may be necessary to evaluate two or three alternative approaches. In these cases the

326

10

15

20

25

30

WO 01/16727 PCT/US00/24189

initial design represents a strawman, until receiving validation from implementation. Only then

can things be finalized and reviewed for sign-off.
Piloting reusable components with developers is necessary

During the refinement and piloting phase, the component or framework is completed with any
remaining functionality and then used in a pilot case. Coordination is often necessary with a
pilot developer who is a client of the reusable piece, to ensure that it works in an appropriate use
case. Typically, the pilot process generates several refinements or changes. Pilot developers

need a flexible, positive attitude to handle potential instability.

The component must then be documented and rolled out for reuse to all developers. In many
cases, the roll-out requires a formal group meeting to answer questions. During the support and
refinement phase, the component is refined as other use cases generate new requirements, and
bugs or performance problems are identified. Although the implementation details of the
component should not be widely known, it is critical that developers thoroughly understand the
purpose and public behaviors of the component. If they do not, then they may not be able to

effectively reuse and debug interactions with it.

Summary

A traditional client/server implementation often incorporates some limited iteration with a
waterfall approach. This iteration is usually confined to technology architecture tasks.

Component-based systems tend to require somewhat greater iteration for three key reasons:

Reusability often requires actually reusing the component to ensure the reused piece

meets requirements
Component technology is new, thus iteration helps address greater technical risk

Component skills and methodologies are emerging, therefore the team often gains

valuable experience from iteration

327

10

15

20

25

30

WO 01/16727 PCT/US00/24189

Managing iteration is difficult but possible. Usually the plan must incorporate a hybrid of
waterfall, incremental, and iterative models as appropriate. The right process depends on the
organization or teams' skills, the degree of technical risk, and the specific application and

business requirements.

Testing

Testing typically consumes anywhere from 50-80% of development effort. Despite this relative
importance, testing receives little emphasis by component-based methodologies, which focus
primarily on analysis and design techniques. This section presents testing lessons consistent
with the primary themes in The Testing Process Practice Aid, produced by the Re-inventing
Testing Project. These points merit increased emphasis, however, because experience has shown

component-based systems increase testing complexity.

Testing is more complex

While a component-based approach may be simpler to test than a strictly object-oriented
approach, testing is still more complex than a procedural system, because component

architectures:

decompose into a much greater number of components than equivalent procedural

modules, introducing more complex technical integration

achieve a greater level of reuse, which is a blessing once highly reusable pieces stabilize,

but remains a substantial challenge while they undergo development

utilize flexible, messaging between components that creates a larger number of potential

test execution paths

usually develop with some degree of iteration, which jeopardizes the benefits of phase

containment

Testing requires more phases
328

10

15

20

25

30

WO 01/16727 PCT/US00/24189

The Testing Process defines a three-step process, very similar to traditional Method/I, as follows:

component test - a test of an individual module or program that is specified and coded as
a single unit
assembly test - a test of a set of programs that communicate with each other via messages

or files, usually equivalent to a user interface dialog or a batch string

product test - a test that verifies the technical and functional implementation supports the

business process
Object systems require an initial atomic test phase

When building components using objects, testing can logically follow these same three primary
phases, at a high level, preceded by an initial atomic test phase. An atomic test phase is
required because a well-factored object system may typically have at least 10 times more objects
than procedural modules in a traditional system. This finer granularity requires testing and

integrating more units at multiple levels.
Completing a window requires several stages of component test and integration

A traditional approach often defines the initial component (unit) test as a working window, front-
to-back. In a component-based architecture, on the other hand, a window may often utilize
behaviors of several components. This results in too much integration for an initial component

test. In fact, several stages of integration must occur to complete a single window.

Consider a customer that encapsulates other related components such as credit profile and
address. This customer aggregation even represents too much functionality for an imitial
component test. Simpler components such as the address must be tested first. Testing individual

components or tightly coupled aggregations should occur in the initial component test phase.

329

10

15

20

25

30

WO 01/16727 PCT/US00/24189

The assembly phase then tests the integration of these components. This test phase differs from
a traditional assembly test, because more components must typically be integrated, particularly
for the vertical, front-to-back functionality from window to database. This adds to the horizontal
integration of interdependent windows in a dialog. In contrast, a traditional assembly test
concentrates much more heavily on the horizontal dialog test, since the front-to-back window

functionality is often just a single module.

The timing of the assembly test may vary depending on the development teams organization. If
there are a number of developers working on a functional slice of the application, then early
integration helps to ensure that developers are working in concert and simplifies integration later.
Conversely, the issues of integration may not be as significant if a single developer is working on

an entire business function, end to end.

In summary, the collective atomic, component, and assembly test phases require much more

detail in terms of milestone definitions, status tracking, and methodology development.

Testing component collaborations must occur in several phases

The process of testing and integrating behavior of collaborating components must occur at
multiple levels. In particular, distinguishing between the component and assembly test phases
can seem somewhat arbitrary. A well-factored architecture may have identifiable boundaries,
however, as noted above. Thus, coming up with good definitions of aggregation - that is,
cohesive groups loosely coupled from other groups, is equally critical to testing as to design.
The component aggregation must then support an effective partitioning of the application

architecture and team organization.

Testing requires a flexible organization

On large projects, the set of components involved in a business event are often developed by
many different people. Thus, the complexity of team integration further complicates the testing
effort. Well-defined component boundaries in the software and organization are certainly key.
However, the organization must expect the need to support flexible integration testing teams that

form to ensure a particular business function works correctly across partitions.

330

10

15

20

25

30

WO 01/16727 PCT/US00/24189

Testing effort shifts earlier in development

The system test phase should go faster

The implications of greater modularity and flexibility discussed above increases complexity in
the atomic, component and assembly tests. Once the architecture and highly reusable
components in the component model stabilize, however, system test is simplifited. Thus,

component-based systems require shifting testing effort earlier in the development lifecycle.

Phase Containment requires greater attention

Experience has shown that defects become increasingly more expensive to fix later in the
development cycle. Phase containment strives to decrease both the number and cost of fixing
errors, by testing steps early in the development lifecycle through verification and validation of
work. Figure 49 illustrates a V-model of Verification 4900, Validation 4902, and Testing 4904.
Exit criteria might involve, for example, compulsory detailed checklists or code reviews before

work is promoted to the next phase.

While phase containment is not unique to component development, its importance is heightened.
Since many portions of the component model may be reused by literally every window
developer, quality is critical. That is, a high quality design and implementation for core
components increase the productivity of every developer; however, the converse is also true -
mistakes tend to penalize all developers. Thus, thorough testing and attention to quality in early

development steps is important.

Iteration complicates phase containment

Yet, incremental or iterative development complicates phase containment. Phase containment
presumes a waterfall model. For example, a module or component should not be passed to a
later phase such as coding until the design has been validated and verified. In contrast,
overlapping design and code implies coding starts with an incomplete design. This puts at risk

any efforts to define precise milestones so critical to effectively track progress.

331

10

15

20

25

30

WO 01/16727 PCT/US00/24189

Iteration requires more detailed exit criteria

Thus, iteration requires more detailed completion criteria. For example, different iterations of
design must have very explicit scope boundaries to ensure that the completion of an iteration is
adequately defined. These must be accompanied by strong adherence to proper procedures as
components are promoted through various development stages. Even with such efforts,
however, experience has shown that later designs tend to impact previously working code.

Significant regression testing must be expected, as discussed below.
Automated regression testing is usually necessary
Regression testing is necessary because of iteration, inheritance, and extensive reuse

Expérience has shown that the higher degree of reuse in an component model and application
framework makes it very difficult to protect implemented components from subsequent
development. Developers must then verify previously tested components as they incrementally
add functionality to the system. Automated regression testing can save time by ensuring that

areas that are impacted by changes are properly tested.

Moreover, regression testing capabilities are absolutely essential if an extensive architecture
framework is developed. Component-based development allows an application framework to
abstract both technical and functional behaviors. This greater level of reuse necessitates that the
framework evolve with the development of the application. Unfortunately, this implies changing
the technical environment of the application even as it approaches delivery. To effectively

support these enhancements requires re-testing at many different levels.
Using objects increases the need for regression testing
When developing components using objects, regression testing becomes even more important.

For example, inheritance often results in sub-classes coupled to their parent. A parent class may

have side effects with subtle implications to children, which are difficult to identify for test

332

10

15

20

25

30

WO 01/16727 PCT/US00/24189

cases. Experience has shown that even seemingly innocuous changes to a parent can damage

previously tested sub-classes.

In general, an inherited feature must be retested in the context of the subclass. Retesting can
only be avoided if subclasses are "pure"” extensions of their superclasses; that is, if they don't
override any methods and do not modify inherited instance variables. Furthermore, test cases
usually cannot be inherited when overriding a method. Slight differences in logic and data
declarations are indeed enough to invalidate the superclass' test cases, requiring new test

definition and input data.

All of the above considerations result in substantial re-testing. Enough so, that a manual
approach to regression testing can be extremely cumbersome. In particular, changes to shared
components or changes at or near the root class of a deep inheritance hierarchy can have
widespread impacts. Thus, automated facilities for testing should be considered a mandatory

element of component development.

Combine Automated Testing With An Automated Build Process

Automated testing can also make the configuration management process more efficient. By
using an automated test process to verify that the latest version of the application is working
correctly, it is possible to give the development and testing teams more stable releases. For
example, simple defects such as incorrect interfaces can be detected before the application is
even distributed.

GUI scripting tools alone are usually not sufficient

Capture-playback GUI testing tools have proven effective. However, for many applications

these are not completely sufficient. These tools may only re-validate that the application appears

to function properly. Experience has also shown that applications may sometimes use widgets or

technical elements of the user interface not supported by a particular tool.

Self-testing features should be built

333

10

15

20

25

30

WO 01/16727 PCT/US00/24189

A more comprehensive testing framework should be considered that incorporates the notion of
self-testing components. That is, the component may have behaviors, or indeed contain a tester
component, that feeds the class a test suite, and validates the resulting behavior. Note, however,
that test components rarely test behaviors of just a single component in isolation, because any
meaningful behavior usually cuts across multiple components. The test can still obey
encapsulation, though, by testing the group as a single black-box, rather than taking short cuts

which may undermine the validity of the test.

Testing frameworks requires more attention

The use of frameworks in component-based systems also increases the complexity of testing.

Frameworks add complexity for the following reasons:

Foreseeing all the uses of a framework is hard a priori. Thus, verifying correct behavior

is difficult because the test cases may not be complete.

The test approach can require extensive scaffolding to support emulating the application

intended to use the framework.
Framework development is usually undertaken early in the project so that it is ready to
support application developers. This implies incomplete knowledge of requirements for

the frameworks team.

The stakes are high, because the framework usually provides a reusable structure for

many developers.

There are essentially two methods for testing a framework:

Emulation approach - by building a comprehensive test environment that emulates the

application.

Pilot approach - by using application developers as pilot users in the testing process.

334

10

15

20

25

30

WO 01/16727 PCT/US00/24189

The emulation approach protects application developers from the testing effort, and is generally
more consistent with a formalized approach. Not doing so opens the door to rolling out untested
frameworks. On the other hand, creating a redundant simulation environment of the application

use cases can be expensive.

The pilot approach may be more productive by leveraging real application code. In addition, it
encourages training and knowledge transfer to developers. Finally, it helps ensure accurately
covering requirements. It is important to use application developers for the pilot, not the
architects. This may provide an objective review of the framework's usability. The primary
drawback is that it takes a developer away from the application; and, as noted above, may result
in frameworks developers feeling relieved from thorough testing. Experience has shown that a

hybrid of the two is usually necessary.

Summary

Experience has shown that initial component development projects require more effort in testing.
On the other hand, the later stages of testing can be more productive by effectively leveraging
encapsulation of components and large-grained components. There is reason to believe that
these benefits can be leveraged sooner if the team pays increased attention to testing early in

development. Testing should be a part of the entire development process comprising:

phase containment principles with explicit objectives and exit criteria such as checklists

and peer or lead reviews

automated regression testing capabilities

self-testing components

more detailed testing phases and milestones

comprehensive procedures with disciplined enforcement

335

10

15

20

25

30

WO 01/16727 PCT/US00/24189

Development Architecture Considerations

This section highlights key messages for development architecture teams in regard to supporting

teams and tools within a component based development project.

Building systems that are dramatically more responsive to change require a dramatically

improved development architecture.
What does it mean to be more responsive to change? The solutions one builds must be more:

Flexible. Making it possible to replace or modify application components with minimal

impact to the other components in the system.

Scalable. Giving you freedom to distribute and reconfigure application components to

meet the scalability requirements of the client.

Integratable. Allowing you to reuse the functionality within existing systems by

wrapping them as components within the new application.

Adaptable. Giving you freedom to deliver an application to a variety of user types

through a variety of delivery channels with minimal impact to the application itself.

Reusable. Making it easy to quickly assemble unique and dynamic solutions from

reusable components.

Component-based development pushes us forward on all of these dimensions, and although it's
relatively immature, we're better off than we were before. Metaphorically speaking, we've
climbed very close to the top of the mountain that represents traditional development. The view
is satisfactory, but we know there is something better, so now we're climbing the mountain that
represents component-based development. We have yet to reach the top, but we're already

higher than we were before.

336

10

15

20

25

30

WO 01/16727 PCT/US00/24189

On every component-based development project, teams spend time evaluating and establishing
the environment in which analysts and developers create the deliverables. A workbench must be
established that expedites the flow of deliverables through the different phases of the project. In
component- and object-based solutions, these phases are very connected. This is largely because
each subsequent phase tends to be an elaboration and refinement of the deliverables completed in
previous phases. In addition, there is a strong desire to link deliverables and requirements from

the earlier phases to the deliverables from the subsequent phases.

On a typical project one finds the following tools used in the software development process:

General diagramming tools: Visio, ABC Graphics, etc. for workflow and operation

diagrams

MS Office: Word class and component specification templates, Excel scenarios,

Object Oriented CASE tool: class and component models, component/class

specifications, message trace diagrams

Database design tools: Erwin, Oracle Designer, etc.

Integrated Development Environment(IDE): Visual Studio, Visual Age for Java,
JDeveloper, Visual Cafe

Source code configuration manager: SourceSafe, ClearCase

An inordinate amount of time is invested in the macro process of how to capture and link
information in a way that it can be used effectively through the course of the project (e.g.,
moving the models from the CASE tool into the source code of the targeted IDE environment).
Teams should tackle early the selection of deliverables in each phase and which tool the
deliverable may be created and maintained within. In addition, they should determine whether
the deliverable is to continue to be enhanced in subsequent phases of the project through the

iteration process.

337

10

15

20

25

30

WO 01/16727 PCT/US00/24189

Today’'s dilemma ... no easy answers, yet
'y Yy

To realize an environment that enhances the productivity of your analysts and programmers is a
challenge for any project, but for projects building component-based solutions, it's even more

difficult because of the technology's relative immaturity. You won't find any easy answers, yet.

Generally speaking, the resulting environment gets the job done, but consists of tools that are
crudely integrated with no central repository. This results in redundant data and manual cross-
referencing. It can also cause problems during the transition from Design to Construction % a
gap that's always been difficult to traverse. Other typical concerns include a tool's ability to meet

usability, scalability, and multi-user requirements.

Ideally what would greatly increase the productivity of the development architecture is a
seamless integration of tools in the workbench and the ability to "plug in" whatever tool is most
appropriate for the capture and communication of a particular deliverable. Figure 50 portrays a
development architecture with a seamless integration of tools which can be plugged in for the
capture and communication of particular deliverables. Shown in Figure 50 is the relationship
between a process phase 5000, deliverables 5002, tools 5004, repositories 5006, and an

information model 5008.

One solution center working on this architecture found that the current state of integration with
tools was so constraining that the picture in Figure 50 had to be resolved with many
compromises for new component work. There were many custom scripts created and manual

processes defined for leveraging the flow of information between phases and tools.

Figure 51 shows a design architecture with the compromises made for today's component
construction environment. Shown in Figure 51 is the relationship between processes phases

5100,deliverables 5102, tools 5104 and storage 5106.

Key considerations

A development architecture should provide an environment for component-based solutions that

supports a team through the Analysis, Design, and Construction phases of the development

338

10

- 15

20

25

30

WO 01/16727 PCT/US00/24189

process. It should also serve as a productive environment for the on-going maintenance of an
application. Conceptually it should integrate all of the necessary tools through an information
model and most ideally through a central repository. The following are considerations that all

component development architecture must consider.

1. Support Custom Process. The present invention uses a robust process for developing
component-based solutions. It includes deliverables that are above and beyond the Unified
Modeling Language (UML). Furthermore, projects often customize it. The environment must

provide the ability to extend the information model (i.e., the meta-model).

2. Versioning & configuration management. The environment should provide the ability to
version objects within the common information model at any level of granularity, keeping track
of these changes over time. It should provide the same ability for composite objects (i.e.,

configurations of smaller objects).

3. Scalability. The repository-enabled environment must be able to support hundreds of
users simultaneously, and hundreds of thousands of repository relationships. It should also scale

downward, so that small project can use it. This is a major criterion for usability.

4. Query and impact analysis. As organizations begin to maintain their own component-
based assets, they must be able to analyze the impact of change requests (e.g., where-used

searches). The ability to trace requirements is also critical.

5. Asset catalog (reuse). As organizations begin to reuse existing assets, it may become
increasingly important to provide a catalog of components, frameworks, patterns, etc. The
catalog should make it possible to search for relevant assets in a wide variety of ways. It should

also provide a means for applying frameworks and patterns.
6. Code generation. The ability to generate the application structure from the model is

essential to high productivity. Furthermore, this step should be transparent to the user. As far as

the user is concerned, a change to the model is a change to the code.

339

10

15

20

25

30

WO 01/16727 PCT/US00/24189

7. Desktop Tool Integration. The repository-enabled environment must provide integration
between all desktop tools (e.g., MS Office, Visio, OO CASE tools, designers, etc.) through
component object models such as ActiveX. In addition, these tools must have access to the

common open information models.

8. Non-redundant storage. The environment should avoid redundant storage of
information, whenever possible. Everything from training to documentation to active

components should be automatically updated or notified of changes.

9. Multiple users and locations. Many users may need access to the environment during the
course of a development effort. Furthermore, because one supports global communities of

practice, there is a strong need to share this information securely and across disparate locations.

A Development Architecture Needs to Support Customization of the Process.

UML & Case Tools in the development architecture

Each project using component-based technology determines how to use OO CASE tools to
support an object-oriented methodology and its deliverables. These deliverables range from
high-level business process documentation in the business-modeling phase to descriptions of
classes in the construction phase. UML compliant CASE tools provide a number of the
deliverables that most object methodologies uses, however, there are almost always some
deliverables that do not fit in the selected tool. There is also a discrepancy with the CASE tools'
ability to comply with UML due to the continuing evolution of UML versions.

UML has become so universal now that deliverables from most methodologies form a superset
or, in some cases, a subset of the deliverables described by UML. In the case where a
deliverable is a close match to a UML deliverable, proprietary scripting is required to allow for
complete semantics. This scripting is also used to migrate from the CASE tool to other drawing:
or word processing tool. Procedures must also defined to effectively use the tool to support the

process.

Decide on supported deliverables early in process

340

10

15

20

25

30

WO 01/16727 PCT/US00/24189

Case tools in recent years have extended their ability to support more of the life cycle and
improved their ease of use. In addition, some case tools have improved their integration with the
Integrated Development Environments (IDEs) and produce some level of acceptable component
code generation. It is important for the development architecture team to determine early exactly
which deliverables may be created in each phase of development, which tool they may be
captured in and whether links between phases require upgrading deliverables as a result of the

transformations and/or enhancements from other phases.

The team must decide how much they may leverage the automated tools to support the build
process. An investment in the macro infrastructure can lead to tremendous time savings as the
construction process is supported. The team needs to determine early whether they may "build"

their custom process into the tool or adjust the process to better integrate with the tool.

Development Architectures Are Often More Heterogeneous Than Traditional

Environments

While traditional client/server systems typically required one development tool for programming
efforts, component-based systems are often built using several tools and programming
languages. The increase in tools is directly related to the improved capability to integrate

software components through interfaces that hide the implementation details.

Typically, the more heterogeneous environments may be built upon the open CORBA
technology, while applications developed with JavaBeans or COM may tend to be more -
homogeneous in nature. Thus, it is important to understand the technologies used as the effort to
design a cohesive development architecture may be impacted. Plan to spend more time

designing and building the development architecture for a heterogeneous environment.
Configuration Management

The advent of client/server has focused significant attention on the importance of configuration
management as key to success. Configuration management is more than just source code

control. It must encompass the management of the application software components from

341

10

15

20

25

30

WO 01/16727 PCT/US00/24189

conception, through implementation, delivery, and enhancements. While the problem is not
unique to component and object development, an object-oriented environment presents special

challenges discussed below.

Configuration management is more complex in a component development architecture

Currently, artifacts versioned with various tools do not know about each other. For example, an
object versioned in a document management tool has no relationship to the source code
configuration. In addition, various tools are advertising the advantages of their repository
strategies. However, these products are in their infancy and most do not integrate seamlessly
with the source code configuration managers let alone the various tools in a development
workbench. Models, source code and documentation are not synchronized. The reality is that
current versioning in the majority of tools only occurs at the file level and not at the required
level of granularity to support development elements. Methods, classes, components, and their
respective deliverables should be versioned but only a few products on the market today support

this level of granularity and they are not yet integrated with popular case tools.

Object systems are decomposed into more pieces

Configuration management is more complex with object development because the system is
more finely decomposed. Object development realizes the benefits of flexibility and reusability
through a greater level of decomposition than was present in traditional systems. While smaller
objects have the advantage of making it easier to have pre-defined building blocks, a
disadvantage is that large-scale systems have so many elements that managing their relationships

becomes difficult.

For example, a key principle of object-oriented design is separation of concern, which
decomposes behavior into smaller, more cohesive objects. This strategy strives to prevent
changes from rippling through many objects. The implication of this design approach, however,
is that the resulting system may comprise many more modular pieces than a traditional

architecture. This greater decomposition complicates configuration management.

342

10

15

20

25

30

WO 01/16727 PCT/US00/24189

Not only are there more objects than procedural modules, the relationships and dependencies
intrinsic to object development are usually more complex. For example, the relationship
between business processes and objects is a complex, many-to-many mapping: a business
process is implemented by more than one object; conversely, an object contributes to more than
one business process. Figure 52 illustrates a business process 5200 to object 5202 mapping to
illustrate such relationships between business processes and objects. One manager referred to

this phenomenon as the web of interdependencies.
To manage this problem determine early what the "unit" of configuration may be and have the
development organization aligned with the approach. For example, in the previous maze
possible units of configuration could be:
Process 1depends on:

Object 1

Object 2

Objectn
This keeps the process component rigorously configured with its dependent pieces.
Configuration management requires a comprehensive approach
Most object CASE tools do not support a complete, integrated repository
Integrated tools have, thus far, not been found to support cross-referencing window elements,
object model attributes and behaviors, and relational database definitions. Thus, large projects
must consider crafting a strategy to integrate multiple point tools to provide such cross-

referencing.

The tools gap raises the importance of rigorous procedural and organizational models to address

configuration management. For example, proper procedures must ensure that rigorous quality

343

10

15

20

25

30

WO 01/16727 PCT/US00/24189

and build steps are followed before introducing a new component into the environment; the
workplan requires much more detail to track dependencies; and, the organization structure must

effectively support more extensive communications to react to changes.

Adopt a philosophy for configuration management that guides the development of the process

There are two fundamentally different approaches to configuration management in the
component world. Simply stated, they represent the difference between an optimistic approach
versus a pessimistic approach to managing sources. In the optimistic approach multiple users can
access and modify the same sources and the tool is leveraged to resolve conflicts when code is
merged. In the pessimistic approach a source is locked when it is checked out. Both advantages
have pros and cons and some source control managers allow the configuration to choose which

approach they may choose.

Define multiple levels of ownership

A traditional, procedural system usually assigns ownership by business function. Functional
developers take on responsibility for a business function that corresponds to a front-to-back
window. Technical team developers then take on cross-function architecture responsibility.
This approach has obvious benefits in providing straightforward communication points and
division of responsibility. A drawback, however, is that business function reuse is much more
difficult.

This approach breaks down due to the higher level of reuse in an object-oriented system. Note
that a procedurally designed system may also experience this problem to the extent that the team

strives for a large degree of business logic reuse.

Owners must exist for every versionable component

An object-oriented system must assign component ownership at multiple levels. Business
process owners are still necessary; however, clear lines of responsibility must be assigned for the
domain object model. Often these two may have a tight relationship. For example, consider a

gas utility customer system that provides customer service orders. The service order business

344

10

15

20

25

30

WO 01/16727 PCT/US00/24189

process and service order domain object owner should probably be the same person. However,
the service order process may also need to collaborate with other key domain components such
as the customer and premise. This requires collaborating and communicating with other

developers.

Rigid ownership boundaries may not work

Experience has shown, however, that the level of communications with core business objects
such as customer and bill account is so high that the rigid ownership might be ineffective. The
resulting communications of requirements may produce inefficient hand-offs and bottlenecks.
For large, mission-critical applications, multiple levels of ownership must then be defined.
However, this creates a risk of conflicts. Before components mature, the rules of divisions
should probably be more rigid. Later, multiple developers can modify common classes, while
keeping responsibility to release, or publish, the code in the hands of a single owner.

Thus, ownership roles may overlap, requiring the rules of engagement to be defined. Yet, every
scenario cannot be spelled out precisely. The team and.leadership must then be very
participatory and flexible to adapt to the dynamic requirements.

One large engagement defined separate, overlapping ownership responsibility for:

Windows

Domain object model sub-systems, or components; the model comprised about 350

model objects which were partitioned into about 12 major areas

Business processes that were particularly complex, highly reusable, and cut across many

windows; for example, writing off a bill
Common architecture framework components

Separate concept of ownership from developer for increasing productivity

345

10

15

20

25

30

WO 01/16727 PCT/US00/24189

One solution to the above problem is the clear distinction between component ownership and
developer rights. This philosophy is supported by tools like Envy/Developer for Smalltalk and
Visual Age for Java. Assign owners of classes, packages, and projects and then assign
developers to the packages. Any developer may write methods on an open edition or checked out
copy of a class. The owner of the class can release the methods to the class, version the class and
release to the general development team. In this model editions are open configuration units,
versions are any units that have been checked back in and releases are units that have been made

visible to the next construct of configuration management.

In this model clients of lower level components can be added as developers in the integration
phase. Rather than have to wait for a new version of the component, they can concurrently have
an edition opened with which they can modify or enhance and then submit their changes back to
the component owner. This practice can keep control with component owners but increase the

bandwidth of the development cycle.

Application packaging must have a clear release management strategy

To support a flexible ownership model requires a detailed technical packaging strategy. Multiple
levels of granularity for controlling source code are typically needed. The method and class are
obvious targets for versionable components. However, levels of granularity above the class are

critical to properly control the cross-class development that occurs.

Typically development may occur on groups of classes which can be versioned together as
categories or applications. In Java, for example, these categories are packages. For example, the
frameworks development team may generally have a work-in-process version of the framework
architecture package to support new development. Application developers would instead have

an older version, typically the first version, that had been thoroughly tested and rolled out.

It may also be necessary to version groups of methods together in a class. This has proved

beneficial for managing object model development.

Components of the system should also have a well-defined [EWF1]relationship between them.

This should occur at each level of granularity and give a definite feel for the dependencies

346

10

15

20

25

30

WO 01/16727 PCT/US00/24189

between components. Each instance of a component also needs to know the specific, tested
component versions with which they are compatible. It is essential that the relationships
between components are non-cyclical or layered and that a complete dependency inventory be

obtainable for every versionable component.
Favor shorter shelf lives to support frequent roll-outs of reusable objects
One of the most difficult decisions for object development is how frequently to roll-out reusable
components to multiple developers. And a related issue is how long component should sit on the
shelf between changes.
For a traditional, waterfall approach the shelf lives may be quite long with few iterations. For
example, a module is typically coded and then put on the shelf until string test. The elapsed time
ranges from a few weeks to many months. Likewise, once string tested the module may again sit
for a long time until system test. These long shelf lives typically work reasonably well unless
the underlying data model or architecture changes. In this case, unproductive re-work results.
The object model must be continuously rolled out to the team
For object development, roll-outs of objects must occur at varying intervals depending on the
range of impact. Because the object model is continually evolving as completed windows
incrementally add behavior, the model must be continually refined and rolled out to the team.
Some of these changes may have a very narrow impact to just one window, where others may
have more global implications.
For example, changes may be rolled out in the following intervals:

Application Interface or Control - nightly

Narrow Impact Object Model - nightly

Wide Impact Object Model - coordinated on-demand, no more than 1-3 times per week

347

10

15

20

25

30

WO 01/16727 PCT/US00/24189

Frameworks - weekly or less frequent depending on impact, maturity of the component,

and the complexity of the effort

Structural Object Model - for data waves, once per month

Object development also requires shrinking the shelf lives dramatically. Reusable domain model
and framework objects generally require a zero tolerance policy for incorrect code. Problems
need to be fixed immediately, or at least their impact critically assessed and the fix scheduled. As
mentioned earlier, some of this immediacy can be managed with careful process surrounding
ownership, editions and developers. In one tool there is a concept of a scratch edition that allows
a non-registered developer to access units of control and make changes within his private
environment and still be able to post the changes back to the component developers and owner.

This eliminates hours or day turn around to correct a critical problem in a versioned component.

Clean-up or fix-it days must be scheduled

Window or view specific behavior can have a longer shelf life, but still not as long as traditional
development. Letting items sit for more than even just a few weeks can cause them to become
dangerously out of date. Thus, two different large engagements found it necessary to schedule

clean-up fix days on a regular basis.

Regression testing is key to effective configuration management

Regression testing is essential to support these more frequent clean-up efforts. This approach
frustrated management, because these days appeared to be a step backward or treading water.
However, keeping the application clean paid dividends in addressing and fixing problems more
efficiently. Generally speaking, the longer the problem went unfixed, the more expensive they

were to correct.

In summary, a flexible approach is necessary to coordinate and control changes. Some

considerations include:

348

10

15

20

25

30

WO 01/16727 PCT/US00/24189

Ability to absorb change - If the developers are overwhelmed with change or leaming curve, the

shelf life must be expanded to reduce change.

Magnitude of the change - Minor changes may be easy to incorporate and may facilitate
immediate turn around. Major changes may be expensive to incorporate except at controlled,

regular intervals.

Restart Cost - Each effort to integrate changes into an existing component may incur a start up
cost for the developer. This may again be influenced by the magnitude of the change, and the
duration of the integration cycle. A rapid integration cycle may keep the behaviors fresher in
the developer's memory; a longer shelf life may involve a refamiliarization cost. On the other
hand, this must be balanced against the cost of starting and stopping new development to

implement fixes.

Stability - As a component stabilizes and matures, the shelf life can be reduced without
impacting the rest of the project. Unstable object components cannot be rolled out as frequently,

because the turn-around time is longer.

Delivery Capability - The ability of the migration team to provide a "most current” build
may also impact the fix versus shelf decision. In C++, the build process may be a major
undertaking, where the shortest shelf life may be measured in days. In Smalltalk, the size
of the image may likely have a similar affect. In Java the adherence to clearly defined

packages improves the delivery capability.

Configuration management may require 5-10% of development team

Configuration management clearly requires more effort with object-development. These roles
are often hard to justify to management, because they appear to be pure overhead. The tasks
may also appear unclear. For example, tasks such as "Manage environment" and "Communicate

changes" do not to have a start and a finish.

These tasks should be controlled and managed by a centralized effort. Several people sharing the

effort in their spare time may not exercise enough caution and due diligence. Furthermore, a

349

10

15

20

25

30

WO 01/16727 PCT/US00/24189

centralized effort may often result in automation of tasks producing significant productivity

improvements.

At least 5% of the development team should be completely dedicated to the on-going
configuration management effort. When setting up and defining the environment even more
resources may be necessary. Of course, there are limits. Stacking the team with too many

resources may result in wasteful development of an overly elaborate tools architecture.

Another approach is to make the configuration process implicit in the entire development
process. In other words, by ensuring that an owner of a class must version and release his work
before it can be seen by a containing package the owner is required by the process to be thinking
about the configuration process in all of his work. Subsequently, the package owner, generally a
more experienced developer, must ensure that all classes are versioned within his package,
version his package and then release it for general consumption. This would work the same for a
project which tends to be centered around increasing units of capabilities (i.e. business activities

and finally whole applications).

Scaling to large teams

Despite the advice to use small teams, enterprise applications are large and often require in the
aggregate a large number of developers. Development architectures must be constructed in such
a way as to support sometimes hundreds of users with many, sometimes hundreds of thousands

of development artifacts and their relationships with each other.

All of the major software development tool providers (i.e. IBM, Microsoft, Oracle, Unisys, etc)
have announced repository strategies. These repository strategies are much more comprehensive
then the proprietary repositories that are represented by a source tool repository such as in Clear
Case for source code or the proprietary repositories shipped with Case Tools or development
environments like Envy Developer and Forte. These repositories allow for information to span
tools and strive for integration between not only tools provided by a single vendor or from a host
of third parties as well. Many case tool and IDE providers have announced support for this new

generation of component repositories.

350

10

15

20

25

30

WO 01/16727 PCT/US00/24189

The new strategies all espouse either de facto standards (Microsoft's Open Information Model) or
eventual conformance to a repository strategy (OMG's Meta Object Facility - MOF). These
repositories, although encouraging, are very immature and may require a few years to deliver on
their promises. In the mean time development architectures must decide on their own how they

may provide the necessary facilities to promote large team development progress.

Query & Impact Analysis

Tools are necessary to identify categories of similar behavior such as the class hierarchy, where
used, senders of, implementors of, etc. Today, many environments for C++, Smalltalk, Visual
Basic & Java provide robust browsers with this comprehensive functionality. Additionally case
tools also provide search capabilities. Unfortunately every tool uses a different method for
finding artifacts, such as text searches for documents, menu provided searches in case tools, and

where used and senders of within browsers.

As mentioned in an earlier section many of the language based IDEs provide sophisticated
browsers and explorers that allow for searches for "where used" and "senders of" for messages
and objects. These facilities are extremely important in component leveraged architectures. They
allow developers to more effectively look for things to reuse rather than always re-inventing
what they need. One important practice to help the searching process is naming standards. They
should be put in place early in the process to enable a principle ParcPlace was fond of calling,
"the principle of least astonishment". Because of polymorphism developers become very agile in
locating classes and methods because their interfaces are so common like all objects responding

to the "toString()" method.

One of the problems in current development architectures is the redundancy of the facilities. For
example, rather than be able to rely on the repository where the information should be stored in a
common location developers may search in Rational Rose and in the source code manager for

references of a given type.

One way to mitigate this issue is to publish information to a common location to make it
accessible to everyone through a common interface, preferably a web browser. Tools like

JavaDoc and Microsoft Word (which can transform documents into HTML) make it possible to

351

10

15

20

25

30

WO 01/16727 PCT/US00/24189

leverage the web server's index server to locate artifacts from various locations. This practice is

being more widely adopted, as shown by the release of IBM's JCentral tool.

Asset Catalog (Reuse)

One key improvement in component-based development from traditional development is the use
of components to assemble solutions. This is very different from libraries. Because of the
reflective nature of components, runtime binaries can be dropped into the development
environment, their interfaces exposed and then integrated into the current solution space. This is
done through the Java Reflection mechanisms within class files and type libraries in the

Active/X world.

Currently reuse tends to be at entire source code branches rather than component-oriented. This
has been provoked by poor version support in most development environments and tools
inadequate for managing the assembly and configuration of components into solutions. Some
component manager tools that are being released onto the market today support either the
ActiveX or JavaBean component models but its not clear how they may be received, used and

integrated into development and design environments.

To maximize reuse requires the assembly and configuration of run-time components in addition
to being able to construct new components as part of the software construction process. A new
breed of tools supporting black box reuse referred to as "Component managers" should be
considered one of the primary tools provided with the environment to 1) support transformations
between tools where this may continued to be a requirement, 2) enable component views of reuse
allowing configuration from both run-time and development components and 3) give component
developers security features preventing users from modifying and/or reusing certain components
if they desire. It requires the ability to categorize components and search components according

to property descriptions in a way that can be ascertained without the viewing of source code.

Code Generation

In the past code generation was crude, had to be customized, and was hard to keep synchronized

once source code was emitted. This awkwardness was caused by other related factors like the

352

10

15

20

25

30

WO 01/16727 PCT/US00/24189

lack of a common information model, little coupling with the IDE and no common repository
sources. In addition, the ability of the CASE tool environment to comprehend the run time
environment was poorly supported in most tool environments. The most damaging problem is
the failure of CASE tool providers to "own" the code integration and generation produced from
the model. Some of the efforts to integrate with IDE's via Add-Ins are a step in the right
direction but, some key issues, such as identity integrity across multiple environments, have not

yet been addressed to ensure its success.

That being said, code generation via case tools at the structural level can greatly increase the
productivity of a team when a rigorous model is adhered to in mapping the domain model
constructs to code or schema in the target environment. Two areas have been used to some
degree of success from component engagements 1) generation of DDL from object schema - the

domain model and 2) generation of the object structure or domain model to the target language.

One analogy has been made with Layout Managers or Screen Builders. A decade ago people
were comfortable with coding windows by hand. Some even felt that form designers were too
constraining and got in the way of developing a really usable interface. However, no one today
would think of generating forms by coding them by hand. So with the standardization of UML
and the maturing of object model semantics developers should be reticent to code class structures
by hand. Oracle refers to this as "one source of truth". A change to the class structure in the

source code is a change to the model and vice versa.

Desktop Tool Integration

Desktop tools today generally include an office suite, drawing tools, case tools and more
recently, a web browser. For example, one might find a tool selection like Microsoft Office for
documentation, Visio for custom deliverables, Rational Rose for models, and Internet Explorer
for viewing HTML versions of the documentation. VBA has become the glue for extending and
connecting the information between these tools. Other strategies have included using Notes as a

repository for all of the deliverables that users could access information.

ODM has many predefined deliverable templates that are targeted towards this suite of tools

including Word, Excel and Visio templates. Often times management under-estimates the start

353

10

15

20

25

30

WO 01/16727 PCT/US00/24189

up cost of integrating the tools in such a way as to improve the flow of information between
phases and for ensuring that information is published to the team in a way that is accessible and
plentiful. However project experience teaches that this investment can yield many returns down
the road if the development architecture includes processes and infrastructure to support this

flow of information.

This desktop tool integration strategy needs to take into account the comprehensive approach
used by the configuration management strategies. In other words, relevant documents need to be
associated with the components and business processes they update so that key stakeholders can
subscribe to alarms that may make them aware of when sections of documentation need

updating. This process may help ensure that the publishing model is dynamic and current.
Many Users and Multiple Locations

Solution Centers and engagements often have many users and multiple locations involved in
solution delivery. It is very important for development architecture teams to solve the problems
of concurrency within tools and ownership across locations. Strategies need to be developed for
how components may be exported and imported, and supported across locations. In addition, an
approach for receiving feedback for improvements needs to be established. Most projects have
found that ownership is even more important in a distributed development environment. This
allows for the using of master/slave assignments on components and dictating either who is
allowed to make changes to the component or who is responsible for merging changes. As one
technologist from Sun stated, if distributed development is not managed carefully it can be like

herding cats.
Summary

Although there are new challenges with development architecture in a component environment
there are also additional opportunities for increased productivity. A team that understands the
additional considerations may weigh the opportunities that tool integration can bring to the
project against the practical gap in the market place and customize their development

architecture accordingly. Wise planning and a clear understanding of the strengths and

354

10

15

20

25

30

WO 01/16727 PCT/US00/24189

limitations of the tools available to a team may contribute greatly to the success or failure of a

project.

Managing Performance

Component-based technology is often sold on benefits such as reduced maintenance, increased
reuse, or flexibility to absorb change. Performance, on the other hand, is usually viewed as a
significant drawback. However, resilience to change and performance do not have to be

mutually exclusive.

Component technology can enable better performance

Component-based systems have advantages that can actually enable better performance - but
only if proper design techniques are used. This chapter discusses the correlation between
performance-tunability and a well-designed component-based system, and the implications this

has for project management.

The timing of when to address performance may initially appear trivial. "Design performance in
from the start” is one often-repeated rule. The opposing viewpoint is expressed by computer
scientist David Knuth who said, "Premature performance tuning is the root of all evil". Timing
when to address performance is actually a complicated management issue. The competing forces

and their possible resolution are discussed further below.

Define performance goals in terms of the business

An old saying goes, "Cheap, fast and good - I'll give you two out of three". Many of clients may
react negatively to this philosophy, because they would certainly like excellence in all three
areas. Yet, the fact remains that difficult tradeoffs exist between performance, quality, and the
cost of the system. For example, no one intentionally designs a slow system. Thus, it is critical

to define performance goals in business terms based on cost/benefit analysis.

355

10

15

20

25

30

WO 01/16727 PCT/US00/24189

Consider service level agreements for online performance, which are often based on the average
wait time between screens. This makes sense in a technical environment using 3270 display

devices. However, this may lead to poor business decisions for a non-modal, windowing GUI.

A GUI may support a more rich set of processing than a 3270-based design. This can result in
response times much slower per window; however, the time for completing the business
transaction such as a customer order may be equivalent or even less. Yet, to tune the
performance for an equivalent level of window-to-window response time may simply not make
economic sense. Thus, the requirements should be based on how efficiently the system
completes the pure business event, encompassing potentially multiple windows, rather than a

more technical measure of window-to-window navigation.

Measure Performance

Any effort to effectively address performance requires thorough measurement capabilities.
There are two reasons for this. First, the team must understand where the specific risks reside,
before they can effectively attack them. Is the application I/O or compute bound? Is database or

network /O a bigger issue? Are there obvious bottlenecks? These are all key questions.

Performance metrics focuses attention and provides confidence

Second, just the simple act of measuring and tracking performance focuses attention in a positive
way. Tools such as language profilers and memory-leak checkers are critical. A rich set of tools

can give the team more confidence in the quality of their development and technology.

Confidence is particularly important to object-oriented and component-based systems
development, because a delicate balance is necessary between addressing performance risks
without detracting from good object-oriented design. For example, fear of messaging overhead
may lead developers to avoid altogether factoring behavior into smaller methods and objects.

Yet, such factoring is critical to application reusability and quality.

Fear of object messaging overhead can be overstated

356

10

15

20

25

30

WO 01/16727 PCT/US00/24189

A potential source of misunderstanding is equating object messages with network or operating
system messages. Actually, object message sends are often more comparable to function calls,
albeit slower. And the overhead of message sends compared to function calls can be
unimportant compared to the application I/O. That is, most applications are /O bound, not
compute bound. On the other hand, it is important to understand the frequency of component
messaging since it may cross network or process boundaries. Thus, when looking at messaging
characteristics it is important to distinguish between component messaging and object-

messaging.
Address Architecture Performance Risks Early

As with a traditional client/server system, performance risks should be addressed early.
Performance requirements often have a severe impact on the technology architecture including
the infrastructure design and the platform systems software and hardware. For example, the
architecture team may need to decide whether to use messaging, remote procedure calls, or
shipped SQL statements for distribution services between client and server. Performance may
also impact fundamental platform decisions such as the choice of language, DBMS vendor,

operating system, network, or hardware configuration.

Usually these parameters cannot truly be understood without constructing a benchmark
prototype. In cases where the underlying platform is affected, the benchmark should be planned
and conducted at the outset of the project. These measures are important, because intuition may

often be wrong as to where the problems lie.

In addition, the technologies that make up the foundation of a component architecture may be
new and unproven. To minimize risks, look for a reference application that is similar in
complexity and size. If a similar application can't be found, then it may be necessary to develop
a proof-of-concept prototype for the architecture. Such a prototype may address areas such as

the middleware, application architecture, or hardware platforms.
Performance Is Balanced Against Encapsulation and Software Distribution

Performance Is Frequently Balanced Against Encapsulation and Software Distribution

357

10

15

20

25

30

WO 01/16727 PCT/US00/24189

As with any system, there are design trade offs that can be made to achieve better performance.
With component-based systems, some of the most significant performance trade offs are made

against encapsulation and software distribution.

The encapsulation of data forces applications to access data through a component's interface.
Unfortunately, encapsulation may many times result in excessive messaging, sometimes across a
network, between components. Thus, performance can often be improved by breaking

encapsulation to directly access data.

Software distribution is often simplified by utilizing centralized application servers. However, a
centralized approach may result in diminished performance due to the network messaging.

Performance can often be improved by distributing software closer to the point of usage.

Selecting the right balance between performance, software distribution, and encapsulation is not -

easy. Achieving the right balance may be driven by system's requirements.

Performance Tuning Can Be Deferred With Object-Oriented Frameworks

Object-Oriented Frameworks Enable Performance Tuning To Be Deferred

Smalltalk columnist and consultant Kent Beck espouses the philosophy "Make it run. Make it
right. Make it fast." At a glance, this advice may seem counter to the previous recommendation
to address performance risks early. However, they do not have to be mutually exclusive. An
application should be prototyped - i.e., made to run, early to address broad architecture
performance risks. Later, proper design should be the focus before performance, because a well-
designed application enables more productive performance tuning. Optimized code is simply
very difficult to maintain. And prematurely optimizing code may incorrectly assume what

problems are most important, thus wasting effort.

Object-oriented system development, in particular, allows for a deferred attention to
performance. The component design goal of encapsulating implementation details tends to

lessen the impact of major change to the application. This allows sweeping changes to be made

358

10

15

20

25

30

WO 01/16727 PCT/US00/24189

late in application development. Figure 53 is a diagram which illustrates a graph 5300 of

resilience to change.

This graph illustrates the belief that through a good object-oriented design, changes related to
performance tuning may be made much later in the development lifecycle than would generally
be possible with traditional structured design. With an emphasis on good object-oriented design,

the degree of radical change possible late in development is surprisingly high.

Non-Object-Oriented Systems Should Be Performance Tuned Throughout Development

When components are not built using object-oriented frameworks, it may not be as feasible to
defer performance tuning. Without frameworks that provide a well-layered and factored
architecture, it may not be possible to make small, localized changes that result in dramatic
performance improvements. Instead, it is better to performance tune as the system is being built
so that there is time to make changes. Furthermore, it becomes even more important to establish
design guidelines early in the project so that detailed designs can be reviewed against them. This

can help ensure that performance problems are avoided before components are implemented.

Leverage Points

The value of reuse is frequently perceived as "less to code". While often true, a sometimes
overlooked, more valuable aspect is "less to maintain". This is notably significant when
performance-tuning a system. It is generally worthwhile to spend more time upfront determining
how to reuse existing components than it is to spend less time developing a new solution.
Similarly, it is usually more worthwhile spending more time generalizing a component so it may

be reused than it is spending time to develop a specialized solution.

A leverage point is factored out behavior that enables leveraging global performance gains

A leverage point is processing common to multiple components which may be factored out and
reused when needed. In performance tuning, these points are identified, profiled and tuned,
thereby leveraging any performance gains against all components which use them. In general,

the less actual processing an application-specific component (i.e. non-architecture) performs

359

10

15

20

25

30

WO 01/16727 PCT/US00/24189

indicates the more performance leverage may be gained from it by tuning architecture

processing.

For example, a business event controller class in a system must somehow specify the
relationships between its relevant business components and the widgets which may interact with
them on the application window. There are two fundamental approaches in specifying these
relationships. The first is for an initialization method to be invoked in the controller which may
perform the processing required to define these relationships. The other is for that business class
to specify the bare minimum information required to infer these relationships such that a
common architectural component can perform the actual processing required to define the

relationships during runtime.

The latter approach provides a leverage point for performance tuning the initialization of the
window. The processing may be tuned to use a more efficient algorithm; the results of the
initialization may be cached during application packaging and read during initialization; or,
efficient initialization methods may be generated and maintained automatically from the
information by a code generator once it becomes clear what the most efficient implementation is.
In any case, the flexibility provided by this leverage point allows many more possibilities to be
considered during performance tuning. Note that all three optimizations could be achieved
without manually visiting a single of perhaps hundreds of windows which share the initialization

processing.

The pursuit of leverage points must be considered in every architectural design decision, and

followed with discipline in application design.

Communication via Interface Definitions - specify what not how

On a component-based project where the development should reuse extensively, the name of a
component and its methods are perhaps the strongest medium of communication between the
original developer and a developer interfacing with, or maintaining that component. A
fundamental grammatical naming standard is the means to ensure clear communication between

developers. This standard must be well-defined, strongly enforced, and supported by leadership.

360

10

15

20

25

30

WO 01/16727 PCT/US00/24189

A weak standard of interface definition often results in code requiring extra processing which
could be avoided by making assumptions based on a strict interface definition. Performance
tuning is easily complicated by generic interfaces supported by vague assumptions. Redefining
such interfaces late in development is often prohibitively expensive relative to the low cost of

clear initial interface definition.

An example of a poorly-defined interface is a method definition which may accept several
unrelated types as its parameters. The result leads to type-checking of parameters and decreased
flexibility in tuning the implementation of the method. The strong definition of interface
parameters allows fundamental assumptions to be made in tuning the implementation of the

interface.

A grammatically-based naming standard differentiates between methods that do versus methods
that get. In a traditional approach, procedures or functions do routines and algorithms. The
unique blend of data and behavior in component-based development, on the other hand, allows
components to collaborate, asking each other for data, as well as directing each other to perform
processing. This requires the addition of nouns and the inclusion of verbs to the vocabulary of

interface definition. That is, the interface should specify what, not how.

For example, if a customer component provides a public interface that allows another component
to ask it to query the database for its credit profile, a common mistake is to define a method
getCreditProfile or retrieveCreditProfile in customer. If, however, performance tuning required
caching the customer may already have the credit profile. This would leave development with
the choice of either changing the method name in all referencing components, or create
documentation to explain why the method getCreditProfile didn't really get anything, but just

provided access to another component.

This example illustrates the importance of naming to ensure encapsulation. The implementation
changes required to achieve radical performance improvements are feasible only through
diligence in the pursuit of encapsulating implementation. Along with good design organization,

clear interface definition is key in achieving valuable tunability.

Limit knowledge of data and object relationships

361

10

15

20

25

30

WO 01/16727 PCT/US00/24189

Developers with structured programming experience often tend to perceive objects as data,
manipulating them within the context of objects, effectively distributing behavior associated
within components amongst all the objects which interact with it. This becomes very difficult to
performance tune due to the combination of duplication of code, and the wide impact any such
tuning could have on application classes. A much greater degree of performance tuning can be
achieved when object responsibilities are respected and objects or collaborations of objects can

be tuned in isolation with minimal impact to their embedded system.

A simple example of "data-ifying" objects is when object A manages a group of other objects,
yet other objects ask object A for its managed objects and manipulate them freely. Generally
loop iterations are prime candidates for significant performance improvements. If the iterations
are distributed over every object that interacts with object A, little performance improvement of
component A may be gained without high impact. By restricting interfaces such that only object
A may iterate over its own managed objects, the iteration code can be tuned with little impact

outside object A.

Performance improvements can always be identified. The difficulty is in the cost of actually
implementing them. The strong pursuit of encapsulation allows bottlenecks to be identified

more easily (i.e. in one place), and tuned with minimal impact.

Leverage functional and technical tuning

Though tuning of a component-based application can be deferred until late in development,
eventually it must be done. At this point it is important to realize the difference between

functional tuning and technical tuning.

Functional tuning involves a combination of cognitive and measured tuning. It consists of
looking at the functional design of a component and determining which portions of processing
can be deferred, cached, etc. It demands a developer who is functionally knowledgeable about
the desired behavior, whether it be architecture or application. It often results in reorganizing or
redesigning portions of code. The performance gains realized during functional tuning are

generally the most significant gains.

362

10

15

20

25

30

WO 01/16727 PCT/US00/24189

Technical tuning is a lower-level approach to tuning, developing more efficient techniques to
achieve the same functionality. Technical tuning demands a developer who, though not
necessarily intimate with the functional requirements, has a strong familiarity with tricks and
techniques of the development platform. It can involve better use of memory, language idioms,
base class modifications, etc. Technical tuning should require little or no changes to application

code, and narrow changes to architecture.

Opportunities for performance tuning are found both in bottlenecks and in distributed
inefficiencies. There are generally many tools évailable in detecting bottlenecks. Distributed
inefficiencies are usually more difficult to identify with tools. Whether performance
optimizations are realized through cognitive analysis, or tool-assisted profiling, it is important to

measure the gains against a baseline performance level.

Few performance improvements are gained by eliminating completely useless code. Gains are
usually achieved by trading speed for size, or chronologically reorganizing processing.
Improvements in one area may weigh in a different area. For example, runtime processing is
often sped up by increasing initialization time. When making such changes, measuring the
affected runtime processing is insufficient. It is necessary to measure also the areas impacted to

determine that the optimization does not push another area into unacceptable response.
Summary

Performance is an acknowledged risk in developing complex systems with today's maturing
component technologies. To reduce risk and uncertainty, it may be necessary to develop
prototypes that validate the architecture approach. When components are built using rich
object-oriented frameworks, it is possible to tune a component-based system more effectively
and later in development, than its structured counterpart. Other more traditional approaches to

components, may require tuning throughout the development cycle.

BASE SERVICES (1020)

363

10

15

20

WO 01/16727 PCT/US00/24189

Batch processing is used to perform large scale repetitive processing where no user involvement
is required. Batch support is an often overlooked area in architecture and component design.
When first client/server and then component technology hit the scene, the emphasis on GUI and
communications was so strong that many thought of batch as dead. Today, one is wiser about
including batch in the scope of both architecture and application efforts. One also finds that

many of the principles and concepts that applied to batch twenty years ago also apply today.

In general, batch still has the following fundamental characteristics:

Scheduling — Services are required to manage the flow of processing within and
between batch jobs, the interdependencies of applications and resources as well as to

provide integration with checkpointing facilities.

Restart/Recovery - Batch jobs must be designed with restartability in mind. This
implies the need for a batch restart/recovery architecture used to automatically

recover and re-start batch programs if they should fail during execution.

Controls - Run-to-run and integrity controls are still required to ensure that all data is

processed completely.

Reporting - Services are required to handle configurable report creation, distribution,

printing and archiving.

These services are typically not provided through component technologies. They can be

provided by third-party products or custom implementations.

How is batch different in a component-based system?

A system’s batch architecture can be easily overlooked since it is not a part of the system that
is visible to end-users. Regardless, it is critical to design components with both on-line and

batch requirements in mind. Combining both sets of requirements is necessary to ensure that

364

10

15

20

25

WO 01/16727 PCT/US00/24189

your components can be used in both environments. This will allow the batch programs to

act as just another client to your components.

In addition, since many on-line systems are expected to be available on a 24x7 basis, there
may be a limited window available for exclusive batch processing. This requirement can
have a tremendous impact on your batch architecture. In these environments, it is necessary
to design batch programs that make efficient use of resources and have a low impact on on-

line users.

A component-based batch architecture must support batch programs that read transactions
that are really messages. These message transactions are read either from a flat file or from a
database. The program must then locate the component for which the message is intended
and pass the message to that component for processing. In many cases, these will be the
same components that process messages from on-line (GUI) applications. The function of
the batch "program" in this environment is fairly limited. It reads the input messages,
controls the packaging of database units of work, and sends requests to the business
component that performs the actual business logic associated with the messages. Batch
architectures usually “commit” on intervals that are designed to optimize database resources.
Thus, it is important to design components that can participate in a logical unit of work that

is controlled outside of the components.

How do the patterns in this section help?

The patterns described in this section represent some initial attempts to capture basic
concepts that are useful in the design of a component-based batch architecture. They are by

no means exhaustive but represent building blocks in a complete solution.

The Batch Job pattern describes a method of structuring batch components so that common
architectural services are implemented uniformly across all of these components. In a way,
this is the component-based analog to the concept of shell designs and skeleton programs

which have been a recurring feature of robust batch architectures for many years.

365

10

15

20

25

WO 01/16727 PCT/US00/24189

The Batch Unit of Work (BUW) pattern, on the other hand, represents a method of
structuring the work to be processed by the batch components so that it too can be treated
uniformly by all components. An abstraction such as this forms the basis for distributing
Batch workloads in a number of useful ways. It also enhances the capability of the

architecture to support evolutionary change.

The Processing Pipeline pattern describes a way of structuring batch activities so that they
can be easily reconfigured as processing requirements change. This pattern directly

addresses the issues of scalability and reuse in a component-based batch system.

The Abstraction Factory pattern has a much broader applicability than just batch systems.
It represents a way to encapsulate diversity such that only those parts of the system that need
to understand the difference between two objects have to deal with those differences. To use
a typical batch example, a file is a file is a file. Only those components that require
knowledge of the contents of a file should need to deal with those contents in other than a

Very generic way.

What are some other considerations in developing a component-based batch

architecture?

Because batch processing executes on a server and requires limited user interaction, many of
the services used for on-line architectures are not needed. For example, the services used for
distributing components — naming, distributed events, bridging, trader, etc -- are not needed
for a batch architecture. In fact, the interfaces that encapsulate components and provide
location transparency can add significant overhead to a batch architecture. To avoid the
expénse of unneeded services, the component stubs can be wrapped with a layer of
indirection that short-circuits the normal distribution mechanisms. This will provide

performance that will approximate local function calls.

Typically, business objects have to be instantiated from a relational database (RDBMS)
before the batch application can make use of them. This extra overhead is a very real
concern. It is an unfortunate fact that in many ways the more "object-oriented” your design

is, the worse it fits into the relational paradigm of rows and tables. For one thing, these
366

WO 01/16727 PCT/US00/24189

designs tend to have lots of objects with embedded instances or references to other objects.
And the primary reason that such designs have RDBMS performance problems is that in the
database, resolving such an object relationship requires joins or recursive queries. When
mapping from your object model to the RDBMS, there is a tendency to "normalize" your

object over many tables, and the performance can easily plummet.

Is efficient component-based batch hopeless? No. But if you have stringent batch
performance requirements, you may need some specialized design. There are several

techniques you can use to improve your batch speed.

Reduce (eliminate, if you can) batch. This may sound simple and stupid, but is often
overlooked and is by far the cheapest way to improve your batch yield. Lots of
reports can be obtained on-line, lots of them are not useful or used, "trigger
transactions" can simply become spawned sub-processes that run in the background,
same for printing bills, the only thing that must be done in batch is a database
reconciliation, which requires a time window with no other activity. If you can

engage in discussions for eliminating batch, by all means do.

Pool (recycle) objects. Each time you dispose of an object, instead of destroying it put
it in a pool of recyclable objects; and every time you create a new object, look in the
pool to see if there is one that can be recycled. Keep separate pools for each class of
objects. Allocating objects is a lot more expensive than one tends to think, and
recycling can improve your batch performance dramatically without affecting your

design.

Cache and sort. This technique is well known to "traditional" batch designers, but it
is so obvious that they don't even think of it. However, it has a correspondent object
implementation. Keep a small cache of objects you have just read from the database.
Most of the times, one instance of each is plenty. Whenever you need to access an
object on the database, look to see if it is already in the cache. If not, read it and put
it in the cache too. Encapsulate all this logic in a technical "Table" object - not in the
business objects. At the same time, organize the processing of your data in a

sequence that maximizes cache hits. Again, this technique does not affect your
367

10

15

20

25

WO 01/16727 PCT/US00/24189

"business objects" design. The processing cost of this technique is so low that you

can keep it enabled also for on-line, thus simplifying your technology architecture.

For some applications, an LRU caching policy might not be the right choice; a more
complicated scheme with multiple cache levels might be necessary. For this reason it would
be best to make the caching policy itself be an object (consider the Strategy pattern for

making an object from an algorithm) so you can change the policy on demand.

Cache operations and accesses. One of the reasons component-based batch performs
so poorly is due to the fact that, in order to maximize modularity and preserve
encapsulation, a lot of operations are performed redundantly. For instance if a
balance is implemented as a calculation, and if it is needed by six different objects it
is recomputed six times. These situations are very easy to identify with a
performance monitor that tells you where the program spends most of its time; it is
not uncommon to find that most of the time is actually spent in very few methods.
For these methods (and only for them!) cache the result in an instance variable.

Every time the method is invoked, check if the instance variable contains an answer:
if not, compute it and store it there; if yes, just return it. Of course, each operation on
the object that invalidates the result of the computation must invalidate the cache too!
This technique has a very small impact on your object design and typically leaves the

interface unchanged.

Cache objects. Typically, this would involve leaving recently referenced objects
instantiated in memory for some length of time after their last use. Then, if the object
is accessed again, you check the memory-resident cache before re-loading the object
from the DBMS. Usually you would construct this cache as a hash table keyed by
object ID, and use a LRU policy to keep the cache size manageable. Expect degraded
performance if you do anything to destroy the utility of the cache. For some
applications, LRU might not be the right choice; a more complicated scheme with
multiple cache levels might be necessary. For this reason it would be best to make
the caching policy itself be an object (consider the Strategy pattern for making an

object from an algorithm) so you can change the policy on demand.

368

10

15

20

25

WO 01/16727 PCT/US00/24189

Make use of "lazy" or "deferred” loading. That is, don't do a "deep" instantiation until
you know you're going to use the associated parts of the object. Instead, load selected
sub-objects only when first referenced This can save on memory overhead as well as
DBMS access. In some cases you can use a hybnd strategy: do a "shallow"
instantiation by default, but provide the client program with a way to build the
complete object on demand to provide more deterministic performance. One thing to
be careful of with this approach is that if you really do tend to use most parts of the
object during high-volume processing, loading it in piecemeal can actually worsen

the performance, because of the overhead of maintaining the load state and because of
the smaller DBMS transactions sizes. These techniques have a very small impact on

your object model.

De-normalize your database where possible. Typically when one does object-to-
relational mappings, one tends to make every unique object type a separate table.

This is best from a design perspective. But in cases where you know you have a
fixed set of "private" associations (meaning physical aggregation with no possibility
of shared references), then fold that sub-object data into the enclosing object's
RDBMS table. It's not pretty, but it can save lots of extra loading time. Also, look at
ways to do aggregate loads based on some unique object ID. For example, if you
have collection-valued sub-components, insert the object ID of the enclosing object in
the sub-object tables and do aggregate loads in code, rather than doing a "point-of-
use" instantiation for each one separately. Of course, these optimizations can have a

more substantial impact on your object model.

Consider making "light" versions of some of your objects. That is, for performance
critical situations, create alternate implementations of your business objects that don't
have all the baggage of the first-class objects. Yes, this can be ugly and more
difficult to maintain. But for many batch processing applications you might find that
you can drop a lot of the (persistence-related) complexity of an object without
affecting the batch processing at all. Then create fast hand-tuned routines to

instantiate the "light" objects from the database.

369

10

15

20

25

WO 01/16727 PCT/US00/24189

As can be seen, there are a lot of opportunities for improvement in component-based batch
performance. However, in order to manage risk early, remember that the areas in which you will
have trouble are those in which batch excels (predictability, repetitiveness) and component-based
design trades off performance for flexibility and encapsulation. Message overhead and similar
language related issues are unlikely to be critical. Obviously, before doing any of these things
you should do some serious benchmarking to see where you're coming up short on performance.
Often the overhead comes from surprising places. Don't twist your object model all out of shape

without first having some solid performance measurements.

Abstraction Factory

Figure 54 illustrates a flowchart for a method 5400 for providing an abstraction factory pattern.
Data is received and transformed into a plurality of concrete objects in operations 5402 and
5404. Each of the concrete obj ects is associated with an abstract interface in operation 5406. A
map of the association between the concrete objects and the abstract interface is created in
operation 5408. In operation 5410, when request is received which includes an identifier for one
of the concrete objects and an identifier for the abstract interface. The map is consulted to locate
the concrete object that has been identified in operation 5412. An abstract object is then created

that corresponds to the located concrete object in operation 5414.

The identifiers may be included with a single request. In another aspect of the present invention,
the abstraction factory pattern may be written in a C++ programming language. As an option,
the located concrete object may also be inserted into the abstract object. With this option, the

abstract object may operate as a handle.

It is desirable to separate concerns between architecture/framework and implementation details.
One way to do this is to exploit the power of polymorphism, using an abstract interface to a
concrete object which implements that interface. How, then, is one to create these concrete
instances and manipulate them within a framework while preserving the framework’s

independence?

370

10

15

20

WO 01/16727 PCT/US00/24189

In any complex information processing system, there will be a variety of different types of
information, with a corresponding variety of actions which must be taken to process that
information. One of the difficulties in this task involves taking an information source and

creating an appropriate internal representation for it.

The typical approach to this problem takes the form of a large switch/case statement, where each
case deals with one of the information types. The switch/case approach leads to components that
are very difficult to maintain, extend, debug, etc. and also leads to a procedural programming
style. This approach also makes it extremely difficult to properly manage dependencies so that

the details depend on the framework and not vice-versa.

With this in mind, some alternative approach must be used which will allow a framework to
handle multiple information types in a way which encourages good style, modularity,

extensibility, and framework independence.

Therefore, one transforms the various types of raw data into a corresponding variety of concrete
object types, all of which share a common abstract interface. This transformation will be

encapsulated within an Abstraction Factory.
The primary interface to the Abstraction Factory is:
“abstractType produceForKey(key)”

where “abstractType” is the type of the common abstract interface, and key is a piece of
information which identifies the appropriate concrete type. (This could be the same piece of
information used in the switch/case statement; there could be a variety of ways to get it). When
this method is invoked, the Abstraction Factory consults its internal mapping and creates an
“empty” object of the proper concrete class. The factory then casts the concrete object into the
abstraction and returns it to the method’s client. This client (a framework most likely) will then

instruct the abstraction to initialize itself from the incoming data stream.

371

10

15

20

WO 01/16727 PCT/US00/24189

At the end of this process we have an abstract handle to a concrete object which a framework

may then manipulate generically.

Benefits

Software Quality. Exploiting this pattern can allow us to avoid one of the major pitfalls
of procedural programming, the switch/case statement. Done properly you get better

modularity, testability, maintenance and extensibility.

Frameworks. The layer of abstraction introduced allows us to build frameworks which
follow the open/closed principle, that is to say, they are open to extension by the addition

of new concrete types, but are closed to the necessity of risky and costly modification

Implementations of this pattern will vary widely depending on the selection of language. For
example, in C++ a generic factory, based on templates can be constructed, and key — concrete
type pairs can be registered to the appropriate instantiation of the class. This might require

manual coding in other languages. The key interfaces, however are:

Abstraction Factory:

AbstractType produceForKey(key)

Abstract Type:

init(some data stream)

The Abstraction Factory can be fully coded in C++. It is very re-usable as it stands. In
addition, it has been extended to perform “Java Loader-like” dynamic linking if the

proper code cannot be found already within the factory.

372

10

15

20

WO 01/16727 PCT/US00/24189

Factory, the well know pattern from Gamma, et. al

BUW, in which the objects created by the factory can be dealt with generically in terms

of independence, scalability, parallel processing, etc. Component Solutions Handbook.

Batch Job

Figure 55 illustrates a flowchart for a method 5500 for representing a plurality of batch jobs of a
system each with a unique class. In operations 5502 and 5504, an abstract class of abstract data
required by a plurality of batch jobs is provided and a plurality of batch job sub-classes are
defined. Each batch job sub-class includes batch specific data, and logic for processing the
abstract data and the batch specific data upon the execution thereof. Each of the batch job sub-
classes is represented with an object in operation 5506. In operataions 5508 and 5510, one of the
objects is identified and the logic of the batch job sub-classes associated with the identified

object is thereby executed.

In one aspect, the data may include a name, a current status, messages encountered during a run,
various times, and a priority. In another aspect, the abstract class may include default logic for

running a batch job.

In an additional aspect, the abstract data and the batch specific data may be stored separately. In

a fourth aspect, the logic of the batch job sub-classes may be executed by a scheduler.

A set of logical operations may need to be initiated through some “batch” scheduling means.
This requires a set of common services such as activation, logging, and error handling that will

have to be applied across all jobs. How can these common services be distributed to all types of
batch jobs?

Most business systems today include some sort of batch processing. Batch processing is the

execution of a series of instructions that do not require any interaction with a user to complete.

373

10

15

20

WO 01/16727 PCT/US00/24189

Batch jobs are usually stored up during the day and executed during evening hours when the

system load is typically lower.

Once a batch job begins, it continues until it is complete or it encounters an error.

An architecture that supports batch jobs usually has certain characteristics. It must be able to
support checkpoints and rollback, restart and recovery, error handling, logging, scheduling, and

resource locking

Most systems, including those that are component-based, require this sort of architecture. A
difficulty arises when considering component-based systems though. In a component-based
system, the application architecture is usually very separated from the business application
classes. In many cases, the business classes and components are built without regard to the

surrounding architecture.

It is expected that the business components will execute in some environmental container that

will provide many of the architectural services (like batch services).

Some natural representation of the batch architecture must be developed and transparently
integrate with the existing business components and still support all of the architectural

requirements.

Therefore, represent each type of batch job in the system as its own class. An abstract class
(BatchJob) will exist from which all specific types of batch jobs will derive from. The abstract
BatchJob contains data that all batch jobs require: name, current status (pending, started,
finished, deleted), messages encountered during its run, various times (submission, start,
completion), and a priority, for example. It also should provide some default behaviors

including running the job and logic to execute before and after the run.

Figure 56 illustrates a class diagram of the batch job hierarchy.

374

10

15

20

WO 01/16727 PCT/US00/24189

Various system batch job classes can subclass from the abstract BatchJob 5600 and add their
own required attributes and behavior. A “Bill Customer” batch job may need the identifier of the
customer to bill and the time period for which to bill. These should be attributes added to the
concrete subclass: BillCustomerBatchJob 5602. In addition, the concrete class needs to supply

the actual logic that the batch job performs (along with any pre- and post-run logic).

Finally, the concrete batch job class should provide some way to start-up all of the pending jobs
in its class. A class method is implemented on the abstract class to start all pending jobs. This

method can be overridden by any concrete extension of the BatchJob superclass.

By implementing batch job instance as any other type of object, the batch architecture may then
take advantage of the same system services available to all other business objects in the system

(persistence, transaction management, error handling, logging, security, etc.).
Benefits

Natural Representation. Each type of batch job is represented by an object. This allows

it to interact with the rest of the system in a natural way.

Extensibility. By providing an abstract superclass, adding new types of batch jobs only

require adding a new concrete class to the system.

Architectural Separation. Batch Jobs that are not implemented “inside” the object-
oriented environment can still be tracked by the batch job objects. The rest of the system

is unaware of the batch job objects.

Figure 57 illustrates an object interaction graph of a possible implementation of the example of
Figure 56. Figure 57 illustrates a batch scheduler 5700 which interfaces a BillCustomer Class

component 5702 which in turn interfaces a BillCustomer BatchJob component 5704

375

10

15

20

WO 01/16727 PCT/US00/24189

ISO New England energy eXchange. A net-centric internet system build for managing
functions associated with a competitive energy market. The energy eXchange is
implemented in Java across client and server components and using CORBA as a

communications architecture.

Batch processes are often highly resource intensive. In many cases the required throughput
demands the use of multiple processors, possibly distributed, to provide scalability. How, then,

should one structure one’s batch workload to facilitate a robust and scaleable system?

One of the primary techniques used to achieve scaleable batch applications is parallel processing.
There are many different types of parallel processing, but the simplest and easiest to exploit
occurs when the problem domain contains many independent work items. In this case, the work

can simply be divided among the available processors, providing nearly linear scaling.

Happily, this is exactly the situation encountered in many batch systems. However, also given
the nature of batch processing, the variety among the various work items will likely be large.
This of course leads to the need to treat some items differently than others, and there goes the

nice clean scaling model.

With this in mind, some alternative approach must be used which will allow a cleanly scaleable

framework to handle multiple heterogeneous work types.

Therefore, one creates an abstraction which represents a batch unit of work. Now the design
tension comes in. Clearly one common abstraction is easy to parallelize, but not very interesting
to manipulate due to its very generic nature (at least if you're interested in type safety). This
quickly leads us to design a shallow tree of more interesting abstractions, and again one’s clean

scaling model seems threatened.

376

10

15

20

25

WO 01/16727 PCT/US00/24189

The key is to treat the work units as top level abstractions while they are being routed among
processing nodes and to treat them as more interesting derived abstractions when internal to a
node. Treating them as topmost abstractions between nodes provides a good lever for robust
processing, as typical actions like IO/persistence, recovery, auditing, etc. can often be treated

uniformly for all types.

Treating work units as derived abstractions while internal to a node is achieved by actually
creating the abstractions within the node. See the Abstraction Factory pattern for details on one

way to achieve this.

So are we safely scaleable now? Not necessarily. There is still the danger that a given
processing node will be presented with a unit of work it cannot deal with. Kind of like asking a
parking meter for a hot pastrami. This situation can be avoided with proper workflow, or with
sufficient structure, a dynamic library loading version of the Abstraction Factory could, in
effect, tell the parking meter how to fix sandwiches. This of course, has the effect of a one time

performance hit as the processing node is instrumented with new capabilities.

Implementations of this pattern will vary widely depending on the selection of languages and
technical architectures. The key is that the all work units in the system are derived from a single
abstraction. This abstraction contains key interfaces that are appropriate at the workflow level.

Derived abstractions add interfaces as needed functionally.

Abstraction Factory, in which concrete objects are created by the factory and returned to the

Factory’s client as an abstraction. CSH.

Processing Pipeline

Figure 59 illustrates a flowchart for a method 5900 for structuring batch activities for simplified
reconfiguration. In operation 5902, a series of processing steps are prepared for performing on
input objects being streamed into a batch processing system. Each of the processing steps is

encapsulated within a filter in operation 5904. The input objects are received and processed in

377

10

15

20

25

WO 01/16727 PCT/US00/24189

the filters in operation 5906. In operation 5908, results are delivered from the filters
incrementally during the processing of the input objects for reducing latency and enabling
parallel processing. In operation 5910, connectors are utilized for connecting at least two filters
each having a processing step for creating a process. One of the filters is an input filter of the
process and another of the filters is an output filter of the process. Connectors are also used in
operation 5912 for connecting input and output filters of different processes for forming a

scalable system.

There may be several instances of a particular type of filter running in parallel. A portion of the
filters may be active and a portion of the filters may be passive. In such a situation, the active
filters may pull input data and data may be pushed into the passive filters. Additionally, the
input filter of the process may be an active filter and the remaining filters of the process may be

passive filters.

The connectors may perform the steps of acting as a choke point for data to be pulled from a
filter, connecting serial filters defined as independent processes, and/or multiplexing to
demultiplexing from several filters of the same type running in parallel. As another option, one
of the filters may be positioned between the input and output filters of the process for translating

an output of the input filter into an input type of the output filter.

How do I define a disciplined strategy to structure the components performing processing steps
within a batch system so that the system is cleanly partitioned while maintaining performance

and scalability goals?

Often batch processing systems perform a series of processing or transformation steps on input
objects that are streamed into the system. Implementing such a system as a single component is
not feasible for several reasons: portions of the component must be developed by several
developers, requirements are likely to change and it is difficult to cleanly partition the modules

resulting in a highly coupled system.

Compounding the difficulty in implementing the system is the fact that most batch systems must

satisfy the following challenging requirements:

378

10

15

20

25

WO 01/16727 PCT/US00/24189

Must be able to satisfy extremely stringent performance criteria.

The system must scale to meet client's volume.

The system must be flexible enough to be adapted to various contexts.

These requirements are difficult to meet for any system, and batch systems’ stringent demands
often lead developers to think they cannot use component technology. Building a procedural
batch system to satisfy the requirements listed above may result in a complicated set of modules
that are difficult to maintain as the system is scaled. By utilizing component technology's ability
to manage complexity through encapsulation, a component-based batch system can more easily
be defined with clean partitioning than when using a procedural paradigm. Defined with
foresight, this partitioning enables the system to scale to meet difficult performance

requirements.

Therefore, encapsulate each processing step within a filter component. A filter consumes and
delivers its results incrementally, rather than consuming all of its input before producing output.
The incremental nature of filters allows them to significantly reduce latency and enables true

parallel processing.

A supplier provides the input to each filter, and the filter's output flows to a consumer. Suppliers
and consumers may be objects that read files, databases or queues, other filters or any type of
object supplying or accepting data. In order to produce a flexibly arranged system, connect the
initial supplier, the filters and the final consumer with pipe components that are responsible for

implementing the data flow between adjacent filters.

As aresult of filter processing's incremental nature, one or more filters, tied together with pipes,
define a process's Logical Unit of Work (LUW); i.e., the filters defining the steps of the process
are sandwiched by the beginning and ending of the transaction. Expanding this model, each
subsystem representing the LUW can be modeled as a filter with input and output that

encompasses the internal filters. These filters are then tied together through the use of pipes to

379

10

15

20

WO 01/16727 PCT/US00/24189

represent the system. In this manner, the Processing Pipeline pattern offers a consistent way to

view the system that scales to whatever size and degree of complexity the system grows.

Benefits

Scalability. Each filter performs its data processing and transformation independently of
other filters. By leveraging off some pipe forms’ multiplexing/demultiplexing

techniques, there may be several instances of a particular type of filter running in parallel.

Partitioning. As a result of encapsulating each processing step within a filter component
it becomes easier to manage the balance between coupling and cohesion since there are

disciplined and well-defined interfaces surrounding the components.

Flexibility. Since filters make little assumptions about the world around them, they can
be arranged in any manner; several filters can be combined together and wrapped by a
larger-grained filter; filters can be dynamically assembled at run-time depending on some

context, etc.

Filters

At a high level, there are two types of filter components: active filters and passive filters. An
active filter pulls input data from its suppliers, processes the data and outputs the result to its
associated consumer. In contrast, input data is pushed into a passive filter, which then performs

its processing step and outputs to its consumer.

Typically a system is defined by an active filter at the beginning of the Processing Pipeline, that
pulls input data from the data source and initiates further processing by pushing the data to a
chain of passive filters situated down the pipeline. Often the active filters are only responsible
for pulling data into the system, while the core business functionality is performed by passive

filters.

380

10

15

20

WO 01/16727 PCT/US00/24189

Because active and passive filters demonstrate different levels of pro-activity, it is useful to
further break down the type of consumers and suppliers into four general types: push suppliers,
pull suppliers, push consumers and pull suppliers. These four simple abstract interfaces help
segregate the fundamental, yet disparate, behaviors. Active filters inherit both from
PullConsumer and PushSupplier. Active filters’ sources inherit from PullSupplier, and their
destinations inherit from PushConsumer. Passive filters inherit from PushConsumer and
PushSupplier. Passive filters’ sources inherit from PushSupplier, and their destinations inherit

from PushConsumer.
Pipes

While filters define the basic processing steps, pipes define how to flexibly configure the system.

Pipes can be used to connect filters in a wide range of configurations:
Acting as a choke point for data to be pulled from an active filter
Connecting serial filters defined as independent processes
Multiplexing to/demultiplexing from several filters of the same type running in parallel

Pipes may use buffering, multiplexing and de-multiplexing techniques in order to transfer data

between filters. Some examples of useful pipe implementations include:

Channeled Pipes. Perhaps the most generally useful form of a pipe is based on the
CORBA Event Channel object, which can connect any number of Push/Pull Suppliers to

any number of Push/Pull Consumers.

Multithreaded Pipes. These pipes route data to one of several filter threads. The data can
then be joined back to the primary thread on the other end of the filter with a
demultiplexing pipe.

381

10

15

20

WO 01/16727 PCT/US00/24189
Database Queue Pipes. These pipes wrap around a database queue to enable seamless

data transfer between processes.

The various command shells enable filter programs to be tied together into a Processing

Pipeline.

Collaborations

Abstraction Factory. Often filters will need to produce new data objects from input but are only
aware of the data's abstract interfaces. As a result of this generality, the filters will need to

utilize an abstraction factory to produce concrete objects without knowing their concrete class

types.

BUSINESS LOGIC SERVICE PATTERNS (1024)

As is stated in the Component Technology Architecture Framework, “Business components are
the core of any application, they represent concepts within the business domain. They
encapsulate the information and behavior associated with those concepts. Examples of business
components include: Customer, Product, Order, Inventory, Pricing, Credit Check, Billing, and
Fraud Analysis.”“ These are the components that in many cases have been the most elusive for
reuse but hold the highest promise for attacking the cost of development. In this area there are at
least three targeted categories of business components, Common Business Components,

Common Business Services and Common Business Facilities.

Common Business Components are those components from the preceding list that encapsulate
key business concepts. At one level these components represent cross application components
that are common to a plethora of applications. These include concepts like Customer,

Company, Account, Shipment, etc. These common components normalize how basic behavior

382

10

15

20

WO 01/16727 PCT/US00/24189

surrounding common business concepts can be normalized. Common Business Components are
very concerned about the validity of the relationships they have with other components and

ensuring that the information relationships are maintained correctly.

Common Business Services deal with the higher level services that abstract out the “Business
Unit of Work” or more transactional aspects of business processing. Having components that
capture key processing concepts normalizes the processes for handling business events. These
are services like credit checks, ordering, servicing problems, shipping, product selection, etc.
They tend to capture business practices and when reused enable a company to increasingly

leverage the value of those practices.

Common Business Facilities are those services that deal with areas of more engineering
component type reuse. These include base common facilities like reason codes, currency

management, telephone and address manipulation and validation of these common business

types.

How do the patterns in this section help?

The patterns described in this section represent some initial attempts to capture basic concepts
that are useful in the area of Common Business Facilities. They are by no means exhaustive but
represent building blocks in a complete solution. Both provide tremendous value in solving two

key challenges which appear on every engagement.
The Constant Class pattern describes a facility for ensuring correct data at the attribute level.

The Attribute Dictionary describes a facility for encapsulating architectural mechanisms within

business objects.

Attribute Dictionary

383

10

15

20

WO 01/16727 PCT/US00/24189

Figure 58 illustrates a flowchart for a method 5800 for controlling access to data of a business
object via an attribute dictionary. A plurality of attribute values for a business object are stored
in an attribute dictionary in operation 5802. A plurality of attribute names are provided in the
attribute dictionary for the stored attribute values in operation 5804. Next, in operation 5806, it
is verified that a current user is authorized to either set or get one of the attribute values upon a
request which includes the attribute name that corresponds to the attribute value. The attribute
value in the attribute dictionary is obtained or updated if the verification is successful and an

indicator is broadcast upon the attribute value being updated in operations 5808 and 5810.

In one embodiment, a list of the attribute names may be outputted in response to a request.
Additionally, the list may also include only the attribute names of a portion of the attribute

values of the business object that are present.

In one aspect, the attribute values may be obtained for auditing or rollback purposes. In another

aspect of the present invention, a dirty flag may be set upon the attribute value being updated.

Typically, business objects include "getter" and "setter" methods to access their data. How can I
support value-added processing, such as logging events for changes, without impacting

application code?

Typically, business objects store attributes in instance variables. The application code for a

typical setter for an attribute is depicted as:
public void setBalance(Float newBalance) {
myBalance = newBalance,

return;

384

WO 01/16727 PCT/US00/24189

Initially, this is straightforward. However, after all of the attribute setters and getters have been
coded, the need may arise for an event to be broadcast each time an attribute is updated. The

code for a simple setter would need to change to become:

public void setBalance(Float newBalance) {

5 myBalance = newBalance;

this.notifyChanged(*‘Balance”);

retumn;

Now each attribute setter must contain the call to the ‘notifyChanged’ architecture method. This
10 implementation forces architecture mechanisms to be intrusive to application code. Moreover,

addition or extension of architecture processing should not impact business logic. One new line

of code alone may not seem like a large burden on application developers. However, many other

architecture requirements might later affect each setter or getter.

As another example, before updating an attribute, a check may be required to determine if the
15 current user has security rights to update attributes. Also, after successful update, a dirty flag

may be set, or an audit log may be performed. The code for each setter now looks as follows:

public void setBalance(Float newBalance) {

// keep track of my original balance,

// for post-change processing, then do

20 // some pre-processing to check

385

10

15

WO 01/16727 PCT/US00/24189

// that the user has access rights

Float oldBalance = myBalance;
this.assertCanSetAttribute(“Balance”),
// finally update the balance, then

// broadcast, set the Dirty Flag,

// and log

myBalance = newBalance;
this.notifyChanged(“Balance”);
this.makeDirty();

this.logChanged(“Balance”, oldBalance);

Thus, each added architecture framework for gets and sets must be manually added to all getters
and setters. Such changes impact application developers during coding and maintenance.

Moreover, they also complicate business logic with technical details.

Therefore, the application architecture should control access to a business object's data. This
will separate out reusable; technical, architecture details. Business objects should use an
Attribute Dictionary to provide an architectural hook for attribute getters and setters. Moreover,
this framework should handle all architectural processing related to the update and access of

data, transparently to application logic.

386

10

15

WO 01/16727 PCT/US00/24189

Rather than using instance variables, the A#tribute Dictionary holds all attribute values for the
object. This dictionary is a collection, keyed by attribute names. Then the architecture can

provide generic architecture methods to get and set attributes in the dictionary.

Business objects could each delegate directly to the Attribute Dictionary within the attribute
getter and setter. However, rather than having each business object talk directly to the Attribute
Dictionary, simple helper methods can be created in a superclass for business objects. This
simplifies the interface for application developers, who do not need to know about the Attribute
Dictionary. This also allows for business object specific logic to also be added prior to and after

the dispatch to the Attribute Dictionary.

The code for a simple setter now would look like:

class Account extends BusinessObject {

public void setBalance(Float newBalance) {

// set my balance with the new value

// passed in. The architecture will handle

// any technical details related to

// setting the data.

this.setAttribute("Balance”, newBalance);

387

WO 01/16727 PCT/US00/24189

The architecture superclass will then perform the following:
get the original value, perhaps for auditing or rollback purposes
check if the user has security access to set the attribute
update the attribute on the Attributé Dictionary

5 if successful, broadcast and log the change

The Attribute Dictionary would then contain the code to:
update the value for the given attribute name
set the dirty flag

This illustrates that both the superclass facade and the Attribute Dictionary can have different

10 processing. In general, one generic location for getting and setting attributes supports (but is not

limited to):
logging
broadcasting
dirty flag
15 security checking

NULL field value handling

388

10

15

20

WO 01/16727 PCT/US00/24189

This logic will be either in the fagade methods (for any code that is business object specific), or

the generic methods on the dictionary, thereby shielding developers from this added complexity.

Benefits

Maintainability. Architecture code can be added and changed in one place for all objects,

without change to the application code.

Flexibility. The implementation of the storage mechanism can be changed as needed to

improve performance.

Readability. The methods used in application code to retrieve and update fields on the
object are generic. These methods do not have excess architecture code to detract from

the purpose of the method.

Object Model

Figure 60 illustrates the manner in which the AttributeDictionaryClient 6000 is the facade which
delegates to the AttributeDictionary 6002. For example, business objects would inherit this
behavior. AttributeDictionaryClient 6000 probably wouldn't be the immediate superclass, but it
would be somewhere in the hierarchy. In this manner, stateful business objects, like Account or

Customer, can easily take advantage of the Attribute Dictionary.

The attributeValues attribute on the Attribute Dictionary is shown as an instance of the HashMap
class 6004, which stores key value pairs. The HashMap Collection is used to provide access to
attribute values based on the attribute name. This is required for a direct lookup of values

associated with attribute names. Such lookup can use string representation of the attribute names.

Object Interaction Diagrams

389

10

15

20

WO 01/16727 PCT/US00/24189

There are four interactions for this framework: Simple Attribute Getter, Simple Attribute Setter,
Failed Attribute Getter, and Retrieval of Attribute Names. Figure 61 illustrates the internal

implementation of the dictionary.

Figure 61 depicts the use of the containsKey() method 6100 on the HashMap to ensure that the
value will exist before the get() method is used. This proactive search for the value ensures that
the nullPointerException is not thrown from the AttributeDictionary. The performance of such
methods will be checked during testing. If such processing is not performant, the code can be
altered and the call to containsKey() removed. In that case, the HashMap will need to wrap a try-
catch block around the get() method. Figure 62 illustrates a method 6200 that dictates that any
nullPointerException that is thrown would be caught and rethrown as the more user-friendly
exception in the attribute dictionary pattern envronment. Figure 63 illustrates the Get the

Attribute Names method 6300 in the attribute dictionary pattern envronment.

Public Interface

The following are methods on the AttributeDictionary. The AttributeDictionaryClient exposes

similar public methods.

public Object getAttribute(String attributeName) raises AttributeNotFoundException;

The return value of getAttribute() is typically a wrapped primitive, or Java type, for most
attributes. This includes, for example, an account balance (Float) or account number (String).
The return value of these wrapped primitives must be cast, as illustrated in the following

example:

class Account extends BusinessObject {

public Float getBalance() {

/I get my balance using the superclass facade

390

WO 01/16727 PCT/US00/24189

// cast the return value before returning it

return (Float)(this.getAttribute("Balance"));

5 Other methods on the AttributeDictionary include:

public void setAttribute(String attributeName, Float attributeValue);

public void setAttribute(String attributeName, String attributeValue);

public void setAttribute(String attributeName, BusinessObject attributeValue);

10 These overloaded methods create a generic interface to the AttributeDictionary for attribute
setters. They ensure type checking, such that no attributes will be set to a value other than those

for which an overloaded method exists.

public String[] attributeNames();

The method attributeNames() returns a collection of the names of only those attributes that have

15 been populated (or set) on the dictionary. This might be useful for other frameworks, which may
want to iterate over all attributes. At any particular time, a business object may not contain all of
its attributes (e.g., because of partial retrieval from the database). So this may be a subset of the
full attribute list for the object.

391

10

15

20

25

WO 01/16727 PCT/US00/24189

Constant Class

Figure 64 illustrates a flowchart for a method 6400 for managing constants in a computer
program. In operation 6402, a plurality of constant names are provided with each constant name
having a corresponding constant value. The constant names are grouped into constant classes
based on an entity which the constant values represent in operation 6404. Access is allowed to
the constant values in operation 6406 by receiving a call including the corresponding constant

name and corresponding constant class.

In one aspect, the constant values may be changed upon being accessed. In another aspect, the
constant value may also include an enumeration. Also, in one embodiment, accessor logic
modules may be assigned to a plurality of the named constants with the accessor logic modules
being executed upon the accessing of the corresponding constant value via the accessor logic
module. Also, the accessor logic modules may be edited per the desires of a user. Additionally,

the constant values may be accessed without the accessor logic modules.

Literals are hard-coded constants referenced in multiple places. How can source code refer to

literals in a maintainable fashion?

The concept and value of named constants have been realized for quite some time. The idea can
date back to Assembler language naming memory locations where data was stored. The purpose
is to give the ability to refer to fixed values by the name of what they represent rather than by the
quantity they are set to.

Named constants allow a programmer to “parameterize” a system. This allows a programmer to
change a constant’s value in a single place rather than every place the constant is used. In

addition to the maintenance gain, readability is also increased.

Many languages offer mechanisms to implement named constants. These include
PoolDictionaries (Smalltalk), enums (C and C++) and public static final declarations (Java).
Difficulties arise during implementation of these mechanisms with respect to type constraints,

visibility, and type checking.

392

10

15

20

25

WO 01/16727 PCT/US00/24189

Using these traditional approaches, results in global namespace for these literals. This can result
in name collisions. For example, the name HIGH to define a large magnitude could translate
into different values for different uses. A HIGH temperature could be 95 while a HIGH altitude
could be 39000.

In addition, constants often belong to logical groupings. For instance, STOCK, BOND, and

OPTION are all types of financial instruments. These belong in a some sort of collection.

A consistent, quality method to represent constants in an object-based system is required.

Therefore, represent named constants in a separate class, grouping categories of constant values
together within one name space. Constants tend to naturally fall into logical groupings. Each
grouping should be represented by its own class. For instance, all of the constants used by a
PhoneNumber object to capture the various types of PhoneNumber (i.e. home, business, fax, cell,

pager, etc) can be accessed through a PhoneTypeConstants class.

If constants are obtained by other means than explicit language constructs like “public final int
HOME_ADDRESS” than public accessors are used to insulate a client from changes in how the
constant is obtained. In this case the values of each of the constants should be defined privately
inside the Constant Class. Public accessors are then provided for clients to obtain the constant
values. This allows for “changing constants”. Business-related values that may seem constant at
design and construction time very often are not. Some of these “constants” may eventually
require some logic to determine their value. If clients obtain constants through accessor
methods, no changes (except within the accessor) will have to be made if the logic is added.
This is a particularly safe practice when programming rules dictate all constants to be stored and

retrieved from database tables.

In the case where constants are defined within the class itself most OO languages, excepting
Smalltalk, allow for some type of const definition. In this case by using a const construct (i.e.
static final int PhoneNumberType FAX = new PhoneNumberType()) it is not necessary to have
public accessors and private definitions. Declare the class type, create static final instances of
the type and do not provide a public constructor. This ensures the type safety and provides easy

to access members in the Eiffel style.
393

10

15

20

WO 01/16727 PCT/US00/24189

Moreover, public accessors in either strategy provide for type-safe enumerations. Enumeration is
a special type of constant that deserves attention. A TypeConstant class can provide
enumeration by implementing some key methods that provide for supporting iteration over the
elements of the enums. In Java, for example, this entails implementing the Enumeration

interface.

Benefits

Maintainability. Groups all valid values together and ensures they can not be created or

passed as parameters by any other method.

Type Safety. Enumeration values can be type-checked by a compiler in method

parameters and return values.

A common application pattern where this use of constants was applied was in the modeling of
instances vs instance types where the types added no additional behavior. In two different
customer care applications this came through as the objects like PhoneNumber,
PhoneNumberType, RatePlan & RatePlanType, etc. This example has not yet been updated to

JavaBeans.

package Party;

import java.util.*;

public class PhoneNumberType {

static final Vector types = new Vector();

static final PhoneNumberType FAX = new PhoneNumberType(0, "Fax");

static final PhoneNumberType CELL = new PhoneNumberType(1, "Cell
Phone");
394

WO 01/16727 PCT/US00/24189

static final PhoneNumberType HOME = new PhoneNumberType(2, "Home");

static final PhoneNumberType WORK = new PhoneNumberType(3, "Work");

static final PhoneNumberType PAGER = new PhoneNumberType(4, "Pager");

private final int phoneNumberTypeOrd;

5 private final String typeld;

private PhoneNumberType(int i, String id) {

phoneNumberTypeOrd =1i;

typeld = id;

types.addElement(this);

10 }

public final static Enumeration elements() { // allows for enumeration

return types.elements();

public static void main(String args[]) {

15 Enumeration elements = PhoneNumberType.elements();

PhoneNumberType pt;

395

WO 01/16727 PCT/US00/24189

while (elements.hasMoreElements()) {

pt = (PhoneNumberType)elements.nextElement();

System.out.println(pt.toString());

public String toString() { .

return typeld;

10 This type partition is used by PhoneNumber. See main() for uncommenting a line that

demonstrates the type safety protection through the use of static final and private constructors.

package Party;

import java.io.PrintStream;

import java.io.StringWriter;

15 public class PhoneNumber

396

	Abstract
	Bibliographic
	Description

