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ABSTRACT

A device for matching an input string to a patterh via a deterministic finite

automaton (DFA), the DFA comprising a plurality of states inciuding a current
state and a plurality of possible next states, the input string comprising a
plurality of input symbols. The device comprises at least two paraliel pipeline
stages; a first one of the pipeline stages being configured to retrieve a plurality
of transitions to a possibie next state of the DFA from a pre-populated memory;
and a second one of the pipeline stages configured to choose, based at least in
part upon the DFA’s current state, one of said retrieved transitions from which
the integrated circuit will determine the next state of the DFA, wherein the

second one of the pipeline stages is downstream from the first one of the

pipeline stages.
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Pattern Matching

e

This 1s a division of Canadian Serial No. 2,629,018 filed

November 29, 2006.

Field of the Invention:

The present inventlion relates gsnerally to the field ol
procaessing & strsam of data symbols to determine whether any

strings of the date symbol stream match a pattern.

Background and Summaryv of The Invention:
Advances in network and storage-subsystem design continue

to push the rate at wnich date gtreams must be processed
etween and within computer systems. Meanwhile, the conmtent
of such data streams is subjected {0 ever increasing sScrutfiny,
2s componente at all levels mine the streams for patterns that
can trigger time sensitive action. Patterms can include not
only constant strings (e.g., “dog” and “cat”) but also
specifications that denote credit card numbers, Ccurrency
velues, or telephone numbers to name a few. A widely-used

pattern specification language is the regular expression

language. Regular expresgions and their implementatlion vila
deterministic fipite automataons (DFAs) is & well-developed
field. See Hoprcroft and Ullman, Inftroduction to Aucomata

Theory, Languages, and Computation, Addison Wesley, 1973.

A DFAR 1s & logical representation that defines the
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operation of a state machine, as explzined below. However,
the inventors herein believe that a need 1n the art exisis for
improving the use of regular expressions in connection with
high performance pattern matching.

For some applications, such as packet header filtering,
the location of & given pattern may be anchored, wherein
anchoring describes a situation where a match occurs only if
the pattern begins or ends at a set of prescribed locations
within the data stream. More commonly, in many applications,
2 pattern can begin or end anywhere within the data stream
(e.g., unstructured data streams, packet payloads, ete.).
Some applications reguire a concurrent imposgition of thousands
of patterns at every bvte of a data stream. Examples of such
applications include but are not limited to:

» network intrusion detection/prevention systems (which
typically operate using a rule base of nearly 10,000
patterns (see Roesch, M., “Snort - lightweight intrusion
detection for metworks®, LISAZ '59%: 13 gystems
Administration Conference, pp. 229-238B, 1999);

¢+ emall monitoring systems which scan outgoing email for
inappropriate or illegal content; |

* gpam Iilters which impose user-specific pattexrms to
filter incoming emall;

* Vvirus scanners which filters for signatures of programs
known to be harmful; and

¢ copyrignt enforcement programs which scan media files or

gocket streams for pirated content.

In applications such as these, the set of patterns sought

wilthin the data strsams can change daily.

Today's conventional high-end workstations cannot keep
pace with pattern matching applications given the speed of
data streams origlnating L£rom high speed networks and storage
subsystems. To address this periormance gap, the inventors

herein turn to architectural innmovation in the formulation and

)
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realization of DFAs in pipel;i.ned archiﬁecture (e.g., hardware
logic, networked processors, or other pipelined processing
systems) . |

A regular expression r denotes a regular. language L(r),
where a language is a (possibly infinite) Bet of (finite)

strings. Each string is comprised of symbols drawn from an

alphabet %. The syntax of a regular expression is defined

inductively, with the following basic expressions:
¢ any symbol ¢o& 2 denotes { o };
+ the symbol A denctes the singleton set containing an
empty (zero-width) string; and
¢ the symbol ¢ denotes the empty set.
Each of the foregoing ig a regular language. Regular
expressions of greater complexity can be constructed using the
union, concatenation, and Kleene-closure operators, as is
well-known in the art. Symbol-range specifiers and clause
repetition factors are typically offered for syntactic
convenience. While any of the well-known regular expression
notations and extensions are suitable for use in the practice
of the present invention, the descriptién herein and the
preferred embodiment of the present invention supports the
perl notation and extensions for regular expressions due to
perl’s popularity.
As noted above, reqular expressions find practical use in
a plethora of searching applications including but not limited
to file searching and network intrusion detection systems.

Most text editors and search utilities specify search targets

using some form of regular expression syntax. As an
illustrative example, using perl syntax, the pattern shown in
Figure 1 is intended to match strings that denote US currency

values:
- e a backslash “\” precedes any special symbol that is to be

taken literally;

¢ the low- and high-value of a character range is specified

using a dash “";
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e the “+* gign indicates that the preceding expression can

be repeated one or more times;

e a single number in braces indicates that the preceding
expregssion can be repeated exactly the degignated number

of times; and

e a pair of numbers in braces indicates a range of
repetitions for the preceding expression.

Thus, strings that match the above expression begin with the
aymbel “$7, followed by some positive number of decimal
digits; that string may optionally be followed by z decimal
point “.” and exactly two more decimal digits. In practice, a
pattern for such matches may also specify that the match be
surrounded by some delimiter (such as white space) so that the
string “$347.12" yvields one match instead of four matches
(i.e., “S37, w§34%, “8§347", “$347.12").

Applications that use regular expressions to specify
patterns of interest typically operate as follows: Gilven a
reqular expression r and a target string t (typically the
contents of some input stream such as a file), find all
gubstrings of t in L(z). The substrings are typically
reported by their position within t. Thus, unless otherwise
stated, it is generally intended that the pattern r is applied
at every position in the target and that all matches are
reported.

The simplest and most practical mechanism for recognizing

patterns specified using regular expressions is the DFA, which

is formally described as the 5-tuple:

(@, Z, Qu: O, A)

where:

e D is a finite set of states

e 2 is an alphabet of input symbols.

e g, € Q is the DFA‘s initial state

¢ J is a transition function: O0x 2 = Q

¢ AC Q is a set of accepting states
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A DFA operates as follows. It begins in state g,. If
the DFA is in state ¢, then the next input symbol a causes a

transition determined by o6(qg, a). If the DFA effects a

trangition to a state g € A, then the gtring processed up to
that point ig accepted and is in the language recognized by
the DFA. As an illustrative example, the regular expression
of Figure 1 can be translated into the canonical DFA shown in
Figure 2 uBing a sequence of well-known steps, including a
step that makes the starting position for a match arbitrary
(unanchored) (see the Hopcroft and Ullman reference cited
above). For convenience, the DFA of Figure 2 uses the term
“{0-9]" to denote the set {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} and
usee the symbol “~” to denote all symbols of 2 not in the set
{0, 1, 2, 3, 4,5, 6,7,8, 9,85, .}.

The constxruction of a DFA typically involves an
intermediate step in which a nondeterministic £inite automaton
(NFA) is constructed. 2an NFA differe from a DFA in that
whereas a DFA is a finite state wmachine that allows at most
one transition for each input symbol and state, an NFA is a
finite state machine that allows for more than one transition
for each input symbol and state. Also, every regular language
has a canonical DFA that is obtained by minimizing the number
of states needed to recognize that language. Unless specified
otherwise herein, it should be assumed that all automata are
in canonical (deterministic) form.

However, for the purpose of pattern matching, the
inventors herein believe that the DFA shown in Figure 2 is
deficient in the following respects:

e Symbole not in the alphabet of the regular expression
will cause the DFA to block. For pattern-matching, such
symbols should be ignored by a DFA so that it can
continue to search for matches. 'I‘his deficiency can be
overcome by completing the DFA as follows:

—~ The alphabet is widened to include any symbol that

might occur in the target étring. In this
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description, 1t is assumed that X is the ASCII
character set comprising 256 symbols,
- The DFA i1s augmented with a new state U:

Qe Qu { T}
- The transition function ¢ is completed by defining &

U for‘all g€ Q, a € & for which J was

(g, a)
previously undefined.

* A match will be found only if it originates at the first
character of the target string. Pattern-matching
applications are concerned with finding all occurrences
of the denoted pattern at any position in the target.
This deficiency can be overcome by allowing the DFA to

restart at every position. Formally, a A tramsition is

inserted from every g € Q to q..

The result of the above augmentation is an NFA that can be
transformed into a canonical DFA through known techniques to
obtain the DFA. Figure 3 provides an illustrative example of
such a canonical DFA.

A DFA is typically implemented interpretively by
realizing its transitions ¢ as a table: each row corresponds
to a state of the DFA and each column corresponds to an input
symbol. The transition table for the DFA of Figure 3 is shown

in Figure 4. If the alphabet X for the DFA is the ASCII
character set (as is often the case in many applications),
then the tramsition table of Figure 4 would have 256 columns.
Each entry in the transition table of Figure 4 comprises a
next state identifier. The transition table of Figure 4 works
thusly: if the DFA‘s current state is B and the next input
symbol 18 2, then the transition table calls for a tramnsition
to state D as “D” is the next state identifier that is indexed
by current state B and input symbol 2. In the description
herein, states are labeled by letters to avoid confusion with

symbol encodings. However, it 1s worth noting that in
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practice, states are typically represented by an integer index
in the transition table. |

The inventors herein believe that the pattern 'matching
techniques for implementing DFAs in a pipelined architecture
can be greatly improved via the novel pattern matching
architecture disclosed herein. According to one aspect of the
present invention, a pipelining strategy is disclosed thé.t
defers all state-dependent (iterative, feedback dependent)
operations to the final stage of the pipeline. Preferably,
transition table lookups operate to retrieve all transition
table entries that correspond to the input symbol (s) being
processed by the DFA. Retrievals of transition entries from a
transition table memory will not be based on the current state
of the DFa. Instead, retrievals from the transgition table
memory will operate to retrieve a set of stored transition
entries based on data corresponding to the input symbol (s)
being procéssed. ‘

- In a preferred embodiment where alphabet encoding is used
to map the input symbols of the imput data stream to
equivalence class identifiers (ECIs), these transition table
entries are indirectly indexed to one or more input symbols by
data corresponding to ECIs. This impro{rement allows for the
performance of single-cycle state transition decisions,
enables the use of more complex compression and encoding
techniques, and increases the throughput and scalability of
the architecture.

nccording to another aspect of the present invention, the
transitions of the transition table preferably include a match
flag that indicates whether a match of an input symbol string
to the pattern has occurred upon receipt of the input
symbol (s) that caused the transition. Similarly, the
transitions of the transition table preferably include a match

restart flag that indicates whether the matching process has

~ restarted upon receipt of the input symbol(s) that caused the

transition. The presence of a match flag in each transition

allows for the number of states in the DFA to be reduced
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relative to traditional DFAE because the accepting states can
be eliminated and rolled into the match flags of the
transitions. The presence of a matceh restart flag allows the
DFA to identify the substring of the input stream that matches
an unanchored pattern. Together, the presence ¢of these flags
in the transitions contribute to another aspect ©f the present
invention - wherein the preferred DFA is configured with an
ability to scale upward in the number of bytes procesased per
cycle. State transitions can be triggered by a sequence of m
input symbols, wherein m is greater than or equal to 1 (rather
than being limited to processing only a single input symbol
per clock cycle). Because of the manner by which the
transitions include match flags and match restart flags, as
disclogsed herein, the DFA will still be able to detect when
and where matches occur in the input stream as a result of the
leading or an intermediate input symbol of the sequence of m
input symbols that are processed together by the DFA as a
group.

According to yet another aspect of the present invention,
incremental scaling, compression and character-encoding
technigues are used to substantially .reducé the resources
required to realize a high throughput DFA. For example, run-
length coding can be used to reduce the amount of memory
consumed by (i.e., compress) the DFA’s transition table.
Furthermore, the state selection logic can then operate on the

run-length coded transitions to determine the next state for

the DFA. Masking can be used in the state selection logic TO

remove from consideration portions of the tramsition table
memory words that do not contain transitions that correspond
to the ECI of the input syumbol(s) being processed.

Also, according to yet another aspect of the present
invention, a layer of indirection can be used to map ECIs toO
transitions in the transition table memory. This layer of

indirection allows for the use of various optimization

techniques that are effective to optimize the rumn-length

coding process for the transition entries in the tramsition
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table memory and optimize the process of effactively packing

the run-length coded transition entries into words of the

transition table memory such that the number of necessary
accesses to transition table memory can be minimized. With

the use of indirection, the indirection entries in the

indirection table memory can be populated to configure the
mappings of ECIs to transition entries in the transition table

memory such that those mappings take into consideration any
optimization processes that were performed on the transition
entries in the transition table memory.

Furthermore, according to another aspect of the present
invention, disclosed herein is an optimization algorithm for
ordering the DFI’X states in the transition table, thereby

improving the DFA’s memory requirements by increasing the

efficiency of the run-length coded transitions.

Further still, disclosed herein is an optimization

algorithm for efficiently packing the transition table entries

into memory words such that the number of transition table

entries sharing a common c¢orresponding input symbol (or
derivative thereof such as ECI) that span multiple wmemory
words is minimized. This memory packing process operates to
lmprove t;ne DFA's throughput because the efficient packing of

memory can reduce the number of memory accessgses that are

needed when processing one or more input symbols.

According to another aspect of the present invention, the

patterns applied during a search can be changed dynamically

without altering the logic of the pipeline architecture
itself. 2 regqular expression compiler need only populate the
transition table memory, indirection table, ECI mapping
tables, and related registers to reprogram the pattern

matching pipeline to a new regular expression.
Rased on the improvements to DFA design presented herein,
the inventors herein believe that the throughput and density

achieved by the preferred embodiment of the present invention

greatly exceed other known pattern matching solutions.
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These and other inventive features of the present
invention are described hereinafter and will be apparent to
those having ordinary skill in the art upon a review of the

following specification and figures.

Brief Description of the Drawings:

Figure 1 depicts an exemplary regular expression;

Figure 2 depicts a DFA for the regular expression of
Figure 1;

Figure 3 depicts an improved DFA for the regular
expression of Figure 1;

Figure 4 depicts a conventional transition table for the
DFA of Figure 3; |

Figure' 5 illustrates a block diagram overview of a
preferred embodiment of the present invention;

Figure 6 depicts a preferred algorithm for doubling the
stride of a DFA;

Figure 7 depicts a DFA in accordance with the preferred
embodiment of the present invention having a reduced number of
states and flags within the transition for matches and match
restarts;

.Figure 8 depicts a preferred algorithm for encoding input
gymbols into equivalence clags identifiers (ECIs);

Figures 9(a) and (b) depi‘ct a preferred transition table
for the DFA of Figure 7;

Figures 10(a) and (b) depict transition tables for the
regular expression of Figure 1 wherein the stride ol the DFA
i1s equal to 2 input svymbols per cyvele;

Figure 11 depicts a preferred algorithm for constructing
a base DFA' from d and p;

Figure 12 depicts an exemplary run-length coded
transition table;

Figure 13 depicts an adjacently-stored version of the
run~length coded transition table of Figure 12; '

Figure 14 depicts an exemplary state selection logic

circuit for determining a next state based on a retrieved set

10
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of run-length coded transitions that correspond to a given
ECIL;

Figures l1l5(a) and (b) depict an indirection table and a
memory in which the run-length coded transition table of
Figures 12 and 13 1s stored;

Figures 16 (a) and (b) depict an indirection table and a
memory in which the run-length coded transition table of
Figure 15 lnclude precomputed run-length prefix sums;

Figures 17 (a) and (b) depict an alternative formulation
of the Indirection Table and TTM in which the run-length coded
transition table of Figure 14 include precomputed run-length
prefix sums;

Figure 18 illustrates an exemplary state selection logic
circuit;

Figures 18 (a) and (b} respectively illustrate an
exemplary transition table that has been coptimized by state
re~-ordering, and the run length-coded version of the state re-
ordered transition table; |

Figure 20 depicts a preferred algoritbm for calculating
the difference matrix used to optimize the run-length coding
for the TTM;

Figure 21 depicts a preferred algorithm for optimization
of run-length coding in the TTM;

Figure 22 depicts an example of a coded transition table

that has been packed into the TTM;
Figure 23 depicts a preferred algorithm for optimal

packing of memory words;

Figure 24 depicts a preferred regular expression system

architecture:
Figure 25 depicts the regular expression engine of the

preferred embodiment as a series of pipelined computational

blocks; and
Figure 26 depicts a preferred process for assigning ECIs

to input symbols using direct-address tables and pairwise

combination.

11
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Detailed Description of the Preferred Embodiments:

Figure 5 depicts an overview of the preferred embodiment
of the present invention. The architecture of the preferred
embodiment is illustrated within the regular expression

5 circuit 502, which serves as a pattern matching circuit that
operates on an input @ata stream comprising a plurality of
sequential input symbols. Preferably, the regular expression
circuit 502 is implemented in hardware logic (e.g.,
reconfigurable hardware logic such as an FPGA or

10 nonreconfigurable hardware logic such as an ASIC). It is
worth noting that one or more of the regular expression
circuits 502i can be implemented on the same device if desgired
by a practitioner of the present invention, which is also
reflected in Figure 24. Also, the regular expression circuit

15 can be implemented in other pipelined architectures, such as
multi-procesgsor gystems, wherein each processor would serve as
a pipeline stage of the regqular expression circuit. In such
an example, the different processors of the pipeline can be
networked together.

20 The data tables and relevant registers of the regular
expression circuit are preferably populated by the output of
the regular expression compller 500. Regular expression
compiler 500 operates to process a specified (preferably user-
specified) regular expression to generate the DFA that 1s

25 realized by the regular expression circuit 502 as described
herein. Preferably, regular expression compiler 500 1is
implemented in software executed by a general purpose

processor such as the CPU of a personal computer, workstation,

or server.
30 Regular expression compiler 500 can be in communication

with regular expression circuit 502 via any suitable data
communication techunigque including but not limited to networked
data communication, a direct interface, and a systew bus.
The regular expression circuilt 502 preferably reallzes
35 the DFA defined by one or more specified regular expressions
via a plurality of pipelined stages. A first pipellne stage

12
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is preferably an alphabet encoding stage 504 that produces an
BECI output from an input of m input symbols, wherein m can be
an integer that is greater than or equal to one. A second
pipeline stage is preferably an indirection table memory stage
506. The indirection table memory state 506 can be addressed
in a variety of ways. Preferably, it is directly addressed by
the ECI output of the alphabet encoding stage 504, A third
pipeline stage is the transition table logic stage 508 that
operates to receive an indirection table entry from the output
of the indirection table memory stage 506 and resolve the
recelved indirection entry to one or more addresses in the
transition table memory stage 510. The transition table logic
stage 508 also preferably resolves the received indirection

tablée entry to data used by the state selection logic stage

512 when the stage selection logic stage processes the output

from the transition table memory stage 510 (as described below
in connection with the masking operations).

The transition table memory stage 510 stores the
transitions that are used by the DFA to determine the DFA’s

next state and determine whether a match has been found. The

state selection logic stage 512 operates to receive one Or
more of the transition entries that are output from the from
the transition table memory stage 510 and determine a next
state for the DFA based on the DFA‘s current state and the

received transition(s). Optionally, the masking operations

514 and 516 within the state selection logic stage 512 that

are described below can be segmented into a separate masking
pipeline stage or two separate masking pipeline stages (an
initial masking pipeline stage and a terminal masking pipeline

stage). Additional details about each of these stages 1s

presented herein.

High-Throughput DFAs
A conventional DFA processes one input symbol (byte) at a
time, performing a table lookup on each byte to determine the

next state. However, modern communication interfaces and

13
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interconnects oftern transport multiple bytes per cycle, which
makes the conventiomnzl DFA a “bottleneck” in terms of
acnieving higher throughput. Toroughput refers to the rate at
which a data gtream can be processed - the number of bytes Der
second that can be accommodated by & design and its
immplementation.

an extengion of conventional DFAs 18 a DFa that allows

for the performance of a single transition based on a string
of m symbols. See Clark and Schimmel, “Scalable pattern
matching for high speed networks”, IEEE Symposium on Field-

Programmable Custom Computing Machines, April 2004. That

i, the DFZ processes the input stream in groups of m input
symbols., Formzlly, this adaptation yields a DFA based on the
alphabat I¥; the corresponding trans:ition table is of glze
Q! |Z|". This apparently dramatic increase in resource
reguirements is wmitigated by the compression techniques
described herein. For convenlencs, we let & denote 2
transition function that operates on seguences of length m,
with 6 = &.

As an illustrative example, consilider doubling the

(D

Fffective throughput of the DFA shown in Figure 2 by

7). Rased or the table in

processing two bytes at a time (mw

Figure 4, if the current state is E, then the Lnput sequence
v28" would result in & transition to state B: F(E, 28) =
o{O6(E, 2), §) = B. By accounting for all such two-character

saguences, a complete transition table can be computed IOT

this higher-throughput DFA as sexplained below.

In general, an algorithm for constructing ¢ for a given

DFA is straightforward. The set of states 1s unchanged and

the transition function (table) is computed by simulating

progress from sach state for every possible sequence of length

4

m. That algorithm takes time 6(|Q||Z|™m) to compute a table oc
size 6(|Q]|Z{" . 2 faster algorithm can be obtalned by the

following form of dynamic programming. Consider

14
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m =21 > 0and a stting = = %, {@| = {zp| = %‘i

Then
Vg ém(q’ .I‘) = 6%(5%(95 ‘Bt)s :Z!.,.)

An algorithm based on the above proposition is shown in Figure
6.

To obtain higher throughput DFAs, the algorithm in Figure
6 can be invoked repeatedly, each time doubling the effective
number of symbols processed per cycle. This reduces the

complexity of computing 6" to O(|R!!Z]|*® log m). Moreover, by
identifying redundant columns, the effective alphabet of each
table can be substantially reduced in practice through
encoding, as described in the Alphabet Encoding section below.

High-Throughput DFAs: Accepts

Because the higher throughput DFA performs multiple
transitions per cycle, it can traverse an accepting state of
the original DFA during a transition. We therefore augment
the transition function to include whether an accepting state
is traversed in the trace:

F:0xI - 02x {0, 1)}

The range’s second component indicates whether the sequence of
symbols that caused the transition contains a nonempty prelix
that takes the original DFA through an accept state.

Transition functions of this form obviate the need for a
get of accepting states A, because the “accept” (match)
information is associated with edges of the higher throughput
DFA. This is formalized via the modified DFA we define in the
“Synergistic Combination of Stride and Encoding” section

below,

For m > 1, accepts are now imprecise because the

preferred DFA does not keep track of which intermediate symbol

actually caused an accept (match) to occur. To favor speed,

the high-throughput DFA can be configured to allow ilmprecise

15
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accepts, relegating precige determination of the accept point

to software postprocessing.

High-Throughput DFAs: Resgtarts

Ags previously discugsed, a pattern-matching DFa for a
regular expression is preferably augmented with transitions
that allow matches to occur throughout the target string.
Because matches can occur at any starting position in the
target, an accept should report the origination point of the
match in the target. It is not clear in the automaton of
Figure 3 when the origination point is set. For example, all
transitions to state A set the origination point, but so do
transitions on “$¥ to state B. Considering transitions from E

to B, 2 “~" or *.“ 1s a restart, while a digit is an accept.

The A-transitions introduced to achieve position

independence of wmatching result in an NFA that can be

transformed into a DFA through the usual construction. The
“"Synerglstic Combination of Stride and Bncoding” section below
describes how to maodify that construction to identify
transitions that serve only to regtart the automaton’s

matching process.

Formally, the transition function is augmented once more,

this time to indicate when restarts occur:

5 : x> 0x {0, 1} x {0, 1}

The first flag indicates a restart transition (a “match

restart” flag) and the second flag indicates an accept
transition (a “match” flag). Accordingly, the DFA diagrams

henceforth show restart transitions with green edges and
accept edges with red edges. For example, Figure 7 shows an
illustrative example of a diagram for an automaton that
procegses one symbol at a time and recbgnizes the language
denoted by Figure 1. Optionally, the edges for the
transitions to State A can be coded as black and flagged
accordingly, with only the edges for the transitions to State
B being coded as green and flagged accordingly. The actions
of a DFA with the colored edges are as follows. The automaton
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includes context varliables b and e to record the beginning and

end of a match; initially, b= e = 0, and the index of the
first symbol of the target is 1. These variables allow the
location of a matching string to be found in the context

0> buffer as shown in Figure 24. Transitions are then performed

as follows:

black: e 1s advanced by mthe stride of the automaton, which

is the length of the input string that caused the |
10 transition. In Figure 6, m= 1. A match is in progress and
the portion of the target string participating thus far

begins at position b and ends at position e, inclusively.

red only: e is advanced by m and a match is declared. The
15 target substring causging the match starts at position b and

ends at position e.

green only: b is advanced by m and € is set to b. The

automaton 1s restarting the match process.

20

red and green: The red action is performed before the green

action.

Figure 9 shows the assocliated transition table for the
25 DFA of Figure 7, wherein each transition entry in the
transition table includes a match flag and a match restart

flag in addition to the next state identifier. Because
information about accepts is associated with edges (the o

function), a DFA with colored edges can have fewer states than
30 the canonical DFA.

The use of match flags and match restart flags is
particularly useful when scaling the DFA to process multiple
input symbols per cycle. Figure 10(b) illustrates a
transition table for the regqular expression of Figure 1

35 wherein m is equal to 2. Figure 10(a) depicts the symbol

encoding for this example. Thus, even when processing

17
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multiple input symbols per cycle, the DFA will be able to

detect when matches and restarts occur on the leading or an

intermediate symbol of the group m of input symbols because

the flags will carry match statusg information rather than the

5 gtates.

Alphabet Encoding

As described above, the size of the transition table ()
increases exponentizally with the length of the input sequence
10 consumed in each cycle. In this section, techniques are
presented to encode the symbol alphabet, the goal of which.is
tc mitigate the transition table’s size and thus maximize the
number of symbolg procesgsed per cycle.
Frequently, the set of symbols used in a given regular

15 expression is small compéred with the alphabet £ of the search
target. Symbols present in the target but not denoted in the
pattern will necessarily be given the same treatment in the
DFA for the regular expression. More generally, it may be the
case that the DFA’s behavior on some set of symbols is

20 identical for all symbols in that set. As an illustrative
example, the regulai' expresgion in Figure 1 uses only a small
fraction of the ASCII character set. The transitions for
digits are the same in the DFA shown in Figure 3, and the
symbol “~" gtands for all symbols of the ASCII set that are

25 not in the set {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, $§, .}.

While a regular expresesion may mention character classes
explicitly, such as “[0 — 91", a more general approach isg
achieved by analyzing a DFA for egquivalent state-transition

behavior. Formally, if

30 (3a € Z) (b € X) (Vg € Q)d(g, a) = o(g, Db)

then it can be said that a and b are “transition equivalent.”
Given a transition table 0 : @9 x X = @, an
O(|Sigmaj®|Q}) algorithm for partitioning Z into equivalence
classes is shown in Figure 8. TUsing the example of Figure 1,
35 the algorithm develops the equivalence classes of symbols

suggested in Figure 1 to form the 4 columns shown in Figure
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9(b). The partition 1is represented by a set of integers K and

a mapping ¥ from 2 to K. Because alphabet symbol-equivalence

is determined by sgtate equivalence, the best result is

obtained if 4 corresponds to a caﬁonical DFA, with state
equivalence already determined.

Computing equilvalence classes using the DFA, rather than
inspection of ites associated reqular expression, is preferred
for the feollowing reasonsg:

s The regular expression may be specified without using
rangee or other gestures that may imply eguivalence
classes. AS an lllustrative example, & and b can be wmade
equivalent in the DFA for the regular expression
“{ac) | (bc)¥, but their equivalence is not wmanifest in the
reqular expression.

* Equivalence c¢lasses often cannot be determined by local
inspection of a regular expression. As an illustrative
example, the regular expression “[0— 9]a| 5c* contains the
phrase “[0—-9]17, but one element of that range (5) will
not share identical transitions with the other symbols
because of the other phrase. The appropriate partition
in this case is { { 0, 1, 2, 3, ¢, 6, 7, 8, 9}, {5} )

Foma.lly,' the function in Figure B creates a partition —

a set, each element of which is a set of symbols in I that are
treated identically in the DFA. The function produces a more

convenient form of that partition in X, which maps each symbol

to an integer denoting its equivalence class (the integer
serving ag an “equivalence class identifier” (ECI)). A DFAR
based on symbol encodings then operates in the following two
stages. First, the next input symbol is mapped by x to 1ts
ECI that represents its equivalence class as determined by the
algorithm in Figure 8. Second, the DFA can use its current
state and the ECI to determine the DFA's next state.

Based on the ideas presented thus far, Figure 7 shows an
illustrative example of a DFA that processes a single symbol

at a time, with red edges indicating “accept” and green edges
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indicating “restart”. Analysis using the algorithm in PFigure
8 yields the symbol encoding shown in Figure S8 (a) and the
transition table shown in Figure 9(b). As shown in Figuré
9(h), each entry in the trangition table is indexed by data
corresponding to the DFA’s state and by data corresponding to
the ECI for a group of m input symbols. Figures 10(a) and (b)
show the couxiterpart ECI table and transition table for the
reqular expression of Figure 1 where 2 input symbole are
processed at a time. '

Each trangition in the transition table is a 3-tuple that
comprises a next state identifier, a match restart flag and a
match flag. For example, the transition indexed by state D
and ECI 0 is8 (B, 1, 0) wherein B is the next state identifier,
wherein 1 is the match restart flag, and wherein 0 is the
match flag. Thus, the transition from state D to B caused by
ECI 0 can be interpreted such that ECI 0 did not cause a match

to occur but did cause the matching process to restart.

Synergistic Combination of Stride and Encoding
The ideas of iwproving throughput and alphabet encoding
discussed above are now combined to arrive at an algorithm

that consumes multiple bytes per cycle and encodes its input

oto save time (in constructing the tables) and space (in

realizing the tables at runtime).
Such a new high-throughput DFA" can now be formally

described as the 6-tuple {(Q, Z, Q. K, X, 0} where:

e 0 is a finite set of states

e Y is an alphabet of the target’s input symbols

* g, € Q is an initial state

e K is a set of integers of size Q(|XZ|") (but expected to
be small in practice)

¢ x is a function I® > K that maps m input symbols at a

time to their encoding
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§ is a function Q X K = ‘¢ x {0, 1} x {0, 1) that maps
the current state and next substring of m symbols to a

next state, a possible restart, and a possible accept.

The gset of transformations begins with a regular expression r

and perform the following steps to obtain DFA":

1. A DFA d is constructed for one Or more regular

expressions r in the usual way (see the Hopcroft and
Ullman reference cited zbove). For example, as discuassed

abvove, the regular expression in Figure 1 results in the

DFA shown in Figure 3.

. An set of transitions p is computed that would allow the

automaton to accept based on starting at any position in

the target. This is accomplished by simulating for each
state a A-transition to g.. Specifically, p is computed
as follows:
p «~ ¢
foreach ¢ € Q do
foraach @ € 2 do p« pv { (p, a) = O(go, a)

, From d and p, the base DFA’' is constructed by the

algorithm in Figure 11.

State minimization is performed on a high-throughput DFA
by a standard aigorithm (see the Hoperoft and Ullman

reference cited above), except that states are initially
split by incoming edge color (black, green, red), instead

of by whether they are f£inal or nonfinal states in =

traditional DFA.

Given a DFR*, a higher throughput DFA** with alphabet
encoding is constructed by the algorithm shown in Figure

6.
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Transition Table Compression via Run-Léngth Coding

The transition table for the preferred high-throughput
DFA may contain |K| x |Q| entries. State minimization
attempts to minimize |Q| and the previous discussion regarding
the combination of higher throughput and alphabet encoding
attempts to minimize |K|. Nonetheless, storage resources are
typically limited; therefore, a technique for accommodating as
many tables as possible should be addressed. The following
addresses this wmatter by explaining how to compress the table
itself,

Based on the discussion above, a transition table cell

contains the three-tuple: (next state, sgtart flag, accept

flag). Run-length coding is a simple technigue that can

reduce the storage requirements for a sequence of symbols that
exhibits sufficient redundancy. The idea is to code the
string a® as the run-length n and the symbol a; the notation
n{a) can be used. Thus, the string aaaabbbcbbaaa is run-

length coded as 4(a)3(b)l{c)2(b)3(a). If each symbol and each

run-length requires one byte of storage, then run-length

coding reduces the storage requirements for this example by
three bytes (from 13 bytes to 10 bytes).

Examining the example of Figure 9(b), there is ample
opportunity for run-length coding in the columns of the
transition table. For the encoded ECI symbols 0 and 3, the
table specifies the same three-tuple for every previous state,

SO the run-length coding prefix for the transitions 1in the
table indexed by ECIg 0 and 3 are both “57. In general, what
is expected in transition tables is common “next-state”
behavior. Thus, the number of unique entries in each column
of the transition table is typically smaller than the number
of states in the DFA. Figure 12 contains a run-length coded
version of the transition table in Figure 9. |

While colunmn compression can save storage, it appears to

inerease the cost of accessing the transition table to obtain

a desired entry. Prior to compression, a row i1s indexed by
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the current state, and the column is indexed by the ECI. Once
the columns are run-length coded, as shown in Figure 12, the
compresged contents of each column are stored adjacently, as
shown in Figure 13. In this example, the states themselves
have also been encoded as integers (with A represented by 0,
B by 1, etc.). There are now two steps to determining the
DFA’s next state and actions:

1. Based on the next ECI encoded from the input, the
relevant range ©of entries is found in the storage layout
shown in Figure 13. This lookup can be performed using a
mapping from ECI to offset in the storage layout. The -
range of ez;tries i8 a compressed column from Figure 12.
In Figure 13, the underscored entries correspond to ECI 1
from Figure 12.

2. Based on the current staﬁe, the next state and action
flags must be found in the relevant range of entries.
This logic, called state selection, essentially rgquires
decompressing the entries to discover which entry

corresponds to the index of the current state.

If an entire compressed column is available, the circuit
shown in Figure 14 depicts an example of how state selection
can be fealized by interpreting the compressed form and the
current state to determine tﬁe appropriate tuple entry. For
each entry in the run-length coded column, the sum of 1its Tun-
length prefix and the run-length prefixes of the preceding
entries are computed. The current state index is then
compared with each sum and the first (leftmost in the example
of Figure 14) entry whose sum is greater than the current
gtate index is selected by the priority encoder. The priority
encoder can then determine the next state for the DFA.

Figure 14 shows an illustrative example of state
gelection in progress for ECI 1 of Figure 12. Each”<™ node

compares the current state index (3 in this example, or State

D) with the sum of run-length prefixes in the compressed

column. If state index 0 (State A) were supplied as the
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current state, all three comparators would output “1” and the
priority encoder would pick the leftwmost one, choosing (2,1,0)
a8 the contents. In Figure 14, the current state is 3, which
is less than the second sum (3 + 1) and the third sum (3 + 1 +
1), so that the right two comparators output *17, The
priority encoder picks the leftmost one, so that (C,0,0) is
chosen as the lookup of ECI 1 and state 3,

Supporting Variable-Length Columns in Memory

The storage layout shown in Figure 13 must be mapped to a
physgical memory, in which the entire table will typically be |
too large to be fetched in one memory access. Field-
Programmable Gate Arrays (FPGAs) and similar devices often
support memory banks that can be configured in terms of their
size and word-length. Moreover, the size of a given entry
depends on the number of bits allocated for each field (run-
length, next state identifier, match restart flag, match
flag). The analysis belaow is based on .the general assumption

that x trangition table entries may be retrieved per cycle.

In single port memory, this means that x will match the number

of transition entries per word. For multi-port memory, this
means that x will match the number of ports multiplied by the
number of transition entries per word. As an example, a
physical memory that supports 5 accesses per cycle and holds 3
entries per word is accommodated in the preferred embodiment
by setting x = 5 x 3 = 15. However, a physical memory that
supports only one access per cycle and holds three entries perxr
word 1B ac c'ommodated in the preferred embodiment by setting x
= 3,

Some architectures offer more flexibility than others
with respect to the possible choices for x. For example, the
bits of an FPGA Block Ram can sometimes be configured in terms
of the number of words and the length of each word. The

following considerations generally apply to the best choice

for x:
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¢ Memory accesses are generally reduced by driving x as
high as possible.
e The logic in Figure 14 grows with the number of entries
that must be processed at one time. The impact of that
5 growth on the circuit’s overall size depends on the
target platform and implementation. Significant FPGA

resources are requlred to realize the logic in Figure 14.

Supporting Variable-Length Columns in Memory: Transition
10 Table Memory |
Once x 1s chosen, the compressed columns will be placed
in the physical memory as compactly as possible. Figure 15(b)
shows an example where the columns of the transition table are

packed into a memory with x = 3. EREach word in the memory is

15 indexed by a memory address. For example, the word indexed by
memory address 0 includes the following transitions 5(B, 1,
0), 3(A, 1, 0), and 1(C, 0, 0). Due to the varying length of
each column, a given column may start at any entry within a
TOW.

20 By introducing a layer of indirection in the transition
table, it is possible to leverage the memory efficiency
provided by run-length coding and compact deployment of
entries in the transition table memory (TTM). Figure 15(a)
shows an example of such an Indirection Table which contains

25 one entry for each ECI. 8dince ECIs may be assigned
contiguously, the Indirection Table may be directly addressed
uging the ECI value for a given input string. Each
Indirection Table entry may consist of the following:

e pointer: address of the memory word in the Transition

30 Table Memory containing the first entry of the run-length

coded transition table colummn;
e transition index: index of the first entry of the run-

length coded transition table column in the first memory

word for the column;
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.o trangition count: (or “count” in shorthand) the number

of entries in the run-length coded transition table

column;

Oﬁce the Indirection Table entry is retrieved using the
input symbol ECI, the pointer 1n the retrieved entry is used
to read the first memory word from the TIM. Recall x is the
number of entries per memory word in the TIM. An entire
column is accessed by starting at address transition index and

reading w consecutive words from the TTM, where w 1s given by:

. [#amition.count + transition.index-l
x

(1)

The transition index and transition count values determine
which entries in the first and last memory words participate
in the column. In the example in Figure 15, each TTM word is
capable of storing three entries, where an entry is a run-
length coded transition tuple. As can be seen in Figure 15 by
virtue of shading, it can be seen that two reads of the
Transition Table memory are required to fetch the column for
ECI 1. The particular values of transgition index and
transition count for BCI 1 indicate that the column begins in
the second entry of the first word fetched, and continues

until the first entry of the last word fetched. If TIM

entries were wasted by arranging for each column to start at

index 0, then the number of accesses can be reduced to

[W-l . Because 0 < transi tion index < X, compact

X
storage in the TTM increasee the number of accesses by at most
1.

As discussed below and shown in Figure 25, accesses tO
the Indirection Table and TTM can be pipelined with each other
and with the other components of the design of the present
invention. If multi-port wmemory is available, both tables may
be stored in the same physical memory without degrading

performance. However, the layer of indirection results in a
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variable number of accesses to the Transition Table Memory per
state transition, depending on the distribution of a run-
length coded column’s contents in the TIM. For a particular
ECI, the number of memory accesses to retrieve the column f£rom
memory cannot exceed the number required in the direct-
addaressed approach. On average, the number of memory accesses
per state transition is congiderably less. It is believed by
the inventors generally that the memory efficiency achieved
via run-length coding and indirection more than compensates
for the overhead incurred by storing the Indirection Table and
the additional run-length field.

Furthermore, the allocation of memory for the Indirection
Table is relatively straightforward, as each entry is the same

size and the number of entries is equal to the maximum number

of input symbol equivalence classes.

Supporting Variable-Length Columns in Memory: State Selection
The implementation of a State Select logic circuit that

preferably takes inﬁo account the efficient storage layout of

the TTM and offers other optimizations is now described.

While the TTM offers compact storage of the compressed

columns, state selection logic becomes more complex. The
logic shown in Figure 14 assumes that a compressed column can

be presented to the logic at once, with no extraneous entries.
That logic is suboptimal for performing state selection using

the TIM for the following reasons:
* A compressed column may span multiple words of the TIM.

« The start of a compressed column may begin irn the middle
of a TTM word. Thus, entries before the start must be

suppressed for state selection.
¢ The end of a compressed column may occur before the end

of a TT™ word. Thus, entries after the end must be

suppressed for state selection.

The logic shown in Figure 14 uses addexs to accumulate

the sum of all run lengths before each entry. Because the run

27



CA 02820500 2013-06-26

lengths are fixed inside each entry, the adders can be
obviated by precomputing the prefix sums and storing them,

instead of the run-lengths themselves, as the “coefficient” in
each tuple. By precomputing sums, the tables shown in Figure
J> 15 are transformed into the tables shown in Figure 16.

The amount of logic used to determine the beginning and
end of the compressed column can also be reduced. The start
of each column is gpecified in the Indirection table using the
polnter and transition index fields, which provide the TIM

10  word containing the first entry and the index within that word
of the entry. The number of words w occupled by the.
compressed \colunﬁl is then given by Equation (1). Each fully
occupiaed word contains x entries of the compressed c¢olumn. In
the last word, the largest index occupied by the compressed

15 ° column is given by: |

(count + index — l)modx (2)

Logic could be deployed in the State Select circuit to
compute Equation 2. However, X is a design-time parameter.
By appropriate parameterization of Hardware Definition

20 Language (HDL) code, Equation 2 can be computed when the
Indirection and TTM tables are generated.

Thus, the amount of computational logic can be reduced Dy
storing the following variables for each entry in the
Incdirection Table:

235 e« pPointer: the address of the TTM word containing the

first entry in the transition table column

e Initial Transition Index: the index of the first entry
(of the transition table column) in the first TTM word
spanned by the transition table column

30 e Terminal Transition Index: the index of the last entry
(of the transition table column) in the last TTM word
spanned by the transition table column

e [Additional] Word Count: w — 1 where w is computed by
Equation 1.
35 Continuing this example, Figure 17 shows the Indirection Table
and TTM entries for the transition table shown in Figure 16.
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Essentially, the transition count values are translated into
the word count values and terminal transition index values.
Thig translation does not affect the contents of the TIM, but
reduces the logic needed to process these tables.

The State Select block logic that is shown in Figure 18
operates on a transition table column containing two entries
that spans one TTM word. Each word stores four entries. The
output of the Word Counter shown in ‘Figure 18 reflects the
number of memory words that have been examined for the current
transition table row. If the current memory word is the first
word spanned by the row, then the Initial Transition Index is
used to retrieve a set of mask bits from the Initial
Transition Index Mask ROM. These bits are used to mask off
preceding entries in the memory word that are not part of the’
trangition table column. Masking is accomplished by forcing
the run-length sums to be zero. Note that if the current
memory word is not the first word spanned by the column, then
no entries are masked at this stage.

The next stage “masgks” the entries in the last memory
word that are not part of the transition table column. The

run-length sums for entries that are not part of the

transition 'i:able column are forced to the value of the Max

Run-Length Register. This value records the maximum number oI
entries in a transition table column (i.e. the number of
columns in the uncoded transition table; also the value of the
run-length sum for the last entry in each coded tramsition
table colummn). If the current memory word is the last memory
word spanned by the transition table column (value of the Word
Counter is equal to Word Count), then the Terminal Transition
Index is used as the address to the Terminal Transition Index
Mask ROM. If this is not the case, then no entries are masked
during this stage. Forcing the run-length sums of trailing
entries to be the maximum run-length sum value simplifies the
Priority Encoder that generates the select bits for the
multiplexer that selects the next state. Thils masking process

produces an output vector f£rom the less-than comparisons with
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18

rt

the following property: the indsx of the left-most ‘1’ bi
the index of the next state entry, and all bitsg to right of
thig bit will be sBet to '1'. As previously referenced, it
should be noted that the masking stages may be pipelined to
5 increase throughput. In an alternative embodiment, only the
less than comparisons, priority encoder, and next state

gselection logic need to occur in the final pipeline stage.

Optimizations
10 Achieving a high-throughput regular expression pattern-
matching engine 15 the primaryv motivation for developing the
high-throughput DFA, character encoding, and transition table
compression technigues that are disclosed herein. In the
following, technigues that optimize the throughput of the
15 system at the expense of some memory efficiency are examined;
thus, each of the following techniques is constraiped by the
™M, Specifically, the TTM imposes the following constraints:
¢ The number of entries per word
e The numbsr of memory words in the table
20 * The totzl number of entries in the table

The optimization problems discussed in this section Iall
into the class of bin packing or kmapsack problems. See
Cormen et zl., Introduction to Algorithms, Cambridge, MA, The

2> MIT Press, 1990. The number of entries per
word defines the bin (or knmapsack) size for the packing
proplems. The structure of the coded transition table may i::e
altered to minimize the number of memory accesses by
increasing the total number of entries and/or words regquired
30 to represent the table so long as the total pumber entries ot

tocal number of words (bins or knapsacks) does not exceed the

limits impos=d by the Transition Table Memory.

Optimizations: QOptimizing Throughput
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The number of memory accesses required for a search is
determined by the disposition of compressed columne in the TTM
and the pattern by which those columns are accessed. The
pattern depends on the set of regular expressions in the

5 engine and the particular input data processed through the
engine. In a DFA®, m input symbols are resclved to an ECI
which induces one column lookup. The number of memory
accegses depends on the length of the columns in the coded
transition table and the column access pattern. The column

10 access pattern depends on the regular expression (or set of
regular expressions) in the engine and the input data. The
total number of memory accesses for a given gearch can be

expressed as:

HC

W=~N Z Ji

sl (3)

15 where w; is the number of words spanned by row i in Transition
Table Memory, f; is .the relative frequency that row i is
accessed, and N is the number of equivalence class identifiers
produced by the input data. |

While there is no prior knowledge of the input data,

20 there is an ability to alter the structure of the coded
transition table. By re-ordering the rows in the direct-
addressed transition table, one can affect the length of the
columns in the coded transition table. The optimization
problem is to choose the column ordering that minimizes the

25 total number of memory accesses, W. Assume that the

transition table column access pattern follows a uniform

distribution, £, = N/|K|. In this case:

e (4)
K&

Under these conditions, the optimization problem is

30 to minimize the guantity:

X| X\ T
='Zw: =§4 Counr,.‘ (5)

fux] ) A
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Recall that count;, is the transition count;, or the number of
entries in row i of the run-length coded transition table and
x 18 the number of entries per word in the TTM.

To simplify the optimization problem, one can assume that

X = 1, 80 the quantity that now needs ‘to be minimized is:

K| .
v= > count, | (6)

fu]

This will gemnerally yield similar results to minimizing the

function with an arbitrary x.

Figure 19 illustrates the benefits of state reordering
for the running example presented herein . |

There are wmany approaches to state reordering. One
approach is to minimize the length of a single column of the

coded transition table by ordering the rows of the direct-

addressed table according to the sorted order of the entries

in the row. This maximizes the efficiency of the run-length

coding for that one column. However, the re-ordering may also
decrease the efficiency of the run-length coding for other
columns.

The preferred approach is a greedy one; preferably it is
desired to maximize the length of the runs for the most
columns, thereby minimizing the length of each encoded column.

One can start by creating a difference matrix, which
given two states indicates the mimber of BCIs that differ, and

so will not continue a run. This algorithm is shown in Figure

20,

Next, one then orders the states from some starting point
based on the entries in the difference matrix. One preferably
chooses the states that preserves the most run lengths to get
the next label. The starting state that is chosen is
preferably the state that has the largest column-sum 1n the
difference matrix. The idea for picking that state first is
that it is the state that is the most different from all
others. By moving that state to the end (rather than in the
middle), one preserves the longest runs. This algorithm is

outlined in Figure 21. Together the algorithms of Figures 20
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and 21 serve as a “transition table state re-oxrdering®

algorithm

Optimizations: Memory Packing
Recall that the layer of indirection allows a column of

the coded transition table to begin and end at any location in
the TTM. Naive packing of coded table columns into physical
memory can thwart the aforementioned optimizations by
incurring an extra memory access for each table column.

Notice in Figure 15 that the run-length coded transition table
column associated with input symbol '.¢ (ECI 1) contains three
entries, but it spans two memory words in the TTM. While it
1S pdssible to store the column in a single memory word,
accessing this column requires two memory accesses as laid out
in Figure 15. One can take advantage of the flexibility
provided by the layer of indirection by ensuring that a coded

transition table row spans at most w words, where:

ootmt'!

wS[
N ¥

(7)
Figure 20 shows an example of uging this comstraint to pack
the coded transition table into the TTM. It can be seen that
retrieving the column associated with ECI 1 requires only one
memory access. In this exa.mple,' there is no loss in mewmory
efficiency; however this may not always be the case. For
example, consider the case where a memory word holds three

entries and every coded transition table column contains two

entries.
This memory packing problem is a variant of the classical

fractional knapsack problem where w is the constraint or
objective function. See Black, P.E., Dictionary of Algorithms
and Data Structures, NIST, 2004, the entire disclosure of
which is incorporated herein by reference. The difference in
the preferred embodiment here is that we require contiguous
storage of coded transition table columns. This imposes an

additional constraint when partitioning an object {(coded
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trangition table column) across multiple knapsacks {memory

words) in the claesical problem.

One solution to this problem 1s based on subget sum.
Wnile this 1 an NP-complete problem 1n the general case (see
Garey and Johmson, Computers and Intractability: A Guide to
the Theory of NBE-Completenegs, W. H. Freeman and Co.. 13979),
rhere are certain conditions in which 1t runs 1in
polynomial time, namely 1f the sum is much less than the
number of elements that are to be chosen from to create the
sum. The sum of the preferred embodiment will alwaye be Lhe
width of a memory word, so the preferred slgorithm will zlso
run in polynomizl time.

The basic idea i1s to £ind the longest run-length coaed
column and choose it first. One then will pack 1t i1nto memory
words gquaranteeing that it achilieves the best posgible packing.
One can then +take the number of remaining entries in the last
column and apply subget sum on it with the remaining run-

length coded columns. This will pack the memory as full as

possible without causing additional memory accesses. This

procegs is repeated until no encoded columns remain. This
zlgorithm is outlined in Figure 21, referred to herein as an
“optimal memory word packing” algorithm, where R is the set orf

~un-length coded columns, and w is the width of a2 memory word.

An Implementation Architecturs

In this section, an implementation of a higbh-periormance

regular expression search system based on the preferred nigh-

throughput DF2 and pipelined transition table techniques 1s
described. The focus of this implementation is a hybrid
processing platform that includes multiple superscalar

microprocessors and reconfigurable hardware devices with high-

bandwidth interconnect to an array of high-speed disks.

Figure 24 shows an example of the systew-level archltecture

and includes a ueer interface, regular expression compller,
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file I/0 controller, regular expression firmware module, and

results processor.

The purpose of the architecture is to maximize throughput
by embedding an array of regular .expression engines in tﬁe
reconfigurable hardware devices (e.g., FPGAB). The array of
engines, supporting control logic¢, and context buffer(s) may
be logically viewed as a single firmware module. In an
embodiment wherein the iegular expression circuits/engines are
realized on an FPGA, these engines can be synthesized to a
hardware definition language (HDL) representation and loaded
onto the FPGA using known techniques.

Each regular expression engine’s primary task is to
recognize regular expressgions in the input files streaming off
of the high-speed disks. The set of .regular expressions 1s
preferably specified by the user through the user interface,
compiled into high-throughput DFAs, and translated into a set
of tables and register values by a collection of software
components. The set of tables and register values are written
to the firmware module prior to beginning a search. When a
reqular expression engine recognizes a pattern, it sgsends a
message to the Results Processor that includes the context
(portion of the file containing the pattern), starting and
ending indexes of the pattern in the file, and the accepting
state label. Depending on the operating environment and level
of integration, the user interface may be a simple command
line interface, Graphical User Interface (GUI), or language-

specific API. The following subsections provide detalled

descriptions of the rewmaining components.

An Implementation Architecture: Regular Expression Compiler

As detailed in Figure 5, the regular expression compller
receives the set of regular expressions specified by the user
from the user interface. Thefeaf}:er, standard algorithms from
the art are used to parse the specified regular expression(s)
to create an NFA therefrom, render the NFA to a position

independent DFA, and reduce the position independent DFA tO a
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minimal DFA. The next step performed by the regular

expression compiler is to transform the conventional minimal
DFA to the preferred high throughput DFA of the present
invention. This step comprises the processes described above
with respect to scaling the DFA to accommodate strides of m
input symbols per cycle (including the determination of
appropriate match and match restart flags for the transition
table and the encoding of input symbols to ECIs), and run-
length coding the transition table. Next, the algorithms of
Figures 20 and 21 can be run to optimize the storage of the
run-length coded trangitions in transition table memory and
the algorithm of Fiqure 23 can be rur to optimize the packing
of the run-length coded transition entries into words of the
transition table memory. Thereafter, the entries in the
indirection table can be determined, and the compiler 1s ready
to issue commands to the regular expression circuit 502 that
will operate to populate the circuit's memory for the Input

symbol-to-ECI tables, the indirection memory table and

trangsition table.

An Implementation Architecture: Results Processor

It is expected that any of a variety of technlques can be
used to report the results of a search via a results |
processor. The preferred results processor can be configured
to resolve the exact expression and input string segment for

each match using the results produced by the regular

expresgion clrcuits (engines). 1In & preferred embodiment such
as that shown in Figure 24, the results produced by a regular
expression circuit (engine) include a unique engine identifier
(ID), the start state, the acgepting state, and the ECI for m
input symbols that triggered the accepting transition. The
results may also include the context for the match, which is a
section of the input stream containing a string that matches
the pattern. The results processor reports the matching

string and associated regular expression (patterm) to the user

interface.
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An Implementation Architecture: File I/0 Controller

The file I/O controller is a component of the system that.
controls the input stream. In the exemplary system of Figure
24, the file I/0 controller controls the stream of files
flowing from a data store to the regqular expression circuits.
Note that the input stream may also be fed by a network

interface (or other data interface) as is known in the art.

An Implementation Architecture: Regular Expression Firmware
The regular expression firmware module is the priwmary
datapath component in the system architecture shown in Figure
24. It preferably containe an array of regular expression
engines {(or pattern matching circuits) and & small amount of
control logic. The number of engines in the array depends on
the capacity of the reconfigurable hardware devices in the
gystem. The control logic broadcasts the input file stream to
each regular expression engine, thus the engines operate in
parallel on the same input data. The control logic also sends
a copy of the input to a context buffer. The size of the
context buffer depends on the amount of context that is to be
sent to the Results Processor when an engine recognizes a
pattern. This parameter may be tuned to maximize the amount

of context that may be returned while not overloading the

firmware/software interface.

As previously mentioned, the throughput of a regular
expression engine is fundamentally limited by the rate at

which it can compute state transitions for the deterministic
finite automaton. Resolving the next state based on the

current state and input symbol is an inherently serial

operation. In order to take advantage of the reconfigurable
logic regources avallable on ’L;he preferred implementation
platform, it is desired to maximize parallelism. Pipelining
is a common technigque for increasing the number of parallel
operations in serial computations; however, it requires that

the processing pipeline be free of feedback loops. The
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ocutputs of operations at a given stage of the pipeline cannot
depend upon the results of a stage later in the pipeline. As
shown in Figure 25, the regular expression engine'is a series
of pipelined computational blocks. Note that there are no
feedback loops between the blocks; each block operates on the
results of the previous block only. This 1s a distinguishing
feature of the preferred embodiment of the present invention.
Alphabet encoding is a state-independent operation that only .
operates on the set of input symbols. Indirection table
lookups use the resulting input symbol ECI to locate an entry.
Transition table lookups depend only on the pointer and
indexes contained in the Indirection Table entry. The only
operation that depends on the current state is the last
computation in the State Select block. By effectively
“pushing” this singular feedback looi: to the final stage of
the pipeline, the preferred embodiment maximizes parallelism
and hence the throughput of the regular expression engine.

The following sub-sections describe the design of each block

in the regular expression engine.

Regular Expression Firmware: Alphabet Encoding

The Alphabet Encoding block assigns an Egquivalence Class
Identifier (ECI) for a set of m input symbols. If each input
symboi is specified using I bits and an ECI is specified using
p bits, then the Alphabet Encoding block essentially reduces
the input from mi bits to p bits. A straightforward method
for performing this operation is to perform pairwise
combinations using direct-addressed tables. As shown in
Figure 26, the first set of tables transforms one i bit input
gymbol to a j bit ECI. This étep maps single input sywmbols to

equivalence classes. The next stage of tables generates a k

bit BECI for two input symbols by simply concatenating two g

bit BCIs for single symbols and direct-addressing an ECI
table. Note that j is upper bounded by the addressability of
the memory used to implement the ECI tables in the second

stage. Specifically, 27 wust be less than or equal to the
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number of address bits supported by the memory. Similarly,
the next stage generates a p bit ECI for four input symbols by
concatenating two x bit ECIs for two symbols and direct-
addressing an ECI table. Likewise, the address space
supported by the ECI table places an upper bound on k. In
theory, this technigue may be used to assign an ECI to any
number of input symbols; but in practice, the memory
efficiency significantly degrades -ag the number of symbols
covered by the f£inal equivalence class increases.

The logic required to implement subsequent stages of the
Figure 25 pipeline have already been discussed above.

Regular Expression Firmware: Buffers

Each regular expression engine preferably includes small
input and output buffers. The input buffers prevent a single
engine from stalling every eﬁgine in the array when it must
retrieve a transition table column that gpans multiple words
in the TTM. While the entire array wmust stall when any
engine’s input buffer fills, the input buffers help isolate
the instantaneous fluctuations in file input rates. The
output buffers allow the regular expression engines to
continue processing after it has found a match and prior to
the match being transmitted to the Results Processor. The
Context Buffer preferably services the output buffers of the
regular expression engines in round-robin fashion. If the
output buffer of any engine f£ills, then the engine must stall
prior to sending another result to the output buifer. The

array preferably must stall i1if the engine’s input buffer

fills.,
While the present invention has been described above in

relation to its preferred embodiment, various modifications
may be made thereto that still fall within the invention’s
scope. Such modifications to the invention will be
recognizable upon review of the teachings herein. For
example, while the tramsition tables have been described

herein such that the rows correspond to states and the columms
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correspond to ECIs, it should be readily understood that the
rows and columns of any of the tables described herein can be
reversed. As such, the full scope of the present invention is

to be defined sclely by the appended claims and their legal

egquivalents.
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CLAIMS:

1. In a device for matching an input string to a pattern via a deterministic finite
automaton (DFA), the DFA comprising a plurality of states including a current
state and a plurality of possible next states, the input string comprising a
plurality of input symbols, the improvement comprising:

the device comprising at least two parallel pipeline stages;

a first one of the pipeline stages being configured to retrieve a plurality of
transitions to a possible next state of the DFA from a pre-populated memory;
and

a second one of the pipeline stages that is configured to choose, based
at least in part upon the DFA’s current state, one of said retrieved transitions
from which the integrated circuit will determine the next state of the DFA,
wherein the second one of the pipeline stages is downstream from the first one

of the pipeline stages.

2. The device of claim 1 wherein the improvement further comprises the first
one of the pipeline stages being configured to retrieve a plurality of transitions
to a possible next state of the DFA from a pre-populated memory without

consideration of the current state of the DFA.

3. The device of claim 2 wherein the improvement further comprises the

second one of the pipeline stages being the final downstream pipeline stage of

the device.

4. A method for matching an input string to a pattern in a device that realizes a
deterministic finite automaton (DFA), the DFA comprising a piurality of states
including a current state and a plurality of possible next states, the input string
comprising a plurality of input symbols, the device comprising at least two
parallel pipeline stages, the method comprising:

within one of the pipeline stages, retrieving from a memory a plurality of
stored transitions to a next possible state of the DFA; and

within another of the pipeline stages that is downstream in the pipeline

from the pipeline stage from which the plurality of transitions were retrieved,
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selecting one of the retrieved transitions to identify the next state of the DFA,

wherein the selecting is based at least in part upon the current state of the
DFA.

5. The method of claim 4 wherein the retrieving step is performed without

consideration of the current state of the DFA.

6. A device comprising:

a multi-stage pattern matching pipeline configured to receive an input
data stream comprising a plurality of input symbols and process the received
data stream, wherein the pipeline realizes a pattern matching deterministic
finite automaton (DFA) that is configured to determine whether any string of
input symbols within the data stream matches a pattern, the DFA having a
plurality of states including a current state, the pipeline comprising a plurality of
stages including a final stage, each stage having at least one stage input and at
least one stage output, the final stage being configured to provide as outputs a
next state for the DFA, wherein the only stage of the pipeline that receives a

feedback loop based on a stage output Is the final stage.

7. The device of claim 6 wherein the final stage is configured to receive the
next state in the feedback loop such that the next state is used as the current
state when processing a next input symbol of the input data stream.

8. The device of claim 7 wherein the pipeline is further configured with a
plurality of the multi-stage pattern matching pipelines for processing the input

data stream in parallel.

9. The device of claim 7 wherein the pipeline comprises an FPGA.
10. The device of claim 7 wherein the pipeline comprises an ASIC.

11. The device of claim 7 wherein the pipeline comprises a processing system,

the processing system comprising a plurality of different processors that are
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arranged in a pipeline, each processor being configured to implement at least

one of the pipeline stages.

12. A device comprising:

a data processing pipeline configured to receive an input data stream
comprising a plurality of input symbols and process the received data stream
through a logic circuit to determine whether any input symbol string within the
input data stream matches a pattern, the logic circuit being configured to realize
a deterministic finite automaton (DFA), the DFA comprising a plurality of states,
an alphabet of input symbols, an aiphabet of equivalence class identifiers
(ECls), a set of functions that map groups of m input symbols to corresponding
ECls, and a set of functions that define transitions between states of the DFA,
each state transition function being indexed by an EC| and comprising a next
state identifier and a match flag, wherein m s an integer that is greater than or

equal to one.

13. The device of claim 12 wherein the DFA further comprises a set of

functions that map each ECI to at least one state transition function.

14. The device of claim 13 wherein each state transition function further

comprises a match restart flag.

15. The device of claim 14 wherein the DFA further comprises a variable that

tracks the starting input symbol of each potential pattern match.

16. The device of claim 15 wherein the DFA further comprises a variable that

tfracks the final input symbol of an actual pattern match.
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fanction DOUBLESTRIDE(S® ) : 6
foreach g € ¢} do
foreach ¢ € =F do
foreach b € Z* do
§%(g, ab) « 6b(5k(91 a), b)
end

Figure 6
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function PARTITION(Q, 2,6 : @ X T+ Q) : (resulé, K, 5 : L K
WorkList +— X
result +— {
14— —1
while WorkList # 0 do
w « some element of WorkLest |
equiv — {a € | Vg € Q d(g,a) = (g, w)}
te—i+1
K—KuU{i}
foreach sym € equiv do x(sym) —1
result «— result U equep
WorkList «+— WorkList — equat
end

Figure 8
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Figure 10

function BASEDFA(Q, T, g0, 6, 4, 0)) : DFA = (@, ¥, ¢, K, k,0')
K~ {0}
foreach a € & do x{a) ~— 0
WorkList — { g }
while WorkList # @ do
w « some slement of WorkLzsi
WorkList « WorkList — {w }

1% w s a sat of states that is already A-closed
f g0 € w by construction
¢ — QU {w}

foreach a € 2; do
targs — {t| (3s € w)i(s,a) =1}
targs «+— LAMBDACLOSURE(iargs)
red — targsNA# 0
green— (Vs Ew—{g})(Vt€ Q- {an})d(s,a) #1
3" — & U {w x a++ (targs, green, red) }
iftorgs €Q
then WorkList s— WorkIist U {targs }
end

Figure 11
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function DIFFMATRIX((J, 2,0): D
foreach ¢ € ¢} do
foreach p € ¢} do

foreach s € T do Dfq][p] — Dlgllp] + (g, s) # o{p, s)
end

Figure 20

fanction RLOPTIM(Q, qo, X, 6, D) : DFA' = (@', I, ¢, ¢')
Used — U
cur «— MAX( T o DIE)
while {/sed #£ @) do
next «— MAX(Dfcurr] — Used)
Used «— Used U {nezt}

oy «— next
end

Figure 21
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procedure COLPACK(R, )
while R # (@ do
longest — MAXLENGTH(R)
R+ R~ {longest}
PaCK(longest)
sum «~ & — (longest mod r)

Lg — {0}
foreach col € R do L; — MERGELISTS{ Ly_q, L1 + LENGTH(col))

remove from L, every element that is greater than sum
S « Maz(Ly) |
foreach col € 5 do
R+« R — {eol}
call PACK(col )
end

Figure 23
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