
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2006/0026394A1

US 20060026394A1

(43) Pub. Date: Feb. 2, 2006 Chauvel

(54) OPTIMIZING DATA MANIPULATION IN
MEDIA PROCESSINGAPPLICATIONS

(75) Inventor: Gerard Chauvel, Antibes (FR)
Correspondence Address:
TEXAS INSTRUMENTS INCORPORATED
PO BOX 655474, M/S 3999
DALLAS, TX 75265

(73) Assignee: Texas Instruments Incorporated, Dal
las, TX

(21) Appl. No.: 11/186,330

(22) Filed: Jul. 21, 2005

(30) Foreign Application Priority Data

Jul. 27, 2004 (EP).. 04291918.3

102
y

140

REGISTERS

Publication Classification

(51) Int. Cl.
G06F 9/00 (2006.01)

(52) U.S. Cl. .. 712/221

(57) ABSTRACT

A System comprising a processor containing a first Stack
internal to a core of the processor, at least Some data values
in the first Stack corresponding to values in a Second Stack
external to the core. The System also comprises a memory
coupled to the processor. In an iterative process, the pro
ceSSor pops a data value off of the first Stack and begins to
Store the data value to the memory while the processor
begins to use an existing data value from the first Stack to
produce a new data value to be Stored on the first Stack.

DECODE LOGIC

AUXLARY
151-1 REGISTERS

Patent Application Publication Feb. 2, 2006 Sheet 1 of 3 US 2006/0026394A1

100

104

DECODE LOGIC

AUXLARY
1511 REGISTERS

(e)
134 124 132

122 FIG. 2

Patent Application Publication Feb. 2, 2006 Sheet 2 of 3

R1 GENERAL PURPOSE (GP)
R2 GENERAL PURPOSE (GP)
R3 GENERALPURPOSE (GP)

GENERAL PURPOSE (GP)
3

R4 GENERAL PURPOSE (G P)
R5

R7

P)

)

R14 GENERAL PURPOSE (GP)
R15 STATUS AND CONTROL (ST)

FIG. 3

4

5

MIC RACK MICRO-STACK 146

US 2006/0026394A1

150

Patent Application Publication Feb. 2, 2006 Sheet 3 of 3 US 2006/0026394A1

US 2006/0026394A1

OPTIMIZING DATA MANIPULATION IN MEDIA
PROCESSINGAPPLICATIONS

CROSS-REFERENCE TO RELATED
APPLICATIONS

0001. This application claims priority to European Patent
Application No. 04291918.3, filed on Jul. 27, 2004 and
incorporated herein by reference.

BACKGROUND

0002 Many types of electronic devices are battery oper
ated and thus preferably consume as little power as possible.
An example is a cellular telephone. Further, it may be
desirable to implement various types of multimedia func
tionality in an electronic device Such as a cell phone.
Examples of multimedia functionality may include, without
limitation, games, audio decoders, digital cameras, etc. It is
thus desirable to implement Such functionality in an elec
tronic device in a way that, all else being equal, is fast,
consumes as little power as possible and is as efficient as
possible. Improvements in this area are desirable.

BRIEF SUMMARY

0003. Described herein is a mechanism for synchronizing
multiple processor Stacks and a technique for improving
processor efficiency using at least one of the Stacks. One
illustrative embodiment may comprise a System comprising
a processor containing a first stack internal to a core of the
processor, at least Some data values in the first Stack corre
sponding to values in a Second Stack external to the core. The
System also comprises a memory coupled to the processor.
In an iterative process, the processor pops a data value off of
the first Stack and begins to Store the data value to the
memory while the processor begins to use an existing data
value from the first Stack to produce a new data value to be
Stored on the first Stack.

0004 Another illustrative embodiment comprises a pro
ceSSor including a data Stack located in the processor's core
and comprising a plurality of data values, at least Some of the
data values corresponding to values in a main Stack located
outside the processor's core. The processor also includes a
Storage unit coupled to the data Stack. In an iterative process,
the processor popS a first data value off of the data Stack and
begins to Store the first data value to the Storage unit while
the processor begins to use a Second data value to produce
a result to be Stored on the data Stack.

0005 Yet another illustrative embodiment comprises a
iterative process that includes popping a first data value off
of a data Stack internal to a processor's core, at least Some
data values in the data Stack corresponding to values in a
main Stack external to the processor's core. The iterative
proceSS also comprises, while beginning to Store the first
data value in a memory, popping a Second data value off of
the data Stack and using the Second data value to produce a
result to be Stored on the data Stack.

NOTATION AND NOMENCLATURE

0006 Certain terms are used throughout the following
description and claims to refer to particular System compo
nents. AS one skilled in the art will appreciate, various
companies may refer to a component by different names.
This document does not intend to distinguish between

Feb. 2, 2006

components that differ in name but not function. In the
following discussion and in the claims, the terms “includ
ing” and “comprising” are used in an open-ended fashion,
and thus should be interpreted to mean “including, but not
limited to * Also, the term “couple' or “couples” is
intended to mean either an indirect or direct connection.
Thus, if a first device couples to a Second device, that
connection may be through a direct connection, or through
an indirect connection via other devices and connections.
The term “system” is used to refer to a collection of
components. For example, a System may comprise a pro
ceSSor and memory and other components. A System also
may comprise a collection of components internal to a single
processor and, as Such, a processor may be referred to as a
System.

BRIEF DESCRIPTION OF THE DRAWINGS

0007 For a more detailed description of the preferred
embodiments of the present invention, reference will now be
made to the accompanying drawings, wherein:
0008 FIG. 1 shows a diagram of a system in accordance
with preferred embodiments of the invention and including
a Java Stack Machine ("JSM") and a Main Processor Unit
(“MPU”);
0009 FIG. 2 shows a block diagram of the JSM of FIG.
1 in accordance with preferred embodiments of the inven
tion;

0010 FIG.3 shows various registers used in the JSM of
FIGS. 1 and 2, in accordance with embodiments of the
invention;
0011 FIGS. 4A-4H show the operation of instructions
that pop data off of the micro-stack shown in FIG. 2,
manipulate the data, push results onto the data Stack, and
Store results in a memory, in accordance with preferred
embodiments of the invention; and
0012 FIG. 5 depicts an exemplary embodiment of the
System described herein, in accordance with preferred
embodiments of the invention.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

0013 The following discussion is directed to various
embodiments of the invention. Although one or more of
these embodiments may be preferred, the embodiments
disclosed should not be interpreted, or otherwise used, as
limiting the Scope of the disclosure, including the claims,
unless otherwise Specified. In addition, one skilled in the art
will understand that the following description has broad
application, and the discussion of any embodiment is meant
only to be exemplary of that embodiment, and not intended
to intimate that the Scope of the disclosure, including the
claims, is limited to that embodiment.
0014. The subject matter disclosed herein is directed to a
programmable electronic device Such as a processor. The
processor described herein is particularly Suited for execut
ing JavaTM bytecodes or comparable, code. As is well
known, Java is particularly Suited for embedded applica
tions. Java is a Stack-based language, meaning that a pro
ceSSor Stack is heavily used when executing various instruc
tions (e.g., Bytecodes), which instructions generally have a

US 2006/0026394A1

Size of 8 bits. Java is a relatively "dense' language meaning
that on average each instruction may perform a large number
of functions compared to various other instructions. The
dense nature of Java is of particular benefit for portable,
battery-operated devices that preferably include as little
memory as possible to Save Space and power. The reason,
however, for executing Java code is not material to this
disclosure or the claims that follow. The processor described
herein may be used in a wide variety of electronic Systems.
By way of example and without limitation, the Java-execut
ing processor described herein may be used in a portable,
battery-operated cell phone. Further, the processor advanta
geously includes one or more features that reduce the
amount of power consumed by the Java-executing proces
SO.

0015 Referring now to FIG. 1, a system 100 is shown in
accordance with a preferred embodiment of the invention.
AS shown, the System includes at least two processors 102
and 104. Processor 102 is referred to for purposes of this
disclosure as a Java Stack Machine ("JSM") and processor
104 may be referred to as a Main Processor Unit (“MPU”).
System 100 may also include an external memory 106
coupled to both the JSM 102 and MPU 104 and thus
accessible by both processors. The external memory 106
may exist on a separate chip than the JSM 102 and the MPU
104. At least a portion of the external memory 106 may be
shared by both processors meaning that both processors may
access the same Shared memory locations. Further, if
desired, a portion of the external memory 106 may be
designated as private to one processor or the other. System
100 also includes a Java Virtual Machine (“JVM”) 108,
compiler 110, and a display 114. The JSM 102 preferably
includes an interface to one or more input/output (“I/O”)
devices Such as a keypad to permit a user to control various
aspects of the system 100. In addition, data streams may be
received from the I/O space into the JSM 102 to be pro
cessed by the JSM 102. Other components (not specifically
shown) may include, without limitation, a battery and an
analog transceiver to permit wireleSS communications with
other devices. As noted above, while system 100 may be
representative of, or adapted to, a wide variety of electronic
Systems, an exemplary electronic System may comprise a
battery-operated, mobile cell phone.

0016 AS is generally well known, Java code comprises a
plurality of “Bytecodes' 112. Bytecodes 112 may be pro
vided to the JVM 108, compiled by compiler 110 and
provided to the JSM 102 and/or MPU 104 for execution
therein. In accordance with a preferred embodiment of the
invention, the JSM 102 may execute at least some, and
generally most, of the Java bytecodes. When appropriate,
however, the JSM 102 may request the MPU 104 to execute
one or more Java bytecodes not executed or executable by
the JSM 102. In addition to executing Java bytecodes, the
MPU 104 also may execute non-Java instructions. The MPU
104 also hosts an operating system (“O/S”) (not specifically
shown), which performs various functions including System
memory management, the System task management that
Schedules the JVM 108 and most or all other native tasks
running on the System, management of the display 114,
receiving input from input devices, etc. Without limitation,
Java code may be used to perform any one of a variety of
applications including multimedia, games or web based
applications in the system 100, while non-Java code, which

Feb. 2, 2006

may comprise the O/S and other native applications, may
still run on the system on the MPU 104.
0017. The JVM 108 generally comprises a combination
of software and hardware. The Software may include the
compiler 110 and the hardware may include the JSM 102. In
accordance with preferred embodiments of the invention,
the JSM 102 may execute at least two instruction sets. One
instruction Set may comprise Standard Java bytecodes. AS is
well-known, Java bytecode is a Stack-based intermediate
language in which instructions generally target a Stack. For
example, an integer add (“IADD’) Java instruction pops two
integers off the top of the Stack, adds them together, and
pushes the Sum back on the Stack. AS will be explained in
more detail below, the JSM 102 comprises a stack-based
architecture with various features that accelerate the execu
tion of Stack-based Java code, where the Stack may include
multiple portions that exist in different physical locations.
0018) Another instruction set executed by the JSM 102
may include instructions other than Standard Java instruc
tions. In accordance with at least Some embodiments of the
invention, other instruction Sets may include register-based
and memory-based operations to be performed. This other
instruction Set generally complements the Java instruction
Set and, accordingly, may be referred to as a complementary
instruction set architecture (“C-ISA”). By complementary, it
is meant that the execution of more complex Java bytecodes
may be Substituted by a “micro-Sequence' comprising one
or more C-ISA instructions that permit address calculation to
readily “walk through the JVM data structures. A micro
Sequence also may include one or more bytecode instruc
tions. The execution of Java may be made more efficient and
run faster by replacing Some Sequences of bytecodes by
preferably shorter and more efficient sequences of C-ISA
instructions. The two Sets of instructions may be used in a
complementary fashion to obtain Satisfactory code density
and efficiency. As such, the JSM 102 generally comprises a
Stack-based architecture for efficient and accelerated execu
tion of Java bytecodes combined with a register-based
architecture for executing register and memory based C-ISA
instructions. Both architectures preferably are tightly com
bined and integrated through the C-ISA. Because various
data Structures described herein are generally JVM-depen
dent and thus may change from one JVM implementation to
another, the Software flexibility of the micro-Sequence pro
vides a mechanism for various JVM optimizations now
known or later developed.
0019 FIG. 2 shows an exemplary block diagram of the
JSM 102. As shown, the JSM includes a core 120 coupled
to a data Storage 122 and an instruction Storage 130. Storage
122 and 130 are preferably integrated, along with core 120,
on the same JSM chip. Integrating storage 122 and 130 on
the same chip as the core 120 may reduce data transfer time
from storage 122 and 130 to the core 120. The core 120 may
include one or more components as shown. Such compo
nents preferably include a plurality of registers 140, several
(e.g., three) address generation units (“AGUs”) 142, 147,
micro-translation lookaside buffers (micro-TLBs) 144, 156,
a multi-entry micro-stack 146, an arithmetic logic unit
(“ALU”) 148, a multiplier 150, decode logic 152, and
instruction fetch logic 154. In general, operands may be
retrieved from a main stack and processed by the ALU 148,
where the main Stack may include multiple portions that
exist in different physical locations. For example, the main

US 2006/0026394A1

Stack may reside in external memory 106 and/or data Storage
122. Selected entries from the main Stack may exist on the
micro-Stack 146. In this manner, Selected entries on the
micro-Stack 146 may represent the most current version of
the operands in the System 100. Accordingly, operands in
external memory 106 and data storage 122 may not be
coherent with the versions contained on the micro-stack 146.
A plurality of flags 158 are associated with the micro-stack
146. Each micro-Stack entry preferably has an associated
flag 158. Each flag 158 indicates whether the data in the
asSociated micro-Stack entry is valid and whether the data
has been modified. Also, Stack coherency operations may be
performed by examining the flags 158 and updating the main
stack with valid operands from the micro-stack 146 as will
be explained below.
0020. The micro-stack 146 preferably comprises, at most,
the top n entries of the main Stack that is implemented in data
storage 122 and/or external memory 106. The micro-stack
146 preferably comprises a plurality of gates in the core 120
of the JSM 102. By implementing the micro-stack 146 in
gates (e.g., registers) in the core 120 of the JSM 102, access
to the data contained on the micro-stack 146 is generally
quite fast. Therefore, data access time may be reduced by
providing data from the micro-Stack 146 instead of the main
Stack. General Stack requests are provided by the micro
stack 146 unless the micro-stack 146 cannot fulfill the stack
requests. For example, when the micro-Stack 146 is in an
overflow condition or when the micro-stack 146 is in an
underflow condition (as will be described below), general
Stack requests may be fulfilled by the main Stack. By
analyzing trends of the main Stack, the value of n, which
represents the size of the micro-Stack 146, may be optimized
Such that a majority of general Stack requests are fulfilled by
the micro-stack 146, and therefore may provide requested
data in fewer cycles. As a result, power consumption of the
system 102 may be reduced. Although the value of n may
vary in different embodiments, in accordance with at least
Some embodiments, the value of n may be the top eight
entries in the main stack. In this manner, about 98% of the
general Stack accesses may be provided by the micro-Stack
146, and the number of accesses to the main Stack may be
reduced. AS will be seen below, the main Stack may not
always be coherent with the micro-Stack and, there may be
a need, at times, to Synchronize the main Stack to the
micro-Stack.

0021. Instructions may be fetched from instruction stor
age 130 by fetch logic 154 and decoded by decode logic 152.
The address generation unit 142 may be used to calculate
addresses based, at least in part on data contained in the
registers 140. The AGUs 142 may calculate addresses for
C-ISA instructions. The AGUs 142 may support parallel data
accesses for C-ISA instructions that perform array or other
types of processing. AGU 147 couples to the micro-Stack
146 and may manage overflow and underflow conditions on
the micro-stack 146 preferably in parallel. The micro-TLBs
144, 156 generally perform the function of a cache for the
address translation and memory protection information bits
that are preferably under the control of the operating System
running on the MPU 104.
0022 Referring now to FIG. 3, the registers 140 may
include 16 registers designated as R0–R15. Registers R0–R5
and R8-R14 may be used as general purpose (“GP”) regis
ters usable for any purpose by the programmer. Other

Feb. 2, 2006

registers, and Some of the GP registers, may be used for
Specific functions. For example, in addition to use as a GP
register, register R5 may be used to Store the base address of
a portion of memory in which Java local variables may be
stored when used by the current Java method. The top of the
micro-stack 146 is reflected in registers R6 and R7. The top
of the micro-Stack 146 has a matching address in external
memory pointed to by register R6. The operands contained
on the micro-Stack 146 are the latest updated values, while
their corresponding values in external memory may or may
not be up to date. Register R7 provides the data value stored
at the top of the micro-stack 146. Register R15 may be used
for status and control of the JSM 102. As an example, one
status/control bit (called the “Micro-Sequence-Active” bit)
may indicate if the JSM 102 is executing a “simple” instruc
tion or a "complex” instruction through a micro-Sequence as
explained above. This bit controls in particular, which
program counter is used (PC or micro-PC) to fetch the next
instruction, as will be explained below.

0023 Referring again to FIG. 2, the ALU 148 adds,
subtracts, and shifts data. The multiplier 150 may be used to
multiply two values together in one or more cycles. The
instruction fetch logic 154 generally fetches instructions
from instruction storage 130. The instructions may be
decoded by decode logic 152. Because the JSM 102 is
adapted to process instructions from at least two instruction
Sets, the decode logic 152 generally comprises at least two
modes of operation, one mode for each instruction Set. AS
Such, the decode logic unit 152 may include a Java mode in
which Java instructions may be decoded and a C-ISA mode
in which C-ISA instructions may be decoded.
0024. The data storage 122 generally comprises data
cache (“D-cache”) 124 and data random access memory
(“D-RAM”) 126. Reference may be made to U.S. Pat. No.
6.826,652, filed Jun. 9, 2000 and U.S. Pat. No. 6,792,508,
filed Jun. 9, 2000 both of which are incorporated herein by
reference. Reference also may be made to U.S. Ser. No.
09/932,794 (Publication No. 20020069332), filed Aug. 17,
2001 and incorporated herein by reference. The main stack,
arrays and non-critical data may be Stored in the D-cache
124, while Java local variables, critical data and non-Java
variables (e.g., C, C++) may be stored in D-RAM 126. The
instruction storage 130 may comprise instruction RAM
(“I-RAM”) 132 and instruction cache (“I-cache”) 134. The
I-RAM 132 may be used for “complex’ micro-sequenced
bytecodes or micro-Sequences or predetermined Sequences
of code, as will be described below. The I-cache 134 may be
used to Store other types of Java bytecode and mixed
Java/C-ISA instructions.

0025. As noted above, the C-ISA instructions generally
complement the Standard Java bytecodes. For example, the
compiler 110 may scan a series of Java bytes codes 112 and
replace one or more of Such bytecodes with an optimized
code Segment mixing C-ISA and bytecodes and which is
capable of more efficiently performing the function(s) per
formed by the initial group of Java bytecodes. In at least this
way, Java execution may be accelerated by the JSM 102.

0026. The micro-stack mechanism described herein may
be implemented in any of a variety of Systems to optimize
performance. For example, the micro-Stack mechanism may
be used in conjunction with media processing Software (and
other similar, "high-performance' Software, Such as Video

US 2006/0026394A1

compression Software, Video decoding Software, audio Soft
ware, sound rate conversion software) to optimize JSM 102
performance over that of processors that do not use the
micro-Stack mechanism.

0.027 Execution of media processing software and/or
other such high-performance software causes the JSM 102
to use the micro-stack mechanism to manipulate Streams of
data as dictated by instructions (e.g., Bytecodes) in the
Software. In a preferred embodiment, the JSM 102 loads
data into the micro-Stack 146, manipulates the data in
micro-Stack 146, and Subsequently Stores the data to data
storage 122 as described below in context of FIGS. 4A-4H.
More specifically, as shown in FIG. 4A, operands D1-D8
are stored in the micro-stack 146. The micro-stack 146
preferably comprises eight entries, although the Scope of
disclosure is not limited as such. The operands D1-D8 are
pushed onto the micro-Stack 146 by, for instance, a Bytecode
from Bytecodes 112 that may be part of a media processing
Software program or other similar program. The operands
D1-D8 may be obtained from any storage device in the JSM
102, such as the I-cache 134 or the registers 140.
0028. As shown in FIG. 4B, the operands D1, D2 stored
in the micro-Stack 146 are manipulated as directed by
Bytecodes from Bytecodes 112. For example, the Bytecodes
may cause the ALU 148 and/or the multiplier 150 to perform
mathematical operations on the operands D1 and D2, Such
that the operands D1 and D2 are popped off of the micro
stack 146 and manipulated to form a result. The result then
is pushed onto the micro-Stack 146. Although the Scope of
disclosure is not limited to performing any particular type of
mathematical operation on any particular number of oper
ands Stored in the micro-Stack 146, in Some embodiments,
the operands D1, D2 may be multiplied together by the
multiplier 150 to produce a product R1. The product R1 then
is pushed onto the micro-stack 146. Operands also may be
added, Subtracted, divided, etc. As shown in FIG. 4B, the
operands D1, D2 are no longer present in the micro-Stack
146 and have been replaced by the product R1.
0029. A subsequent Bytecode then causes the product R1
to be popped off of the micro-stack 146 and stored into data
storage 122. Thus, as shown in FIG. 4C, the product R1 is
no longer present in the micro-Stack 146, and the operand
D3 now is the top entry in the micro-stack 146. As shown in
FIG. 4D and as with operands D1 and D2 above, the
operands D3, D4 are popped off of the micro-stack 146 and
multiplied by multiplier 150 to form a product R2, which
product R2 is pushed onto the micro-Stack 146. In a pre
ferred embodiment, the product R1 is popped off the micro
Stack 146 and Stored into data Storage 122 at or about the
same time (i.e., in parallel) the operands D3, D4 are popped
off the micro-stack 146 and multiplied to form product R2,
and at which R2 is pushed onto the micro-stack 146. Such
parallel (i.e., Simultaneous) execution is possible due to the
inherent capability of the pipeline of the JSM 102 (i.e., the
fetch logic 154, decode logic 152, execution logic 148, 150,
etc.) to complete a command that is not in a final stage of the
pipeline at about the Same time as a command that is in the
final stage of the pipeline, provided the JSM 102 has access
to any information needed to process the command that is
not in the final Stage of the pipeline. Parallel execution is
desirable because a greater number of processor operations
are completed within a finite amount of time, thus increasing
processor efficiency.

Feb. 2, 2006

0030 FIGS. 4E and 4F show simultaneous operations
Similar to the Simultaneous operations described above.
More specifically, as shown in FIG. 4E, the product R2 is
popped off the micro-Stack 146 and Stored to data Storage
122. Thus, the top entry in the micro-stack 146 is the
operand D5. As shown in FIG. 4F, at Substantially the same
time that R2 is popped off the micro-stack 146 and stored to
data storage 122, the operands D5 and D6 are popped off the
micro-stack 146 and multiplied to form a product R3, which
product R3 is pushed onto the micro-stack 146. In some
embodiments, at least a portion of the process reflected in
FIG. 4C occurs simultaneously with at least a portion of the
process reflected in FIG. 4D. Similarly, at least a portion of
the process reflected in FIG. 4E occurs at the same time as
a portion of the process reflected in FIG. 4F. The simulta
neous Storage and multiplication processes continue in this
manner, as shown in FIGS. 4G and 4H, until the micro
Stack 146 no longer contains any operands. In embodiments
where the micro-Stack 146 comprises more than eight oper
ands (i.e., the micro-stack 146 comprises more than eight
entries), the simultaneous Storage and multiplication pro
ceSSes may continue as described above until the micro
Stack 146 is empty. Because the performance penalty to
access the micro-Stack 146 is low compared to the perfor
mance penalty to acceSS memory, executing media proceSS
ing Software (or other Such high-performance Software) in
conjunction with the micro-Stack mechanism, as described
above, improves efficiency of the JSM 102 over processors
that do not comprise the micro-stack mechanism.
0031. As noted previously, system 100 may be imple
mented as a battery-operated mobile (i.e., wireless) commu
nication device (e.g., a mobile phone) 415 Such as that
shown in FIG. 5. As shown, a mobile communication device
includes an integrated keypad 412 and display 414. The JSM
102 and MPU 104 and other components may be included
in electronics package 410 connected to the keypad 412,
display 414, and radio frequency ("RF") circuitry 416. The
RF circuitry 416 may be connected to an antenna 418.
0032. While the preferred embodiments of the present
invention have been shown and described, modifications
thereof can be made by one skilled in the art without
departing from the Spirit and teachings of the invention. The
embodiments described herein are exemplary only, and are
not intended to be limiting. Many variations and modifica
tions of the invention disclosed herein are possible and are
within the Scope of the invention. Accordingly, the Scope of
protection is not limited by the description Set out above.
Each and every claim is incorporated into the Specification
as an embodiment of the present invention.

What is claimed is:
1. A System, comprising:

a processor containing a first Stack internal to a core of the
processor, at least Some data values in the first Stack
corresponding to values in a Second Stack external to
Said core; and

a memory coupled to the processor;
wherein, in an iterative process, the processor pops a data

value off of the first Stack and begins to Store the data
value to Said memory while the processor begins to use
an existing data value from the first Stack to produce a
new data value to be Stored on Said first Stack.

US 2006/0026394A1

2. The System of claim 1, wherein the processor manipu
lates the existing data value to produce the new data value.

3. The System of claim 2, wherein the processor manipu
lates the existing data value by performing a mathematical
operation.

4. The System of claim 1, wherein the processor pops the
existing data value off of the first Stack, manipulates Said
existing data value to produce the new data value, and
pushes Said new data value onto the first Stack.

5. The system of claim 1, wherein the first stack is capable
of Storing a number of values, Said number of values
Selected from the group consisting of 4 values, 8 values, 16
values, 32 values and 64 values.

6. The system of claim 1, wherein the first stack stores at
least 4 values.

7. The System of claim 1, wherein the System comprises
at least one of a battery-operated device or a wireleSS
communication device.

8. The system of claim 1, wherein said data values are
retrieved from a different memory before the data values are
Stored on the first Stack.

9. A processor, comprising:
a data Stack located in the processor's core and compris

ing a plurality of data values, at least Some of Said data
values corresponding to values in a main Stack located
outside the processor's core; and

a storage unit coupled to the data Stack;
wherein, in an iterative process, the processor popS a first

data value off of the data Stack and begins to Store Said
first data value to the Storage unit while the processor
begins to use a Second data value to produce a result to
be Stored on Said data Stack.

10. The processor of claim 9, wherein the processor uses
the Second data value to produce the result by manipulating
the Second data value.

11. The processor of claim 10, wherein the processor
manipulates Said Second data value by performing a math
ematical operation Selected from the group consisting of
addition, multiplication, division and Subtraction.

Feb. 2, 2006

12. The processor of claim 9, wherein the first data value
is obtained from a memory prior to being Stored on the data
Stack.

13. The processor of claim 9, wherein the main stack is
capable of Storing more values than the data Stack.

14. The processor of claim 9, wherein the data stack is
capable of Storing a number of values, Said number Selected
from the group consisting of 4 values, 8 values, 16 values,
32 values, 64 values.

15. The processor of claim 9, wherein the data stack stores
at least 4 values.

16. An iterative process, comprising:

popping a first data value off of a data Stack internal to a
processor's core, at least Some data values in Said data
Stack corresponding to values in a main Stack external
to the processor's core; and

while beginning to Store Said first data value in a memory,
popping a Second data value off of the data Stack and
using Said Second data value to produce a result to be
Stored on the data Stack.

17. The iterative process of claim 16, wherein using said
Second data value to produce the result comprises manipu
lating Said Second data value.

18. The iterative process of claim 17, wherein manipu
lating comprises performing one of a multiplication, addi
tion, Subtraction or division operation.

19. The iterative process of claim 16, wherein popping the
first data value off of the data Stack comprises using a data
Stack capable of Storing a number of values, Said number of
values Selected from the group consisting of 4 values, 8
values, 16 values, 32 values, and 64 values.

20. The iterative process of claim 16 further comprising
obtaining the first data value from a Storage unit and pushing
the first data value onto the data Stack.

21. The iterative process of claim 16, wherein popping the
first data value off of the data Stack comprises using a data
Stack having leSS Storage Space than the main Stack.

