This invention relates to decoys used by hunters for leading waterfowl to alight on water in the vicinity of the hiding place of the hunter. Such decoys are made in the semblance of the birds which the hunter seeks to attract; for instance, ducks, geese, swans, etc. Such decoys must be sufficiently buoyant to float in water with substantially the same trim as the birds which the hunter wishes to attract; and it is desirable that they be as light in weight as possible in order to reduce the burden of transporting them.

I am aware that it has been proposed heretofore to make decoys of hollow construction, including a shell in the semblance of the body and head of a bird and a bottom board of wood to which the margin of such shell is connected, and that it has been proposed to make the shell portion of molded sheet metal, pasteboard, pulp, textile fabric and other materials. Such constructions are, in some cases, difficult and expensive to manufacture, some are insufficiently water tight and others are unstable in flotation. It is my object to produce a hollow decoy which is light in weight, at the same time strong, rigid and waterproof, and is free of the defects and deficiencies inherent in the decoys of hollow construction heretofore proposed.

In accordance with the present invention, I make the body and head of my decoy separately of cast pulp, making the bottom of the body continuous and integral with the sides and back, leaving an opening in the neck portion, and I make the head with an extension to enter and fit in such opening, providing abutting surfaces on the body and head around the opening and extensions by means of which, and suitable adhesive, a strong and water tight joint is created. But before attaching the head to the body, I utilize the neck opening and a passageway through the extension of the head for introducing into the hollow parts any materials which I may use for impregnating or coating the felted pulp structure internally and for ballasting the body as necessary. The invention comprises both the article of manufacture having the characteristics above mentioned, and other hereinafter more fully described, and the method or procedure of manufacturing the article. Numerous advantages result from the novel features of this invention, as will be presently described.

In the drawings furnished herewith:

Fig. 1 is a side elevation of a decoy in the semblance of a duck embodying this invention;

Fig. 2 is a longitudinal vertical section of the body portion of the article shown in Fig. 1;

Fig. 3 is a similar section of the head portion of the decoy;

Figs. 4 and 5 are sectional views similar to Figs. 2 and 3 respectively, showing variations in some of the details of the article.

Like reference characters designate the same parts wherever they occur in all the figures.

Although the specific decoy here illustrated simulates a duck, it is to be understood that this is not a limiting factor of the invention and that imitations of all species of waterfowl may be made in accordance therewith. The body a and head b are made separately in hollow formation of pulp cast in suitable molds. The molds for both parts may be of the character common for casting pulp, having appropriate internal contours and being perforated at numerous points for escape of the water in which the pulp fibers are suspended and for passage subsequently of the air which is introduced into hollow castings to evaporate residual water entrapped among the deposited fibers. The surfaces of the mold cavities may be appropriately shaped to form the outer surface of the castings into the semblance of folded wings, plumage, and other surface characteristics of the bird.

A special feature of the body mold is that the opening for entrance of the pulp is at the upper side of the forward end, that is, the part which corresponds to the neck of the cast body. Elsewhere it has no opening except the numerous minute perforations for the escape of water, through which the pulp cannot pass. The mold provided for making the specific type of body shown in Fig. 2 has a relatively narrow opening corresponding in diameter to that of the opening c of the body, and a flat annular surface surrounding the opening of suitable dimensions to form the flat surface d on the casting. Its bottom is internally convex so that the bottom e of the casting will be externally concave, and the junction line of the bottom with the sides of the body is in a plane perpendicular to the height dimension of the body. The length and width of the bottom area are substantially coextensive with the maximum length and width dimensions of the body, except for a tail extension f.

The method in which the pulp is flowed into the mold for casting is standard except that preferably the mold is supported in an inclined position with the inlet end at a considerably higher elevation than the rear end. Thereby the pulp fibers may be deposited to somewhat greater thickness at and adjacent to the tail end than at the breast end of the body to compensate
for the weight of the head and give the desired floating trim to the decoy; and disturbance of fibers on the bottom, directly opposite to the inlet, due to the velocity of the entering stream may be avoided. However, although the inclined technique is claimed as a useful feature, it is not an essential one and may be omitted on occasion.

The mold for the head b is made with the prescribed contours, and in addition is provided with surfaces to form a tubular extension g of substantially the same diameter as the opening c in the body, and a surrounding annular surface h of the same dimensions as the surface d on the body. A practical advantage is derived from such casting of the head separately in that the pulp can flow and circulate in the part of the mold which forms the beak, with good felting of the fibers in a layer of sufficient depth to afford strength and durability.

The extension or stem g is preferably made to fit tightly in the opening c. Prior to assembling the surfaces d and h are coated with a suitable water impervious adhesive, such, for instance, as caselin glue or any of a number of known plastic cements and solutions which can be applied in liquid phase and harden afterwards.

But before attaching the head, an eye k is preferably inserted in the bottom of the body for attachment of an anchor line. The shank of the eye can be passed through the bottom near the forward end and headed over a washer l inside the body; the neck opening c giving access for placement of the washer and heading of the shank.

The body and head are coated or impregnated with any suitable hardening substance, such as zein, resin, casein, etc., and coated with a water repellent paint, resin or plastic, of which many suitable varieties are known to the art. Internal impregnation or coating may be performed by entering the material through the neck opening c and the bore of the tubular extension g, if desired. And a quantity of solidifiable liquid for ballast may be passed through the neck opening and caused by manipulation of the body to flow to any part of the body where its weight may be needed to give the required floating trim.

The exterior coating material may be provided in different colors and applied so as to imitate the coloring of a specific species of bird. Some birds have a ring around the neck contrasting in color with adjacent areas. Such a ring is shown at m in Fig. 1, and it may be conveniently and accurately applied by dipping the lower end of the head member b into a coating material of the required color before mounting it on the body.

Variations from the particulars described may be made without departing from the invention. Thus, for example, the bottom of the body may be flat or somewhat convex, instead of concave. A flat bottom is shown at e’ in Fig. 4. Also the neck opening of the body may be made without an internal ledge or flange, such as is represented in Fig. 2, and the tubular extension of the head made large enough to fit the consequent increased diameter of the hole. The increased areas of neck opening and tubular extension are shown at e’ in Fig. 4, and g’ in Fig. 5. Annular abutting areas d’ and h’ are here provided, similar to the areas d and h previously described, but of less width.

With its extended flat, or nearly flat, base, the decoy is stable in flotation and does not capsize in rough water. The form with the slightly concave bottom is more stable than the flat or convex forms, inasmuch as a greater displacement of water follows any tilting of the body while afloat. After the head has been applied and sealed, the decoy is leakage proof, no matter how it may be thrown into the water. The hardening treatment makes the construction practically immune to deformation or injury by rough handling, and the light weight of the decoys and the resiliency of their felted walls makes them less liable to injury when thrown about than are solid wood decoys.

What I claim is:

A hunter's decoy consisting of a body made of felted pulp fibres, said body being in the form of a hollow shell representing the body of a water fowl and having a bottom, sides, top and end walls, all parts of which have the same pulp fibre characteristics rendering the device devoid of seams, the top wall being provided with an abutment defining a restricted opening in the top wall near one end thereof in a position corresponding to the neck of a water fowl, and a second hollow shell having a configuration corresponding to the head of a water fowl, said head having all of its parts formed of felted pulp fibres and devoid of seams and including a neck portion, said neck portion having at its upper end a shoulder constituting an abutment when the neck portion is positioned in the opening of the first hollow shell, means for permanently securing the abutting surfaces of the two shells to each other, and a coating of waterproof material on the exterior surface of the hollow shells.

ROY D. HEYMANN.

REFERENCES CITED

The following references are of record in the file of this patent:

UNITED STATES PATENTS

<table>
<thead>
<tr>
<th>Number</th>
<th>Name</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>331,709</td>
<td>Nye</td>
<td>Oct. 26, 1886</td>
</tr>
<tr>
<td>684,036</td>
<td>Bates</td>
<td>Oct. 8, 1901</td>
</tr>
<tr>
<td>782,625</td>
<td>Rimpler et al.</td>
<td>Feb. 14, 1905</td>
</tr>
<tr>
<td>1,265,162</td>
<td>Ayerst</td>
<td>May 7, 1918</td>
</tr>
<tr>
<td>2,192,311</td>
<td>Jacobson</td>
<td>Mar. 26, 1939</td>
</tr>
<tr>
<td>2,247,480</td>
<td>Olsen</td>
<td>July 1, 1941</td>
</tr>
<tr>
<td>2,291,475</td>
<td>Newhardt</td>
<td>Dec. 25, 1945</td>
</tr>
</tbody>
</table>