Title: CIRCUIT FOR GENERATING VERY LOW CURRENTS

Bezeichnung: SCHALTUNG ZUR GENERIERUNG SEHR KLEINER STRÖME

Abstract

Prior art current-mirror circuits are not particularly well designed for generating very low currents in the nA range. It is indeed possible to use multiple current reflection with the aid of multiple emitters to generate such currents but the currents thus obtained depend upon parameter tolerances and temperatures. In addition, such circuits require a fairly large chip area. The relationship between the reference current (Iref) of the current-mirror circuit and the first output current (Iout) at the collector of the output transistor can be set via the dimensions of a first resistor R in the emitter of the output transistor (34) of a current-mirror circuit. By adding a second current-mirror stage (38) with a second resistor R' therein and a second output current (Iout'), it is possible to obtain for R = R' the relationship between the first and second output currents corresponding to the ratio between the reference and the first output current.

Zusammenfassung

LEDIGLICH ZUR INFORMATION

Code, die zur Identifizierung von PCT-Vertragsstaaten auf den Kopfabenden der Schriften, die internationale Anmeldungen gemäß dem PCT veröffentlichen.

<table>
<thead>
<tr>
<th>Code</th>
<th>Name</th>
<th>Code</th>
<th>Name</th>
<th>Code</th>
<th>Name</th>
<th>Code</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT</td>
<td>Österreich</td>
<td>FI</td>
<td>Finnland</td>
<td>MN</td>
<td>Mongolei</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AU</td>
<td>Australien</td>
<td>FR</td>
<td>Frankreich</td>
<td>MR</td>
<td>Mauritanien</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BB</td>
<td>Barbados</td>
<td>GA</td>
<td>Gabun</td>
<td>MW</td>
<td>Malawi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BE</td>
<td>Belgien</td>
<td>GB</td>
<td>Vereinigtes Königreich</td>
<td>NL</td>
<td>Niederlande</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BF</td>
<td>Burkina Faso</td>
<td>GN</td>
<td>Guinea</td>
<td>NO</td>
<td>Norwegen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BG</td>
<td>Bulgarien</td>
<td>GR</td>
<td>Griechenland</td>
<td>PL</td>
<td>Polen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BJ</td>
<td>Benin</td>
<td>HU</td>
<td>Ungarn</td>
<td>RO</td>
<td>Rumänien</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BR</td>
<td>Brasilien</td>
<td>IE</td>
<td>Irland</td>
<td>RU</td>
<td>Russische Föderation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CA</td>
<td>Kanada</td>
<td>IT</td>
<td>Italien</td>
<td>SD</td>
<td>Sudan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CF</td>
<td>Zentrale Afrikanische Republik</td>
<td>JP</td>
<td>Japan</td>
<td>SE</td>
<td>Schweden</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CG</td>
<td>Kongo</td>
<td>KP</td>
<td>Demokratische Volksrepublik Korea</td>
<td>SN</td>
<td>Senegal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH</td>
<td>Schweiz</td>
<td>KR</td>
<td>Republik Korea</td>
<td>SU</td>
<td>Soviet Union</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CI</td>
<td>Côte d’Ivoire</td>
<td>L1</td>
<td>Liberia</td>
<td>TD</td>
<td>Tschad</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CM</td>
<td>Kamerun</td>
<td>LK</td>
<td>Sri Lanka</td>
<td>TG</td>
<td>Togo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS</td>
<td>Tschechoslowakei</td>
<td>LU</td>
<td>Luxemburg</td>
<td>US</td>
<td>Vereinigte Staaten von Amerika</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DE*</td>
<td>Deutschland</td>
<td>MC</td>
<td>Monaco</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DK</td>
<td>Dänemark</td>
<td>MG</td>
<td>Madagaskar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ES</td>
<td>Spanien</td>
<td>ML</td>
<td>Malt</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Schaltung zur Generierung sehr kleiner Ströme

Die Erfindung betrifft eine Schaltung zur Generierung sehr kleiner Ströme.

Stand der Technik

In DE-P 31 24 289 ist eine Schaltung beschrieben, die einen Stromspiegel enthält. Solche Schaltungen sind aber nicht für die Erzeugung sehr kleiner Ströme optimiert.

Erfindung

Der Erfindung liegt die Aufgabe zugrunde, eine Schaltung anzugeben, mit der sehr kleine Ströme generiert werden können. Diese Aufgabe wird durch die in Anspruch 1 angegebene erfindungsgemäße Schaltung gelöst.

Zur Generierung von sehr kleinen Strömen, z.B. im nA-Bereich, kann zwar eine mehrfache Stromspiegelung mit Hilfe von Mehrfachemittern eingesetzt werden, aber die damit generierten Ströme sind abhängig von Parametertoleranzen und von Temperaturen. Außerdem benötigen solche Schaltungen eine relativ große Chipfläche, wenn sie in einem integrierten Schaltkreis implementiert sind.

Im Prinzip besteht die erfindungsgemäße Lösung darin, daß Mittel zur Stromspiegelung (13, 23, 33) mit Mitteln zur Betragsänderung (14, 24, 34) des gespiegelten Stromes verbunden sind, wobei das Verhältnis von einem in die Mittel zur Stromspiegelung eingespeisten Referenzstrom \(I_{ref} \) zu einem mit den Mitteln zur Betragsänderung zur Verfügung gestellten Strom \(I_{out}, I_{out}' \) mit einem oder mehreren in den Mitteln zur Betragsänderung enthaltenen Bauelementen (R, R') eingestellt werden kann, wobei die Mittel zur Stromspiegelung ei-
nen oder mehrere Transistoren (13, 23, 28, 33, 38) und die Mittel zur Betragsänderung einen oder mehrere Transistoren (14, 24, 27, 34, 37) enthalten können und das in den Mitteln zur Betragsänderung enthaltene Bauelement zur Einstellung aus einem Widerstand (R) oder aus mehreren Widerständen (R, R') bestehen kann.

Vorteilhafte Weiterbildungen der erfindungsgemäßen Schaltung ergeben sich aus den Unteransprüchen 2 bis 9.

Vorteilhaft läßt sich diese Untersetzung der Ströme noch vergrößern, indem ein Transistor in der zweiten Stromspiegelstufe als Mehrfachtransistor ausgelegt wird.

Zeichnungen

Anhand der Zeichnungen werden Ausführungsbeispiele der Erfindung beschrieben. Die Zeichnungen zeigen in:

Fig. 1 eine Stromspiegelstufe;
Fig. 2 eine mit einer zweiten Stromspiegelstufe erweiterte Stromspiegel-Schaltung;
Fig. 3 eine mit einer zweiten Stromspiegelstufe erweiterte Stromspiegel-Schaltung mit Ausgangsstrom-Abschaltmöglichkeit.

Ausführungsbeispiele

In Fig. 1 ist eine Stromspiegelschaltung mit einem ersten Stromspiegel-Transistor 13 und einem ersten Transistor 14 dargestellt. Von einer Betriebsspannung 10 aus wird der Kollektor des ersten Stromspiegel-Transistors über eine Stromquelle 11 mit einem Referenzstrom I_{ref} gespeist. Die Basis und der Kollektor des ersten Stromspiegel-Transistors sind mit der Basis des ersten Transistors verbunden. Der Emitter des ersten Stromspiegel-Transistors liegt direkt und der Emitter des ersten Transistors über einen ersten Widerstand R an Masse. Der offene Kollektor des ersten Transistors liefert den Ausgangsstrom I_{out}. Über die Dimensionierung des ersten Widerstands R lässt sich das Verhältnis von I_{ref} zu I_{out} einstellen:

$$I_{out} \cdot R = U_T \cdot \ln \left(\frac{I_{ref}}{I_{out}} \right),$$

wobei U_T die Temperaturspannung ist.

Vorteilhaft lässt sich I_{out} noch verringern, indem man den ersten Transistor 14 als Mehrfachtransistor auslegt. Dann gilt:

$$I_{out} \cdot R = U_T \cdot \ln \left(\frac{I_{ref} \cdot k}{I_{out}} \right),$$

wobei k die Anzahl der parallelgeschalteten Transistoren an Stelle des ersten Transistors ist.

In Fig. 2 ist eine gestufte Stromspiegelschaltung mit einem ersten Stromspiegel-Transistor 23 und einem ersten Transistor 24 dargestellt. Von einer Betriebsspannung 20 aus wird der Kollektor des ersten Stromspiegel-Transistors über eine Stromquelle 21 mit einem Referenzstrom I_{ref} gespeist. Die

Dann gilt (für $R = R'$):

$$I_{out} * R = U_T * \ln\left(\frac{I_{out}}{I_{out}'}\right).$$

Vorteilhaft läßt sich I_{out}' noch verringern, indem man den zweiten Stromspiegel-Transistor 28 als Mehrfachtransistor auslegt.

Dann gilt (für $R = R'$):

$$I_{out} * R = U_T * \ln\left(\frac{I_{out}}{I_{out}'}\right) = n,$$

wobei n die Anzahl der parallelgeschalteten Transistoren an Stelle des zweiten Stromspiegel-Transistors ist.

Falls sowohl der erste Transistor 24 als auch der zweite Stromspiegel-Transistor 28 durch k bzw. n Mehrfachtransistoren ersetzt wird, gilt (für $R = R'$):

$$I_{out} * R = U_T * \ln\left(\frac{I_{ref} * k}{I_{out}}\right),$$

$$I_{out} * R = U_T * \ln\left(\frac{I_{out}}{I_{out}'}\right) = n.$$

Mit $R = R'$ und $k = n = 1$ ergibt sich vorteilhaft für

$$\frac{I_{out}}{I_{out}'}$$

das gleiche Stromverhältnis wie für $\frac{I_{ref}}{I_{out}}$.
Auf diese Weise lassen sich mit geringer Chipfläche Stromquellen z.B. für den Bereich von 1...500nA realisieren. Solche Stromquellen lassen sich beispielsweise für die Realisierung voll-integrierter Integrator-Schaltungen mit langen Integrationszeiten z.B. im Bereich, 0.015...0.06s, und sehr kleinen Integrationskapazitäten, z.B. im Bereich 5...20pF, verwenden.

In Fig. 3 ist eine gestufte Stromspiegelschaltung mit einem ersten Stromspiegel-Transistor 33 und einem ersten Transistor 34 dargestellt. Von einer Betriebsspannung 30 aus wird der Kollektor des ersten Stromspiegel-Transistors über eine Stromquelle 31 mit einem Referenzstrom I_{ref} gespeist. Die Basis und der Kollektor des ersten Stromspiegel-Transistors sind mit der Basis des ersten Transistors und mit einem zweiten Widerstand R' verbunden. Der Emitter des ersten Stromspiegel-Transistors liegt direkt und der Emitter des ersten Transistors über einen ersten Widerstand R an Masse. Der offene Kollektor des ersten Transistors liefert den Ausgangsstrom I_{out}.

Die andere Seite des zweiten Widerstands R' ist mit der Basis eines zweiten Transistors 37 und mit Kollektor und Basis eines zweiten Stromspiegel-Transistors 38 verbunden. Der Emitter des zweiten Stromspiegel-Transistors liegt auf Masse und der Emitter des zweiten Transistors ist an den Emitter des ersten Transistors angeschlossen. Der offene Kollektor des zweiten Transistors liefert den reduzierten Ausgangsstrom I_{out}'. Es gelten die gleichen Beziehungen wie für Fig. 2, jedoch lassen sich die Ströme I_{out} und I_{out}' durch den zusätzlichen Schaltstrom I_{off} abschalten. Es gilt: $I_{off} \times R$ ungefähr ≥ 0.5 V.
Patentansprüche

1. Schaltung zur Generierung sehr kleiner Ströme, dadurch gekennzeichnet, daß Mittel zur Stromspiegelung (13, 23, 33) mit Mitteln zur Betragsänderung (14, 24, 34) des gespiegelten Stromes verbunden sind, wobei das Verhältnis von einem in die Mittel zur Stromspiegelung eingespeisten Referenzstrom \(I_{\text{ref}} \) zu einem mit den Mitteln zur Betragsänderung zur Verfügung gestellten Strom \(I_{\text{out}}, I_{\text{out}}' \) mit einem oder mehreren gleichartigen in den Mitteln zur Betragsänderung enthaltenen Bauelementen \(R, R' \) eingestellt werden kann.

2. Schaltung nach Anspruch 1, dadurch gekennzeichnet, daß die Mittel zur Stromspiegelung einen oder mehrere Transistoren (13, 23, 28, 33, 38) und daß die Mittel zur Betragsänderung einen oder mehrere Transistoren (14, 24, 27, 34, 37) enthalten, wobei die in den Mitteln zur Betragsänderung enthaltenen Bauelemente \(R, R' \) jeweils mit den entsprechenden Transistoren in den Mitteln zur Betragsänderung verbunden sind.

3. Schaltung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die in den Mitteln zur Betragsänderung enthaltenen Bauelemente zur Einstellung aus einem Widerstand \(R \) oder mehreren Widerständen \(R, R' \) bestehen.

4. Schaltung nach einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß mit einem ersten Widerstand \(R \), der mit dem Emitter eines mit seiner Basis an einen ersten Stromspiegel (13, 23, 33) angeschlossenen ersten Transistors (14, 24, 34) verbunden ist, ein von einem Referenzstrom \(I_{\text{ref}} \) abhängiger, verkleinerter, erster Strom \(I_{\text{out}} \) am Kollektor dieses ersten Transistors einstellbar ist, wobei der Referenzstrom den ersten Stromspiegel speist.
5. Schaltung nach Anspruch 4, dadurch gekennzeichnet, daß an den ersten Stromspiegel (23, 33) über einen zweiten Widerstand (R') ein zweiter Stromspiegel (28, 38) angeschlossen ist und mit diesem zweiten Stromspiegel die Basis eines zweiten Transistors (27, 37) verbunden ist, der mit seinem Emitter an den Emitter des ersten Transistors (24, 34) angeschlossen ist und an dessen Kollektor ein vom Referenzstrom (I_{ref}) abhängiger, nochmals verkleinerter, zweiter Strom (I_{out}') über die Größe des ersten und/oder des zweiten Widerstands einstellbar ist, wobei für eine gleiche Größe des ersten und des zweiten Widerstands das Verhältnis von Referenzstrom zu erstem Strom gleich dem Verhältnis von erstem Strom zu zweitem Strom ist.

6. Schaltung nach Anspruch 4 oder 5, dadurch gekennzeichnet, daß mit einem in den Emitter des ersten Transistors (14, 24, 34) bzw. des zweiten Transistors (27, 37) eingespeisten Schaltstrom (I_{off}) der erste und/oder zweite Strom abgeschaltet werden kann.

7. Schaltung nach Anspruch 5 oder 6, dadurch gekennzeichnet, daß die Mittel zur Betragsänderung (14, 24, 34) k parallelgeschaltete Transistoren enthalten, wobei der erste Strom entsprechend dem Faktor k verringert ist, k = 2, 3, 4,....

8. Schaltung nach einem oder mehreren der Ansprüche 5 bis 7, dadurch gekennzeichnet, daß der zweite Stromspiegel (28, 38) aus n parallelgeschalteten Stromspiegeln besteht, wobei der zweite Strom entsprechend dem Faktor n verringert ist, n = 2, 3, 4,....

9. Schaltung nach einem oder mehreren der Ansprüche 5 bis 8, dadurch gekennzeichnet, daß der zweite Strom (I_{out}') im Bereich 1nA bis 500nA liegt.
A. CLASSIFICATION OF SUBJECT MATTER

| Int. Cl. | 5 G 05 F 3/26 |

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

| Int. Cl. | 5 G 05 F, 03 F, H 03 G |

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>EP, A1, 0 366 253 (DELCO ELECTRONICS) 02 May 1990 (02.05.90) see figure 1D</td>
<td>1-4</td>
</tr>
<tr>
<td>X</td>
<td>DE, A1, 3 139 166 (VEB HALBLEITERWERK FRANKFURT/ODER) 05 August 1982 (05.08.92) see figure</td>
<td>1-4</td>
</tr>
<tr>
<td>X</td>
<td>US, A, 4 673 867 (DAVIS) 16 June 1987 (16.06.87) see figure</td>
<td>1-4</td>
</tr>
</tbody>
</table>

☐ Further documents are listed in the continuation of Box C. ☐ See patent family annex.

* Special categories of cited documents:
 * "A" document defining the general state of the art which is not considered to be of particular relevance
 * "B" earlier document but published on or after the international filing date
 * "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another claim or other special reason (as specified)
 * "O" document referring to an oral disclosure, use, exhibition or other means
 * "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

<table>
<thead>
<tr>
<th>Date of the actual completion of the international search</th>
<th>Date of mailing of the international search report</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 June 1992 (12.06.92)</td>
<td>30 June 1992 (30.06.92)</td>
</tr>
</tbody>
</table>

Name and mailing address of the ISA/

![European Patent Office](image)

Authorized officer

Telephone No.

Form PCT/ISA/210 (second sheet) (July 1992)
INTERNATIONALER RECHERCHENBERICHTE

Internationaler Aktenzeichen: PCT/EP 92/00774

I. KLASSIFIKATION DES ANMELDUNGSIEEEGENSTANDS (bei mehreren Klassifikationssymbolen sind alle anzugeben):

Nach der Internationalen Patentklassifikation (IPC) oder nach der nationalen Klassifikation und der IPC

Int.Cl. 5 G 05 F 3/26

II. RECHERCHIERTE SACHGEBIETE

<table>
<thead>
<tr>
<th>Klassifikationsystem</th>
<th>Klassifikationssymbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Int.Cl. 5</td>
<td>G 05 F, H 03 F, H 03 G</td>
</tr>
</tbody>
</table>

Recherchierte nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Sachgebiete fallen:

III. EINSCHLÄGIGE VERÖFFENTLICHUNGEN:

<table>
<thead>
<tr>
<th>Art</th>
<th>Kennzeichnung der Veröffentlichung, soweit erforderlich unter Angabe der maßgeblichen Teile</th>
<th>Betr. Anspruch Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>EP, A1, 0 366 253 (DELO CO ELECTRONICS) 02 Mai 1990 (02.05.90), siehe Fig. 1D.</td>
<td>1-4</td>
</tr>
<tr>
<td>X</td>
<td>DE, A1, 3 139 166 (VEB HALBLEITERWERK FRANKFURT/ODER) 05 August 1982 (05.08.82), siehe Fig.</td>
<td>1-4</td>
</tr>
<tr>
<td>X</td>
<td>US, A, 4 673 867 (DAVIS) 16 Juni 1987 (16.06.87), siehe Fig.</td>
<td>1-4</td>
</tr>
</tbody>
</table>

* Besondere Kategorien von angegebenen Veröffentlichungen:
 "A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist
 "E" älteres Dokument, das jedoch erst am oder nach dem internationa...
 "L" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlicht datum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)
 "O" Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht
 "P" Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist

"T" Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist

"X" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden

"Y" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist

"Z" Veröffentlichung, die Mitglied derselben Patentreihen ist

IV. BESCHEINIGUNG

Datum des Abschlusses der internationalen Recherche: 12 Juni 1992

Absendedatum des internationalen Recherchenberichts: 30.06.92

Internationale Recherchenbehörde: Europäisches Patentamt

Unterschrift des Beurkundeten: [Unterschrift]
ANNEX

This Annex lists the patent family members relating to the patent documents cited in the above-mentioned International search report. The Office is in no way liable for these particulars which are given merely for the purpose of information.

<table>
<thead>
<tr>
<th>Patent document cited</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Date of publication</th>
</tr>
</thead>
<tbody>
<tr>
<td>DE A1 3139166</td>
<td>05-08-82</td>
<td>CS A1 8108696</td>
<td>16-04-85</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CS B1 264005</td>
<td>12-05-89</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DD T 156339</td>
<td>18-08-82</td>
</tr>
<tr>
<td>JS A 4673867</td>
<td>16-06-87</td>
<td>keine - none - rien</td>
<td></td>
</tr>
</tbody>
</table>