ABSTRACT
A system and method for facilitating communicating between a hearing user and a hard of hearing user that incorporates a device including at least one communication component configured to enable the appliance to communicate with a relay, a display, and a processor. The processor is configured to enable the hard of hearing user to establish an association between an appliance and a mobile device used by the hard of hearing user. The mobile device is configured to communicate with the hearing user's device, receive text originating at the relay, the text corresponding to a transcript of the hearing user's voice signal originating at the hearing user's device, and cause text captions corresponding to the received text to be displayed on the display.
CONNECT TO RELAY
FORWARD VOICE ON VOIP
RECEIVE AND DISPLAY TEXT
DISCONNECT

CALL RELAY
ENTER PHONE NUMBER
RECEIVE PIN
CONNECT TO SERVER WITH PIN
RECEIVE AND DISPLAY TEXT
DISCONNECT

RECEIVE AND DISPLAY TEXT
DISCONNECT

FIG. 4

FIG. 6

FIG. 5
Connect The First Party Computer To Relay

Use First Party Computer To Specify First Party Call Back Number And Second Party Target Number

Use Relay To Dial First Party Call Back Number

First Party Telephone Answered?

Yes

Present Assisted Call Warning

No

Start Timer

Confirmation Activity Occurred?

No

Confirmation Activity Occurred?

No

Timer = Time Out Period?

Yes

End Call

Yes

Call The Second Party Target Telephone Number

Continue Call

Timer = Time Out Period?

No

End Call

Fig. 13
Please answer your telephone and enter the following four digit code via your telephone keypad to continue this call:

152

4397

Fig. 14
Start

230 Monitor Relay Links For Second Party Communications To First Party

232

234 Communication Attempted?

No

Yes

236 Obtain Second Party Identification Information

Present Relay Service Identifying Information Via First Party Caller ID Display; Present Second Party Identifying Information To The First Party Via The First Party Computer/Browser/IM/Customer Application, Etc.

238

Continue

Fig. 15
A CapTel call arriving on your telephone from: John Smith

Fig. 16

Fig. 17
A CapTel call is arriving on your telephone from:

John Smith

CapTel Service Provider

Fig. 18
Start

Connect First Party Computer To A Relay

Use The First Party Computer To Specify A Target Telephone Number

Recognize Target Telephone Number As An Emergency Telephone Number

Assign A Temporary Relay Telephone Number To The First Party

Store Temporary Telephone Number With IP Address Of The First Party Computer And A First Party Call Back Number In A Database Accessible By The Relay

Use Emergency Telephone Number To Establish A First Communication With An Emergency Service Provider And Present The Temporary Telephone Number To Emergency Service Provider

First Communication Terminated?

Yes

Start Timer

No

Timer = Time Out Period?

Yes

Un-assign Temporary Number From First Party

End

No

Relay Call Received Using First Party Temporary Number?

Yes

Establish Communication With First Party Via First Party Computer And Call Back Telephone Number

Continue

No

Use The Temporary Telephone Number To Identify The IP Address And Call Back Number For First Party

Fig. 19
Provide Browser Page Including Plurality Of Possible Terminating Activities For When A Communication Is Attempted With A Relay User And The Relay User Is Not Connected To The Relay

Receive At Least One Terminating Activity Selection Via Browser Page

Store Terminating Activity Selection In A Database For Subsequent Use

End Set Up Process

Fig. 20
Start Normal Operation

Monitoring Communications At The Relay

Communication Attempt With First Party Computer?

Yes

First Party Computer Linked To Relay?

Yes

Continue Call

No

Or

Provide Message Indicating That Call Cannot Be Completed

Provide Voice Mail Message

Call First Party Telephone

Voice Mail Left?

No

Transcribe Voice Mail Into Text Message

Yes

Present Text Message To First Party Next Time First Party Computer Linked To Relay

Fig. 21
DEVICE INDEPENDENT TEXT CAPTIONED TELEPHONE SERVICE

CROSS-REFERENCE TO RELATED APPLICATIONS

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

[0002] Not Applicable.

BACKGROUND OF THE INVENTION

[0003] The present application relates generally to telephone systems and specifically to telephone systems that provide for real-time text captioning for the hard of hearing.

[0004] Modern telecommunication services provide features to assist those who are deaf or hard of hearing. One such feature is the text telephone (TTY) also known as a telecommunication device for the deaf (TDD). TTYs allow for text communication through the telephone system by generating tones that may be transmitted by analog telephone lines in response to a user typing letters on a keyboard.

[0005] Hearing users may communicate with deaf users who have TTY devices through so-called “relays.” A relay is a service funded by telephone communication surcharges that provides a “call assistant” who intermediates between a deaf user and a hearing user. The call assistant communicates with the deaf user using a TTY and communicates with the hearing user by voice over a standard telephone line.

[0006] A relay service may also be used to help those who are not deaf, but hard of hearing, by providing a captioned telephone. With a captioned telephone, a user who is hard of hearing may carry on a normal telephone conversation with a hearing user while a text transcription of the words spoken by the hearing user is displayed on the telephone. The text transcription allows the hard of hearing user to confirm his or her understanding of the spoken words. Unlike with a conventional relay service, captioned telephone requires extremely fast text transcription using a computer executed voice recognition system (typically with revoking by a trained operator) so that the text captioning is as nearly as possible contemporaneous with the spoken words.

[0007] Text captioned telephones of this type are marketed under the service mark CAPEL and described in U.S. Pat. Nos. 6,307,921 and 6,075,842 assigned to the assignee of the present invention and hereby incorporated by reference.

[0008] A text captioned telephone system employs a relay service in a mode where the relay transmits both the voice of the hearing user and a text stream of the spoken words by that user. A telephone or display device of the receiving hard of hearing user provides a text display for displaying the captions.

[0009] In a single-line text captioned telephone, text and voice signals may be received over a single telephone line and separated electronically. The text captioned telephone includes software that automatically dials the relay, and providing the relay with the telephone number of the ultimate destination of the call. For incoming telephone calls, the hard of hearing user must normally hang up and redial the caller through the relay.

[0010] In a two-line text captioned telephone, a first telephone line communicates with the caller, and a second telephone line communicates exclusively with the relay. The two-line system allows text captioning to be easily used on incoming calls by allowing the text captioned telephone to dial out to the relay when the call is received and forward the necessary voice signal.

[0011] Many users of text-captioned telephony have jobs requiring significant use of the telephone as made possible by text-captioning. These users face a significant problem when they need to make use of telephone systems outside of their normal work environment where text captioning telephones may not be available or equipment such as cellular telephones that does not support text captioning must be used. Many workplaces use proprietary private branch exchange (PBX) telephone lines that do not support analog text captioning telephones, the latter which require standard telephone connections.

[0012] Other problems with existing telephony systems include an inability to confirm that a communication has been initiated by a person at a call back telephone number, system users that allow others to use their accounts to share or avoid costs, lack of options for terminating calls to persons that use relay services, inability for a relay user to identify that an incoming call is a relay call and the identity of the caller and how to present information to an emergency call center that can be used by the call center to call back or establish communication with a relay user.

SUMMARY OF THE INVENTION

[0013] At least some embodiments include a method of commencing a caption assisted telephone call using a combination of a first party telephone terminal and a first party Network appliance, the method comprising the steps of (a) connecting the first party Network appliance to a relay, (b) using the first party Network appliance to specify a first party call back telephone number, (c) using the relay to dial the first party call back telephone number, (d) specifying a confirmation activity that must be performed via the first party telephone terminal in order to continue a telephone call process, (e) when the first party telephone terminal is answered, monitoring activities via the first party telephone terminal and (f) when the confirming activity occurs, continuing the telephone call process.

[0014] In some embodiments the step of specifying a confirmation activity includes presenting instruction via the first party Network appliance specifying confirming information to be entered via the first party telephone terminal, the step of monitoring including monitoring information input via the first party telephone terminal. In some cases the method further includes the step of also presenting information via the first party telephone terminal indicating that the call is a caption assisted telephone call.
In some cases the confirming instruction instructs the first party to press at least one specific dual-tone multi-frequency (DTMF) button on the first party telephone terminal. In some cases the first party Network appliance includes a display screen and wherein the step of presenting a confirmation instruction includes presenting instructions via the display screen.

In some cases the step of monitoring for the confirming activity continues until one of the confirming activity occurs and a time out period expires and, when the time out period expires prior to the confirming activity occurring, the method further includes the step of disconnecting from the first party telephone terminal. In some cases the confirming activity includes the first party speaking a specific phrase into the first party telephone terminal. Some embodiments further include the step of using the first party Network appliance to specify a second party target telephone number, the step of continuing the telephone call process including calling the second party target telephone number. In some cases the confirming activity requires the first party to enter a second party target telephone number via at least one of the first party Network appliance and the first party telephone terminal.

In some cases the step of using the first party Network appliance to specify a second party target telephone number includes specifying the second party target telephone number prior to using the relay to dial the first party call back telephone number. In some cases the Network appliance is a wireless device. In some cases the wireless device includes the telephone associated with the first party call back telephone number.

Some embodiments include a method of commencing a caption assisted telephone call using a combination of a first party telephone terminal and a first party Network appliance, the method comprising the steps of (a) connecting the first party Network appliance to a relay, (b) using the first party Network appliance to specify a first party call back telephone number and a second party target telephone number, (c) using the relay to dial the first party call back telephone number, (d) presenting a confirmation instruction to the first party via the first party Network appliance instructing the first party to enter confirming information via the first party telephone terminal, (e) monitoring information input via the first party telephone terminal and (f) when the confirming information is entered, continuing the telephone call process.

Some embodiments further include the step of also presenting instruction via the first party telephone terminal indicating that the call is a caption assisted telephone call. In some cases the confirming instruction instructs the first party to press at least one specific dual-tone multi-frequency (DTMF) button on the first party telephone terminal. In some cases the step of monitoring information continues until one of the confirming activity occurs and a time out period expires and, when the time out period expires prior to the confirming activity occurring, the method further includes the step of disconnecting from the first party telephone terminal.

Some embodiments include a system for commencing a caption assisted telephone call using a combination of a first party telephone terminal and a first party Network appliance, the system comprising a first party telephone terminal, a second party telephone terminal, a first party Network appliance and a relay linkable to the first and second party telephone terminals and to the Network appliance, wherein, when the first party Network appliance communicates with the relay and provides a first party call back telephone number to commence a telephone call process, the relay dials the first party call back telephone number, monitors activities performed via the first party telephone terminal and only continues the telephone call process when a confirming activity occurs.

In some cases the relay further presents confirmation instructions via the first party Network appliance indicating a confirmation process that should be performed via the first party telephone terminal. In some cases the relay also presents instruction via the first party telephone terminal indicating that the call is a caption assisted telephone call. In some cases the confirming instruction instructs the first party to press at least one specific dual-tone multi-frequency (DTMF) button on the first party telephone terminal. In some cases the first party Network appliance includes a display screen and wherein the confirming instructions are presented via the display screen. In some cases the relay monitors for confirming activity until one of the confirming activity occurs and a time out period expires and, when the time out period expires prior to the confirming activity occurring, the relay disconnects the first party telephone terminal.

In some cases the first party Network appliance is a wireless device. In some cases the wireless device includes the first party telephone terminal. In some cases the first party telephone terminal and the first party network appliance form parts of a single communication device.

A system for presenting caller ID information related to a caption assisted telephone call, the system comprising at least a first party Network appliance that includes a Network appliance display, (b) a first party telephone service, (b) a relay linkable to the first party Network appliance via the Internet, the relay including a processor and programmed to notify the first party that a second party is attempting to communicate with the first party by, when a second party links to the relay to commence a communication with the first party via the first party telephone service and the first party Network appliance, presenting both relay service identifying information and second party identifying information to the first party via at least one of the first party network appliance and the first party telephone service.

In some cases the relay presents the service identifying information via the telephone service and presents the second party identifying information via the first party Network appliance. In some cases the first party is associated with a first party telephone terminal that includes a telephone display that is separate from the first party Network appliance display, the relay presenting the service identifying information via the first party telephone terminal display. In some cases the first party Network appliance is also used by the first party as a first party telephone terminal and wherein the relay presents the second party identifying information and also presents the service identifying information via the Network appliance display.

Some embodiments include a system for presenting caller ID information related to a caption assisted telephone call, the system comprising (a) at least a first party Network appliance that includes a Network appliance display, (b) a first party telephone terminal including a telephone terminal display, (c) a relay linkable to the first party
Network appliance via the Internet, the relay including a processor and programmed to notify the first party that a second party is attempting to communicate with the first party by, when a second party links to the relay to commence a communication with the first party via the first party telephone terminal and the first party Network appliance, presenting service identifying information and second party identifying information to the first party via the telephone terminal display and the Network appliance display, respectively,

[0027] Some embodiments include a method for presenting caller ID information related to a caption assisted telephone call, the method for use with a first party Network appliance that includes a Network appliance display, a first party telephone service and a relay linkable to the first party Network appliance via the Internet, the relay including a processor, the method comprising the steps of, when a second party links to the relay to commence a communication with the first party via the first party telephone service and the first party Network appliance, (i) presenting relay service identifying information to the first party via at least one of the first party network appliance and the first party telephone service and (ii) presenting second party identifying information to the first party via at least one of the first party network appliance and the first party telephone service.

[0028] In some cases the step of presenting relay service identifying information to the first party includes presenting the relay service identifying information via the telephone service and the step of presenting second party identifying information includes presenting the second party identifying information via the first party Network appliance display screen. In some cases the first party is associated with a first party telephone terminal that includes a telephone display that is separate from the first party Network appliance display, the relay presenting the service identifying information via the first party telephone terminal display.

[0029] In some cases the first party Network appliance is also used by the first party as a first party telephone terminal and wherein the relay presents the second party identifying information and also presents the service identifying information via the Network appliance display.

[0030] Some embodiments include a method for facilitating an emergency voice call using a first party Network appliance that communicates via an Internet protocol (IP) and that has an IP address, the method comprising the steps of (a) connecting the first party Network appliance to a relay, (b) using the first party Network appliance to specify a target telephone number, (c) recognizing the target telephone number as an emergency telephone number, (d) assigning a temporary telephone number to the first party where calls to the temporary telephone number are routed to the relay, (e) storing the temporary telephone number with the IP address of the first party Network appliance and a first party call back number unassignable to place a telephone call to the first party in a database accessible by the relay, (f) using the emergency telephone number to establish a first communication with an emergency service provider and presenting the temporary telephone number to the emergency service provider.

[0034] Some embodiments further include the steps of, subsequent to the first communication, the emergency service provider using the temporary telephone number to link to the relay and commence a second communication, when the service provider links to the relay, the relay using the emergency telephone number to identify the IP address of the first party Network appliance and establishing communication with the first party via the first party Network appliance. In some cases the step of storing further includes storing a call back telephone number that is associated with the first party with the temporary telephone number and the IP address of the first party Network appliance.

[0032] Some embodiments, when the service provider links to the relay, the relay further uses the temporary telephone number to identify the call back number associated with the first party and further establishes communication with the first party via the call back telephone number. In some cases the temporary telephone number is unassigned to the first party after expiration of a preset period. Some embodiments further include the step of, subsequent to expiration of the preset period, assigning the temporary telephone number to second party that uses a second party Network appliance to specify an emergency telephone number.

[0033] Some embodiments include a method for facilitating an emergency voice call using a first party Network appliance that communicates via an Internet protocol (IP) and that has an IP address, the method comprising the steps of (a) connecting the first party Network appliance to a relay (b) using the first party Network appliance to specify a target telephone number, (c) recognizing the target telephone number as an emergency telephone number, (d) assigning a temporary telephone number to the first party where calls to the temporary telephone number are routed to the relay, (e) storing the temporary telephone number with the IP address of the first party Network appliance and a first party call back number usable to place a telephone call to the first party in a database accessible by the relay, (f) using the emergency telephone number to establish a first communication with an emergency service provider and presenting the temporary telephone number to the emergency service provider.
relay using the temporary telephone number to identify the IP address of the first party Network appliance and establishing communication with the first party via the first party Network appliance. In some cases the step of storing further includes storing a call back telephone number that is associated with the first party with the temporary telephone number and the IP address of the first party Network appliance.

[0037] In some cases, when the second party links to the relay, the relay further uses the temporary telephone number to identify the call back number associated with the first party and further establishes communication with the first party via the call back telephone number. In some cases the temporary telephone number is unassigned to the first party after expiration of a preset period. Some embodiments further include the step of determining that the target telephone number corresponds to an emergency service provider and wherein the step of assigning a temporary telephone number to the first party includes assigning a temporary telephone number only when the target telephone number corresponds to an emergency service provider.

[0038] Some embodiments include a telephone call captioning system comprising a first party Network appliance linked to a network for communicating via an Internet protocol (IP) and having a first party IP address, a first party telephone associated with a first party call back telephone number, a second party telephone associated with a second party telephone number, a database, a relay linked to the Network and the database, the relay including a processor and programmed to perform the steps of, when the first party Network appliance is linked to the relay to commence a communication with a second party (i) receiving a target telephone number associated with a second party, (ii) assigning a temporary telephone number to the first party where calls to the temporary telephone number are routed to the relay and storing the temporary telephone number with the IP address of the first party Network appliance and the first party telephone number in the database for subsequent access by the relay.

[0039] In some cases the relay processor is further programmed to perform the steps of using the emergency telephone number to establish a first communication with a second party and presenting the temporary telephone number to the second party. Some embodiments further include the steps of, subsequent to the first communication, the second party using the temporary telephone number to link to the relay and commence a second communication, when the second party links to the relay, the relay using the temporary telephone number to identify the IP address of the first party Network appliance and the first party call back number and establishing communication with the first party via the first party Network appliance and the call back number. In some cases the relay processor unassigns the temporary telephone number from the first party after expiration of a preset period.

[0040] Some embodiments include a method for use with an Internet appliance that is linkable to a call assist relay via the Internet to facilitate communication with a first party via the Internet appliance, the Internet appliance communicating via an Internet protocol (IP), the method for facilitating an activity when a communication is attempted with the Internet appliance and the Internet appliance is de-linked from the relay, the method comprising the steps of providing a database that is accessible to the relay, the database including instructions regarding activities to be performed when a communication is attempted with the Internet appliance and the Internet appliance is de-linked from the relay, monitoring communications at the relay and, when a second party attempts to communicate with the Internet appliance (i) determining that the Internet appliance is de-linked from the relay and (ii) commencing a terminating action related to the communication.

[0041] In some cases the step of commencing a terminating activity includes presenting an audible message to the second party indicating that the communication cannot be completed. In some cases the step of commencing a terminating activity further includes receiving a spoken message from the second party and commencing transcription of the spoken message into a text message. Some embodiments further include the step of, at a time subsequent to the transcription when the first party links to the relay, presenting an indication that a transcribed message exists for the first party and allowing the first party to view the text message. In some cases the first party is also associated with a first party call back telephone number, the database also storing the first party call back telephone number, the step of commencing a terminating action including accessing the first party call back telephone number in the database, calling the first party call back telephone number and presenting information to the first party via a first party telephone indicating that a communication has been attempted.

[0042] Some embodiments further include the steps of, when the first party telephone remains unanswered for a time out period, receiving a spoken message from the second party and commencing transcription of the spoken message into a text message. In some cases the step of providing a database includes the steps of, via the Internet appliance, providing an interface screen to the first user including a plurality of different possible terminating activities, receiving at least one terminating activity selection via the interface screen and storing the terminating activity selection for subsequent use. In some cases the first party is also associated with additional contact information for electronically communicating with the first party, the database also storing the additional contact information associated with the first party, the step of commencing a terminating action including accessing the additional contact information associated with the first party in the database, attempting to link to the first party via the additional contact information and presenting information to the first party indicating that a communication has been attempted via the first party Internet appliance.

[0043] Still other embodiments include a method of controlling use of a caption assisted telephone call relay by a first party, the first party using a combination of a first party telephone terminal and a first party Network appliance to facilitate communication, the first party Network appliance communicating via an Internet protocol (IP) and having an IP address, the method comprising the steps of (a) prescribing a single first party call back number for the first party to communicate via the relay, (b) storing the first party call back number and the first party Network appliance IP address in a database accessible to the relay, (c) connecting the first party Network appliance to the relay, (d) specifying a target telephone number associated with a second party, (e) via the relay (i) identifying the first party Network appliance IP address, (ii) accessing the database and identifying the
first party call back number and (iii) using the first party call back number to establish a communication link between the first and second parties.

Other embodiments include a system for facilitating an activity when a communication is attempted and unsuccessful in a call assist environment, the system comprising a first party Network appliance linked to a network to communicate via an Internet protocol (IP) and having an IP address, a relay linked to the network and usable to commence a communication with the first party Network appliance, the relay including a processor that runs a program to perform the steps of providing an interface to a first party via the first party Network appliance enabling the first party to select one of a plurality of different options for activities to be performed when a communication is attempted with the first party Network appliance when the first party Network appliance is de-linked from the relay, accepting the first party selection and storing the selection in the database as instructions regarding activities to be performed when a communication is attempted with the Network appliance and the Network appliance is de-linked from the relay, monitoring communications at the relay and, when a second party attempts to communicate with the first party Network appliance (i) determining that the Network appliance is de-linked from the relay and (ii) accessing the database and identifying the first party selection and (iii) commencing the first party selection to terminate the communication.

In some cases the first party selection includes presenting an audible message to the second party indicating that the communication cannot be completed. In some cases the first party selection includes receiving a spoken message from the second party and commencing transcription of the spoken message into a text message. In some cases the processor further runs the program to perform the step of, at a time subsequent to the transcription when the first party links to the relay, presenting an indication that a transcribed message exists for the first party and allowing the first party to view the text message. In some cases the first party is also associated with a first party call back telephone number, the database also storing the first party call back telephone number, the first party selection including commencing a terminating action by accessing the first party call back telephone number in the database, calling the first party call back telephone number and presenting information to the first party via a first party telephone indicating that a communication has been attempted.

In some cases the processor further performs the steps of, when the first party telephone remains unanswered for a time out period, receiving a spoken message from the second party and commencing transcription of the spoken message into a text message. In some cases the first party is also associated with additional contact information for electronically communicating with the first party, the database also storing the additional contact information associated with the first party, the first party selection including commencing a terminating action by accessing the additional contact information associated with the first party in the database, attempting to link to the first party via the additional contact information and presenting information to the first party indicating that a communication has been attempted via the first party Internet appliance.

Other embodiments include a method of commencing a caption assisted telephone call using a combination of a first party telephone terminal and a first party Network appliance, the method comprising the steps of (a) connecting the first party Network appliance to a relay; (b) using the first party Network appliance to specify a first party call back telephone number, (c) using the relay to dial the first party call back telephone number, (d) using at least one of the first party telephone and the first party Network appliance to specify a confirmation activity that must be performed in order to continue a telephone call process, where the first party telephone is used to specify the confirmation activity, the confirmation activity having to be performed using at least one of the first party telephone terminal and the first party Network appliance and where the first party Network appliance is used to specify the confirmation activity, the confirmation activity having to be performed using at least the first party telephone, (e) when the first party telephone terminal is answered, monitoring activities via at least one of the first party telephone terminal and the first party Network appliance and (f) when the confirming activity occurs, continuing the telephone call process.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a representation of a first embodiment of the invention providing text-captioned telephony using a PBX office telephone and Internet-connected computer;

FIG. 2 is a perspective view of a voice-tap connecting the PBX telephone of FIG. 1 to the computer to allow transfer of voice signals over the Internet to a relay;

FIG. 3 is a caller interface window as may be displayed on the computer of FIG. 1 allowing on-demand captioning of the telephone call;

FIG. 4 is a flowchart of the principle steps of a program executed on the computer of FIG. 1 when captioning is demanded by the caller;

FIG. 5 is a figure similar to that of FIG. 1, showing an alternative embodiment in which the voice signal is routed through a standard telephone line to the relay and the text is returned to the computer;

FIG. 6 is a figure similar to that of FIG. 4 showing the flowchart for the embodiment of FIG. 5;

FIG. 7 is a figure similar to that of FIG. 3 showing a caller interface window for entering a PIN number to link captioning text to a particular call;

FIG. 8 is a figure similar to that of FIGS. 1 and 5 showing implementation of a text-captioning using VOIP transmissions;

FIG. 9 is a figure similar to that of FIGS. 7 and 3 showing a caller interface window for a VOIP telephone implemented on a standard computer;

FIG. 10 is a flowchart of the principal steps executed by the computer in implementing the text-captioned telephony using VOIP telephones;

FIG. 11 is a fragmentary view of the computer of FIG. 8 showing the addition of a video camera so that voice and video may be transmitted to the other caller;

FIG. 12 is a fragmentary view of the caller interface window of FIG. 9 showing a video inset possible with the configuration of FIG. 11;

FIG. 13 is a flow chart illustrating an exemplary call confirmation process that is consistent with at least some aspects of the present invention;

FIG. 14 is a schematic illustrating an exemplary browser page that may be presented during the process shown in FIG. 13;
FIG. 15 is a flow chart illustrating a flexible caller ID feature that is consistent with at least some embodiments of the present invention;

FIG. 16 is a schematic illustrating a browser page that may be presented during one of the process steps shown in FIG. 15;

FIG. 17 is a schematic illustrating a telephone including a caller ID display and information displayed on the display during one of the process steps in FIG. 15;

FIG. 18 is similar to FIG. 17, albeit showing a browser page displayed on a telephone/device and a caller ID window or display presented over the browser page;

FIG. 19 is a flow chart illustrating a call back feature that is consistent with at least some aspects of the present invention;

FIG. 20 is a flow chart illustrating a terminating feature set up process as consistent with at least some aspects of the present invention; and

FIG. 21 is a flow chart illustrating implementation of a terminating feature that is consistent with at least some inventive embodiments.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

Referring to FIG. 1, in a first embodiment of the invention, a text captioned telephone system 10 may be implemented within a typical office having a PBX telephone terminal 12 and a desk top computer 14. The desk top computer 14 includes a display screen 16, a base unit 18 (including a processor, memory, disk drives and importantantly a sound card) and a keyboard or other input device 20.

As is understood in the art, the PBX telephone terminal 12 may be connected through an office wall jack 22 (not labeled in FIG. 1) to a PBX network 24 using a proprietary communication protocol. The PBX network 24 communicates with a public switched telephone network 26 that allows the PBX telephone terminal 12 to connect to an external telephone terminal 28 to originate a call to the external telephone terminal 28 or to receive a call from the external telephone terminal 28.

The computer 14 may connect through an Ethernet card to an Ethernet network 30, passing to a local router 32 to connect to the Internet 34 or may use one of a number of well known wireless standards to connect to the local router 32.

Referring now also to FIG. 2, a voice signal tap 36 has a short cable stub 38 terminating in an RJ-12 jack 40 that may be received in the handset jack for the main body of the PBX telephone terminal 12. The tap 36 also provides a receiving socket for the RJ-12 jack 42 associated with the handset cord 44 so that the tap 36 may be simply interposed between the handset 46 and the main body of the PBX telephone terminal 12 to conduct voice signals as analog audio signals there through.

A tap line 48 extending from the tap 36 terminates in a subminiature phone jack 50 that may be received by audio input of the sound card of the base unit 18. The tap line conducts a portion of the voice signals from the handset 46 to the sound card of the base unit 18.

The voice signals received by the computer 14 may be processed by an internal program of a type well known in the art to encode the voice signals as VOIP signals 52 that may be sent over the Internet to a server 54 associated with a relay service 56. Programs for transmitting VOIP signal are commercially available from Skype of Luxembourg and Vonage of New Jersey, USA. At the relay service 56, the encoded voice signals may be converted back to an audio signal for transcription by a call assistant who produces corresponding captioning text 57 that may be relayed through conventional Internet transfer protocols back to the computer 14 where the text may be displayed.

In an alternative embodiment, a headset microphone and earpiece (not shown) may communicate separately with left and right sound card channels. This, along with echo canceling software in the computer 14 allows the relay service 56 to separate the voice of the caption user from the other party for improved transcription and anonymity.

The relay service 56 may provide for human operators working with speech recognition programs to rapidly translate voice signals into text streams. The operation of such a relay is described in more detail in U.S. Pat. No. 6,567,503, assigned to the same assignee as the present invention and hereby incorporated by reference.

By placing the tap 36 in the path of the handset 46, analog audio signals may be obtained, greatly simplifying the acquisition of the audio signal without the need to contend with the PBX standard or the need of awkward or unfamiliar computer associated microphones.

Referring now to FIG. 3, an office user wishing to avail themselves of text captioning may start a text-captioning program 58 on the computer 14 to provide a caller interface window 60 on the display screen 16. The caller interface window 60 may provide simple mouse or keyboard operated controls including a caption button 62 that may be actuated by the caller to begin the program's operation.

Referring to FIG. 4, upon pressing of the caption button 62, as indicated by process block 64, the computer 14 may initiate an Internet connection to the relay service 56 by invoking a stored URL of the relay server 54. At this time, the computer 14 may provide some information to the relay including a serial number of the caller to validate the caller's location for the purpose of identifying the particular public authority responsible for the relay call. The caller can be required to register the program with a relay service database, and the serial number can be used to authorize their use of the service, thus limiting fraudulent use of the relay service and allowing for local 911 service by providing information about the geographic location of the user.

As indicated by process block 66, the program 58 may then forward the tapped voice signals as VOIP signals to the relay server 54, and receive text as indicated by process block 68 which may be displayed in text box 70 of the caller interface window 60. The text box 70 includes conventional scroll-type controls 73 allowing text to be reviewed after it has been received. The program 58 may also provide for normal file operations 75 including saving of text files, e-mailing text files, and the like.

Upon completion of the call, the caller may press the caption button 62 again to disconnect the call as indicated by process block 71. The caption button 62 may include an animation visually indicating its state as being depressed or released or may change its label from "caption" to "end caption" indicating its changing function.

Importantly, this system allows for convenient and intuitive voice communication between a PBX telephone terminal 12 and telephone terminal 28, either for making
outgoing calls or incoming calls, while allowing either type of call to be captioned on demand without interruption of the telephone call or the need for specialized telephone equipment. This system will also work without a PBX exchange and can work for a variety of different telephone types not intended for text captioning.

[0083] Referring now to FIG. 5, in a second embodiment, a standard desk top computer 14 may work in conjunction with a standard telephone (i.e., not text captioned), in this case a cell telephone 72, the latter of which communicates through a cellular service 74 with the public switched telephone network 26, without a direct connection between the cell telephone 72 and the computer 14.

[0084] In this embodiment, the caller using the cell telephone 72 first calls the relay service 56 as indicated by process block 76 of FIG. 6. The relay service 56, per standard practice, receives telephone calls over the public switched telephone network 26. The relay service 56 may provide an automated answering system that requests a telephone number from the caller of the ultimate destination of the telephone call, in this case, telephone terminal 28. As indicated by process block 78 of FIG. 6, the caller may enter the requested telephone number by using the caller’s keypad on the cell telephone 72.

[0085] In the case where the relay service remains anonymous, in the sense that the call assistant does not speak directly with the caller, the answering system may provide the caller with a personal identification number (PIN) as indicated in process block 80. The relay service 56 then links the caller’s particular incoming line to the PIN in an internal database 57.

[0086] The caller, using a conventional browser on the desk top computer 14, then enters the URL of the server 54 of the relay service 56, as indicated by process block 82 of FIG. 6. This may also be done before initiating the call to the relay service 56.

[0087] As shown in FIG. 7, the relay server 54 provides the caller with webpage 86 offering a text box 88 allowing entry of the PIN received at process block 80. The caller, by entering that PIN and pressing a captioning initiation button 90, causes the relay service 56 to complete the call by connecting the incoming audio from the cell telephone 72 to the telephone terminal 28. The relay service 56 then forwards captioning text 55 over the Internet 34 to the caller through a text box 92 as indicated by process block 94. The text box 92 may use, for example, a browser plug-in or instant messaging program to provide a consistent updating of the text as it is received, but otherwise requires no specialized software on computer 14.

[0088] Alternatively and preferably, the caller may first contact the webpage 86 using the computer 14 to provide the relay server 54 with both the number the caller wishes to dial and also the caller’s own telephone number. The relay server 54 then calls the caller over the cell phone 72. Once a connection is established with captions, the relay server 54 dials to the other party. This automatically links the IP address to the telephone connections without the need for PIN. The phone number of the caller may be entered on the webpage 86 in a text box (not illustrated) and the destination phone number may be entered in another text box (not illustrated) similar to those described for the PIN.

[0089] The use of a web page and browser plug in to avoid the need for specialized software to be on the desktop computer 14 is also applicable to the earlier embodiment of FIG. 1.

[0090] At the end of the call as indicated by process block 96, the caller may press the captioning initiation button 90 again to terminate the call. The captioning initiation button 90 may reflect this new purpose, of terminating the captioning, by changing its label.

[0091] Again, in this embodiment, no specialized text captioning equipment is required, but the system makes use of commonly available office and telephone equipment to provide for text captioning that is not limited to a particular location, but which may be used in any location where Internet and telephone access may be had. In this regard, computer 14 may, for example, be any Internet appliance, for example, a wireless mobile laptop or the like. Thus a caller may work from a hot spot using a cell telephone and a wireless laptop to obtain competent text captioning.

[0092] In a variation of this embodiment, set-up of the call (e.g. providing the relay service with the destination phone number) may be accomplished using the desktop computer 14 rather than via telephone 72. When the caller calls the relay service 56, the caller enters a pin number to connect the call to the captioning or the connection may be made by linking the caller’s phone number with a number previously entered on the computer 14.

[0093] In this embodiment, identification of the particular governmental entity responsible for reimbursement for the captioning can be obtained from the information of the public switched telephone network 26 per standard practice.

[0094] In a variation on this embodiment, new 3G cellular services allow the use of both cellular voice and data connections simultaneously using a cellular phone. In this case, the browser on a desktop computer 14 may be replaced with a browser on a cell phone which provides a telephone and Internet appliance, all in one.

[0095] Referring now to FIG. 8 in a third embodiment, a single advanced Internet appliance may be used to replace the need for a telephone. That Internet appliance, for example, may be a standard computer 14 equipped with a microphone and headphone assembly 100 for making VOIP calls or a VOIP telephone 102 providing for display capabilities on screen 104. Many PBX systems now allow for the connection of VOIP phones.

[0096] Referring also to FIGS. 9 and 10, in a first variation on this embodiment, a program 108 executed by the computer 14 provides a caller interface window 110 on the display screen 16 of the computer allowing the initiation of a VOIP connection as indicated by process block 112 of FIG. 10. The caller interface window 110 provides a standard virtual telephone keypad 114 by which a telephone number of a telephone terminal 28 on the public switched telephone network 26 may be entered and displayed in text box 116. Pressing of a call button 120 initiates a VOIP telephone call. The basic process of initiating a VOIP call is well understood in the art.

[0097] In the present invention, however, at any time, a captioning initiation button 122 may be pressed, causing initiation of a second VOIP telephone call directly to the relay service 56 through the relay server 54 as indicated by process block 124. At this time, the VOIP signals 52 exchanged between the computer 14 and telephone terminal 28 (optionally via the public switched telephone network 26)
may be multicast to the server 54 to be interpreted as voice signals by the relay service 56. The server 54 may also receive a serial number 125 identifying the caller and assisting in allocation of relay service fees among governmental entities. The relay service 56 returns captioning text 56 transcribing the VOIP signals 52 back to the computer 14 to be displayed in text box 92 as indicated by process block 126.

[0098] The caller interface window 110 may also provide a volume meter 130 aiding the caller in speaking to obtain sufficient signal strength for transmission to telephone 28.

[0099] Alternatively, the call may be initiated as a captioned call by pressing the captioning initiation button 122, then dialing the telephone number, in which case, setup information (e.g., the destination telephone number) together with a serial number, are forwarded to the relay service 56 which may then initiate the VOIP call to the telephone terminal 28 patching through signals received from computer 14 to the telephone terminal 28.

[0100] As indicated by process block 132, the call may be terminated by pressing the call button 120 and/or captioning may be terminated by pressing the captioning initiation button 122.

[0101] When the computer 14 is used, a connection to the public switched telephone network 26 may also be provided for interception of emergency calls, for example, to 911, routing those through the publicly-switched telephone network rather than through the Internet so as to provide the benefits of rapid identification of geographic location of the caller inherent in calls made through the publicly-switched telephone network and not always provided currently with the VOIP services.

[0102] Referring again to FIG. 8, the identical steps may be accomplished by a specially programmed VOIP telephone 102, which requires only a modification in software to implement the same functions as those described above. The captioning initiation button in this case can be implemented in software keystroke combinations without the need for additional switches with the standard screen 104 on the VOIP telephone serving as the text display and optional volume meter.

[0103] General purpose Internet appliances such as computer 14 make it possible to expand the previous embodiments to the addition of a video camera 140 providing video signals 142 to the Internet as well as the VOIP signals 52 and the receipt of captioning text 55. Referring to FIG. 12, the addition of video signals allows a video inset box 144 to be added to the caller interface window 136, allowing viewing of the other party to the conversation or the relay operator also having an Internet appliance such as a computer 14. This embodiment allows face-to-face conversations, but also may allow, for example, the use of American Sign Language or lip reading between users together with the captioning provided by the text box 92. In other respects, the caller interface window 136 may be identical to caller interface window 110 described above.

[0104] In a variation on this embodiment, a standard videophone may be used as may be connected over a broadband Internet connection (or corporate LAN) to provide video and voice. Videophones are popular with both hearing people and deaf people that use sign language and provide a built-in camera and display screen for the picture of the other party.

[0105] In this embodiment, the videophone user or video conference system user can connect with the captioning service website and the service can send the captions not as IP text but as an IP video signal formatted to be compatible with the videophone. The captions are transmitted instead of the image of the caller, as video images of letters using standard captioning software that converts text to a video signals or as overlaid on the image of one caller using a video merging technique. In the case where a videophone provides a separate text display, this can alternatively be used for the captioning, as described above with the Internet phone, with the text being transmitted as IP text, that is, character data such as ASCII. Alternatively, IP text may be converted at the videophone into image data to be displayed on a video screen as a caption. When IP text is received, the videophone may elect how the text is to be displayed, either as captions on a video image or as text with no other image. The IP text may be uniquely marked to identify it to the videophone.

[0106] Additional Features

[0107] In addition to the various embodiments and aspects described above, additional features and aspects of the relay assisted systems described above are contemplated. A first additional feature is referred to generally herein as a call confirmation process. To this end, as described above, in at least some embodiments, when placing a relay assisted call, a hearing impaired user first opens her browser and links to the relay server, logs into a service provider web page (see 86 in FIG. 7) and provides the relay server 54 (see FIG. 5) with both the number the caller wishes to dial and also the caller’s own telephone number. The relay server then calls the hearing impaired user given the user a prompt on her browser screen to answer the user’s phone. When the user answers the arriving call, the relay server automatically places the call to the second party (i.e., to the caller that the user wishes to dial). The relay 54 then conferences the two telephone connections together and the call begins. At this point the relay service transcribes words spoken by the second party and the text captions are sent to the hearing impaired user’s browser screen.

[0108] In this type system, there is a concern that someone could abuse the system in the following way. An unscrupulous third party could log into a web page provided by a relay server 54, enter a call back telephone number that is not associated with the third party (i.e., a number associated with some other unsuspecting party), enter the second phone number that does not belong to the third party and cause the relay to connect two unsuspecting parties. In this case, the relay server 54 would dial the first telephone number and when an unsuspecting person answers that call, the server 54 would make the call to the second telephone number and hence to the second unsuspecting party. When the second telephone is answered, at least one and potentially both of the people connected by the call would believe that the other person called them when in fact neither party placed the call.

[0109] The inventive call confirmation process has been developed to prevent unscrupulous third parties from linking unsuspecting other parties using a relay server 54 as described above. To this end, in general, the inventive call confirmation process proceeds as follows. After a hearing impaired user contacts a web page to commence a call activity and provides the callers own telephone number, the relay server 54 dials the callers own telephone number and, generally simultaneously therewith, displays a message on
the user’s browser screen instructing the user to answer the user’s telephone and, thereafter, to perform some confirmation activity to indicate that the user in fact intended to commence the associated communication. For example, exemplary confirmation activities may include pressing one or a specific series of dual-tone multi-frequency (DTMF) buttons on their telephone. As another example, the confirmation activity may require the user to speak a word or a specific phrase into the user’s telephone receiver. Here, the relay server 54 would be programmed so that it would not dial a second party unless the instructed confirmation activity is performed using the telephone associated with the call back telephone number. Thus, for example, if the party answering the first telephone (e.g., the telephone associated with the call back telephone number) does not have the captioning screen in front of her, she will not know what confirmation activity is required to continue the call and the relay server can terminate the call to eliminate the possibility of connecting two unsuspecting parties.

[0110] Referring now to FIG. 13, an exemplary call confirmation process 158 is shown in flow chart form. Referring also to the exemplary system shown in FIG. 5, at block 160, a first party (e.g., a hearing impaired system user) uses a network appliance 14 to link via network 34 to a relay 54 server. Here, the network appliance may be any type of computer capable of running a browser or the like for providing web pages including a personal computer, a laptop computer, a palm type computing device, a telephone, etc. Hereinafter, although many types of network appliances are contemplated, the term computer will be used generally to simplify this explanation unless indicated otherwise.

[0111] Referring still to FIGS. 5 and 13, at block 162, the first party uses the computer to specify a first party call back telephone number as well as a second party target telephone number (e.g., the telephone number associated with a second party that the first party wishes to dial). At block 164, relay server 54 dials the first party call back number. In the example of FIG. 5, the first party call back number corresponds to telephone 72. At block 168, relay 54 monitors first telephone activity to determine when the telephone 72 is answered. Once the first party telephone 72 is answered control passes to block 170.

[0112] In at least some embodiments, at block 170, when telephone 72 is answered, relay 54 presents information via telephone 72 indicating that the current call is an assisted call. This assisted call warning is provided to help an unsuspecting person that did not intend to commence the communication to recognize that the communication was in error and should be terminated. For example, the assisted call warning may indicate “This is an assisted call. If you did not commence this call, please hang up your telephone now.”

[0113] Next, at block 172, relay 54 presents confirmation activity instructions via a web page presented on the first party’s computer 14 indicating confirmation activity that must be performed via the first party’s telephone 72 to continue the call process. Referring also to FIG. 14, an exemplary web page 150 for presenting confirmation activity instructions is shown. Web page 150 includes instructions 154 and a code field 156. Exemplary instructions 154 instruct the user to “Please answer your telephone and enter the following 4-digit code via your telephone keypad to continue this call:”. A randomly generated 4-digit code is presented in field 156 which is to be entered, in this example, to continue the call.

[0114] Referring yet again to FIGS. 5 and 13, at block 174, after the first party’s telephone 72 is answered, in at least some embodiments, relay 54 may start a timer. Here, the relay timer is intended to time-out a period during which it is expected that the first party would be able to complete the confirmation activity required to continue the call. For instance, the time-out period may, in some cases, be 30 seconds. Here, where an unsuspecting user is confused by the call activity and does not terminate a call, it is contemplated that the relay 54 would terminate the call automatically at the end of the time-out period.

[0115] At block 176, relay 54 monitors activities performed by the first party’s telephone 72 to identify when the confirmation activity has occurred. In the present example, consistent with FIG. 14, the relay 54 would monitor to determine when the 4-digit code in field 156 has been entered via the first party’s telephone 72. Where the confirmation activity has not occurred, control passes to block 180 where relay 54 determines whether or not the relay timer period is equal to the time-out period. Where the relay timer period does not equal the time-out period, control passes back up to block 176 where monitoring continues for the confirmation activity. Once the timer period equals the time-out period at block 180, control passes to block 182 where relay 54 terminates the call.

[0116] Referring once again to block 176, where the confirmation activity occurs, control passes to block 178 where relay 54 calls a second party target telephone number and the call continues at block 179.

[0117] In at least some embodiments it is contemplated that all relay users may be assigned a unique pass code or PIN number. Where a user has a PIN number, referring again to FIG. 13, at block 172 the relay 54 may provide instructions for the user to simply enter the user’s PIN number via the telephone keypad and, subsequently entry of the PIN number would be used as confirmation activity at block 176.

[0118] In still other embodiments the confirmation activity instructions may be presented via the first party’s telephone 72 (i.e., the call back telephone) and may require the first party to perform some confirmation activity using the first party’s computer 14. For example, the confirmation activity instructions delivered via telephone 72 may instruct the user to “Enter the following 4-digit code via your browser to continue this call, 4397.” In this case, relay 54 would provide a code entry field via computer 14 and would monitor the code entered therein for confirmation activity. In this case, where an unsuspecting user receives a call via telephone 72, the user would recognize that the communication is in error and would not participate by entering the confirmation code via the computer 14. Here, after the time-out period the communication would be automatically terminated. Note that where a user cannot hear (e.g., in most cases a captioned telephone user is hearing impaired), a voice prompt on the telephone may not be usable to cause the user to enter something on their browser screen and this embodiment would not work well.

[0119] In yet other embodiments, the confirmation activity may require entry of a second party’s target telephone number to continue a communication. To this end, referring again to FIG. 13, at block 162 the first party may simply enter the first party’s call back telephone number and may
not be required to enter the second party’s target telephone number. Then, at block 172, relay 54 may simply require that the first party enter the second party’s target telephone number. Here, presumably, if the first party called back on telephone 72 is an unsuspecting party, when requested to enter a target telephone number to be called, the first party will recognize that the communication is in error and would terminate the call. However, where the first party answering telephone 72 initiated the communication, the first party would be ready to enter the second party’s target telephone number. In this case, referring still to FIG. 13, at block 176, instead of monitoring for confirmation activity, relay 54 would simply monitor for an entered second party target telephone number. Where the second party’s telephone number is entered, control passes to block 178 and then to block 179 to continue the telephone call.

[0120] In still other embodiments, confirmation activity instructions may be provided via a first party telephone that require activity using the first party’s telephone where the instructions are provided along with an assisted call warning. Here, when a first party answers telephone 72 (see again FIG. 5) the assisted call warning should be sufficient for the first party to recognize whether or not the communication is in error and, where the communication is in error, the first party could terminate the call and not complete the confirmation activity. Where the first party initiated the communication, the first party could complete the confirmation activity via the first party telephone and continue the communication.

[0121] Thus, it should be appreciated that many different confirmation activities are contemplated and ways of facilitating completion of confirmation activities are contemplated where a system user receives confirmation instructions via at least one of the user’s computer or telephone and is required to carry out confirmation activities via at least one of the user’s computer or telephone at least one of the devices used to give the confirmation activity instructions and the device used to perform the confirmation activity is controlled by the call back party.

[0122] One additional feature aspect of a browser type relay assisted call system is referred to as flexible caller ID. In this regard, for traditional telephone relay service (TRS) services, a relay user connects to a relay service provider. The service provider then dials to a called party on another line. To provide functional equivalence of a regular telephone call, the relay service equipment forwards the identity information of the in-bound caller on to the out-bound connection. The result is that when the dialed party looks at a caller ID display on their telephone, the dialed party sees that they are receiving a call from the in-bound caller, not the relay service. This is referred to as “True Caller ID”. Here, the network caller ID system is not designed to show more than a single identity. Therefore, the caller ID service is limited to showing that a call is from an in-bound caller or showing that the call is from a relay service but not both.

[0123] The browser type relay assisted call system described above is different than a traditional relay system. To this end, as described above, in a browser type relay assisted call system, a system user receives notice on their computer/browser screen (see again 14 in FIG. 5) that they are receiving a call. The relay server 54 dials the user on a call back telephone line for the voice part of a call. While a user’s telephone caller ID is limited to showing a single identity, the inventive system actually has two displays including the caller ID display and the browser screen. As a result, it has been recognized that additional information can be provided to a system user when the user receives a call that can help the user respond to the call in an appropriate fashion.

[0124] In one advantageous embodiment, at web page or browser screen can be provided by relay server 54 that shows the identity of a caller when an incoming call is received. Here, the caller identity would be, in at least some embodiments, the same information that would be displayed on a local caller ID box if that identity were presented via the user’s telephone. Since the browser screen is connected to the relay server 54, it is implied that the call is via the relay service and is an assisted call type. In addition, the relay server 54 may be programmed to not forward the identity of the caller on to the caller ID display of the caption user’s telephone but instead to show the call is coming from the relay service provider. Here, by viewing the caller ID display of the telephone and recognizing that a call is coming through the relay service provider, the user can make a better informed decision as to how to respond to the incoming call. Thus, the user can see on her telephone caller ID display that the call is coming through the relay service provider which lets her know that she should look at or open the user’s browser to get captions for the call. Once the browser is open, the user can see who is calling the user.

[0125] Should a user receive a call on the user’s telephone where the caller ID display does not show that the call is through the relay service provider, she could elect not to answer the call if she does not have access to the browser and she believes that she will need the caption function. In this case, she may opt to allow the call to go to voice mail so that a message can be obtained. Thereafter, when she has better access to the browser, she may call back the caller via the relay service provider.

[0126] Here, while the flexible caller ID concept is described generally in context of a browser, the caller identification feature may be implemented using an instant messenger client or some other custom application.

[0127] Referring now to FIG. 15, an exemplary method 230 that is consistent with the flexible caller ID concept is illustrated. Referring also to FIG. 5, at block 232, relay server 54 monitors relay links for second party calls to the first party. At block 234, where communication is attempted, control passes to block 236 where the relay 54 obtains the second party identification information. At block 238, relay 54 presents relay service provider identifying information via the first party’s telephone caller ID display. In addition, simultaneously, relay 54 presents second party identifying information via the first party computer/browser/IM/custom application, etc. After block 238, the call activity continues.

[0128] Referring to FIG. 16, an exemplary browser web page 210 is illustrated that includes a caption 212 and second party identifying information provided in a field 214. The caption 212 indicates that “A CapTel call is arriving on your telephone from:” where the second party making the call is identified in field 214. Referring to FIG. 17, an exemplary cell phone 216 is illustrated including a caller ID display 218 where the relay service provider identifying information is provided on display 218. Thus, here, the first party receiving the call can identify that the call is via the relay service provider by viewing display 218 and can also identify the second party caller via field 214.
[0129] In at least some embodiments it is contemplated that the flexible caller ID feature may be provided via a handheld computer that includes telephone service so that the relay service provider identifying information and the calling party information can be provided via a single display screen. To this end, referring to FIG. 18, an exemplary computer/telephone device 220 is illustrated that includes a large display screen 222. Here, the screen 222 may be used to present browser web pages. In addition, a separate caller ID window 224 may be opened on the screen 222 to present caller ID information when an incoming call is received by device 220. As shown in FIG. 18, when a call comes into device 220 and the device is linked to the relay server 54 for communication therewith, the calling party identifying information can be provided via the browser screen as shown at 226 and a separate caller ID window 224 can be opened up to identify the relay service provider identifying information.

[0130] Yet one other aspect or feature that may be implemented via the systems described above is referred to as a call back feature. The call back feature is particularly useful in the case of emergency calls that are facilitated via the systems described above.

[0131] Making telephone relay service (TRS) 911 calls over an IP network has been a problem for emergency service providers. The problem is that a user is connected to the emergency service provider via IP where the IP does not contain or imply any information about the caller’s location. In addition, it is common for a 911 service provider to call back 911 callers to resolve any issues that develop while servicing a call. If the caller is using IP, the service provider cannot dial back to the caller because the caller does not have a dialable call back number. Complicating matters further, calls through a relay come from a relay center and not from the caller’s home. Thus, an emergency service provider would have to know how to dial a relay center and to ask a relay employee to connect the service provider to the IP caller in order to complete a call back communication.

[0132] The call back feature works as follows. When a first party connects to a relay server 54 as described above and dials 911 or some other emergency number, the relay server 54 assigns a temporary relay telephone number to the first party. Here, the period of assignment is selected so as to be generally sufficient to ensure that emergency service issues are resolved (e.g., 24-28 hours). In addition, the relay server 54 stores the temporary telephone number along with any other information that can be used to establish communication with the caller such as, for instance, an IP address, the caller’s telephone number, etc., in a correlated fashion.

[0133] When the relay server 54 contacts the emergency service provider to service a caller, the relay server 54 provides the temporary telephone number corresponding to the caller to the service provider call taker so that the call taker can, if necessary, use the temporary number to subsequently communicate with the caller. After the initial call is terminated, if the emergency call taker wants to call back the original caller for some reason, the call taker can simply dial the temporary telephone number that was provided. The temporary telephone number automatically routes to the relay server 54 and is automatically converted into information required to re-establish communication with the original caller. Thus, in at least some embodiments, the converted information includes an IP address and/or a dial back telephone number for the original caller and the call is completed to the user.

[0134] Referring now to FIG. 19, an exemplary method 252 that is consistent with at least some embodiments of the call back feature described above is illustrated. Referring also to FIG. 5, at block 250, a first party uses the first party’s computer 14 to connect to the relay server 54. At block 254, the first party uses computer 14 to specify a target telephone number to be called. At block 256, relay 54 recognizes the target telephone number as an emergency telephone number (e.g., 911). At block 258, server 54 assigns a temporary relay telephone number to the first party and at block 260 server 54 stores the temporary telephone number along with information that can be used to subsequently contact the first party if desired. At block 260 the exemplary information includes the caller’s IP address as well as a first party call back telephone number. At block 262, relay server 54 uses the emergency telephone number to establish a first communication with the emergency service provider and presents the temporary telephone number to the emergency service provider (e.g., see phone 28 in FIG. 5). Thereafter, the first party and the service provider are linked via the relay 54 and the first communication commences.

[0135] In at least some embodiments a relay service may provide both the temporary telephone number but also the actual telephone number (if they have one) of the caller. The actual number may be of value for emergency call records. The PSAP would then know both the originating number and also how to call back to a user with communications support of a captioning relay. In addition, the relay may be able to identify a temporary call back number as an emergency call and to provide a higher priority for the call, thus providing a more rapid response for the call.

[0136] Referring still to FIGS. 5 and 19, at block 268 server 54 monitors the first communication to determine when the first communication was terminated. Once the first communication is terminated, server 54 starts a timer to time-out a period during which the temporary telephone number is assigned to the first caller. Here, for instance, an exemplary time-out period may include 24 hours, 48 hours, one week, etc. At block 272, server 54 determines whether or not the time-out is equal to the time-out period and, once the timer period is equal to the time-out period, control passes to block 274 where server 54 unassigns the temporary telephone number from the first party and the process ends.

[0137] At block 272, when the timer period has been shorter than the time-out period, control passes to block 278 where relay 54 monitors calls thereto to identify any calls routed to the relay using the first party’s temporary telephone number. When relay 54 receives a call made using the first party’s temporary telephone number, control passes to block 280 where the relay server 54 uses the temporary telephone number to identify the IP address and call back number for the first party. At block 282, relay server 54 establishes communication with the first party via the first party’s computer and the call back telephone number and a second communication between the service provider and the original caller continues.

[0138] In at least some embodiments it is contemplated that, instead of assigning a temporary relay telephone number only when a target telephone number is recognized as an emergency number, temporary telephone number may be assigned to all calls through a relay server. Here, referring
again to FIG. 19, process block \(256\) would be removed. Where temporary numbers are assigned to all relay calls, all emergency calls would have temporary numbers and the process as described in FIG. 19 would be similar.

[0139] After a temporary number is unassigned from a party, that temporary number can be reused by the relay server with a second party in the same manner described above.

[0140] One additional aspect or feature that may be implemented using the system described above is referred to as a call terminating feature. In this regard, a relay user can also receive a relay assisted call from a second party. To this end, a second party can call a relay user by dialing a toll-free relay service number and entering an area code and number of a person that they wish to contact via the relay service. The relay server user the “call to number” as an index into a database and finds an IP address for the relay user. The relay then sends a message to the relay user’s browser screen (see again 14 in FIG. 5) to alert the user that a call is arriving and dials the user’s call back number (i.e., the user’s telephone 72). Here, the call continues the same way as if the relay user had placed the call to the second party.

[0141] In the above case, if a second party attempts to call a relay user and that user is not currently on-line or is not logged into the relay service for some reason, a problem exists in that there is currently no way to terminate the call. Here the call terminating feature is provided to allow relay users to select preferential call terminating functions.

[0142] To this end, exemplary call terminating features may include, when the relay user is not on-line or is not logged into the relay service, playing an announcement for the calling party informing the calling party that the party they are attempting to call is not available and that the call should be tried again at a later time. Another option may be for the relay server 54 to go ahead and dial the relay user’s call back number and allow the user to either log in to the relay service via the user’s browser and answer the call or let the user’s telephone voicemail take a message. One additional option may be to have the relay server 54 provide a captioned voicemail function by playing a message to the caller asking the caller to leave a message, recording the voice of the caller, transcribing the message into text and, when the relay user next logs into the relay service, informing the user of the waiting voicemail. Here, when the relay user wants to retrieve voicemails, the relay server 54 would play the voice and text back to the user. This later method can operate as an accessible form of voicemail for hearing impaired relay users. In at least some embodiments the relay user can select how they prefer to handle calls when they are not logged into the service and their preferences are kept as part of a user’s profile which can be changed whenever the user wishes.

[0143] Referring now to FIG. 20, an exemplary method 290 for setting up or selecting one or a plurality of call terminating features is illustrated. At block 291 a set up process is started wherein a relay user is provided a browser web page via the user’s computer 14 that includes a plurality of possible terminating activities that may be performed when a communication is attempted with the user and the user is not connected to the relay. Here, for instance, the possible terminating activities may include providing a message indicating that a call cannot be completed, placing a call to the first party’s telephone or facilitating a voice to text transcription enabling the caller to leave a message for the relay user. At block 294 the relay user selects one of the terminating activities via the browser page and at block 296 the terminating activity that was selected by the user is stored in a database of user preferences for subsequent use. At block 298 the setup process ends.

[0144] Referring to FIG. 21, a method 300 for facilitating the call terminating feature is illustrated. At block 303, normal relay operation commences and at block 304, the relay server 54 monitors communications at the relay. At block 306, when a communication is attempted with the first party’s computer, control passes to block 308. At block 308, relay server 54 determines whether or not the first party’s computer is linked to the relay. Where the first party’s computer is linked to the relay, control passes to block 309 where the call process continues in a manner described above. However, at block 308, where the first party’s computer is not linked to the relay, control passes to the terminating function that was selected by the user at block 294 in FIG. 20. Here, three possible terminating selections are illustrated. A voice message to text transcription process corresponds to blocks 310, 312, 314 and 316. To this end, at block 310, a voice mail message is provided to the caller instructing the user to leave a voice message. At block 312, where a voice message is left, control passes to block 314 where the voice message is transcribed into a text message. At block 316, the text message is presented to the first party the next time the first party’s computer is linked to the relay.

[0145] Referring still to FIG. 21, terminating feature 318 simply provides a message that indicates that a call cannot be completed and that the caller should try to call back at a later time. Terminating feature 320 dials the relay user’s telephone even when the relay user’s computer is not linked to the relay server 54 and allows a normal voicemail to be left or can be used to provide a prompt to the relay user to log into the service to complete an assisted call.

[0146] One additional aspect or feature that may be implemented using the systems described above is referred to as a Lock Call Back Feature. As described above, in at least some embodiments a relay user can easily specify any call back number to be used to facilitate a relay assisted call. The ability of a user to specify a call back number is particularly useful because it allows a user to use virtually any computer browser and telephone to place a relay assisted call.

[0147] While the ability to specify a call back number is advantageous for various reasons, there is some concern that relay users may provide others with their log in information and share their service privileges. The Lock Call Back Feature enables a relay service provider to lock a call back telephone number so that it cannot be changed easily by a relay user. When implemented, this feature essentially limits a relay user so that the user can only use a single telephone and a single telephone number associated therewith. Here the user cannot provide their log in information to another party unless that other party is using the same telephone as the user.

[0148] It is specifically intended that the present invention not be limited to the embodiments and illustrations contained herein, but include modified forms of those embodiments including portions of the embodiments and combinations of elements of different embodiments as come within the scope of the following claims.

1. A communication system, comprising: an appliance including a display configured to display text captions corresponding to voice communications...
between a mobile wireless device and a hearing user’s device that is located remotely from the appliance to enable a hard of hearing user using the mobile wireless device to participate in communication sessions with a hearing user using the hearing user’s device, wherein the appliance has a specific appliance network address and the mobile wireless device is associated with a specific device address that is different than the appliance network address and wherein the appliance is independent of the mobile wireless device, the appliance comprising:

at least one communication component configured to enable the appliance to communicate with a relay; a display; and

a processor operably coupled to the at least one communication component and the display, the processor configured to:

enable the hard of hearing user to establish an association between the appliance and the mobile device;

while the mobile device is used by the hard of hearing user to communicate with the hearing user’s device, receive text originating at the relay, the text corresponding to a transcript of the hearing user’s voice signal originating at the hearing user’s device, wherein the text signal is received from the relay; and

cause text captions corresponding to the received text to be displayed on the display.

2. The communication system of claim 1 wherein the processor of the appliance is configured to establish an association with the mobile device responsive to a user input to the appliance.

3. The communication system of claim 1 wherein the appliance further comprises a sync button, and wherein the processor of the appliance is further configured to establish communication with the mobile device responsive to a detection of a user selecting the sync button.

4. The communication system of claim 1 wherein the at least one communication component comprises a wireless transceiver.

5. The communication system of claim 1 wherein the device address is a telephone number.

6. The communication system of claim 1 wherein the appliance further comprises an input device configured to detect a selection of a button, wherein the processor of the appliance is configured to establish communication with the mobile device responsive to the selection of the button.

7. The communication system of claim 1, further comprising the relay, wherein the relay is configured to:

receive the hearing user’s voice signal; and

transmit the text comprising the text transcript corresponding to the hearing user’s voice signal directly to the appliance.

8. The communication system of claim 1, further comprising the mobile device, wherein the mobile device is configured to:

receive the hearing user’s voice signal from the hearing user’s device.

9. The communication system of claim 1 wherein the mobile device is a cellular device.

10. The communication system of claim 1 wherein the processor is further configured to disable captioning without disconnecting a call between the mobile device and the hearing user’s device.

11. The communication system of claim 7 wherein the association between the appliance and the mobile device is established at the relay.

12. The communication system of claim 1, wherein the appliance processor is configured to establish an association with the mobile device responsive to the hard of hearing user providing an indication via at least one of the mobile device and the appliance.

13. The communication system of claim 1 wherein the mobile device is usable to facilitate a phone call independent of the appliance.

14. The communication system of claim 1 wherein the appliance receives the text signal directly from the relay.

15. The communication system of claim 1 wherein the association is a temporary association and wherein the mobile device can be associated with any of several different appliances to facilitate communication.

16. The communication system of claim 1 wherein the association is a temporary association and wherein the appliance can be associated with any of a plurality of wireless mobile devices to facilitate communication.

17. The communication system of claim 1 further including the relay and wherein the hearing user’s voice signal is received at the relay directly from the hearing user’s device.

18. A method to facilitate communication between a hard of hearing user using both a computer device and a wireless mobile phone device that is independent of the computer device and a hearing user using a hearing user’s device, the computer device including a display, the method comprising the steps of:

without physically connecting the wireless mobile phone device to the computer device, associating the mobile device and the computer device;

establishing a communication link between the wireless mobile phone device and the hearing user’s device for voice communications;

receiving text communications corresponding to the hearing user’s voice signal from a relay at the computer device; and

presenting text captions corresponding to the text communications via the display.

19. The method of claim 18 wherein the hearing user’s voice signal is transmitted to the relay without passing through the computer device.

20. The method of claim 18 wherein the hearing user’s device provides the hearing user’s voice signal directly to the relay.

21. The method of claim 18 wherein the text communications are transmitted directly to the computer device.

22. The method of claim 18 wherein each of the wireless mobile phone device and the computer device is associated with a different address on at least one network.

23. The method of claim 22 wherein the wireless mobile phone device is associated with a phone number and the computer device is associated with an IP address.

24. The method of claim 18 wherein the step of associating includes using at least one of the wireless mobile phone device and the computer device to link to the relay and to provide information identifying the other of the computing device and the mobile device.

25. A method to facilitate communication between a hard of hearing user using a computer device and a wireless mobile phone device that is independent of the computer
device and a hearing user using a hearing user's device, the computer device including a display, the method comprising the steps of:

without physically connecting the wireless mobile phone device to the computer device, associating the wireless mobile phone device and the computer device;
establishing a communication link between the wireless mobile phone device and the hearing user's device for voice communications in which hearing user's voice signals are received at the wireless mobile phone device and hard of hearing user's voice signals are received at the hearing user's device;

receiving the hearing user's voice signal at a relay;

receiving text communications at the computer device that are generated by the relay where the text communications comprise transcription of the hearing user's voice signal initially transmitted by the hearing user's device; and

presenting the text communications as captions on the display for viewing by the hard of hearing user.

26. A communication system to facilitate communication between a hearing user using a hearing user's device and a hard of hearing user using both a mobile device and an appliance wherein each of the mobile device and the appliance are addressable via different addresses, the system comprising:

a relay including a processor configured to perform the steps of:

(i) receiving an indication from the hard of hearing user that the appliance should be associated with the mobile device;

(ii) upon receiving the indication, associating the mobile device and the appliance;

(iii) while a voice communication including voice signals is progressing between the hard of hearing user using the mobile device and a hearing user using the hearing user's device, receiving at least the hearing user's voice signal at the relay;

(iv) converting the hearing user's voice signal to text; and

(v) transmitting the text to the appliance that is associated with the mobile device.

27. The system of claim 26 wherein the step of transmitting the text to the appliance includes transmitting the text directly to the appliance.

28. The system of claim 26 wherein the hearing user's voice signal is received at the relay from a device other than the appliance.

29. The system of claim 26 wherein the mobile device is a cellular communication device.

30. The system of claim 26 wherein the relay is further configured to perform the steps of, while a voice communication is ongoing between the hard of hearing user and the hearing user, receiving an indication that captioning should cease and ceasing transmission of the text to the appliance while the voice communication continues.

31. The system of claim 1, further comprising the mobile device, wherein the mobile device is configured to:

receive the hearing user's voice signal from the hearing user's device; and

broadcast the hearing user's voice signal to the assisted user.

32. The communication system of claim 5 wherein the step of establishing an association includes presenting a virtual button on the appliance's display selectable to initiate captioning and sensing selection of the button.

33. The communication system of claim 32 wherein the step of establishing an association further includes presenting a data entry field on the appliance display and receiving data identifying a specific phone call to be associated with.

34. The communication system of claim 33 wherein the data entry field is a PIN number field and wherein the data identifying a specific phone call includes a PIN number associated with the phone call.

35. The communication system of claim 32 wherein the virtual button is presented via a graphical user interface displayed on the appliance display.