具有邻近孔穴的增强的工作表面的 PCD 切割器

1. 一种切割元件，包括被结合至较小硬度材料基板的超硬材料的台，超硬材料的台限定了包含催化材料的多个空隙，超硬材料的台限定了第一端工作表面和延伸至基板的外围工作表面，第一端工作表面的至少一部分和外围工作表面的至少一部分基本上没有催化材料，其中，外围工作表面至超硬材料的台的第二端工作表面基本上没有催化材料，通过在基板上形成的孔穴暴露超硬材料的台的所述第二端工作表面。

2. 根据权利要求1所述的切割元件，其中，在基板上形成多个孔穴。

3. 根据权利要求1所述的切割元件，其中，围绕基板的整个外围形成单个孔穴。

4. 根据前述权利要求中的任一项所述的切割元件，其中，当使得各工作表面基本上没有催化材料时，形成所述孔穴。

5. 根据前述权利要求中的任一项所述的切割元件，其中，所述端工作表面基本上是平面的，所述外围工作表面基本上与之垂直。

6. 根据前述权利要求中的任一项所述的切割元件，其中，外围工作表面基本上是截头圆锥形。

7. 根据前述权利要求中的任一项所述的切割元件，其中，超硬材料是多晶金刚石。

8. 根据前述权利要求中的任一项所述的切割元件，其中，超硬材料的台包括具有不同的抗磨损能性的区域。

9. 根据权利要求8所述的切割元件，其中，所述区域包括一系列的层。

10. 根据权利要求9所述的切割元件，其中，所述层是连续的。

11. 根据前述权利要求中的任一项所述的切割元件，其中，超硬材料的台包括被包封的金刚石材料。

12. 根据权利要求11所述的切割元件，其中，所述被包封的金刚石材料是用粉状的碳酸盐制成的。

13. 根据前述权利要求中的任一项所述的切割元件，其中，包含有催化材料的超硬材料的区域在外围工作表面和所述端工作表面的基本上没有催化材料的部分之间被暴露。
14. 根据权利要求13所述的切割元件，其中，邻近所述端工作表面的基本上没有催化材料的所述部分的边缘处的所述区域形成第一突出边缘，以及邻近外围工作表面的基本上没有催化材料的所述部分的边缘处的所述区域形成第二突出边缘。

15. 根据权利要求13所述的切割元件，其中，通过切削掉材料形成所述区域。

16. 根据权利要求13所述的切割元件，其中，在使用中，通过切割元件部分地磨损形成所述区域。

17. 根据权利要求13所述的切割元件，其中，工作表面的基本上没有催化材料的所述部分延伸至大约0.02mm至大约0.70mm范围内的深度。

18. 根据权利要求17所述的切割元件，其中，所述部分延伸至大约0.15mm至大约0.25mm范围内的深度。

19. 一种制造切割元件的方法，包括：形成被结合至较小硬度基板的超硬材料的台，超硬材料的台限定了包含催化材料的多个空隙，所述台限定了第一和第二端工作表面和中间外围工作表面；以及处理每个端工作表面和外围工作表面的至少一部分，以从所述部分至直接邻近基板的区域除去催化材料。

20. 一种制造切割元件的方法，包括：形成结合至较小硬度基板的超硬材料的台，超硬材料的台限定了包含催化材料的多个空隙，所述台限定了第一端工作表面和外围工作表面；在基板的直接邻近外围工作表面的区域形成孔穴；以及处理端工作表面和外围工作表面的每个的至少一部分，以从其中除去催化材料，从而形成超硬材料的台的第二端工作表面，通过在基板上形成所述孔穴暴露所述第二端工作表面。
具有邻近孔穴的增强的工作表面的 PCD 切割器

技术领域

本发明涉及用于地面钻探、切割和需要设计超硬表面的其它应用中的超硬多晶材料元件。本发明尤其涉及具有增强的冲击韧性的多晶金刚石和多晶金刚石类（统称为 PCD）元件。

背景技术

对于本说明书的目的，多晶金刚石和多晶金刚石类元件被称为 PCD 元件。PCD 元件由邻近的原子之间具有异常优越的短原子间距离的碳基材料形成。类似于 PCD 的一种类型的金刚石类材料在美国专利 No. 5776615 中被称作碳氮化物（CN）。通常，PCD 元件由高温和高压条件下被加工成相互结合（inter-bonded）的超硬碳基晶体的多晶基体的混合材料形成。PCD 元件的一个共同的特点是在它们的形成过程中使用催化材料，催化材料的残留物通常限制了在使用中的元件的最大可使用的操作温度。

PCD 元件的公知的制造形式是两层或多层 PCD 元件，其中多晶金刚石的表面台被整体地结合至较小硬度材料诸如碳化钨的基板上。PCD 元件可以呈圆形或部分圆形的薄片形式，或可形成其它的形状，适合于诸如空心模具、热沉（heat sink）、摩擦轴承、阀表面、压头、工具心轴等的应用。这种类型的 PCD 元件几乎可以在需要抗磨损性和抗蚀性的材料的任何应用中使用。PCD 元件的基板可以被铜焊至承载装置，通常也是烧结的碳化钨。当被收集在钻头插口中，或被固定至用于机加工的机床柱上时，这对于例如在固定切割器或滚转切割器地钻钻头中用作切割元件的 PCD 是常见配置。

通常在高压高温压力机中烧结金刚石粉末和合适的粘结剂-催化材料形成 PCD 元件。形成这种多晶金刚石的一种特殊的方法是在美国专利 No. 3141746 中揭示的方法，在此通过引用将其揭示的全部内容并入本文。在制造 PCD 元件的一个常见的过程中，金刚石粉末被施加至包括钴的预成型
的碳化钨基板的表面。之后，组件在压力机中经受非常高的温度和压力。在这个过程中，钻从基板移动至金刚石层并且用作粘结剂-催化材料，使得金刚石颗粒以金刚石-金刚石键合（bonding）彼此结合，并且也使得金刚石层结合至基板。

完整的PCD元件具有至少一个主体，该主体具有彼此键合的金刚石晶体的基体且具有包含如上所述的粘结剂-催化材料的许多空隙。金刚石晶体包括第一金刚石连续基体，空隙形成包含粘结剂-催化材料的第二空隙连续基体。另外，有必要具有相对少量的区域，其中，金刚石至金刚石的生长包封一些粘结剂-催化材料。这些“岛”不是粘结剂-催化材料的连续空隙基体的一部分。

在一种通常形式中，金刚石主体在体积上构成85%至95%和粘结剂-催化材料构成其它的5%至15%。由于从大约400摄氏度的温度开始的在空隙钻粘结剂-催化材料和金刚石基体之间的不同热膨胀，这样的元件可能遭受热降解。经过充分的膨胀，金刚石-金刚石键可能破裂以及可能出现裂缝和碎片。

这些PCD元件的一个通常的问题，尤其是当在高磨损切割应用诸如在钻头中使用时，在于在抗磨损性和冲击强度之间的限制。这种关系归因于这样的事实：残存在被键合的金刚石晶体之间的空隙区域中的催化材料导致了金刚石层的降解。

为了形成具有更高抗磨损性且基本上不降低其冲击强度的表面，在本领域中公知的是优先从工作表面的一部分上除去这种催化材料。这种新型的PCD元件在美国专利No. 6601662、No. 6592985和No. 6544308中已经被描述，对于所有的这些专利揭示的内容通过引用并入本文中。

根据这些或其它的相关专利制成的PCD元件已经在油田钻井工业中被广泛地使用。然而，从这些使用中导致的一个惊人的观察是这些切割器的切割效率的增加，这已经在更高穿透钻井率上被证实，典型地增加40%，但有时增加达两倍至四倍的系数。

美国专利US4976324描述了一种布置，其中，气相沉积技术被用于施加无催化剂的金刚石层至切割元件的表面，但应当注意到所使用的气相沉积技术没有把金刚石层结合至下面的金刚石台上。美国专利US 6068913
和US 4766040都描述了多层的元件，美国专利US 6187068描述了为元件设置具有不同抗磨损能的同心环型区域。

在美国专利US 6189634中描述了一种布置，其中，当磨损时，切割元件的基板的一部分在工作表面上被暴露。

发明内容

本发明涉及PCD切割元件，其中，孔穴形成在基板上的直接邻近外围工作表面的区域中，处理在这种孔穴中暴露的PCD以使得它和切割元件的每个端工作表面和外围工作表面的至少一部分更加抗磨损，且基本上没有降低它的冲击强度。

这种新型的PCD切割元件的一种独特有利的用途是作为用于地钻钻头的切割元件。

根据本发明，提供了一种切割元件，该切割元件具有被结合至较硬硬度材料的基板的超硬材料的台。超硬材料的台限定了包含催化材料的多个空隙。超硬材料的台也限定了第一端工作表面和延伸至基板的外围工作表面，第一端工作表面的至少一部分和外围工作表面的至少一部分基本上没有催化材料。外围工作表面至超硬材料的台的第二端工作表面基本上没有催化材料，通过在基板上形成的孔穴暴露所述第二端工作表面。

没有或基本上没有催化剂的部分可沿着外围工作表面从所述台的表面一直延伸至超硬材料的台的第二端工作表面，通过在基板上形成的所述孔穴暴露所述第二端工作表面。

所述元件可具有第一端工作表面的基本上没有催化材料的所述部分的边缘，该边缘限定了第一突出边缘；所述元件还具有外围工作表面的基本上没有催化材料的所述部分的边缘，该边缘限定了第二突出边缘。第一端工作表面可以是大致平面形的，外围工作表面可以基本上与之垂直。超硬材料可以是多晶金刚石，可以包括具有不同抗磨损能的区域，例如被布置成一系列的层或一系列的同心环。超硬材料的台可包括被包封的金刚石材料，例如使用粉状碳酸盐制成。包括催化材料的超硬材料的区域可以在外围工作表面和第一端工作表面的基本上没有催化材料的所述部分之间被暴露。第一突出边缘可邻近于在第一端工作表面的基本上没有催化材料的
所述部分的边缘处的所述区域被形成，第二突出边缘可邻近于在外围工作
表面的基本没有催化材料的部分的边缘处的所述区域被形成。
所述元件被用作用于地钻钻头的切割元件。
本发明也涉及一种制造切割元件的方法，包括形成被结合至较小硬度
基板的超硬材料的台，超硬材料的台限定了包含催化材料的多个空隙，所
述台限定了两个端工作表面和中间外围工作表面，在基板的直接邻近外围
工作表面的区域上形成孔穴，处理每个端工作表面和外围工作表面的至少
一部分以从其中除去催化材料。

附图说明
图1是平面切割元件形式的本发明的实施例的PCD元件的透视图。
图2是用于使用本发明的PCD元件的固定切割器钻头的透视图。
图3是平面切割元件形式的本发明的PCD元件的透视图。
图4是用于使用本发明的PCD元件的滚转切割器钻头的透视图。
图5是现有技术的PCD切割元件的截面图。
图6是现有技术的平面PCD切割元件钻入地面的透视图。
图7是现有技术的平面PCD切割元件的截面图。
图8是在磨损条件下的图7的现有技术的切割器的图解截面图。
图9是显示出切割器的一段结构的图解视图。
图10是显示了在基板上形成孔穴的本发明的切割器的另一实施例的
截面图。
图11是平面切割元件形式的，显示了在基板上形成孔穴的本发明的另
一实施例的另一PCD元件的透视图。
图12是平面切割元件形式的，显示了在基板上形成单个孔穴的本发明
的另一实施例的另一PCD元件的透视图。

具体实施方式
参考图1-4，本发明的多晶金刚石或多晶金刚石（PCD）类元件1010、
2122（在图10）、2010（在图11中）、3010（在图12中）可以是用于固定切割
器旋转钻头1012（如图2所示）的预成型的切割元件1010、2122（在图10
中)、2010 (在图11中)、3010 (在图12中)。钻头的钻头主体1014形成有从钻
头的旋转中心纵向轴线1018大致向外延伸的多个刀片。沿每个刀片的工作面1020并排间隔开的是本发明的多个PCD切割元件1010、2122 (在图10中)
)、2010 (在图11中)、3010 (在图12中)。

典型地，PCD切割元件1010、2010、2122、3010具有圆形薄片形式的
主体1010a、2010a、2122a、3010a，这些主体具有金刚石或金刚石 (PCD)
类超硬材料的相对薄的前表面台1022、2022 (在图10和11中)、3022 (在图
12中)，在高压高温压力机中被结合至较小硬度的材料诸如烧结的碳化钨
或其他金属材料的基板1024、2024 (在图10和图11)、3024 (在图12中)。
切割元件1010、2010、2122、3010被预成型并肩之后典型地被结合至大致
圆柱型承载装置1026、2026 (在图11中)、3026 (在图12中)上，该承载装置
也由烧结的碳化钨形成或可以可选择地被直接连接至刀片1016。PCD切割
元件1010、2010 (在图11中)、2122 (在图10)、3010 (在图12中) 如所示出
的具有外围和端工作表面1028、2028 (在图10和图11中)、3028 (在图12中)
和1030、2030 (在图10和图11中)、3030 (在图12中)，外围和端工作表面基
本上彼此垂直。

圆柱型承载装置1026、2026、3026被接收在相应形状的插口中或在刀
片1016的凹陷中。承载装置1026、2026、3026通常被铜焊、冷缩结合或压
配合在插口中。在被焊接时，焊接接头可延伸过承载装置1026、2026、3026
和基板1024、2024、3024 的一部分。在操作时，固定切割器钻头1012被旋
转且重量被施加。这迫使切割元件1010、2010、2122、3010进入被钻的地
面中，实现切割和/或钻探作业。

在第二实施例中，成形的切割元件1032 (如图3所示) 被设置在如图4
所示的滚转切割器类型的钻头1034上。滚转切割器钻头1034典型地具有被
装配在钻头主体1044的腿1042上的轴承锭子上的一个或多个截顶滚锥切
割器1036、1038、1040。切割元件1032可以被安装，例如通过压配合，多
个切割刀片中的一个或多个切割刀片在滚转切割器 (rolling cutter)1036、
1038、1040 上成排布置，或者，可选择地，PCD切割元件1032可沿着钻头
1034的腿1042设置。PCD切割元件1032具有被结合至较小硬度基板1048的
金刚石或金刚石类材料的表面台1046形式的主体。在本实施例中，表面台
1046是成凸起表面1050的形式和具有外围和端工作表面1052和1054。典型地，可以在表面1046和基板1048之间具有多个过渡层，以有助于更加均匀地分布在制作过程中产生的应力，这对本领域技术人员是公知的。端工作表面1052是穹顶或部分球形的形式，而外围工作表面1054是截头圆锥形式。

在操作时，滚转切割器钻头1034被旋转，重量被施加。这迫使成排的滚锥切割器1036、1038、1040的切割刀片1032进入到地面中，且随着钻头1034被旋转，滚转切割器1036、1038、1040转动，实现了钻探作业。

如图9所示，台1046的结构在金刚石晶体1046b之间限定了一系列的空隙1046a，空隙1046a包含在台1046的合成过程中使用的粘结剂催化剂材料1046c。

通过实施例的方式，对如图1、11和12中所示的平面型切割元件1010、2010、2122和3010进行本发明剩余的讨论和描述。然而，可以理解，相同的总体原理和结果也会再加至如图3所示的端型切割元件1032。

在图5中示出了现有技术的预成型切割元件1100的横截面视图，在图6中显示了在使用中的现有技术的切割元件1100的视图以说明本发明和与本发明进行对比。现有技术的切割元件1100具有与本发明的PCD切割元件1010、2010、2122以及3010相同的许多元件，诸如具有相对薄的金刚石前表面台1022、2022（在图11中）、3022（在图12中），被结合至烧结碳化钨基板1024、2024、3024上。所有的切割元件1010、2010、2122和3010具有外围和端工作表面1028、2028、3028和1030、2030、3030。许多这些切割元件的表面台1022、2022和3022的层1022、2102被以这样的方式处理，以使得从邻近端工作表面1030、2030、3030的相对薄的层上基本除去催化剂。已经发现以这样的方式去除催化剂极大增加了切割元件的抗磨损性和令人惊异地增加了钻探速率。

然而，注意，在现有技术切割元件1100的外围1104上的外围工作表面1028、2028和3028最初没有被处理以除去催化剂。切割元件1100可如图6示出的方式操作。这是一种典型的代表，其中，典型地以10至45度的后倾斜角1106操作切割元件1100。当以这种方式操作时，表面台1102、2022和3022的被处理的层1102被提供到地层1108。
如图5和图6所示，在现有技术的切割器1100中，随着切割器1100在钻探中开始磨损，单个边缘1109将会形成。发明人相信这种边缘1109形成的原因是因为层1102具有比其它的金刚石材料更高的抗磨损性。在该发明时没有被认识到的是这种边缘趋向于提高穿透钻探头率两倍甚至经常更多倍的系数。这种提高穿透速率的机理被认为是在钻的过程中边缘1109与地层1108的相互作用。随着钻探的进行，下层的金刚石从边缘1109的下面磨损，引起进一步的凸出。如果这种凸出达到临界量时，边缘断裂。这改变切割器1100的切割几何构型，趋向于使得它自动变尖——由于当边缘断裂时，应力线使得表面台的杯状的或新月形的部分消失。然而，直到边缘重新形成，切割器1100将不会像以前那样锋利，以及至少在一段时期内不会如之前那样有效率地钻探。然而，典型地在钻头1012上具有许多这样的切割器1100，因此平均穿透钻探速率保持相对稳定。然而，整体上，这是比趋向于磨损未处理的切割器的金刚石台的平坦形状（flat）更加有效率的切割形状。如图5-7所示，处理的表面层1102终止于现有技术的切割器1100的边缘1103，边缘1109形成在这个边缘1103上。

此外，相信通过设置孔穴2000（在图10中）、2002、2004、2006（在图11中）、3008（在图12中）改善切割器1010、2010、2122和3010的冲击韧性，孔穴使得切割器的被处理的部分延伸至超硬材料1022、2022、3022的台的第二端工作表面2009、3009A、3009B、3009C，这将会在之后进行描述。这些在图10、11和12中被示出。

在图7中，在之后发展的现有技术中的切割器1116具有层1030、2030、3030，这些层以与如图5和图6所示的现有技术的切割器1100几乎相同的方式来处理。然而，在这种切割器1116中，这种处理被另落地施加至切割器1116的外围1124上。优选地，这种层1030、2030、3030如所显示的跨过切割器的表面和外围可以是连续的。然而，如本领域已知的，制成不连续的层也是可能的。如图8所示，在钻了一段时间之后的这种切割器1116的图示中，随着切割器的磨损，两个边缘1110形成。这种配置已经被显示比早期的现有技术切割器1100提高穿透钻探速率达另外的40%，但是在形状上和操作模式上相似。

如上文所提及的，所述处理形成了没有或基本上没有催化材料的
相对薄的层1102、2102。层1102、2102的深度或厚度1102a在大约0.02至大约0.70mm范围内是便利的，优选地为大约0.15至大约0.25mm。

在本说明书中，当使用术语“基本上没有”表示在空隙1046a中或在主体1010a、2010a、2122a、3010a的体积内的催化材料1046c时，应当理解，许多（如果不是全部）邻近的金刚石晶体1046b的表面仍然可以具有催化材料1046c的涂层。类似地，当使用术语“基本上没有”表示金刚石晶体1046b的表面上的催化材料1046c时，催化材料1046c仍然可能在邻近的空隙1046a中出现。

然而，如图8所示，最终，现有技术切割器1116磨损仅工作表面1028的很小的一部分具有边缘1110。因此，这种切割器1116的寿命依赖于所述处理延伸至外围1124的程度和磨损角度1126。它也依赖于包括穿透速率和切割器与径向相邻的切割器的相互作用的其它因素。通常，磨损角度1126是互补于切割器的后倾斜角1106的角度，但也可能与被钻探的地层的类型、钻头被操作的方式和抗磨损层的厚度密切相关。

制成抗磨损层的方式有很多，其形成边缘1110，这是目前现有技术中公知的，以及例如于2004年10月23日申请的未授权的英国专利申请No. GB 0423597.4和与其对应的于2005年10月14日申请的美国专利申请号No. 11/163323，题目都为“Dual-Edge Working Surfaces for Polycrystalline Diamond cutting elements”中描述的，对于它们揭示的全部内容通过引用并入本文。

也可能制成包括使用粉状的碳酸盐制成的包封的金刚石材料的PCD切割元件1010、2010、2122、3010，或其它方式制成的金刚石材料的PCD切割元件1010、2010、2122、3010，如已知的。

在本发明中，如图10、11和12所示出的，孔穴2000、2002、2004、2006和3008被形成在基板2024、3024中。这便在被处理的层1102、2102从表面1030、2030、3030沿外围工作表面1028、2028和3028的至少一部分延伸至超硬材料台1022、2022、3022的第二端工作表面2009、3009A、3009B、3009C，这些被处理的层基本上没有催化材料。以这种方式延伸的表面1030、2030、3030、1028、2028、3028进一步如之前描述地提高了切割器冲击韧性的改进。
通过形成被结合至较小硬度基板的超硬材料台开始制造这种切割元件的方法。使得超硬材料台限定了包含催化材料的多个空隙。台也限定了第一端工作表面和外围工作表面。

孔穴形成在基板的直接邻近外围工作表面的区域内和每个端工作表面的至少一部分上。以及切割元件的外围工作表面被处理以除去在其中的催化材料，以形成超硬材料台的第二端工作表面，所述第二端工作表面被形成在基板上的孔穴暴露。

所述孔穴使得外围工作表面1028、2028和3028被处理，以一直沿着外围工作表面1028、2028和3028并围绕端端表面2009、3009B、3009C从其中不间断地除去催化材料。

本发明包括切割元件以及制造切割元件的方法。该方法包括形成被连接至较小硬度材料基板上的超硬材料台。所述台限定了包含催化材料的多个空隙。由台限定端和外围工作表面。所述方法涉及处理端工作表面的至少一部分和外围工作表面的至少一部分以从其中除去催化材料。所述处理可包括滤去（leaching）操作。

尽管已经描述了尤其是参考随附的附图对本发明进行了描述，应当理解，除了在此所示出或教导的这些内容，可在本发明的范围和实质内进行其它的或进一步的修改。