US 20130263267A1

a9 United States

a2y Patent Application Publication o) Pub. No.: US 2013/0263267 A1l

McKenna 43) Pub. Date: Oct. 3,2013
(54) METHODS, COMPUTER PROGRAM (52) US.CL
PRODUCTS AND DATA STRUCTURES FOR S S SR GO6F 21/55 (2013.01)
INTRUSION DETECTION, INTRUSION 10 S SRR 726/23
RESPONSE AND VULNERABILITY
REMEDIATION ACROSS TARGET
COMPUTER SYSTEMS (57) ABSTRACT

(71)

(72)

(73)

@
(22)

(63)

(1)

Applicant: International Business Machines
Corporation, Armonk, NY (US)

Inventor: John J. McKenna, Cary, NC (US)

Assignee: International Business Machines
Corporation, Armonk, NY (US)

Appl. No.: 13/901,759
Filed: May 24, 2013

Related U.S. Application Data

Continuation of application No. 10/890,798, filed on
Jul. 13, 2004, now Pat. No. 8,458,793.

Publication Classification

Int. Cl1.
GO6F 21/55 (2006.01)

SECURITY
EXPERTS

Computer security threat management information is gener-
ated by receiving a notification of a security threat and/or a
notification of a test that detects intrusion of a computer
security threat. A computer-actionable TMV is generated
from the notification that was received. The TMV includes a
computer-readable field that provides identification of at least
one system type that is effected by the computer security
threat, a computer-readable field that provides identification
of a release level for a system type, and a computer-readable
field that provides identification of the test that detects intru-
sion of the computer security threat for a system type and a
release level, a computer-readable field that provides identi-
fication of a method to reverse the intrusion exploit of the
computer security threat for a system type and a release level,
and a computer-readable field that provides identification of a
method to remediate the vulnerability subject to exploit of the
computer security threat for a system type and a release level.
The TMV is transmitted to target systems for processing by
the target systems.

190(_PADC)

icAT > COVAL N4z

160

510

520
| Message Common
Encoder Semantics
Threat
Management o0
Vector
54{ Target Intervention -
Systems | gpecific Instructions

Patent Application Publication Oct. 3,2013 Sheet 1 of 51 US 2013/0263267 A1

o

©

-~
E B
o~

180

FIG. 1
(Prior Art)

120

List

List

Mailing /\ Mailing

List

SECURITY
EXPERTS

Mailing

110
140
N

Patent Application Publication Oct. 3,2013 Sheet 2 of 51 US 2013/0263267 A1

FIG. 3

Threat Management Information

<Generate Computer-Actionable Computer Securi@

: 310
[Receive Notification of Computer Security Threat L/
i 320
’ Generate Threat Management Vector (TMV)
‘ 330
| Transmit TMV to Target Systems l/
400 406
Vulnerability | System|Release |Subsystem|Release ID of
™V -
Specification | Type Level Type Level [Countermeasures

401/ 402/ 404 \405 403

US 2013/0263267 Al

Oct. 3,2013 Sheet 3 of 51

Patent Application Publication

suononJsu| oi0eds

oLs

gjepejopy

B SWa)sAg
N UORUSAIBYU| 19bue| va
A
10198/
0cs Juswabeuey
Jesiy |
SonuBWSS 1opooUT
uowwon) |- ™1 obessopy [N\
0cs

091
SN0 1SIN o1
_ : 081
0L\ qyn0 C4vol_ >

\l}
QdIopsd
/

G "DIA

S1y3dx3
ALIINO3S

Covenspes ok

US 2013/0263267 Al

Oct. 3,2013 Sheet 4 of 51

Patent Application Publication

{
JuauOdUIOD J0JO8A ,8INSEBLLIBIUNGD, BPoIUT

\|rv\ -089
; U0
w®>/ é d 2.9

A ,8InseauIsIuUN0g, Loes 10} o(]
=

JUaUOdUIOD J0JOBA ,[BAS], BPOdUT 1_
\-029

- fauoq 299
A L1ONA8], UYlBe U0} 0

vcm:anoo 10J08A ,We1sAsqgns, 10 ,WwolsAs, muooFm_
[} ~~099

etll AWL HWSUEIL | 5<eeu0a 259 JweIsAsang weshs,
<069 3 . yoea Joj 0q
_ jusuoduwiod Jojoaa AlljIgRIBUINA, BPOoUT] _/
A 059
& SUO[}EO1I08dS BINSEAULIBIUNOY) |
Sainseswls . INL \CECWDO pue
1unoo pue —™ ‘Aend ‘ozAeu //
‘slona] ‘swojsAsgns ‘sweishs | [UOREDHUSP] [8AST ! ! v 029
SallIgeIauUInA J0) SNY pue | _
suoneayoeds gonL Bojeren =[OHEUHUEP] WEISASINS/WIISAS |a— (L) uoneuLIou|
N-op9 L= suoneoyoads ANjigesouNs je— Juswiabeuely Jeauy | Indu wp 9
\ L]
0£9 O 'DIH uopeseusD AINL

US 2013/0263267 Al

Oct. 3,2013 Sheet 5 of 51

Patent Application Publication

e o o | SA9Y @ousis)al olpadojious Jo >mt<,

pisld |03u0D

X8] wloj-9914 |yjbua uonduosaq | edA| uonduosaqg

:uonduoseq ASyA

anjep Aoy A | Uibua AeyA | @dAL AeyA |:AeMA | uiBueT lojosp

pIoid [0QUOD AINL

:lopesH J10joap

uonduosaq Aungelsujnp

10J08 A WelsAsgng 0} Jejulod

10108\ WiBIsAg 0] Jejulod

AMA

JopeaH Jojsp

L OId

US 2013/0263267 Al

Oct. 3,2013 Sheet 6 of 51

Patent Application Publication

10J08/ |9A8T WeISAS 0) Jojulod

Pl [013U0D We)sAg

al weisAg

-Jsluap| weysAg

uibua J0108A

pISl4 [0U0D

-lepeaH J0108)\

sislnuUap| Wa)SAS JO ISI| payuI| Jo/pue Aeiry JopesH 0o

8 OId

US 2013/0263267 Al

Oct. 3,2013 Sheet 7 of 51

Patent Application Publication

10J089 SeinseslIa)unoy) 0} Jeulod

plald |onuo) A WeSAS |) 1ere | eunuSpl |9AeT WelsAS

YibusJojoeA | pleld jo1uo)

:1opesH I10Jo9/

slaljiiusp| [9A9T W)SAS Jo Isi} payul| Jo/pue Aely

lapesH J01os A

6 Old

US 2013/0263267 Al

Oct. 3,2013 Sheet 8 of 51

Patent Application Publication

sieyeweled D

pleid josuon ND | odAL WD | al WD | iElepeIdIA einseawlsiunos

[T DA

siojoweled D

piotd jo1uo) WO | 8dAL WD | QI WD | BIepBISIN ainseawlsiunod)

yibua 108 | pIald [0nUoD

:lopesH J0J0aA

BJEPBISIN 8INSEALLIBIUNOY JO 1SI| payul| Jojpue Aeliy

JapesH JOJoaA

OT "OId

US 2013/0263267 Al

Oct. 3,2013 Sheet 9 of 51

Patent Application Publication

J0J08 A salnseasullsjunog o) Jajulod

pl8l4 |0AUOD) [9AST] WeSASaNS

dl joaeT

JJBIHIIUBP] |9AST] WeIsAsgng

yibuo Jooan

plal4 |oiuoo -10J08 A J0J0SA

e o o |SISUNUBP| |BAST WB)SASONG

4O 181| payjulj Jo/pue Aelly| JopesH Jo10oA

:I0108 A\ |9A8T Ws)sAsgng

10J08BA [oA8T WISASqNg 0} Jejulod

pigilq |04U07) welsAsgns

| weisAsgng | -Islijusp| waysAsgng

y1bua Jo108A

pield [oJuo) :JepeaH Jojoop

e o o |sJOlJUSP| WBISASQNS JO 1SI| PaYuUI| JOjpue ABLlY

JopeoH Joap | :J0joep welsAsqng

¢l "DOId

US 2013/0263267 Al

Oct. 3,2013 Sheet 10 of 51

Patent Application Publication

(YNVINL Aq paubisse) sweN ND

(VNVIL Aq paubBisse) edA] WO | (YNVINL Aq psuBisse) | ND

(sweN WD pue ‘edA1 IND ‘Al IND Ag pexapul) 8|qel (IND) ainseswisiunoy)

(LvOIl LSIN woy) swen Aerss | (WVNVINL Aq paubisse) | Ajlensg

‘(sweN Ajronas pue | Aliones Ag paxepul) 8|qel AJlieAsS 1ealy |

(enoge se) sjqeL |eAae] walsAsans | (1yD] LSIN Woy) sweN walsAsqns | (VNYINL Ad paubisse) qjwelsAsgng

‘(sweN welsAsgng pue q| welsAsqng Aq paxapul) ajgel we)sAsgng

(slopuan 1o | ¥Dl 1SIN Aq paubisse) JaquinN aseajay pue uolsiap | (YNVYINL Aq paubisse) qj [eAs]

'SE paulep Si 9jgel [8AST WSISAS aiaUp

o|geL [areT weisAS | (LvOl LSIN wou) sweN walsAs | (YNVINL Ag paubisse) gjuwelsis

(oweN we)sAs pue () waisAs Ag paxapul) o|qel weishs

€1 'Old

US 2013/0263267 Al

Oct. 3,2013 Sheet 11 of 51

Patent Application Publication

uA\ slajoweled D

pIel4 joRuod NO

adAl WD

drno

sainseawlsunod a|qissod Jo jes enbiun e aAey Aew yoiym Jo yoe3 ()

J0J08A SaInseawlaIunoy o] Jajuiod

pIol4 [0U0D [oreT WeSAS | QI [oneT]

I

1]

S|oAs| 9Seajal JO Jaquinu e 1e Isixa Aew yalym jo yoe3 (g)

10109\ [9A8T WBJSAS 0} Jsjulod

peld [o5uoD weishs | aj weisAg

swo)sAsgns pajoaye JO 189S B 10j Alle|iuiis puy @Al_

sadA) walsAs pajosye Joes e 0] (2)

I

uonduosaq AoMA | pield j01u0D ASyA

101007 WalsAsgng AoMA

1018007 WaysAg AoyA | ASMA

1 DI

Aoy e sejelad AL 9Ul (1)

US 2013/0263267 Al

Oct. 3,2013 Sheet 12 of 51

Patent Application Publication

suoponisu| ooBdS | gmishg
-
uonuanIBI| obie Uvm
Jojoep
g Jusweabeue|y
Jealy]
lojelouan
A -
- ™\
p AL bze
0LS %
091 |
5319 LSIN
(1):7 2
0Lt vn0)e
. | S1d3adx3
N ALIHNO3S

oavd 06+ oZ1L é oLL

Patent Application Publication

FIG.

Oct. 3,2013 Sheet 13 of 51

16

US 2013/0263267 Al

Qdminister Computer Security Threat Countermeasure@

'

Establish Baseline ldentification of OS
that is compatible with TMV

oy

1610

S/

Y

Receive

1620

™V 7

1630
No

?

Match

1640

Yes

-l

Process
countermeasures

FIG. 17

CAdminister Computer Security Threat Countermeasureg

1610

Establish Baseline
that is compa

Identification of OS
tible with TMV

_/

y

| 1640

Receiv

1620
./

e TMV

1630

No

Match

Process
countermeasures

Yes

1710

Add Instance

?

identifier

US 2013/0263267 Al

Oct. 3,2013 Sheet 14 of 51

Patent Application Publication

\QNQ-. \Q@Qh \Qmwh
suononyisu| oyloeds “1ebeuepy el JoBeuepy o1e1g Jo)onpu|
UORUBAIS| UOREIPOWSY || AlIgessUINA AWL
ya]
0oL81
swelsAg 1061e]
088L % oreil
AioysiH AL
S ose
aoueUBUIB I HINL °588 LHISO
®
| uopeanbyuod | jopeinbyuon Jojelauan)
| uonejelsuy| glINL - ANL M/Nm
< (1]
0csl

Y
OdI0peaS

S1y3dXx3
ALIINO3S

8T "'DIA @e& oz é oLl

US 2013/0263267 Al

Oct. 3,2013 Sheet 15 of 51

Patent Application Publication

0961

T~

sninwis
Hemy

0561 -

Juswabeuely

\

uoleipaway

sninwns
asuadsng Jo
1dnusiu Buissasold

or6L- |

.

wawebeuey
olel1s
Aungessuinp

- — — —

og6L” |

uonoNpu|
NNL

- — — —

\- 0261

0.6}

uopeinBbyuon
dInL

61 OId

- — — —

sninuilg
awinsay/joog
wielsAsgng/welsig

snjnwing
induj
ANL

sninwins
aoueuUsjUIR JO
‘uonesnbyuo)
‘uoneyelsu]

US 2013/0263267 Al

Oct. 3,2013 Sheet 16 of 51

Patent Application Publication

] eoue)jsu|

10J09/\ SRINSEBWIBIUNOY 0} JBJUIO | pjol4 [041U0Y) [9AST WeISAS

-4

dl eneT

pajecaidap Ajjeniu) [

:(peyuswbne) 10j08/ [9AST] W)SAS

10J09/\ |9ABT WBISAS 0] J8JUI0d

plald [05ju0D weisAs

al weisAs

I[¢ "Dl

10108\ WBlSAg

| eouejsu|

10J08A saiNsesuwIsiunoy 0} JBJUI0G | peld |04jUoD) [9AST] WelsAS

4

dl [PAST] |-

Z Al |

Z 1

N

pejeosidap Ajeniyj

\ ‘(psjuswbne) 10j09/\ |9A8T] WLISAS

J0J09\ |9A8T W)SAS 01 J8julod

pIel4 [0U0D WalsAS

dl waishs

0¢ "Old

.10)08/ WweishAg

(AeyA Aq yousess pakay pidel sajey|ioe) osie)
sieyeweled INQ | Pi8ld [0uoD ND | ®dAL WD | al D suleyuad I yoiym o} [9A8] pue adAl WisisAs
_ _ r . ay) 01 a|dn} {erepRrsw N ‘ASMA} yoee Bunejsl

_ ejepejow m_::mmmctﬁcmoo j0 >S__< 'siejuiod UlByOMOE] 8008 SPial 9S8y |

US 2013/0263267 Al

-
ﬁ \. uonduosaq AeyA | PIBl4 [0u0D A8MA | 10)e207 welsAsqng AeyA | 1018007 welsAg AeyA | AeMA

Y-
']
S
=]
~
o
b 7 I I I I I T
m :(pojuswibne) si0j0op AOYA 100y J0 Aeliy
e
e
<
(g\]
Mw dl souejsu| |s10j09A AoMA 100y JO Aelly 0} Jsjuiod | plol [oauod [9AeT welshks | Qi [oneT
(2]
O 1 . — i . - 1 . 1
alay psauleyoal syob :(peluswbne) 10100 |oAe] woalsAg
sy oy
..... 8161 WoIL 10308 A3/ 100y paydeleq (1) |
soAow : 0108 [9AST] WBLSAG 0} Jsjulod | plelq [0JjuoD wisisAS | q) welsAg
i8yulod 10308/ NO (2)

]]]
]] I

:10J08/\ We)sAg

¢G DM

Patent Application Publication

US 2013/0263267 Al

Oct. 3,2013 Sheet 18 of 51

Patent Application Publication

osec

Blep mau
UM elep HH eoe|day

&elep uH
sapasiadns elep
MBN

elep yH Bunsixe

0} BJEp M8U PPy

~-o0s£2

YH mau 81018

~09¢cz

EEw\AmQ:.w\EEm\nm
pejosye
10} YH eAsieY

AINL indur ayy
Ul woisAsgns/wielsAs

pejoajle yoes 1o} oq

Indul woly (YH)
p0oey AiojsiH AINL
onasuo)

«_ _ _ _ Shinuns
8INSEaULIBIUNGY 10 ASYA

€¢ D

US 2013/0263267 Al

Oct. 3,2013 Sheet 19 of 51

Patent Application Publication

e1ep YH Wouy gliNL yim
\ gl WweisAsgns/walsAs

otz e1Epdn

SOA

ocvre

ON

vQQm_c_Ecm Buieq
/] we)sAsgns/uieisAs
oLpZ| 204 dH ANL 9AsUISY

(s10300A o8| /wLysAsgns
JO [OAB|/W9)SAS ppe)

diNL uiBiA unm gin
woysAsgns/welsAs azijeniu)

oz

paJalsiulwpe Buiaq wesAsgns
pue wejsAs yoes Joj oQg

Sninwis soueusUIBW
10 ‘uonenBiuod
‘uoie||ejsul

vC Old

US 2013/0263267 Al

\ 9z old ol

0sse
ﬂ SOA
s BlEp JOJ0BA
& [8A8T/Wa1SASgng
g ON [oAsT/wisIsAS AINL
= 0£5Z ndui aioubj
o ~orsz
= ANL Yim ejep
S 10}08)\ [oAST/WBISASONS
; \ ‘loneTjWeISAS SAI}OB J0U 0 JBU}aYM .
w 0zéz galnL ssedwon giNL Ul [oAs|jwelsAsgns pue

Jabeuel [9AB|/WBISAS p1eoquo yoes 10} o(]
8leis - - — = - = - = -t
Aujigessuinp
~N096Z . uoneIny AINL __ _ snminwgs
ya wiopa ™7 T Tuondeoses AL
(1] X774

TRV |

Patent Application Publication

US 2013/0263267 Al

Oct. 3,2013 Sheet 21 of 51

Patent Application Publication

059¢c

AAL
WO} BIEp UM BJep JOJO8A
sainsealwaunNoD/AlIgeIsunA
dilNL Josey

SOA
Jelep
dINL sepastadns
e1ep AL

selInseslIs)UN0D/AljiqeIsuINA

Blep 0108A

AWLL 8Joub

0992

seinseawIsILUNO/ANjIqeisun
giNL mau ppe pue azjjeiu|

AL Wol] e1ep JojosA

p

0c9c

J0108A Ajijiqelsuina
AL yoea yiim elep J0J00A
sainseswiaunog/AlliqessunA
Qi1 atedwon

~0.92

[pAsl/WalsAsqns 10 [aAsl/WelSAS
pajosye sy 1ol AL By} ul
10198A AjijigelauinA yoes Joj o

oL9z

[9AR] WBSASONS IO WalsAs
AL 843 10} e1ep I0J08A
sainseswisiunoD/Al|IgeIsuINA
gl L SS80oy

9¢ "Old

US 2013/0263267 Al

Oct. 3,2013 Sheet 22 of 51

Patent Application Publication

(40108 sainseswIsIUNOD)
1abeuey UonEIpaWSY

0zLz”

PO A/PaIIddY, 81EdIpUl Jou SI0p S)els
yoiym 10} AlljIgessuna ayy Yyim pajeloosse
JO]08\ SeinseallisIunoy yoes 10} 0q

[9A8|/uIBISASONS 10 [9AB/WBISAS BU) U)IM
pajelnosse 10199A Alljigelauin yoes 1oy og

GIAL Ul [eAsjweisAsgns pue
[oAs|/WB}SAS BAIIOR UoES 10) 0(]

oLic

ejep 10J08A giiNL

$S900VY

snjnwins
swinsay100g WasAsqng/we)sAs
10
SNINWIAS UoRINPU| AL

LG "OIA

US 2013/0263267 Al

Oct. 3,2013 Sheet 23 of 51

Patent Application Publication

olejs ,paldde, jos
\ ainseawJsiunod A|ddy

0s8e
;paydde olels ,pallisA, 1es
aINsSesulsIuN0D AjLISA
098z
saJnseswss)unod aiouby
~o0.8z
(Ple14 109U0D WD) Bjels
/7 8INSEALLLIZIUNO0D Y987 10J09A
0282 SBINSESWLIAIUNGT BU] Ul PaIBdIpUl
2JNSESWIBIUNCD YOBS 40} 0(]
Blep 10109/
\ S2INSBSWISIUNDD « — — NiNWAS UORos|es
S2INSEaULIBIUNDY
0182 $8900y

8¢ "OId

US 2013/0263267 Al

Oct. 3,2013 Sheet 24 of 51

Patent Application Publication

(Q) waysAs
pbel [SANL Jajjonuon
obS passad0id urewoq
SINL JusLwaBeUB)
o9mL (D) woyshs | o ——— | JesiyL
196.1e | ~N ,
ors piemio4
gInL \ ® 91015 ANL
0881 (g) weisAs
1ebie| N 7
— ors 0062
\ C_EI1BPEIBIT D Jojelausn)
0881 (v) wayshs nva\ ANAL
1obue | Em s%mg
~~-ozs
0881 s org enm +
0z6z—"

09

@N ld

va

SIRCER)E
ALIINO3S

US 2013/0263267 Al

Oct. 3,2013 Sheet 25 of 51

Patent Application Publication

EthoﬂmeLmn_ WO |40 |2dAL ND | al D

10J09/\ S8INSLaULIdLNO0Y

salnsesuLIajunod a|gissod jo }9s anbiun e aaey Aew yoym jo yoe3 (y)

swiaysAsqns pajoaye Jo)as e Joj Atejiwis puy (g) ‘l_

al [oAa

_.— 10)e90-] sainseawounos| 49

houom> _m\.,m._ Eﬁm>.m
S|9Aa| 9seajal Jo Jaquinu e je }sixa Aew yoiym jo yoeg (g)

40

ai waysAs

_. Jojeson _m>m._ wojlsAg

10)09 7 WdIsAg

sadA3 waysAs pajoaye jo 3ss e o] ()

uonduosaq IAD

40

Loamuo.._ wajsAsqng houmooh_ wa)sAg | A9y 3A0

10109\ Ajljiqesaujn J00y
Aypiqesauna e sejejas AWL UL (1)

0¢ "DId

US 2013/0263267 Al

Oct. 3,2013 Sheet 26 of 51

Patent Application Publication

swa)sAsqns Joj Apiejiwis puy (g)

sie)oweled N | 49| 2dAL WOl al nD
= = = -

10J09A SaINSeaWIdUN0Y

$2JNSEaWLIAIUNOD JO)9S dWOS aAey Aew Yyaiym jo yosex (y)

I

1032207 ND

uonduasag IAD

40 | Joix wayshsqng | joix waysAg| Aoy IAD

S9|}1|IqeIaUlNA JO Jaquinu dWos aAey Aew Yyoiym jo yoeg (g)

10)09/ &__._nmho:_:\.,

= al eaueysu] | Jo3eao 30| 40| ai 1ere

..ouom\w _m>w._ Eﬁwﬂw..w

S|oA8] asea|a. payyioads je saoue)lsul Se IsIXa YoIiym jo yoeg (z)

_. 10]e00] |9AS"] wayshs | 49

al welsAg

10109\ Eoww>4w

pieoquo sadA) wajsAs |eranss aq Aew asayy ()

1€ Old

US 2013/0263267 Al

Oct. 3,2013 Sheet 27 of 51

Patent Application Publication

_. sJojoweled WD

40| odAL WD

ai N

——

JOJJDA sainsesuwisjuno)

[

4018207 IND

Koy IND

-

uonduossag JAD

40 | Joux wayshsqng | yeux wayshg

p——————

10193\ Kynqesauin

dl [9A97

= 103820 |d | Joesot ano| 49

—

10)09\ |9ADT] WR)SAg

= 40| © 1eqo9| ® |eoor

. JOJO9A _M_

49 | 4l weysAg

= 10]e207 [9A9] walsAs

e

¢e "DIA

JOJODA Emu_.wm

US 2013/0263267 Al

Oct. 3,2013 Sheet 28 of 51

Patent Application Publication

NOAWL|4D| @ leqo|D | @ |eso]

e DA

JOJOBA Id

al WO Je—

— siajowelred Wol 49| odAL no

J0JIO9A sainsesawisjunod

I

103e207 WO | NOANL

uonduasag 3AD

49 | Joix weyshAsqng | jaix waysAg| Aoy A f-all—

10J09A h___nm._m:_:\.,

al 1907 [g—

—— 10}e207 Id 103e207 3AD| 29

10JO9A [9ADT] Wd)sAg

.. 10je207 |oAa wayshs | 40 | aj weysAs

dee "Old

._mgom> Eﬁm>w

NOANL

uonduosag IAD

40

J03e007 waysAsqgng | Jojeso] widysAg | A9y IAD

vee DIk

US 2013/0263267 Al

Oct. 3,2013 Sheet 29 of 51

Patent Application Publication

(1114

NOAWL 19 Id

40

q®

191d @

Jgjjonuo) urewog
Juswabeuely 1eeiy |

10)09 [9A8T WBSAg

10)99/ washg

sNad 1senbay uonesnsibay |d

NOANL LV Id

40

\ 40

LV Id @

10)09A |9A8T WBlSAg

10)09/ wayshg

08glL

0162

ve OId

0881

g

(9

.

INL

) WalsAs
196.1e |

\ors

S|

(V) weyshs

W1

19618 |

\opg

US 2013/0263267 Al

Oct. 3,2013 Sheet 30 of 51

Patent Application Publication

ové6c
44Sd _

NOANL LV Id

40

v®©

LV Id @

J0)O9A |9A9] WdYSAS

10joap wayshg

Nad uswabajpmouyoy uonensibay |d

.. 10)09/\ SaINSEAULIBJUNOY

|

gleperopy YL

(W).gInL

<>

0£62

0162

0LSE

SC "OId

N m
osse ._. . ZO>_>_._.. 000 J0}09A b___o_ﬂm:_:>. :
NOAWL LY Id[40| VD| LV Id @ (v) worshs
J9lI0AU0D 10)09A [9A2T WAYSAS | u0joap weyshg Y, 10612
uiewod NQd 9suodsay uonensibay Id pzse
Juswabeuel 0881
C Jealyl NOAWL LV Id [40| VD] IV Id @ /_\
./ 10309 |94 WlSAS| uojosp weysAg % \-ops
Nad ¥senbay uonensibay id e

US 2013/0263267 Al

Oct. 3,2013 Sheet 31 of 51

Patent Application Publication

NQAd asuodsay uonensiboy
o} elep AL ,Buissiw, puaddy

Japuodsay/iepiug
+osuodsey uonensibay,

T é
>
SO\

[oA8] pue adA} wieysAsqns/wielsAs

9y} 10} ¥4SA 8y} Ul NOAWL 1sejeald
a8y} YuM NOAWLL 1senbau asedwon

[
Ndd esuodsay uonesnsiboy
9y} JO JusSjU00 paxy pling

B

o¢ Old

(©Id@SL).gINL 818D

ON
(©1d'©@s1).aINL Joy AnsiBal (@S 1).gINL Xo8uD

(©@sL1).4gINL e1esi)d

ON
(@S.L1).9INL 401 AnsiBas GIALL X08UD

— — Snjhwis Nad
1senbay uonessitoy |4

US 2013/0263267 Al

Oct. 3,2013 Sheet 32 of 51

Patent Application Publication

JOJIBA sdlnseawdaunod

—
T

NOAINL| eee J03097 AMjiqEIBUINA AIoisIH AL
Y ejepejon
| NoAnL Ly 1a]40| v@|vid @
10100/ [9A97 WAsAg | 10199 wvsAg| NOAIL| Al 10JEIoUDS)
NAd esuodsay ysaljey AL AL
Vg NOAWL LV [d |40 VD] LV Id D
o0cle 10308 |9A07 widsAg| 10308 wisysAs| NOANL| Ol '
Nad isanbay ysayey ANL ewh»n

NOANL LV Id|30] v @] v 14 ®
10} [9Aa] wasAg | 103oop waysAs
Nad juswobajmouydy uonessibay 1d
Yed 10J09\ SaINSEBWIBIUNOY OPS

L€ "Dld 0528 :

..__ NOANL| eee Jojoep Anpqessuinp
or6Z : - S

0L6Z
\4Sa Jo||0RU0D NOANL LV Id|4D| V@] v Id ® (V) wejshg
ulewoqg 10)09 [oA9] WalsAg| J0)aoA weyshg lebie)
Em“%ﬂ_@_m_\,_ Nad esuodsay uonensibay |d ov M“..
(VEIAL I NOANL LY Id|[40| VD] IV Id D o
v/ 10309 [9reT wiRysAS | uojoap weysAg &

oLLE Nad ysenbhay uonensiboy Id

US 2013/0263267 Al

Oct. 3,2013 Sheet 33 of 51

Patent Application Publication

_ >

NAd esuodsey uonelisibay
0} elep AL pasuinial puaddy

(@Id'@sLganL (HTNDANL)
Japuodsey/leniwg

Jsenbay ysaaiay,

| ¢
w®>/vv

| Snulw {4SQ 8y} ul
NOAWNL 1se8] a3y} yim NOANL 3senbal asedwo)

®

3¢ DId

US 2013/0263267 Al

Oct. 3,2013 Sheet 34 of 51

Patent Application Publication

Jajjonuo)n

40

VO|LYId®

urewoq
Juswabeue)
lealyl

-

10)09\ [9AD] WdlsAg

JOJo9A Eﬁm>w,.|IHII'

Nad @suodsay uoneqsibaieq Id

40

VO|LYId®

N
(11474

or6z 046¢

»

10JO9A |9A9T] WRsAg

10}00/\ Wv)sAg

- 0881~

0€6¢

>

orve6g¢

(V) wayshs
1061

Nad ¥senbay uonessibaiaq id

6c DId

\-ors

US 2013/0263267 Al

Oct. 3,2013 Sheet 35 of 51

Patent Application Publication

0881+ e‘. va
(0) weyshs E
1961 | &=r»

ors

|
dInL

Nad ANL

(9) weishg [et
19b1e |

e Ndd AL
0c62

0s6pr

(v) weshs
19618 |

088} —anT [Nad oV ANL
‘Hm'LIl_ Nad AWL |

~

ors

[Nad M0V ANL % Y,
0881 eJI— 1 @amwL|
| NAd MOV AL

or8i

O "DId

ewmv _-_
(O)aInL »/
» 096
Alojueauy |4 / N [[0ilV[eg)
062 o6t UlBWO(]
Jswebeuepy
jealyl
Aiojuanuy |4 \ F
(v)ainL / CEiepersi WD
Aiojusny,
Juenuy id * ,or6r
oe6e JojoNpu
o6 | COFPNPUI ANL
¥
| §
[_nadAnL | o6z

AoIsiH AL

ejepeapy

Jojessuan)
AWL UNm

US 2013/0263267 Al

Oct. 3,2013 Sheet 36 of 51

Patent Application Publication

([@Id'@sLlgINL ‘erep AINL)
lapuodsay e ANL

SOA
&
UoleN

[oAsT % WisIsASqnS/WislSAS GINL Id X98UD

¢ auoQg
SSA dINL Id UdES 10} 0

HINL S1 Yoes 10} og

JOA8|, Wa)sAsgns/uwislsAs

v Old

ANL Udes Joj o
Jws1sAsgns/uwialsAs,,
AWL yoes ioj og

¥4Sq O} JuUsjuod AN L S1etodiooul

- Wuoneinyl AW L, Wiopied

mw‘. — — — sSnjnwIiRs uonaNpul AINL

o

NOANL Yo' yim [@I1d @S 1. dlAL 8¥epdn
_
[@1d'©@SL]gINL 818007
-+ — — — - ldwaisAgiebie] woy

.NAd uswsbamoudoy AN L.,
Jopuodsay
ANWL

dc¢v "DldA [PUUBYD) O/] OPIS-OAI899Y DAL

[puUByD O/ SpPIS-pUsg DAL

US 2013/0263267 Al

Oct. 3,2013 Sheet 37 of 51

S1 siy 0} ,NAd Isenbay AL, Jwsuel |
_
Id SIU} JO} AJALLWOISND 1oNASU0))

Patent Application Publication

US 2013/0263267 Al

Oct. 3,2013 Sheet 38 of 51

Patent Application Publication

ocer

1 =

—

SAINL O 92uanbas |ejusawaiouj

oLey

NOANL Buipuz

NOAWL Buineg

Nad 1senbay aziuoiyouig

cv DA

Oainl

0162

US 2013/0263267 Al

Oct. 3,2013 Sheet 39 of 51

Patent Application Publication

sjusuodwod aa.y) sey
10)20A sainseaulidlunoy siyj

uol

Jeipaway Ajljiqessung = g
asuodsay uonsnnuj =1
uoljo9leq uoisniul = @

poAIoSay sse|) ND
pIe14 [o43u0)d -

{I

siajoweled WO | 40| adAL WOl ai wo

-

10J09)\ S2INSEAULIIUNOY

v OId

US 2013/0263267 Al

Oct. 3,2013 Sheet 40 of 51

Patent Application Publication

}ayoeag
Kieyun

uoissaidxg |eosibo
~ dnoug dnoug
Aeyun >

:v_\,_o I(SINDRZND)II(LIND)]

< yoxorig ql

19xoRIg ¥A

St OId

US 2013/0263267 Al

Oct. 3,2013 Sheet 41 of 51

Patent Application Publication

uopeipawsy AYJIQRIBUINA = Z
asuodsay uonsniuj = |
uoI}09)a(uoisnyuj = 0

}9yorIg uibag}—

joxoeag pug

dnoug) uibeg

. dnoug) puz
(uesjoog) uoissaidxg jesibo]

Ny

pantesey | 31| 93| oga a3 |ag | sselo nD
. pieid jo3u0) g

_.= ‘sdojaweled NO | 40 adA) ND1 diIND

JOJOBA S2INSEIULIIUNOYD

9v DId

ouA | 0¥l | 201 |l

AIOISIH AINL

“ ejepejapy
[ond7 orgi

US 2013/0263267 Al

' 10309\ WBISASONG/WS)SAS |l — 1ojeleusy
— AVA R
']
rm [
Q I INOAML| 0o 10399 AJjiqetau|nA \ A
b Nad AINL
2 (1] 94 4 \0ZS
73
e
a OvS
@ J8|j01u0n)
m urewoq NOAWL | NAd MOV ANL
uswabeuep //cnhv
leady | JUA | 00l |-l
E
i " (v) wesk
2 _.— NOANL| eee 101007 Ajjqeiduinp V) W8ISAS
= = B F : _ 10618 |
-9) . I 10100
.m _ _ww.w.w_._‘l_
S (VignL | [—
= L J 10)99A wR)sAsqng/wialsAs gt
Am ousAUl | QNN“ : e
: (peynwisuen) nad AWL .
e osss Ly Ol
= .
A

US 2013/0263267 Al

Oct. 3,2013 Sheet 43 of 51

Patent Application Publication

o¥A | OuI| oaI |-

|
_ *www%_‘l ovgL

AoysiH ANL

ejepelopy

I Jojelauscn)
Jojoap weysAsqng/wioisAs (-
AL
I [NoAnL see JOJDOA Ajjigelduinp \
Nndd AINL oLLY oz
0162
RN OPS
Jsjjojjuon
ulewoqg . NDAWL| NAd O3 Dyl
Wsweafeuepy /Qnmv
1ealy | JUA | 04 |-l
1
.. VINSANL| eee J0300A Ajljigessuinp (v) weishg
- - = . _ 19618
]
(V).GINL [< _ Y-
ST, e " 10)09\ WaIsAsqng/uielsAg
0c62Z 0zl (PeINWISUEL) Nad AWL 0881 CEB 3t DL

US 2013/0263267 Al

Oct. 3,2013 Sheet 44 of 51

Patent Application Publication

(10399 sainseawaajunon) /
1abeuepy uoneipaway

ocic

Yo1ym 1oj AJijIqeiauna ayl yim pajeloosse
J0}09A SaiNSeaWIajuNo) Yoes 104 og

|[oAd|/wa3sASgNs 10 [OAd]/WBYSAS ay) YIm
pajeloosse 10}oaA AJIjigeIdu[nA yoeo 10j oq

|
|
[
|
|
]
i
PouLap/palddy,, ajedsipul Jou saop ajels |
|
i
|
|
|
|
|

gINL Ul [9AsjjwalsAsgns pue
|[2Aa]/wd)sAs aAljOR Yoea U0} 0Q

BJep 10J09A gINL
$S800Y

orzz—

snjnws
swinsayoog wajsAsqng/waisig

- - - - - 10

SNINWINS uondNPUl AL

wPayuRA/pallddy,

ajeoipul Jou svop
2lels yaiym 10} Alijiqessuina
ay] Yypim paleldosse 10309
salnseawldajunod Yyoes 1o} og

US 2013/0263267 Al

(10)09 A saunseawivjuno))
J1abeuey uoneipaway

e

< 0z.z -

: (uneed)

4 .

= 04l o3 Nadd

2 1sonbay oY Jwsuel}

i ¢

o) }093eq

5 soA \oAlsed /oy

el

-

&

o ainseawauno)
di 3y} joAu]

ON

ainseawlajuno) | Yyoes 4o} oq

9 ||||| [aAS|jwdysAsns 1o [aAd|jwalsAs ay) Yyjm
paje|oosse 10J03A AljIqeISUNA Yoea Joy oQ

0S "DId

Patent Application Publication

US 2013/0263267 Al

Oct. 3,2013 Sheet 46 of 51

Patent Application Publication

0 = J0)e20 ND

NOANL

uonduosad IAD

joay waysAg

£oy N [-ll—

49 | joax woysAsgng

—

10)09A >.ﬂ___o_Em:_:>

1038207 A9 | 49

al 19797 |agg—

_.— 103e207 |d

J0J09 [9A9T] Ewum>.w

40 | a1 weshg

_.— 10}B907 |9A9] Wo)SAS

¢S Old

..m~om> Eﬁm\ﬂ.w

NOANL

pajesaidaqg

40

pajesaidaqg

peojessidaqg

Aoy 3AD

IS "D

US 2013/0263267 Al

Oct. 3,2013 Sheet 47 of 51

Patent Application Publication

OUA | OdI | o4l Al_

AioisiH AL

£ elepeop
! ﬂwm_._‘l ov8i
I 10)08A waysAsqng/ioysAs [l LQW/L_M_HwO
I NOANL]| eee 101007 AMjiqeIBUINA 7 | /,
nad AL 0LEG 02s
NOANL | NAd MOV AINL <
AWL [INN @Y3 ‘Y| ou y1 10 | oY) 09¢s
0162
N I
J91j0au0n _._. zO>_>_._.. see JOJIOA >==n§m:.:>.
ulewoq ¥ (V) weyshs
wswsbeuely 1961
1ealy | = =
10)99 weysAsqng/wels
< S/ S ors
0S£S (pajnwisues) Nad AWL k
NOAWL| NAd O3 DJul <
orec
\ _ J¥A _ aal W_ oves
¥4sa [
BeoeIoN Tl \ _._. . zO>_>_._.. eee® .IOJIBA >ﬁ___nm‘_w:_:>.
oces '
< [8A8T
e (g] _ ,
OIUeA] 10 ot y) 10}93A WB)SASONG/UIDISAG [
0£6Z oges (peniusuen) nad AL 0381 Shis 2

US 2013/0263267 Al

Oct. 3,2013 Sheet 48 of 51

Patent Application Publication

pajiwsuel} st AWL IINN & uay)

‘a|qe|ieae peojAed QY| ou s aJay; Jf , e

: |

Id siu} 03 1011
. 4]000j0.1d,,

I

sPeojhed Jy| yim
AIN1 WOo3sSN?d 10N1IsuUo0)
]
uonesipul DIY DAl YIM
[@1d‘@s1l.gInL aepdn

NOANL Moe y3im
[@IdD@sLl.gind @1epdn

Ndd O3y i
ON

[@IdDsLl.ginL 9jed07]

Japuodsay
ANL

Y

dvS "Old

—

NOANL 308 Yyim
[@Id‘@sL1].glNL 81epdn

9

xoq sty} Aq papunoq 2160j
9y} salipow UORBUBAUI
jua.LINd 3y} Jo poyisu

LJasuodsay uoisniuj, 9yl

[@1d'@s1l.alnL 93ed0T]

Jopuodsay
ANL

alojog

VS DId

US 2013/0263267 Al

Oct. 3,2013 Sheet 49 of 51

Patent Application Publication

ANL Wouy BJep Yjim ejEP J10399A
sainseauwLdajuno/ANjIgesauinp
gliNL 3953y

059z

SaA

EJep
galNL sopaastadns

(jreyop 10} abed 3xau ass)
xXoq sIYy} Aq pepunoq 2160]
ay} salipowl UOHUDAUY
‘JUa.LINg 9y} jo pylewl
Losuodsay uoisnauy,, ayl

ejep J0Jo9A
S2INSEaWLIdUN0Y B

EJEp ANL
or9c

saA

A fyqesusing AWL a1oub)

0992

AWL woly ejep
J0}JIDA S2INSEOULIDIUNOD

éﬁ yoen
ON

0E9Z

0292 10}J29A AJIjIgRIDUINA

\ WL UuoEe uim eep 103007
sainseauLid}uno/AMjIqesauinp

giinL ssedwon
||||||| ‘

2 AungessuinA ginL
M3BU ppe pue azijeu|

0292~

[oAdJwv)SAsqns
10 [9AD|JWB)SAS
Pajoajje sy} 10 AINL aY} Ul
10}J99A AjljiqesaujnAa yoses 10§ oq

|9A9] weysAsgns 10 walshAs
ANL 94} 10} BIED JOJOBA
SaINSeauLIIUNO)/AH|IgRIaUNA
gIINL ssedoy

019z

SICh

] — — — —

US 2013/0263267 Al

Oct. 3,2013 Sheet 50 of 51

Patent Application Publication

A1 wouy eyep peojAed H¥|
JO 10AE} U] BJEp 10}99A Ol
giNL (eyeosadap u0) asejdey

ejep J0JOdA

AL 9J0uUBj|

sainseawuajunoy/Ajiqelsuinp

¢peojfed

SSA Jull

1oy

d9s "Old

ON

0992

elRp ._.Buw>
salnsesallajuno)
Ayliqesusinp AINL 240ub

099z |

alojog

VoS "D

US 2013/0263267 Al

Oct. 3,2013 Sheet 51 of 51

Patent Application Publication

Bl
AI0)SIH AL
“ bEbb.PTl ejepejopy
[ona
[
] Jojelausg)
NANL
| NOANL| ese J0}02A Ajjigerauinp \
Nnadd AINL oLES oz
0L62
// OPS
Jajjouon
NOANWL | Ndd YOV AINL
Juswabeuep //Qth
1Ba1y | OYl |-l
1
.. FINOANL| eee i0100A Anpgeioupnp (v) woishg
3 s 7 19618
1
! ol
(V)AL [m— 4 I -
e I 10109/ WA)SAsqng/wo)sAs nt
ojueAUj Id] CIVid S
0£62 0Lss (pesnwsuen) nad AWL 0881 /.S 'O

US 2013/0263267 Al

METHODS, COMPUTER PROGRAM
PRODUCTS AND DATA STRUCTURES FOR
INTRUSION DETECTION, INTRUSION
RESPONSE AND VULNERABILITY
REMEDIATION ACROSS TARGET
COMPUTER SYSTEMS

CROSS REFERENCE TO RELATED
APPLICATION

[0001] This application is a Continuation application of
pending U.S. patent application Ser. No. 10/890,798 filed Jul.
13, 2004, and now U.S. Published Patent Application No.
2006/0015941 Al.

FIELD OF THE INVENTION

[0002] This invention relates to computer systems, meth-
ods, program products and/or data structures, and more par-
ticularly to security management systems, methods, program
products and/or data structures for computer systems.

BACKGROUND OF THE INVENTION

[0003] Computer systems are widely used for data process-
ing and many other applications. As used herein, a “computer
system” encompasses enterprise, application and personal
computer systems, pervasive computer systems such as per-
sonal digital assistants, and embedded computer systems that
are embedded in another device such as ahome appliance that
has another primary functionality.

[0004] As information technology continues to expand at a
dramatic pace, computer systems are subject to larger num-
bers of security threats and vulnerabilities. System adminis-
trators may be overburdened with not only gathering and
maintaining information on new vulnerabilities and patches,
but may also need to wrestle with the task of determining
what patches need to be applied and to what systems. A desire
for computer systems to be kept current to known and devel-
oping security threats may produce a problem of enormous
proportions.

[0005] Many vendors and independent developers have
sough to create and develop ways in which computer system
administrators can find out the current vulnerability status of
the their systems. In particular, vendor programs, utilities and
locally generated scripts have been provided that can reveal
specific information about computer systems. Thus, for
example, Microsoft has provided a utility called HFNETCK,
created by Shavlik, which scans host systems for missing
patches. Moreover, Unix systems have built-in commands
that can list operating system and patch level information.
Several databases have also been created as repositories of
information about computer systems, including IP addresses,
operating system vendor version and possibly the latest
patches applied.

[0006] For example, the Mitre Corporation (Mitre.org) has
promulgated Common Vulnerabilities and Exposures (CVE),
which anecdotally represent vulnerabilities and exposures
using a text string with a chronological identification vector
and free-form text. An example CVE is “CVE-2001-0507+
free form text”. Moreover, the National Institute of Standards
and Technology (NIST) has created an ICAT Metabase,
which is a searchable index of information on computer vul-
nerabilities. Using CVE names, the ICAT Metabase vulner-
ability indexing service provides a short description of each
vulnerability, a list of characteristics of each vulnerability

Oct. 3,2013

(such as associated attack range and damage potential), a list
of the vulnerable software names and version numbers, and
links to vulnerability advisory and patch information. See
icat.nist.gove/icat.cfm. Also, in the fourth quarter of 2002,
Mitre launched the Open Vulnerability Assessment [L.anguage
(OVAL) initiative, to extend the CVE concept to a common
way of vulnerability testing.

[0007] TheOpen Web Application Security Project (owasp.
org) is an open source community project that is developing
software tools and knowledge-based documentation that
helps secure Web applications and Web services. The Vul-
nXML project of OWASP aims to develop an open standard
data format for describing Web application security vulner-
abilities. The project is focused on Web application security
vulnerabilities. It focuses on building http transactions such
as specific headers and requests. See the VulnXML Proof of
Concept Vision Document, Version 1.1, Jul. 18, 2002.
[0008] The Patch Authentication and Dissemination Capa-
bility (PADC) project, sponsored by the Federal Computer
Incident Response Center (FedCIRC), an office of the Gen-
eral Service Administration, first announced in November,
2002, addresses the more general case of application and
operating system vulnerabilities. See, padc.fedcirc.gov.
[0009] The OASIS Consortium (oasis-open.org) has
announced plans to define a standard method of exchanging
information concerning security vulnerabilities within Web
services and Web applications. See, OASIS Members Col-
laborate to Address Security Vulnerabilities for Web Services
and Web Applications, RSA Security Conference, 14 Apr.
2003.

[0010] The WVulnerability Intelligent Profiling Engine
(VIPE) is based on technology by B2Biscom (b2biscom.it).
VIPE includes two elements, a product and a service. The
product is a combination of an inventory and patch manage-
ment tool, which has as its major part of a central database
containing all known vulnerabilities and patches for a large
list of products. Another part of the database is populated with
inventory information. A set of scripts has been developed.
The service analyzes and correlates inventory with an exist-
ing vulnerability encyclopedia, and provides a knowledge-
based approach for assessing vulnerabilities against specific
supported operating systems.

[0011] Citadel Hercules Automated Vulnerability Reme-
diation from Citadel Security Software (citadel.com) pro-
vides software that integrates with industry-leading vulner-
ability assessment tools and provides appropriate remedies
for five classes of vulnerabilities, and a console where the
administrator can review the vulnerabilities implied and
apply the remedy to the correct system on a network. See,
Citadel Hercules Automated Vulnerability Remediation
Product Brochure, Citadel Security Software, Inc., 2003.
[0012] Symantec has an offering that compiles threat man-
agement information into a paid service. See, eweek.com/
article2/0,4149,1362688,00.asp. DeepSight Alert Services
are priced at $5K per year as described in enterprisesecurity.
symantec.com/products/products.cfm?ProductID=160.
Threat Management Services start at $15K per year, per user
as described at enterprisecurity.symantec.com/content/dis-
playpdf.cfm?pdfid=301.

[0013] Finally, the “Cassandra” Incident Response Data-
base is a tool sponsored by the CERIAS center of Purdue
University that allows a user to create saved profiles of the
services and applications running on the user’s networks,
typical (standard configurations) hosts or important hosts.

US 2013/0263267 Al

Cassandra can then notify the user by email of new vulner-
abilities relevant to these profiles. See, cassandra.cerias.pur-
due.edu. Queries (including incremental queries) can also be
performed live. However, these results may be missing
recently discovered vulnerabilities not yet available from
ICAT, and may be missing vulnerabilities that have not been
made public. Because the contents are derived from NIST’s
ICAT servers, CERIAS also offers only a best effort delivery
of the contents available from ICAT.

[0014] In view of the above, security threat management
currently may be a labor-intensive process wherein a com-
puter system’s operations staff individually screens security
advisories, alerts and Authorized Program Analysis Reports
(APARs) to determine their applicability. The operational
staff then determines, through research, how to mitigate the
threat or apply the remedy using manual techniques.

[0015] FIG. 1 is a block diagram illustrating conventional
security threat management techniques. As shown in FIG. 1,
new computer vulnerabilities and hacking tools are discov-
ered by computer security experts 110 in a variety of roles.
Similarly, APARs are provided by vendors 120. The computer
vulnerabilities, hacking tools and APARs (often referred to as
A3 (Advisories, Alerts, APARs) are typically vetted by appro-
priate security organizations such as Computer Emergency
Response Team (CERT/CC), SysAdmin, Audit, Network
and/or Security (SANS) institute personnel 130. Threat and
vulnerability information is distributed by these organiza-
tions primarily via mailing lists 140 that are subscribed to by
computer Security Systems Administration (SSA) staffs 150.
Diligent SSAs may subscribe to multiple mailing lists 140,
thus often receiving duplicate or potentially inconsistent
information. SSAs then perform individual research to deter-
mine a course of action and how to carry it out. Commonly,
they will use Web resources such as Mitre’s CVE listing 160
and/or Oval database 170, and/or NIST’s ICAT database 180,
to manually collect information for countermeasure applica-
tion. This may be highly inefficient and costly. Even commer-
cially available vulnerability management products and ser-
vices may not substantially improve efficiency.

SUMMARY OF THE INVENTION

[0016] According to embodiments of the present invention,
computer-actionable Threat Management Vectors (TMV) are
generated and responded to, so as to allow intrusion detection
and response across target systems. Some embodiments of
TMVs are described in U.S. application Ser. No. 10/624,344
to Bardsley et al., entitled Systems, Methods and Data Struc-
tures for Generating Computer-Actionable Computer Secu-
rity Threat Management Information, filed Jul. 22, 2003, and
application Ser. No. 10/624,158 to Bardsley et al., entitled
Systems, Methods and Computer Program Products for
Administration of Computer Security Threat Countermea-
sures to a Computer System, filed Jul. 22, 2003; and U.S.
application Ser. No. 10/791,560, filed Mar. 2, 2004 to Bard-
sley et al., entitled Domain Controlling Systems, Methods
and Computer Program Products for Administration of Com-
puter Security Threat Countermeasures to a Domain of Target
Computer Systems, all of which are assigned to assignee of
the present invention, the disclosures of all of which are
hereby incorporated herein by reference in their entirety as if
set forth fully herein. Application Ser. Nos. 10/624,344,
10/624,158 and 10/791,560 will be referred to herein collec-
tively as “the prior applications”. As described therein, a
TMYV includes therein a first computer-readable field that

Oct. 3,2013

provides identification of at least one system type that is
affected by a computer security threat, a second computer-
readable field that provides identification of a release level for
the system type, and a third computer-readable field that
provides identification of a set of possible countermeasures
for a system type and a release level. The system type can
include a computer operating system type or an application
program type.

[0017] According to some embodiments of the present
invention, computer security threat management information
is generated by receiving a notification of a security threat
and/or a notification of a test that detects intrusion of a com-
puter security threat. A computer-actionable TMV is gener-
ated from the notification that was received. The TMV
includes a computer-readable field that provides identifica-
tion of at least one system type that is effected by the com-
puter security threat, a computer-readable field that provides
identification of a release level for a system type, and a com-
puter-readable field that provides identification of the test that
detects intrusion of the computer security threat for a system
type and a release level. The TMV that is generated is trans-
mitted to a plurality of target systems for processing by the
plurality of target systems.

[0018] In some embodiments, the TMV further includes a
computer-readable field that provides identification of a pos-
sible countermeasure for a system type and a release level. In
other embodiments, the TMV further includes a computer-
readable field that provides identification of a plurality of tests
that detect intrusion of the computer security threat for a
system type and a release level, and/or identification of a
plurality of possible countermeasures for a system type and a
release level.

[0019] In other embodiments, a second TMV is generated
in response to notification from a target system that intrusion
of'the computer security threat has been detected. The second
TMYV includes therein a computer-readable field that identi-
fies instructions for removing the intrusion of the computer
security threat that was detected. The second TMV is trans-
mitted to the target system for processing by the target sys-
tem.

[0020] Instill other embodiments, a null TMV is generated
in response to notification from a target system that intrusion
of the computer security threat has been detected. The null
TMYV includes therein a computer-readable field that identi-
fies that no instructions are available for removing the intru-
sion of the computer security threat that was detected. The
null TMV is then transmitted to the target system. Thereafter,
a second TMV may be generated in response to receipt of
instructions for removing the intrusion of the computer secu-
rity threat that was detected. The second TMV includes
therein a computer-readable field that identifies the instruc-
tions for removing the intrusion of the computer security
threat that was detected. The second TMV is transmitted to
the target system for processing.

[0021] Computer security threat management information
may be processed at a target computer system, according to
some embodiments of the present invention, by receiving a
computer-actionable TMV at the target system. The TMV
includes therein the computer-readable field that provides
identification of a test that detects intrusion of the computer
security threat for a system type and a release level. The test
is performed at the target system, in response to receipt of the
TMV.

US 2013/0263267 Al

[0022] According to other embodiments, the target system
sends a notification that intrusion of the computer security
threat has been detected. The target system then receives a
TMV including a computer-readable field that identifies
instructions for removing the intrusion of the computer secu-
rity threat that was detected. The target system then performs
the instructions for removing the intrusion, in response to
receiving the second TMV.

[0023] Inother embodiments, in response to sending a noti-
fication from the target system that intrusion has been
detected, anull TMV is received, as was described above, that
indicates that no instructions are available for removing the
intrusion of the computer security threat that was detected.
Later, a TMV may be received at the target system that iden-
tifies the instructions for removing the intrusion. The instruc-
tions are then performed at the target system.

[0024] Computer-actionable TMVs according to some
embodiments of the present invention include the computer-
readable fields that were described above, including identifi-
cation of a test that detects intrusion, identification of a pos-
sible countermeasure and/or identification of instructions for
removing the intrusion. In some embodiments, the TMV can
provide identification of a plurality of tests and/or identifica-
tion of a plurality of possible countermeasures for a system
type and a release level. The TMV can also identify that no
instructions are available. Analogous systems and computer
program products also are provided according to other
embodiments of the present invention.

BRIEF DESCRIPTION OF THE DRAWINGS

[0025] FIG. 1 is a block diagram illustrating conventional
security threat management techniques.

[0026] FIG. 2 is a block diagram of an environment in
which computer-actionable computer security threat man-
agement information may be generated according to the prior
applications.

[0027] FIG. 3 is a flowchart of operations that may be
performed to generate computer-actionable security threat
management information according to the prior applications.
[0028] FIG. 4 is an overview of a data structure of a threat
management vector according to the prior applications.
[0029] FIG. 5 is a block diagram of systems, methods and/
or computer program products for generating computer-ac-
tionable security threat management information according
to the prior applications.

[0030] FIG. 6 is a flowchart of operations that may be used
to generate a threat management vector by a message encoder
according to the prior applications.

[0031] FIGS. 7-14 illustrate detailed data structures of
threat management vectors and sub-vectors according to the
prior applications.

[0032] FIG. 15 is a block diagram of systems, methods
and/or computer program products for generating computer-
actionable computer threat management information accord-
ing to the prior applications.

[0033] FIG. 16 is a flowchart of operations that may be
performed to administer a computer security threat counter-
measure according to the prior applications.

[0034] FIG. 17 is a flowchart of operations that may be
performed to administer a computer security threat counter-
measure according to the prior applications.

[0035] FIG.18is a block diagram of systems, methods and
computer program products according to the prior applica-
tions.

Oct. 3,2013

[0036] FIG. 19 is a flowchart of operations that may be
performed to administer a computer security threat counter-
measure according to the prior applications.

[0037] FIGS. 20-22 illustrate threat management vectors
according to embodiments of the present invention as they
undergo TMV transmutation according to the prior applica-
tions.

[0038] FIG. 23 is a flowchart of operations that may be
performed for TMV history file maintenance according to the
prior applications.

[0039] FIG. 24 is a flowchart of operations that may be
performed for Threat Management Information Base (TMIB)
configuration according to the prior applications.

[0040] FIGS. 25 and 26 are flowcharts of operations that
may be performed for TMV induction according to the prior
applications.

[0041] FIG. 27 is a flowchart of operations that may be
performed for vulnerability state management according to
the prior applications.

[0042] FIG. 28 is a flowchart of operations that may be
performed for remediation management according to the
prior applications.

[0043] FIG. 29 is a block diagram of systems, methods and
computer program products for administration of computer
security threat countermeasures to a domain of target com-
puter systems according to the prior applications.

[0044] FIGS. 30 and 31 illustrate detailed data structures of
threat management vectors and transmuted threat manage-
ment vectors according to the prior applications.

[0045] FIG. 32 illustrates a detailed data structure of threat
management vectors and subvectors including program
instance vectors and program instance locations according to
the prior applications.

[0046] FIGS. 33A-33C illustrate detailed data structures of
threat management vectors according to the prior applica-
tions.

[0047] FIGS. 34 and 35 are block diagrams of program
instance registration according to the prior applications.
[0048] FIG. 36 is a flowchart of operations that may be
performed for program instance registration according to the
prior applications.

[0049] FIG. 37 is a block diagram of threat management
vector refreshing according to the prior applications.

[0050] FIG. 38 is a flowchart of operations that may be
performed for threat management vector refreshing accord-
ing to the prior applications.

[0051] FIG. 39 is a block diagram of program instance
deregistration according to the prior applications.

[0052] FIG. 40 is a block diagram of input threat manage-
ment vector processing according to the prior applications.
[0053] FIG. 41 is a flowchart of operations that may be
performed for input threat management processing according
to the prior applications.

[0054] FIGS.42A and 42B are flowcharts of operations that
may be performed for input threat management vector pro-
cessing by a threat management vector emitter and responder,
respectively, according to the prior applications.

[0055] FIG. 43 is a block diagram of threat management
vector synchronization according to the prior applications.
[0056] FIG. 44 illustrates a data structure of a countermea-
sures vector according to some embodiments of the present
invention.

US 2013/0263267 Al

[0057] FIG. 45 illustrates a data structure of a countermea-
sures vector including logical expressions, brackets and/or
groups according to some embodiments of the present inven-
tion.

[0058] FIG. 46 illustrates a data structure of a countermea-
sures vector according to other embodiments of the present
invention.

[0059] FIG. 47 is a block diagram of countermeasure stag-
ing according to some embodiments of the present invention.
[0060] FIG. 48 is a block diagram of intrusion detection
according to some embodiments of the present invention.
[0061] FIG.49is a flowchart of operations for vulnerability
state management with intrusion detection according to some
embodiments of the present invention.

[0062] FIG. 50 is a flowchart of operations for intrusion
detection according to some embodiments of the present
invention.

[0063] FIG. 51 illustrates a data structure of a root vulner-
ability vector according to the prior applications.

[0064] FIG. 52 illustrates a data structure of a threat man-
agement vector according to some embodiments of the
present invention.

[0065] FIG. 53 is a block diagram of intrusion response
according to some embodiments of the present invention.
[0066] FIGS.54A,54B, 55, 56A and 56B are flowcharts of
operations for intrusion response according to various
embodiments of the present invention.

[0067] FIG. 57 is a block diagram of intrusion response
countermeasure relays according to some embodiments of
the present invention.

DETAILED DESCRIPTION

[0068] The present invention now will be described more
fully herein with reference to the accompanying figures, in
which embodiments of the invention are shown. This inven-
tion may, however, be embodied in many alternate forms and
should not be construed as limited to the embodiments set
forth herein.

[0069] Accordingly, while the invention is susceptible to
various modifications and alternative forms, specific embodi-
ments thereof are shown by way of example in the drawings
and will herein be described in detail. It should be understood,
however, that there is no intent to limit the invention to the
particular forms disclosed, but on the contrary, the invention
is to cover all modifications, equivalents, and alternatives
falling within the spirit and scope of the invention as defined
by the claims. Like numbers refer to like elements throughout
the description of the figures.

[0070] The present invention is described below with ref-
erences to block diagrams and/or flowchart illustrations of
methods, apparatus (systems) and/or computer program
products according to embodiments of the invention. It is
understood that each block of the block diagrams and/or
flowchart illustrations, and combination of blocks in the
block diagrams and/or flowchart illustrations, can be imple-
mented by computer program instructions. These computer
program instructions may be provided to a processor of a
general purpose computer, special purpose computer, and/or
other programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer and/or other programmable data
processing apparatus, create means for implementing the
function/acts specified in the block diagrams and/or flowchart
block or blocks.

Oct. 3,2013

[0071] These computer program instructions may also be
stored in a computer-readable memory that can direct a com-
puter or other programmable data processing apparatus to
function in a particular manner, such that the instructions
stored in the computer-readable memory produce an article of
manufacture including instructions which implement the
function/act specified in the block diagrams and/or flowchart
block or blocks.

[0072] The computer program instructions may also be
loaded onto a computer or other programmable data process-
ing apparatus to cause a series of operational steps to be
performed on the computer or other programmable apparatus
to produce a computer-implemented process such that the
instructions which execute on the computer or other program-
mable apparatus provide steps for implementing the func-
tions/acts specified in the block diagrams and/or flowchart
block or blocks.

[0073] It should also be noted that in some alternate imple-
mentations, the functions/acts noted in the blocks may occur
out of the order noted in the flowcharts. For example, two
blocks shown in succession may in fact be executed substan-
tially concurrently or the blocks may sometimes be executed
in the reverse order, depending upon the functionality/acts
involved.

Generating Computer-Actionable Computer Security Threat
Management Information

[0074] FIG. 2 is a block diagram of an environment in
which computer-actionable computer security threat man-
agement information may be generated according to the prior
applications. As shown in FIG. 2, a plurality of sources S of
vulnerability threat and/or APAR information are connected
to a Computer Security Incident Response Team (CSIRT) or
other security-responsible server via a network, which can be
a local and/or wide area network including the Web. The
sources S can be one or more of the sources 110, 120, 130,
160, 170, 180 of FIG. 1, and/or other sources. The CSIRT
server sends computer-actionable computer security threat
management information to a plurality of target computer
systems T which can be one or more enterprise, application,
personal, pervasive and/or embedded systems that may be
connected to the CSIRT directly and/or via a network.
According to the prior applications, the computer-actionable
computer security threat management information comprises
one or more computer-actionable Threat Management Vec-
tors (TMV), as will be described in detail below.

[0075] FIG. 3 is a flowchart of operations that may be
performed, for example by the CSIRT server, to generate
computer-actionable computer security threat management
information, according to the prior applications. As shown in
FIG. 3, notification of a computer security threat is received at
Block 310. At Block 320, a computer-actionable TMV is
generated from the notification that was received. Further
description of the TMV will be provided in FIG. 4. Then, at
Block 330, the TMV, or a form of the TMV, that is generated
is transmitted to a plurality of target systems for processing by
the plurality of target systems.

[0076] FIG. 4 is an overview of a data structure of a TMV
according to the prior applications. Further details will be
provided below. As shown in FIG. 4, the TMV 400 includes a
first computer-readable field 401 that provides identification
of at least one system type, such as an operating system type,
that is affected by the security threat, a second computer-
readable field 402 that provides identification of a release

US 2013/0263267 Al

level for the system type, and a third computer-readable field
403 that provides identification of a set of possible counter-
measures for a system type and a release level. Moreover, in
some embodiments, the TMV includes a fourth computer-
readable field 404 that provides identification of at least one
subsystem type, such as an application program type, that is
affected by the computer security threat and a fifth computer-
readable field 405 that provides identification of a release
level for the subsystem type. In these embodiments, the third
computer-readable field 403 provides identification of aset of
possible countermeasures for a subsystem type and a release
level in addition to a system type and release level. Moreover,
in some embodiments, the TMV includes a sixth computer-
readable field 406 that identifies a vulnerability specification,
also referred to herein as a “root VKey vector”, to identify the
vulnerability or security threat.

[0077] FIG. 5 is a block diagram of systems, methods and
computer program products for generating computer-read-
able security threat management information according to the
prior applications. As shown in FIG. 5, notification of a com-
puter security vulnerability threat or countermeasure to a
vulnerability or threat is received at a central clearinghouse,
also referred to herein as a CSIRT 510, from various sources
110-130 and 160-190 that were described above. Other
sources may also be utilized. At the CSIRT 510, a message
encoder 520 transforms vulnerability, threat, APAR and/or
information via human analysis and/or computer-assisted
encoding into an unambiguous computer-interpretable form,
referred to as a TMV. A common semantics database 530
establishes and maintains, via human analysis and/or com-
puter-assisted encoding, the metadata used by the message
encoder 520 to create the TMV. One example is a set of
assigned numbers representing computer operating system
names. The message encoder 520 produces a TMV in com-
puter-actionable format. For each specific vulnerability,
threat or countermeasure, the TMV stipulates target system
components and parameterized countermeasure installation
instructions for automated application. The TMV is then
transmitted to target systems 540. Target System Security
Administrators (SSA) 550 may be advised of interventions
that may be required to be performed if fully automatic inter-
vention is not present, and/or of specific instructions. Human
labor can thereby be reduced dramatically.

[0078] FIG. 6 is a flowchart of operations that may be used
to generate a TMV by a message encoder, such as the message
encoder 520 of FIG. 5. F1G. 6 refers to vulnerability alerts and
advisories and patch or other countermeasure information as
Threat Management Information (TMI). As shown at Block
610, TMI may originate from security organizations, ven-
dors, independent security professionals and/or other
sources. TMI may include, but is not limited to, data about
vulnerabilities in an operating system or application program
or software utility, countermeasures for correcting a vulner-
ability, or both. Examples of TMI are new or revised security
alerts and advisories from CERT/CC or SANS Institute and
new or revised patch notifications from vendors.

[0079] Referring to FIG. 6, conceptually, TMV generation
can be considered a two-stage process. However, in practice,
it may be implemented as a single set of integrated operations.
[0080] In the first stage, at Block 610, TMI acts as input
stimuli for a process of analysis, qualification and quantifica-
tion (AQQ) at Block 620. Analysis may involve a general
analysis and research of the input for completeness and coher-
ence. Qualification may involve validating the accuracy, con-

Oct. 3,2013

sistency, source integrity and efficacy of the information for
threat management use. Qualification also may involve such
details as testing a proposed patch or script on an operating
system, application program, or program utility instance in a
laboratory or simulated production environment. Finally,
quantification may involve ensuring that all relevant TMI has
an unambiguous representation in a catalog entity called the
Threat Management Control Book (TMCB) such that each
information component 630 is discernible via assigned num-
bers (ANs). The AQQ team, in fact, may represent a threat
management assigned number authority (TMANA) by virtue
of its authority to create, delete, and otherwise ensure the
referential integrity of ANs in the TMCB, respective of exter-
nal assigned number authorities (ANAs).

[0081] In some embodiments, it may be desirable that all
ANs and corresponding information encodings for the com-
plete construction of a TMV representing the TMI are avail-
able in the TMCB. Any TMI not found to be so represented
may be formulated and cataloged in the TMCB by the
TMANA at Block 640. TMI categories may include, but are
not limited to, vulnerability identity and specification, system
identity, system level identity, subsystem identity, subsystem
level identity, and countermeasure identity and specification.
[0082] The second stage may involve the systematic encod-
ing (Blocks 650-680) of the physical TMV using TMCB
content and its subsequent transmission (Block 690) to target
systems for autonomic threat management processing. TMV
encoding may involve a cascading nested sequence of encode
operations 650, 660, 670, 680 for a given vulnerability 650
such that each affected system type 652 is identified, and for
each of these 662, each affected level 670 is identified, and for
each of these 672 all applicable countermeasures 680 are
encoded in machine-readable format, as shown in FIG. 6. A
similar cascading nested sequence of encode operations may
be performed likewise for affected subsystems.

[0083] FIG. 7 illustrates a general form of a TMV accord-
ing to the prior applications. As was described above, the
TMYV can transform the computationally ambiguous infor-
mation, such as CVE information and/or other information,
into a precise specification of vulnerability attributes and
countermeasure attributes. The resultant encoding can then
be used by programs to automate the reconciliation of threat
specifics to a well-defined set of compensating countermea-
sures to be applied to specific target computer systems.
[0084] As shown in FIG. 7, a TMV according to the prior
applications may include a Vector Header, a VKey, such as a
CVE Key, a Pointer to System Vector, a Pointer to a Sub-
system Vector and a VKey Description. It will be understood
that CVE is used herein as one example of a vulnerability key
(VKey), but that any other key(s) may be used. It also will be
understood that the VKey Description may be a free form text
description and/or an encyclopedic reference key to a text
description held elsewhere, and may be included in the vector
header as a usability aid. As also shown in FIG. 7, the Vector
Header may include a TMV Control field and a Vector Length
field. The VKey field may include VKey Type, VKey Length
and VKey Value fields. Finally, the VKey Description may
include a Description Type, Description Length and free form
text, or a Control field and an Array of encyclopedic reference
keys. FIGS. 8-12 provide detailed descriptions of the System
Vector, System Level Vector, Countermeasures Vector, Coun-
termeasures Metadata and Subsystem Vector.

[0085] FIG. 8 illustrates a general form of the System Vec-
tor according to the prior applications. The System Vector

US 2013/0263267 Al

identifies the Operating System (OS) type(s) to which a vul-
nerability applies. It may include a Vector Header and an
array and/or linked list of System Identifiers corresponding to
specific OS types, such as Sun Solaris, AIX, etc. As also
shown in FIG. 8, the Vector Header may include a Control
field and a Vector Length field. The System Identifier can
include a System ID field, a System Control field and a
Pointer to System Level Vector field. The System Control
Field is used to maintain system oriented processing controls.
System IDs are globally unique codes which map to specific
operating system types. The code values and the correspon-
dence to their conventional system names are maintained in
machine-readable form in a common semantics database,
referred to as a Threat Management Control Book (TMCB),
described below.

[0086] FIG.9 illustrates a general form of the System Level
Vector. As shown in FIG. 9, the System Level Vector may
include a Vector Header and an array and/or linked list of
System Level Identifiers. The Vector Header may include a
Control field and a Vector Length field. The System Level
Identifier may include a Level ID field, a System Level Con-
trol field, and a Pointer to a Countermeasures Vector. The
System Level Vector identifies the specific operating system
version and release levels to which a vulnerability or coun-
termeasure applies. The System Level Control field is used to
maintain system level directed processing controls. Level IDs
are system-wide unique codes which map to specific operat-
ing system versions and release levels. The code values and
the correspondence to their conventional product version and
release names are maintained in machine-readable form in
the TMCB as will be described below.

[0087] FIG. 10 illustrates a general form of a Countermea-
sures Vector according to the prior applications. As shown in
FIG. 10, the Countermeasures Vector may include a Vector
Header and an array and/or linked list of Countermeasures
Data. The Vector Header may include a Control field and a
Vector Length field. The Countermeasures Metadata may
include a Countermeasures (CM) 1D, a CM Type, a CM
Control field and CM Parameters. The Countermeasures Vec-
tor identifies the specific countermeasures applicable to a
specific version or release level of a specific operating system
(system) or application (subsystem) version, in order to coun-
teract the vulnerability. The countermeasures vector thus
identifies a locus of points in the TMV subspace, as located by
the directed graph formed by the System Vector, Level Vector
and/or Subsystem Vector, Subsystem Level Vector, represent-
ing the applicable set of countermeasures such as patches.

[0088] FIG. 11 illustrates a general form of Countermea-
sure Metadata of FIG. 10. Countermeasure Metadata pro-
vides the information that is used to apply a countermeasure.
Referring to FIG. 11, CounterMeasure ID (CMID) is a glo-
bally unique code which maps to a specific countermeasure,
as defined in the TMCB (described below). CM Type and CM
Parameters permit the specification of countermeasure instal-
lation instructions. Examples of CM Types might include
“local”, “server”, “URL”, “Binary” or “manual”, represent-
ing various modes of countermeasure installation. The CM
Control Field is used to maintain processing controls associ-
ated with countermeasure deployment. Examples of CM
Parameters might include metadata representing interface
parameters to a local or remote patch application service, a
URL, embedded countermeasure installation instructions
(text or executable program code) and/or an encyclopedic
reference to same. The specific control mechanisms for speci-

Oct. 3,2013

fication of CM Parameters and installation of countermea-
sures is a function of the individual countermeasures them-
selves, and need not be described herein.

[0089] FIG. 12 is an overview of a Subsystem Vector. As
was described above, security vulnerabilities may involve not
only operating systems but also subsystems, such as protocol
engines, application programs and utilities. The Subsystem
Vector identifies the subsystems or application types to which
a vulnerability applies. It includes an array of system identi-
fiers corresponding to specific software entities, such as
Microsoft 11S. The Subsystem Vector can be structurally
identical to the System Vector, except that it applies to appli-
cation software that uses the operating system, as opposed to
the operating system itself. It also will be understood that the
semantics of the Countermeasures Vector elements may be
repeated in the subsystem vector taxonomy.

[0090] FIG. 13 illustrates a general form of a Threat Man-
agement Control Book (TMCB) according to the prior appli-
cations, which may correspond to the common semantics
database 530 of FIG. 5. As was already described, the TMCB
includes an indexing structure containing the metadata asso-
ciated with the standard values used in the TMV encoding. It
enables the transformation of nonstandard or bulky informa-
tion into unambiguous and compact equivalent forms, for
packaging in a TMV. Such data transforms are established by
a Threat Management Assigned Number Authority
(TMANA). In general, the TMCB is the registry of standard
values encoded in TMV configurations.

[0091] FIG. 13 illustrates tables that can be maintained in
the TMCB. As shown in FIG. 13, the system table may
include a System ID, a System Name, and a System Level
Table field, and may be indexed by System ID and System
Name. The System Level Table may include a Level ID and a
Version and Release Number field. The Subsystem Table may
include a Subsystem ID, Subsystem Name and Subsystem
Level Table, and may be indexed by Subsystem ID and Sub-
system Name. The Threat Severity Table may include a
Severity ID and a Severity Name field, and may be indexed by
the Severity ID and Severity Name. The Countermeasure
Table may include a CM ID, CM Type and CM Name field,
and may be indexed by the CM 1D, CM Type and CM Name
fields. It will be understood, however, that these tables are
merely illustrative and other configurations may be provided
in other embodiments of the invention.

[0092] FIG. 14 provides a summary of TMV taxonomy that
was described in detail in FIGS. 7-12.

[0093] As was described above, the prior applications can
consolidate the human interpretation of threat management
information to a single point, establish an unambiguous rep-
resentation of the information using a common semantic
information base, and produce a computer-actionable mes-
sage unit (TMV) suitable for use by an automated threat
management system. Vulnerable systems may then identify
themselves, apply appropriate countermeasures, track state
and engage System Security Administrators (SSAs) only on
an “intervention required” basis.

[0094] FIG. 15 is a block diagram of systems, methods and
computer program products for generating computer-read-
able computer security threat management information
according to the prior applications. In FIG. 15, the function-
ality of the message encoder 520 of FIG. 5 is provided by a
TMV generator 520', and the functions of the common
semantics metadata 530 is replaced by the TMANA 530", ina
CSIRT or central clearing house 510'.

US 2013/0263267 Al

[0095] Referring to FIG. 15, the TMV generator 520" trans-
forms vulnerability, threat and APAR information via human
analysis and computer-assisted encoding, into an unambigu-
ous computer interpretable form, the TMV. The TMV gen-
erator 520' references a set of standard encodings maintained
by the TMANA 530' in the form of the TMCB (FIG. 13).
While the TMANA 530" maintains the referential integrity of
the TMCB, the actual task of assigning values to the standard
encodings may be relegated to an external assigned numbers
authority, such as NIST. The TMV in computer-readable for-
mat is provided to target systems 540. For each specific vul-
nerability, threat or countermeasure, the TMV stipulates tar-
get system components and parameterized countermeasure
installation instructions permitting automated application of
countermeasures at target computer systems.

[0096] In view of the above, some embodiments of the
present invention can reduce the need for extensive threat
management research and analysis from many points, such as
each and every SSA 550, to one point, such as the TMV
generator 520'. This can reduce the labor associated with
threat management at the operational threat analysis level.
Moreover, through its introduction of standard encodings of
key data, embodiments of the invention can permit threat
management activities at target systems to be automated. This
can further reduce the labor associated with threat manage-
ment at the operational security maintenance level.

Administering Computer Security Threat Countermeasures
for Computer Systems

[0097] FIG. 16 is a flowchart of operations that may be
performed to administer computer security threat counter-
measures for a computer system according to the prior appli-
cations. These operations may be performed in a target sys-
tem, for example, one of the target systems T of FIG. 2 or one
of the target systems 540 of FIG. 5 or 15.

[0098] Referring now to FIG. 16, at Block 1610, a baseline
identification of an operating system type and an operating
system release level for the computer system is established,
which is compatible with a TMV. At Block 1620, a TMV is
received including therein a first field that provides identifi-
cation of at least one operating system type that is affected by
a computer security threat, a second field that provides iden-
tification of an operating system release level for the operat-
ing system type, and a third field that provides identification
of a set of possible countermeasures for an operating system
type and an operating system release level. In other embodi-
ments, the TMV may also include a fourth field that provides
identification of at least one application program type that is
affected by the computer security threat and a fifth field that
provides identification of a release level for the application
program type. In these embodiments, the third field also pro-
vides identification of a set of possible countermeasures for
an application program type and an application program
release level. In still other embodiments, the TMV may
include a sixth field that provides identification of the com-
puter security threat.

[0099] Continuing with the description of FIG. 16, at Block
1630, a determination is made as to whether the TMV iden-
tifies the operating system type and operating system release
level and/or the application program type and application
program release level for the computer system as being
affected by the computer security threat. If yes, then counter-
measures that are identified in the TMV are processed at
Block 1640. If not, then receipt of a new TMV is awaited.

Oct. 3,2013

[0100] FIG. 17 is a flowchart of operations that may be
performed to administer computer security threat counter-
measures according to the prior applications. Referring to
FIG. 17, abaseline identification is established at Block 1610,
and a TMV is received at Block 1620. If a match occurs at
Block 1630, then at Block 1710, at least one instance identi-
fier is added to the TMV to account for multiple instances of
the operating system and/or the application program on board
the computer system. Countermeasures are then processed at
Block 1640 for the instance of the operating system type and
operating system release level and/or the application program
type and application program release level when the operat-
ing system and/or application program is instantiated in the
computer system. Accordingly, these embodiments of the
invention can take into account that, in a single computer
system, multiple instances of operating systems and/or appli-
cation programs may be present.

[0101] FIG. 18 is a block diagram of systems, methods and
computer program products according to the prior applica-
tions. As shown in FIG. 18, based on TMV input and tightly
coupled side data, a target system 1810 can identify itself as
vulnerable to a specific threat or needing a specific counter-
measure, automatically initiate appropriate countermeasures,
track state and engage security system administrators 1820 on
an “intervention required” basis.

[0102] Still referring to FIG. 18, at the initiation of security
administration personnel or automatic equivalents, a Threat
Management Information Base (TMIB) configurator 1830,
which utilizes standard values from a Threat Management
Control Book (TMCB) 530 of FIG. 13, also referred to as a
common semantics database 530 of FI1G. 5, also referred to as
tightly-coupled side data, establishes a baseline identity and
vulnerability state of a target system 1810 using a TMV-
compatible information structure and a TMV history file
1840 that is maintained by the TMV generator 520 of FIG. 13,
also referred to as a message encoder 520 of FIG. 5.

[0103] Still referring to FIG. 18, upon receipt of a new
TMYV, a TMV inductor 1850 checks the TMIB to see if any
onboard system/subsystem images are affected. If so, the
TMYV inductor 1850 prunes the TMV of nonrelevant TMV
subvectors and forwards it to a Vulnerability State Manager
(VSM) 1860 for processing.

[0104] The VSM 1860 incorporates the new vulnerability
or countermeasure information into the TMIB 1880 and,
using state information from the TMIB 1880, if any relevant
system or subsystem images are active (instantiated), invokes
the Remediation Manager (RM) 1870 to oversee the applica-
tion of the indicated countermeasures. During the remedia-
tion, the remediation manager 1870 interacts with the TMIB
1880 to maintain current vulnerability state and countermea-
sure application. The VSM 1860 may similarly invoke the
Remediation Manager 1870 upon systeny/subsystem initial
program load. Accordingly, a self-healing capability can be
provided in computer systems with respect to security threat
management.

[0105] FIG. 19 is a flowchart of operations that may be
performed to administer computer security threat counter-
measures to a computer system according to the prior appli-
cations, and will refer to the block diagram of FIG. 18. Refer-
ring to FIG. 19, at Block 1910, TMIB configuration is
performed upon receipt of an installation, configuration or
maintenance stimulus. TMIB configuration can obtain all
prior countermeasures for the system, also referred to as a
TMYV history file, so that the system can be brought up to date

US 2013/0263267 Al

against all prior security threats. TMIB configuration will be
described in detail below. At Block 1920, TMV induction is
performed in response to a new TMV input stimulus, as will
be described below. At Block 1930, whether in response to
TMIB configuration Block 1910, TMV induction Block
1920, or a system/subsystem boot or resume stimulus, vul-
nerability state management of Block 1930 is performed to
allow all TM Vs to be processed. Remediation management is
performed at Block 1940 to process the countermeasures that
are identified in the TMVs. Vulnerability state management
1930 may maintain the proper state of the computer system
even upon occurrence of a processing interrupt or suspense
stimulus 1960. After remediation management is performed
at Block 1940, a new stimulus such as an installation configu-
ration or maintenance stimulus, a TMV input stimulus, a
system/subsystem boot/resume stimulus or a processing
interrupt or suspense stimulus is awaited at Block 1950.
[0106] TMIB configuration according to the prior applica-
tions now will be described. TMIB configuration may be
performed by TMIB configurator 1830 of FIG. 18, and/or the
TMIB configuration Block 1910 of FIG. 19. TMIB configu-
ration can build an information structure that definitively
specifies an initial and continuing software configuration and
vulnerability state of a target system, such that the TMIB
1880 is readily usable for computation comparison with a
subsequent inbound TMV to determine whether or not the
target system is one of the system or subsystem types to which
the TMV should be directed. This can provide rapid recogni-
tion, to efficiently match TMV system/subsystem type and
level information with on-board system/subsystem type and
level information. Moreover, remediation management based
on initial TMIB configuration can be virtually identical to the
subsequent processing of inbound TMV's during steady state
operation, to allow computational consistency.

[0107] In some embodiments, the initial configuration of
the TMIB 1880 can be computationally equivalent to that
derived by processing TMVs with all the vulnerability and
countermeasure information to establish an initial non-vul-
nerable state. Stated differently, all countermeasures histori-
cally identified as relevant to the system/subsystem being
initialized can be applied, in bulk mode. Subsequent inbound
TMYV information can then be incorporated into the TMIB
1880 by a simple computational means due to notational
consistency.

[0108] Thus, according to the prior applications, the TMV
generator 520, upon issuing TMVs, maintains a history file
1840 in the form of TMIB entries representing the history of
applicable countermeasures for applicable vulnerabilities to
applicable systems and subsystems. TMIB fabrication, the
construction of TMV history file entries, and the TMV induc-
tion operation can all be closely related. In particular, they can
all involve well-defined transforms on the TMV structure, as
described below.

[0109] TMIB generation may take place using a process,
referred to herein as “TMV transmutation”, as described in
FIGS. 20-22. As shown in FIG. 20, a system vector (for
operating systems), or subsystem vector (for applications), is
extracted from the root TMV. Moreover, the subordinate sys-
tem level vector is augmented with an “instance ID” field, to
represent a specific system instance, such as a host name
and/or IP address. This forms a virgin TMIB structure that
identifies a system or subsystem. It will be understood that
FIG. 20 illustrates the system vector case, but a similar tax-
onomy may be used for a subsystem vector.

Oct. 3,2013

[0110] The taxonomy shown in FIG. 20 can represent a
highly sophisticated system. For example, the system illus-
trated in FIG. 20 has three bootable system types with three
available boot images of the first system type, one for each of
three release levels of that system type. Machine architectures
supporting multiple concurrent Logical PARtitions (LPAR)
may fall into this category. Systems with multiple boot
images may be somewhat simpler. The simplest systems have
a single boot image, as depicted in FIG. 21.

[0111] As shown in FIG. 22, the root VKey vector is then
rechained by replacing the countermeasures vector with a
pointer to an array of root Vkey vectors and augmenting each
root VKey vector with a countermeasures vector pointer field.
This creates the basic structure of a TMV history record, a
TMIB fully populated with VKey, and countermeasure state
data, and an inducted TMV as shown in FIG. 22. It will be
understood that FIG. 22 shows the data structure for a system.
However, a structure for a subsystem can be similar. In prac-
tical effect, the TMV transmutation can transform the TMV
from a desired language of a sender to a desired language of
a receiver.

[0112] FIG. 23 is a flowchart of operations that may be
performed for TMV history file maintenance according to the
prior applications. These operations may be performed by the
TMYV generator 520 of FIG. 18. Referring to FIG. 23, at Block
2310, a TMV History Record (HR) is constructed from a
VKey or countermeasure stimulus. At Block 2320, an HR is
retrieved for the affected system or subsystem. If an HR is
found at Block 2330, and if the new data supercedes the HR
data at Block 2340, then the HR data is replaced with the new
data at Block 2350. These operations are performed for each
affected systen/subsystem in the input TMV. If an HR is not
found at Block 2330, then the new HR is stored at Block 2370.
If the HR was found at Block 2330, but the new data does not
supercede the HR data, then the new data is added to the
existing HR data at Block 2360.

[0113] Referring now to FIG. 24, operations for TMIB
configuration will now be described according to the prior
applications. These operations may be performed by the
TMIB configurator 1830 of FIG. 18 and/or by TMIB configu-
ration Block 1910 of FIG. 19. Referring now to FIG. 24, upon
occurrence of an installation, configuration or maintenance
stimulus, the TMV HR for the system/subsystem being
administered is retrieved at Block 2410. If an HR is found at
Block 2420, then the system/subsystem MIB is updated with
the TMIB from the HR data at Block 2430. The update may be
performed so as not to corrupt existing relevant vulnerability
state management information for the system/subsystem. If
not, then at Block 2440, the system or subsystem MIB is
initialized with a virgin TMIB. The operations of Blocks
2410-2440 are performed for each system and subsystem that
is being administered.

[0114] FIGS. 25 and 26 are flowcharts of operations that
may be performed for TMV induction according to the prior
applications. These operations may be performed by TMV
inductor 1850 of FIG. 18 and/or TMV induction Block 1920
of FIG. 19. Referring now to FIG. 25, upon receipt of the
TMYV stimulus, TMV transmutation, as was described above,
is performed at Block 2510. At Block 2520, the TMIB sys-
teny/level subsystem/level vector data is compared with the
TMV. If a match is found at Block 2530, then a potentially
vulnerable systenv/level or subsystem/level identified in the
TMYV has been determined to be on board. Operations pro-
ceed to FIG. 26 at Block 2550, to determine the actual vul-

US 2013/0263267 Al

nerability. On the other hand, if at Block 2530 no match was
found, then at Block 2540, the input TMV is ignored. Opera-
tions of Blocks 2520, 2530, 2540 and 2550 may be performed
for each on board system/level and subsystem/level in the
TMIB, whether or not active. Operations then proceed to a
vulnerability state manager at Block 2560, which will be
described in connection with FIG. 27.

[0115] Referring now to FIG. 26, at Block 2610, in
response to identification of a potentially vulnerable system/
level or subsystem/level in a TMV at Block 2550, the TMIB
vulnerability/countermeasures vector data for the TMV sys-
tem or subsystem level is accessed. At Block 2620, the TMIB
vulnerability/countermeasures vector data is compared with
each TMV vulnerability vector. If a match is found at Block
2630, and ifthe TMV data supercedes the TMIB data at Block
2640, then at Block 2650, the TMIB vulnerability/counter-
measures data is reset with data from the TMV. On the other
hand, if a match is not found at Block 2630, then the new
TMIB vulnerability countermeasures vector data from the
TMYV is added at Block 2670. Alternatively, if a match is
found but the TMV data does not supercede the TMIB data,
then at Block 2660, the TMV vulnerability/countermeasures
vector data can be ignored. The operations at Blocks 2620-
2670 may be performed for each vulnerability vector in the
TMYV for the affected system/level or subsystem/level.

[0116] FIG. 27 is a flowchart of operations that may be
performed for vulnerability state management according to
the prior applications. These operations may be performed by
the vulnerability state manager 1860 of FIG. 18 and/or the
vulnerability state management Block 1930 of FIG. 19.
Referring now to FIG. 27, at Block 2710, in response to a
TMV induction stimulus or a system/subsystem boot or
resume stimulus, TMIB vector data is accessed. At Block
2720, the remediation manager is called, as will be described
in FIG. 28. Operations of Block 2710 and Block 2720 may be
performed for each active system/level and subsystem/level
in the TMIB, for each vulnerability vector associated there-
with, and for each countermeasures vector associated with the
vulnerability for which a state does not indicate “applied/
verified”.

[0117] Referring now to FIG. 28, operations for remedia-
tion management according to the prior applications will now
be described. These operations may be performed by the
remediation manager 1870 of FIG. 18 and/or the remediation
management Block 1940 of FIG. 19. Referring to FIG. 28, in
response to countermeasures selection stimulus, countermea-
sures vector data is accessed at Block 2810. The countermea-
sure state is checked by checking the CM control field at
Block 2820. If verified at Block 2830, then the countermea-
sure is ignored at Block 2870. If the countermeasure is not
verified, but is applied at Block 2840, then the countermea-
sure is verified and set to the “verified” state. If the counter-
measure is not applied at Block 2840, then the countermea-
sure is applied and is set to the “applied” state at Block 2850.
The operations of Blocks 2820-2870 may be performed for
each countermeasure indicated in the countermeasures vec-
tor.

[0118] As described above, the prior applications can per-
mit a computer system to become autonomic (self-healing) to
a large degree. This can reduce the human labor associated
with the application of security patches, and the associated
labor costs. Because of the autonomic characteristics of the
prior applications, security patches may be applied more rap-

Oct. 3,2013

idly, which can reduce exposure time duration and the corre-
sponding aggregate costs associated with recovering from
system penetration attempts.

Administration ~ of Computer Security ~ Threat
Countermeasures Across a Domain of Target Computer
Systems.

[0119] In the above-described embodiments, a central
operational component (sometimes referred to as a Threat
Management Vector (TMV) generator) distributes to each
target system a vector containing information that those sys-
tems use to assess their vulnerability state and apply an appro-
priate set of countermeasures with reduced or minimized
human intervention. Each target system can operate autono-
mously on its input, applying appropriate countermeasures as
determined by the input and by the target system’s current
configuration, and can maintain state information regarding
the progress of remedial actions. Embodiments that will now
be described can provide a Threat Management Domain Con-
troller (TMDC) that can selectively distribute TMVs to a
domain of target computer systems. The TMDC is responsive
toa TMYV and is configured to process a TMV that is received
for use by the domain of target computer systems and to
transmit the TMV thathas been processed to at least one of the
target computer systems in the domain of target computer
systems. Accordingly, the prior applications can potentially
improve operational efficiency of TMV distribution and/or
TMYV processing at target systems.

[0120] FIG. 29 is a block diagram of domain controlling
systems, methods and/or computer program products for
administration of computer security threat countermeasures
to a domain of target computer systems according to the prior
applications. As shown in FIG. 29, a TMDC 2910 is respon-
sive to a computer-actionable TMV that is generated by a
TMV generator 520. The TMDC 2910 is configured to pro-
cessa TMV that is received for use by a domain 2920 of target
computer systems 540 and to transmit the processed TMVs to
at least one of the target computer systems 540 in the domain
2920 of target computer systems 540.

[0121] Continuing with the description of FIG. 29, the
TMDC 2910 can reside on one or more enterprise, applica-
tion, personal, pervasive and/or embedded computer systems
2900 and may operate at least in part on the same computer
system 510 that runs the TMV generator 520 and/or one or
more of the target systems 540 in the domain 2920. The
TMDC 2910 operates within the administrative domain 2920
of a collection of target systems 540. The TMDC 2910 can
mediate between the TMV generator 520 and the target com-
puter systems 540. In some embodiments, the TMDC can
reduce or eliminate the need for the TMV generator 520 to
maintain knowledge of target computer system identities,
configurations and/or operational status. In some embodi-
ments, the TMDC 2910 can improve or optimize bandwidth
that is used for TMV transmission and/or the utilization of
network infrastructure components for TMV transmission. In
some embodiments, the TMDC 2910 can reduce or minimize
1/0O subsystem, buffer storage and/or CPU utilization at target
systems 540 for processing of TMVs. Moreover, in some
embodiments, the TMDC 2910 can provide a central source
for target system program instance inventory information.
[0122] Insomeembodiments, rather than sending TMVs to
each target system 540 individually, the TMV generator 520
sends TMVs to one or more TMDCs 2910. Each TMDC in
turn can reliably forward to each target computer system 540

US 2013/0263267 Al

in its domain 2920 only those TMV elements that may be
appropriate to the specific target system environment. This
capability can be provided at least in part based on the instan-
tiation at the TMDC of real or near real time replicas of TMIB
data 2930 associated with each target system 540. It also will
be understood that although FIG. 29 illustrates a single
TMDC 2910 and four target systems A-D, other embodi-
ments may provide multiple TMDCs 2910, each of which
may be associated with one or more target systems 540.

[0123] As was noted above, according to the prior applica-
tions, the TMDC is configured to process a TMV that is
received, for use by a domain of target computer systems and
to transmit the TMV that has been processed to at least one of
the target computer systems in the domain of target computer
systems. In some embodiments, this processing and transmit-
ting is performed by selectively transmitting the TMV that is
received to the at least one of the target computer systems if
the TMV applies to the at least one of the target computer
systems. In other embodiments, this processing and transmit-
ting is provided by selectively transmitting selected TMV
fields in the TMV that is received to the at least one of the
target computer systems. In still other embodiments this pro-
cessing and transmitting is performed by mutating the TMV
that is received to a format that is compatible with the domain
of target systems. In yet other embodiments this processing
and transmitting is performed by generating a Program
Instance (PI) vector that identifies a program instance at a
selected one of the target computer systems and by transmit-
ting the TMV, including the PI vector, to the selected one of
the target computer systems. In still other embodiments, this
processing and transmitting is performed by transmitting
TMVs that were not previously transmitted to a program
instance at a target computer system due to unavailability of
the program instance, upon availability of the program
instance. In still other embodiments, this processing and
transmitting is provided by storing a TMV until the TMV has
been provided to all program instances at the domain of target
computer systems and to purge the TMV thereafter. These
various embodiments will be described in detail below.

[0124] Transmutation of a TMV by a TMDC according to
some embodiments of the present invention now will be
described. In the prior applications, the TMV generator cre-
ated a form of TMV that may be optimized to represent
information in a form most suitable for computation by the
sender. Target systems receiving TMVs then performed a
“transmutation” on the input to create a form a TMV that may
be optimized to represent information in a form most suitable
for computation by the receiver, the target system itself.

[0125] In contrast, according to other embodiments of the
prior applications, a TMV transmutation is performed by the
TMDC 2910 on behalf of the target systems 540 within its
domain 2920. The transmuted TMV may be augmented with
an inventory-management-oriented data structure, for
example, by virtue of a specialization of the “Instance ID”
field of the transmuted TMV that was described in the prior
applications. This TMV data structure may be used by both
the TMDC and target systems within its domain, in coordi-
nated fashion, to govern the installation of countermeasures
at target computer systems. As part of its mediation function,
which may be made possible by the replication of portions of
the TMIBs 1880 from the target systems to TMIB' 2930 at the
TMDC 2910, the TMDC 2910 customizes the TMV contents

Oct. 3,2013

sent to each target system 540 such that only those TMV data
elements relevant to a specific target system may be received
by that target system.

[0126] FIG. 30 illustrates an overall taxonomy ofa TMV as
was described extensively in the prior applications. In FIG.
30, some vector field names have been simplified and vector
control fields are designated “CF”. Moreover, the Root Vul-
nerability Vector was also referred to as a “Root CVE Vector”
in the prior applications.

[0127] As was also described in the prior applications, the
target systems performed a transmutation on the TMV to
create a form that may be optimized to represent information
in a form most suitable for computation by the receiver. FIG.
31 illustrates a taxonomy of a transmuted TMV of the prior
applications. Again, some vector field names are simplified
and the vector control fields are designated “CF”.

[0128] The generation and use of a Program Instance (PI)
vector according to the prior applications now will be
described. In the prior applications, the content of the
“Instance ID” field of the System Level Vector and Subsystem
Level Vector, which was shown in FIG. 31 as well as FIGS.
20-22, provides a pointer to a PI Vector. The pointer is referred
to herein as a PI Locater. The PI Locater and PI Vector are
shown in FIG. 32. It will be understood however, that in other
embodiments, the PI Locater and/or PI Vector may use an
existing TMV field other than the “Instance ID” and/or may
use a new TMV field.

[0129] The PI Vector is a data structure that identifies pro-
gram instances of a system or subsystem type and level, a
local address for routing of information and program controls
to the program instance within each target system, and the
global address for network routing of TMV data to target
systems within the administrative domain of the TMDC.
There may be multiple PI Vector components for a given
system/subsystem and level, each representing a specific
instance of an onboard program of that type within the target
system environment. The PI Vector may be instantiated and
configured as will be described below.

[0130] The generation and use of a TMV Generation Num-
ber (TMVGN) to track TMVs that are processed by the
TMDC and to control transmitting of TMVs that were not
previously transmitted to a program instance at a target com-
puter system due to unavailability of the program instance,
upon availability of the program instance, according to the
prior applications, now will be described. In particular, it may
be common for target systems or certain of their Pls to have
periods of non-availability. Examples include the period prior
to the initial configuration and Initial Program Load (IPL) of
atarget system PI, and the periods between IPLs of PIs during
which the Pl is “powered down”. During these periods, it may
not be feasible to expect to be able to communicate TMVs to
Pls directly, which may lead to gaps in time during which
TMVs are generated and disseminated by the TMV Genera-
tor (TMVG) but not received by target system Pls.

[0131] Inorderto allow the scope of these gaps to be known
precisely and resolved upon reestablishment of availability of
these target system Pls, the prior applications can provide a
data structure called the TMVGN. The TMVGN is initially
instantiated in the TMV history file with an initial value such
as 0. Each time a TMV is created by the TMVG, the current
TMVGN is retrieved from the TMV history file and its value
is incremented by, for example, +1. The new TMVGN is
recorded in the TMV Root Vulnerability Vector for transmis-
sion in the TMV. The new TMVGN also replaces the TMV

US 2013/0263267 Al

history file (TMVGN) when the new TMV data is incorpo-
rated in to the TMV history file. When a P is configured and
its PI vector component is instantiated in the target system
TMIB according to the prior applications, the PI vector com-
ponent is augmented with a TMVGN field. The TMVGN
associated with the TMV history file data used for configu-
ration operation is stored in the TMVGN field. Thus, by virtue
of'this TMVGN maintenance, it is possible to know precisely
which TMVs each target system PI has “missed” during its
non-availability and to populate target system TMIBs with
the missing information as target system PlIs become avail-
able.

[0132] FIGS. 33A-33C summarize the impact of the
TMVGN construct to relevant data structures according to the
prior applications. As was described above, a TMVGN field is
added of scope global, to the entire TMV history file. A
TMVGN field is added to the Root Vulnerability Vector as
shown in FIG. 33A. Transmuted TMVs are also shown in
FIG. 33B. The TMVGN moves with the vulnerability vector
in the transmuted structure as also shown in FIG. 33B.
Finally, a field is added to the PI vector representing the
TMVGN last known to the PI as shown in FIG. 33C.

[0133] Domain Store and Forward Repositories (DSFRs),
which are configured to store a TMV until the TMV has been
provided to all program instances at the domain of target
computer systems and to purge the TMV thereafter, accord-
ing to the prior applications, now will be described. Assuming
a capability of target systems to register their Pl inventory and
the TMV3s already incorporated into each PI TMIB, as will be
described below, it is possible for a TMDC to know precisely
which TMVs have been generated by the central TMV gen-
erator, but not received by the TMDCs target systems. The
DSFR provides a mechanism for instrumenting this knowl-
edge. In general, in a stable network topology, there is some
point in time, i.e., some point in the sequence of TMV gen-
erations, that can be fixed, at which the existence of the
TMDC “predates” the target systems in its domain. Another
way of stating this is that there is no target system in the
domain that has in its TMIB, a TMVGN greater than the
highest TMVGN known to the TMDC.

[0134] Thus, for a well behaved operation within a stable
threat management domain, the TMDC may only need to
have at its disposal at any given time, only those TMV's whose
generation number (TMVGN) is greater than the highest
TMVGN configured in the “youngest” (latest configured or
latest to be contacted after a period of unavailability) target
system PIs within its domain. Otherwise, the TMDC may
need to have TMVs whose TMVGN is less than or equal to
those known by any target system PI in its domain—but that
would be redundant information because, as was described in
the parent applications, target systems may always be config-
ured with all TMVs generated up to the time of the configu-
ration operations.

[0135] Therefore, in the prior applications, a DSFR is pro-
vided such that each TMV received from the TMVG by the
TMDC is catalogued there until its TMVGN becomes less
than or equal to the lowest TMVGN reported by all of the
registered target system Pls within its domain. The purge
point may be defined as that TMVGN satisfying the quality
criteria. The purge point thus can provide an efficient system
for keeping the DSFR small in size. The DFSR, thus, can be
thought of as a TMV history file subset containing all TMV
data with TMVGNSs greater than the purge point. A DSFR is
illustrated in FIG. 29 at 2940, as a TMV Store & Forward.

Oct. 3,2013

[0136] PI registration according to the prior applications
now will be described. According to some embodiments, at
least one of the target systems comprises a plurality of PIs and
the target system is configured to register the plurality of PIs
with the TMDC. In some embodiments, each of the PIs itself
is configured to register with the TMDC. In other embodi-
ments, the target system itself is configured to register the
plurality of PIs in the target system with the TMDC.

[0137] More specifically, within a given threat manage-
ment domain, the TMDC can have a well-known address such
as an IP address host name and/or other address. The address
may be made known to target systems, for example during the
target system configuration process that has already been
described. At the earliest convenient time, the Pls of each
target system within a threat management domain are regis-
tered with the TMDC, for example via an assigned service
port. A “PI Registration Request” Protocol Data Unit (PDU)
is sent to the TMDC such that, for each PI within the target
system, that portion of its TMIB including system/subsystem
vectors, system/subsystem level vectors and PI vectors are
reported to the TMDC and stored by the TMDC in TMIB
facsimiles (TMIB' 2930) representing registration informa-
tion. According to the prior applications, registration can be
controlled in at least two ways: in some embodiments pro-
gram instances may register themselves during the program
initialization sequence, for example, by establishing a session
with the TMDC and transmitting their TMIB information.
Alternatively, a target system control program or system,
operating on behalf of the PIs within its environment, may
establish a session with the TMDC and incrementally register
all of its PIs.

[0138] FIG. 34 is ablock diagram of PI registration accord-
ing to the prior applications. As shown in FI1G. 34, two simple
(single PI) target systems 540 each registers their PI of a
particular system/subsystem type and level, along with its last
known TMVGN with the TMDC 2910. The information is
then stored in a TMIB facsimile 2930 maintained by the
TMDC. Note that in FIG. 34, TMIB’(A) represents the col-
lection of TMIB’(PI) associated with target system A.
[0139] To complete the registration, the TMDC returns a
“Registration Response PDU”, which includes the original
request data augmented with the requested vulnerability/
countermeasure information, i.e., all vulnerability vectors
associated with the given system/subsystem type and level
bearing a TMVGN greater than the TMVGN reported by the
target system during registration. Upon incorporating the
return vulnerability/countermeasure information (if any), the
target system returns a “PI Registration Acknowledgement
PDU” bearing the highest TMVGN of the newly incorporated
information. The TMDC then updates its TMIB’(A) with the
acknowledgement TMVGN. FIG. 35 illustrates a registration
sequence for the embodiments that were illustrated in FIG.
34. PDUs are sent in a sequence shown by reference numbers
3510-3530 in FIG. 35. FIG. 36 is a flowchart of operations
that may be performed for PI registration according to the
prior applications.

[0140] TMYV refreshing according to the prior applications
now will be described. As was described above in connection
with PI registration with the TMDC, the TMDC can exercise
the DSFR “purge point™ to reduce or minimize DSFR physi-
cal size. The prior applications can provide a TMV refresh
protocol to govern refreshing of TMVs.

[0141] Underthe TMV refresh protocol, it may happen that
there is an excessive period of time between configuration of

US 2013/0263267 Al

target system PIs and their initial registration with the TMDC.
In such cases, it is possible that the highest TMVGN incor-
porated by the configuration process is lower than the lowest
TMVGN being held in the DFSR by more than one (1) which
may represent a gap in TMV information readily available to
the TMDC versus what is used for PI registration. In such
cases, according to the prior applications, the target system
registration process may be paused while the TMDC engages
the TMV refresh protocol with the TMVG to procure the
missing TMV information.

[0142] Protocol Data Units (PDUs) are exchanged between
the TMDC and the TMVG as illustrated in FIG. 37. The
“TMV Refresh Request” PDU bears a request ID for corre-
lation of the response, the lowest TMVGN known to the
TMDC, the target system’s Pl registration information,
including the system/subsystem types and levels being regis-
tered, and their PI vectors. These vectors also contain the
highest TMVGN known by the target system PI for each of
the system/subsystem types and levels being registered. In its
“TMV Refresh Response” PDU, the TMVG appends to each
system level vector of the Request PDU, those vulnerability
vectors representing vulnerabilities applicable to the system
type and level whose TMVGN is greater than that reported for
the PI but less than that reported for the TMDC, thus closing
the gap in the information. Upon receiving a response, the
TMDC may then complete the PI registration by incorporat-
ing the refresh information into the PI registration response
PDU. Thus FIG. 37 illustrates the PI registration protocol
with a TMV refresh protocol included. Message flow may
proceed as indicated by 3710-3750 in FIG. 37.

[0143] FIG. 38 is a flowchart of operations that may be
performed to provide TMV refresh according to the prior
applications. As shown in FIG. 38, to establish a TMV
refresh, the logic of FIG. 38 is inserted at junction A of the
flowchart of FIG. 36. In FIG. 38, TMVGN (L.,H) means a
TMVGN pair representing the lowest (L) and the highest (H)
in a range.

[0144] PI recalibration according to the prior applications
now will be described. It has already been described that PIs
may instigate registration themselves or registration may be
done by a target system control program or system on behalf
of PIs within its scope of control. The same may be true for
exchanges in general between the TMIBs, Pls and the TMDC.
Over the course of time following PI registration, it may be
that certain Pls are unavailable (such that their TMIBs are
inaccessible to the TMDC and the TMDC is inaccessible to
the PI TMIB). It may be that the PI is shut down (for example
between IPLs), or it may be that the entire target system is
unavailable.

[0145] During such periods of time, it is conceivable that a
TMDC may continue to receive TMVs of relevance to the PI,
and that the distribution of such new information to a target
system PI is temporarily prevented. By virtue of the DFSR, a
TMDC is equipped to withhold delivery of TMVs to PI
TMIBs until they subsequently become available.

[0146] When such target systems or Pls subsequently
become available, they may need to be recalibrated with new
threat management information by delivering to them all
relevant TMVs received by the TMDC during their period of
non-availability.

[0147] According to the prior applications, PI recalibration
may be accomplished virtually identically as PI registration,
except that the TMDC may already possess a TMIB' repre-
senting the PI when the registration occurs. Thus, PI recali-

Oct. 3,2013

bration may be defined as PI registration, wherein the TMDC
possesses a preexisting TMIB' for the PI. The net effect may
be that the PI receives all relevant TMVs that are missed
during its non-availability.

[0148] PI deregistration according to the prior applications
now will be described. In particular, it is conceivable that
certain PIs of target systems will be uninstalled or otherwise
permanently removed from the target system-operating envi-
ronment. Such an action may naturally involve the removal of
the PI’s TMIB from the target system. According to the prior
applications, PI deregistration may be performed coincident
with PI removal. P deregistration can entirely remove knowl-
edge of the PI from the TMDCs information base.

[0149] FIG. 39 illustrates an example of PI deregistration.
During the removal of a PI (A1) from a target system (A), the
PI or the target system (whichever the case) transmits a “PI
Deregistration Request” PDU to the TMDC as shown at 3910.
Upon receipt, the TMDC destroys that portion of its TMIB'
for target system A representing the designating PI, as shown
at 3920. The TMDC then returns to target system A a “PI
Deregistration Response” PDU as shown by 3930, thus indi-
cating that the deregistration is complete. Upon receipt of the
response at the target system, the TMIB representing the PI
being removed is destroyed as shown at 3940.

[0150] Input TMV processing according to the prior appli-
cations now will be described. Input TMV processing can
incorporate some or all of the various embodiments that were
described above. In particular, according to the prior applica-
tions, TMDCs, rather than target systems, receive the TMVs.
Within each threat management domain, TMDCs then for-
ward to target systems within their domains, processed TM Vs
that are customized to, for example, allow improved target
system CPU and/or buffer utilization, and/or to allow
improved network utilization within the domain. To accom-
plish this potential efficiency, in addition to the provisions
described previously, the prior applications may also include
the following operations. These operations are shown by
4910-4960 in FI1G. 40, and are described below:

[0151] The “TMYV transmutation” of the “TMV induction”
is removed from target systems and replaced by a similar or
identical TMV induction associated with the TMDC at 4910,
so that transmutation is performed only once within the threat
management domain rather than multiple times throughout
the target system population. At 4920, following the TMV
transmutation, the TMV content is incorporated into the
DSFR and the DSFRs TMVGN is updated to reflect the new
input. At 4930, for each target system within its domain, the
TMDC interrogates the PI system/subsystem and level infor-
mation within each TMIB!' for each target system, looking for
a match with the corresponding vector components of the
mutated input TMV. For each PI found to match the compari-
son criteria, a customized mutated TMV containing only
those system/subsystem and level vectors, Vulnerability Vec-
tor and Countermeasures Vector corresponding to the match
criteria is cloned from the TMYV, at 4940.

[0152] The TMV is transmitted to the target system PI
using the routing information supplied by the target system
during the PI registration described previously at 4950. If the
TMYV Inductor for the Pl is available, it acknowledges receipt
in a PDU bearing the receive TMVGN. Otherwise, TMV
distribution is self-correcting and will be accomplished as a
consequence of PI recalibration when the PI again becomes
available, according to 4920 and embodiments of the present
invention previously described. When all of the eligible and

US 2013/0263267 Al

available PIs within the domain have been serviced, the
mutated input TMV is destroyed at 4960. Note that in FIG. 40,
Target System A has one PI (A1), and it is affected by the
input TMV content. Target System B has two PIs (B1 & B2),
and they are both affected by the input TMV content. Finally,
Target System C also has two PIs (C1 & C2), but neither of
them are affected by the input TMV content.

[0153] FIG. 41 is a flowchart of operations for input TMV
processing as was described in connection with FIG. 40. F1G.
42A is a flowchart of input TMV processing by a TMV
emitter. FIG. 42B is a flowchart of TMV processing by a
TMYV responder.

[0154] Finally, TMV synchronization according to the
prior applications will be described. In particular, although
the prior applications may generally assume that a TDMC
will maintain a secure TCP/IP (or other) session with the
TMVG, it is conceivable that for certain periods of time such
as a session may be disabled or otherwise unavailable. In
certain circumstances this can result in TMDCs missing some
TMYV or sequence of TMVs generated by the TMVG. That is,
the TMDC and TMVG may become unsynchronized. To
accommodate such a circumstance, the prior applications can
provide that, if a TMDC receives a TMV with a TMVGN
exceeding the TMVGN of the TMDC’s DSFR by more than
one (1), then the TMDC initiates a “TMVGN Synchroniza-
tion” to acquire the missing TMVs, according to the follow-
ing provisions and as shown in FIG. 43:

[0155] A “Synchronize Request” PDU is defined at 4310,
containing a “Starting TMVGN” field and an “Ending
TMVGN?” field. These indicate the TMVGN from the DSFR
plus one (+1) and the TMVGN value from the TMV that
caused the TMDC to detect the disruption of synchronism
minus one (-1), respectively. In response, at 4320, the TVMG
initiates an incremental sequence of TMV's to the requesting
TMDC, representing the range of TMVGNSs specified in the
request, by reconstituting the TMVs from its TMV History
File.

[0156] Due to the fact that certain TMV's “supersede” prior
TMVs, it may be that certain TMVGNs in a historical
sequence will indeed be missing due to their obsolescence.
For such cases, while satisfying a given Synchronize Request
PDU, a TMVG may generate one or more “null” TMVs,
indicating that the TMVGN should be ignored. A null TMV
may be indicated in an appropriate control field of the Root
Vulnerability Vector (and/or by the absence lower level vec-
tors), and the TMVGN field of that vector indicates the
TMVGN to be ignored. Other fields may be deprecated.

[0157] Accordingly, the prior applications can provide a
threat management domain controller that intervenes
between a TMV generator and one or more domains of target
computer systems. By providing a multi-tier threat manage-
ment architecture, the prior applications can improve or
maximize scalability. Overall resource requirements includ-
ing network bandwidth and target system CPU and buffer
utilization can be reduced and/or minimized. Reliable deliv-
ery of actionable threat management information to target
systems can be enhanced. Moreover, the need for human
intensive tasks may be reduced or eliminated. In particular,
the administrator-driven initial configuration of vulnerability
inventory for target systems may be reduced or eliminated.
TMVGNSs also can be used to represent a form of time cali-
bration, i.e., ticks of a clock in a threat management time
continuum.

Oct. 3,2013

[0158] The prior applications can improve or optimize
information flow in that each target system may receive only
that information that it actually needs and only when it is
needed. Moreover, computational efficiency may be pro-
vided. The prior applications also can be naturally self-cor-
recting. The “purge point” construct can reduce or minimize
storage for TMV data within a TMDC. The “null TMV”
construct can maintain time continuity. Finally, a convention
of setting the TMVGN to zero upon initial registration may
cause the system to auto-configure target systems with his-
torical threat management information of relevance to them,
which can replace the need for human intervention for initial
configuration of target system vulnerability inventory and
may also reduce or eliminate a significant operational cost
factor in implementation.

Intrusion Detection and Response Across Target Computer
Systems

[0159] During the course of operation of an implementa-
tion of the prior applications, Countermeasures Vectors
(CVs) are installed for appropriate systems and/or sub-
systems such as Pls, and the remediations they specify are
applied. These remediations can reduce or nullify the expo-
sure of the PI to an associated vulnerability (as identified by
the related Vulnerability Vector).

[0160] However, atthetime of application of a countermea-
sure or set of countermeasures for a P, it may be that the
related vulnerability has already been exploited, either acci-
dentally or on-purpose, resulting in the compromise of the PI.
This will be referred to as an “intrusion”. In such cases, by
themselves, countermeasures associated with nullifying the
exposure of the PI to the vulnerability may be of little imme-
diate utility.

[0161] Some embodiments of the present invention can
remediate the vulnerability and also can interdict and eradi-
cate the intrusion, in a coordinated fashion. In particular, it is
not uncommon for intrusions to establish evidence of their
presence. Even though an intrusion may disguise or attempt
to disguise such evidence, there are often techniques available
to penetrate such disguises. For example, in a UNIX-based
system, an intrusion may disguise its running processes by
first replacing the “ps” command (which displays running
processes). However, if a countermeasure in the form of an
uncorrupted instance of the ps command can be executed,
intruding processes can be revealed.

[0162] Some embodiments of the present invention can
address circumstances wherein it is possible to detect that a
vulnerability has been exploited before its remediation has
been applied. Accordingly, some embodiments of the present
invention can provide systems, methods, computer program
products and/or data structures that can automate the detec-
tion and remediation of an intrusion upon a system and/or
subsystem such as a Program Instance (PI), in addition to the
vulnerability remediation capability established by the prior
applications.

[0163] Some embodiments of the present invention can
provide extensions to the structure of the Threat Management
Vector (TMV) introduced by the prior applications, to incor-
porate mechanisms for “Intrusion Detection” (ID) and “Intru-
sion Response” (IR), in addition to and/or in conjunction with
the Vulnerability Remediation (VR) capability embodied in
the prior applications. Some embodiments of the present

US 2013/0263267 Al

invention also provide for operation of these mechanisms
simultaneously across a collection of target computer sys-
tems.

[0164] Accordingly, some embodiments of the present
invention can specialize the content of the Countermeasures
Vector introduced by the prior applications, to incorporate
multiple classes of functionality, including the following:
Intrusion Detection Vectors contain one or more tests for
evidence of effective exploit of a vulnerability as identified by
the Vulnerability Vector of a TMV. Intrusion Response Vec-
tors convey instructions for the interdiction and removal of
elements associated with an intrusion induced by an exploit.
Such elements may be detected by an Intrusion Detection
Vector associated with a vulnerability identified by the Vul-
nerability Vector of a TMV. Finally, Vulnerability Remedia-
tion Vectors may be generally similar to the Countermeasures
Vector specified in the prior applications. Vulnerability
Remediation Vectors convey instructions for the remediation
of circumstances and properties identified as constituting a
vulnerability as identified by the Vulnerability Vector of a
TMV.

[0165] Accordingly, a computer-actionable TMV accord-
ing to some embodiments of the present invention can include
a computer-readable field that provides identification of at

Oct. 3,2013

Vectors in a single TMV transmission. One way to logically
express countermeasure bracketing is shown below. As
shown below, there are two brackets. The first bracket carries
a single countermeasure (CM1) and the second bracket car-
ries a choice between two sequential countermeasures (CM2,
CM3) and an alternative (CM4). Within a bracket, parenthe-
ses () are used to denote a logical grouping of countermea-
sures:

[0168] [(CMD][(CM2&CM3)I(CM4)].
[0169] The above example can represent a Countermea-
sures Vector including an Intrusion Detection (ID) Counter-
measure bracket [(CM1)] which, if the detection result is
negative, permits the application of a Vulnerability Remedia-
tion (VR) Countermeasure bracket, [(CM2&CM3)I(CM4],
as annotated in FIG. 45. Note the terms “Unitary Bracket” and
“Unitary Group” in FIG. 45 to denote a bracket or group,
respectively, containing a single countermeasure specifica-
tion. Note also the use of Boolean logical expressions.
[0170] Countermeasure bracketing permits the conveyance
of multiple logically distinct classes of Countermeasure Vec-
tors in a single TMV transmission, as shown in FIG. 46.
[0171] The Table below shows an example of a counter-
measures Vector parsing and logic control mechanism imple-
menting the countermeasure bracketing method.

TABLE
CM Vector Component Functional Description BB CMClass LE EB BG EG
Syntax Error (no bracket may begin with a Boolean) 1 ANY NOTNULL * * %
Unitary Bracket Specification 1 ANY NULL 1 * *
Syntax Error (first in bracket must start a group) 1 ANY NULL o 0 *
Begin Bracket - Unitary Group Specification 1 ANY NULL o 1 1
Begin Bracket - Begin Group 1 ANY NULL o 1 0
Continue Bracket - Begin Group 0 ANY= AND/OR o 1 0
Continue Bracket - Continue Group 0 ANY= AND/OR o 0 o0
Continue Bracket - End Group 0 ANY= AND/OR o 0 1
Continue Bracket - Unitary Group Specification 0 ANY= AND/OR o 1 1
Syntax Error (last in bracket must end a group) 0 ANY= AND/OR 1 * 0
End Bracket - Unitary Group Specification 0 ANY= AND/OR 1 1 1
End Bracket - End Group 0 ANY= AND/OR 1 0 1

least one system type that is effected by a computer security
threat, a computer-readable field that provides identification
of'arelease level for the system type and a computer-readable
field that provides identification of a test that detects intrusion
of'the computer security threat for a system type and a release
level. These TM Vs may also be referred to herein as Intrusion
Detection Vectors. Other TM Vs according to embodiments of
the present invention include a computer-readable field that
identifies instructions for removing the intrusion of the com-
puter security threat that was detected. These embodiments
may be referred to herein as Intrusion Response Vectors.
Finally, in still other embodiments, a computer-readable field
also provides identification of a possible countermeasure for
a system type and a release level. These embodiments may be
referred to herein as Vulnerability Remediation Vectors.
[0166] FIG. 44 illustrates a technique that may be used to
differentiate Countermeasure Classes utilizing the “Control
Field” of the Countermeasures Vector. Countermeasure
Classes should not be confused with Countermeasure Types
(CM Type), which are used to indicate the syntax and seman-
tics of Countermeasure Parameters (CM Parameters) within a
Countermeasures Vector component.

[0167] Countermeasure bracketing permits the conveyance
of a plurality of logically distinct classes of Countermeasure

[0172] Countermeasure staging according to some
embodiments of the present invention now will be described.
In particular, some embodiments of the present invention can
extend the TMV data structure to include multipart (a plural-
ity of) Countermeasures Vectors. In addition to “Vulnerability
Remediation Countermeasures” (VRC) introduced generi-
cally by the prior applications, a TMV may also carry an
“Intrusion Detection Countermeasures” (IDC) bracket and an
“Intrusion Response Countermeasures” (IRC) bracket.
[0173] Ifan exploit for a given vulnerability has associated
with it a “footprint”—some way to detect the penetration of
the target system Program Instance (PI) by the exploit, the
IDC bracket carries instructions for testing for such evidence,
and the IRC bracket carries instructions for interdicting the
exploit and removing its footprint, and, in some embodi-
ments, remediating any ancillary damage.

[0174] It will be understood that PIs having a vulnerability
generally will not have been exploited, and hence may not
initially need to receive IR countermeasures. “Countermea-
sure Staging” can provide the transmission by the TMV Gen-
erator Component of an IRC bracket for intermediate storage
by a Threat Management Domain Controller (TMDC) in its
Domain Store and Forward Repository (DSFR). The remain-
ing TMV payload may be treated as target payload, as in the
prior applications.

US 2013/0263267 Al

[0175] FIG. 47 illustrates Countermeasure Staging for a
vulnerability that affects a single PI type and level and
involves an ID Countermeasures bracket, an IR Countermea-
sures bracket, and a VR Countermeasures bracket. As shown
in FIG. 47, the TMV Generator transmits a TMV PDU 4710
to a Domain Controller 2910". The Domain Controller 2910
transmutes the input TMV and adds the content to its DSFR
2940. Upon identifying an affected PI within its domain, the
Domain Controller 2910' transmits the TMV (minus the IR
countermeasures) to the target system, and the target system
responds at 4730 with a TMV ACK PDU. It will be under-
stood that, in other embodiments, the TMDC 2910' need not
be used for these operations. Moreover, in alternative
embodiments, the TMDC 2910' and/or other functionality
can convey the entire CM payloads (all brackets) to target
system PIs upon initial forwarding of the transmuted TMV.
This may be less efficient, depending on the probability that
target Pls in the domain have already been compromised.

[0176] In certain circumstances, it may be the case that at
the time of receipt of a TMV PDU, a target system Pl may
already have been penetrated and compromised by an exploit
targeting the associated vulnerability (identified by the TMV
PDU). FIG. 48 illustrates how the protocol between the
TMDC and target system Pls is altered by the detection of a
penetration by an exploit of a vulnerability associated with
the TMV. Essentially, instead of returning a TMV ACK PDU
to the TMDC (as in the prior applications), the target system
Pl instead returns an “Intrusion Response Countermeasures”
(IRC) Request PDU (IRC REQ PDU). This signal requests
the TMDC to fetch its stored IR countermeasures and forward
them in another TMV as an IRC bracket. Note that this signal
may also be used by the TMDC to indicate in its TMIB' 2930
for the PI that the vulnerability has been found to be exploited.
In particular, FIG. 48 shows how the PDU flows illustrated in
FIG. 47 may be altered by the detection of an intrusion asso-
ciated with the subject Vulnerability Vector ofa TMV. Essen-
tially, instead of returning a TMV ACK PDU, the target
system PI returns an IRC REQ PDU at 4830.

[0177] Moreover, in embodiments of the present invention,
the “Vulnerability State Management” operation described in
FIG. 27, also shown in FIG. 49, may be augmented with an
additional “Intrusion Detection” operation whose scope is
marked by the dashed box 4910 and expanded in detail in
FIG. 50.

[0178] The prior applications also introduced a data struc-
ture called the “Null TMV” to represent, within its “TMVGN
Synchronization” operation, that certain TMVGNSs in a his-
torical sequence will be missing due to their obsolescence.
These operations were used in a protocol between the “TMV
Generator” and the “Threat Management Domain Control-
ler” components of the prior applications. As described by the
prior applications, the Null TMV may have the form shown in
FIG. 51.

[0179] The Null TMV is a TMV constructed in the trans-
muted form, and the Vulnerability Vector indicates there are
no countermeasures for a given system/subsystem type and
level. The Null (Transmuted) TMV is used generally in the
prior applications in such a manner. In embodiments of the
present invention, a different form of Null TMV may be used.
It may be used in embodiments of the present invention spe-
cifically in response to an “IRC REQ PDU” to indicate that

Oct. 3,2013

there are no IR countermeasures available. Null (Transmuted)
TMVs may have the form shown in FIG. 52.

[0180] Intrusion Response according to various embodi-
ments of the present invention now will be described. Intru-
sion Response addresses the data and processing associated
with responding to an IRC REQ PDU and subsequent appli-
cation of the furnished IR Countermeasures bracket. FIG. 53
illustrates how Intrusion Response can fit within the overall
message and control flow associated with a TMV bearing
IDC and IRC countermeasures brackets. Reference numbers
5310-5330 identify flows associated with “Countermeasure
Staging”, and reference number 5340 identifies the flow asso-
ciated with “Intrusion Detection”. Reference numbers 5350-
5360, identify the flows associated with “Intrusion
Response”.

[0181] Referring now to FIG. 53, at 5350, the TMDC 2910'
responds to the IRC REQ PDU from the target system P1 1880
by retrieving the requested IRC bracket, packaging it in a
TMYV representing the associated vulnerability, and returning
that to the target system PI 1880. If there is no IRC bracket
available, the TMDC sends a “Null Transmuted TMV” as
defined in the prior applications instead. After receiving the
TMYV and incorporating the IRC bracket into the PI’s TMIB,
or after receiving the Null TMV, the target system 540
responds with a TMV ACK PDU at 5360. The TMV ACK
signal may be used in this context by the TMDC to indicate in
its TMIB' 2930 for the PI that the vulnerability has been
scheduled for intrusion response.

[0182] FIGS. 54A-56A show how an Intrusion Response
can influence the logic of the prior applications. FIG. 54B
shows its effect on the “TMV Responder” of the prior appli-
cations. FIGS. 55A and 56B show its influence on the “TMV
Induction” of FIG. 26, Block 2660, also shown in FIG. 56A.
[0183] An Intrusion Response Countermeasures (IRC)
Relay according to embodiments of the invention now will be
described with reference to FIG. 57. An IRC Relay deals with
the circumstance wherein a TMDC receives an IR Counter-
measures bracket from the TMV Generator for a vulnerability
for which a target system PI has already issued an IRC REQ
PDU. In other words, a target system PI has detected an
intrusion and requested IR countermeasures, but the IR coun-
termeasures only subsequently become available. In this case,
at 5710, if the TMIB' for the PI indicates an unsatisfied IRC
REQ PDU has been received, the Domain Controller 2910
immediately transmits a TMV with the IR countermeasures
to the target system, the target system responds at 5720 with
a TMV ACK PDU, and the TMDC marks the TMIB' to show
that the IRC REQ has been satisfied.

[0184] Accordingly, embodiments of the present invention
can transform a vulnerability remediation system into a
highly effective intrusion detection and response mechanism
as well. Reliable delivery (by virtue of its self-healing char-
acteristic) of actionable intrusion detection and response
information to target system program instances may be pro-
vided. Embodiments of the present invention can model
threat management by analogy to an organic system wherein
the Threat Management Vector Generator (TMVG) can pro-
vide brain function, the Target System program instances can
represent vital organs and provide nerve receptor/effector
function, and the Threat Management Domain Controller
(TMDC) can provide spinal chord function.

[0185] In the drawings and specification, there have been
disclosed embodiments of the invention and, although spe-
cific terms are employed, they are used in a generic and

US 2013/0263267 Al

descriptive sense only and not for purposes of limitation, the
scope of the invention being set forth in the following claims.

1. A computer program product for detecting intrusions,
the computer program product comprising:

one or more computer-readable storage devices and pro-
gram instructions stored on at least one of the one or
more storage devices, the program instructions compris-
ing:

program instructions to receive, at a target system, a mes-
sage identifying a first version of a program that is
installed at the target system, and select from a plurality
of different intrusion detection tests for a respective
plurality of different versions of the program, a first one
of'the tests that detects intrusion of the first version of the
program; and

program instructions, responsive to the message, to per-
form the first test at the target system.

2. The computer program product of claim 1 further com-

prising:

program instructions, stored on the one or more computer-
readable storage devices, to send a notification from the
target system that an intrusion of the first version of the
program has been detected;

program instructions, stored on the one or more computer-
readable storage devices, to receive another message at
the target system that identifies instructions for remov-
ing the detected intrusion from the target system; and

Oct. 3,2013

program instructions to perform the instructions for
removing the detected intrusion at the target system in
response to the other message.

3. A method for processing computer security information,

the method comprising:

a computer transmitting, to a target system, one or more
messages identifying a plurality of versions of a pro-
gram that are available for installation at the target sys-
tem and a respective plurality of different intrusion
detection test programs to detect intrusions directed to
the respective plurality of different versions of the pro-
gram, wherein the plurality of different intrusion detec-
tion tests programs includes a first intrusion detection
test program that detects intrusion directed to a first one
of the plurality of versions of the program; and

the computer subsequently receiving a notification from
the target system that intrusion of the first version of the
program has been detected.

4. The method of claim 3 further comprising:

the computer transmitting another message to the target
system for processing by the target system that identifies
instructions for removing the detected intrusion from the
target system.

5. The method of claim 3, further comprising:

the target system selecting from the plurality of different
intrusion detection test programs the first one of the test
programs based on the first version of the program being
installed at the target system.

#* #* #* #* #*

