
(19) United States
US 20130263267A1

(12) Patent Application Publication (10) Pub. No.: US 2013/0263267 A1
McKenna (43) Pub. Date: Oct. 3, 2013

(54) METHODS, COMPUTER PROGRAM (52) U.S. Cl.
PRODUCTS AND DATASTRUCTURES FOR CPC G06F2I/55 (2013.01)
INTRUSION DETECTION, INTRUSION USPC .. 726/23
RESPONSE AND VUILNERABILITY
REMEDIATION ACROSSTARGET
COMPUTER SYSTEMS (57) ABSTRACT

(71) Applicant: International Business Machines
Corporation, Armonk, NY (US)

(72) Inventor: John J. McKenna, Cary, NC (US)

(73) Assignee: International Business Machines
Corporation, Armonk, NY (US)

(21) Appl. No.: 13/901,759

(22) Filed: May 24, 2013

Related U.S. Application Data
(63) Continuation of application No. 10/890,798, filed on

Jul. 13, 2004, now Pat. No. 8,458,793.

Publication Classification

(51) Int. Cl.
G06F 2/55 (2006.01)

1. 120

SECURITY
EXPERTS

Message
EnCOder

Threat
Management

Vector

Target
Systems

Intervertion

Specific Instructions

Computer security threat management information is gener
ated by receiving a notification of a security threat and/or a
notification of a test that detects intrusion of a computer
security threat. A computer-actionable TMV is generated
from the notification that was received. The TMV includes a
computer-readable field that provides identification of at least
one system type that is effected by the computer security
threat, a computer-readable field that provides identification
of a release level for a system type, and a computer-readable
field that provides identification of the test that detects intru
sion of the computer security threat for a system type and a
release level, a computer-readable field that provides identi
fication of a method to reverse the intrusion exploit of the
computer security threat for a system type and a release level.
and a computer-readable field that provides identification of a
method to remediate the Vulnerability subject to exploit of the
computer security threat for a system type and a release level.
The TMV is transmitted to target systems for processing by
the target systems.

190GPADC

51

Patent Application Publication Oct. 3, 2013 Sheet 1 of 51 US 2013/0263267 A1

Patent Application Publication Oct. 3, 2013 Sheet 2 of 51 US 2013/0263267 A1

FIG. 3
Generate Computer-Actionable Computer Security

Threat Management information

FIG. 4

Vulnerability | System Release Subsystem|Release
Specification Level

D of
Countermeasures

4011 402 404 405 403

TMV

US 2013/0263267 A1 Oct. 3, 2013 Sheet 3 of 51 Patent Application Publication

089

US 2013/0263267 A1

ZZ9

„?unseeuuJe?un00, q029 JOJ OG
069 u Oeº uO, OG

„IÐAÐI, LIOBÐ JOJ OC]

Oct. 3, 2013 Sheet 4 of 51

0,790! 9

Patent Application Publication

US 2013/0263267 A1 Oct. 3, 2013 Sheet 5 of 51 Patent Application Publication

US 2013/0263267 A1 Oct. 3, 2013 Sheet 6 of 51 Patent Application Publication

8 "OIH

US 2013/0263267 A1 Oct. 3, 2013 Sheet 7 of 51 Patent Application Publication

US 2013/0263267 A1 Oct. 3, 2013 Sheet 8 of 51 Patent Application Publication

[["{OICH

US 2013/0263267 A1 Oct. 3, 2013 Sheet 9 of 51 Patent Application Publication

Ó ["{OIH

US 2013/0263267 A1 Oct. 3, 2013 Sheet 11 of 51 Patent Application Publication

US 2013/0263267 A1 Oct. 3, 2013 Sheet 12 of 51 Patent Application Publication

Patent Application Publication Oct. 3, 2013 Sheet 13 of 51 US 2013/0263267 A1

FIG 16

(Administer Computer Security Threat Countermeasures
1610

Establish Baseline dentification of OS
that is compatible with TMV

Receive TMV

1640
PrOCeSS

COUntermeaSures

FIG. 17

Administer Computer Security Threat Countermeasures

1610
Establish Baseline Identification of OS

that is compatible with TMV

1640

Receive TMV Process
COUntermeasures

1710
Add instance

identifier

US 2013/0263267 A1 Oct. 3, 2013 Sheet 14 of 51 Patent Application Publication

US 2013/0263267 A1 Oct. 3, 2013 Sheet 15 of 51 Patent Application Publication

6I , OIH

US 2013/0263267 A1 Oct. 3, 2013 Sheet 16 of 51 Patent Application Publication

I Z * OICH

US 2013/0263267 A1 Oct. 3, 2013 Sheet 17 of 51

(L)

Patent Application Publication

US 2013/0263267 A1 Oct. 3, 2013 Sheet 18 of 51 Patent Application Publication

9.O " OIH

US 2013/0263267 A1 Oct. 3, 2013 Sheet 19 of 51 Patent Application Publication

US 2013/0263267 A1

09 GZ

02GZRIWL eleduuOO CÓ '{OIH

Patent Application Publication

US 2013/0263267 A1 Oct. 3, 2013 Sheet 21 of 51 Patent Application Publication

0/92

US 2013/0263267 A1 Oct. 3, 2013 Sheet 22 of 51 Patent Application Publication

US 2013/0263267 A1 Oct. 3, 2013 Sheet 23 of 51 Patent Application Publication

0982

0982

sa InseeuJº?unoo ?uou6||

US 2013/0263267 A1 Oct. 3, 2013 Sheet 24 of 51 Patent Application Publication

(g) uue|SKS ?ºfile L

US 2013/0263267 A1 Oct. 3, 2013 Sheet 25 of 51 Patent Application Publication

Su??auueled Wo | Ho | edÅL INO I CII INO

Jo?oÐA IÐAÐ T uu??SKS

suu??SÁsqns pa?oege jo ?as e uog Á?ue??uu?s puy (G)

US 2013/0263267 A1

[9 °{OICH

Oct. 3, 2013 Sheet 26 of 51 Patent Application Publication

US 2013/0263267 A1 Oct. 3, 2013 Sheet 27 of 51 Patent Application Publication

JO?oÐA IÐAÐ T uue?SÁS

US 2013/0263267 A1

O99 • OIJH

uo?o?A seunseeulu??unoo

Oct. 3, 2013 Sheet 28 of 51

vee 'DIR

Patent Application Publication

US 2013/0263267 A1 Oct. 3, 2013 Sheet 29 of 51 Patent Application Publication

NOAWL LW ld l-IO I V ©| Lv id @

US 2013/0263267 A1

0£620464 oÀgenOld ?Senbaxae uo?e?s|638 id G9 °{OICH

Patent Application Publication

US 2013/0263267 A1 Oct. 3, 2013 Sheet 31 of 51 Patent Application Publication

(

US 2013/0263267 A1 Oct. 3, 2013 Sheet 32 of 51 Patent Application Publication

0£62

| N9AWL LW Id | HOI V G5) || LV id @

US 2013/0263267 A1 Oct. 3, 2013 Sheet 33 of 51 Patent Application Publication

US 2013/0263267 A1 Oct. 3, 2013 Sheet 34 of 51 Patent Application Publication

opez 0468

HOI V ©| Lv id @ HO I V ©| Lv id @

0179;

US 2013/0263267 A1 Oct. 3, 2013 Sheet 35 of 51 Patent Application Publication

?eÐJU L
[\Old AW ||~oloz

US 2013/0263267 A1 Oct. 3, 2013 Sheet 36 of 51 Patent Application Publication

[+7

{DIH

US 2013/0263267 A1 Oct. 3, 2013 Sheet 38 of 51 Patent Application Publication

029

SAWL ?o ?ouenbºs. Ie?uauuauou]

US 2013/0263267 A1 Oct. 3, 2013 Sheet 39 of 51 Patent Application Publication

sjueuoduoo a0.j? se? Jogoa/ saunseauuuæguno?o si? I.

US 2013/0263267 A1 Oct. 3, 2013 Sheet 40 of 51 Patent Application Publication

US 2013/0263267 A1 Oct. 3, 2013 Sheet 41 of 51 Patent Application Publication

US 2013/0263267 A1 Oct. 3, 2013 Sheet 44 of 51 Patent Application Publication

s
V Y------------

0 || 42

US 2013/0263267 A1 Oct. 3, 2013 Sheet 45 of 51 Patent Application Publication

aunseeuluºyunoo q? uoea uog od

Jo?oÐA IÐAÐ T uue?sÁS

US 2013/0263267 A1 Oct. 3, 2013 Sheet 46 of 51

IG ’’OICH

Patent Application Publication

I'd SHU!!! O? „nold AINL. JIuusueul

US 2013/0263267 A1

?nCld DEN ONI

Oct. 3, 2013 Sheet 48 of 51

Jepuods3}} AIN-L

Patent Application Publication

US 2013/0263267 A1 Oct. 3, 2013 Sheet 49 of 51 Patent Application Publication

0292

EIWL aueduuoo {{IWL SS300V

US 2013/0263267 A1 Oct. 3, 2013 Sheet 50 of 51 Patent Application Publication

{{99 '

seunseæuuJa?u no O ? K?I?qeuueInA AINL euou6] V99 º OIH

US 2013/0263267 A1 Oct. 3, 2013 Sheet 51 of 51 Patent Application Publication

Ce :

[10]d A?N'L

„01.62

US 2013/0263267 A1

METHODS, COMPUTER PROGRAM
PRODUCTS AND DATASTRUCTURES FOR
INTRUSION DETECTION, INTRUSION
RESPONSE AND VUILNERABILITY
REMEDIATION ACROSSTARGET

COMPUTER SYSTEMS

CROSS REFERENCE TO RELATED
APPLICATION

0001. This application is a Continuation application of
pending U.S. patent application Ser. No. 10/890,798 filed Jul.
13, 2004, and now U.S. Published Patent Application No.
2006/OO15941 A1.

FIELD OF THE INVENTION

0002 This invention relates to computer systems, meth
ods, program products and/or data structures, and more par
ticularly to security management systems, methods, program
products and/or data structures for computer systems.

BACKGROUND OF THE INVENTION

0003 Computer systems are widely used for data process
ing and many other applications. As used herein, a "computer
system' encompasses enterprise, application and personal
computer systems, pervasive computer systems such as per
Sonal digital assistants, and embedded computer systems that
are embedded in another device such as a home appliance that
has another primary functionality.
0004 As information technology continues to expand at a
dramatic pace, computer systems are subject to larger num
bers of security threats and vulnerabilities. System adminis
trators may be overburdened with not only gathering and
maintaining information on new Vulnerabilities and patches,
but may also need to wrestle with the task of determining
what patches need to be applied and to what Systems. A desire
for computer systems to be kept current to known and devel
oping security threats may produce a problem of enormous
proportions.
0005. Many vendors and independent developers have
sough to create and develop ways in which computer system
administrators can find out the current vulnerability status of
the their systems. In particular, Vendor programs, utilities and
locally generated Scripts have been provided that can reveal
specific information about computer systems. Thus, for
example, Microsoft has provided a utility called HFNETCK,
created by Shavlik, which scans host systems for missing
patches. Moreover, Unix Systems have built-in commands
that can list operating system and patch level information.
Several databases have also been created as repositories of
information about computer systems, including IP addresses,
operating system vendor version and possibly the latest
patches applied.
0006 For example, the Mitre Corporation (Mitre.org) has
promulgated Common Vulnerabilities and Exposures (CVE),
which anecdotally represent vulnerabilities and exposures
using a text string with a chronological identification vector
and free-form text. An example CVE is "CVE-2001-0507+
free form text''. Moreover, the National Institute of Standards
and Technology (NIST) has created an ICAT Metabase,
which is a searchable index of information on computer Vul
nerabilities. Using CVE names, the ICAT Metabase vulner
ability indexing service provides a short description of each
Vulnerability, a list of characteristics of each vulnerability

Oct. 3, 2013

(such as associated attack range and damage potential), a list
of the Vulnerable software names and version numbers, and
links to Vulnerability advisory and patch information. See
icat.nist.gove/icat.cfm. Also, in the fourth quarter of 2002,
Mitre launched the OpenVulnerability Assessment Language
(OVAL) initiative, to extend the CVE concept to a common
way of vulnerability testing.
0007. The Open Web Application Security Project (owasp.
org) is an open Source community project that is developing
Software tools and knowledge-based documentation that
helps secure Web applications and Web services. The Vul
nXML project of OWASP aims to develop an open standard
data format for describing Web application security vulner
abilities. The project is focused on Web application security
Vulnerabilities. It focuses on building http transactions such
as specific headers and requests. See the VulnXML Proof of
Concept Vision Document, Version 1.1, Jul.18, 2002.
0008. The Patch Authentication and Dissemination Capa
bility (PADC) project, sponsored by the Federal Computer
Incident Response Center (FedCIRC), an office of the Gen
eral Service Administration, first announced in November,
2002, addresses the more general case of application and
operating system Vulnerabilities. See, padc.fedcirc.gov.
0009. The OASIS Consortium (oasis-open.org) has
announced plans to define a standard method of exchanging
information concerning security vulnerabilities within Web
services and Web applications. See, OASIS Members Col
laborate to Address Security Vulnerabilities for Web Services
and Web Applications, RSA Security Conference, 14 Apr.
2003.
(0010. The Vulnerability Intelligent Profiling Engine
(VIPE) is based on technology by B2Biscom (b2biscom.it).
VIPE includes two elements, a product and a service. The
product is a combination of an inventory and patch manage
ment tool, which has as its major part of a central database
containing all known Vulnerabilities and patches for a large
list of products. Another part of the database is populated with
inventory information. A set of Scripts has been developed.
The service analyzes and correlates inventory with an exist
ing Vulnerability encyclopedia, and provides a knowledge
based approach for assessing Vulnerabilities against specific
Supported operating systems.
0011 Citadel Hercules Automated Vulnerability Reme
diation from Citadel Security Software (citadel.com) pro
vides Software that integrates with industry-leading Vulner
ability assessment tools and provides appropriate remedies
for five classes of Vulnerabilities, and a console where the
administrator can review the Vulnerabilities implied and
apply the remedy to the correct system on a network. See,
Citadel Hercules Automated Vulnerability Remediation
Product Brochure, Citadel Security Software, Inc., 2003.
0012 Symantec has an offering that compiles threat man
agement information into a paid service. See, eweek.com/
article2/0,4149,1362688.00.asp. DeepSight Alert Services
are priced at S5K per year as described in enterprisesecurity.
symantec.com/products/products.cfm?ProductID=160.
Threat Management Services start at S15K per year, per user
as described at enterprisecurity. Symantec.com/content/dis
playpdf.cfm?pdfid=301.
0013 Finally, the “Cassandra' Incident Response Data
base is a tool sponsored by the CERIAS center of Purdue
University that allows a user to create saved profiles of the
services and applications running on the user's networks,
typical (standard configurations) hosts or important hosts.

US 2013/0263267 A1

Cassandra can then notify the user by email of new vulner
abilities relevant to these profiles. See, cassandra.cerias-pur
due.edu. Queries (including incremental queries) can also be
performed live. However, these results may be missing
recently discovered vulnerabilities not yet available from
ICAT, and may be missing vulnerabilities that have not been
made public. Because the contents are derived from NIST's
ICAT servers, CERIAS also offers only a best effort delivery
of the contents available from ICAT.
0014. In view of the above, security threat management
currently may be a labor-intensive process wherein a com
puter system's operations staff individually screens security
advisories, alerts and Authorized Program Analysis Reports
(APARs) to determine their applicability. The operational
staff then determines, through research, how to mitigate the
threat or apply the remedy using manual techniques.
0015 FIG. 1 is a block diagram illustrating conventional
security threat management techniques. As shown in FIG. 1,
new computer Vulnerabilities and hacking tools are discov
ered by computer security experts 110 in a variety of roles.
Similarly, APARs are provided by vendors 120. The computer
Vulnerabilities, hacking tools and APARs (often referred to as
A (Advisories, Alerts, APARs) are typically vetted by appro
priate security organizations such as Computer Emergency
Response Team (CERT/CC), SysAdmin, Audit, Network
and/or Security (SANS) institute personnel 130. Threat and
Vulnerability information is distributed by these organiza
tions primarily via mailing lists 140 that are subscribed to by
computer Security Systems Administration (SSA) staffs 150.
Diligent SSAs may subscribe to multiple mailing lists 140,
thus often receiving duplicate or potentially inconsistent
information. SSAs then perform individual research to deter
mine a course of action and how to carry it out. Commonly,
they will use Web resources such as Mitre's CVE listing 160
and/or Oval database 170, and/or NIST's ICAT database 180,
to manually collect information for countermeasure applica
tion. This may be highly inefficient and costly. Even commer
cially available Vulnerability management products and Ser
vices may not substantially improve efficiency.

SUMMARY OF THE INVENTION

0016. According to embodiments of the present invention,
computer-actionable Threat Management Vectors (TMV) are
generated and responded to, so as to allow intrusion detection
and response across target systems. Some embodiments of
TMVs are described in U.S. application Ser. No. 10/624,344
to Bardsley et al., entitled Systems, Methods and Data Struc
tures for Generating Computer-Actionable Computer Secu
rity Threat Management Information, filed Jul. 22, 2003, and
application Ser. No. 10/624,158 to Bardsley et al., entitled
Systems, Methods and Computer Program Products for
Administration of Computer Security Threat Countermea
sures to a Computer System, filed Jul. 22, 2003; and U.S.
application Ser. No. 10/791,560, filed Mar. 2, 2004 to Bard
sley et al., entitled Domain Controlling Systems, Methods
and Computer Program Products for Administration of Com
puter Security Threat Countermeasures to a Domain of Target
Computer Systems, all of which are assigned to assignee of
the present invention, the disclosures of all of which are
hereby incorporated herein by reference in their entirety as if
set forth fully herein. Application Ser. Nos. 10/624,344,
10/624,158 and 10/791,560 will be referred to herein collec
tively as “the prior applications'. As described therein, a
TMV includes therein a first computer-readable field that

Oct. 3, 2013

provides identification of at least one system type that is
affected by a computer security threat, a second computer
readable field that provides identification of a release level for
the system type, and a third computer-readable field that
provides identification of a set of possible countermeasures
for a system type and a release level. The system type can
include a computer operating system type or an application
program type.
0017. According to some embodiments of the present
invention, computer security threat management information
is generated by receiving a notification of a security threat
and/or a notification of a test that detects intrusion of a com
puter security threat. A computer-actionable TMV is gener
ated from the notification that was received. The TMV
includes a computer-readable field that provides identifica
tion of at least one system type that is effected by the com
puter security threat, a computer-readable field that provides
identification of a release level for a system type, and a com
puter-readable field that provides identification of the test that
detects intrusion of the computer security threat for a system
type and a release level. The TMV that is generated is trans
mitted to a plurality of target systems for processing by the
plurality of target systems.
0018. In some embodiments, the TMV further includes a
computer-readable field that provides identification of a pos
sible countermeasure for a system type and a release level. In
other embodiments, the TMV further includes a computer
readable field that provides identification of a plurality of tests
that detect intrusion of the computer security threat for a
system type and a release level, and/or identification of a
plurality of possible countermeasures for a system type and a
release level.

0019. In other embodiments, a second TMV is generated
in response to notification from a target system that intrusion
of the computer security threat has been detected. The second
TMV includes therein a computer-readable field that identi
fies instructions for removing the intrusion of the computer
security threat that was detected. The second TMV is trans
mitted to the target system for processing by the target sys
tem.

0020. In still other embodiments, a null TMV is generated
in response to notification from a target system that intrusion
of the computer security threat has been detected. The null
TMV includes therein a computer-readable field that identi
fies that no instructions are available for removing the intru
sion of the computer security threat that was detected. The
null TMV is then transmitted to the target system. Thereafter,
a second TMV may be generated in response to receipt of
instructions for removing the intrusion of the computer Secu
rity threat that was detected. The second TMV includes
therein a computer-readable field that identifies the instruc
tions for removing the intrusion of the computer security
threat that was detected. The second TMV is transmitted to
the target system for processing.
0021 Computer security threat management information
may be processed at a target computer system, according to
Some embodiments of the present invention, by receiving a
computer-actionable TMV at the target system. The TMV
includes therein the computer-readable field that provides
identification of a test that detects intrusion of the computer
security threat for a system type and a release level. The test
is performed at the target system, in response to receipt of the
TMV.

US 2013/0263267 A1

0022. According to other embodiments, the target system
sends a notification that intrusion of the computer security
threat has been detected. The target system then receives a
TMV including a computer-readable field that identifies
instructions for removing the intrusion of the computer Secu
rity threat that was detected. The target system then performs
the instructions for removing the intrusion, in response to
receiving the second TMV.
0023. In other embodiments, in response to sending a noti
fication from the target system that intrusion has been
detected, a null TMV is received, as was described above, that
indicates that no instructions are available for removing the
intrusion of the computer security threat that was detected.
Later, a TMV may be received at the target system that iden
tifies the instructions for removing the intrusion. The instruc
tions are then performed at the target system.
0024 Computer-actionable TMVs according to some
embodiments of the present invention include the computer
readable fields that were described above, including identifi
cation of a test that detects intrusion, identification of a pos
sible countermeasure and/or identification of instructions for
removing the intrusion. In some embodiments, the TMV can
provide identification of a plurality of tests and/or identifica
tion of a plurality of possible countermeasures for a system
type and a release level. The TMV can also identify that no
instructions are available. Analogous systems and computer
program products also are provided according to other
embodiments of the present invention.

BRIEF DESCRIPTION OF THE DRAWINGS

0025 FIG. 1 is a block diagram illustrating conventional
security threat management techniques.
0026 FIG. 2 is a block diagram of an environment in
which computer-actionable computer security threat man
agement information may be generated according to the prior
applications.
0027 FIG. 3 is a flowchart of operations that may be
performed to generate computer-actionable security threat
management information according to the prior applications.
0028 FIG. 4 is an overview of a data structure of a threat
management vector according to the prior applications.
0029 FIG. 5 is a block diagram of systems, methods and/
or computer program products for generating computer-ac
tionable security threat management information according
to the prior applications.
0030 FIG. 6 is a flowchart of operations that may be used
to generate a threat management vector by a message encoder
according to the prior applications.
0031 FIGS. 7-14 illustrate detailed data structures of
threat management vectors and Sub-vectors according to the
prior applications.
0032 FIG. 15 is a block diagram of systems, methods
and/or computer program products for generating computer
actionable computer threat management information accord
ing to the prior applications.
0033 FIG. 16 is a flowchart of operations that may be
performed to administer a computer security threat counter
measure according to the prior applications.
0034 FIG. 17 is a flowchart of operations that may be
performed to administer a computer security threat counter
measure according to the prior applications.
0035 FIG. 18 is a block diagram of systems, methods and
computer program products according to the prior applica
tions.

Oct. 3, 2013

0036 FIG. 19 is a flowchart of operations that may be
performed to administer a computer security threat counter
measure according to the prior applications.
0037 FIGS. 20-22 illustrate threat management vectors
according to embodiments of the present invention as they
undergo TMV transmutation according to the prior applica
tions.
0038 FIG. 23 is a flowchart of operations that may be
performed for TMV history file maintenance according to the
prior applications.
0039 FIG. 24 is a flowchart of operations that may be
performed for Threat Management Information Base (TMIB)
configuration according to the prior applications.
0040 FIGS. 25 and 26 are flowcharts of operations that
may be performed for TMV induction according to the prior
applications.
0041 FIG. 27 is a flowchart of operations that may be
performed for Vulnerability state management according to
the prior applications.
0042 FIG. 28 is a flowchart of operations that may be
performed for remediation management according to the
prior applications.
0043 FIG. 29 is a block diagram of systems, methods and
computer program products for administration of computer
security threat countermeasures to a domain of target com
puter systems according to the prior applications.
0044 FIGS.30 and 31 illustrate detailed data structures of
threat management vectors and transmuted threat manage
ment vectors according to the prior applications.
004.5 FIG. 32 illustrates a detailed data structure of threat
management vectors and Subvectors including program
instance vectors and program instance locations according to
the prior applications.
0046 FIGS. 33A-33C illustrate detailed data structures of
threat management vectors according to the prior applica
tions.

0047 FIGS. 34 and 35 are block diagrams of program
instance registration according to the prior applications.
0048 FIG. 36 is a flowchart of operations that may be
performed for program instance registration according to the
prior applications.
0049 FIG. 37 is a block diagram of threat management
vector refreshing according to the prior applications.
0050 FIG. 38 is a flowchart of operations that may be
performed for threat management vector refreshing accord
ing to the prior applications.
0051 FIG. 39 is a block diagram of program instance
deregistration according to the prior applications.
0.052 FIG. 40 is a block diagram of input threat manage
ment vector processing according to the prior applications.
0053 FIG. 41 is a flowchart of operations that may be
performed for input threat management processing according
to the prior applications.
0054 FIGS. 42A and 42B are flowcharts of operations that
may be performed for input threat management vector pro
cessing by a threat management vector emitter and responder,
respectively, according to the prior applications.
0055 FIG. 43 is a block diagram of threat management
vector synchronization according to the prior applications.
0056 FIG. 44 illustrates a data structure of a countermea
Sures vector according to Some embodiments of the present
invention.

US 2013/0263267 A1

0057 FIG. 45 illustrates a data structure of a countermea
Sures vector including logical expressions, brackets and/or
groups according to some embodiments of the present inven
tion.
0.058 FIG. 46 illustrates a data structure of a countermea
Sures vector according to other embodiments of the present
invention.
0059 FIG. 47 is a block diagram of countermeasure stag
ing according to Some embodiments of the present invention.
0060 FIG. 48 is a block diagram of intrusion detection
according to some embodiments of the present invention.
0061 FIG. 49 is a flowchart of operations for vulnerability
state management with intrusion detection according to some
embodiments of the present invention.
0062 FIG. 50 is a flowchart of operations for intrusion
detection according to Some embodiments of the present
invention.
0063 FIG. 51 illustrates a data structure of a root vulner
ability vector according to the prior applications.
0.064 FIG. 52 illustrates a data structure of a threat man
agement vector according to Some embodiments of the
present invention.
0065 FIG. 53 is a block diagram of intrusion response
according to some embodiments of the present invention.
0.066 FIGS. 54A, 54B, 55,56A and 56B are flowcharts of
operations for intrusion response according to various
embodiments of the present invention.
0067 FIG. 57 is a block diagram of intrusion response
countermeasure relays according to Some embodiments of
the present invention.

DETAILED DESCRIPTION

0068. The present invention now will be described more
fully herein with reference to the accompanying figures, in
which embodiments of the invention are shown. This inven
tion may, however, be embodied in many alternate forms and
should not be construed as limited to the embodiments set
forth herein.
0069. Accordingly, while the invention is susceptible to
various modifications and alternative forms, specific embodi
ments thereof are shown by way of example in the drawings
and will herein be described in detail. It should be understood,
however, that there is no intent to limit the invention to the
particular forms disclosed, but on the contrary, the invention
is to cover all modifications, equivalents, and alternatives
falling within the spirit and scope of the invention as defined
by the claims. Like numbers refer to like elements throughout
the description of the figures.
0070. The present invention is described below with ref
erences to block diagrams and/or flowchart illustrations of
methods, apparatus (systems) and/or computer program
products according to embodiments of the invention. It is
understood that each block of the block diagrams and/or
flowchart illustrations, and combination of blocks in the
block diagrams and/or flowchart illustrations, can be imple
mented by computer program instructions. These computer
program instructions may be provided to a processor of a
general purpose computer, special purpose computer, and/or
other programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer and/or other programmable data
processing apparatus, create means for implementing the
function/acts specified in the block diagrams and/or flowchart
block or blocks.

Oct. 3, 2013

0071. These computer program instructions may also be
stored in a computer-readable memory that can direct a com
puter or other programmable data processing apparatus to
function in a particular manner, such that the instructions
stored in the computer-readable memory produce an article of
manufacture including instructions which implement the
function/act specified in the block diagrams and/or flowchart
block or blocks.
0072 The computer program instructions may also be
loaded onto a computer or other programmable data process
ing apparatus to cause a series of operational steps to be
performed on the computer or other programmable apparatus
to produce a computer-implemented process Such that the
instructions which execute on the computer or other program
mable apparatus provide steps for implementing the func
tions/acts specified in the block diagrams and/or flowchart
block or blocks.
0073. It should also be noted that in some alternate imple
mentations, the functions/acts noted in the blocks may occur
out of the order noted in the flowcharts. For example, two
blocks shown in Succession may in fact be executed Substan
tially concurrently or the blocks may sometimes be executed
in the reverse order, depending upon the functionality/acts
involved.

Generating Computer-Actionable Computer Security Threat
Management Information
0074 FIG. 2 is a block diagram of an environment in
which computer-actionable computer security threat man
agement information may be generated according to the prior
applications. As shown in FIG. 2, a plurality of sources S of
Vulnerability threat and/or APAR information are connected
to a Computer Security Incident Response Team (CSIRT) or
other security-responsible server via a network, which can be
a local and/or wide area network including the Web. The
sources S can be one or more of the sources 110, 120, 130,
160, 170, 180 of FIG. 1, and/or other sources. The CSIRT
server sends computer-actionable computer security threat
management information to a plurality of target computer
systems T which can be one or more enterprise, application,
personal, pervasive and/or embedded systems that may be
connected to the CSIRT directly and/or via a network.
According to the prior applications, the computer-actionable
computer security threat management information comprises
one or more computer-actionable Threat Management Vec
tors (TMV), as will be described in detail below.
(0075 FIG. 3 is a flowchart of operations that may be
performed, for example by the CSIRT server, to generate
computer-actionable computer security threat management
information, according to the prior applications. As shown in
FIG.3, notification of a computersecurity threat is received at
Block 310. At Block 320, a computer-actionable TMV is
generated from the notification that was received. Further
description of the TMV will be provided in FIG. 4. Then, at
Block 330, the TMV, or a form of the TMV, that is generated
is transmitted to a plurality of target systems for processing by
the plurality of target systems.
0076 FIG. 4 is an overview of a data structure of a TMV
according to the prior applications. Further details will be
provided below. As shown in FIG.4, the TMV 400 includes a
first computer-readable field 401 that provides identification
of at least one system type, such as an operating system type,
that is affected by the security threat, a second computer
readable field 402 that provides identification of a release

US 2013/0263267 A1

level for the system type, and a third computer-readable field
403 that provides identification of a set of possible counter
measures for a system type and a release level. Moreover, in
some embodiments, the TMV includes a fourth computer
readable field 404 that provides identification of at least one
Subsystem type. Such as an application program type, that is
affected by the computer security threat and a fifth computer
readable field 405 that provides identification of a release
level for the subsystem type. In these embodiments, the third
computer-readable field 403 provides identification of a set of
possible countermeasures for a Subsystem type and a release
level in addition to a system type and release level. Moreover,
in some embodiments, the TMV includes a sixth computer
readable field 406 that identifies a vulnerability specification,
also referred to herein as a “root VKey vector', to identify the
Vulnerability or security threat.
0077 FIG. 5 is a block diagram of systems, methods and
computer program products for generating computer-read
able security threat management information according to the
prior applications. As shown in FIG. 5, notification of a com
puter security Vulnerability threat or countermeasure to a
Vulnerability or threat is received at a central clearinghouse,
also referred to herein as a CSIRT 510, from various sources
110-130 and 160-190 that were described above. Other
sources may also be utilized. At the CSIRT 510, a message
encoder 520 transforms vulnerability, threat, APAR and/or
information via human analysis and/or computer-assisted
encoding into an unambiguous computer-interpretable form,
referred to as a TMV. A common semantics database 530
establishes and maintains, via human analysis and/or com
puter-assisted encoding, the metadata used by the message
encoder 520 to create the TMV. One example is a set of
assigned numbers representing computer operating system
names. The message encoder 520 produces a TMV in com
puter-actionable format. For each specific vulnerability,
threat or countermeasure, the TMV stipulates target system
components and parameterized countermeasure installation
instructions for automated application. The TMV is then
transmitted to target systems 540. Target System Security
Administrators (SSA) 550 may be advised of interventions
that may be required to be performed if fully automatic inter
vention is not present, and/or of specific instructions. Human
labor can thereby be reduced dramatically.
0078 FIG. 6 is a flowchart of operations that may be used
to generate a TMV by a message encoder, Such as the message
encoder 520 of FIG.5. FIG. 6 refers to vulnerability alerts and
advisories and patch or other countermeasure information as
Threat Management Information (TMI). As shown at Block
610, TMI may originate from security organizations, ven
dors, independent security professionals and/or other
sources. TMI may include, but is not limited to, data about
Vulnerabilities in an operating system or application program
or software utility, countermeasures for correcting a Vulner
ability, or both. Examples of TMI are new or revised security
alerts and advisories from CERT/CC or SANS Institute and
new or revised patch notifications from Vendors.
0079 Referring to FIG. 6, conceptually, TMV generation
can be considered a two-stage process. However, in practice,
it may be implemented as a single set of integrated operations.
0080. In the first stage, at Block 610, TMI acts as input
stimuli for a process of analysis, qualification and quantifica
tion (AQQ) at Block 620. Analysis may involve a general
analysis and research of the input for completeness and coher
ence. Qualification may involve validating the accuracy, con

Oct. 3, 2013

sistency, Source integrity and efficacy of the information for
threat management use. Qualification also may involve Such
details as testing a proposed patch or script on an operating
system, application program, or program utility instance in a
laboratory or simulated production environment. Finally,
quantification may involve ensuring that all relevant TMI has
an unambiguous representation in a catalog entity called the
Threat Management Control Book (TMCB) such that each
information component 630 is discernible via assigned num
bers (ANs). The AQQ team, in fact, may represent a threat
management assigned number authority (TMANA) by virtue
of its authority to create, delete, and otherwise ensure the
referential integrity of ANs in the TMCB, respective of exter
nal assigned number authorities (ANAS).
I0081. In some embodiments, it may be desirable that all
ANs and corresponding information encodings for the com
plete construction of a TMV representing the TMI are avail
able in the TMCB. Any TMI not found to be so represented
may be formulated and cataloged in the TMCB by the
TMANA at Block 640. TMI categories may include, but are
not limited to, Vulnerability identity and specification, system
identity, System level identity, Subsystem identity, Subsystem
level identity, and countermeasure identity and specification.
I0082. The second stage may involve the systematic encod
ing (Blocks 650-680) of the physical TMV using TMCB
content and its subsequent transmission (Block 690) to target
systems for autonomic threat management processing. TMV
encoding may involve a cascading nested sequence of encode
operations 650, 660, 670, 680 for a given vulnerability 650
such that each affected system type 652 is identified, and for
each of these 662, each affected level 670 is identified, and for
each of these 672 all applicable countermeasures 680 are
encoded in machine-readable format, as shown in FIG. 6. A
similar cascading nested sequence of encode operations may
be performed likewise for affected subsystems.
I0083 FIG. 7 illustrates a general form of a TMV accord
ing to the prior applications. As was described above, the
TMV can transform the computationally ambiguous infor
mation, such as CVE information and/or other information,
into a precise specification of vulnerability attributes and
countermeasure attributes. The resultant encoding can then
be used by programs to automate the reconciliation of threat
specifics to a well-defined set of compensating countermea
Sures to be applied to specific target computer systems.
I0084 As shown in FIG. 7, a TMV according to the prior
applications may include a Vector Header, a VKey, such as a
CVE Key, a Pointer to System Vector, a Pointer to a Sub
systemVector and a VKey Description. It will be understood
that CVE is used herein as one example of a vulnerability key
(VKey), but that any other key(s) may be used. It also will be
understood that the VKey Description may be a free form text
description and/or an encyclopedic reference key to a text
description held elsewhere, and may be included in the vector
header as a usability aid. As also shown in FIG. 7, the Vector
Header may include a TMV Control field and a Vector Length
field. The VKey field may include VKey Type, VKey Length
and VKey Value fields. Finally, the VKey Description may
include a Description Type, Description Length and free form
text, or a Control field and an Array of encyclopedic reference
keys. FIGS. 8-12 provide detailed descriptions of the System
Vector, System Level Vector, Countermeasures Vector, Coun
termeasures Metadata and Subsystem Vector.
I0085 FIG. 8 illustrates a general form of the SystemVec
tor according to the prior applications. The System Vector

US 2013/0263267 A1

identifies the Operating System (OS) type(s) to which a Vul
nerability applies. It may include a Vector Header and an
array and/or linked list of System Identifiers corresponding to
specific OS types, such as Sun Solaris, AIX, etc. As also
shown in FIG. 8, the Vector Header may include a Control
field and a Vector Length field. The System Identifier can
include a System ID field, a System Control field and a
Pointer to System Level Vector field. The System Control
Field is used to maintain system oriented processing controls.
System IDs are globally unique codes which map to specific
operating system types. The code values and the correspon
dence to their conventional system names are maintained in
machine-readable form in a common semantics database,
referred to as a Threat Management Control Book (TMCB),
described below.

I0086 FIG.9 illustrates ageneral form of the System Level
Vector. As shown in FIG. 9, the System Level Vector may
include a Vector Header and an array and/or linked list of
System Level Identifiers. The Vector Header may include a
Control field and a Vector Length field. The System Level
Identifier may include a Level ID field, a System Level Con
trol field, and a Pointer to a Countermeasures Vector. The
System Level Vector identifies the specific operating system
version and release levels to which a vulnerability or coun
termeasure applies. The System Level Control field is used to
maintain system level directed processing controls. Level IDS
are system-wide unique codes which map to specific operat
ing system versions and release levels. The code values and
the correspondence to their conventional product version and
release names are maintained in machine-readable form in
the TMCB as will be described below.

0087 FIG. 10 illustrates a general form of a Countermea
Sures Vector according to the prior applications. As shown in
FIG. 10, the Countermeasures Vector may include a Vector
Header and an array and/or linked list of Countermeasures
Data. The Vector Header may include a Control field and a
Vector Length field. The Countermeasures Metadata may
include a Countermeasures (CM) ID, a CM Type, a CM
Control field and CM Parameters. The Countermeasures Vec
tor identifies the specific countermeasures applicable to a
specific version or release level of a specific operating system
(system) or application (Subsystem) version, in order to coun
teract the Vulnerability. The countermeasures vector thus
identifies a locus of points in the TMV subspace, as located by
the directed graph formed by the SystemVector, Level Vector
and/or SubsystemVector, Subsystem Level Vector, represent
ing the applicable set of countermeasures Such as patches.
0088 FIG. 11 illustrates a general form of Countermea
sure Metadata of FIG. 10. Countermeasure Metadata pro
vides the information that is used to apply a countermeasure.
Referring to FIG. 11, CounterMeasure ID (CMID) is a glo
bally unique code which maps to a specific countermeasure,
as defined in the TMCB (described below). CMType and CM
Parameters permit the specification of countermeasure instal
lation instructions. Examples of CM Types might include
“local”, “server”, “URL, “Binary” or “manual, represent
ing various modes of countermeasure installation. The CM
Control Field is used to maintain processing controls associ
ated with countermeasure deployment. Examples of CM
Parameters might include metadata representing interface
parameters to a local or remote patch application service, a
URL, embedded countermeasure installation instructions
(text or executable program code) and/or an encyclopedic
reference to same. The specific control mechanisms for speci

Oct. 3, 2013

fication of CM Parameters and installation of countermea
Sures is a function of the individual countermeasures them
selves, and need not be described herein.
I0089 FIG. 12 is an overview of a Subsystem Vector. As
was described above, security vulnerabilities may involve not
only operating systems but also subsystems, such as protocol
engines, application programs and utilities. The Subsystem
Vector identifies the subsystems or application types to which
a Vulnerability applies. It includes an array of system identi
fiers corresponding to specific Software entities, such as
Microsoft 11S. The Subsystem Vector can be structurally
identical to the SystemVector, except that it applies to appli
cation software that uses the operating system, as opposed to
the operating system itself. It also will be understood that the
semantics of the Countermeasures Vector elements may be
repeated in the Subsystem vector taxonomy.
(0090 FIG. 13 illustrates a general form of a Threat Man
agement Control Book (TMCB) according to the prior appli
cations, which may correspond to the common semantics
database 530 of FIG. 5. As was already described, the TMCB
includes an indexing structure containing the metadata asso
ciated with the standard values used in the TMV encoding. It
enables the transformation of nonstandard or bulky informa
tion into unambiguous and compact equivalent forms, for
packaging in a TMV. Such data transforms are established by
a Threat Management Assigned Number Authority
(TMANA). In general, the TMCB is the registry of standard
values encoded in TMV configurations.
0091 FIG. 13 illustrates tables that can be maintained in
the TMCB. As shown in FIG. 13, the system table may
include a System ID, a System Name, and a System Level
Table field, and may be indexed by System ID and System
Name. The System Level Table may include a Level ID and a
Version and Release Number field. The SubsystemTable may
include a Subsystem ID, Subsystem Name and Subsystem
Level Table, and may be indexed by Subsystem ID and Sub
system Name. The Threat Severity Table may include a
Severity ID and a Severity Name field, and may be indexed by
the Severity ID and Severity Name. The Countermeasure
Table may include a CM ID, CM Type and CM Name field,
and may be indexed by the CMID, CM Type and CM Name
fields. It will be understood, however, that these tables are
merely illustrative and other configurations may be provided
in other embodiments of the invention.
0092 FIG. 14 provides a summary of TMV taxonomy that
was described in detail in FIGS. 7-12.
0093. As was described above, the prior applications can
consolidate the human interpretation of threat management
information to a single point, establish an unambiguous rep
resentation of the information using a common semantic
information base, and produce a computer-actionable mes
sage unit (TMV) suitable for use by an automated threat
management system. Vulnerable systems may then identify
themselves, apply appropriate countermeasures, track State
and engage System Security Administrators (SSAS) only on
an “intervention required” basis.
0094 FIG. 15 is a block diagram of systems, methods and
computer program products for generating computer-read
able computer security threat management information
according to the prior applications. In FIG. 15, the function
ality of the message encoder 520 of FIG. 5 is provided by a
TMV generator 520', and the functions of the common
semantics metadata 530 is replaced by the TMANA530', in a
CSIRT or central clearing house 510'.

US 2013/0263267 A1

0095 Referring to FIG. 15, the TMV generator 520' trans
forms vulnerability, threat and APAR information via human
analysis and computer-assisted encoding, into an unambigu
ous computer interpretable form, the TMV. The TMV gen
erator 520' references a set of standard encodings maintained
by the TMANA 530' in the form of the TMCB (FIG. 13).
While the TMANA530' maintains the referential integrity of
the TMCB, the actual task of assigning values to the standard
encodings may be relegated to an external assigned numbers
authority, such as NIST. The TMV in computer-readable for
mat is provided to target systems 540. For each specific vul
nerability, threat or countermeasure, the TMV stipulates tar
get system components and parameterized countermeasure
installation instructions permitting automated application of
countermeasures at target computer systems.
0096. In view of the above, some embodiments of the
present invention can reduce the need for extensive threat
management research and analysis from many points, such as
each and every SSA 550, to one point, such as the TMV
generator 520'. This can reduce the labor associated with
threat management at the operational threat analysis level.
Moreover, through its introduction of standard encodings of
key data, embodiments of the invention can permit threat
managementactivities at target systems to be automated. This
can further reduce the labor associated with threat manage
ment at the operational security maintenance level.

Administering Computer Security Threat Countermeasures
for Computer Systems

0097 FIG. 16 is a flowchart of operations that may be
performed to administer computer security threat counter
measures for a computer system according to the prior appli
cations. These operations may be performed in a target sys
tem, for example, one of the target systems T of FIG. 2 or one
of the target systems 540 of FIG. 5 or 15.
0098 Referring now to FIG. 16, at Block 1610, a baseline
identification of an operating system type and an operating
system release level for the computer system is established,
which is compatible with a TMV. At Block 1620, a TMV is
received including therein a first field that provides identifi
cation of at least one operating system type that is affected by
a computer security threat, a second field that provides iden
tification of an operating system release level for the operat
ing system type, and a third field that provides identification
of a set of possible countermeasures for an operating system
type and an operating system release level. In other embodi
ments, the TMV may also include a fourth field that provides
identification of at least one application program type that is
affected by the computer security threat and a fifth field that
provides identification of a release level for the application
program type. In these embodiments, the third field also pro
vides identification of a set of possible countermeasures for
an application program type and an application program
release level. In still other embodiments, the TMV may
include a sixth field that provides identification of the com
puter security threat.
0099 Continuing with the description of FIG. 16, at Block
1630, a determination is made as to whether the TMV iden
tifies the operating system type and operating system release
level and/or the application program type and application
program release level for the computer system as being
affected by the computer security threat. If yes, then counter
measures that are identified in the TMV are processed at
Block 1640. If not, then receipt of a new TMV is awaited.

Oct. 3, 2013

0100 FIG. 17 is a flowchart of operations that may be
performed to administer computer security threat counter
measures according to the prior applications. Referring to
FIG.17, a baseline identification is established at Block 1610,
and a TMV is received at Block 1620. If a match occurs at
Block 1630, then at Block 1710, at least one instance identi
fier is added to the TMV to account for multiple instances of
the operating system and/or the application program onboard
the computer system. Countermeasures are then processed at
Block 1640 for the instance of the operating system type and
operating system release leveland/or the application program
type and application program release level when the operat
ing system and/or application program is instantiated in the
computer system. Accordingly, these embodiments of the
invention can take into account that, in a single computer
system, multiple instances of operating systems and/or appli
cation programs may be present.
0101 FIG. 18 is a block diagram of systems, methods and
computer program products according to the prior applica
tions. As shown in FIG. 18, based on TMV input and tightly
coupled side data, a target system 1810 can identify itself as
Vulnerable to a specific threat or needing a specific counter
measure, automatically initiate appropriate countermeasures,
track state and engage security system administrators 1820 on
an “intervention required” basis.
0102 Still referring to FIG. 18, at the initiation of security
administration personnel or automatic equivalents, a Threat
Management Information Base (TMIB) configurator 1830,
which utilizes standard values from a Threat Management
Control Book (TMCB) 530 of FIG. 13, also referred to as a
common semantics database 530 of FIG. 5, also referred to as
tightly-coupled side data, establishes a baseline identity and
Vulnerability state of a target system 1810 using a TMV
compatible information structure and a TMV history file
1840 that is maintained by the TMV generator 520 of FIG. 13,
also referred to as a message encoder 520 of FIG. 5.
(0103 Still referring to FIG. 18, upon receipt of a new
TMV, a TMV inductor 1850 checks the TMIB to see if any
onboard system/subsystem images are affected. If so, the
TMV inductor 1850 prunes the TMV of nonrelevant TMV
subvectors and forwards it to a Vulnerability State Manager
(VSM) 1860 for processing.
0104. The VSM 1860 incorporates the new vulnerability
or countermeasure information into the TMIB 1880 and,
using state information from the TMIB 1880, if any relevant
system or Subsystem images are active (instantiated), invokes
the Remediation Manager (RM) 1870 to oversee the applica
tion of the indicated countermeasures. During the remedia
tion, the remediation manager 1870 interacts with the TMIB
1880 to maintain current vulnerability state and countermea
sure application. The VSM 1860 may similarly invoke the
Remediation Manager 1870 upon system/subsystem initial
program load. Accordingly, a self-healing capability can be
provided in computer systems with respect to security threat
management.
0105 FIG. 19 is a flowchart of operations that may be
performed to administer computer security threat counter
measures to a computer system according to the prior appli
cations, and will refer to the block diagram of FIG. 18. Refer
ring to FIG. 19, at Block 1910, TMIB configuration is
performed upon receipt of an installation, configuration or
maintenance stimulus. TMIB configuration can obtain all
prior countermeasures for the system, also referred to as a
TMV history file, so that the system can be brought up to date

US 2013/0263267 A1

against all prior security threats. TMIB configuration will be
described in detail below. At Block 1920, TMV induction is
performed in response to a new TMV input stimulus, as will
be described below. At Block 1930, whether in response to
TMIB configuration Block 1910, TMV induction Block
1920, or a system/subsystem boot or resume stimulus, Vul
nerability state management of Block 1930 is performed to
allow all TMVs to be processed. Remediation management is
performed at Block 1940 to process the countermeasures that
are identified in the TMVs. Vulnerability state management
1930 may maintain the proper state of the computer system
even upon occurrence of a processing interrupt or Suspense
stimulus 1960. After remediation management is performed
at Block 1940, a new stimulus such as an installation configu
ration or maintenance stimulus, a TMV input stimulus, a
system/subsystem boot/resume stimulus or a processing
interrupt or suspense stimulus is awaited at Block 1950.
0106 TMIB configuration according to the prior applica
tions now will be described. TMIB configuration may be
performed by TMIB configurator 1830 of FIG. 18, and/or the
TMIB configuration Block 1910 of FIG. 19. TMIB configu
ration can build an information structure that definitively
specifies an initial and continuing Software configuration and
Vulnerability state of a target system, such that the TMIB
1880 is readily usable for computation comparison with a
subsequent inbound TMV to determine whether or not the
target system is one of the system or Subsystem types to which
the TMV should be directed. This can provide rapid recogni
tion, to efficiently match TMV system/subsystem type and
level information with on-board system/subsystem type and
level information. Moreover, remediation management based
on initial TMIB configuration can be virtually identical to the
Subsequent processing of inbound TMVs during steady state
operation, to allow computational consistency.
0107. In some embodiments, the initial configuration of
the TMIB 1880 can be computationally equivalent to that
derived by processing TMVs with all the Vulnerability and
countermeasure information to establish an initial non-Vul
nerable state. Stated differently, all countermeasures histori
cally identified as relevant to the system/subsystem being
initialized can be applied, in bulk mode. Subsequent inbound
TMV information can then be incorporated into the TMIB
1880 by a simple computational means due to notational
consistency.
0108. Thus, according to the prior applications, the TMV
generator 520, upon issuing TMVs, maintains a history file
1840 in the form of TMIB entries representing the history of
applicable countermeasures for applicable Vulnerabilities to
applicable systems and subsystems. TMIB fabrication, the
construction of TMV history file entries, and the TMV induc
tion operation can all be closely related. In particular, they can
all involve well-defined transforms on the TMV structure, as
described below.
0109 TMIB generation may take place using a process,
referred to herein as "TMV transmutation', as described in
FIGS. 20-22. As shown in FIG. 20, a system vector (for
operating systems), or Subsystem vector (for applications), is
extracted from the root TMV. Moreover, the subordinate sys
tem level vector is augmented with an “instance ID' field, to
represent a specific system instance. Such as a host name
and/or IP address. This forms a virgin TMIB structure that
identifies a system or subsystem. It will be understood that
FIG. 20 illustrates the system vector case, but a similar tax
onomy may be used for a Subsystem vector.

Oct. 3, 2013

0110. The taxonomy shown in FIG. 20 can represent a
highly sophisticated system. For example, the system illus
trated in FIG. 20 has three bootable system types with three
available boot images of the first system type, one for each of
three release levels of that system type. Machine architectures
supporting multiple concurrent Logical PARtitions (LPAR)
may fall into this category. Systems with multiple boot
images may be somewhat simpler. The simplest systems have
a single boot image, as depicted in FIG. 21.
0111. As shown in FIG. 22, the root VKey vector is then
rechained by replacing the countermeasures vector with a
pointer to an array of root Vkey vectors and augmenting each
root VKey vector with a countermeasures vector pointerfield.
This creates the basic structure of a TMV history record, a
TMIB fully populated with VKey, and countermeasure state
data, and an inducted TMV as shown in FIG. 22. It will be
understood that FIG.22 shows the data structure for a system.
However, a structure for a Subsystem can be similar. In prac
tical effect, the TMV transmutation can transform the TMV
from a desired language of a sender to a desired language of
a receiver.

0112 FIG. 23 is a flowchart of operations that may be
performed for TMV history file maintenance according to the
prior applications. These operations may be performed by the
TMV generator 520 of FIG. 18. Referring to FIG. 23, at Block
2310, a TMV History Record (HR) is constructed from a
VKey or countermeasure stimulus. At Block 2320, an HR is
retrieved for the affected system or subsystem. If an HR is
found at Block 2330, and if the new data supercedes the HR
data at Block 2340, then the HR data is replaced with the new
data at Block 2350. These operations are performed for each
affected system/subsystem in the input TMV. If an HR is not
found at Block 2330, then the new HR is stored at Block 2370.
If the HR was found at Block 2330, but the new data does not
supercede the HR data, then the new data is added to the
existing HR data at Block 2360.
0113 Referring now to FIG. 24, operations for TMIB
configuration will now be described according to the prior
applications. These operations may be performed by the
TMIB configurator 1830 of FIG. 18 and/or by TMIB configu
ration Block 1910 of FIG. 19. Referring now to FIG. 24, upon
occurrence of an installation, configuration or maintenance
stimulus, the TMV HR for the system/subsystem being
administered is retrieved at Block 2410. If an HR is found at
Block 2420, then the system/subsystem MIB is updated with
the TMIB from the HR data at Block 2430. The update may be
performed so as not to corrupt existing relevant Vulnerability
state management information for the system/Subsystem. If
not, then at Block 2440, the system or subsystem MIB is
initialized with a virgin TMIB. The operations of Blocks
2410-2440 are performed for each system and subsystem that
is being administered.
0114 FIGS. 25 and 26 are flowcharts of operations that
may be performed for TMV induction according to the prior
applications. These operations may be performed by TMV
inductor 1850 of FIG. 18 and/or TMV induction Block 1920
of FIG. 19. Referring now to FIG. 25, upon receipt of the
TMV stimulus, TMV transmutation, as was described above,
is performed at Block 2510. At Block 2520, the TMIB sys
tem/level subsystem/level vector data is compared with the
TMV. If a match is found at Block 2530, then a potentially
Vulnerable system/level or subsystem/level identified in the
TMV has been determined to be on board. Operations pro
ceed to FIG. 26 at Block 2550, to determine the actual vul

US 2013/0263267 A1

nerability. On the other hand, if at Block 2530 no match was
found, then at Block 2540, the input TMV is ignored. Opera
tions of Blocks 2520, 2530, 2540 and 2550 may be performed
for each on board system/level and subsystem/level in the
TMIB, whether or not active. Operations then proceed to a
Vulnerability state manager at Block 2560, which will be
described in connection with FIG. 27.

0115 Referring now to FIG. 26, at Block 2610, in
response to identification of a potentially vulnerable system/
level or subsystem/level in a TMV at Block 2550, the TMIB
Vulnerability/countermeasures vector data for the TMV sys
tem or subsystem level is accessed. At Block 2620, the TMIB
Vulnerability/countermeasures vector data is compared with
each TMV Vulnerability vector. If a match is found at Block
2630, and if the TMV data supercedes the TMIB data at Block
2640, then at Block 2650, the TMIB vulnerability/counter
measures data is reset with data from the TMV. On the other
hand, if a match is not found at Block 2630, then the new
TMIB Vulnerability countermeasures vector data from the
TMV is added at Block 2670. Alternatively, if a match is
found but the TMV data does not supercede the TMIB data,
then at Block 2660, the TMV Vulnerability/countermeasures
vector data can be ignored. The operations at Blocks 2620
2670 may be performed for each vulnerability vector in the
TMV for the affected system/level or subsystem/level.
0116 FIG. 27 is a flowchart of operations that may be
performed for Vulnerability state management according to
the prior applications. These operations may be performed by
the vulnerability state manager 1860 of FIG. 18 and/or the
vulnerability state management Block 1930 of FIG. 19.
Referring now to FIG. 27, at Block 2710, in response to a
TMV induction stimulus or a system/subsystem boot or
resume stimulus, TMIB vector data is accessed. At Block
2720, the remediation manager is called, as will be described
in FIG. 28. Operations of Block 2710 and Block 2720 may be
performed for each active system/level and subsystem/level
in the TMIB, for each Vulnerability vector associated there
with, and for each countermeasures vector associated with the
Vulnerability for which a state does not indicate “applied/
verified.

0117 Referring now to FIG. 28, operations for remedia
tion management according to the prior applications will now
be described. These operations may be performed by the
remediation manager 1870 of FIG. 18 and/or the remediation
management Block 1940 of FIG. 19. Referring to FIG. 28, in
response to countermeasures selection stimulus, countermea
sures vector data is accessed at Block 2810. The countermea
sure state is checked by checking the CM control field at
Block 2820. If verified at Block 2830, then the countermea
sure is ignored at Block 2870. If the countermeasure is not
verified, but is applied at Block 2840, then the countermea
sure is verified and set to the “verified’ state. If the counter
measure is not applied at Block 2840, then the countermea
sure is applied and is set to the “applied' state at Block 2850.
The operations of Blocks 2820-2870 may be performed for
each countermeasure indicated in the countermeasures vec
tOr.

0118. As described above, the prior applications can per
mit a computer system to become autonomic (self-healing) to
a large degree. This can reduce the human labor associated
with the application of security patches, and the associated
labor costs. Because of the autonomic characteristics of the
prior applications, security patches may be applied more rap

Oct. 3, 2013

idly, which can reduce exposure time duration and the corre
sponding aggregate costs associated with recovering from
system penetration attempts.

Administration of Computer Security Threat
Countermeasures Across a Domain of Target Computer
Systems.

0119. In the above-described embodiments, a central
operational component (sometimes referred to as a Threat
Management Vector (TMV) generator) distributes to each
target system a vector containing information that those sys
tems use to assess their Vulnerability state and apply an appro
priate set of countermeasures with reduced or minimized
human intervention. Each target system can operate autono
mously on its input, applying appropriate countermeasures as
determined by the input and by the target system's current
configuration, and can maintain state information regarding
the progress of remedial actions. Embodiments that will now
be described can provide a Threat Management Domain Con
troller (TMDC) that can selectively distribute TMVs to a
domain of target computer systems. The TMDC is responsive
to a TMV and is configured to process a TMV that is received
for use by the domain of target computer systems and to
transmit the TMV that has been processed to at least one of the
target computer systems in the domain of target computer
systems. Accordingly, the prior applications can potentially
improve operational efficiency of TMV distribution and/or
TMV processing at target systems.
I0120 FIG. 29 is a block diagram of domain controlling
systems, methods and/or computer program products for
administration of computer security threat countermeasures
to a domain of target computer systems according to the prior
applications. As shown in FIG. 29, a TMDC 2910 is respon
sive to a computer-actionable TMV that is generated by a
TMV generator 520. The TMDC 2910 is configured to pro
cess a TMV that is received for use by a domain 2920 of target
computer systems 540 and to transmit the processed TMVs to
at least one of the target computer systems 540 in the domain
2920 of target computer systems 540.
I0121 Continuing with the description of FIG. 29, the
TMDC 2910 can reside on one or more enterprise, applica
tion, personal, pervasive and/or embedded computer systems
2900 and may operate at least in part on the same computer
system 510 that runs the TMV generator 520 and/or one or
more of the target systems 540 in the domain 2920. The
TMDC 2910 operates within the administrative domain 2920
of a collection of target systems 540. The TMDC 2910 can
mediate between the TMV generator 520 and the target com
puter systems 540. In some embodiments, the TMDC can
reduce or eliminate the need for the TMV generator 520 to
maintain knowledge of target computer system identities,
configurations and/or operational status. In some embodi
ments, the TMDC 2910 can improve or optimize bandwidth
that is used for TMV transmission and/or the utilization of
network infrastructure components for TMV transmission. In
some embodiments, the TMDC 2910 can reduce or minimize
I/O subsystem, buffer storage and/or CPU utilization at target
systems 540 for processing of TMVs. Moreover, in some
embodiments, the TMDC 2910 can provide a central source
for target system program instance inventory information.
I0122. In some embodiments, rather than sending TMVs to
each target system 540 individually, the TMV generator 520
sends TMVs to one or more TMDCS 2910. Each TMDC in
turn can reliably forward to each target computer system 540

US 2013/0263267 A1

in its domain 2920 only those TMV elements that may be
appropriate to the specific target system environment. This
capability can be provided at least in part based on the instan
tiation at the TMDC of real or near real time replicas of TMIB
data 2930 associated with each target system 540. It also will
be understood that although FIG. 29 illustrates a single
TMDC 2910 and four target systems A-D, other embodi
ments may provide multiple TMDCs 2910, each of which
may be associated with one or more target systems 540.
0123. As was noted above, according to the prior applica

tions, the TMDC is configured to process a TMV that is
received, for use by a domain of target computer systems and
to transmit the TMV that has been processed to at least one of
the target computer systems in the domain of target computer
systems. In some embodiments, this processing and transmit
ting is performed by selectively transmitting the TMV that is
received to the at least one of the target computer systems if
the TMV applies to the at least one of the target computer
systems. In other embodiments, this processing and transmit
ting is provided by selectively transmitting selected TMV
fields in the TMV that is received to the at least one of the
target computer systems. In still other embodiments this pro
cessing and transmitting is performed by mutating the TMV
that is received to a format that is compatible with the domain
of target systems. In yet other embodiments this processing
and transmitting is performed by generating a Program
Instance (PI) vector that identifies a program instance at a
selected one of the target computer systems and by transmit
ting the TMV, including the PI vector, to the selected one of
the target computer systems. In still other embodiments, this
processing and transmitting is performed by transmitting
TMVs that were not previously transmitted to a program
instance at a target computer system due to unavailability of
the program instance, upon availability of the program
instance. In still other embodiments, this processing and
transmitting is provided by storing a TMV until the TMV has
been provided to all program instances at the domain of target
computer systems and to purge the TMV thereafter. These
various embodiments will be described in detail below.

0.124 Transmutation of a TMV by a TMDC according to
some embodiments of the present invention now will be
described. In the prior applications, the TMV generator cre
ated a form of TMV that may be optimized to represent
information in a form most suitable for computation by the
sender. Target systems receiving TMVs then performed a
“transmutation' on the input to create a form a TMV that may
be optimized to represent information in a form most suitable
for computation by the receiver, the target system itself.
0.125. In contrast, according to other embodiments of the
prior applications, a TMV transmutation is performed by the
TMDC 2910 on behalf of the target systems 540 within its
domain 2920. The transmuted TMV may be augmented with
an inventory-management-oriented data structure, for
example, by virtue of a specialization of the “Instance ID
field of the transmuted TMV that was described in the prior
applications. This TMV data structure may be used by both
the TMDC and target systems within its domain, in coordi
nated fashion, to govern the installation of countermeasures
at target computer systems. As part of its mediation function,
which may be made possible by the replication of portions of
the TMIBs 1880 from the target systems to TMIB' 2930 at the
TMDC 2910, the TMDC 291.0 customizes the TMV contents

Oct. 3, 2013

sent to each target system 540 such that only those TMV data
elements relevant to a specific target system may be received
by that target system.
(0.126 FIG.30 illustrates an overall taxonomy of a TMV as
was described extensively in the prior applications. In FIG.
30, some vector field names have been simplified and vector
control fields are designated “CF. Moreover, the Root Vul
nerability Vector was also referred to as a “Root CVE Vector”
in the prior applications.
I0127. As was also described in the prior applications, the
target systems performed a transmutation on the TMV to
create a form that may be optimized to represent information
in a form most suitable for computation by the receiver. FIG.
31 illustrates a taxonomy of a transmuted TMV of the prior
applications. Again, Some vector field names are simplified
and the vector control fields are designated “CF'.
I0128. The generation and use of a Program Instance (PI)
vector according to the prior applications now will be
described. In the prior applications, the content of the
“Instance ID' field of the System Level Vector and Subsystem
Level Vector, which was shown in FIG. 31 as well as FIGS.
20-22, provides a pointer to a PIVector. The pointeris referred
to herein as a PI Locater. The PI Locater and PI Vector are
shown in FIG.32. It will be understood however, that in other
embodiments, the PI Locater and/or PI Vector may use an
existing TMV field other than the “Instance ID' and/or may
use a new TMV field.

I0129. The PI Vector is a data structure that identifies pro
gram instances of a system or subsystem type and level, a
local address for routing of information and program controls
to the program instance within each target system, and the
global address for network routing of TMV data to target
systems within the administrative domain of the TMDC.
There may be multiple PI Vector components for a given
system/subsystem and level, each representing a specific
instance of an onboard program of that type within the target
system environment. The PI Vector may be instantiated and
configured as will be described below.
0.130. The generation and use of a TMV Generation Num
ber (TMVGN) to track TMVs that are processed by the
TMDC and to control transmitting of TMVs that were not
previously transmitted to a program instance at a target com
puter system due to unavailability of the program instance,
upon availability of the program instance, according to the
prior applications, now will be described. In particular, it may
be common for target systems or certain of their PIs to have
periods of non-availability. Examples include the period prior
to the initial configuration and Initial Program Load (IPL) of
a target system PI, and the periods between IPLs of PIs during
which the PI is “powered down”. During these periods, it may
not be feasible to expect to be able to communicate TMVs to
PIs directly, which may lead to gaps in time during which
TMVs are generated and disseminated by the TMV Genera
tor (TMVG) but not received by target system PIs.
I0131. In order to allow the scope of these gaps to be known
precisely and resolved upon reestablishment of availability of
these target system PIs, the prior applications can provide a
data structure called the TMVGN. The TMVGN is initially
instantiated in the TMV history file with an initial value such
as 0. Each time a TMV is created by the TMVG, the current
TMVGN is retrieved from the TMV history file and its value
is incremented by, for example, +1. The new TMVGN is
recorded in the TMV Root Vulnerability Vector for transmis
sion in the TMV. The new TMVGN also replaces the TMV

US 2013/0263267 A1

history file (TMVGN) when the new TMV data is incorpo
rated in to the TMV history file. When a PI is configured and
its PI vector component is instantiated in the target system
TMIB according to the prior applications, the PI vector com
ponent is augmented with a TMVGN field. The TMVGN
associated with the TMV history file data used for configu
ration operation is stored in the TMVGN field. Thus, by virtue
of this TMVGN maintenance, it is possible to know precisely
which TMVs each target system PI has “missed during its
non-availability and to populate target system. TMIBs with
the missing information as target system PIs become avail
able.

(0132 FIGS. 33A-33C summarize the impact of the
TMVGN construct to relevant data structures according to the
prior applications. As was described above, a TMVGN field is
added of scope global, to the entire TMV history file. A
TMVGN field is added to the Root Vulnerability Vector as
shown in FIG. 33A. Transmuted TMVs are also shown in
FIG.33B. The TMVGN moves with the vulnerability vector
in the transmuted structure as also shown in FIG. 33B.
Finally, a field is added to the PI vector representing the
TMVGN last known to the PI as shown in FIG. 33.C.

0.133 Domain Store and Forward Repositories (DSFRs),
which are configured to store a TMV until the TMV has been
provided to all program instances at the domain of target
computer systems and to purge the TMV thereafter, accord
ing to the prior applications, now will be described. Assuming
a capability of target systems to register their PI inventory and
the TMVs already incorporated into each PITMIB, as will be
described below, it is possible for a TMDC to know precisely
which TMVs have been generated by the central TMV gen
erator, but not received by the TMDCs target systems. The
DSFR provides a mechanism for instrumenting this knowl
edge. In general, in a stable network topology, there is some
point in time, i.e., some point in the sequence of TMV gen
erations, that can be fixed, at which the existence of the
TMDC “predates' the target systems in its domain. Another
way of stating this is that there is no target system in the
domain that has in its TMIB, a TMVGN greater than the
highest TMVGN known to the TMDC.
0134. Thus, for a well behaved operation within a stable
threat management domain, the TMDC may only need to
have at its disposal at any given time, only those TMVs whose
generation number (TMVGN) is greater than the highest
TMVGN configured in the “youngest (latest configured or
latest to be contacted after a period of unavailability) target
system PIs within its domain. Otherwise, the TMDC may
need to have TMVs whose TMVGN is less than or equal to
those known by any target system PI in its domain but that
would be redundant information because, as was described in
the parent applications, target systems may always be config
ured with all TMVs generated up to the time of the configu
ration operations.
0135 Therefore, in the prior applications, a DSFR is pro
vided such that each TMV received from the TMVG by the
TMDC is catalogued there until its TMVGN becomes less
than or equal to the lowest TMVGN reported by all of the
registered target system PIs within its domain. The purge
point may be defined as that TMVGN satisfying the quality
criteria. The purge point thus can provide an efficient system
for keeping the DSFR small in size. The DFSR, thus, can be
thought of as a TMV history file subset containing all TMV
data with TMVGNs greater than the purge point. A DSFR is
illustrated in FIG. 29 at 2940, as a TMV Store & Forward.

Oct. 3, 2013

0.136 PI registration according to the prior applications
now will be described. According to Some embodiments, at
least one of the target systems comprises a plurality of PIs and
the target system is configured to register the plurality of PIs
with the TMDC. In some embodiments, each of the PIs itself
is configured to register with the TMDC. In other embodi
ments, the target system itself is configured to register the
plurality of PIs in the target system with the TMDC.
0.137 More specifically, within a given threat manage
ment domain, the TMDC can have a well-known address such
as an IP address host name and/or other address. The address
may be made known to target systems, for example during the
target system configuration process that has already been
described. At the earliest convenient time, the PIs of each
target system within a threat management domain are regis
tered with the TMDC, for example via an assigned service
port. A “PI Registration Request” Protocol Data Unit (PDU)
is sent to the TMDC such that, for each PI within the target
system, that portion of its TMIB including system/subsystem
vectors, system/subsystem level vectors and PI vectors are
reported to the TMDC and stored by the TMDC in TMIB
facsimiles (TMIB' 2930) representing registration informa
tion. According to the prior applications, registration can be
controlled in at least two ways: in some embodiments pro
gram instances may register themselves during the program
initialization sequence, for example, by establishing a session
with the TMDC and transmitting their TMIB information.
Alternatively, a target system control program or system,
operating on behalf of the PIs within its environment, may
establish a session with the TMDC and incrementally register
all of its PIs.
0.138 FIG.34 is a block diagram of PI registration accord
ing to the prior applications. As shown in FIG.34, two simple
(single PI) target systems 540 each registers their PI of a
particular system/subsystem type and level, along with its last
known TMVGN with the TMDC 2910. The information is
then stored in a TMIB facsimile 2930 maintained by the
TMDC. Note that in FIG. 34, TMIB(A) represents the col
lection of TMIB (PI) associated with target system A.
0.139. To complete the registration, the TMDC returns a
“Registration Response PDU, which includes the original
request data augmented with the requested Vulnerability/
countermeasure information, i.e., all Vulnerability vectors
associated with the given system/subsystem type and level
bearing a TMVGN greater than the TMVGN reported by the
target system during registration. Upon incorporating the
return vulnerability/countermeasure information (if any), the
target system returns a “PI Registration Acknowledgement
PDU bearing the highest TMVGN of the newly incorporated
information. The TMDC then updates its TMIB(A) with the
acknowledgement TMVGN. FIG.35 illustrates a registration
sequence for the embodiments that were illustrated in FIG.
34. PDUs are sent in a sequence shown by reference numbers
3510-3530 in FIG. 35. FIG. 36 is a flowchart of operations
that may be performed for PI registration according to the
prior applications.
0140 TMV refreshing according to the prior applications
now will be described. As was described above in connection
with PI registration with the TMDC, the TMDC can exercise
the DSFR "purge point to reduce or minimize DSFR physi
cal size. The prior applications can provide a TMV refresh
protocol to govern refreshing of TMVs.
0141 Under the TMV refresh protocol, it may happen that
there is an excessive period of time between configuration of

US 2013/0263267 A1

target system PIs and their initial registration with the TMDC.
In such cases, it is possible that the highest TMVGN incor
porated by the configuration process is lower than the lowest
TMVGN being held in the DFSR by more than one (1) which
may represent a gap in TMV information readily available to
the TMDC versus what is used for PI registration. In such
cases, according to the prior applications, the target system
registration process may be paused while the TMDC engages
the TMV refresh protocol with the TMVG to procure the
missing TMV information.
0142 Protocol Data Units (PDUs) are exchanged between
the TMDC and the TMVG as illustrated in FIG. 37. The
“TMV Refresh Request” PDU bears a request ID for corre
lation of the response, the lowest TMVGN known to the
TMDC, the target system's PI registration information,
including the system/subsystem types and levels being regis
tered, and their PI vectors. These vectors also contain the
highest TMVGN known by the target system PI for each of
the system/subsystem types and levels being registered. In its
“TMV Refresh Response' PDU, the TMVG appends to each
system level vector of the Request PDU, those vulnerability
vectors representing Vulnerabilities applicable to the system
type and level whose TMVGN is greater than that reported for
the PI but less than that reported for the TMDC, thus closing
the gap in the information. Upon receiving a response, the
TMDC may then complete the PI registration by incorporat
ing the refresh information into the PI registration response
PDU. Thus FIG. 37 illustrates the PI registration protocol
with a TMV refresh protocol included. Message flow may
proceed as indicated by 3710-3750 in FIG. 37.
0143 FIG. 38 is a flowchart of operations that may be
performed to provide TMV refresh according to the prior
applications. As shown in FIG. 38, to establish a TMV
refresh, the logic of FIG. 38 is inserted at junction A of the
flowchart of FIG. 36. In FIG. 38, TMVGN (LH) means a
TMVGN pair representing the lowest (L) and the highest (H)
in a range.
0144 PI recalibration according to the prior applications
now will be described. It has already been described that PIs
may instigate registration themselves or registration may be
done by a target system control program or system on behalf
of PIs within its scope of control. The same may be true for
exchanges in general between the TMIBs, PIs and the TMDC.
Over the course of time following PI registration, it may be
that certain PIs are unavailable (such that their TMIBs are
inaccessible to the TMDC and the TMDC is inaccessible to
the PITMIB). It may be that the PI is shut down (for example
between IPLs), or it may be that the entire target system is
unavailable.
0145 During such periods of time, it is conceivable that a
TMDC may continue to receive TMVs of relevance to the PI,
and that the distribution of such new information to a target
system PI is temporarily prevented. By virtue of the DFSR, a
TMDC is equipped to withhold delivery of TMVs to PI
TMIBs until they subsequently become available.
0146 When such target systems or PIs subsequently
become available, they may need to be recalibrated with new
threat management information by delivering to them all
relevant TMVs received by the TMDC during their period of
non-availability.
0147 According to the prior applications, PI recalibration
may be accomplished virtually identically as PI registration,
except that the TMDC may already possess a TMIB' repre
senting the PI when the registration occurs. Thus, PI recali

Oct. 3, 2013

bration may be defined as PI registration, wherein the TMDC
possesses a preexisting TMIB' for the PI. The net effect may
be that the PI receives all relevant TMVs that are missed
during its non-availability.
0148 PI deregistration according to the prior applications
now will be described. In particular, it is conceivable that
certain PIs of target systems will be uninstalled or otherwise
permanently removed from the target system-operating envi
ronment. Such an action may naturally involve the removal of
the PI’s TMIB from the target system. According to the prior
applications, PI deregistration may be performed coincident
with PI removal. PI deregistration can entirely remove knowl
edge of the PI from the TMDCs information base.
0149 FIG. 39 illustrates an example of PI deregistration.
During the removal of a PI (A1) from a target system (A), the
PI or the target system (whichever the case) transmits a “PI
Deregistration Request” PDU to the TMDC as shown at 3910.
Upon receipt, the TMDC destroys that portion of its TMIB'
for target system. A representing the designating PI, as shown
at 3920. The TMDC then returns to target system A a “PI
Deregistration Response PDU as shown by 3930, thus indi
cating that the deregistration is complete. Upon receipt of the
response at the target system, the TMIB representing the PI
being removed is destroyed as shown at 3940.
0150 Input TMV processing according to the prior appli
cations now will be described. Input TMV processing can
incorporate some or all of the various embodiments that were
described above. In particular, according to the prior applica
tions, TMDCs, rather than target systems, receive the TMVs.
Within each threat management domain, TMDCs then for
ward to target systems within their domains, processed TMVs
that are customized to, for example, allow improved target
system CPU and/or buffer utilization, and/or to allow
improved network utilization within the domain. To accom
plish this potential efficiency, in addition to the provisions
described previously, the prior applications may also include
the following operations. These operations are shown by
4910-4960 in FIG. 40, and are described below:
0151. The “TMV transmutation of the “TMV induction

is removed from target systems and replaced by a similar or
identical TMV induction associated with the TMDC at 4910,
so that transmutation is performed only once within the threat
management domain rather than multiple times throughout
the target system population. At 4920, following the TMV
transmutation, the TMV content is incorporated into the
DSFR and the DSFRs TMVGN is updated to reflect the new
input. At 4930, for each target system within its domain, the
TMDC interrogates the PI system/subsystem and level infor
mation within each TMIB' for each target system, looking for
a match with the corresponding vector components of the
mutated input TMV. For each PI found to match the compari
son criteria, a customized mutated TMV containing only
those system/subsystem and level vectors, Vulnerability Vec
tor and Countermeasures Vector corresponding to the match
criteria is cloned from the TMV, at 4940.
0152 The TMV is transmitted to the target system PI
using the routing information Supplied by the target system
during the PI registration described previously at 4950. If the
TMV Inductor for the PI is available, it acknowledges receipt
in a PDU bearing the receive TMVGN. Otherwise, TMV
distribution is self-correcting and will be accomplished as a
consequence of PI recalibration when the PI again becomes
available, according to 4920 and embodiments of the present
invention previously described. When all of the eligible and

US 2013/0263267 A1

available PIs within the domain have been serviced, the
mutated input TMV is destroyed at 4960. Note that in FIG. 40,
Target System A has one PI (A1), and it is affected by the
input TMV content. Target System B has two PIs (B1 & B2),
and they are both affected by the input TMV content. Finally,
Target System C also has two PIs (C1 & C2), but neither of
them are affected by the input TMV content.
0153 FIG. 41 is a flowchart of operations for input TMV
processing as was described in connection with FIG. 40. FIG.
42A is a flowchart of input TMV processing by a TMV
emitter. FIG. 42B is a flowchart of TMV processing by a
TMV responder.
0154 Finally, TMV synchronization according to the
prior applications will be described. In particular, although
the prior applications may generally assume that a TDMC
will maintain a secure TCP/IP (or other) session with the
TMVG, it is conceivable that for certain periods of time such
as a session may be disabled or otherwise unavailable. In
certain circumstances this can result in TMDCs missing some
TMV or sequence of TMVs generated by the TMVG.That is,
the TMDC and TMVG may become unsynchronized. To
accommodate Such a circumstance, the prior applications can
provide that, if a TMDC receives a TMV with a TMVGN
exceeding the TMVGN of the TMDC's DSFR by more than
one (1), then the TMDC initiates a “TMVGN Synchroniza
tion” to acquire the missing TMVs, according to the follow
ing provisions and as shown in FIG. 43:
0155. A “Synchronize Request” PDU is defined at 4310,
containing a “Starting TMVGN' field and an "Ending
TMVGN' field. These indicate the TMVGN from the DSFR
plus one (+1) and the TMVGN value from the TMV that
caused the TMDC to detect the disruption of synchronism
minus one (-1), respectively. In response, at 4320, the TVMG
initiates an incremental sequence of TMVs to the requesting
TMDC, representing the range of TMVGNs specified in the
request, by reconstituting the TMVs from its TMV History
File.

0156 Due to the fact that certain TMVs “supersede” prior
TMVs, it may be that certain TMVGNs in a historical
sequence will indeed be missing due to their obsolescence.
For Such cases, while satisfying a given Synchronize Request
PDU, a TMVG may generate one or more “null” TMVs,
indicating that the TMVGN should be ignored. A null TMV
may be indicated in an appropriate control field of the Root
Vulnerability Vector (and/or by the absence lower level vec
tors), and the TMVGN field of that vector indicates the
TMVGN to be ignored. Other fields may be deprecated.
0157 Accordingly, the prior applications can provide a
threat management domain controller that intervenes
between a TMV generator and one or more domains of target
computer systems. By providing a multi-tier threat manage
ment architecture, the prior applications can improve or
maximize scalability. Overall resource requirements includ
ing network bandwidth and target system CPU and buffer
utilization can be reduced and/or minimized. Reliable deliv
ery of actionable threat management information to target
systems can be enhanced. Moreover, the need for human
intensive tasks may be reduced or eliminated. In particular,
the administrator-driven initial configuration of vulnerability
inventory for target systems may be reduced or eliminated.
TMVGNs also can be used to represent a form of time cali
bration, i.e., ticks of a clock in a threat management time
continuum.

Oct. 3, 2013

0158. The prior applications can improve or optimize
information flow in that each target system may receive only
that information that it actually needs and only when it is
needed. Moreover, computational efficiency may be pro
vided. The prior applications also can be naturally self-cor
recting. The "purge point construct can reduce or minimize
storage for TMV data within a TMDC. The “null TMV”
construct can maintain time continuity. Finally, a convention
of setting the TMVGN to Zero upon initial registration may
cause the system to auto-configure target systems with his
torical threat management information of relevance to them,
which can replace the need for human intervention for initial
configuration of target system vulnerability inventory and
may also reduce or eliminate a significant operational cost
factor in implementation.

Intrusion Detection and Response Across Target Computer
Systems

0159. During the course of operation of an implementa
tion of the prior applications, Countermeasures Vectors
(CVs) are installed for appropriate systems and/or sub
systems such as PIs, and the remediations they specify are
applied. These remediations can reduce or nullify the expo
sure of the PI to an associated vulnerability (as identified by
the related Vulnerability Vector).
0160 However, at the time of application of a countermea
sure or set of countermeasures for a PI, it may be that the
related Vulnerability has already been exploited, either acci
dentally or on-purpose, resulting in the compromise of the PI.
This will be referred to as an “intrusion'. In such cases, by
themselves, countermeasures associated with nullifying the
exposure of the PI to the Vulnerability may be of little imme
diate utility.
0.161 Some embodiments of the present invention can
remediate the Vulnerability and also can interdict and eradi
cate the intrusion, in a coordinated fashion. In particular, it is
not uncommon for intrusions to establish evidence of their
presence. Even though an intrusion may disguise or attempt
to disguise Such evidence, there are often techniques available
to penetrate such disguises. For example, in a UNIX-based
system, an intrusion may disguise its running processes by
first replacing the “ps' command (which displays running
processes). However, if a countermeasure in the form of an
uncorrupted instance of the pS command can be executed,
intruding processes can be revealed.
0162 Some embodiments of the present invention can
address circumstances wherein it is possible to detect that a
Vulnerability has been exploited before its remediation has
been applied. Accordingly, Some embodiments of the present
invention can provide systems, methods, computer program
products and/or data structures that can automate the detec
tion and remediation of an intrusion upon a system and/or
Subsystem Such as a Program Instance (PI), in addition to the
Vulnerability remediation capability established by the prior
applications.
0163 Some embodiments of the present invention can
provide extensions to the structure of the Threat Management
Vector (TMV) introduced by the prior applications, to incor
porate mechanisms for “Intrusion Detection’ (ID) and “Intru
sion Response' (IR), in addition to and/or in conjunction with
the Vulnerability Remediation (VR) capability embodied in
the prior applications. Some embodiments of the present

US 2013/0263267 A1

invention also provide for operation of these mechanisms
simultaneously across a collection of target computer sys
temS.

0164. Accordingly, some embodiments of the present
invention can specialize the content of the Countermeasures
Vector introduced by the prior applications, to incorporate
multiple classes of functionality, including the following:
Intrusion Detection Vectors contain one or more tests for
evidence of effective exploit of a vulnerability as identified by
the Vulnerability Vector of a TMV. Intrusion Response Vec
tors convey instructions for the interdiction and removal of
elements associated with an intrusion induced by an exploit.
Such elements may be detected by an Intrusion Detection
Vector associated with a vulnerability identified by the Vul
nerability Vector of a TMV. Finally, Vulnerability Remedia
tion Vectors may be generally similar to the Countermeasures
Vector specified in the prior applications. Vulnerability
Remediation Vectors convey instructions for the remediation
of circumstances and properties identified as constituting a
Vulnerability as identified by the Vulnerability Vector of a
TMV.

0.165 Accordingly, a computer-actionable TMV accord
ing to some embodiments of the present invention can include
a computer-readable field that provides identification of at

CMVector Component Functional Description

Syntax Error (no bracket may begin with a Boolean)
Unitary Bracket Specification
Syntax Error (first in bracket must start a group)
Begin Bracket - Unitary Group Specification
Begin Bracket - Begin Group
Continue Bracket - Begin Group
Continue Bracket - Continue Group
Continue Bracket - End Group
Continue Bracket - Unitary Group Specification
Syntax Error (last in bracket must end a group)
End Bracket - Unitary Group Specification
End Bracket - End Group

least one system type that is effected by a computer security
threat, a computer-readable field that provides identification
of a release level for the system type and a computer-readable
field that provides identification of a test that detects intrusion
of the computersecurity threat for a system type and a release
level. These TMVs may also be referred to herein as Intrusion
Detection Vectors. Other TMVs according to embodiments of
the present invention include a computer-readable field that
identifies instructions for removing the intrusion of the com
puter security threat that was detected. These embodiments
may be referred to herein as Intrusion Response Vectors.
Finally, in still other embodiments, a computer-readable field
also provides identification of a possible countermeasure for
a system type and a release level. These embodiments may be
referred to herein as Vulnerability Remediation Vectors.
0166 FIG. 44 illustrates a technique that may be used to
differentiate Countermeasure Classes utilizing the “Control
Field' of the Countermeasures Vector. Countermeasure
Classes should not be confused with Countermeasure Types
(CMType), which are used to indicate the syntax and seman
tics of Countermeasure Parameters (CM Parameters) within a
Countermeasures Vector component.
0167 Countermeasure bracketing permits the conveyance
of a plurality of logically distinct classes of Countermeasure

Oct. 3, 2013

Vectors in a single TMV transmission. One way to logically
express countermeasure bracketing is shown below. As
shown below, there are two brackets. The first bracket carries
a single countermeasure (CM1) and the second bracket car
ries a choice between two sequential countermeasures (CM2,
CM3) and an alternative (CM4). Within a bracket, parenthe
ses () are used to denote a logical grouping of countermea
SUCS

(0168 (CM1)(CM2&CM3)|(CM4).
0169. The above example can represent a Countermea
sures Vector including an Intrusion Detection (ID) Counter
measure bracket (CM1) which, if the detection result is
negative, permits the application of a Vulnerability Remedia
tion (VR) Countermeasure bracket, (CM2&CM3)|(CM4,
as annotated in FIG. 45. Note the terms “Unitary Bracket' and
“Unitary Group” in FIG. 45 to denote a bracket or group,
respectively, containing a single countermeasure specifica
tion. Note also the use of Boolean logical expressions.
0170 Countermeasure bracketing permits the conveyance
of multiple logically distinct classes of Countermeasure Vec
tors in a single TMV transmission, as shown in FIG. 46.
0171 The Table below shows an example of a counter
measures Vector parsing and logic control mechanism imple
menting the countermeasure bracketing method.

TABLE

BB CM Class LE EB BG EG

1 ANY NOT NULL * * *
1 ANY NULL 1 * *
1 ANY NULL O O :
1 ANY NULL O 1 1
1 ANY NULL O 1 O
O ANY AND, OR O 1 O
O ANY AND, OR O O O
O ANY AND, OR O O 1
O ANY AND, OR O 1 1
O ANY AND, OR 1 * O
O ANY AND, OR 1 1 1
O ANY AND, OR 1 O 1

0172 Countermeasure staging according to some
embodiments of the present invention now will be described.
In particular, some embodiments of the present invention can
extend the TMV data structure to include multipart (a plural
ity of) Countermeasures Vectors. In addition to “Vulnerability
Remediation Countermeasures” (VRC) introduced generi
cally by the prior applications, a TMV may also carry an
“Intrusion Detection Countermeasures” (IDC) bracket and an
“Intrusion Response Countermeasures” (IRC) bracket.
0173 If an exploit for a given vulnerability has associated
with it a “footprint’ some way to detect the penetration of
the target system Program Instance (PI) by the exploit, the
IDC bracket carries instructions for testing for such evidence,
and the IRC bracket carries instructions for interdicting the
exploit and removing its footprint, and, in Some embodi
ments, remediating any ancillary damage.
0.174. It will be understood that PIs having a vulnerability
generally will not have been exploited, and hence may not
initially need to receive IR countermeasures. “Countermea
sure Staging can provide the transmission by the TMV Gen
erator Component of an IRC bracket for intermediate storage
by a Threat Management Domain Controller (TMDC) in its
Domain Store and Forward Repository (DSFR). The remain
ing TMV payload may be treated as target payload, as in the
prior applications.

US 2013/0263267 A1

0175 FIG. 47 illustrates Countermeasure Staging for a
Vulnerability that affects a single PI type and level and
involves an ID Countermeasures bracket, an IR Countermea
sures bracket, and a VR Countermeasures bracket. As shown
in FIG. 47, the TMV Generator transmits a TMV PDU 4710
to a Domain Controller 2910'. The Domain Controller 2910
transmutes the input TMV and adds the content to its DSFR
2940. Upon identifying an affected PI within its domain, the
Domain Controller 2910' transmits the TMV (minus the IR
countermeasures) to the target system, and the target system
responds at 4730 with a TMV ACK PDU. It will be under
stood that, in other embodiments, the TMDC 2910' need not
be used for these operations. Moreover, in alternative
embodiments, the TMDC 2910' and/or other functionality
can convey the entire CM payloads (all brackets) to target
system PIs upon initial forwarding of the transmuted TMV.
This may be less efficient, depending on the probability that
target PIS in the domain have already been compromised.
0176). In certain circumstances, it may be the case that at
the time of receipt of a TMV PDU, a target system PI may
already have been penetrated and compromised by an exploit
targeting the associated vulnerability (identified by the TMV
PDU). FIG. 48 illustrates how the protocol between the
TMDC and target system PIs is altered by the detection of a
penetration by an exploit of a vulnerability associated with
the TMV. Essentially, instead of returning a TMV ACKPDU
to the TMDC (as in the prior applications), the target system
PI instead returns an “Intrusion Response Countermeasures”
(IRC) Request PDU (IRC REQ PDU). This signal requests
the TMDC to fetch its stored IR countermeasures and forward
them in another TMV as an IRC bracket. Note that this signal
may also be used by the TMDC to indicate in its TMIB' 2930
for the PI that the Vulnerability has been found to be exploited.
In particular, FIG. 48 shows how the PDU flows illustrated in
FIG. 47 may be altered by the detection of an intrusion asso
ciated with the subject Vulnerability Vector of a TMV. Essen
tially, instead of returning a TMV ACK PDU, the target
system PI returns an IRC REQ PDU at 4830.
0177 Moreover, in embodiments of the present invention,
the “Vulnerability State Management” operation described in
FIG. 27, also shown in FIG. 49, may be augmented with an
additional “Intrusion Detection operation whose scope is
marked by the dashed box. 4910 and expanded in detail in
FIG.S.O.

0.178 The prior applications also introduced a data struc
ture called the “Null TMV to represent, within its “TMVGN
Synchronization' operation, that certain TMVGNs in a his
torical sequence will be missing due to their obsolescence.
These operations were used in a protocol between the “TMV
Generator” and the “Threat Management Domain Control
ler components of the prior applications. As described by the
prior applications, the Null TMV may have the form shown in
FIG 51.

0179 The Null TMV is a TMV constructed in the trans
muted form, and the Vulnerability Vector indicates there are
no countermeasures for a given system/subsystem type and
level. The Null (Transmuted) TMV is used generally in the
prior applications in Such a manner. In embodiments of the
present invention, a different form of Null TMV may be used.
It may be used in embodiments of the present invention spe
cifically in response to an “IRC REQ PDU” to indicate that

Oct. 3, 2013

there are no IR countermeasures available. Null (Transmuted)
TMVs may have the form shown in FIG. 52.
0180 Intrusion Response according to various embodi
ments of the present invention now will be described. Intru
sion Response addresses the data and processing associated
with responding to an IRC REQ PDU and subsequent appli
cation of the furnished IR Countermeasures bracket. FIG. 53
illustrates how Intrusion Response can fit within the overall
message and control flow associated with a TMV bearing
IDC and IRC countermeasures brackets. Reference numbers
5310-5330 identify flows associated with “Countermeasure
Staging, and reference number 5340 identifies the flow asso
ciated with “Intrusion Detection. Reference numbers 5350
5360, identify the flows associated with “Intrusion
Response'.
0181 Referring now to FIG. 53, at 5350, the TMDC2910'
responds to the IRCREQPDU from the target system PI 1880
by retrieving the requested IRC bracket, packaging it in a
TMV representing the associated vulnerability, and returning
that to the target system PI 1880. If there is no IRC bracket
available, the TMDC sends a “Null Transmuted TMV as
defined in the prior applications instead. After receiving the
TMV and incorporating the IRC bracket into the PI's TMIB,
or after receiving the Null TMV, the target system 540
responds with a TMV ACK PDU at 5360. The TMV ACK
signal may be used in this context by the TMDC to indicate in
its TMIB' 2930 for the PI that the vulnerability has been
scheduled for intrusion response.
0182 FIGS. 54A-56A show how an Intrusion Response
can influence the logic of the prior applications. FIG. 54B
shows its effect on the “TMV Responder of the prior appli
cations. FIGS. 55A and 56B show its influence on the “TMV
Induction' of FIG. 26, Block 2660, also shown in FIG. 56A.
0183 An Intrusion Response Countermeasures (IRC)
Relay according to embodiments of the invention now will be
described with reference to FIG.57. An IRC Relay deals with
the circumstance wherein a TMDC receives an IR Counter
measures bracket from the TMV Generator for a vulnerability
for which a target system PI has already issued an IRC REQ
PDU. In other words, a target system PI has detected an
intrusion and requested IR countermeasures, but the IR coun
termeasures only Subsequently become available. In this case,
at 5710, if the TMIB' for the PI indicates an unsatisfied IRC
REQ PDU has been received, the Domain Controller 2910'
immediately transmits a TMV with the IR countermeasures
to the target system, the target system responds at 5720 with
a TMV ACKPDU, and the TMDC marks the TMIB' to show
that the IRC REQ has been satisfied.
0184. Accordingly, embodiments of the present invention
can transform a Vulnerability remediation system into a
highly effective intrusion detection and response mechanism
as well. Reliable delivery (by virtue of its self-healing char
acteristic) of actionable intrusion detection and response
information to target system program instances may be pro
vided. Embodiments of the present invention can model
threat management by analogy to an organic system wherein
the Threat Management Vector Generator (TMVG) can pro
vide brain function, the Target System program instances can
represent vital organs and provide nerve receptor/effector
function, and the Threat Management Domain Controller
(TMDC) can provide spinal chord function.
0185. In the drawings and specification, there have been
disclosed embodiments of the invention and, although spe
cific terms are employed, they are used in a generic and

US 2013/0263267 A1

descriptive sense only and not for purposes of limitation, the
Scope of the invention being set forth in the following claims.

1. A computer program product for detecting intrusions,
the computer program product comprising:

one or more computer-readable storage devices and pro
gram instructions stored on at least one of the one or
more storage devices, the program instructions compris
ing:

program instructions to receive, at a target system, a mes
Sage identifying a first version of a program that is
installed at the target system, and select from a plurality
of different intrusion detection tests for a respective
plurality of different versions of the program, a first one
of the tests that detects intrusion of the first version of the
program; and

program instructions, responsive to the message, to per
form the first test at the target system.

2. The computer program product of claim 1 further com
prising:

program instructions, stored on the one or more computer
readable storage devices, to send a notification from the
target system that an intrusion of the first version of the
program has been detected;

program instructions, stored on the one or more computer
readable storage devices, to receive another message at
the target system that identifies instructions for remov
ing the detected intrusion from the target system; and

Oct. 3, 2013

program instructions to perform the instructions for
removing the detected intrusion at the target system in
response to the other message.

3. A method for processing computer security information,
the method comprising:

a computer transmitting, to a target system, one or more
messages identifying a plurality of versions of a pro
gram that are available for installation at the target sys
tem and a respective plurality of different intrusion
detection test programs to detect intrusions directed to
the respective plurality of different versions of the pro
gram, wherein the plurality of different intrusion detec
tion tests programs includes a first intrusion detection
test program that detects intrusion directed to a first one
of the plurality of versions of the program; and

the computer Subsequently receiving a notification from
the target system that intrusion of the first version of the
program has been detected.

4. The method of claim 3 further comprising:
the computer transmitting another message to the target

system for processing by the target system that identifies
instructions for removing the detected intrusion from the
target system.

5. The method of claim 3, further comprising:
the target system selecting from the plurality of different

intrusion detection test programs the first one of the test
programs based on the first version of the program being
installed at the target system.

k k k k k

