PCT WORLD INTELLECTUAL PROPERTY ORGANIZATION

International Bureau

\

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification4 :

GOGF 11/00

(11) International Publication Number: WO 89/ 07795
Al

(43) International Publication Date: 24 August 1989 (24.08.89) |.

(21) International Application Number: PCT/US89/00517 | (81) Designated States: AT (European patent), AU, BE (Eu-

ropean patent), CH (European patent), DE (Euro-

(22) International Filing Date: 9 February 1989 (09.02.89) pean patent), FR (European patent), GB (European
patent), IT (European patent), LU (European patent),
NL (European patent), SE (European patent).

(31) Priority Application Number: 158,228

(32) Priority Date: 19 February 1988 (19.02.88) | Published
With international search report.

(33) Priority Country: Us Before the expiration of the time limit for amending the
claims and to be republished in the event of the receipt
of amendments.)

(71) Applicant: BELL COMMUNICATIONS RESEARCH,
INC. [US/US]; 290 West Mount Pleasant Avenue, Li-

vingston, NJ 07039-2729 (US).

(72) Inventor: CHAO, Ming-Te ; 41 Westwood Circle, Edis-

on, NJ 08820 (US).

(74) Agents: WINTER, Richard, C. et al.; M.N. Meller and
Associates, P.O. Box 2198, Grand Central Station,

New York, NY 10163 (US).

54 Title: METHODS AND APPARATUS FOR FAULT RECOVERY

(57) Abstract

An error recovery system for computers is
shown in which an error table (31) and an action
table (32) are used to control the parameters of
the error recovery system. The error table (Fig.
4) has one entry for each possible error and con-
tains a count increment for each corrective ac-
tion that might be taken to correct that error.
The action table (Fig. 5) includes an error count
threshold for each possible corrective action.
The system (30, Fig. 6) operates to accumulate
error count increments against possible actions
(33-35) and, when the corresponding threshold is
exceeded, initiate the corrective action (36, 37).
Since the table contents are easily modified, the
recovery strategy can be updated and modified
by the computer user without changing the rec-
overy system programs.

EFROR ACTION
EVENT RESPONSE
HESSAGES HESSAGES
3e~j L~39
3 m
S g
R EF0R
3t ERAR
TABLE ELE CONTER 1
ERAOR u @
RECOVERY AR Y m
CONTROL = WEE COUNTER 2
P ooE i 2
i I
g ¥ $
b e
- EFROR
N WEE CONTER
0
MESSAGES 544
ACTION RETRY
WEE COUNTERS
ACTION
37~] EXECUTION
HODULE
l -
EXECUTE

ACTIONS

»l

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international appli-
cations under the PCT.

AT Austria FR France . ML Mali

AU Australia GA Gabon MR Mauritania
BB Barbados GB United Kingdom MW Malawi

BE Belgium HU Hungary NL Netherlands
BG Bulgaria IT Ttaly NO Norway

BJ Benin JP Japan RO Romania

BR Brazil ' KP Democratic People’s Republic SD Sudan

CF Central African Republic of Korea SE Sweden

CG Congo KR Republic of Korea SN Senegal

CH Switzerland . LI Liechtenstein SU Soviet Unica
CM Cameroon LK SriLanka TD Chad

DE Germany, Federal Republic of LU Luxembourg TG Togo

DK Denmark MC Monaco US United States of America

FI Finland MG Madagascar

WO 89/07795

10

15

20

25

30

35

PCT/US89/00517

METHODS AND APPARATUS FOR FAULT RECOVERY

Technical Field

This invention relates to the recdvery from a
software érror or a hardware fault in a complex data
processing system and, more particularly, to the use of a

table-driven recovery control arrangement to control the
recovery of operational status in such a data processing
system.

Background of the Invention

Computer or data processing systems typically
comprise a plurality of hardware components such as
processors, memory devices, input-output devices and
telecommunications devices. In addition, such computer
systems also comprise a plurality of software components
such as operating systems, application support systems,
applications, processes, data structures, and so forth. A
fault or an error in any one of these hardware or software
components can invalidate the results of a computer system
action. Much effort has therefore been invested in
discovering and correcting such faults and errors.

When a fault or error is discovered in a
computer system, a specific action, or series of actions,
is taken in an attempt to restore the system to working
order. These actions include restarting a software
process, reinitializing a data area, rebooting a central
processing unit, resetting a piece of hardware, and so
forth. 1In a complicated system, it is often difficult to
determine in real time which basic hardware or software
component of the system is at fault and requires
attention. Since the availability of the entire system is
dependent on rapid reacquisition of full working status,
an efficient strategy is required to minimize system
recovery time.

One strategy often used to minimize recovery
time for computer systems is to attempt recovery at the
level of the simplest, most elementary component which

WO 89/07795 PCT/US89/00517

10

15

20

25

30

35

- 2 -

could have caused the observed error or fault. If
reinitialization of that lowest level component fails to
clear the error or fault condition, a component at a next
higher level (having a larger and more comprehensive
function) is reinitialized. If the error is still not
cleared, components at ever higher and higher levels are
reinitialized until the fault or error condition is
cleared. If, either after a predetermined timeout period,
or after the highest level component possibly involved in
the error or fault is reinitialized and the error
condition remains, the automatic recovery system is deemed
to have failed and an audio or visual alarm is used to
alert attendant personnel to take corrective action. This
type of multiphased, staged multilevel procedural strategy
for recovering from errors and faults may be called a
multistaged system recovery strategy.

The detailed logic necessary to implement
multistaged system recovery strategies is complex,
expensive and requires a significant development effort.
Moreover, as new fault and error conditions are identified
during the life cycle of the system, the additions and
modifications to the logic of the recovery system become
very difficult and expensive. Finally, the actual fault
and error conditions, as well as the appropriate
corrective actions, may change over the life cycle of the
computing system. New faults and improved corrective
action sequences may be discovered or may become necessary
due to the aging of the components. For all of the above
reasons, the design and maintenance of computer system
recovery arrangements tend to be costly and unresponsive
to new experience gained with the computer system.

Summary of the Invention

In accordance with the illustrative embodiment
of the present invention, these and other problems in the
implementation of multistaged computer recovery systems
are solved by providing a table-driven recovery control
logic arrangement. Such a table-~driven control

WO 89/07795

10

15

20

25

30

35

PCT/US89/00517

arrangement centralizes the changeable control parameters
and provides an easily modified control arrangement. More
particularly, data tables in the computer are used to
record the significant information about all identified
error and fault conditions (the error table) and all the
significant information about all of the possible
corrective actions (the action table). :
In accordance with one embodiment of the present
invention, the error table includes a count increment for

"each action of a list of actions which might be taken in

response to this error event. Each time an error event
occurs, these counts can be accumulated toward the
associated action and, when a count threshold is exceeded,
the action is initiated. Each error event may contribute
counts toward a plurality of actions, and hence the error
table includes an action list with an error count
increment for each action on the list. The action table,
on the other hand, includes an error count threshold for
that action and a watchperiod after which accumulated
error counts are discarded as out of date. The action
table may also include alarm messages to apprise attendant
personnel of the status of the recovery system.

Using the error and action tables in accordance
with the present invention, it is possible to weigh
different error conditions differently in triggering any
given corrective action. This give great flexibility to
the design and updating of the recovery system.

Recovery failures in the recovery system of the
present invention are treated simply as another error
condition which can be counted to trigger a different,
higher level corrective action. Finally, the highest
level corrective action for all fault and error conditions
is simply the triggering of an audio or visual alarm to
alert attendant personnel. This ultimate alerting action
is likewise subject to the variably weighted counting
against a threshold for different errors in exactly the
same manner as the other automatic corrective actions.

WO 89/07795 PCT/US89/00517

10

15

20

25

30

35

-4 -

The major advantage of the present invention is
the ease with which new error conditions, new corrective
actions, and even new recovery strategies can be
accommodated. The entire corrective procedure can be
implemented by general purpose software which operates
independently of the actual errors or corrective actions
in the system to implement the strategy embodied in the
table entries. All of the variable data, however, is
maintained in the editable error and action tables. The
addition, deletion or modification of the error table or
the action table entries are therefore all that is
necessary to accommodate newly discovered errors, actions
and strategies. Moreover, the error weights and the
action thresholds can be varied over the life cycle of the
system to accommodate new knowledge or age-dependent
variations. ,

Brief Description of the Drawing

A complete understanding of the present
invention may be gained by considering the following
detailed description in conjunction with the accompanying

- drawing, in which:

_FIG. 1 shows a general block diagram of a
computer hardware system in which the present invention
might find use;

FIG. 2 shows a general block diagram of a
computer software system which might be resident on the
computer hardware system of FIG. 1 and in which the
present invention might find use;

FIG. 3 shows a general block diagram of an error
recovery system in accordance with the present invention:

FIG. 4 shows a graphical representation of an
error event storage table for storage inside the computer
system of FIG. 1 and which, in accordance with the present
invention, can be used to dynamically control the error
recording function required for the operation of the error
recovery system of FIG. 3;

FIG. 5 shows a graphical representation of an

WO 89/07795

10

15

20

25

30

35

PCT/US89/00517
- 5 -

action storage table for storage inside the computer
system of FIG. 1 and which, in accordance with the present
invention, can be used to dynamically control the error
recovery actions required for the operation of the error
recovery system of FIG. 3; '

FIG. 6 shows a graphical representation of:a
flowchart for the operation of the error recovery system
of FIG. 3;

FIG. 7 shows a graphical representation of an
error queue update process useful in the flowchart of
FIG. 6; and

FIGS. 8A and 8B, when arranged as show in
FIG. 8, show a graphical representation of an action queue
update process useful in the flowchart of FIG. 6.

To facilitate reader understanding, identical
reference numerals are used to designate elements common
to the figures.

Detailed Description

Referring more particularly to FIG. 1 of the
drawings, there is shown a general block diagram of a
computer hardware system comprising a Central Processing
Unit (CPU) 10 and a Random Access Memory (RAM) unit 11.
Computer programs stored in the RAM 11 are accessed by
CPU 10 and executed, one instruction at a time, by CPU 10.
Data, stored in other portions of RAM 11, are operated
upon by the program instructions accessed by CPU 10 from
RAM 11, all in accordance with well-known data processing

techniques.

Central Processing Unit (CPU) 10 also controls
and accesses a disk controller unit 12 which, in turn,
accesses digital data stored on.one or more disk storage
units such as disk storage unit 13. 1In normal operation,
programs and data are stored on disk storage unit 13 until
required by CPU 10. At this time, such programs and data
are .retrieved from disk storage unit 13 in blocks and
stored in RAM 11 for rapid access.

Central Processing Unit (CPU) 10 also controls

WO 89/07795 ' PCT/US89/00517

10

15

20

25

30

35

-6 -

an Input-Output (IO) controller 14 which, in turn,
provides access to a plurality of input devices such as
CRT (cathode ray tube) terminal 15, as well as a plurality
of output devices such as printer 16. Terminal 15
provides a mechanism for a computer operator to” introduce
instructions and commands into the computer system of

FIG. 1, and may be supplemented with other input devices
such as card and tape readers, remotely located terminals,
optical readers and other types of input devices.

Similarly, printer 16 provides a mechanism for displaying

the results of the operation of the computer system of
FIG. 1 for the computer user. Printer 16 may similarly be
supplemented by line printers, cathode ray tube displays,
phototypesetters, graphical plotters and other types of
output devices.

The constituents of the computer system of
FIG. 1 and their cooperative operation are well-known in
the art and are typical of all computer systenms, from
small personal computers to large main frame systems. The
architecture and operation of such systems are well-known
and, since they form no part of the present invention,
will not be further described here.

In FIG. 2 there is shown a graphical
representation of a typical software architecture for a
computer. system such as that shown in FIG. 1. The
software of FIG. 2 comprises an access mechanism 20 which,
for simple personal computers, may comprise no more than
turning the system on. 1In larger systems, providing
service to a larger number of users, login and password
procedures would typically be implemented in access
mechanism 20. Once access mechanism 20 has completed the
login procedure, the user is placed in the operating
system environment 21. Operating system 21 coordinates
the activities of all of the hardware components of the
computer system (shown in FIG. 1) and provides a number of
utility programs 22 of general use to the computer user.
Utilities 22 might, for example, comprise assemblers and

WO 89/07795 PCT/US89/00517

10

15

20

25

30

35

-7 -

compilers, mathematical routines, basic file handling
routines and system maintenance facilities.

The computer software system of FIG. 2 typically
also includes a plurality of application programs such as
application programs 23, 24, ...25. Application programs
23-25 might, for examplé, comprise an editor, a
spreadsheet program, a graphics package, a data base

‘manager, and so forth. Each of the application programs

23 through 25 includes or provides access to a plurality
of programmed processes 26, 27, ...28, respectively. It
is the programmed processes 26 thfough 28 which actually
perform the tasks necessary to carry out the purpose of
the corresponding application program. In order to make
effective use of these application packages, the user must
be able to execute the processes 26-28 at the time, and in
the sequence, necessary to accomplish the user’s goals.

It is the recovery from errors and failures in
either the hardware components of FI?. 1 or the software
components of FIG. 2 toward which the present invention is
directed. '

In FIG. 3 there is shown a:general block diagram .
of an error recovery system in accordance with the present
inveﬁtion. The error recovery system of FIG. 3 comprises
an error recovery control module 30 which performs all of
the control functions necessary to operate fhe recovery
system. Error event messages from the various parts of
the systems of FIGS. 1 and 2 are delivered to module 30 on
line 38. The nature and significance of these error
events are not the subject matter of this invention, but
include such well-known events as access timeouts,
acknowledgement failures, hardware failures, and so forth.
Each error event message received on line 38 includes an
error event code, the type or class of entity in which the
failure occurred, the identity of the specific entity
where the failure occurred and the clock time at which the
error event occurred. These error event messages are
formulated in the hardware or software module where the

WO 89/07795 PCT/US89/00517

10

15

20

25

30

35

- 8 -

error occurs in accordance with well-known techniques and
will not be further described here.

Recovery module 30 responds to error event
messages by consulting the error event entry in error
table 31 corrésponding to the error event to determine
which actions should be responsive to this event. For
each such action, an entry is added to, or updated in, one

- of error queues 33-35. An error queue is provided for

each of the possible corrective actions identified on
action table 32. Each of error queues 33-35 is
accompanied by an error event counter 41-43, respectively.
The error queue entries record the error events generating
counts towards the enablement of each of the actions, and
thus each error queue can have a number of entries equal
to the number of errors contributing to the execution of
that particular action. Specifically, each error queue
entry in each of error queues 33-35 includes 1) an error
event code, 2) an error event count increment, and 3) the
occurrence time for the error event. These entries will
be used as described below to control the error recovery
system. The error event counters 41-43 are used to
accumulate the error counts for the action corresponding
to the error queue to which each respective counter is
connected.

When the accumulated error count in one of error
counters 41-43 equals or exceeds the threshold count for
that action in action table 32, that action is placed in
action queue 36. Each entry in action queue 36 represents
an action to be taken which has been triggered by the
accumulated error count exceeding an error count
threshold. The initiation of such actions in queue 36
must await the completion, as indicated by an action
response message, of a previously initiated action.
Moreover, failed recovery actions can be retried as many
times as desired before escalating to a higher level
action. Such retries are controlled by a retry count in
one of the retry counters 44 connected to action queue 36.

WO 89/07795

10

15

20

25

30

35

PCT/US89/00517

Specifically, each entry in action queue 36 includes 1)
the action code, 2) the number of retry attempts to be
made for the identified action, and 3) an action-in-
progress mark which is created when the action is
initiated and removed when the action is completed.

In due course, each action in action queue 36 is
forwarded to the action execution module 37 where it is
executed to accomplish the restorative action. After this
action has been completed, an action response message is
received at the recovery system of FIG. 3 on line 39. The
action response message may indicate that the corrective
action was successful and that the error condition has
been corrected. In that event, the action can be removed
from the action queue 37. On the other hand, the action
response message may indicate that the corrective action
failed and the error is persisting. In that event, the
failure message is treated as just another error event
message which causes error counts to be accumulated, in
one of counters 44, toward an action retry, causes the
initiation of a higher level adtion, or causes an alarm to
attendant personnel. The retry count is maintained in one
of the retry counters 44, one of which is provided for
each possible action. The alarms and alarm messages are
provided by module 30 on line 40.

The operation of the error recovery system of
FIG. 3 will be better understood upon consideration of the
flowchart of FIG. 6 which represents the detailed
operation of the recovery system of FIG. 3.

Referring first to FIG. 4, there is shown a
graphical representation of the contents of the error
event table 31 of FIG. 3. As can be seen in FIG. 4, the
error table includes a plurality of fields with values for
all of the fields for each defined error event in the
system. As shown in the first column, the fields of the
error table are 1) the error event code uniquely
identifying the error, 2) the class of entity in which the
error can occur, 3) the identification of each of the

WO 89/07795 PCT/US89/00517

10

15

20

25

30

35

- 10 -

particular entities in which the error can occur, 4) an
indication of the severity of the alarm which should be
generated in response to this particular error, 5) the
text of the alarm message, if any, which should be
delivered to the attendant personnel in the event that
this error occurs, and 5) an action list including all of
the corrective actions which might be taken in response to

this error in order to correct the error. Associated with

each corrective action on the action list is an error
count increment which is used to increment one of error
counters 41-43. When the error counter in the appropriate

' error counter reaches a threshold established for this

partfcular’action, the action is initiated.

The action list suggests that more than one
action can be initiated to correct the same error.

Indeed, the multilevel, multiphased recovery strategy
presumes this to be true. Such a strategy may be readily
implemented by selecting the count increments and the
count thresholds for each action to cause the desired
progression in corrective actions. .

' The error table includes a value for each of
these fields for each of the identified error events.
These fields can be added or modified with simple editing
facilities thereby to change the recovery strategy without
further modifications to the recovery system, either in
hardware or software.

In FIG. 5 there is shown a graphical
representation of the action table 32 of FIG. 3. The
action table of FIG. 5 also includes a plurality of
fields, one for each possible corrective action. For each
such action, the action table of FIG. 5 includes the
following fields: 1) an action code uniquely identifying
the corrective action, 2) an identification of the class
of entity which is to take the corrective action so
identified, 3) an identification of each of the particular
entities which is to actually take this action, 4) a
watchperiod, i.e., a period of time after which unrepeated

WO 89/07795 PCT/US89/00517

10

15

20

25

30

35

- 11 -

errors are presumed to be transitory and the error count
for that error can be reset to zero, 5) the error
threshold for this action, i.e., the minimum error count
which will trigger this action, and 6) the retry
threshold, i.e., the number of times this action can be
retried within the watchperiod for this action.

The error table of FIG. 4 and the action table
of FIG. 5 are shown separately only because they
constitute logically distinct value relationships. These
tables may, of course, be stored together physically and
accessed with the same access mechanism. Such storage
techniques are well-known in the art and will not be
further described here.

In FIG. 6 there is shown a detailed flowchart of
the operation of the recovery system of FIG. 3. In
FIG. 6, the flowchart begins at starting box 60 from which
box 61 is entered. Box 61 initializes all of the
queues 33-36 (FIG. 3) and initializes the error table
(FIG. 4) and the action table (FIG. 5). Error event
messages originate in box 63 following error events
(operating system 21 in FIG. 2) while action response
messages originate in box 62 following the execution of
corrective actions (execution module 37 in FIG. 3). These
messages are read in box 64.

If the message read in box 64 is an error event
message, decision box 65 detects that fact and box 66 is
entered. In box 66, the action list for this particular
error event is retrieved from the error table (FIG. 4).

In decision box 67, it is determined if the error calls
for an alarm and, if so, the alarm is generated in box 68.
Thereafter, in box 69, the error counters 41-43 and the
error queues 33-35 (FIG. 3) are updated, using the error
count increments from the action list retrieved from the
error table. 1In box 70, the action counts in action
counters 44 and the contents of action queue 36 (FIG. 3)
is updated, adding all actions for which the count
threshold is exceeded. The detailed operation of boxes 69

WO 89/07795 ' ' PCT/US89/00517

10

15

20

25

30

35

l - 12 -

and 70 will be discussed in connection with FIGS. 7 and 8,
respectively.. 7
Following the updating of the error queues and

- the action queue, decision box 74 is entered. If the

action queue is empty, box 64 is re-entered to read the
next message. If the action queue is not empty, decision
box 75 is entered to see if the next action in the action
queue -is already in progress. If the next action is
already in progress, box 64 is re-entered to read the next
message. If the next action is not in progress, decision
box 76 is entered to determine if the action retry
threshold for the next action is exceeded, as determined
by the count in one of counters 44. If the retry
threshold is exceeded, box 77 is entered to generate an
appropriate alarm and to launch an error event message
detailing this excessive number of retries as a new error
event. The error event message thus launched is read in
box 64 just like any other error event message.

If the retry threshold is not exceeded, as
determined by decision box 76, box 78 is entered to
initiate the next action in the action queue and mark that
action as being in progress. Thereafter, the process
waits for the next message to arrive at box 64. It is to
be remembered that, following the completion of the
corrective action, an action response message is generated
in box 62 to insure proper handling of the successful or
unsuccessful action.

Returning to decision box 65, if the message is
determined to be an action response message rather than an
error event message, decision box 71 is entered to
determine from the response message whether the action was
a success (and corrected the error) or was a failure. If
the action failed, box 72 is entered to generate an alarm,
if appropriate, and an error event message identifying
this failure as a new class of error. If the action was
successful, the action is deleted from the action queue in
box 73 and decision box 74 reentered to initiate the next

WO 89/07795

10

15

20

25

30

35

PCT/US89/00517
- 13 -

action in the action queue, if any. It will be noted that
only one action can be taken at a time. Once the action
is in progress, all other actions must wait for completion
of the action in progress and the receipt of the
appropriate action response message. This one-at-a-time
procedure insures that multiple corrective actions do not
themselves cause errors by interfering with one another.
In FIG. 7 there is shown a detailed flowchart of

the error queue update procedure of box 69 in FIG. 6. 1In

FIG. 7, the procedure begins at starting box 90 and
proceeds to box 91 where the next action on the action
list from the error table is obtained. In decision box 92
it is determined whether this action is already in
progress. If so, box 91 is re-entered to get the next
action on the action list. If the action is not in
progress, box 94 is entered to add this error event to the
appropriate error queue. Each entry in each of the error
queues includes the error event code, the incremental
count for this error event towards the action threshold
for this action, and the error event time of occurrance of
thié error event. Error event counters 41-43 of FIG. 3
contain the accummulated error event counts for all of the
entries of the associated one of error queues 33-35,
repectively.

In box 95, the accumulated error count in the
associated error counter 41-43 is incremented by the
amount of the error count increment in the action list for
this action. Thereafter, decision box 96 is entered to
determine if there is another entry on the error queue.

If not, decision box 97 is entered to determine if there
is another action on the action list. If so, box 91 is
re-entered to deal with the new action. If not, the error
queue update is complete and terminal box 98 is entered to
return to the flowchart of FIG. 6.

If decision box 96 indicated that there is
another entry on the error queue for this actionﬁ'box 99
is entered to get the next entry from the error queue. 1In

WO 89/07795 PCT/US89/00517

10

15

20

25

30

35

- 14 =

decision box 100, the watchperiod in the action table for
this action is compared to the difference between the
error event time for this error event and the error event
time for the most recent occurrence of the same error
event, stored in the error queue entry. If the period
since the last error is less than the watchperiod,
decision box 96 is re-entered to check for the next entry
on the error queue. If this period is greater than the
watchperiod, box 101 is entered and the entry is deleted
from the error queue. That is, if the second error does
not occur within one watchperiod of the first error, the
error is presumed to be transitory and its record is
erased from the system in box 101.

It can be seen that the flowchart of FIG. 7
operates to update all of the error queues corresponding
to all of the actions in the action list for the error
event that has occurred. Together, the error queues
therefore serve to maintain a history of the error events,
thereby permitting actions to be taken based on the number
and sequence of the errors that actually occur.

In FIG. 8 there is shown a detailed flowchart of
the action queue update procedure shown generally in
box 70 of FIG. 6. Starting in start box 120 in FIG. 8
the action queue update procedure starts in box 121 by
getting the next action from the action list in the error
table for this error event. In decision box 122, the
error count accumulation in the error queue for this error
and for this action is compared to the error threshold
stored in the action table for this action. If the
accumulated count is less than the threshold, box 123 is
entered to determine if there are any more actions on the
action list. If so, box 121 is re-entered to get the next
action on the action list. If there are no more actions
on the action list, terminal box 124 is entered to return
to the procedure of FIG. 6.

If the error count does exceed the error
threshold in box 122, box 125 is entered where this error

4

WO 89/07795 PCT/US89/00517

10

15

20

25

30

35

- 15 -

count is reset to zero. Since an action will now be
initiated, it is no longer necessary.to maintain the
accumulated error count needed to trigger.the action. 1In
decision box 126, it is determined whether this action is
"covered" by an action-in-progress. It will be recalled
that one of the fields in the action queue entries is an
action-in-progress mark which indicates that the
associated action has been initiated, but has not yet
returned a response message indicating that the action is
completed. The term "covered," in this context, means
"included within" the action. That is, if an action
necessarily involves the execution of a lower level action
(e.g., restarting an application program necessarily
involves restarting all of the processes in that
application), then the covered action need not be taken.
In that event, box 123 is entered to get the next action
on the list, or to terminate the update procedure.

If the current action is not covered by the
action~in-progress, decision box 127 is entered to
determine if the action queue is empty. If the action
queue is empty, the current action is added to the action
queue in box 128 and decision box 123 re-entered. If
there is another action in the action queue, box 129 is
entered to get the next action from the action queue. 1In
box 130, it is determined if the action retrieved from the
action queue covers this action. If so, no new entry for
this action need be made in the action queue and box 123
is re-entered. If this action covers the action retrieved
from the action queue, as determined by box 131, then the
retrieved action entry is deleted from the action gqueue in
box 132. That is, if the new action covers the queued
action, then there is no need to keep the queued action,
and it can be deleted. 1In box 133 it is determined if
there is another action in the action queue. If so,
box 129 is re-entered to process this action from the
action queue. If not, box 128 is entered to add this
action to the action list and then box 123 is re-entered

WO 89/07795 PCT/U 889/00517

- 16 -

to process the next action on the action list, or to
terminate if there are no more actions on the action list.
It can be seen that the procedure of FIG. 8
operates to keep the action queue 36 of FIG. 3 up to date
5 1in response to new error event messages.. As previously
noted in connection with FIG. 6, the action queue is used
to initiate new corrective actions once the previous
action has terminated.
It should also be clear to those skilled in the
10 art that further embodiments of the present invention may
be made by those skilled in the art without departing from
the'teachings of the present invention.

WO 89/07795 - PCT/US89/00517

10

15

20

25

30

35

- 17 -

What is claimed is:

1. A computer error recovery system comprising

an error table for storing, for each identified
error in said computer, an action list of all actions to
be taken to correct the identified error, and an error
count increment for that action,

an action table for storing, for each possible
corrective action to be taken, an error count threshold
which, whefl exceeded, triggers the associated action,

rheans, responsive to an identified error, for

accumulating error count increments, and

means, responsive to accumulated error count
increments, for initiating that corrective action for
which said accumulated count exceeds the count threshold.

2. The computer error recovery system according
to claim 1 further comprising

means for editing said error and action tables
to add, delete or modify the contents of said tables.

' 3. The computer error recovery system according

to claim 1 wherein

at least one of said possible errors comprises
the failure to recover from another one of said possible
errors after executing the corrective action.

4. The computer error recovery system according
to claim 1 wherein

at least one of said identified corrective
actions comprises the provision of an audio or visual
alarm to attendant personnel.

5. A method for recovering from errors
occurring in a computer system, said method comprising the

steps of

storing an easily editable error table in said
computer, said error table including, for each identified
error in said computer, an action list of all actions to
be taken to correct the identified error, and an error
count increment for that action,

WO 89/07795 ' PCT/US89/00517

10

15

20

25

30

35

_18-

storing an easily editable action table in said

~computer, said action table including, for each possible

corrective action to be taken, an error count threshold
which, when exceeded, triggers the associated action,

accumulatihg'the error counts for each
identified error against all actions which might be
responsive to that error, and

initiating corrective actions when the
accumulated count for that action exceeds the count
threshold for that action.

6. The method according to claim 5 further
comprising the steps of

editing said error and action tables to add,
delete or modify the contents of said tables in response
to newly discovered errors, newly discovered corrective
actions, or new recovery strategies.

7. The method according to claim 5 further
including the step of

reporting the failure of a corrective action as
another one of said'possible errors.

8. The computer errbr recovery system according
to claim 5 further comprising the step of

providing an audio or visual alarm to attendant
personnel as one of said corrective actions.

9. - A table-driven error recovery subsystem for
data processing system comprising

a user-editable error table including each of
the possible errors that might occur in said system,

a user-editable action table including each of
the possible corrective actions that might be useful in
said system, and

means responsive to the contents of said tables
for carrying out a multistaged recovery strategy for said
data processing system.

10. The error recovery subsystem according to
claim 9 further including
. a plurality of queues for storing a history of

[

WO 89/07795 PCT/US89/00517
- 19 -

the errors that have occurred in said system, and means

for implementing said strategy in response to said
history.

PCT/US89/00517

WO 89/07795 1/7
FIG. 1
15. 11
CAT / L
TERMINAL RAW
ey 0 a:
1/0 DISK |
vt =1 U1 cow.
}
PRINTER |
16
FIG. 2
-
access V-
] 21 2
A TS)
SYSTEM
f23 f24 f25

APPLICATION {

APPLICATION 2

26 26 26

21 2 2l

APPLICATION n

28 28 28

WO 89/07795 2/7 PCT/US89/00517

ERROR ACTION
EVENT RESPONSE
MESSAGES FIG.3 MESSAGES
B %3
gsa | §41
ERROR ERROR
M SR e ¢
ERROR] 7
RECOVERY ~~\ ERROR ha EAROR
CONTROL ™+ QUEUE p——e COUNTER 2
307 WoDULE E 2
| §35 §43
. ; ERROR
ACTION [| IS ' | - SU— ERROR
2 Tl : COUNTER n
40
ALARM
MESSABES §44
ACTION RETRY
T COUNTERS
ACTION
37~ EXECUTION
MODULE
EXECUTE

ACTIONS

WO 89/07795

“ACTION LIST

3/7

FIG.4

ERROR TABLE

ERROR CODE

ENTITY CLASS

ENTITY NAME

ALARM SEVERITY

ALARM MESSAGE
ACTION (A) ~INCREMENT (A)
ACTION {B) ~INCREMENT (8)
ACTION (C) ~INCREMENT (C)
ACTION (N) ~INCREMENT (N)

FIG.5

ACTION TABLE

ACTION CODE
ENTITY CLASS
ENTITY NAME
WATCH PERIOD
ERAOR THRESHOLD
RETRY THRESHOLD

PCT/US89/00517
== =
R RUURR— =
EE z
vl TV
vivy, y
vivy y
vivi v
Vv, y
vivy, V
vivy,)
vivi y
vivgR ... y
== =
= 3
55 5
[
Vi{vy V
Vivy v
ViVl y
Vvivy oo)
vivge,. ..)

PCT/US89/00517

WO 89/07795 4/7
| GENERATE | [GENERATE |
| ACTION | 60 | ERAR !
| RESPONSE | (Csmr_) | EVENT |
FIG.6 | MESSAGES | g2 ! MESSAGES L_,~<§3
! (HODULE 37 | (SYSTEM 24
| FIG. 3) | INITIALIZE: ' FIG. 2) !
---------- ACTION TABLE R
i EAROR TABLE [~
2| | ACTION aUELE
SUCCESS EAROR QUELE
08
FAILURE? -
[73
READ
2 < v MEssae [~ 04
GENERATE TELETE
ALARM ACTION
o200 i .
i ACTION GUEUE . Ezﬁrr :
MESSAGE RESPONGE
; GET ACTION
Ve 557{ LIST FAOM
» ERROR
TABLE
67
YES NEXT

ACTION IN

YES

772
GENERATE.
ALARM
AND
ERROR
EVENT
MESSAGE

————

PROGRESS?

RETRY
THRESHOLD
EXCEEDED?

2

INITIATE
ACTION
AND

78

68-:1

GENERATE

ALARM

UPDATE
ERROR
QUEUES
(F16.7)

/69

UPDATE

ACTION | 2o

MARKS IN
PROGAESS

QUEUES
(F16.8)

WO 89/07795

FIG.7

5/7

30
(START 9

PCT/US89/00517

GET NEXT
ACTION
FROM
ACTION LIST

591

THIS
ACTION IN

PROGRESS?

ADD THIS
ERRCR
-T0 ERROR
QUEUE

1

INCREMENT
ERROR
COUNTER

NO

GET NEXT
ENTRY FROM
ERROR QUEUE

:;99

100

ENTRY TIME
-EVENT TIME
> WATCH
PERIOD?

YES

101
5

DELETE

ENTRY FROM
ERROR QUEUE

ANOTHER
ACTION ON
ACTION LIST?

NO

%
S
CreruRn)

WO 89/07795 ' 6/7 PCT/US89/00517

120
CEEEZYV FIG.BA

FIG.8 |
FIG.8A y GET NEXT | 194
F16.88 ACTION FROM /™
ACTION LIST

ERROR COUNT
> ERAOR
THRESHOLD?

NO

123

ANOTHER
ACTION ON
ACTION LIST?

YES

SET ERROR | 125
COUNT . r
10 ZERD

126

ACTION
COVERED BY
ACTION-IN-
PROGRESS?

ACTION YES

QUEUE
EMPTY?

WO 89/07795 7/7

FIG.8B

- SiEQ

GET NEXT
ACTION
FROM
ACTION QUEUE

130

QUEUE
ACTION COVER
THIS ACTION?

YES

131

5132

DELETE THIS
ENRY | YES “erron coven
FROM QUEUE ACTION?

ACTION QUEUE

ANOTHER

ACTION IN W

ACTION GUEUE?

PCT/US89/00517

@)

INTERNATIONAL SEARCH REPORT
International Application No PCT/US 89/00517

I. CLASSIFICATION OF SUBJECT MATTER (it several classification symbols apply, indicate all) ¢
According to internationai Patent Classification (IPC) or to both National Classification and IPC

wed, G 06 F 11/00

Il. FIELDS SEARCHED

Minimum Documentation Searched 7

Classification System | - Classification Symbols

4
IPC G 06 F 11/00

Documentation Searched other than Minimum Documentation
to the Extent that such Documents are included in the Fields Searched ¢

iIl. DOCUMENTS CONSIDERED TO BE RELEVANT?®
Category * ‘ Citation of De¢ t, 1% with indication, where appropriate, of the relevant passages 12 | Relevant to Claim No. '3

Y GB, A, 1495729 (CII-HONEYWELL BULL) 1,3
21 December 1977, see page 22,

line 10 - page 29, line 112; figure 16
A ' 2,5,7

Y IBM Technical Disclosure Bulletin, vol. 16, 1,3
no. 6, November 1973 (New York, US),

W.N. Andersen et al.: "Error controls”,
pages 1901-1902, see the whole article

A us, A; 3575589 (NEEMA) 20 April 1971, see 1,4,8
column 1, line 54 - column 2, line 4

A IBM Technical Disclosure Bulletin, vol. 18, 1,2,6,9
no. 5, Octcober 1975 (New York, US),
M. Bouillot: "Error recovery'", page
1460, see the whole article

A Patent Abstracts of Japan, vol. 10, no. 60 | 1,9
(P-435)(2117), 11 March 1986
o/c

¢ Special categories of cited documents: 10 “T" later doc'ur:ont puglllhof after ﬂn;: initl;r?;tionallﬁli;\g d;t:
iori te and not in conflict w e application bu
“A" document defining the genaral state of the art which is not or priority da A !
considered to be of particular relevancs: ::l:?.e. ‘tignundonund the principle or theory undarlying the
“E" earlier document but published on or after the international ux* document of particular relevance; the claimed invention
filing date . cannot be considered novel or cannot be considersd to
“ d?‘cu'?l‘ont wr‘:’ich may ;?r%w :wm‘l onipriodrlt‘y cl:im(:zhor invoive an inventive step
which is cited to establish the publication date ot another uy» document of particular relevance; the claimed invention
citation or other special reason (as specified) cannot be eon:idcud to involve an inventive step when the
“O" document referring to an oral disclosure, use, exhibition or d t is bined with one or more other such docu-
other means ments, such combination being obvious to & person skilled
“P" document published prior to the international filing date but in the art.
later than the priority date claimed “&" document membaer of the same patent family
IV. CERTIFICATION
Date of the Actuai Completion of the international Search Date of Maliing of this International Search Report
23rd May 1989 §2.06 89
A
internationat Searching Authority Slgnaty oﬂuﬂ’?cor
.) .
EUROPEAN PATENT OFFICE \ WK w PUTTEN

Form PCT/ISA/210 (second sheet) (January 1985)

PCT/US 89/00517

international Application No. 2

. DOCUMENTS CONSIDERED TO BE RELEVANT (CONTINUED FROM THE SECOND SHEET)

Category * i Citation of Document, with indication, where sppropriate, of the relevant passages . Refevant to Claim No

i |
' & JP, A, 60204050 (FUJITSU K.K.) =

15 October 1985

IBM Technical Disclosure Bulletin, vol. 15, 1,9,10
P no. 9, February 1973 (New York, US),

| R.B. Butler et al.: "Establishing a

’ recovery environment", pages 2954-2955,
see the whole article

A | IBM Technical Disclosure Bulletin, vol. 15, 1,2,5,6,9
; no. 9, February 1973 (New York, US),
; R.B. Butler: "Recovery for supervisor ;
i control routines", pages 2803-2804,
i see the whole article

Form PCT ISA 210 (extra sheet) (January 1985)

EPO FORM P49

ANNEX TO THE INTERNATIONAL SEARCH REPORT
ON INTERNATIONAL PATENT APPLICATION NO. US 8900517

SA 27238

This annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report.
The members are as contained in the European Patent Office EDP file on 07/06/89 . .
The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

Patent document Publication Patent family Publication
cited in search report date member(s) date

GB-A- 1495729 21-12-77 FR-A,B 2291543 11-06-76
: JP-A- 50117336 13-09-75

US-A- 3575589 20-04-71 None

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

