wo 2013/188169 A1 |1 I} NN OO0 O A A A

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2013/188169 Al

19 December 2013 (19.12.2013) WIPO | PCT
(51) International Patent Classification: Texas 78746 (US). TURPIN, Russell; 4404 Speedway,
GO6F 12/00 (2006.01) Austin, Texas 78751 (US). YOAKLEY, David; 150 Cork
(21) International Application Number: Lane, Austin, Texas 78737 (US).
PCT/US2013/044045 (74) Agents: SCOTT, Jonathan O. et al.; Beyer Law Group
(22) International Filing Date: LLP, P.O. Box 1687, Cupertino, California 95015 (US).
4 June 2013 (04.06.2013) (81) Designated States (uniess otherwise indicated, for every
e) . kind of national protection available). AE, AG, AL, AM,
(25) Filing Language: English AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
(26) Publication Language: English BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
L. DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
(30) Priority Data: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KN, KP, KR,
(71) Applicant: CARINGO, INC. [US/US]; 6801 North Capit- MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
al of Texas Highway, Building 2, Suite 200, Austin, Texas OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC,
78731 (US). SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(72) Inventors: BAKER, Don; 8017 Baxter Springs Road,
(84) Designated States (uniess otherwise indicated, for every

Austin, Texas 78745 (US). CARPENTIER, Paul R.M.;
Heuvelstraat 40, B-2530 Boechout (BE). KLAGER, An-
drew; 1505 W. 30th Street, Austen, Texas 78703 (US).
PIERCE, Aaron; 9108 Heiden Lane, Austin, Texas 78749
(US). RING, Jonathan; 3900 Toro Canyon Road, Austin,

kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,

[Continued on next page]

(54) Title: ERASURE CODING AND REPLICATION IN STORAGE CLUSTERS

Zfec 1.4 312
Metadata 57 A 314
310 32,000 Ao st
Size 1,000 342
Erasure
Set One Encoding 57 Ao 344
Segment A 346
Width 32k
Segment 296, 112 Ao 348
340 Size
Segment VWIDS
abcdef1234567890
350
1234567890abcdef
abcdef123abc4567
Erasure Size 887
Set Two
Encoding 57
380 .
.
/ Manifest
300

(57) Abstract: A cluster receives a request to store an object using replic-
ation or erasure coding. The cluster writes the object using erasure cod-
ing. A manitest is written that includes an indication of erasure coding
and a unique identifier for each segment. The cluster returns a unique
identifier of the manifest. The cluster receives a request from a client that
includes a unique identifier. The cluster determines whether the object has
been stored using replication or erasure coding. If using erasure coding,
the method reads a manifest. The method identifies segments within the
cluster using unique segment identifiers of the manifest. Using these
unique segment identifiers, the method reconstructs the object. A persist-
ent storage area of another disk is scanned to find a unique identifier of a
failed disk. If using erasure coding, a missing segment previously stored
on the disk is identified. The method locates other segments. Missing seg-
ments are regenerated.

WO 2013/188169 A1 |IWAL 00TV AV VAN O AR

EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, Published:
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, S, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CL, CM, GA, GN, GQ,
GW, KM, ML, MR, NE, SN, TD, TG).

with international search report (Art. 21(3))

Declarations under Rule 4.17:

— as to the applicant's entitlement to claim the priority of
the earlier application (Rule 4.17(iii))

WO 2013/188169 PCT/US2013/044045

10

15

20

25

30

ERASURE CODING AND REPLICATION IN STORAGE CLUSTERS

FIELD OF THE INVENTION

[0001] The present invention relates generally to erasure coding. More specifically,
the present invention relates to a combination of erasure coding and replication in a
fixed-content storage cluster and to volume failure recovery when using erasure
coding.

BACKGROUND OF THE INVENTION
[0002] Traditionally, storage provided in a storage cluster (such as by using a
redundant array of independent nodes, or RAIN) is made reliable against hardware
failure either through replication of stored objects or erasure coding of stored objects.
The former has the advantage that the same unique identifier can access the multiple
replicas (using a journal and RAM-based indexing scheme, for example), but has the
disadvantage of high bandwidth and storage overhead (depending upon the number of
replicas desired, large objects can take up a significant amount of space). The latter
enjoys the benefit of a smaller storage footprint and less overhead for similar level of
protection against media failures, but suffers from the drawback that each segment of
an erasure set is different content that must be separately identified in order to read
the object or to reconstruct any lost segments. This identification can be especially
problematic when a storage cluster is restarted. Erasure coding will also incur a
higher processing overhead and lose its footprint advantage when storing small
objects.
[0003] Thus, both techniques have disadvantages. Further, some prior art approaches
applicable to erasure coding use a control database separate from the storage cluster in
order to identify and track segments of a particular object; this approach is
problematic because it introduces more overhead and calls into question the
availability of this control database and whether or not it needs to be replicated. Also,
even though under erasure coding an object can be reconstructed using a subset of the
segments used to encode that object (e.g., if there had been a disk failure), it can be
time consuming not only to identify which segments are no longer present, but also to

locate the remaining segments.

WO 2013/188169 PCT/US2013/044045

[0004] Accordingly, improved techniques are desired for use with storage clusters in
order to take advantage of the benefits of replication and erasure coding as well as to

limit exposure after a hardware failure.

WO 2013/188169 PCT/US2013/044045

10

15

20

25

30

SUMMARY OF THE INVENTION

To achieve the foregoing, and in accordance with the purpose of the present
invention, a storage cluster is disclosed that combines both object replication and
erasure coding in order to utilize the advantages of each.
[0005] In one embodiment, a method stores a digital object in a storage cluster. First,
the storage cluster receives from a client application a request at a computer node of
the storage cluster to store a digital object. The storage cluster then determines
whether to store the digital object in the storage cluster using replication or erasure
coding. This determination may be made by reference to an instruction from the
client, an inherent property of the object, the metadata of the object, a setting of the
cluster, or by other means. When it is determined to store the digital object using
erasure coding, the storage cluster writes the digital object to a number of computer
nodes of the storage cluster using erasure coding and the digital object is stored as a
plurality of segments. In addition, a manifest computer file is created that includes an
indication of the erasure coding and a unique identifier within the storage cluster for
each of the segments. The storage cluster then stores the manifest computer file on
one or more nodes of the cluster and returns a unique identifier of the manifest
computer file to the client application. Manifests are distinguishable from other digital
objects.
[0006] In another embodiment, a method reads a digital object from a storage cluster
having a plurality of computer nodes. First, one of the computer nodes within the
storage cluster receives a request from a client application that includes a unique
identifier for the digital object. The storage cluster finds the object so identified on
one of the nodes where it is stored. If the object is not a manifest as described above,
it is returned to the client application. If the object is a manifest, it next identifies a
plurality of segments within the storage cluster using unique segment identifiers
found within the manifest. Using these unique segment identifiers, the method
reconstructs the digital object using the segments and an erasure coding algorithm.
Finally, the method returns the digital object to the client application.
[0007] In another embodiment, where the client application wishes to replace the
content associated with a unique identifier with a new version of the content, the
invention behaves as described in the previous paragraph, to find the object, then as in
the paragraph prior, to write it. The new version will retain the previous version's

3

WO 2013/188169 PCT/US2013/044045

10

15

20

25

30

unique identifier, but have a later creation timestamp, which distinguishes the two
versions during the update process. The older version is deleted once the newer
version is successfully written in the cluster. The health processing module may also
delete older versions of objects for which newer versions are present, as a way of
maintaining cluster data from error states.

[0008] In another embodiment, a method recovers from a failed disk. First, the
method detects within a storage cluster (having a plurality of computer nodes) that a
disk of one of the nodes has failed. Next, the method scans a persistent storage area
of another disk of the storage cluster in order to find a unique identifier of the failed
disk; this unique identifier is in association with a digital stream of the storage cluster.
It is then determined whether the digital stream is stored within the storage cluster
using replication or erasure coding; when it is determined that the digital stream is
stored using erasure coding, the method identifies a missing segment previously
stored on the failed disk. Using sibling identifiers from the digital stream, the method
locates a plurality of other segments within the storage cluster. Next, the method
regenerates the missing segment using a number of the other segments and an erasure
coding algorithm. Finally, the method stores the regenerated segment on a computer
node of the storage cluster.

[0009] In another embodiment, a segment may be relocated within a storage cluster
without the need for an extra control computer or control database. When a segment
is relocated, the volume hint in its upstream sibling segment is updated in the
metadata of the sibling segment. Alternatively, the volume hint is updated in the
stream representation of the sibling segment in its journal on disk. The storage cluster
may broadcast the unique identifier of the sibling segments in order to find the disk
where the sibling segment is located. The manifest may also be used to find an
upstream segment or a sibling segment of the segment that is being relocated.

[0010] In other embodiments, metadata stored with an object or within cluster settings
dictates when an object should be converted to a different format. When a triggering
condition is satisfied, the cluster converts the object from a storage using replication
to an erasure coding format, from one erasure coding format to another, or from an
erasure coding format to a replication storage format. The original object in its old

format may be deleted if desired. Advantageously, the unique identifier used with the

4

WO 2013/188169 PCT/US2013/044045

10

original object is retained for use with the object in its new storage format, thus
ensuring that the client application that originally stored the object may retrieve it at
any future date using the original unique identifier with which it was provided.
[0011] In another embodiment, an object may be moved from one storage cluster
implementing one storage format (e.g., replication, the specific erasure coding, etc.) to
a second storage cluster that does not necessarily implement the same storage format.
When moved, the object will be automatically converted into the storage format used
by the second cluster. Conversion of the object may be dictated by default settings in
the second storage cluster, by user metadata of the object (which trumps cluster
settings), or by an instruction from a program initiating the move.

[0012] In general, an extra control database is not needed with any of the
embodiments of the present invention. Inherently, a digital object stored within the
cluster can be written, read and managed using its unique identifier, irrespective of

whether the object is stored using replication or erasure coding.

WO 2013/188169 PCT/US2013/044045

10

15

20

BRIEF DESCRIPTION OF THE DRAWINGS

[0013] The invention, together with further advantages thereof, may best be
understood by reference to the following description taken in conjunction with the
accompanying drawings in which:

IFIG. 1 illustrates an environment for operation of the present invention.

IFIG. 2 illustrates an example erasure set for an object using 5:7 erasure
coding.

IFIG. 3 presents an example manifest that may be used in embodiments of the
invention.

IFIG. 4A and 4B are a flow diagram describing how a client application writes
a file to the storage cluster.

IFIG. 5 is a flow diagram describing how a client application reads a digital
object from the storage cluster.

IFIG. 6 is a flow diagram describing how a storage cluster may recover from a
volume failure.

FIG. 7 is a flow diagram describing how object may be converted from one
format to another.

IFIG. 8 is a flow diagram describing how management across storage clusters
may be performed.

FIGS. 9A and 9B illustrate a computer system suitable for implementing

embodiments of the present invention.

WO 2013/188169 PCT/US2013/044045

10

15

20

25

30

DETAILED DESCRIPTION OF THE INVENTION
As is known in the art, erasure coding is a technique for providing redundancy of a
data object without the overhead of replication. Given a particular data object,
erasure coding breaks the object into K data segments and from those data segments
generates P parity segments, for a total of M segments in an erasure set, commonly
indicated as a K:M erasure code. For example, a data object broken into 5 segments
which are then used to generate 2 parity segments is referred to as using a 5:7 erasure
code. A key property of erasure codes is that the original object can be reconstructed
from any K segments, whether a segment of an erasure-coded object is an original
data segment or one of the parity segments. Accordingly, it is advantageous to
distribute each segment to different volumes within a storage cluster (and to different
nodes), thus protecting the data object against the loss of any two volumes within the
cluster. Given adequate nodes in the cluster, segments are distributed to different
nodes, providing protection against node loss. If nodes are located in different
geographic regions, segments are distributed evenly among the regions to protect, to
the extent possible, against loss of the portion of a cluster in one geographic locale.
[0014] In one embodiment, the invention allows objects to be stored either using
replication or erasure coding. The cluster may switch back and forth on a per object
basis depending upon instructions from a client application, an object’s category, an
object's size, an object’s metadata, etc. For example, relatively large objects may all
be stored using erasure coding, while relatively small objects may all be stored using
replication. Ordinary replication may be viewed as a special case of erasure coding
where K= 1 and where M is equal to the total number of replicas of a given object.
Also, different objects may be assigned different erasure codings. In the case of very
large objects, several such erasure sets may be used to represent the object. By
allowing different objects to be assigned different encodings, including ordinary
replication, the invention allows different levels of protection against data loss, at
different processing costs and storage footprints.
[0015] In a second embodiment, the invention addresses the problem with trying to
identify and find segments of an object under erasure coding. Instead of using a
separate database, a manifest file (or object) includes a description of each segment
associated with a particular object. Included within the manifest are the unique
identifier within the cluster for each segment, the size of each segment, which

7

WO 2013/188169 PCT/US2013/044045

10

15

20

25

30

encoding algorithm is used and the specific erasure coding (5:7, etc.) for the object.
The manifest is then treated as an ordinary object within the cluster, provided with a
unique identifier, and replicated as required (e. g., replicated to the same degree of
redundancy, P+1). Replication of the manifest is simple because the cluster is already
performing replication for other objects and has little storage overhead because the
manifest is relatively small in size. Thus, the segments of a particular erasure-coded
object are quickly and easily accessible via the manifest. The identifier for this
manifest object is returned to client applications for future retrieval of the object. This
provides the efficient footprint of erasure coding, while preserving the simple
identification, high availability, and fast startup of ordinary replication.
[0016] In a third embodiment, the invention addresses exposure to data loss within a
storage cluster by minimizing the time after a hardware failure before all missing
segments are regenerated. Each segment of an erasure-coded object includes a hint as
to the volume identifier within the cluster that holds the next segment of the object.
The hint is likely to be the correct volume identifier but may not be guaranteed. As
soon as a hardware failure occurs (such as a disk failure), and before it is noticed that
a particular segment is missing, each volume within the cluster will scan its journal on
disk in order to find a segment having as its hint a volume identifier for the failed
volume. Thus, any missing segments can be identified and can be regenerated as
quickly as possible, before waiting for any normal integrity checking of the cluster to
occur.

Storage Cluster Example
[0017] As mentioned above, the present invention applies to digital objects, i.e., any
type of information represented in digital form. For instance, a digital object may be
an electronic representation of information such as a computer file, a group of files, a
group of file identifiers, or the collections of data or database information. Such other
collections of data include frames or clips from digital audio or video streams, digital
photographs, scanned paper documents, voice messages, CAD/CAM designs, MRI or
X-ray data, streams from message records or files, log entries from audits or status
logs of systems, e-mail archives, check images, etc. The term "computer file" is often

used herein to encompass any electronic representation of information.

WO 2013/188169 PCT/US2013/044045

10

15

20

25

30

[0018] The present invention may be implemented using any suitable computer
hardware and software, and may be implemented upon a storage cluster that includes
any number of computer nodes. Preferably, each node includes a CPU (or multiple
CPUs), an operating system, communication links to the other nodes (or, to at least a
central router), and any number of internal hard disk drives or solid-state drives (i.e.,
from zero to N), often referred to as volumes. Typically, each node includes at least
one drive and there may be any combination of hard disk drives along with solid-state
drives. A storage cluster is typically a fixed-content cluster, meaning that it is used
for backups, long-term storage, archiving, etc., and is not typically used for day-to-
day access to computer files. Often referred to as WORM (write once, read many)
storage, this means that once a computer file or digital object is written to the cluster
it cannot be changed. (Of course, the file may be deleted and a modified version of
the computer file may also be stored within the cluster.) A cluster may be
implemented as a redundant array of independent nodes (a RAIN) meaning that each
node runs its own operating system and makes independent decisions about storage
within the cluster. Storage clusters may be built upon blades, towers, personal
computers and servers. Alternatively, a multi-core processor within a single computer
box may support a virtual storage node running on each core, meaning that a storage
cluster having multiple nodes may be present within the single computer box.
Further, a computer system inside a single physical box may include multiple CPUs in
which case each CPU may represent a node and the storage cluster may be
implemented within the single physical box.

[0019] Figure 1 illustrates an environment 100 for operation of the present invention.
Included is a storage cluster 120, a client application 130, an administrative console
140, any number of computer nodes 10-50, and a central router 170. As mentioned
above, a computer node is typically a physical file server that preferably includes at
least one CPU and any number of disk drives 160, solid-state drives or hybrid drives
that have both types. In one particular embodiment, the storage cluster 120 may be
further logically or physically divided into sub clusters. For example, nodes 40 and
50 may be considered one subcluster, while nodes 10, 20 and 30 may be considered a
second subcluster. Division of a cluster into sub-clusters may be advantageous where

one subcluster is located in a different geographic location from another subcluster.

WO 2013/188169 PCT/US2013/044045

10

15

20

25

30

[0020] Each node implements an operating system such as Debian Linux and
executes processes to manage peer-to-peer communications between nodes, to
perform health processing, and to make independent decisions on behalf of the node
and its volumes. Fach node also includes administrative software and its status can be
viewed via a web browser over the Internet. In one particular RAIN embodiment,
each node is a 1U server (e.g., an x86 computer) with 1 terabyte or more of serial
ATA disk storage capacity with standard Ethernet networking. Each node has an [P
address and may be physically interconnected using an [P-based LAN, MAN or
WAN. Thus, each node may talk to a single node or may broadcast a message to all
nodes within the storage cluster (a multicast) using a router 170 or other similar
network switch.

[0021] Each node includes a management module for handling external requests from
client applications (e.g., an SCSP request from client 130), replication requests
between nodes (e.g., interSCSP requests), and other internode protocol
communications (bidding, requests for information, etc.). A health processing module
manages the digital content of each node. The administrative console 140 is
preferably a Web server linked to the storage cluster that allows access to each node
over any suitable Internet connection. Fach node implements a redundant
administrative console which can be used to view and administer the entire cluster. In
certain embodiments, all nodes are considered equal and communicate with each
other by periodically broadcasting (or “multicasting”) their relevant information to all
other nodes within the cluster.

[0022] In one embodiment, a storage cluster may be implemented using content
storage software available from Caringo, Inc. of Austin, Texas (as modified as
described herein), and any suitable computer hardware. In this embodiment, a storage
cluster implements fixed-content content-addressable storage and each digital object
is uniquely addressed within the cluster by a random number (a universally unique
identifier, or UUID) that has been generated for that digital object using a random
number generator. The contents of each digital object may be verified using a hash
function. A client software application receives the UUID when storing a digital
object in the cluster and retrieves that digital object by supplying the UUID to the

cluster. Software applications communicate with a CAStor cluster using standard

10

WO 2013/188169 PCT/US2013/044045

10

15

20

25

30

HTTP 1.1, and more specifically, using a simplified subset of the standard called
Simple Content Storage Protocol (SCSP). Using this standard interface, client
applications such as electronic mail, enterprise content management, health care
applications, Web browsers, Web 2.0 sites, photo sharing, social media sites, security
video, video editing, etc., may access the CAStor storage cluster in order to store files,
retrieve files or delete files. Further, direct HTPP access is available for browsers,
JAVA, Python, C++, and other software environments.

[0023] In one embodiment, a digital object is stored on a particular node in the
following way. Each node includes a disk index in RAM listing where a digital
stream including the object is stored on disk based upon its unique identifier. For
example, a first column of the index lists the unique identifier of the object, a second
column lists at which sector the stream starts and a third column lists either the length
of the stream or the sector in which it ends. A stream may include the digital object
as well as relevant metadata. Accordingly, objects to be stored on a node may simply
be written sequentially to the disk and their locations recorded in the RAM index. Or,
objects may be stored anywhere on the disk using any suitable storage algorithm and
the objects' locations again will be recorded in the index. When an object is to be
read or deleted, its location on the disk may be found by consulting this index. To
facilitate building up this RAM index upon a restart of the node, a journal of the node
stored within persistent storage records whenever an object is added or deleted and
includes the unique identifier for the object, the sector at which it starts, its length in
sectors or bytes, and other information as described below. Accordingly, when the
node is restarted the information in the journal is read and is used to create the disk
index in RAM. Another technique to build up the index instead of using a journal is
to read the entire disk upon a restart in order to gather the necessary information
although this will be more time consuming.

[0024] Objects may be stored, and duplicates deleted, as described in “Two Level
Addressing in Storage Clusters” and “Elimination of Duplicates in Storage Clusters”

referenced above.

Erasure Set Example
[0025] Figure 2 illustrates an example erasure set 200 for an object using 5:7 erasure
coding. As shown, the data of the original object is separated into five data segments

11

WO 2013/188169 PCT/US2013/044045

10

15

20

25

30

(k1-k5) 210-218, from which are generated two parity segments (pl and p2) 220 and
222. In one embodiment, the data is written, and the parity is generated, in stripes
(st1-st9) 231-239. Tor example, the first stripe 231 consists of original data 251-255
from which are generated parity data 256 and 257. Any remaining data is formed in a
final remainder stripe (rem) 240 and hash metadata may be stored at the end of each
segment in a section 270.

[0026] As mentioned earlier, an object (or stream) to be stored within the cluster may
be broken into several erasure sets of a given size, the size being chosen for
performance sake. A very large object may be broken into several erasure sets, for
example. Within an erasure set the K data segments and the P parity segments are
written using stripes with a fixed-size block of data written successively into each of
the K data segments and then generating and writing the parity blocks to each of the P
parity segments, each stripe (across the K + P segments) serving as an erasure coding
unit. The last stripe in a segment (remainder stripe 240, e.g.) may have a smaller
block size that can be readily computed. Stripes are typically written until the
incoming data is exhausted or until the given size for the erasure set has been filled,
with subsequent data starting a new erasure set.

[0027] In a specific embodiment, data from a single write operation is written in
stripes across all K segments of the erasure set in fixed-size blocks (e.g., 32k bytes).
In other words, blocks 1, K+1, 2K+1, etc., are written to the first segment 210, blocks
2, K+2, 2K+2, etc., are written to the second segment 212, etc. The P parity blocks
are generated synchronously as part of the generation of each stripe of data and are
incrementally written at the end of each stripe. Striping allows parity segments to be
generated synchronously with predictable memory overhead and also allows the
writing of chunked-encoded streams, which usually do not provide the content length
at the beginning of the write operation. Of course, the original data object need not be
divided up into stripes in order to perform the erasure coding, but this provides some
efficiency as the parity segments can be generated for each stripe and then move on to
the next stripe. Alternatively, if striping is not used, the first data segment 210 would
include the first blocks of data within the data object, the second data segment 212
would include the next set of blocks of data, and so forth. At the end of each segment

in the set is metadata 270 for each segment which includes an MDS5 hash value for

12

WO 2013/188169 PCT/US2013/044045

10

15

20

25

30

that segment. Por example, each hash value is 16 bytes and written without
separators.

[0028] Each segment of an erasure set is an immutable stream, each having its own
unique identifier, just as with any other stream of the cluster. Each erasure segment
also contains an additional header 280 containing metadata concerning the other
segments in the erasure set, such as the unique identifier of its manifest, and the
unique identifiers of all of the data and parity segments, in order. Each segment's own
unique identifier will identify its place in its set of siblings. The header for each
segment will also include system metadata such as the volume identifier where the
segment is located, and the likely volume identifier for the next segment of the
erasure set (the volume hint). For example, segment k4 includes the volume identifier
where the segment k5 is located, segment p2 includes the volume identifier were the
segment k1 is located, etc. Preferably, each erasure set being part of a larger stream
(representing a single object) will have the same erasure coding, e.g., 5:7 for all
erasure sets.

[0029] During a write operation, each of the seven segments shown may be written in
parallel using seven different nodes of the cluster, thus providing for data protection
should a node or volume fail. Once a segment is written to a volume, it may be
treated like any other stream within the cluster (aside from the volume and its

contents, its recovery process, and the fact that it need not be replicated).

Manifest Example
[0030] Figure 3 presents an example manifest 300 that may be used in embodiments
of the invention. As mentioned earlier, once erasure coding has been used to encode a
data object into any number of segments (depending upon the encoding used), the
unique identifiers for those segments may be stored within a manifest (it itself being
an object stored within the cluster and having its own unique identifier) for later
retrieval.
[0031] Included within each manifest is a metadata section 310, at least one erasure
set 340 and any number of other erasure sets 380. Of course, the number of erasure
sets represented within the manifest depends upon the size of the data object, the size
of each segment, and the encoding scheme used. Section 312 of the manifest provides
the name of the erasure coding algorithm used and its version number. The specific

13

WO 2013/188169 PCT/US2013/044045

10

15

20

25

30

erasure coding is shown in section 314 and the size of each data block (stripe width)
within a segment is shown in section 316. Other information in this metadata section
includes the time the object was written, its unique identifier, its ownership, and
metadata specified by the application.

[0032] The representation of the first erasure set (or the only erasure set) includes its
size 342, the erasure coding used for this erasure set 344, the segment width 346 (in
bytes), and the total segment size 348 (in bytes). Information such as the encoding
and segment width may also be present within each erasure set as well as in metadata
section 310 in order to provide flexibility, or such data may only be present in one
area.

[0033] The first erasure set also includes the unique identifiers for each of the
segments in that erasure set. For example, section 350 shows unique identifiers for
the segments in the first erasure set. As mentioned, the manifest may contain one or
more erasure set. In that situation, representation of a second erasure set 380 may be
included as well as any number of other representations of other erasure sets. The
second erasure set shows the size (that may be different from the first set) an
encoding, and similar information as the first erasure set. The second erasure set may
use the same encoding as the first set, as well as segment width and segment size, but
this is not a general requirement.

[0034] Any additional erasure sets will include the unique identifiers for all segments
included within that erasure set. Preferably, manifests themselves are replicated and
not erasure coded. This will not hurt space efficiency because a manifest only uses a
small fraction of the space of the data object for which it is a manifest. In addition, in
order to offer the same protection against simultaneous disk failures as the erasure
encoding of the erasure sets, the manifest for a data object encoded using K:M (P=M-

K) encoding should have a total number of replications of at least P+1.

Write Digital Object to Cluster
[0035] Figures 4A and 4B are a flow diagram describing how a client application
writes a file (a digital object) to the storage cluster. In step 404 any suitable client
application 130 desires to store a digital object (such as any computer file, digital

image, digital movie, health record, etc.) in the storage cluster 120. The client

14

WO 2013/188169 PCT/US2013/044045

10

15

20

25

30

application discovers or obtains an [P address of one of the nodes 10-50 within the
cluster and chooses that node as the primary access node (PAN) with which to begin
the storage process. Typically, a client application will access the last node used for
its next request to write. The client application sends a request to the PAN to store the
digital object. In one embodiment, this request is an HI'TP POST request that
includes a header, length in bytes of the digital object, and the object itself. The
response to this request from the PAN to the client will be one of: yes, the PAN can
facilitate storing the object; no, here is a better node to store the object; or no, no node
within this cluster can store that object.

[0036] Assuming that the PAN will facilitate storing the object, the client has passed
the digital object to be stored at this time, although it is possible to wait until a
secondary access node (SAN) is selected for storage to pass the object. If the object is
not passed initially, the client may pass object metadata such as the size of the object,
whether long-term or short-term storage is desirable, and whether the object will be
accessed frequently in the future (all of which can aid in the selection of a storage
node), and optionally a file name for the object. Some clients require that a
hierarchical or arbitrary file name be used for objects that the client stores within the
cluster, and in these situations a hash value may be derived from such a file name and
used as the unique identifier.

[0037] More relevant to this invention, though, is object metadata that may be used to
determine whether to store the object using replication or erasure coding. With the
write request, or in the object metadata, the client application may specify that this
object should be stored using replication or erasure coding (and may also specify a
particular erasure coding). In fact, the client may specify that all objects to be written
be stored using replication or erasure coding. In the absence of a specific instruction
from the client, the invention may use any of a variety of information in order to
decide whether to select replication or erasure coding for an object. or instance, the
size of the object may be used (objects above a certain size being stored using erasure
coding), the type of object may be used (image file, text information, health record,
etc.), object ownership, and expected lifespan. Additional metadata used to determine
when and whether to convert an object after a write is discussed below.

[0038] In step 408, once the secondary access node (SAN) has been selected, the
SAN decides whether to use replication or erasure coding in order to store the current

15

WO 2013/188169 PCT/US2013/044045

10

15

20

25

30

object. As mentioned above, the SAN may use instructions from a client application
or may use any suitable rule based upon the object metadata in order to make this
decision. In one particular embodiment, the size of the digital object is used as the
criterion, or specifically, an object the size of less than 10 megabytes will be
replicated, but any larger objects will be stored using erasure coding. In general,
information that may be used to determine whether to use replication or erasure
coding includes: any rules or settings of the storage cluster set by the cluster
administrator; any inherent property of the object itself or of its metadata; and the
nature of the query or any instructions from the client application. Should replication
be chosen, in step 412 the SAN requests and receives any number of write bids from
nodes within the cluster for the writing of the digital object.

[0039] If the SAN has the lowest bid it responds by sending a "continue" message
back to the client application. In response, the client sends the digital object to the
SAN and the SAN stores the digital object, calculates a unique identifier and returns
this identifier to the client application. On the other hand, if the SAN loses the bid,
then the SAN redirects the client application to the node with the lowest bid that will
then handle the request. The client application then sends the same write request to
this node and the node responds by sending a "continue" message back to the client
application. In response, the client sends the digital object to the node and the node
stores the digital object, calculates a unique identifier and returns this identifier to the
client application. Calculation of write bids may be performed as described in
application No. 12/839,071 entitled "Adaptive Power Conservation" which is hereby
incorporated by reference. Alternatively, a digital object may be written as described
above in the application entitled "Two Level Addressing in Storage Clusters.” After
the object has been written, it may be replicated to different nodes immediately as
many times as required, or the cluster may wait for periodic integrity checking in
order to replicate the object.

[0040] On the other hand, if erasure coding is chosen for storage of the object within
the cluster, then in step 416 the SAN issues a request for write bids from all of the
nodes within the storage cluster. Once the SAN has determined the specific erasure
coding to be used (K:M, based upon a client instruction, object metadata, or a cluster

system setting or constant), it will then select M nodes to be used for storing the data

16

WO 2013/188169 PCT/US2013/044045

10

15

20

25

30

and parity segments of the digital object. Preferably, the SAN chooses nodes bidding
with the lowest cost, although other techniques may also be used such as the best
performance, the lowest power consumption, or other criteria.
[0041] In one embodiment, in order to reduce risk, nodes may be chosen within
different sub-clusters that are physically separated, in order to ensure that if one sub-
cluster is lost that entire objects may be regenerated from segments within the
remaining sub-clusters. For example, given three sub-clusters, an object encoded with
4:6 encoding, will have its segments distributed so that two are stored in each of the
three sub-clusters. The loss of any one sub-cluster leaves four segments, adequate to
reconstruct the object. Similar schemes are possible for different numbers of sub-
clusters.
[0042] Next, in step 420 the first node to store the first data segment of the object will
be designated and this node will perform a number steps in order to prepare for
erasure coding of the object into the data and parity segments on the different nodes.
For instance, the SAN will choose unique identifiers for all of the data and parity
segments in the erasure set (e.g., using a random number generator), will set up
chunked encoded POSTS to the M node recipients, and will determine a maximum
segment size at the beginning of the write which will limit the size of this erasure set.
The maximum segment size may be determined by reference to a storage cluster
setting. Fach node returns volume information for its segment on a response to the
SAN.
[0043] Next, in step 424 the client application begins transferring the data object to
the SAN which will write the data to each data segment on the different nodes in a
stripe and will compute the data for the parity segments using a suitable erasure
coding algorithm. In one embodiment, the Zfec algorithm has been found to work
well. For example, referring to Figure 2 and assuming a 5:7 encoding,, the first 32k
block of the object received will be written to data segment 210 on the first node (the
SAN), the second 32k block will be written to data segment 212 on the second node,
etc. After the fifth data block has been written to the fifth node, the two parity blocks
will be computed and stored in segments 220 and 222 in the last two selected nodes of
the cluster. The digital object continues to be read from the client application and
written to the M selected nodes in the storage cluster stripe-by-stripe until either the
end of the object is reached or the end of the segment is reached, test 428. A

17

WO 2013/188169 PCT/US2013/044045

10

15

20

25

30

remainder stripe 240 may be written as shown if there is not a full data block to be
written. Once the end of the segment is reached (but remaining data in the object still
needs to be written) or the entire object has been written to the M segments, then
control moves to step 432 of Figure 4B.

[0044] Next, in step 432 the SAN optionally calculates a hash value for each segment
based upon the data of each segment and send these values 270 (for example) as
trailing data to all of the selected nodes that are writing segments to their volumes.
Each node will compare this received hash value from the SAN with one it computes
on disk for the segment it has stored on one of its volumes.

[0045] Next, in step 436 erasure coding volume hints will be determined and stored
for each segment. For example, the volume identifier where segment 216 is stored
will be written into the system metadata for segment 214, thus ensuring that in a ring-
like fashion, each segment stores the likely volume identifier for the next segment.
Preferably, volume hints are transmitted from the SAN when each segment is written
using a POST request. In addition, volume hints may also be written into the journal
of each volume. In other words, once an erasure set has been written to any of a
number of nodes, the journal entry for a particular volume where a given segment has
been stored will be updated to include the volume identifier where the next segment
of the object is stored.

[0046] Step 440 determines whether there is more data from the digital object to write
into the storage cluster. If so, then in step 444 a new erasure set is begun. In this
situation, the SAN will request write bids from entire cluster in order to determine the
next M nodes that will accept the writing of data and parity segments to their
volumes. Control then moves to step 416 in order to write the next erasure set for this
digital object.

[0047] If there is no more data to write, then in step 448 the manifest for this erasure
set is written. As shown in Figure 3, the manifest will include a metadata section and
a section for each of the erasure sets. A unique identifier (hash value, random
number, etc.) is calculated for each segment of each erasure set and stored in section
350, for example. This unique identifier may be calculated in step 416 or later (in the
case of a random number), or in step 428 or later (in the case of a hash value). The

manifest will be written to any node of the cluster and treated like any stream written

18

WO 2013/188169 PCT/US2013/044045

10

15

20

25

30

to the storage cluster. In other words, a unique identifier will be calculated for the
manifest and the manifest will be replicated to different nodes within the cluster.
Preferably, the manifest will be replicated a total of P+1 times within the cluster.
Finally, the unique identifier for the manifest is returned to the client application so
that the client application may access its digital object in the future when performing a

read operation.

Read Digital Object from Cluster
[0048] Figure 5 is a flow diagram describing how a client application reads a digital
object from the storage cluster. Advantageously, the client application need not be
aware of which technique (replication or erasure coding) the storage cluster is using to
store the digital object. By simply using a unique identifier for the digital object
(previously supplied by the storage cluster), the client application may retrieve the
object from the cluster without needing to rely upon any outside database or control
system. In fact, the client application will be unaware if the unique identifier
represents the object which has been replicated within the cluster, or represents a
manifest indicating that erasure coding has been used to store the object in the cluster.
[0049] In step 504 the client application may make a request of the storage cluster to
return a particular digital object identified by a unique identifier. This may be
implemented using an SCSP GET request or a similar HT'TP protocol. The client
application supplies the identifier to any node of the storage cluster (which becomes
the primary access node). Next, in step 508 the PAN broadcast a message to all nodes
within the cluster looking for an object having that particular unique identifier. At
this point, it is also transparent to the PAN whether or not the unique identifier
represents the actual object or a manifest.
[0050] Because both actual objects and manifests will be replicated within the storage
cluster, the PAN will receive a number of responses to its broadcast request. In one
embodiment, each node having a copy of the object (or of the manifest) calculates a
read bid (the cost to read the digital object); the PAN chooses the node with the
lowest read bid, redirects the client application to that node, and that node then
becomes the secondary access node (SAN). The SAN will be aware of whether
replication or erasure coding has been used by looking at the system metadata of the
found object (either the actual object or the manifest of the object).

19

WO 2013/188169 PCT/US2013/044045

10

15

20

25

30

[0051] Accordingly, in step 510 the SAN determines whether it is holding the actual
digital object (because replication had been used) or whether it is holding the manifest
for the actual digital object (because erasure coding had been used). If replication had
been used, then in step 512 the SAN may simply return the digital object to the
requesting client application and the method ends. Alternatively, if erasure coding
had been used and the SAN is holding the manifest, then in step 516 the SAN begins
the process of requesting the segments of cluster in order to reassemble the requested
digital object. Using the metadata of the manifest, the SAN is aware of the erasure
coding algorithm used and the specific erasure coding (e.g., 5:7). Preferably, since
only the first K data segments are necessary to reassemble the digital object, the SAN
broadcasts a request for only the first K data segments using the unique identifiers
found in section 350 of the manifest. If successful, then control moves to step 528.
[0052] If, however, any these first K data segments are missing (step 520), then a
request will be broadcast for any needed parity segments. For example, if two of the
original data segments are missing, then a request must be broadcast for two of the
parity segments using the unique identifiers from the manifest. If the needed number
of parity segments are found, then in step 524 the missing data segment (or segments)
is regenerated using the appropriate erasure coding algorithm and the found parity
segments. In one embodiment, the hash value of the missing segment may be
computed and compared to the original. Or, it is also possible to verify the data for
each stripe by using a generated block as input with blocks from segments 1 to (K -1)
to generate block K and compare that block against the original. If, though, K
segments cannot be found, then an error message is returned to the client application.
[0053] Assuming that K segments are either found or generated, then in step 528 the
SAN determines (using the manifest) whether there is a another erasure set to be
obtained. If not, then control moves to step 532. If so, then control moves to step 516
and the SAN begins the process of requesting the necessary segments of the second
erasure set using the unique identifiers found in the corresponding section for the
second erasure set of the manifest. In step 532 and 536 the SAN marshals the data
and/or parity segments for each erasure set it has retrieved in order to reconstruct the
original data object. For example, when the necessary K segments are found on nodes

within the cluster, the SAN reads the data from these segments into its memory and

20

WO 2013/188169 PCT/US2013/044045

10

15

20

25

30

applies the appropriate erasure coding algorithm in order to reconstruct the original
digital object on the SAN. Preferably, as each stripe of the object is retrieved or
reconstructed, this data is fed byte-by-byte via HT'TP back to the client application.
Should there be more than one erasure set, the SAN reconstructs the next portion of
the digital object using the next erasure set, and feeds back the bytes of the next
erasure set to the client application. Alternatively, the SAN may assemble the entire

object within its own memory before sending the object back to the client.

Recovery from Volume Failure
[0054] Figure 6 is a flow diagram describing how a storage cluster may recover from
a volume failure. As mentioned above, a storage cluster includes any number of
computer nodes, each node having any number of hard disks or solid-state disks,
referred to as volumes. A storage cluster typically achieves data redundancy by
storing different replicas of an object on different nodes (when replication is used),
and by storing the various data and parity segments of an object on different nodes
(when erasure coding is used). Consequently, if a disk of a node fails, many of the
replicas and segments of any number of objects will be lost, thus degrading the
purported data redundancy of the entire storage cluster. Further, the quality of a
storage cluster is judged not only by how many volumes it can afford to lose, but how
fast the cluster can recover the missing data when a volume fails. Accordingly,
IFigure 6 presents a technique that not only handles failed volume recovery when there
exists a mix of objects stored using replication (replicas) and erasure coding
(segments), but also recovers missing segments as quickly as possible. Should an
entire node fail, then the below technique is performed for each volume on the node
that has failed.
[0055] In step 604 a node of the cluster notices that one of its disks has failed. In one
instance, once a node has communicated with a volume in the normal course of
business, the node will expect to hear from that volume periodically. If not, the node
will broadcast a message to all of its volumes looking for the missing volume. If
there is no response, then the node assumes that the volume has failed. In another
instance, the storage cluster may be entirely shut down due to maintenance, moving of
the cluster, etc. When the cluster is brought back up, it is possible that a volume will
fail but the node may not notice since it has not heard from the volume before. In this

21

WO 2013/188169 PCT/US2013/044045

10

15

20

25

30

situation, the health processing module of the node can assist. The health processing
module periodically checks the integrity of all streams on each volume; when it
detects a volume hint (the unique identifier of the volume) of a particular stream it
will look for that volume. If not found, the node will again assume that the volume
has failed. Other techniques for detecting that a volume has failed may be used.
[0056] Next, in step 608, once the unique identifier of the volume that has failed has
been obtained, each node within the cluster is directed to scan all of its functioning
volumes in order to identify streams that include a volume hint for the missing
volume. Preferably, the node that has identified its missing volume sends a broadcast
message (including the volume identifier) to all other nodes requesting a search for
streams that have a hint for the missing volume. Also, the nodes will perform the
search in parallel for efficiency. In one embodiment, the journal that each volume has
recorded on disk is scanned and each stream representation is analyzed to determine
the volume hint that it contains. Because each stream representation in the journal
that represents a segment of an erasure-coded object includes the volume identifier for
the next segment, any such identified stream that include the volume identifier for the
missing volume will also indicate a segment that was on the missing volume. For
example, if the stream representation of segment 222 of Figure 2 includes a volume
hint that is the volume identifier for the missing volume, this means that segment 210
was on that volume and needs to be regenerated. In addition, representation of a
replicated stream in the journal will include volume hints indicating the volume
identifiers for all of the replicas of that stream. For each stream, the journal typically
includes type information indicating whether the stream represents a replicated object
or an erasure-coded object.

[0057] In another embodiment, these volume hints may be stored in the system
metadata 280 of a segment (or the metadata of a replicated stream). For example, the
system metadata for segment 216 includes a volume hint indicating the volume
identifier where segment 218 is stored. It may be possible for each node to scan its
volumes looking for the system metadata of each stream on disk, although this
technique will be slower. The volume hint may then be read from this system
metadata. Again, a volume hint in a particular segment indicating the failed volume

indicates that the next segment is missing. When the node identifies that a segment is

22

WO 2013/188169 PCT/US2013/044045

10

15

20

25

30

missing, it can determine the unique identifier for that missing segment by looking at
the metadata 280 of the previous segment and retrieving the unique identifiers for all
sibling segments. In order to find any segments necessary for regenerating a missing
segment, these unique identifiers of the sibling segments may be used.

[0058] Once each node has finished scanning its journals (or its streams on disk) each
node will have a list of the missing streams that had been on the failed volume.
Because the storage cluster includes objects stored using replication and erasure
coding, some of these missing streams represent replicated objects, while some of the
streams represent missing segments of an erasure-coded object.

[0059] For missing replicated streams (if any), in step 612 each node replicates a
missing stream by requesting bids from the other nodes to replicate the stream and
then transfers control to the chosen node. Assuming that at least one segment of an
erasure-coded object is missing from a given node, in step 616 (using the unique
identifiers obtained in step 608) the given node requests the other nodes to bid for
which nodes can supply the K segments necessary to regenerate the missing segment.
Once the winning bids are received and the nodes are identified that can supply the K
segments, the given node requests bids for a node to regenerate and store the missing
segment.

[0060] Accordingly, in step 620 the given node requests bids from nodes within the
cluster for a particular node to regenerate the missing segment. Once this node is
chosen, the node regenerates the missing segment using the K segments identified in
step 616. This regeneration may be performed using the appropriate erasure coding
algorithm. In one embodiment, regeneration of the missing segment consumes data in
stripes from the K segments while the destination stripe is computed and written in
order to regenerate the missing segment.

[0061] In step 624 the node stores the segment on one of its volumes. If there are any
more missing segments identified by the given node, then control moves to step 616
and the node again requests bids for the missing segment as previously described.
Since each node within the cluster will be scanning its volumes in step 608 looking
for missing streams, each node will also be performing steps 612 through 628 in

parallel, assuming that each node has identified missing streams.

23

WO 2013/188169 PCT/US2013/044045

10

15

20

25

30

Relocation of Erasure Coded Segments
[0062] Once a segment has been written to the storage cluster and provided with a
unique identifier, it may be managed as any other stream in the cluster, including
replicated streams. In other words, the health processing module may see fit to move
a segment from one volume to another, or from one node to another, independent of
the other segments in an erasure set and without any loss of availability of the
segment being moved. For example, should segment 218 be moved to different
volume, the volume hint in segment 216 will be updated to indicate the new volume
for segment 218. When segment 218 is relocated the system is aware of all of its
sibling segments (and their unique identifiers) because the metadata 280 of segment
218 includes the unique identifiers of all sibling segments, in order. The upstream
segment, segment 216, may be retrieved from within the cluster using its unique
identifier, and, once the new volume identifier for segment 218 is known, this new
volume identifier may be written into the metadata section 280 of segment 216 as a
volume hint for the new location of segment 218. Alternatively, the stream
representation of segment 216 in its journal may be updated to include the new
volume identifier.
[0063] This updating of the volume hint for a relocated segment may be performed as
relocation occurs or may be performed at a later time by the health processing
module. The advantage of this updating is that segments may be relocated within the
cluster with no loss of availability and without the need for any extra control

computer or control database to track segments within the cluster.

Conversion of an Erasure-Coded Object to Replication and Vice-Versa
[0064] One embodiment of the present invention is able to convert a digital object
stored within the cluster from one format to another. For example, an object stored
using an erasure coding of 5:7 may be converted to a coding of 6:10, an erasure-coded
object may be converted to storage using replication, and an object stored using
replication may be converted to storage using erasure coding. Whether to convert an
object to a different format and when to do that may be dictated by object metadata,

storage cluster default settings, or a combination of both.

24

WO 2013/188169 PCT/US2013/044045

10

15

20

25

30

[0065] As mentioned above, the user metadata provided with an object from a client
application can provide information as to how an object should be stored, and may
also dictate when the object should be converted to one format or another, as
described immediately above. For example, the user metadata may dictate that within
a specific time frame, or at a particular future time, that the object should be
converted to different format. Or, storage cluster settings and rules may also dictate
that objects shall be converted at a particular time or times, that objects of a certain
size shall be converted periodically or at a particular time, or that a certain percentage
of objects shall be converted. The cluster may even accept manual inputs from an
administrator that change cluster settings or that dictate how and when conversion
should happen for an object or objects within the cluster. A special conversion
module may be used for performing conversion, or such functionality may be
incorporated into the health processing module of the cluster.

[0066] Figure 7 is a flow diagram describing one embodiment in which an object in a
storage cluster may be converted from one storage format to another. Although this
diagram deals with a single object, any number of objects within the cluster may be
converted using this technique. The unique identifier for the object within the cluster
remains the same so that the client application may retrieve the object using the same
unique identifier it was originally provided with. For an object having a random
number as its unique identifier, this random number remains the identifier for the
object after conversion. In the case where a client application supplies a unique name
for an object, the cluster may use a hash value of the name as the unique identifier,
and this hash value remains the identifier after conversion.

[0067] The concept of versions of objects facilitates retaining the original unique
identifier for the new, converted object. Each object includes a timestamp indicating
when it was created; when an object is converted, it will have the same unique
identifier as the original object, and the new object is given a timestamp later than the
original. In this fashion, both unique identifiers may exist within the cluster at the
same time, yet the cluster is aware of which object is the current, valid object by
referencing the timestamps. An object having an earlier timestamp than its twin may
be deleted at any time as it is not needed.

[0068] In step 704 relevant conversion information for an object (or for any number
of objects) is stored within the storage cluster. As mentioned above, each object may

25

WO 2013/188169 PCT/US2013/044045

10

15

20

25

30

be received from a client application with user metadata dictating how an object
should be converted, when an object should be converted, etc. This user metadata is
stored along with each object when the object is written to the cluster. This metadata
is stored in the manifest of erasure-coded objects.

[0069] Additionally, storage cluster settings and rules may dictate default conversion
settings for objects within the cluster. These settings and rules may be stored in a
designated object of the cluster, or may be included in the information provided the
node during its startup, or may be provided by a designated source on the network
where the node runs. For example, settings may require that all objects be converted
from one erasure coding format to another by a particular date, may require that once
the objects reach a certain age, may require conversion from replication to erasure
coding for all objects over a period of time, may require that objects over a certain
size be converted to erasure coding by a particular age or date (or gradually over a
period of time), etc. Moreover, an administrator may input settings or commands
dictating how and when conversion should occur for an object or objects.

[0070] In step 708 a triggering condition is detected for a particular object indicating
that the object should be converted from one format to another. This triggering
condition may be detected in many different manners. For example, the health
processing module in the course of iterating over objects within the cluster will
review the object metadata for a particular object when it touches that object. Should
the condition be met (e.g., "convert to erasure coding by or at a particular date using
this particular erasure coding format") then the object will be converted as described
below. Or, whenever an object is touched or accessed for whatever reason, its user
metadata is reviewed to see if the triggering condition is met. Alternatively, the
storage cluster itself periodically reviews its cluster settings and rules to determine
whether a time or date has passed indicating that an object or objects should be
converted according to the cluster settings. Of course, any manual input from the
cluster administrator will be acted upon immediately and may indicate a trigger
condition.

[0071] Step 712 results when the trigger condition indicates that the object (currently
stored using replication) should be converted to erasure coding. The unique identifier

for the object is obtained (from the object metadata, cluster settings, administrator

26

WO 2013/188169 PCT/US2013/044045

10

15

20

25

30

input, or other) and the cluster determines a node on which a replica of the object
exists. In step 716 this node reads the object from one of its disks into memory.

Next, in step 720 the node writes the object to the cluster using the particular erasure
coding format determined from user metadata, system metadata, cluster settings, or
administrator input. This step may be performed as discussed above with reference to
Iigures 4A and 4B, specifically, steps 416-448. This new object written with erasure
coding is supplied with the same unique identifier for its manifest as the unique
identifier used for the original replica read in step 716. In step 724 the original object
and any replicas may be deleted, either immediately or later by the health processing
module. The health processing module determines that any replicas having a unique
identifier with an earlier timestamp than the newly converted object may be deleted.
[0072] Step 732 results when the trigger condition indicates that the object (currently
stored using erasure coding) should be converted to storage using replication. The
unique identifier for the object is obtained (from the object metadata, cluster settings,
administrator input, or other) and the cluster determines a node on which the manifest
for the erasure-coded object exists. In step 736 this node reads the object from the
cluster into memory. This step may be performed as discussed above with reference
to Figure 5, specifically, steps 516-532. Next, in step 740 this node writes the object
as a continuous stream (rather than as erasure-coded segments) to a node of the
cluster. This write may be performed, for example, by broadcasting a request for
write bids throughout the cluster, and then writing a stream to the node with the
winning bid. Or, other techniques may be used to choose a particular node or desk to
which to write the object. This new object written as a single stream is supplied with
the same unique identifier as the unique identifier used for the original manifest read
in step 736. In step 744 the original object may be deleted, either immediately or later
by the health processing module. The health processing module determines that any
manifest (and its associated segments) having a unique identifier with an earlier
timestamp than the newly converted object may be deleted. In step 748 the newly
written object may be replicated to create any number of replicas within the cluster
and this replication may occur immediately or over time as the health processing
module iterates over this object.

[0073] Step 752 results when the trigger condition indicates that the object (currently
stored using an old erasure coding) should be converted to a new erasure coding. The

27

WO 2013/188169 PCT/US2013/044045

10

15

20

25

30

unique identifier for the object is obtained from the object metadata and the cluster
determines a node on which the manifest for the erasure-coded object exists. In step
756 this node reads the object from the cluster into memory. This step may be
performed as discussed above with reference to Figure 5, specifically, steps 516-532.
Next, in step 760 the node writes the object to the cluster using the new erasure
coding format determined from user metadata, system metadata, cluster settings, or
administrator input. This step may be performed as discussed above with reference to
Iigures 4A and 4B, specifically, steps 416-448. This object written with new erasure
coding is supplied with the same unique identifier for its manifest as the unique
identifier used for the original object read in step 756. In step 764 the original object
may be deleted, either immediately or later by the health processing module. The
health processing module determines that any manifest having a unique identifier with

an earlier timestamp than the newly converted object may be deleted.

Management of Digital Objects Across Clusters
[0074] Another embodiment of the present invention is able to move a digital object
from one storage cluster to another storage cluster, and convert the object to the
format required by the new cluster or to that required in the object’s user metadata.
For example, an object stored using an erasure coding of 5:7 in a first cluster may be
converted to a coding of 6;:10 when moved to a second cluster, an erasure-coded
object may be converted to storage using replication when moved to the second
cluster, or an object stored using replication in a first cluster may be converted to
storage using erasure coding when moved. Whether to convert an object to a different
format may be dictated by the user metadata, storage cluster default settings, a
combination of both, an instruction from an outside software product, or a cluster
administrator. Advantageously, the unique identifier of the object in the first cluster
is also retained for use within the second cluster.
[0075] Figure 8 is a flow diagram describing one embodiment in which an object in
one storage cluster may be moved to a second storage cluster and converted from one
storage format to another. Although this diagram deals with a single object, any
number of objects within a cluster may be moved using this technique. Preferably,

the unique identifier for the object within the first cluster remains the same for the

28

WO 2013/188169 PCT/US2013/044045

10

15

20

25

30

object in the second cluster so that a client application may retrieve the object using
the same unique identifier from the second cluster. For example, the unique identifier
may be a random number or a hash value of the object's name supplied by a client
application.

[0076] In step 804 and instruction is produced to copy (or move) and object from a
source cluster into a target cluster. The object may be copied into the target cluster
for backup purposes (leaving the original in the source cluster) or the object may
simply be moved into the target cluster and the original deleted. The instruction may
originate from any outside software product, a client application, from within the
cluster itself, or from a cluster administrator. In one embodiment, the "Content
Router" software product available from Caringo Inc., is used to generate an
instruction to replicate an object from a source cluster into a target cluster. The
instruction includes an identification of the object to be replicated, such as its unique
identifier within the source cluster.

[0077] The object may be copied from the source cluster in many different ways. For
example, the source cluster may read the object and then "push" it to the target
cluster, or, the target cluster may "pull" the object from the source cluster. In one
embodiment, in step 808 a target node is first selected in the target cluster to perform
the write of the object within the target cluster. The target node may be selected
randomly, by using a bid process, or other technique. Once selected, the target node
is provided with the unique identifier for the object to be copied and contact
information for the source cluster. For example, the target node may be provided with
a communication address for the source cluster overall, with an address of a central or
coordinating node within the cluster, or preferably, an IP address of any node within
the source cluster.

[0078] In step 812 any relevant conversion information is identified within the target
cluster. For example, any default settings or rules that specify how the copied object
should be stored within the target cluster (i.e., using replication or erasure coding) are
identified. If no default settings are relevant then the conversion information may be
taken from the user metadata contained within the object to be copied. Alternatively,
the instruction to copy the object may include the conversion information.

[0079] In step 816 the object is copied from the source cluster to the target cluster.
The target node initiates copying of the object by contacting any node of the source

29

WO 2013/188169 PCT/US2013/044045

10

15

cluster using the IP address provided and provides the unique identifier for the object.
The object may then be communicated from the source cluster to memory of the
target node. This step may be performed, for example, as explained above with
reference to Iigure 5, where the target node is acting as the client application. Once
the target node receives the object (or as the target node is received and the object) it
will write the note into the target cluster using the appropriate conversion information
that has been determined above. In other words, the object will be written as a
continuous stream (replication) or will be written using erasure coding. For example,
this write step may be performed as described above with reference to Figure 4A and
4B where the target node acts as the secondary access node. For replication, the
target node may solicit bids from the other nodes within the target cluster, or may
write the object to one of its own disks. In the case of erasure coding, the segments
will be written to various nodes within the target cluster. Preferably, the copied object
in the target cluster retains the same unique identifier it had in the source cluster.
Once the object has been copied to the target cluster, it may be retained in the source

cluster or deleted at a future time.

30

WO 2013/188169 PCT/US2013/044045

10

15

20

25

30

COMPUTER SYSTEM EMBODIMENT
[0080] FIGS. 9A and 9B illustrate a computer system 900 suitable for implementing
embodiments of the present invention. FIG. 9A shows one possible physical form of
the computer system. Of course, the computer system may have many physical forms
including an integrated circuit, a printed circuit board, a small handheld device (such
as a mobile telephone or PDA), a personal computer or a super computer. Computer
system 900 includes a monitor 902, a display 904, a housing 906, a disk drive 908, a
keyboard 910 and a mouse 912. Disk 914 is a computer-readable medium used to
transfer data to and from computer system 900.
[0081] FIG. 9B is an example of a block diagram for computer system 900. Attached
to system bus 920 are a wide variety of subsystems. Processor(s) 922 (also referred to
as central processing units, or CPUs) are coupled to storage devices including
memory 924. Memory 924 includes random access memory (RAM) and read-only
memory (ROM). As is well known in the art, ROM acts to transfer data and
instructions uni-directionally to the CPU and RAM is used typically to transfer data
and instructions in a bi-directional manner. Both of these types of memories may
include any suitable of the computer-readable media described below. A fixed disk
926 is also coupled bi-directionally to CPU 922; it provides additional data storage
capacity and may also include any of the computer-readable media described below.
IMixed disk 926 may be used to store programs, data and the like and is typically a
secondary storage medium (such as a hard disk) that is slower than primary storage.
It will be appreciated that the information retained within fixed disk 926, may, in
appropriate cases, be incorporated in standard fashion as virtual memory in memory
924. Removable disk 914 may take the form of any of the computer-readable media
described below.
[0082] CPU 922 is also coupled to a variety of input/output devices such as display
904, keyboard 910, mouse 912 and speakers 930. In general, an input/output device
may be any of: video displays, track balls, mice, keyboards, microphones, touch-
sensitive displays, transducer card readers, magnetic or paper tape readers, tablets,
styluses, voice or handwriting recognizers, biometrics readers, or other computers.
CPU 922 optionally may be coupled to another computer or telecommunications
network using network interface 940. With such a network interface, it is
contemplated that the CPU might receive information from the network, or might

31

WO 2013/188169 PCT/US2013/044045

10

15

20

output information to the network in the course of performing the above-described
method steps. Furthermore, method embodiments of the present invention may
execute solely upon CPU 922 or may execute over a network such as the Internet in
conjunction with a remote CPU that shares a portion of the processing.

[0083] In addition, embodiments of the present invention further relate to computer
storage products with a computer-readable medium that have computer code thereon
for performing various computer-implemented operations. The media and computer
code may be those specially designed and constructed for the purposes of the present
invention, or they may be of the kind well known and available to those having skill
in the computer software arts. Examples of computer-readable media include, but are
not limited to: magnetic media such as hard disks, floppy disks, and magnetic tape;
optical media such as CD-ROMs and holographic devices; magneto-optical media
such as floptical disks; and hardware devices that are specially configured to store and
execute program code, such as application-specific integrated circuits (ASICs),
programmable logic devices (PL.LDs) and ROM and RAM devices. Examples of
computer code include machine code, such as produced by a compiler, and files
containing higher-level code that are executed by a computer using an interpreter.
[0084] Although the foregoing invention has been described in some detail for
purposes of clarity of understanding, it will be apparent that certain changes and
modifications may be practiced within the scope of the appended claims. Therefore,
the described embodiments should be taken as illustrative and not restrictive, and the
invention should not be limited to the details given herein but should be defined by

the following claims and their full scope of equivalents.

32

WO 2013/188169 PCT/US2013/044045

10

15

20

25

30

CLAIMS
We Claim:
1. A method of storing a digital object in a storage cluster, said method
comprising:

receiving from a client application a request at a computer node of said storage
cluster to store said digital object;

determining whether to store said digital object in said storage cluster using
replication or erasure coding;

when it is determined to store said digital object using erasure coding, writing
said digital object to a plurality of computer nodes of said storage cluster using
erasure coding, said digital object being stored as a plurality of segments;

creating a manifest computer file that includes an indication of said erasure
coding and a unique identifier within said storage cluster for each of said segments;

storing said manifest computer file on a computer node of said storage cluster;

and

returning a unique identifier of said manifest computer file to said client
application.
2. The method as recited in claim 1 further comprising:

determining whether to store said digital object using replication or erasure
coding by reference to an inherent property of said digital object, an instruction from
said client application, or metadata of said digital object.
3. The method as recited in claim 1 further comprising:

replicating said manifest computer file within said storage cluster and not
storing said manifest computer file using erasure coding.
4. The method as recited in claim 1 further comprising:

not replicating said digital object within said storage cluster.
5. The method as recited in claim 1 further comprising:

for each segment stored on a disk of said storage cluster, storing on said disk
in association with said segment a unique identifier of a next disk that stores another
segment of said digital object.
6. The method as recited in claim 5 further comprising:

storing said unique identifier of said next disk in association with said segment
by storing said unique identifier in a journal entry for said segment on said disk.

33

WO 2013/188169 PCT/US2013/044045

10

15

20

25

30

7. A method of reading a digital object from a storage cluster having a plurality
of computer nodes, said method comprising:

receiving, at one of said computer nodes within said storage cluster, a request
from a client application that includes a unique identifier for said digital object;

determining whether said digital object is stored within said storage cluster
using replication or erasure coding;

when it is determined that said digital object is stored using erasure coding,
reading a manifest stored on one of said computer nodes, said manifest being
identified by said unique identifier;

identifying a plurality of segments within said storage cluster using unique
segment identifiers found within said manifest;

reconstructing said digital object using said segments and an erasure coding
algorithm; and

returning said digital object to said client application.
8. The method as recited in claim 7 further comprising:

determining that said digital object is stored using erasure coding by reference
to said manifest.
9. The method as recited in claim 7 further comprising:

determining that one of said segments is not present within said storage
cluster; and

regenerating said segment not present using other of said segments and an
erasure coding algorithm.
10. The method as recited in claim 7 further comprising:

identifying a first disk where one of said segments is stored; and

reading a disk identifier for a second disk where another of said segments is
stored, said disk identifier being stored in association with said one of said segments
on said first disk.
11. The method as recited in claim 7 further comprising:

identifying a second erasure set within said manifest, said second erasure set

including a plurality of second unique segment identifiers; and

34

WO 2013/188169 PCT/US2013/044045

10

15

20

25

30

reconstructing said digital object using said segments, a plurality of second
segments identified by said second unique segment identifiers, and said erasure
coding algorithm.
12. The method as recited in claim 7 wherein said manifest is replicated within
said storage cluster and wherein said manifest is not stored within said storage cluster
using erasure coding.
13. The method as recited in claim 7 wherein said digital object is not replicated
within said storage cluster.
14. A method of recovering from a failed disk, said method comprising:

detecting within a storage cluster having a plurality of computer nodes that a
first disk of one of said nodes has failed;

scanning a persistent storage area of a second disk of said storage cluster to
find a unique identifier of said failed disk, said unique identifier in association with a
digital stream of said storage cluster;

determining whether said digital stream is stored within said storage cluster
using replication or erasure coding;

when it is determined that said digital stream is stored using erasure coding,
identifying a missing segment previously stored on said failed disk;

locating a plurality of other segments within said storage cluster, said plurality
including said digital stream;

regenerating said missing segment previously stored on said failed disk using
said plurality of other segments and an erasure coding algorithm; and

storing said regenerated segment on a computer node of said storage cluster.
15. The method as recited in claim 14 further comprising:

scanning a metadata section of said digital stream to find unique identifiers for
said plurality of other segments.
16. The method as recited in claim 14 further comprising:

scanning said persistent storage area of said second disk includes scanning a
journal entry for said digital stream.
17. The method as recited in claim 16 further comprising:

determining whether said digital stream is stored using erasure coding by
reference to said journal entry.
18. The method as recited in claim 14 further comprising:

35

WO 2013/188169 PCT/US2013/044045

10

15

20

25

30

identifying said missing segment previously stored on said failed disk before
receiving a request from outside the storage cluster for a digital object that is stored
within said storage cluster using erasure coding that includes said missing segment.
19. The method as recited in claim 14 wherein said missing segment is not
replicated within said storage cluster.
20). A method of relocating a segment within a storage cluster, said method further
comprising:

identifying a segment on a first disk of a computer node within a storage
cluster, said segment being one of a plurality of segments representing a digital object
stored within said storage cluster;

relocating said segment from said first disk to a second disk of said storage
cluster, said second disk being identified by a unique disk identifier;

retrieving from metadata of said segment a unique identifier for a sibling
segment of said plurality of segments, said sibling segment including in its metadata a
unique disk identifier for said first disk;

locating said sibling segment within said storage cluster using said unique
identifier; and

replacing said unique disk identifier for said first disk within said metadata of
said sibling segment with a unique disk identifier for said second disk, whereby said
metadata of said sibling segment indicates the disk to where said segment has been
relocated.
21. A method of converting a digital object within a storage cluster, said method
comprising:

storing said digital object within said storage cluster on a single disk of a
computer node as a continuous stream of bits, said digital object having a unique
identifier within said storage cluster;

after said storage, identifying metadata of said storage cluster indicating a
requirement to convert said digital object to an erasure coding storage format;

reading said digital object from said single disk using a computer node of said
storage cluster;

writing said digital object to a plurality of disks of said storage cluster using

said erasure coding storage format; and

36

WO 2013/188169 PCT/US2013/044045

10

15

20

25

30

retaining said unique identifier for said digital object written in said erasure
coding storage format, whereby a client application may retrieve said digital object
written in said erasure coding storage format using said unique identifier.
22. A method of converting a digital object within a storage cluster, said method
comprising:

storing said digital object within said storage cluster in a first erasure coding
storage format, said digital object having a unique identifier within said storage
cluster;

after said storage, identifying metadata of said storage cluster indicating a
requirement to convert said digital object to a second erasure coding storage format;

reading said digital object from said storage cluster using a computer node of
said storage cluster;

writing said digital object to said storage cluster using said second erasure
coding storage format; and

retaining said unique identifier for said digital object written in said second
erasure coding storage format, whereby a client application may retrieve said digital
object written in said second erasure coding storage format using said unique
identifier.
23. A method of converting a digital object within a storage cluster, said method
comprising:

storing said digital object within said storage cluster in an erasure coding
storage format, said digital object having a unique identifier within said storage
cluster;

after said storage, identifying metadata of said storage cluster indicating a
requirement to convert said digital object to a storage format using replication;

reading said digital object from said storage cluster using a computer node of
said storage cluster;

writing said digital object to a single disk of a computer node of said storage
cluster as a continuous stream of bits; and

retaining said unique identifier for said digital object written as said
continuous stream of bits, whereby a client application may retrieve said digital object

written as said continuous stream of bits using said unique identifier.

37

WO 2013/188169 PCT/US2013/044045

10

15

20

24. A method of copying a digital object from a source storage cluster to a target
storage cluster, said method comprising:

receiving an instruction at a target node of said target cluster to copy said
digital object from said source cluster to said target cluster, said instruction including
an address of a source node of said source cluster;

determining a target conversion format into which said digital object will be
stored in said target cluster;

reading said digital object from said source cluster, said digital object being
stored in a source conversion format and having a unique identifier within said source
cluster; and

storing said digital object in said target cluster using said target conversion
format, said digital object being stored using said unique identifier.
25. The method as recited in claim 24 wherein said target conversion format is
different from said source conversion format.
26. The method as recited in claim 24 wherein said source conversion format is
replication or erasure coding.
27. The method as recited in claim 24 further comprising:

determining said target conversion format by reference to the metadata of said
digital object or by reference to a setting of said target cluster.
28. The method as recited in claim 24 wherein said target cluster implements a

storage format different from said source cluster.

38

PCT/US2013/044045

WO 2013/188169

1/10

L 0vl

370SNOD

JAILVHLSININGY

l "OIld

(443
¥31SNTO FOVHOLS
3JAON
~
0€
43
¥3LNOY
co_;w ;
e
3JAON
e
o 3JAON

A

RE7

00}

JdON

e

4dON

06

102

¢0¢

o€l
~

NOILVOI1ddV

IN3IT0

2/10

Z Ol .
04¢ \

81z 912 Pz 21z 092 o2

L WL y

//// \ / \@% 61S — 66z
\\\\ _N\w 815 —~ g5z
§ \x 918 —~9¢e
W////% D x‘\m\\ GIs —6¢e
\\\& _ u@\ pIS — ez
//// D) _\N €IS et
% 2 \\,_\Nn\ IS ——zee
A\ 52 714 €57 494 ﬂxﬁm 1S —— 162

& 9% A

NQ ﬁ.\ E
082 Buipoous J: m YlIm 108[qo quigy’ | e 1o} 185 ainselJ o|bulg

WO 2013/188169 PCT/US2013/044045

3/10
Zfec 1.4 T~ 312
Metadata 5.7 ~+_ 314
310 32,000 1 316
Size 1,000 T 342
Erasure
Set One Encoding 5:7 ~_ 344
Segment ~_ 346
Width 32k
Segment 296, 112 ~_ 348
340 Size
Segment VIDS
abcdef1234567890
- 350
1234567890abcdef
abcdef123abc4567
Erasure Size 887
Set Two
Encoding o7
380

Manifest
300/
FIG. 3

WO 2013/188169

PCT/US2013/044045
4/10

C WRITE OBJECT)

v 404
CLIENT SENDS WRITE REQUEST e
TO CLUSTER

! 408

SAN DETERMINES WHETHER TO USE B
REPLICATION OR ERASURE CODING

REPLICATE EC
\ 4 412 L 4 /\i1 6
RECEIVE WRITEBIDS., [REEgElg/EFF\é\(/)FE/IlTE
WRITE STREAM AND °
REPLICATE. NODES. SELECT
NODES.
DONE
" 420
SAN SETS UP WRITES TO M L~
NODES
! 424
WRITE A STRIPETO M .y
NODES

A\ 4

END
OF SEGMENT

NO

OR DATA?

FIG. 4A

WO 2013/188169

PCT/US2013/044045

5/10
432
L~/
WRITE HASH VALUES FOR
ALL SEGMENTS
l 436
L~/
WRITE EC VOLUME HINTS
444
DI\A%REO YES START NEW L~/
WRITE? ERASURE SET

WRITE MANIFEST

()
L~/

END

FIG. 4B

WO 2013/188169

6/10

(READ OBJECT)

Y

PCT/US2013/044045

CLIENT REQUESTS OBJECT OF CLUSTER

504

v

508

PAN BROADCASTS REQUEST FOR OBJECT

YES
REPLICATION?

512

-

SAN RETURNS
OBJECT TO CLIENT

SAN REQUESTS SEGMENTS OF CLUSTER

ANOTHER

516
-/
524
REGENERATE

MISSING SEGMENTS

ERASURE SET?

SAN MARSHALS SEGMENTS INTO
ORIGINAL OBJECT

532

\ 4

SEND OBJECT TO CLIENT

536

END

FIG. 5

WO 2013/188169

PCT/US2013/044045
7/10

C FAILED VOLUME RECOVERY)

v

604
VOLUME FAILS B
v 608
SCAN REMAINING VOLUMES OF CLUSTER ~_
TO IDENTIFY MISSING STREAMS

l 612

~_/
REPLICATE ANY MISSING REPLICATED STREAMS

v 616

-~/

REQUEST BIDS FOR A MISSING SEGMENT <

620

REGENERATE MISSING SEGMENT ON NODE -
Y 624

~_/

STORE SEGMENT

628

MORE
MISSING
SEGMENTS?

YES

FIG. 6

WO 2013/188169

8/10

C CONVERT OBJECT)

PCT/US2013/044045

CONVERSION INFORMATION STORED WITHIN |~/
CLUSTER
CONVERT
OBJECT TRIGGER?
v T2 v T3 , 752
CONVERT REPLICA CONVERT EC CgE?'J\éECF;TT%C
.
O ERASURE CODING OBJECT TO REPLICA et to
v 716 v 136 y 156
READ OBJECT READ ERASURE- READ ERASURE-
REPLICA CODED OBJECT CODED OBJECT
v 720 v 740 , 760
WRITE OBJECT WRITE OBJECT
WFE};FN%BEECT AS CONTINUOUS USING NEW
STREAM EC FORMAT
\ 4 ya 724 \ 4 L 744 A - 764
DELETE ERASURE- DELETE OLD
DELETE REPLICA CODED OBJECT EC OBJECT
¢ v ~ 748 y
END REPLICATE NEW END
OBJECT
v
END

FIG. 7

WO 2013/188169 PCT/US2013/044045
9/10

(MOVE OBJECT)
804

RECEIVE DIRECTION TO MOVE OBJECT FROM e
SOURCE CLUSTER TO TARGET CLUSTER

l 808

SELECT NODE IN TARGET CLUSTER

y
812

IDENTIFY RELEVANT CONVERSION INFORMATION [\
OF OBJECT AND OF TARGET CLUSTER

y
816

COPY STREAM FROM SOURCE CLUSTER S
TO TARGET CLUSTER USING
ERASURE CODING OR REPLICATION

END

FIG. 8

WO 2013/188169

10/10

PCT/US2013/044045

900
/

900
/

- 922 - 924 s 926 s 914
PROCESSOR(S) MEMORY FIXED DISK e O oL
o
< A 2 A 2 >
904 910 912 930 940
A\ 4 / v / v / v / v /
NETWORK
DISPLAY | | KEYBOARD MOUSE SPEAKERS NETWORK

FIG. 9B

INTERNATIONAL SEARCH REPORT International application No.
PCT/US2013/044045

A. CLASSIFICATION OF SUBJECT MATTER
GO6F 12/00(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classitication system followed by classification symbols)
GO6F 12/00; GO6F 12/16; HO3M 13/00; HO3M 13/05; GO6F 11/10; GO6F 17/30; GO6F 11/20

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean utility models and applications for utility models
Japanese utility models and applications for utility models

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
eKOMPASS(KIPO internal) & Keywords:storage cluster, computer node, replication, erasure coding, digital object

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

A US 2012-0060072 A1 (HUSEYIN SIMITCI et al.) 08 March 2012 1-28
See paragraphs [0002]-[0003], [0017]-[0020], [0043]-[0044], [0063], [0076],
[0078], [0086], [0106], and [0114]-[0117]; and figures 2 and 6-7.

A US 2011-0029840 A1 (RAYMOND E. OZZIE et al.) 03 February 2011 1-28
See paragraphs [0003]-[0004], [0025]-[0029], [0044]-[0046], and
[0073]-[0075]; and figures 1-2 and 4-6.

A US 2012-0047111 A1 (MARK G. HAYDEN et al.) 23 February 2012 1-28
See paragraphs [0014]-[0015], [0020]-[0024], and [0028]-[0030]; and
figures 1-2.
A US 7,681,105 B1 (SIEW YONG SIM-TANG et al.) 16 March 2010 1-28

See column 2, line 53 - column 3, line 39; column 4, lines 40-49;
column 12, line 60 - column 13, line 30;
column 14, line 35 - column 15, line 44; and figures 13-14 and 16-17.

A US 2009-0006888 Al (BENJAMIN K.D. BERNHARD et al.) 01 January 2009 1-28
See paragraphs [0006], [0032]-[0041], [0061]-[0063], and [0078]-[0090];
and figures 1 and 6.

|:| Further documents are listed in the continuation of Box C. g See patent family annex.

* Special categories of cited documents: "T" later document published after the international filing date or priority

"A" document defining the general state of the art which is not considered date and not in conflict with the application but cited to understand
to be of particular relevance the principle or theory underlying the invention

"E" earlier application or patent but published on or after the international "X" document of particular relevance; the claimed invention cannot be
filing date considered novel or cannot be considered to involve an inventive

"L" document which may throw doubts on priority claim(s) or which is step when the document is taken alone
cited to establish the publication date of citation or other "Y" document of particular relevance; the claimed invention cannot be
special reason (as specified) considered to involve an inventive step when the document is

"O" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents,such combination
means being obvious to a person skilled in the art

"P" document published prior to the international filing date but later "&" document member of the same patent family

than the priority date claimed

Date of the actual completion of the international search Date of mailing of the international search report
23 September 2013 (23.09.2013) 25 September 2013 (25.09.2013)
Name and mailing address of the ISA/KR Authorized officer
Korean Intellectual Property Office
. 189 Cheongsa-ro, Seo-gu, Daejeon Metropolitan City, NHO Ji Myong
3 302-701, Republic of Korea
Facsimile No. +82-42-472-7140 Telephone No. +82-42-481-8528

Form PCT/ISA/210 (second sheet) (July 2009)

INTERNATIONAL SEARCH REPORT

International application No.

Information on patent family members PCT/US2013/044045
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2012-0060072 Al 08/03/2012 US 8473778 B2 25/06/2013
US 2011-0029840 Al 03/02/2011 US 8458287 B2 04/06/2013
US 2012-0047111 Al 23/02/2012 US 8433685 B2 30/04/2013
US 7681105 Bl 16/03/2010 US 2010-0162076 Al 24/06/2010
US 8051361 B2 01/11/2011
US 8205139 Bl 19/06/2012
US 2009-0006888 Al 01/01/2009 AT 541263 T 15/01/2012
EP 2092442 A2 26/08/2009
EP 2092442 A4 18/08/2010
EP 2092442 Bl 11/01/2012
JP 2010-509686 A 25/03/2010
US 2011-178983 Al 21/07/2011
US 7917469 B2 29/03/2011
US 8112423 B2 07/02/2012
WO 2008-058230 A2 15/05/2008
WO 2008-058230 A3 13/11/2008
WO 2008-058230 A9 31/07/2008

Form PCT/ISA/210 (patent family annex) (July 2009)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - claims
	Page 36 - claims
	Page 37 - claims
	Page 38 - claims
	Page 39 - claims
	Page 40 - claims
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - drawings
	Page 50 - drawings
	Page 51 - wo-search-report
	Page 52 - wo-search-report

