[54]发明名称  取代的噻吩衍生物及含有其的植物病害防治剂

[57]摘要  本发明涉及新颖的式(1)表示的取代噻吩衍生物：

其中 R 是具有 3—12 个碳原子的直链或支链烷基基团，具有 3—12 个碳原子的直链或支链卤代烷基基团，具有 3—10 个碳原子的直链或支链烷基基团，具有 3—10 个碳原子的直链或支链卤代烷基基团，或具有 3—10 个碳原子的环烷基基团，环烷基基团可以是未取代或被具有 1—4 个碳原子的烷基取代，R 和 —NHCOAr 相邻，Ar 是杂环基团；它们对多种植物病害如灰霉病、霜霉病、稻瘟病和锈病具有优异的活性，且由于这类化合物对灰葡萄孢具 有突出的特效作用和对赤霉菌 (Gibberella zeae) 有优异的效果，它们可以作为植物病害防治剂。
1. 一种结构式(1)所表示的取代的噻吩衍生物:

\[
\begin{align*}
\text{NHCOR} & \quad \text{(1)} \\
\end{align*}
\]

其中 R 是具有 3-12 个碳原子的直链或支链烷基烃基团，具有 3-10 个碳原子的直链或支链卤代烷烃基团，具有 3-10 个碳原子的直链或支链卤代链烯基基团，或具有 3-10 个碳原子的环烷烃基团，环烷烃基团可以是未取代的或被具有 1-4 个碳原子的烷基取代。R 和-NHCOAr 相邻，Ar 是由(A1)-(A5)的结构式所表示的杂环基团:

\[
\begin{align*}
\text{(A1)} & \quad \text{(A2)} & \quad \text{(A3)} & \quad \text{(A4)} & \quad \text{(A5)} \\
\end{align*}
\]

其中 R^1 三氟甲基、二氟甲基、甲基、乙基或卤原子，R^2 是甲基、乙基、三氟甲基或二氟甲基，R^3 是卤原子、甲基或甲氧基，m 是 0-1 的整数，n 是 0-2 的整数。

2. 根据权利要求 1 的取代的噻吩衍生物，其中 R 是具有 5-7 个碳原子的直链或支链烷烃基团。

3. 根据权利要求 2 的取代的噻吩衍生物，其中 R 是 1, 3-二甲基丁基或 3-甲基丁基。

4. 根据权利要求 3 的取代的噻吩衍生物，其中 Ar 是(A1)，R^1 是甲基，和 R^3 是卤原子。

5. 根据权利要求 3 的取代的噻吩衍生物，其中 Ar 是(A2)，R^2 是甲基或乙基，和 m 是 0.
6. 根据权利要求 5 的取代的噻吩衍生物，其中 $R^2$ 是甲基。

7. 根据权利要求 3 的取代的噻吩衍生物，其中 Ar 是 (A3)，$R^2$ 是甲基，n 是 0。

8. 根据权利要求 3 的取代的噻吩衍生物，其中 Ar 是 (A4)，$R^2$ 是甲基。

9. 一种植物病害防治剂，其中包含根据权利要求 1 的取代的噻吩衍生物作为活性物质。

10. 根据权利要求 9 植物病害防治剂，其中包含根据权利要求 2 的取代的噻吩衍生物作为活性物质。

11. 根据权利要求 9 植物病害防治剂，其中包含根据权利要求 3 的取代的噻吩衍生物作为活性物质。

12. 根据权利要求 9 植物病害防治剂，其中包含根据权利要求 4 的取代的噻吩衍生物作为活性物质。

13. 根据权利要求 9 植物病害防治剂，其中包含根据权利要求 5 的取代的噻吩衍生物作为活性物质。

14. 根据权利要求 9 植物病害防治剂，其中包含根据权利要求 6 的取代的噻吩衍生物作为活性物质。

15. 根据权利要求 9 植物病害防治剂，其中包含根据权利要求 7 的取代的噻吩衍生物作为活性物质。

16. 根据权利要求 9 植物病害防治剂，其中包含根据权利要求 8 的取代的噻吩衍生物作为活性物质。
说明书

取代的噻吩衍生物及含有其的植物病害防治剂

本发明涉及新颖的取代噻吩衍生物和含有其作为活性成分的植物病害防治剂。

近几年来开发出的、不同于常规所用的非选择性植物防治药剂的、具有选择活性的植物病害防治药剂在低剂量下可以显示出稳定的效力。但是，新的防治药剂具有在重复施用时防治对象逐渐建立抗性并导致药剂效力降低的问题。

例如，以苯并咪唑为基础的杀真菌剂具有广谱的杀真菌活性并且显示出很好的抗灰葡萄孢（Botrytis cinerea）效力。但是，这种杀真菌剂在二十世纪七十年代由于抗性真菌的出现导致效力大幅度降低。一种以二硫基酰胺为基础的杀真菌剂被看好作为苯并咪唑类杀真菌剂的替代物。然而，在八十年代又出现了抗二硫基酰胺类杀真菌剂的抗性真菌。随后，寻找防治抗性灰葡萄孢的对策成为了严重的世界性问题。

另一方面，以唑为基础的杀真菌剂具有广泛的杀真菌谱，而且至今为止是一种很好的独特的低剂量农药，特别是对霜霉病和多种作物锈病以及苹果和梨疮痂病等效力显著。然而，现在已经出现了抗此农药并导致药效急剧降低的真菌。农药的重复施用也因此受到了限制。

因此，农药抗性真菌的出现使得选择植物防治药剂成为必然的问题，开发新的农药已成为十分迫切的目标。


其中Q可以是氢、氯、溴或碘原子，或者是甲基、三氯甲基、甲氧基、甲硫基、甲基亚磺酰基、甲基磺酰基、氰基、乙酰基、硝基、烷氧羰基或氨基；R可以是具有1-12个碳原子的直链或支链烃基，具有2-10个碳原子的直链或支链卤代烃基，具有2-10个碳原子的直链或支链烯烃基，具有2-10个碳原子的烷基硫代烷基，具有2-10个碳原子的烷基氧化烷基，具有3-10个碳原子的环烷基，具有3-10个碳原子的卤代环烷基，或具有1-3个取代基的苯基；苯基的取代基是氢或卤原子或具有1-4个碳原子的链烷基，具有2-4个碳原子的链烯基，具有3-6个碳原子的环烷基，具有1-4个碳原子的烷氧基，具有1-4个碳原子的卤代烷氧基，具有1-4个碳原子的硫代烷基，带有1-4个碳原子的烷基亚磺酰基，带有1-4个碳原子的烷基磺酰基，氯基，含2-4个碳原子的酰基，含2-4个碳原子的烷氧基羧基，氯基或含1-3个碳原子的烷基取代的氨基；R和-NHCOAr相邻；Ar是通式(B1)-(B8)的一般结构式所代表的基团：

(B1)  (B2)  (B3)  (B4)  (B5)  (B6)  (B7)  (B8)

其中R¹是氯、溴或碘原子，或甲基、乙基、二氯甲基或三氯甲基；R²是氢原子，或甲基，三氯甲基或氨基；n是0—2的整数。

本发明者考虑到，如果开发出具有较高防治活性且有长期残效作用的农药，则施用时，只会有少量的农药进入环境中。
本发明的目的是通过提供具有广谱杀菌性和残效期长的植物病害防治剂来节约劳力和提高环境安全性。

本发明者对不同杂环类衍生物生理活性作了深入的研究，结果发现，特定种类的氨基喹啉衍生物对多种病害具有比以往的农药高的防治效力和较长的残效，且对作物高度安全并因此而满足上述目标。因此，本发明得以完成。

本发明是由式(1)表示的取代的喹啉衍生物和含有上述衍生物作为活性成分的植物病害防治剂:

![Chemical Structure](image)

其中R是具有3-12个碳原子的直链或支链烷基，具有3-12个碳原子的直链或支链卤代烷基，具有3-10个碳原子的直链或支链烷基烯烃基，具有3-10个碳原子的直链或支链卤代烷基烯烃基，或具有3-10个碳原子并可以被具有1-4个碳原子的烷基取代的烷烃基，R和-NHCOAr相邻，Ar是由式(A1)-(A5)表示的杂环基团:

![Chemical Structures](image)

其中R^1是三氯甲基、二氯甲基、甲基、乙基或卤原子，R^2是甲基、乙基、三氯甲基或二氯甲基，R^3是卤原子、甲基或甲氧基，m是0-1的整数，n是0-2的整数。

发明中的喹啉衍生物的取代基R由结构式(1)表示，特别是包括异丙基、仲丁基、叔丁基、1-甲基丁基、1-甲基乙基、1-甲基丙基、1,2-二甲基丁基、1,3-二甲基丁基、1-乙基-3-甲基丁基、1,2-二甲基乙基、1,3-二甲基乙基、3-甲基丁基、3-甲基戊基、4-甲基辛基、1,2,2,3-四甲基丁基、1,3,3-三甲基丁基、1,2,3-三甲基丁基、1,3-二甲基戊基、1,3-二甲基乙基、1-乙基-3-甲基丁基、1-异丙基丁基、1-异
丙基-3-甲基丁基、1-甲基-2-环丙基乙基、正丁基、正乙基和具有3-12个碳原子的
其他直链或支链烷基；3-氯-1-甲基丁基、2-氯-1-甲基丁基、1-氯丁基、3,3-二氯-
1-甲基丁基、3-氯-1-甲基丁基、1-甲基-3-氯甲基丁基、3-甲基-1-三氯甲基丁基
和其它具有3-12个碳原子的直链或支链卤代烷基；丙烯基、1-甲基-1-丙烯基、1-
乙基-1-丁烯基、2,4-二甲基-1-戊烯基、2,4-二甲基-2-戊烯基和其它具有3-10个碳
原子的直链或支链烯烃基；一个2-氯-1-甲基-1-丁烯基及其它具有3-10个碳原子的
直链或支链卤代烷烯基；以及一个环丙基、环乙基、3-甲基环戊基、3-甲基环己
基、2-乙基环辛基、2-异丙基环癸基和其它具有3-10个碳原子的环烷基，上述环
烷基是未取代的或由具有1-4个碳原子的烷基取代。

发明中由式(1)表示的噻吩衍生物的取代基R优选为具有5-7个碳原子的直链
或支链烷基，且更优选是1,3-二甲基丁基和3-甲基丁基。

Ar可以为下述基团：在3-位被一个三氟甲基、氟甲基、甲基、乙基或被卤
素原子取代的或在5-位被卤原子，或甲基和甲氧基取代的1-甲基-4-吡啶基，例如，
5-氯-1,3-二甲基-4-吡啶基、1,5-二甲基-3-二氟甲基-4-吡啶基、和5-氟-1-甲基-3-
碘-4-吡啶基；在6-位被一个三氟甲基、氟甲基、甲基或乙基取代的3,4-二氢-
2H-吡喃-5-基以及在2,3或4位被甲基取代或不取代的3,4-二氢-2H-吡喃-5-基，例
如，6-甲基-3,4-二氢-2H-吡喃-5-基；在6-位被一个三氟甲基、氟甲基、甲基或
乙基取代的2,3-二氢-1,4-氧硫杂环已二烯-5-基，例如，6-甲基-2,3-二氢-1,4-氧硫
杂环已二烯-5-基；在6-位被一个三氟甲基、氟甲基、甲基或乙基取代的2,3-二
氢-1,4-氧硫杂环已二烯-4-氧化物-5-基，例如，6-甲基-2,3-二氢-1,4-氧硫杂环已二
烯-4-氧化物-5-基；在6-位被一个三氟甲基、氟甲基、甲基或乙基取代的2,3-二
氢-1,4-氧硫杂环已二烯-4-氧化物-5-基，例如，6-甲基-2,3-二氢-1,4-氧硫杂环已二
烯-4-氧化物-5-基；在6-位被一个三氟甲基、氟甲基、甲基或乙基取代的2,3-二
氢-1,4-氧硫杂环已二烯-4-氧化物-5-基，例如，6-甲基-2,3-二氢-1,4-氧硫杂环已二
烯-4-氧化物-5-基；在6-位被一个三氟甲基、氟甲基、甲基或乙基取代的2,3-二
氢-1,4-氧硫杂环已二烯-4-氧化物-5-基，例如，6-甲基-2,3-二氢-1,4-氧硫杂环已二
烯-4-氧化物-5-基；在5-位被一个三氟甲基、氟甲基、甲基或乙基取代的2,3-二氢
氧喃-4-基，例如，5-甲基-2,3-二氢氧喃-4-基；以及：在3-位被一个三
氟甲基、氟甲基、甲基、乙基或被卤素原子取代的异噻唑-4-基，例如，3-甲基
-异噻唑-4-基和3-三氟甲基异噻唑-4-基。

优选的取代噻吩衍生物是R为1,3-二甲基丁基或3-甲基丁基、Ar为(A1)时R
是甲基或R是卤原子，Ar为(A2)时R是甲基或乙基且m为0，Ar为(A3)时R是甲
基且n为0，或Ar为(A4)时R是甲基的化合物。

更优选的取代的噻吩衍生物是R为1,3-二甲基丁基或3-甲基丁基、Ar为(A2)其
中$R^2$是甲基且m为0的化合物。

在发明中由结构式(1)表示的取代的噻吩衍生物是一种新颖化合物并且可以通过与已有工艺相似的工艺制备，反应式如下所示。由式(2)表示的取代的氨基噻吩与由式(3)表示的羧基卤化物在熔融状态或溶剂中反应(反应式1)。还可由式(2)代表的取代的氨基噻吩与由式(4)代表的羧基酯在含三甲基铝的溶剂中反应(反应式2)。

反应式1

$$
\text{(2)} \quad \text{H}_2 \text{S} + \text{Ar} \text{COX} \rightarrow \text{(3)} \quad \text{H}_2 \text{S} + \text{Ar} \text{COAr}
$$

反应式2

$$
\text{(2)} \quad \text{H}_2 \text{S} + \text{Ar} \text{CO}_2 \text{C}_2 \text{H}_5 \rightarrow \text{(4)} \quad \text{H}_2 \text{S} + \text{Ar} \text{COAr}
$$

其中的R和Ar与前面所示相同，X是氯、溴或碘原子。

反应式(1)描述如下，可用于反应的代表溶剂对反应来说是惰性的，例如包括，乙烷、石油醚和其它脂肪烃；苯、甲苯、氯苯、苯甲醚和其它芳香烃；二氟烷、四氢呋喃、乙醚和其它醚；乙腈、丙腈和其它腈类；乙酸乙酯和其它酯类；二氧甲烷、氯仿、1,2-二氯乙烷和其它卤代烃；和二甲基甲酰胺、二甲基亚砜和其它非质子传递溶剂。这些溶剂也可以和其它溶剂混合物形式应用。

反应在碱存在的情况下进行。可用的碱，例如包括，氢氧化钠、氢氧化钾、氢氧化钙和其它碱金属和碱土金属的氢氧化物；氧化钙、氧化镁和其它碱金属和碱土金属的氧化物；氢氧化钠、氢氧化钙和其它其它碱金属和碱土金属的氢氧化物；氢氧化钾、氢氧化钙和其它其它碱金属和碱土金属的氢氧化物；氢氧化钠、氢氧化钾和其它其它碱金属和碱土金属的氢氧化物；碳酸钠、碳酸钾、碳酸钙、碳酸镁和其它其它碱金属和碱土金属的碳酸盐；碳酸钠、碳酸钾和其它其它碱金属和碱土金属的碳酸盐；甲基锂、丁基锂、苯基锂和其它其它碱金属烷基化合物、氯化甲基镁和其
它烷基镁的卤代物；甲氧基钠,乙氧基钠,叔丁氧基钠,二甲氧基镁和其它碱化
属和碱土金属的烷氧基物；和三乙胺,吡啶,N,N-二甲基苯胺,N-甲基吲哚,二
基吡啶,二-二甲基氨基吲哚和其它多种有机碱,特别优选三乙胺和吡啶。在这
些碱的用量上没有特别限制。优选用量是5-20摩尔％过量的表示方式(3)的碳酰
卤。

上述表示方式(2)的取代氨基嗪和表示方式(3)碳酰卤一般以等摩尔量反
应。为了增加产物收率,有时一反应物的用量超过另一反应物的用量的1-20摩尔
％。

反应温度通常是-20-150℃，优选0-40℃。

对反应时间没有特别的限制，反应时间通常是0.5-5小时。

反应式(2)描述如下。可用于反应的代表溶剂对反应来说是惰性的，例如包
括，乙烷、石油醚和其它脂肪烃；苯、甲苯、氯苯、苯甲酚和其它芳香烃；二噻
烷、四氢呋喃、乙醇和其它醇；乙腈、丙腈和其它腈类；二氯甲烷、氯仿、1,2-
二氯乙烷和其它卤代烃；和二甲基亚砜和其它非质子传递溶剂，这些溶剂也可
以混合物形式应用。

反应在碱存在的情况下进行。典型的碱包括氢氧化钠、氢氧化钙、氯化钙
和其它碱金属和碱土金属的氢氧化物；氯化钠、氯化镁和其它碱金属和碱土金属
的氯化物；氢氧化钠、氢氧化钙和其它碱金属和碱土金属的氢氧化物；氢氧化锂、氢氧化
化钠和其它碱金属的氢氧化物；碳酸钠、碳酸钾、碳酸钙、碳酸镁和其它碱金属和
碱土金属的碳酸盐；碳酸氢钠、碳酸氢钾和其它碱金属和碱土金属的碳酸氢盐；
三甲基铝、三乙基铝和其它三烷基铝；甲氧基钠、乙氧基钠、叔丁氧基钠、二甲
基镁和其它碱金属和碱土金属的烷氧化物；和三乙胺、吡啶,N,N-二甲苯胺
胺、N-甲基吲哚、二甲基吲哚、4-二甲基氨基吲哚和其它多种有机碱,特别优选
三甲基铝。

这些碱在用量上没有特别限制，优选用量是5-200摩尔％过量的表示方式(2)
的取代的氨基嗪。

上述表示方式(2)的取代氨基嗪和表示方式(4)的羧酸酯一般以等摩尔量反
应。为了增加产物收率，有时一反应物的用量超过另一反应物用量的1-100摩尔
％。

反应温度通常是-20-150℃，优选0-80℃。
对反应时间没有特别的限制。反应时间通常是0.5-24小时。

以下描述了本发明式(2)的主要中间体化合物的合成方法。

1)2-取代-3-氨基噻吩的合成。

例如，由下述反应式(3)所示的方法制备化合物。不管怎样，这些合成没有限制。

(方法A)

在氢氧化钠存在下，通过与在乙醇中的羟基胺盐酸盐反应，将2-取代-3-氧代四氢噻吩转化为胺，然后用乙醚中的氟化氢处理而制备胺(USP 4 317 915和《有机化学杂志》(J. Org. Chem.), 52, 2511(1987))。

(方法B-1和B-2)

2-酰基-3-氨基噻吩由如下方法获得：通过将硫基丙酮与α-氯丙烯酰胺的浓缩(方法B-1, Synth. Commun., 9, 731(1979))，或通过3-乙酰基胺基噻吩与酰基氯在无水氯化铝存在下的酰基化后水解(方法B-2, Bull. soc. chim Fr., 1976, 151)。在三乙胺存在下，得到的2-酰基-3-氨基噻吩通过使用二-叔丁基碳酸酯由叔丁基氯基基团保护，由烷基化剂如格利酸试剂烷基化，随后在三氯乙酸下由三乙基硅烷还原来制备胺。

(方法C和方法D)

在三乙胺存在下，3-氨基噻吩-2-羧酸酯通过使用二-叔丁基碳酸氢钠由叔丁基氯基基团保护，由烷基化剂如格利酸试剂烷基化，随后在三氯乙酸下由三乙基硅烷还原来制备胺。

反应(3)
其中 R 与上面描述的相同。

本发明表示式 (1) 的化合物可通过上述方法由 2-取代基-3-氨基噻吩制备。进一步, 3-酰氨基-2-链烯基取代噻吩按所述方法 D 由 3-酰氨基-2-烷基噻吩的直接还原制备。

2) 4-烷基-3-氨基噻吩的合成

(方法 E):

这些化合物可通过下面反应式 (4) 的步骤来制备。

在此, 在碳酸钾存在下, 3-氧代四氢噻吩-4-羧酸酯 (USP 4 317 915 和《有机化学杂志》 (J. Org. Chem.), 52, 2611 (1987)) 通过卤代烷基烷基化, 然后通过水解和脱羧获得 3-氧代四氢噻吩。在氢氧化钠存在下, 获得的 3-氧代四氢噻吩通过乙醇中的羟基胺盐酸转化为肟, 随后用乙醚中的氯化氢处理制备 4-烷基-3-氨基噻吩。
其中R与上面描述的相同。

本发明表示为式(1)的化合物可通过上述方法由4-烷基-3-氨基噻吩制得。

不管怎样，对这些方法没有限制。

本发明式(1)的化合物和包含这一物质作为活性成分的植物病害防治剂总是在防治下列病害中表现出非常高的活性，例如，水稻病害如稻瘟病( *Pyricularia oryzae* )、水稻纹枯病( *Rhizoctonia solani* )、稻胡麻斑病( *Cochliobolus miyabeanus* )、和水稻恶疫病( *Gibberellla fujikuroi* )，麦类病害如小麦白粉病( *Erysiphe graminis f.sp.hordei* ; *f.sp.tritici* )、小麦条锈病( *Puccinia striiformis* ; *P. graminis* ; *P. recondita* ; *P. hordei* )，小麦条斑病( *Pyrenophora graminea* )，大麦网斑病( *Pyrenophora teres* )，意大利黑麦草赤霉病( *Gibberella zeae* )，小麦雪腐病( *Typhula sp.; Microcystriella nivalis* )、小麦散黑穗病( *Ustilago tritici; U. nuda* )、小麦眼斑病( *Pseudocercosporella herpotrichoides* )、大麦云纹斑病( *Rhyncosporium secalis* )、小麦叶枯病( *Septoria tritici* )、小麦茎腐病( *Leptosphaeria nodorum* )、小麦灰露病( *Botrytis cinerea* )及菜豆、黄瓜、番茄、草莓、葡萄、马铃薯、大豆、卷心菜、日本茄子和莴苣，葡萄的锈病( *Phakopsora ampelopsisidis* )、葡萄灰霉病( *Uncinula necator* )、葡萄黑豆病( *Elsinoe ampelina* )、葡萄炭疽病( *Glomerella cingulata* )、苹果白粉病( *Podosphaera leucotricha* )、苹果黑斑病( *Venturia inaequalis* )、苹果斑点落叶病( *Alternaria malii* )、苹果锈病( *Gymnosporangium yamadai* )、苹果花腐病( *Sclerotinia malii* )、苹果腐烂病( *Valsa malii* )；梨的梨黑斑病( *Alternaria kikuchiana* )、梨黑星病( *Venturia nashicola* )、梨锈病( *Gymnosporangium haraeanum* )和梨轮纹病( *Physalospora piricola* )；桃褐斑病( *Sclerotinia cinerea* )、桃黑星病( *Cladosporium carpholimum* )、( *Phomopsis sp.* )；柿子炭疽病( *Gloeosporium kaki* )、柿子角斑落叶病( *Cercospora kaki* )、柿子白粉病( *Phyllactinia kikikora* )；西瓜白粉病( *Sphaerotheca fuliginea* )、黄瓜炭疽病( *Colletotrichum logenarium* )和西瓜炭疽病( *Mycosphaerella melonis* )；番茄早疫病( *Alternaria solani* )和番茄叶霉病( *Cladosporium fulvum* )；茄子白粉病( *Erysiphe cichoracorum* )、茄子霉病( *Mycovellisciella nattrassii* )；萝卜黑斑病( *Alternaria japonica* )、萝卜白斑病( *Cercospora barassicae* )；大葱锈病( *Puccinia allii* )、大葱紫斑病( *Alternaria pom* )；大豆紫斑病( *Cercospora kikikow* )；
（Elsinoe glycines）和大豆黑点病（Diaporthe phaseoloum）；菜豆的炭疽病（Colletotrichum lindemuthianum）；花生黑斑病（Mycovellosiella personatum）和花生褐斑病（Cercospora arachidicola）；豌豆白粉病（Erysiphe pisi）；马铃薯早疫病（Altemaria solani）和马铃薯黑痣病（Rhizoctonia solani）；茶饼病（Exobasidium reticulatum）；茶饼病（Elsinoe leucaspila）和茶白星病（Colletotrichum theaeisinesis）；烟草赤星病（Altemaria longipes）；烟草白粉病（Erysiphe cichoracearum）和烟草炭疽病（Colletotrichum tabacum）；甜菜褐斑病（Cercospora beticola）；月季的月季黑斑病（Diplocarpon rosae）和月季白粉病（Sphaerotheca pannosa）；菊花黑斑病（Septoria chrysanthemi-indici）和菊花锈病（Puccinia horiana）；草莓白粉病（Sphaerotheca humuli）；大豆、瓜类、黄瓜、草莓、葡萄、马铃薯、菜豆、卷心菜、日本茄子和莴苣的根腐病（Sclerotinia sclerotiorum），柑橘和茎的早疫病（Diaporthe citri），胡萝卜叶枯病（Altemaria dauci）。

特别的，本文发明式(1)的化合物对瓜类的灰霉病（Botrytis cinerea），白粉病（Sphaerotheca fuliginea）, 禾谷类条锈病（puccinia striiformis, P. graminis, P. recondita, P. hordei)有更高的活性，且本发明的一些化合物对灰霉病有更高的残留活性，和对条锈病有更高的效力。

进一步，本发明表示式(1)的化合物有控制以下病害的可能性，须发癣菌（Trichophyton metagrophytes）、深红色发癣菌（T. rubrum）、紫罗兰色发癣菌（T.violaceum）和其它的发癣菌微生物；石膏状小孢霉（Microsporum gypseum）、狗小孢霉（M.canis）和其它小孢霉微生物；白假丝酵母（Candida albicans）、热带假丝酵母（C. tropicalis）、乳酒假丝酵母（C. kefyr）、付克氏假丝酵母（C. parapsilosis）、克柔氏假丝酵母（C.krusei）、季也蒙氏假丝酵母（C.guilliermondii）、球氏假丝酵母（C.globata）和其它假丝酵母类微生物；新隐球酵母（Cryptococcus neoformas）和其它隐球酵母微生物；申克氏孢子（Spororia Schenckii）和其它的孢子丝菌属的微生物；和絮状表皮癣菌（Epidermophyton floccosum）。

术语“载体”意指配制制剂的合成或天然的，无机或有机的物质，为了使有效成分到达要处理的部位，为在有效成分的贮藏、运输和处置更容易，可使用农药和园艺用制剂中使用的任何固体或液体材料。对载体无特别的限制。

可应用的固体载体包括，例如，蒙脱石、高岭石和其它粘土；硅藻土、瓷
土、滑石粉、蛭石、石膏、碳化钙、硫胶、硫酸铵和其它无机材料；大豆粉、木屑、小麦粉和其它有机材料以及尿素。

典型的液体载体包括甲苯、二甲苯、异丙基苯和其它芳香烃；煤油、矿物油和其它烷烃；丙酮、丁酮和其它酮类；二氯乙烷、二乙二醇二甲醚和其它醚类；甲醇、乙醇、丙酮、乙二醇和其它醇类；二甲基亚砜胺、二甲基亚砜和其它惰性溶剂；和水。

为了进一步提高本方法中植物病害防治剂的效果，考虑到剂型和使用地区，辅助剂也可单独使用或作为混合物使用，这点取决于目标体。可使用辅助剂包括通常应用于植物病害防治剂中的表面活剂和粘合剂，例如，木质素磺酸盐、藻酸、聚乙烯醇、阿拉伯树胶和羧甲基纤维素钠盐，以及稳定剂，例如，苯酚化合物、硫醇类化合物和作为氧化抑制剂的高级脂肪酸酯，用作pH调节剂的磷酸盐和一些情况下的右旋定剂。这些辅助剂可根据需要单独使用或联合使用。另外在某些特定的情况下工业上用的杀真菌剂和防细菌剂也可添加以抑制真菌和细菌。

下面进一步详细阐明辅助剂。典型的辅助剂可应用于如下目的：乳化、分散、扩展、润湿、粘合和稳定作用，它包括木质素磺酸钙盐、烷基苯磺酸盐、烷基硫酸盐的酯、聚氧化烯烷基硫酸盐、聚氧化烯烷基磷酸盐和其它阴离子表面活性剂；聚氧化烯烷基醚、聚氧化烯烷基芳基醚、聚氧化烯烷基胺、聚氧化烯烷基酰胺、聚氧化烯烷基脂肪酸酯、甘油脂肪酸酯、失水山梨聚糖脂肪酸酯、聚氧化烯烷基辛烷醇脂肪酸酯、聚氧丙烯聚氧乙烯共聚物和其它非离子的表面活剂；硬脂酸钙、石蜡和其它润滑剂，异丙基磷酸氢酸酯和其它稳定剂；以及其它可混的材料如羧甲基纤维素、羧甲基纤维素、酪蛋白和阿拉伯树胶。当然，对这些辅助剂并无限制。

在发明的植物病害防治剂中表示为通常式(1)的化合物的含量依照制剂的不同而不同。通常在粉剂中为按重量计0.05-20%，在可湿性粉剂中为按重量计0.1-80%，在颗粒剂中为按重量计0.1-20%，乳油中为按重量计1-50%，悬浮剂中为按重量计1-50%，在干悬浮剂中为按重量计1-80%。优选的浓度是粉剂中为按重量计0.5-5%，在可湿性粉剂中的为按重量计5-80%，在颗粒剂中为按重量计0.5-8%，乳油中为按重量计5-20%，悬浮剂中为按重量计5-50%，在干悬浮剂中为按重量计5-50%。
助剂的含量为按重量计0-80%，载体的含量由按重量计100减去全部活性成分化合物和助剂所需的量而得到。

施用本发明组合物的方法包括种子消毒和叶面应用。不管怎样，本领域技术人员通过实施任何一种施用方式，本发明组合物能够显示出满意的活性。

施用量和施用浓度依目标作物、目标病害、病害威胁程度、化合物的制剂、应用方式和不同的应用条件而变化。喷雾时，活性成分的量通常是50-1000克/亩，优选100-500克/亩。当可湿性粉剂、悬浮剂或乳油用水稀释后喷雾时，通常稀释200-20,000倍，优选1,000-5,000倍。

本发明的植物病害防治剂当然可用于和其它杀虫剂、杀虫剂、除草剂、植物生长调节剂和其它用于化合物; 土壤调节剂，或具有肥料效果的物质组合。本发明的杀真菌的混合制剂也可用这些物质的制备。

例如其它杀真菌剂包括三唑酮、己唑醇、咪鲜安、氟菌唑、腈菌唑、环己唑、氟硅唑、丙烯唑和其它唑系杀真菌剂; 甲霜灵、恶霜灵和其它酰胺丙氧酸杀真菌剂; 甲基硫菌灵、苯菌灵和其它苯并咪唑类杀菌剂，代森锰锌和其它二硫代氨基甲酸酯杀真菌剂; 庚烯利、焦铝和其它二磺酰胺类杀菌剂; 三氟吗啉和其它吗啉类杀菌剂; 氟酰胺、戊菌隆和以酰胺为基础的杀真菌剂; 乙烯铝、甲基立枯磷、DIBP、克霉散和有机磷杀真菌剂、克菌丹、百菌清，四氯硝基苯和其它有机氯杀真菌剂; 超磺🃏和krosoxim-methyl, azoxystobin和其它丙烯酸杀菌剂; 噻菌胺和其它苯并咪唑类杀菌剂，三环唑、烯丙异噻唑、氟啶胺、恶霉灵、quinomethionate, 磺菌胺、嘧啶醇、嘧啶酮、双胍辛酯酸盐、iminocadine-albesilate和其它杀菌剂。

杀虫剂包括例如杀螟硫磷、地亚农、哚螨硫磷、毒死蜱、马拉硫磷、稻丰散、乐果、甲基内吸磷、丙溴磷、敌敌畏、乙酰甲胺磷、苯硫磷和其它有机磷杀虫剂; 甲萘威、灭杀威、灭蝇威、抗蚜威、benfracarb、丁硫克百威、灭多威和其它氨基甲酸酯类杀虫剂; 铲菊酯、乙氧菊酯、氟氯菊酯、氟戊菊酯和其它拟除虫菊酯。

杀螟丹和其它沙蚕毒类杀虫剂和吡虫啉和其它硝基亚甲基杀虫剂。然而，对这些物质没有限制。

实施例

实施例1
N-[2-(1,3-二甲基丁基)-3-噻吩基]-5-氯-1,3-二甲基吡唑-4-甲酰胺(化合物No. 1.11)的合成

在冰浴中，0.4g的3-氨基-2-(1,3-二甲基丁基)噻吩溶于3.0g吡啶中。含有0.42g 5-氯-1,3-二甲基吡唑-4-羰基氯的3毫升二氯甲烷溶液滴加到上述溶液中并搅拌。

在3℃搅拌一小时后，反应混合物倒入1N的水盐酸溶液中，用乙酸乙酯萃取。有机相经饱和的碳酸氢钠水溶液冲洗后，再用饱和的氯化钠水溶液冲洗，经无水硫酸钠干燥。在减压下蒸馏除去溶剂，残留物通过硅胶色谱纯化。获得所需的产物0.41g，棕色油，收率为55%。

实施例2

N-[2-(1,3-二甲基丁基)-3-噻吩基]-5-氯-3-三氯甲基-1-甲基吡唑-4-甲酰胺(化合物No. 1.10)的合成

在冰浴中，0.50g的3-氨基-2-(1,3-二甲基丁基)噻吩溶于3.0g吡啶中。含有0.67g 5-氯-3-三氯甲基-1-甲基吡唑-4-羰基氯的3毫升二氯甲烷溶液滴加到上述得到的溶液中并搅拌。

在3℃搅拌两小时后，反应混合物倒入1N的盐酸水溶液中，用乙酸乙酯萃取。有机相经饱和的碳酸氢钠水溶液冲洗后，再用饱和的氯化钠水溶液冲洗，经无水硫酸钠干燥。在减压下蒸馏除去溶剂，残留物通过硅胶色谱纯化，得到0.15g棕色油的所需的产物，收率为14%。

实施例3

N-[2-(1,3-二甲基丁基)-3-噻吩基]-5-氯-3-乙基-1-甲基吡唑-4-甲酰胺(化合物No. 1.42)的合成

在冰浴中，1.50g的3-氨基-2-(1,3-二甲基丁基)噻吩溶于7.0g吡啶中。含有1.70g 5-氯-3-乙基-1-甲基吡唑-4-羰基氯的10毫升二氯甲烷溶液滴加到上述得到的溶液中并搅拌。

在3℃搅拌一小时后，反应混合物倒入1N的盐酸水溶液中，用乙酸乙酯萃取。有机相经饱和的碳酸氢钠水溶液冲洗后，再用饱和的氯化钠水溶液冲洗，经无水硫酸钠干燥。在减压下蒸馏除去溶剂，残留物通过硅胶色谱纯化，得到1.61g浅棕色晶体的所需的产物，收率为56%。

实施例4
N-[2-(1,3-二甲基丁基)-3-噻吩基]-6-甲基-3,4-二氢-2H-吲唑-5-甲酰胺(化合物No. 1.7)的合成

在氮气中，0.5g的3-氨基-2-(1,3-二甲基丁基)噻吩溶于5.0毫升二氯甲烷中。将2毫升15%甲苯的三乙基铝溶液滴加到上述得到的溶液中并搅拌。搅拌10分钟后，再滴加入含有0.5g 6-甲基-3,4-二氢-2H-吲唑-5-羧酸乙酯的3毫升二氯甲烷溶液。

在室温搅拌12小时后，反应混合物倒入5%盐酸水溶液中，用乙酸乙酯萃取。有机相经5%水盐酸溶液，饱和的碳酸盐溶液冲洗后，再用饱和的氯化钠水溶液冲洗，经无水硫酸钠干燥。在减压下蒸馏除掉去溶剂。残留物通过硅胶色谱纯化，得到0.1g浅棕色晶体的所需的产物。收率为13%。

实施例5

N-[2-(1,3-二乙基丁基)-3-噻吩基]-6-乙基-3,4-二氢-2H-吲唑-5-甲酰胺(化合物No. 1.8)的合成

在氮气中，1.0g的3-氨基-2-(1,3-二甲基丁基)噻吩溶于10毫升二氯甲烷中。

将得到的溶液中滴加入5毫升15%甲苯的三甲基铝溶液并搅拌，搅拌10分钟后，再滴加入含有1.0g6-乙基-3,4-二氢-2H-吲唑-5-羧酸甲酯的5毫升二氯甲烷溶液。

在室温搅拌12小时后，反应混合物倒入5%盐酸水溶液中，用乙酸乙酯萃取。有机相经5%盐酸水溶液冲洗后，再用饱和碳酸盐溶液和饱和的氯化钠水溶液冲洗，经无水硫酸钠干燥。在减压下蒸馏除掉去溶剂。残留物通过硅胶色谱纯化，得到0.3g浅棕色油的所需的产物。收率为17%。

实施例6

N-[2-(1,3-二甲基丁基)-3-噻吩基]-6-甲基-2,3-二氢-1,4-氧硫杂环己二烯-5-甲酰胺(化合物No. 1.14)的合成

在氮气中，0.45g的3-氨基-2-(1,3-二甲基丁基)噻吩溶于5毫升二氯甲烷中。将得到的溶液中滴加入2.86毫升15%甲苯的三甲基铝溶液并搅拌，搅拌10分钟后，再滴加入含有0.46g6-甲基-2,3-二氢-2H-1,4-氧硫杂环己二烯-5-羧酸乙酯的3毫升二氯甲烷溶液。

在室温搅拌4小时后，反应混合物倒入1N的盐酸水溶液中，用乙酸乙酯萃取。有机相经饱和的氯化钠水溶液冲洗后，再用饱和的氯化钠水溶液冲洗，经
无水硫酸钠干燥。在减压下蒸馏除掉溶剂，残留物通过硅胶色谱纯化，得到0.44g棕色油的所需的产物，收率为55%。

参考实施例1

3-氨基-2-(1,3-二甲基丁基)噻吩的合成

1) 2-(1-羟基-1,3-二甲基丁基)-3-叔丁氧基羰基氨基噻吩

2-甲基丙基镁溴化物的四氯呋喃溶液是由2.9g 2-甲基丙基溴、0.47g镁和20毫升四氯呋喃制备的。溶液冷却至10℃，在15℃或低于15℃情况下，加入10毫升含有1g 2-乙酰基-3-叔丁氧基羰基-氨基噻吩的四氯呋喃溶液，室温搅拌2小时，边冷却边滴加入饱和氯化铵水溶液。反应混合物用乙酸乙酯萃取，用饱和的氯化钠水溶液冲洗，经无水硫酸钠干燥。在减压下蒸馏除掉溶剂得到1.2g所需的产物，收率为98%。

2) 3-氨基-2-(1,3-二甲基丁基)噻吩

在将1.2g的2-(1-羟基-1,3-二甲基丁基)-3-叔丁氧基羰基氨基噻吩溶解于10毫升二氯甲烷中后，加入0.44g的三乙基硅烷和4.3g三氟乙酸。混合物在室温搅拌20小时，用饱和的碳酸氢钠溶液中和，用乙酸乙酯萃取。有机相用饱和的氯化钠水溶液冲洗，经无水硫酸钠干燥。在减压下蒸馏除掉溶剂。残留物由硅胶柱色谱纯化得到0.43g晶体的所需的产物。

$^1$H-NMR(270MHz, CDCl₃, δppm, J:Hz): 0.89(3H,d,J=6.6), 0.90(3H,d,J=6.6), 1.23(3H,d,J=6.6), 1.35-1.65(3H,m), 2.95(1H,sextet, J=6.6), 3.35(2H,brs), 6.55(1H,d,J=5.1), 6.95(1H,d,J=5.1)

参考实施例2

3-氨基-2-异丙基噻吩的合成

1) 3-(叔丁氧基羰基氨基)噻吩-2-羧酸甲基酯

向含有10g的3-氨基噻吩-2-羧酸甲酯和7.72g三乙胺的50毫升二氯甲烷溶液中滴加入含有13.9g的二叔丁基碳酸的20毫升二氯甲烷溶液，之后加入催化剂量的4-二甲基氨基吡啶。混合物在室温搅拌5小时，分为两层。有机层用水冲洗并经无水硫酸钠干燥。

在减压下蒸馏除掉溶剂，过滤沉淀液体，滤液由硅胶柱色谱纯化得到4.2g无色晶体的所需的产物。

$^1$H-NMR(270MHz, CDCl₃, δppm, J:Hz): 1.52(9H,s), 3.88(3H,s),
7.43(1H,d, J=5.1), 7.88(1H,d, J=5.1), 9.35(1H,brs)
2) 2-(1-羟基-1-甲基)乙基-3-(叔丁氧基基基氧基)噻吩

在校气中，溴化甲基镁的6.5毫升3M乙醚溶液用5毫升四氢呋喃稀释，冷却至10℃，滴加入含有1g 3-(叔-丁氧基基基氧基)噻吩-2-羧酸甲基酯的5毫升四氢呋喃溶液。室温搅拌3小时，反应混合物倒入氯化铵水溶液中并用乙酸乙酯萃取。有机相用饱和的氯化钠水溶液冲洗，经无水硫酸钠干燥。在减压下蒸馏除掉溶剂得到黄色油所需的产物。收率为理论值。

$^1$H-NMR(270MHz, CDCl$_3$, δppm, J:Hz): 1.50(9H,s), 1.65(6H,s), 7.02(1H,d, J=5.1), 7.27(1H,d, J=5.1), 8.09(1H,brs)

3) 3-氨基-2-异丙基噻吩

在溶解0.9g的2-(1-羟基-1-甲基)乙基-3-叔丁氧基基基氧基噻吩于10毫升二氯甲烷中后，加入0.41g的三乙基硅烷和4g三氯乙酸。混合物在室温搅拌20小时，用饱和的碳酸氢钠水溶液中和，用乙酸乙酯萃取。有机相用饱和的氯化钠水溶液冲洗，经无水硫酸镁干燥，在减压下蒸馏除掉溶剂，残留物由硅胶柱色谱纯化得到0.29g晶体所需的产物。收率是62%。

$^1$H-NMR(270MHz, CDCl$_3$, δppm, J:Hz): 1.28(6H,d,J=7.3), 3.04(1H, sept,J=7.3), 3.07(2H,brs), 6.56(1H,d, J=5.9), 6.93(1H,d, J=5.9)

可通过与实施例相同的方法制备的其它式(1)化合物概括于表1和表2。
### 表 1(2-取代的-3-酰基氨基硫代噻吩衍生物)

![化学结构式](图片)

<table>
<thead>
<tr>
<th>化合物编号</th>
<th>R</th>
<th>Ar 取代值</th>
<th>m.p. (°C)</th>
<th>'H-NMR (270MHz) (CDCl₃, δ 值, J:Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>异丙基</td>
<td>A₁(R¹=CF₃，R³=C₁)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td>1-甲基-丁基</td>
<td>A₂(R²=CF₃，m=0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3</td>
<td>1-甲基-丁基</td>
<td>A₄(R²=CF₃)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.4</td>
<td>1-甲基-丁基</td>
<td>A₁(R₁=CF₃，R³=Me)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td>1-甲基-丁基</td>
<td>A₁(R₁=CF₃，R³=Me)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.6</td>
<td>1-甲基-丁基</td>
<td>A₁(R¹=CF₃，R³=C₁)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>化合物编号</td>
<td>R</td>
<td>Ar 取代基</td>
<td>m.p. (°C)</td>
<td>(^1)H-NMR (270MHz) (CDCl\textsubscript{3}, (\delta) value, J:Hz)</td>
</tr>
<tr>
<td>------------</td>
<td>---------</td>
<td>-----------------</td>
<td>-----------</td>
<td>--------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>1.7</td>
<td>1,3-二甲基丁基</td>
<td>A2 ((R^2=Me, m=0))</td>
<td>82.2-87.1</td>
<td>0.87 ((3H, d, J=5.9)), 0.88 ((3H, d, J=6.6), 1.41-1.57(3H, m), 1.94(2H, t, J=6.6), 2.19(3H, s), 2.35(2H, t, J=6.6), 3.0(2H, m), 4.05(2H, t, J=5.9), 6.87(1H, brs), 7.08(1H, d, J=6.5), 7.36(1H, d, J=5.9)</td>
</tr>
<tr>
<td>1.8</td>
<td>1,3-二甲基丁基</td>
<td>A2 ((R^2=Et, m=0))</td>
<td>油</td>
<td>0.87 ((3H, d, J=5.9)), 0.88 ((3H, d, J=6.6), 1.13(3H, t, J=7.3), 1.26(3H, d, J=6.6), 1.38(1H, m), 1.92(2H, tt, J=5.1, J=6.6), 2.35(2H, t, J=6.6), 2.57(2H, q, J=7.3), 3.01(1H, m), 4.04(2H, t, J=5.1), 6.88(1H, brs), 7.08(1H, d, J=5.9), 7.37(1H, d, J=5.9)</td>
</tr>
<tr>
<td>1.9</td>
<td>1,3-二甲基丁基</td>
<td>A1 ((R^1=R^2=Me))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>化合物编号</td>
<td>R</td>
<td>Ar 取代基</td>
<td>m.p. (°C)</td>
<td>( ^1\text{H}-\text{NMR}(270\text{MHz}) ) (CDCl₃, δ value, J:Hz)</td>
</tr>
<tr>
<td>------------</td>
<td>------------</td>
<td>-----------</td>
<td>-----------</td>
<td>--------------------------------------------------------</td>
</tr>
<tr>
<td>1.10</td>
<td>1,3-二甲基丁基</td>
<td>A1(R¹=CF₃, R³=Cl)</td>
<td>半固体</td>
<td>0.87(6H,d,J=6.6),1.26(3H,d,J=6.6),1.43-1.65(3H,m),3.09(1H,m),3.96(3H,s),7.13(1H,d,J=5.1),7.46(1H,d,J=5.1),7.46(1H,brs)</td>
</tr>
<tr>
<td>1.11</td>
<td>1,3-二甲基丁基</td>
<td>A1(R¹=Me, R³=Cl)</td>
<td>棕色油</td>
<td>0.88(6H,d,J=5.9),1.28(3H,d,J=7.3),1.43-1.59(3H,m),2.52(3H,s),3.11(1H,m),3.85(3H,s),7.13(1H,d,J=5.9),7.48(1H,d,J=5.9),7.65(1H,brs)</td>
</tr>
<tr>
<td>1.12</td>
<td>1,3-二甲基丁基</td>
<td>A1(R¹=CHF₂, R³=Cl)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.13</td>
<td>1,3-二甲基丁基</td>
<td>A3(R²=Me, n=1)</td>
<td>黄色油</td>
<td>0.87(6H,m),1.21(3H,d,J=6.6),1.39-1.60(3H,m),2.40(3H,s),2.89(1H,m),3.09(2H,m),4.56(2H,m),7.20(2H,m),7.27(1H,m),7.64-7.80(1H,m),8.23(1H,brs)</td>
</tr>
<tr>
<td>化合物编号</td>
<td>R</td>
<td>Ar 取代基</td>
<td>m.p. (°C)</td>
<td>¹H-NMR (270MHz) (CDCl₃, δ value, J:Hz)</td>
</tr>
<tr>
<td>----------</td>
<td>-----------------</td>
<td>-----------</td>
<td>-----------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>1.14</td>
<td>1,3-二甲基丁基</td>
<td>A₃(R²=Me, n=0)</td>
<td>油</td>
<td>0.89(6H,m), 1.28(3H,d,J=6.6), 1.40-1.57(3H,m), 2.28(3H,s), 2.99(2H,m), 3.05(1H,m), 4.39-43(2H,m), 7.09(1H,d,J=5.1), 7.40(1H,d,J=5.1), 7.73(1H,brs)</td>
</tr>
<tr>
<td>1.15</td>
<td>1,3-二甲基丁基</td>
<td>A₄(R²=E)</td>
<td>71.0-77.9</td>
<td>0.89(6H,m), 1.14(3H,t,J=7.3), 1.27(3H,d,J=7.3), 1.36-1.56(3H,m), 2.77(1H,q,J=7.3), 2.96(2H,t,J=9.5), 2.98(1H,m), 4.47(2H,t,J=9.5), 5.62(1H,brs), 7.08(1H,d,J=5.1), 7.43(1H,d,J=5.1)</td>
</tr>
<tr>
<td>1.16</td>
<td>1,3-二甲基丁基</td>
<td>A₄(R²=Me)</td>
<td>92-95</td>
<td>0.89(6H,m), 1.27(3H,d,J=6.6), 1.39-1.55(3H,m), 2.27(3H,s), 2.96(2H,t,J=9.5), 2.98(1H,m), 4.48(2H,t,J=9.5), 6.62(1H,brs), 7.08(1H,d,J=5.1), 7.41(1H,d,J=5.1)</td>
</tr>
<tr>
<td>1.17</td>
<td>1,2-二甲基丁基</td>
<td>A₁(R¹=CF₃, R³=Br)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>化合物编号</td>
<td>R</td>
<td>Ar</td>
<td>m.p.</td>
<td>1H-NMR(270MHz)</td>
</tr>
<tr>
<td>------------</td>
<td>---------</td>
<td>----------</td>
<td>------</td>
<td>------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>取代基</td>
<td>(°C)</td>
<td>(CDCl₃, δ value, J:Hz)</td>
</tr>
<tr>
<td>1.18</td>
<td>叔-丁基</td>
<td>A1(R¹=CF₃, R³=Cl)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.19</td>
<td>1,3-</td>
<td>A1(R¹=Cl, R³=Cl)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.20</td>
<td>1,3-</td>
<td>A2(R²=CF₃, m=0)</td>
<td>117.5</td>
<td>0.88(6H,m), 1.25(3H,d, J=</td>
</tr>
<tr>
<td></td>
<td>二甲基</td>
<td></td>
<td>120.5</td>
<td>6.6), 1.38-1.57(3H,m), 1.99</td>
</tr>
<tr>
<td></td>
<td>戊基</td>
<td></td>
<td></td>
<td>(2H,m), 2.50(2H,m), 3.04</td>
</tr>
<tr>
<td></td>
<td>丁基</td>
<td></td>
<td></td>
<td>(1H,m), 4.16(2H,t, J=5.1),</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6.95(1H,brs), 7.11(1H,d, J=5.9), 7.30(1H,d, J=5.9)</td>
</tr>
<tr>
<td>1.21</td>
<td>3-甲基-丁基</td>
<td>A2(R²=Me, m=0)</td>
<td>122.1</td>
<td>0.93(6H,d, J=5.9), 1.49-1.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>122.4</td>
<td>6.6(3H,m), 1.89-1.98(2H, m), 2.19(3H,s), 2.33-2.37</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(2H,m), 2.64-2.70(2H,m), 4.02-4.06(2H,m), 6.87(1H,brs), 7.05(1H,d, J=5.1), 7.36(1H,d, J=5.1)</td>
</tr>
<tr>
<td>1.22</td>
<td>1,3-</td>
<td>A4(R²=CF₃)</td>
<td>油</td>
<td>0.87(6H,d, J=5.9), 1.25(3H,d,J=6.6), 1.41-1.57(3H, m), 3.02(1H,m), 3.22(2H, m), 4.59(2H,m), 7.10(1H, d,J=5.9), 7.11(1H,brs), 7.36(1H,d,J=5.1)</td>
</tr>
<tr>
<td>化合物编号</td>
<td>R</td>
<td>Ar 取代基</td>
<td>m.p. (°C)</td>
<td>¹H-NMR (270MHz) (CDCl₃, δ 值, J: Hz)</td>
</tr>
<tr>
<td>-----------</td>
<td>------------------</td>
<td>-----------------</td>
<td>-----------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>1.23</td>
<td>1,2,2,3-四甲基-丁基</td>
<td>A₅(R₁=Br)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.24</td>
<td>1,3,3-三甲基丁基</td>
<td>A₁(R₁=CF₃, R₂=C₁)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.25</td>
<td>1,3-二甲基丁基</td>
<td>A₅(R₁=CF₃)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.26</td>
<td>1,3-二甲基戊基</td>
<td>A₁(R₁=CF₃, R₂=C₁)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.27</td>
<td>5-甲基-3-乙基</td>
<td>A₄(R₂=CF₃)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.28</td>
<td>2-甲基-4-乙基</td>
<td>A₄(R₂=CHF₂)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.29</td>
<td>1-甲基-2-环丙基-乙基</td>
<td>A₁(R₁=CF₃, R₂=Br)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.30</td>
<td>3-氯-1-甲基丁基</td>
<td>A₁(R₁=CF₃, R₂=C₁)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.31</td>
<td>2-氯-1-甲基丁基</td>
<td>A₁(R₁=CF₃, R₂=C₁)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.32</td>
<td>1-甲基-3-三氟-甲基丁基</td>
<td>A₄(R₂=CF₃)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>化合物编号</td>
<td>R</td>
<td>Ar 取代基</td>
<td>m. p. (°C)</td>
<td>'H-NMR (270MHz) (CDCl₃, δ value, J:Hz)</td>
</tr>
<tr>
<td>------------</td>
<td>---------------</td>
<td>-----------</td>
<td>------------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>1.33</td>
<td>3-甲基-三氟 -甲基丁基</td>
<td>A₄(R²=CF₃)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.34</td>
<td>1,3-二甲基丁基</td>
<td>A₃(R²=Me, n=2)</td>
<td>86.5-92.0</td>
<td></td>
</tr>
<tr>
<td>1.35</td>
<td>1,2-二甲基 丁基</td>
<td>A₃(R²=Me, n=1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.36</td>
<td>1,3-二甲基 丁基</td>
<td>A₅(R¹=Me)</td>
<td>79-81</td>
<td>0.86-0.90 (6H, m), 1.29 (3H, d, J=6.6), 1.43-1.59 (3H, m), 2.73 (3H, s), 3.09 (1H, m), 7.15 (1H, d, J=5.9), 7.40 (1H, m), 8.94 (1H, s)</td>
</tr>
<tr>
<td>1.37</td>
<td>1,3-二甲基 戊基</td>
<td>A₄(R²=CF₃)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.38</td>
<td>1,3-二甲基 丁基</td>
<td>A₂(R²=Me, m=1, 3-Me)</td>
<td>77-82</td>
<td>0.89 (6H, m), 1.03 (3H, d, J=6.6), 1.28 (3H, d, J=6.6), 1.40-1.62 (3H, m), 1.89-2.04 (2H, m), 2.20 (3H, s), 2.44 (1H, m), 3.03 (1H, m), 3.53 (1H, m), 4.05 (1H, m), 6.86 (1H, brs), 7.08 (1H, d, J=5.9), 7.36 (1H, d, J=5.9)</td>
</tr>
<tr>
<td>化合物编号</td>
<td>R</td>
<td>Ar 取代基</td>
<td>m.p. (°C)</td>
<td>¹H-NMR (270MHz) (CDCl₃, δ value, J:Hz)</td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
<td>-----------</td>
<td>-----------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>1.39</td>
<td>1,3-二甲基丁基</td>
<td>A₂(R²=Me, m=1, 2-Me)</td>
<td>yellow oil</td>
<td>0.88(6H,m), 1.27(3H,d,J=6.6), 1.33(3H,d,J=5.9), 1.40-1.68(3H,m), 1.64(1H,m), 1.95(1H,m), 2.20(3H,s), 2.35(2H,m), 3.02(1H,m), 3.97(1H,m), 6.87(1H,brs), 7.08(1H,d,J=5.9), 7.36 (1H,d,J=5.9)</td>
</tr>
<tr>
<td>1.40</td>
<td>1-氯-3-甲基丁基</td>
<td>A₄(R²=CF₃)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.41</td>
<td>3-甲基-环戊基</td>
<td>A₂(R²=Me, m=0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.42</td>
<td>1,3-二甲基丁基Ⅰ</td>
<td>A₁(R¹=Et, R²=Cl)</td>
<td>95.5-100</td>
<td>0.88(6H,d,J=5.9), 1.27(6H,m), 1.43-1.58(3H,m), 2.95(2H,q,J=7.3), 3.11(1H,m), 3.86(3H,s), 7.12(1H,d, J=5.9), 7.46(1H,d,J=5.9), 7.62(1H,brs)</td>
</tr>
<tr>
<td>1.43</td>
<td>1,3-二甲基-1-丁烯基</td>
<td>A₁(R¹=CF₃, R²=Cl)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.44</td>
<td>4-甲基-环己基</td>
<td>A₅(R¹=CF₃)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.45</td>
<td>3-甲基-环己基</td>
<td>A₅(R¹=Cl)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
表 2(2-取代-3-酰基氨基噻吩衍生物)

![Chemical Structure](image)

<table>
<thead>
<tr>
<th>化合物编号</th>
<th>R</th>
<th>Ar 取代基</th>
<th>m.p. (°C)</th>
<th>'H-NMR (270MHz) (CDCl₃, δ值, J: Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>1-甲基-丙基</td>
<td>A1(R¹=CF₃, R²=Me)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td>1-甲基-丁基</td>
<td>A2(R²=Me, m=0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.3</td>
<td>1,3-二甲基-丁基</td>
<td>A2(R²=Me, m=0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.4</td>
<td>1,3-二甲基-丁基</td>
<td>A5(R¹=CF₃)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

下面制剂实施例和试验实施例将示本发明植物病害防治剂。在制剂实施例中，“份”指“重量份”。

制剂实施例1(粉剂)
含有按重量计2%活性成分的粉剂是通过均匀研磨和混合2份取自化合物No.1.11的化合物和98份陶土而获得。

制剂实施例2(可湿性粉剂)
具有均匀成分的研磨的颗粒、含有按重量计10%的活性成分的可湿性粉剂，是通过均匀研磨和混合10份的取自化合物No.1.8的化合物、70份高岭土、18份白碳黑、和2份烷基苯磺酸钙获得。

制剂实施例3(可湿性粉剂)
具有均匀成分的可湿性粉剂是一研磨的颗粒，含有按重量计20%的活性成分的可湿性粉剂，是通过均匀研磨和混合20份的取自化合物No.1.7的化合物、3份烷基苯磺酸钙、5份聚乙二烯壬基苯基醚、72份粘土获得。
制剂实施例4(可湿性粉剂)

含有按重量计50%活性成分可湿性粉剂，是由通过均匀研磨和混合50份的取自化合物No.1.14的化合物、1份木素磺酸钠、5份白碳黑、和44份硅藻土而获得。

制剂实施例5(悬浮剂)

含有按重量计5%的活性成分的悬浮剂，是由通过磨湿研磨5份的取自化合物No.1.7的化合物、7份丙二醇、4份木素磺酸钠、2份二辛基硫代琥珀酸钠、和82份水而获得。

制剂实施例6(悬浮剂)

含有按重量计10%的活性成分的悬浮剂，是由通过磨湿研磨10份的取自化合物No.1.16的化合物、7份丙二醇、2份木素磺酸钠、2份二辛基硫代琥珀酸钠、和79份水而获得。

制剂实施例7(悬浮剂)

含有按重量计25%的活性成分的悬浮剂，是由通过用磨湿研磨25份的取自化合物No.1.42的化合物、5份丙二醇、5份聚氧乙烯油酸酯、5份聚氧乙烯二烯丙基醚硫酸盐、0.2份硅氧烷-基泡沫剂和59.8份水而获得。

本发明的活性物作为植物病害防治剂的活性在此后通过试验实施例进行了描述。

试验实施例1

菜豆灰霉病(Botrytis cinerea)防治试验

在温室中，两株菜豆(栽培种: Veinless Top Crop)幼苗分别在直径7.5厘米的塑料盆中生长，直至子叶的发育。将按照制剂实施例3配制的可湿性粉剂稀释到规定浓度(活性成分浓度为100和200ppm)，每四盒喷雾50毫升的量到幼苗上后，空气干燥。

由在PDA培养基培养的灰葡萄孢(Botrytis cinerea，MBC抗性，RS菌株)的分生孢子悬浮液(1×10^6孢子/ml)，接种喷雾在子叶上，置于20-23℃相对湿度95%或更高的温室内7天。

接种7天后，依照下列标准，检查每片菜豆叶上的灰葡萄孢的损害面积，表明严重程度的标准和防治值由下式计算。结果见表3。
严重程度  
0: 无损害
1: 损害面积是少于或5%
2: 损害面积是5-25%
3: 损害面积是25-50%
4: 损害面积是大于或50%

每个处理的面积的平均值和未处理的面积定义为严重程度。
防治值(%) = (1 - 在处理区域的严重程度/未处理区域的严重程度) × 100

<table>
<thead>
<tr>
<th>化合物编号</th>
<th>200ppm</th>
<th>100ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.7</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>1.8</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>1.11</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>1.14</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>1.16</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>1.21</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>参考化合物1</td>
<td>100</td>
<td>32</td>
</tr>
<tr>
<td>参考化合物2</td>
<td>100</td>
<td>10</td>
</tr>
</tbody>
</table>

参考化合物1: N-(1,3-二甲基丁基)-3-嘧啶基-2-氯烟酸酰胺
参考化合物2: N-(1,3-二甲基丁基)-3-嘧啶基-O-氯甲苯甲酸酰胺

试验实施例2

黄瓜霜霉病防治试验

在温室中，两株黄瓜(栽培种: Sagami Hanjiro)幼苗分别在直径7.5厘米的塑料盆中生长，直至1.5叶期。将按照制剂实施例3制备的可湿性粉剂稀释到规定浓度(活性成分浓度为100和200ppm)，每三盒喷雾50毫升的量到幼苗上后，空气中干燥。

分生孢子悬浮液(1×10^6 孢子/ml)是通过悬浮黄瓜霜霉病菌的分生孢子于含有
少量分散剂的水来制备的，喷雾在叶上接种，置于温室内7天。

接种7天后，按照试验实施例1的标准，检查每片黄瓜叶上的霜霉的损害面积，表明严重程度的标准和防治值由下式计算。结果见表4。

防治值(%) = (1-在处理区域的严重程度/未处理区域的严重程度)X100

<table>
<thead>
<tr>
<th>化合物编号</th>
<th>200ppm</th>
<th>100ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.7</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>1.11</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>1.14</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>1.21</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>1.36</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>1.42</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>参考化合物2</td>
<td>100</td>
<td>30</td>
</tr>
</tbody>
</table>

试验实施例3

稻瘟病(Pyricularia oryzae)防治试验

在温室内，40-50株水稻(品种： Mangetsumochi)秧苗分别盆中生长，直至两叶期。将按照制剂实施例3制备的可湿性粉剂稀释到规定浓度(活性成分浓读为100和200ppm)，每三盆喷雾50毫升的量到幼苗上。

在喷雾活性物质干燥后，将从在燕麦片培养基培养的稻梨孢制备的分生孢子悬浮液(4X10^5孢子/ml)，接种喷雾秧苗表面。处理的秧苗置于25℃相对湿度95%或更高的植物生长箱内8天。

接种8天后，依据下列标准检查每株水稻秧苗上的稻梨孢的损害斑点数，防治值由下式计算。结果见表5。

<table>
<thead>
<tr>
<th>严重程度</th>
<th>0: 无损害</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:</td>
<td>1-2损害斑点</td>
</tr>
<tr>
<td>2:</td>
<td>3-5损害斑点</td>
</tr>
<tr>
<td>3:</td>
<td>6-10损害斑点</td>
</tr>
<tr>
<td>4:</td>
<td>11或更多的损害斑点</td>
</tr>
</tbody>
</table>
每个处理的面积和未处理的面积的平均值定义为严重程度。
防治值(%) = (1 - 在处理区域的严重程度/未处理区域的严重程度) × 100

表 5

<table>
<thead>
<tr>
<th>化合物编号</th>
<th>防治值(%)</th>
<th>200ppm</th>
<th>100ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.7</td>
<td>100</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>1.11</td>
<td>100</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>1.14</td>
<td>100</td>
<td></td>
<td>没测验</td>
</tr>
<tr>
<td>1.16</td>
<td>100</td>
<td></td>
<td>没测验</td>
</tr>
<tr>
<td>1.21</td>
<td>100</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>参考化合物1</td>
<td>100</td>
<td></td>
<td>32</td>
</tr>
<tr>
<td>参考化合物2</td>
<td>100</td>
<td></td>
<td>10</td>
</tr>
</tbody>
</table>

试验实施例4

小麦叶锈病（Puccinia recondita）防治试验

在温室中，15-20株小麦（栽培种：Norin NO. 61）幼苗分别在直径6厘米的塑料盆中生长，直至1.5叶期。将制剂实施例3制备的可湿性粉剂稀释到规定浓度，每三盆喷雾50毫升的量到幼苗上后，干燥空气。

处理的幼苗随后被喷洒隐匿秆锈菌（Puccinia recondita）的夏孢子。在处理的幼苗置于湿湿环境2天后，转移到维持在18℃房间内。

接种10天后，检查小麦初级叶上锈病的损害面积得到最小抑制浓度。损害程度的评价和防治值的计算的进行同试验实施例1的方法。结果见表6。

表 6

<table>
<thead>
<tr>
<th>化合物编号</th>
<th>最小抑制浓度(ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.7</td>
<td>0.5</td>
</tr>
<tr>
<td>1.21</td>
<td>1.0</td>
</tr>
<tr>
<td>参考化合物1</td>
<td>10</td>
</tr>
<tr>
<td>参考化合物2</td>
<td>18</td>
</tr>
</tbody>
</table>
试验实施例5

菜豆灰霉病(Botrytis cinerea)的特效试验

在温室中，两株菜豆(栽培种：Veinless Top Crop)幼苗分别在直径7.5厘米的塑料盆中生长，直至子叶的产生。将按照制剂实施例3制备的可湿性粉剂稀释到规定浓度(活性成分浓度为100和200ppm)，每三盆喷雾80毫升的量到幼苗上后。在喷雾后规定的天数，从每一个盆中分别切去一个子叶。

由事先在PDA培养基培养的灰葡萄孢菌(Botrytis cinerea，MBC抗性，RS菌株)制备分生孢子悬浮液(1X10^6孢子/ml)，并用直径8毫米的圆纸片吸附。

接种的进行是将圆纸片放在子叶上。置于20℃，95%或更高的相对湿度的温室内4天，测量灰葡萄孢损害的直径。在测量值的基础上，由下面等式计算防治值。结果见表7。

防治值(%) = (1-在处理区域的严重程度/未处理区域的严重程度)X100

<table>
<thead>
<tr>
<th>表 7</th>
<th>化合物编号</th>
<th>防治值(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2天</td>
</tr>
<tr>
<td></td>
<td>1.7</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>2.1</td>
<td>100</td>
</tr>
<tr>
<td>参考化合物1</td>
<td>60</td>
<td>8</td>
</tr>
<tr>
<td>参考化合物2</td>
<td>40</td>
<td>15</td>
</tr>
</tbody>
</table>