
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2011/0145216 A1

Subramanya

US 2011 0145216A1

(43) Pub. Date: Jun. 16, 2011

(54)

(75)

(73)

(21)

(22)

(51)

FILE CHANGE DETECTOR ANDTRACKER

Inventor: Ramya Subramanya, Bangalore
(IN)

Assignee: Oracle International Corporation,
Redwood Shores, CA (US)

Appl. No.: 12/635,207

Filed: Dec. 10, 2009

Publication Classification

Int. C.
G06F 7/30 (2006.01)
G06F 2/16 (2006.01)
G06F 7700 (2006.01)

(52) U.S. Cl. 707/709; 707/781: 707/654; 707/694;
707/E17.01: 707/E17.108

(57) ABSTRACT

A method for detecting changes in a computing environment.
In an example embodiment, the method includes observing a
file system of the computing environment during a predeter
mined time interval and providing a signal when a predeter
mined change to the file system is detected during the prede
termined time interval; employing the signal to log a
description of detected file system changes; and using a
logged description of the file system changes to perform an
incremental crawl of the file system. In a more specific
embodiment, the predetermined time interval includes an
interval of time between crawls of the file system. The pre
determined change to the file system includes a change to
content of a file included in the file system, a change in user
access rights to a file, a change in a location of a file of the file
system, a change in a folder of the file system, a deletion of a
file or folder in the file system, and so on.

-10
a 14

Secure Enterprise Search (SES) System
18 16

Search NTFS Crawler and
Engine and Index Connector

34 Y-20
Web Service

User Interface U/ (including method for retrieving
(U/I) FCD results from log)

a 22
File Change Detector (FCD)

File System
Watcher (FSW)

Config.
File

a 12
File System (NTFS)
Files & 36
Folders

24

FCD File system Changes Log
(Oracle Extensible Tables)

28
Results File(s) 1
(current results)

Results File(s)2
(previous results -

backup)

Patent Application Publication Jun. 16, 2011 Sheet 1 of 5 US 2011/0145216 A1

-10
e 14

Secure Enterprise Search (SES) System
18 16

Search NTFS Crawler and
Engine and Index Connector

Web Service
(including method for retrieving

(U/I) FCD results from log)

File Change Detector (FCD)

File System
Watcher (FSW)

FCD File system Changes Log
(Oracle Extensible Tables)

28

24

Results File(s) 1
(current results)

e 12
File System (NTFS)
Files & 36
Folders

Results File(s) 2
(previous results -

backup)

F.G. 1

Patent Application Publication Jun. 16, 2011 Sheet 2 of 5 US 2011/O14521.6 A1

-40

46
Implement
crawl from

Seeds.

Crawl
Completed?

52
Use File Change
Detector (FCD)?

Implement
FCD-based

crawl.

FIG 2

Patent Application Publication Jun. 16, 2011 Sheet 3 of 5 US 2011/014521.6 A1

-50
File Change Detector (FCD) -

based crawling selected.
62

Invoke routine to get
modified Uniform Resource

Locators (URLs).

64

NO

- 66
Throw error
message.

Yes

FCD start time NO Yes
before last crawl

time?
Force

conventional
crawl.

72
Log descriptions of detected

file system changes to create snapshot.

74
Selectively return list of descriptions, such as URLs

corresponding to file System changes, to Search Software in
response to request received via a Web Service.

76
Perform incremental crawl based on descriptions

of file system changes.

FIG. 3

US 2011/O14521.6 A1 Jun. 16, 2011 Sheet 4 of 5 Patent Application Publication

Z8

US 2011/O14521.6 A1 Jun. 16, 2011 Sheet 5 of 5 Patent Application Publication

86

US 2011/O 14521.6 A1

FILE CHANGE DETECTOR AND TRACKER

BACKGROUND

0001. This application relates in general to computer data
storage and more specifically to systems and methods for
ascertaining or documenting changes made to a file system.
0002 For the purposes of the present discussion, a file
system may be any organization of files and accompanying
data. An example file system represents a special-purpose
database for the storage, organization, manipulation, and
retrieval of data. A file system may also refer to the software
and/or methods used to organize and/or maintain the files in
accordance with predetermine rules. Changes to a file system
may include changes to data within a file, changes to metadata
associated with the file, changes in file locations (e.g., path
changes) within the file system, changes to folder content and
location, changes in user access rights or other security infor
mation associated with a given file, folder, or associated
directory structure, and so on.
0003 Systems for documenting file system changes are
employed in various demanding applications, including
Secure Enterprise Search (SES), disc-space utilization soft
ware, Web-searching applications, Software for repairingbro
ken hyperlinks in large websites with multiple pages and
hyperlinks, and so on. Such applications demand Versatile
systems and methods for quickly and accurately ascertaining
changes made to a file system.
0004 Systems and methods for quickly and accurately
ascertaining changes made to a file system are particularly
important in data-search applications, such as Secure Enter
prise Search (SES), where accompanying search indexes
must be periodically updated with file system changes to
enable accurate search results.
0005. In an example SES application, file system docu
ments, such as Hypertext Markup Language (HTML) web
pages, are indexed to facilitate searches. The SES application
may employ the index to facilitate rapid searches of file
system documents for desired content.
0006 To enable accurate searches, the search index is
periodically updated to reflect file system changes. For
example, the search index is updated when documents and the
content therein are changed, deleted, added, renamed, and/or
moved; when document access rights change, and so on.
0007 Conventionally, a process called crawling is used to
analyze files in a file system and then update the search index
accordingly. To reduce the time required to update the search
index, crawling software may first implement a file system
scan to determine what files and folders have changed since
the last crawling operation. Subsequent crawling, called
incremental crawling, is then limited to only components of
the file system that have changed.
0008 Crawling software may be implemented, for
example, via a Windows New Technology File System
(NTFS) connector. The NTFS connector may be imple
mented via Oracle SES. The connector collects content and
Access Control List (ACL) data associated with all files and
folders in an accompanying NTFS file system. Each file and
folder in the NTFS file system is associated with a LastModi
fiedDate attribute, which is updated when a file changes but
not when user access rights thereto change. To ascertain file
and folder changes, including changes to user access rights
for particular files or folders, the connector fetches the Last
ModifiedDate attributes and the Access Control List (ACL)
for each file and folder in the file system. Unfortunately,

Jun. 16, 2011

fetching the LastModifiedDate attributes and the ACL in
large enterprise applications is often undesirably time con
Suming, resulting in lengthy incremental crawling operations.
0009. In general, conventional methods for ascertaining

file system changes since the last crawling operation are
undesirably slow. In an enterprise file system with terabytes
of data, a given crawling operation may take weeks, depend
ing on available computing resources. This may be particu
larly problematic in situations where substantial file system
changes have occurred before crawling is complete.

SUMMARY

0010. An example method for monitoring changes in a
computing environment includes detecting changes to a file
system of the computing environment when changes to the
file system occur and providing indications of detected
changes in response thereto; and collecting the indications of
detected changes as the changes are detected.
0011. In a more specific embodiment, the file system is
part of an enterprise computing environment. The detected
changes include changes to user access rights to a given file or
folder in the file system and further include any changes to
one or more Access Control Lists (ACLs). Collecting the
detected changes may include logging indications of detected
changes in a first file, also called a log.
0012. The method further includes flushing contents of a
second file and copying contents of the first file to the second
file at a predetermined time. The predetermined time approxi
mately coincides with the completion of a crawl of the file
system. An incremental crawl of the file system is then per
formed using the second file. The second file and/or the first
file may be stored via one or more Oracle Extensible Tables
(OETs).
0013 To facilitate implementing the incremental crawl, a
Web service selectively retrieves information from the second
file to search software, such as Secure Enterprise Search
(SES) software.
0014) To facilitate detecting file system changes, a File
Change Detector (FCD) facilitates determining file system
paths (UNC paths) to monitor, and then uses File System
Watcher (FSW) functionality to monitor files or folders asso
ciated with the file system paths. The file system includes a
Windows NT File System (NTFS). The file system paths
include one or more Universal Naming Convention (UNC)
paths. In the present example embodiment, the FCD uses a
configuration file to retrieve one or more UNC paths for
monitoring.
0015 The Web service to determines if the FCD started
before completion of a most recent crawl of the file system or
after. A conventional crawl may be performed initially if the
FCD was activated after completion of the most recent crawl.
An FCD-based incremental crawl is performed using the
detected changes if the FCD was activated before completion
of the most recent crawl.
0016. The novel design of certain embodiments disclosed
herein is facilitated by the collection of documentation per
taining to file system changes as the changes are detected
during predetermined time intervals. This enables search
Software and accompanying crawling Software to limit crawl
ing to only file system components that have changed over a
predetermined interval. By collecting file system changes or
descriptions thereof in a record. Such as a log, as the changes
are made, search Software no longer needs to scan the file
system for attributes and information, such as LastModified

US 2011/O 14521.6 A1

Date attributes and user-access rights information, to indicate
which files or folders have changed since a last incremental
crawl. Maintenance of a change log may greatly expedites file
system crawling.
0017 Conventional systems for tracking and crawling a

file system generally do not track changes in file/folder per
missions (corresponding to changes in an ACL) in combina
tion with changes to the file/folder itself. Furthermore, exist
ing systems for tracking file changes typically do not collect
or aggregate changes made throughout a file system, but
instead track certain changes, e.g., by adjusting file attributes,
such as a LastModified Date attribute. Furthermore, conven
tional crawling software typically does not collect changes to
the file system as the changes occur, but instead determines
the changes by Scanning the entire system for specific file/
folder attributes, such as LastModified Date attributes. Such
scanning is undesirably time consuming. Certain embodi
ments discussed herein address these problems, enabling
rapid incremental crawls of file systems.
0018 Performance tests suggest that incremental crawling
based on an embodiment disclosed herein may be more than
twice as fast, given the same computing resources, as con
ventional incremental crawling based on an initial scan of the
file system to detect file system changes before implementing
the incremental crawl.
0019. A further understanding of the nature and the advan
tages of particular embodiments disclosed herein may be
realized by reference of the remaining portions of the speci
fication and the attached drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

0020 FIG. 1 is a diagram illustrating a first example
embodiment of a system for detecting file system changes and
using the changes to implement a crawl of the file system.
0021 FIG. 2 is a diagram of a first method adapted for use
with the system of FIG. 1 for controlling implementation of
file system crawls.
0022 FIG. 3 is a diagram of a second method adapted for
use with the method of FIG. 2 for implementing File Change
Detector (FCD) based crawling.
0023 FIG. 4 is a flow diagram of a third method adapted
for with the system of FIG. 1 for detecting and logging file
System changes.
0024 FIG. 5 is a flow diagram of a fourth method adapted
for use with the system of FIG. 1 for detecting file system
changes and using the changes for a crawling operation.

DETAILED DESCRIPTION OF EMBODIMENTS

0025. Although the description has been described with
respect to particular embodiments thereof, these particular
embodiments are merely illustrative, and not restrictive.
0026. For clarity, certain well-known components, such as
hard drives, processors, operating systems, servers, data
bases, power Supplies, and so on, have been omitted from
certain figures. However, those skilled in the art with access to
the present teachings will know which components to imple
ment and how to implement them to meet the needs of a given
application.
0027 FIG. 1 is a diagram illustrating a first example
embodiment of a system 10 for detecting file system changes
and using indications the changes to implement a crawl of the
file system 12.

Jun. 16, 2011

0028. The present example system 10 includes an Oracle
Secure Enterprise Search (SES) system 14, which includes a
Windows NT File System (NTFS) crawler and connector 16
in communication with a search engine and index 18. A Web
service 20 interfaces the SES system 14 with a File Change
Detector (FCD) 22, changes log 24, and the file system 12.
For illustrative purposes, the changes log 24 is shown includ
ing a first results file 28 for storing currently detected file
system changes, and a second results file 30 for storing pre
viously detected file system changes. Plural instances of the
first file 28 and the second file 30 may be employed in certain
implementations, as discussed more fully below.
(0029. The FCD 22 employs a File System Watcher (FSW)
module 26 to monitor the file system 12 for changes, i.e., the
FCD 22 employs FSW functionality to detect file system
changes. For the purposes of the present discussion, FSW
functionality may be any features, functions, or capabilities
associated with particular software that is adapted to detect
changes in a file system. An example of the particular soft
ware includes a FileSystemWatcher object class provided in
the .NET Framework Class Library. The FileSystemWatcher
object class by .NET may be used to implement the FSW
module 26.
0030. In the present example embodiment, the FCD 22 is
implemented via a Windows service, which may run on a
server. For the purposes of the present discussion, a Windows
service may be any executable software application adapted
to perform one or more specific functions without requiring
user intervention. An example Windows service can be con
figured to start when an associated operating system, such as
a version of Windows(R), is booted and run in the background
while Windows is running, or the Windows service can be
started manually when required. A server may be any com
puter or software adapted to provide content to one or more
different Software applications, computers, or devices, called
clients.
0031. The FCD 22 employs a configuration file 32 to
facilitate obtaining Universal Naming Convention (UNC)
paths to monitor for the file system 12. For illustrative pur
poses, a user interface (U/I)34 is shown coupled to the Web
service 20, the SES system 14, and the FCD 22. The user
interface 34 may include hardware, software, Graphical User
Interfaces (GUIs), and so on, for enabling certain user control
over the operation over the system 10.
0032 For the purposes of the present discussion, a Web
service may be any algorithm, method, or collection of algo
rithms and/or methods, such as may be implemented in Soft
ware and/or hardware, which is adapted to Support interaction
between computing entities, such as interaction over a net
work. The computing entities may include different applica
tions, computers, devices, and so on.
0033. Note that various components of the system 10 may
be distributed over a network or may be included on a single
computer system. For example, the Web service 20 may
facilitate interfacing the SES 14 to the file system 12 over a
network. For the purposes of the present discussion, a net
work may be any collection of intercommunicating computer
systems or applications. Examples of networks include the
Internet, Local Area Networks (LANs), wireless Code Divi
sion Multiple Access (CDMA) networks, and so on. Net
works may support one or more communication protocols,
such as Internet Protocol (IP), that are understood by different
computing entities, such as servers and clients, which are
connected to the network.

US 2011/O 14521.6 A1

0034. An example Web service includes a machine-to
machine interface described via Web Services Description
Language (WSDL), where the term “machine-to-machine'
includes application-to-application, application-to-device,
and so on. A more specific example of a Webs service includes
the Oracle SES Web service, which includes a Remote Pro
cedure Call (RPC) interface to Oracle SES. The RPC inter
face enables a client application to invoke operations on the
Oracle SES over a network. The client application may use a
WSDL specification published by Oracle SES Web Services
URL to send a request message using Simple Object Access
Protocol (SOAP) to the Oracle SES. An accompanying
Oracle SES server may then respond to the client application
with a responsive SOAP message. This Web Service is iden
tified by a Uniform Resource Identifier (URI) whose inter
faces and binding are capable of being defined, described, and
discovered by XML artifacts. The Oracle SES Web Service
Supports direct interactions with other software applications
using XML-based messages and internet-based products.
0035. This example Web Service may include various
functionality, including the ability to disclose and describe
itself to other applications by defining its functionality and
attributes so that other applications can understand it. By
providing a WSDL file, the Web Service makes its function
ality available to other applications; may offer the ability to
allow other services to locate it on the Web, such as by
registration of the service in a Universal Description, Discov
ery and Integration (UDDI) registry so that applications can
locate it; may offer the ability to be invoked by a remote
application via an Internet standard protocol; may offer the
ability to provide request-and-response type services or one
way style services using synchronous or asynchronous com
munication via messages, and so on.
0036. In operation, the system 10 is implemented in an
enterprise computing environment and is adapted to facilitate
efficient crawling of the file system 12 by the SES system 14.
Crawling of the file system 12 enables updating of the search
index 18 to enable secure and accurate searches of the file
system 12 for desired content.
0037 For the purposes of the present discussion, a com
puting environment may be may be any collection of com
puting resources used to perform one or more tasks involving
computer processing. An enterprise computing environment
may be any computing environment used for a business or
public entity. An example enterprise computing environment
includes various computing resources distributed across a
network and may further include private and shared content
on Intranet Web servers, databases, files on local hard discs or
file servers, email systems, document management systems,
portals, and so on.
0038. The NTFS crawler and connector 16 include com
puter code for selectively crawling the file system 12 via the
Web service 20 interface and updating the search index 18 of
the SES 14. For the purposes of the present discussion, a
connector may be any Software and/or hardware module
adapted to perform a function over a network. The NTFS
connector component of the crawler and connector 16 inter
faces the SES 14 with the file system 12 via the Web service
20 to facilitate searching file repositories and other compo
nents of the file system 12. The crawler and connector 16 of
the SES 14 may include one or modules, called sources, to
facilitate collecting content retrieved by or provided by the
connector component of the NTFS crawler and connector 16.

Jun. 16, 2011

For the purposes of the present discussion, a module may be
any grouping of computer functionality.
0039. A crawling process or operation (also called a crawl)
may be any method that involves performing a predetermined
processing action on each desired component of a system or
entity being crawled. In the case of a file system, a crawling
process may perform a predetermined processing action on
each file and/or folder of the file system or of a subset thereof.
The predetermined processing action may include, for
example, Scanning a file for hyperlinks; then caching the file
in a local file system. Upon completion of a crawling opera
tion on a file system, the file system is said to have been
crawled, i.e., a crawl of the file system has completed.
0040. An example crawling process employed in a specific
example Web-based application includes populating a queue
with file paths, such as URLs, corresponding to file locations.
Initial URLs in the queue are called seed URLs. As the
crawler software processes files identified by URLs in the
queue, it removes the processed file from the queue and
begins to process the file associated with the next URL in the
queue. The processing may include fetching the file associ
ated with the URL: scanning the file for hypertext links and
inserting any new links into the URL queue. Duplicate links
are discarded. The crawler software then caches the file in a
local file system and registers the associated URL in a table.
When the file system cache is full, indexing begins. Indexing
includes selectively pushing document content into an index
file to facilitate content searches. After indexing, the crawler
software returns to queuing and caching. While the present
example discusses a crawling operation as including indexing
of files, note that crawling operations do not necessarily
include indexing.
0041. In the example embodiment 10 of FIG. 1, the NTFS
crawler and connector 16 of the SES 14 initiates an initial
crawl of the file system 12, including all files and folders
therein that are to be indexed for searching via the search
engine and index 18. The initial crawl of the file system 12
may be a complete conventional crawl. Such as a crawl using
existing methods and not necessarily FCD-based crawling, as
discussed more fully below. For the purposes of the present
discussion, a conventional crawl may be any crawl that is not
limited to files or folders that have changed since a previous
crawling operation. A conventional crawl, as the term is used
herein, is not necessarily a crawl that is generally known in
the art. For example, another type of crawl. Such as propri
etary crawl, may be employed without departing from the
Scope of the present teachings.
0042. For illustrative purposes, the file system 12 is shown
including files and folders 34 and an accompanying Access
Control List (ACL) 36. The FCD 22 and FSW 26 include
instructions, i.e., computer code, for monitoring file system
changes, including changes to the files and folders 34 and any
corresponding changes in permissions associated with the
files and folders 34 as indicated in the accompanying ACL 36,
as discussed more fully below. For the purposes of the present
discussion, a permission associated with a file may be any
right of a user or particular software and/or hardware appli
cation to use the file. Such as by accessing, deleting, moving,
or otherwise manipulating the file. Such a right may be speci
fied via an ACL, such as the ACL 36.
0043. Note that while the FCD 22 and the FSW 26 are
discussed as including functionality for tracking changes to
files, folders, and associated access or modification permis
sions, file system change tracking is not limited thereto. For

US 2011/O 14521.6 A1

example, file system changes may include not only any
changes to content of files or folders and associated permis
sions, but may further include changes in metadata, i.e., data
pertaining to or describing data within the files and folders;
changes in associations between files and folders, and so on.
In general, the exact types of changes that the FCD and FSW
track are application specific and may be adjusted or changed
to meet the needs of a given application without departing
from the scope of the present teachings.
0044. A user may employ the user interface 34 to set a
predetermined crawling schedule for the system 10. After an
initial crawl of the file system 12, the NTFS crawler and
connector 16 employs the Web service 20 to facilitate using
the FCD 22 to perform rapid incremental crawling of the file
system 12. For the purposes of the present discussion, incre
mental crawling may be any crawling operation that limits
crawling based on indicated changes since the last crawling
operation. Accordingly, an incremental crawl of a file system
may refer to a crawl that employs information about file
system changes that have occurred since a previous crawl to
implement a Subsequent crawl.
0045. In the present example embodiment, in response to
receipt by the FCD 22 of a request from the SES system 14
(via the Web service 20) for FCD-based crawling of the file
system 12, the FCD 22 is activated. The FCD 22 includes
instructions, e.g., computer code, for using the configuration
file 32 to retrieve Universal Naming Convention (UNC) paths
of the file system 12 to watch.
0046 For the purposes of the present discussion, a file
system path may be any information specifying the location
of a file, folder, or other computing resource in a file system.
Examples of file system paths include UNC paths and asso
ciated Uniform Resource Locators (URLs) in an NTFS file
system. An NTFS file system may be any organization of
files, where the files are organized in accordance with Win
dows NTFS software and/or hardware specifications.
0047. The FCD 22 then activates the FSW 26 to monitor
the retrieved UNC paths, e.g., URLs, for changes. Upon
detection by the FSW 26 of one or more file system changes,
descriptions or indications of the detected changes are col
lected in the first results file 28 (or various instances thereof)
of the FCD file system changes log 24.
0048 For the purposes of the present discussion, collec
tion of detected changes may refer to the accumulation of
descriptions of or indications of changes, such as lists of
changed files or folders, descriptions of particular types of
changes, and so on. Such a list may be maintained in one or
more files, such as the first results file 28, or in another
organized and readily accessible storage mechanism, Such as
a database or tables thereof.
0049. An indication of a detected change may be any
description pertaining to the change, such as a description
identifying a particular file or folder associated with a change.
An indication of a detected change may also contain a more
precise description of the change that occurred, such as infor
mation indicating that access rights for a given file have
changed and how the access rights have changed, and when
the change occurred.
0050 Generally, the FCD 22 is started before the last
crawling operation, i.e., crawl, so that the FCD 22 can capture
changes in the file system 12 occurring since the last crawl
without missing changes that occurred between completion
of the last crawl and the start time of the FCD 22, as discussed
more fully below. During the time interval between crawls,

Jun. 16, 2011

the FCD 22 detects changes made to the file system 12. File
system changes may include, but are not limited to: changes
to content of a file included in the file system; changes in user
access or modification rights to a file or folder as determined
with reference to an Access Control List (ACL); changes in
paths to a file or folder, i.e., file or folder locations; deletions
of files or folders, and so on. For the purposes of the present
discussion, a folder of a file system may be any group of one
or more files identified by a particular location in the file
system, where the particular location is identified in part by a
folder name. The terms “folder” and “directory' are
employed interchangeably herein.
0051. For the purposes of the present discussion, an
Access Control List (ACL) may be any file or organization of
data (Such as a database to table thereof), containing infor
mation indicative of user and/or program permissions to
access and/or manipulate a file, object, or application. An
example ACL includes a list specifying a Subject, Such as a
user or application, and an associated operation, such as
access, delete, modify, and so on, to define one or more
permissions for a given file, application, or software object.
For example, an entry in an ACL, such as (John Doe, Delete)
for a file “X”, may indicate that John Doe has permission to
delete the file “X” associated with the entry. A software object
may be any group of Software components that are part of a
similar data structure or that otherwise may be grouped by
associations between the components or functionality of the
components.
0052. The FCD 22 continues to detect and log file system
changes in one or more instances of the first results file 28.
Changes detected in the previous interval between file system
crawls are maintained in the second results file 30.
0053 When the next crawling operation begins, or after a
given file-change detection interval, detected changes in the
first results file 28 are copied to the second results file 30. The
NTFS crawler and connector module 16 uses the contents of
the second results file 30 to limit crawling of the file system 12
to only those files, folders, or other file system entities that are
indicated (in the second results file 30) as having been
changed. Note that copying of the contents of the first results
file 28 to the second results file 30 occurs at a predetermined
corresponding to the completion of the collection of indica
tions of detected changes in the first results file 28, which may
coincide with the start of a Subsequent crawling operation.
The FCD 22 is actively detecting file system changes at
predetermined time intervals corresponding to intervals
between crawls, which may be set in accordance with a pre
determined schedule. A user may employ the user interface
34 to provide appropriate inputs to the SES 14 to establish a
desired crawling schedule.
0054 The second results file 30 may act as a backup file so
that a power outage or system failure that occurs while the
FCD is writing to the first results file 28 will not result in total
loss of recently detected changes or indications thereof. Fur
thermore, in certain cases, the NTFS crawler and connector
16 may compare the second results file 30 with the first results
file 28 to get a Snapshot, i.e., indication of the file system
changes detected since the last incremental crawl. Compari
son between the files 28, 30 to obtain the snapshot may be
particularly useful in implementations where the results files
28, 30 may include more changes than the changes detected
since the last incremental crawl.
0055. In summary, conventionally, incremental crawling
required time-consuming scanning a file system for change

US 2011/O 14521.6 A1

attributes, such as the LastModified Date file attributes, in
addition to scanning any ACLS, to determine file system
changes in advance of an incremental crawl. The present
embodiment overcomes this slow scanning process in part by
collecting file system changes, such as changes to files or
folders, approximately as the changes are occur. The system
10 employs the FCD 22 (and FSW 26) and changes log 24 to
detect and collect file system changes, respectively. The
NTFS crawler and connector 16 may then re-crawl only the
files or folders associated with changes, including changes to
permissions as indicated via associated ACL changes.
0056. In the present embodiment, the FCD 22 uses the
FileSystemWatcher object class provided by the .NET to
track the changes in the NTFS system 12. The FCD 22 may be
implemented as a Windows service that is installed on a
Windows server. When active, the FCD Windows service 22
is adapted continuously watch a specified directory and
record changes to files in the directory, changes to the direc
tory itself, and so on.
0057 The Web service 20 is adapted to selectively read the
FCD22 results, as stored in the changes log 24, in response to
an appropriate request from the NTFS crawler and connector
16. The Web service 20 then communicate the detected
changes or information about the detected changes to the SES
14, i.e., the NTFS crawler and connector 16. If a user employs
the user interface 34 to switch the mode of the SES 14 to
incremental crawling using the FCD 22, i.e., FCD-based
incremental crawling, then the NTFS crawler and connector
16 may call the Web service 20 to retrieve a list of modified or
deleted URLs (and/or other file system changes) for each
incremental crawl.

0058. The FCD 22 uses the configuration file 32 to get a
list of UNC paths to watch. For each path, the FCD 22 spawns
an FSW thread via the FSW module 26. Each thread watches
for changes in a specified directory of the file system 12 and
logs the results (or descriptions or indications thereof) in a file
with the same name as the directory. The associated file is
represented by the first results file 28. Note that in the present
embodiment, various instances of the first results file 28 and
the second results file 30 may be implemented in the changes
log 24, where each instance may correspond to a different file
system directory.
0059. In a specific example implementation, the moni
tored directory name, called the SourceName, corresponds to
the name of a corresponding NTFS source. Two versions 28,
30 of a results file are maintained per source, including the
first results file 28 corresponding to currently detected
changes, and a previous file corresponding to changes
detected during a previous change-detection interval.
0060 For the purposes of the present discussion, a file
system source may be any type of file system or file system
component identifiable by a similar structure or other char
acteristics. Examples of Sources include HTML pages, data
bases, email systems, intranet portals, document manage
ment systems, and custom applications. An SES source may
refer to a Software module, such as a plug-in, that is adapted
to facilitate interfacing the SES with the file system source. A
user may employ the user interface 34 to register SES sources
with the SES 14 for use thereby.
0061. The current file 28 is where the FCD 22 and accom
panying FSW 26 record detected changes or descriptions
thereof. The previous file 30 contains the changes crawled in
the previous incremental crawl.

Jun. 16, 2011

0062. The Web service 20 selectively returns a list of
modified URLs detected since the last incremental crawl to
the SES 14, which may act as a server. The Web service 20 is
further adapted to check if the service corresponding to the
FCD22 is alive, i.e., enabled or active. If the FCD service 22
is not alive, then the Web service 20 may throw an appropriate
error message, as discussed more fully below. If the FCD
service 22 is alive, then the Web service 20 may then check the
time at which the FCD Service 22 was started. If the FCD
service 22 was started before the crawl or incremental com
pleted, then the Web service 20 may fetch a list of modified
URLs from the second results file(s)30. If the FCD service 22
was started after completion of the last crawl or incremental
crawl, then the Web service 20 may return one or more pre
determined seed URLs to forcea conventional crawl or incre
mental crawl, such as a crawl not using the FCD 22. This may
ensure that none of changes to a monitored NTFS source of
the file system 12 that have occurred between the last crawl
time and the start time of the FCD22 are missed by the system
10.

0063. To fetch the list of modified URLs from the changes
log 24, the Web service 20 may implement copying of
changes in the current results file 28 to the previous file 30.
The FCD 22 may continue to write to the current file 28. The
Web service 20 implements a method that reads the contents
of the previous file 30 and sends a list of modified/deleted
URLs back to the SES 14 in response thereto. The copy
mechanism implemented by the Web service 20 facilitates
determining file system changes that have occurred between
Successive incremental crawls.
0064. In the present example embodiment, the changes log
24 is implemented via Oracle External Tables (OET), and
results, i.e., detected changes or descriptions thereof (e.g.,
corresponding URLs) can be fetched via the Web service 20
via an Structured Query Language (SQL) statement.
0065. The FCD 22 facilitates recording changes in
comma-separated files 28, 30. Note however, that other types
of files may be used without departing from the scope of the
present teachings. Furthermore, the FCD 22 also records the
time at which a file system change occurs. Comma-separated
files may readily be converted to OETs 24, which are usable
with SQL queries. SQL queries can be issued via the Web
Service 20 and/or the SES 14 for retrieval of modified URLS
from the changes log 24 for a particular SES Source program
(as represented by the NTFS crawler and connector 16) after
the source's last crawl time.
0066. In an example operative scenario, a user employs the
user interface 34 to define a new NTFS source, wherein an
operational mode thereof is set to “Incremental crawl with
File Change Detector 22”. The user may provide the unique
way to identify the source. Such as via a parameter called
“Unique name to identify this source.”
0067. A user may employ the user interface 34 to manually
trigger an incremental crawl via the NTFS crawler and con
nector 16. However, preferably, the NTFS crawler and con
nector 16 is provided a predetermined crawling schedule Such
that crawling or incremental crawling is performed at one or
more predetermined times.
0068. When an initial crawl is initiated, the FCD 22 is
automatically configured to perform in accordance with rules
setup via the source (e.g., the source represented by the NTFS
crawler and connector 16). The FCD 22 includes instructions
to automatically configure itself to monitor file system
changes that are relevant for the source 16. Alternatively, a

US 2011/O 14521.6 A1

user may employ the user interface 34 to make any requisite
configuration adjustments to the FCD 22.
0069. During an initial maintenance crawl, the connector
16 checks if the FCD was started before the last registered
crawl time. In case of the first maintenance crawl, the con
nector 16 initiates an incremental crawl without use of the
FCD22. A conventional or standard crawl may be used for the
initial crawl.
0070 For a subsequent maintenance crawl, the connector
16 confirms that the FCD 22 was started before the last crawl
time. The connector 16 then initiates an FCD-based incre
mental crawl. In this case, the connector 16 captures some of
the changes between the initial crawl and the first incremental
crawl in addition to changes that have occurred between the
first incremental crawl and a Subsequent next incremental
crawl.
0071. In the present example operative scenario, the sys
tem 10 may be set up for FCD-based incremental crawls for
an existing NTFS source as follows. An NTFS patch may be
employed to add additional parameters, such as “Incremental
crawl with File Change Detector” and “Unique name to iden
tify this source'. The parameter “Incremental crawl with File
Change Detector is set to true. A user employs the “Unique
name to identify this source' to uniquely identify the appli
cable source. The FCD22 is then configured to use the desired
source. Those skilled in the art with access to the present
teachings will know how to configure the FCD 22 to work
with a given Source without undue experimentation. Exact
configuration details are application specific and may vary
depending upon the application.
0072. During the next maintenance crawl, the connector
16 checks if the FCD 22 was started before the last crawl time.
In case of the first maintenance crawl following configuration
of the FCD 22, a crawl not employing FCD-based incremen
tal crawling may be employed. FCD-based crawling, i.e.,
incremental crawling employing the FCD22 and the changes
log 24, may be used for Subsequent incremental crawling.
0073 FIG. 2 is a diagram of a first method 40 adapted for
use with the system 10 of FIG. 1 for controlling implemen
tation of file system crawls. The method 40 may be initiated
via the SES 14 and accompanying NTFS crawler and con
nector 16. The method 40 includes a first crawl-checking step
42, which includes determining if the SES 14 is to perform a
forced re-crawl. If the SES 14 has determined that a forced
re-crawl is desired, then an initial crawling step 44 is per
formed. The initial crawling step 44 may include conven
tional crawling from seed URLs. After implementation of the
initial crawling step 44, the example method 40 completes.
For the purposes of the present discussion, a seed URL may
be any description of a path to a file or folder used to begin a
conventional or an initial crawl of a file system.
0074. If the first crawl-checking step 42 determines that a
forced re-crawl is not currently to be performed, a second
crawl-checking step 46 determines if an initial crawl is to be
performed. If an initial crawl is to be performed, then the
initial crawling step 44 executes. Otherwise, a crawl-comple
tion-checking step 48 is implemented.
0075. If the crawl-completion-checking step 48 deter
mines that the current crawl has not been completed, the
current crawl continues at a resume-crawl step 52. After
completion of the resume-crawl step 52, the method 40 com
pletes. If the crawl-completion-checking step 48 determines
that the last crawl has completed, then an FCD-checking step
50 is performed.

Jun. 16, 2011

(0076. If the FCD-checking step 54 determines if use of
FCD22 of FIG. 1 is desired, i.e., requested by a module of the
SES 14, then conventional crawling may be performed via the
initial crawling step 44. Note that at this stage, the conven
tional crawling performed by the initial crawling step 44 may
include incremental crawling using preexisting methods, i.e.,
conventional incremental crawling.
(0077. If the FCD-checking step 54 determines that FCD
based crawling is desired, then the FCD 22 of FIG. 1 is
enabled, and an FCD-based file system crawl is implemented
in an FCD-based-crawl step 50 before the method 40 com
pletes.
0078 FIG. 3 is a diagram of a second method 50 adapted
for use with the method 40 of FIG. 2 for implementing File
Change Detector (FCD) based crawling. The method 50 cor
responds to a sequence of steps represented by the FCD
based-crawl step 50 of FIG. 2.
007.9 The second method 50 includes an invoking step 62,
which includes invoking a routine (e.g., GetModified URLs)
to retrieve URLs associated with modified files and folders
from the changes log 24 of FIG. 1.
0080. The invoking step 62 initiates an FCD-status-check
ing step 64, which includes determining if the FCD module
22 of FIG. 1 is enabled and active, i.e., alive, or not. If the FCD
module 22 is not active, then an error message is triggered in
an error-throwing step 66 before the method 50 completes.
0081. If the FCD module 22 is alive, then a start-time
checking step 68 is performed. The start-time-checking step
68 determines if the time at which the FCD module 22 of FIG.
1 was activated is before the last crawl time. If the FCD
module 22 was not activated before the last crawl time, a
conventional crawl is performed in a forced-crawl step 70
before the method 50 completes. This helps to ensure that the
FCD functionality does not miss any changes occurring
between the completion of the last crawl and the start time of
the FCD module 22. If the FCD module 22 was activated
before the last crawl time, then a description-logging step 72
is performed.
I0082. The description-logging step 72 includes detecting
file system changes and logging descriptions of the detected
file system changes to create a so-called Snapshot of changes
occurring between crawl intervals.
I0083) Subsequently, a results-returning step 74 is per
formed. With reference to FIGS. 1 and 3, the results-returning
step 74 includes selectively returning, via the Web service 20,
a list of descriptions, such as URLS corresponding to file
system changes, to search Software. Such as the SES 14 of
FIG. 1, in response to a request received by the changes log 24
or accompanying FCD 22 from the SES 14.
I0084. For the purposes of the present discussion, search
Software may be any collection of computer code or instruc
tions adapted to search a computing environment in accor
dance with a particular query. SES software may be any
collection of computer code or instructions adapted to enable
searching for content across multiple locations. Example
locations include websites, file servers, content management
systems, enterprise resource planning systems, customer
relationship management systems, business intelligence sys
tems, databases, and so on.
I0085 Next, an incremental-crawl step 76 includes per
forming an incremental crawl of the file system 12 based on
descriptions of the file system changes retrieved from the
second results file 30 of FIG. 1. In the present example
embodiment, the results files 28, are implemented via Oracle

US 2011/O 14521.6 A1

Extensible Tables (OET). The incremental crawling per
formed via the incremental-crawl step 76 is called FCD
based crawling and is limited to crawling of file system com
ponents, e.g., files, folders, and any ACLS, that are indicated
as have been changed since the last crawl. Such indications
are available in the second results file 30 of FIG. 1 or by
comparison of contents of the second results file 30 with
contents of the first results file 28.

I0086 FIG. 4 is a flow diagram of a third method 80
adapted for with the system 10 of FIG. 1 for detecting and
logging file system changes. The method 80 includes a
change-detection step 82, which includes detecting file sys
tem changes occurring throughout the file system of an enter
prise computing environment approximately as the changes
occur. In the present example embodiment, the file system
changes include any changes to user access rights to files or
folders.
0087 Subsequently, a change-collection step 84 is per
formed. The change-collection step 84 includes collecting
indications of indications of detected file system changes in a
file or log when the changes are detected.
0088 Next, an enabling step 86 is performed. The
enabling step 86 includes enabling one or more remote appli
cations in the enterprise computing environment to access the
file or log via a Web service.
I0089. Various steps 82-86 of the method 80 may be
changed, replaced with other steps, omitted, and so onto meet
the needs of a given application and without departing from
the scope of the present teachings. For example, it is antici
pated that certain implementations need not be in an enter
prise computing environment. Furthermore, the one or
remote applications may include search Software, file system
crawling software, and so on, and an interface other than a
Web service may be employed.
0090. An alternative example method includes: detecting
changes to a file system of the computing environment when
changes to the file system occur and providing indications of
detected changes in response thereto; and collecting the indi
cations of detected changes as the changes are detected.
0091 FIG. 5 is a flow diagram of a fourth method 90
adapted for use with the system 10 of FIG. 1 for detecting file
system changes and using the changes for a crawling opera
tion. The example method 90 includes a first step 92, which
includes detecting changes made to a file system when the
changes occur and provide indications of detected changes in
response thereto.
0092. A second step 94 includes collecting indications of
detected changes as the changes are detected, and storing the
indications in a first file, such as the file 28 of FIG. 1.
0093. A third step 96 includes copying previous contents
of the first file to a second file, e.g., the second file 30 of FIG.
1, at predetermined times. Examples of predetermined times
include after completion of detecting changes for the first file
28 and just before initiation of an incremental crawling opera
tion.

0094. A fourth step 98 includes collecting new indications
of detected changes as the changes are detected and then
storing the indications in an updated first file after each of the
predetermined times.
0095 A fifth step 100 includes comparing the contents of
the first file and the second file to ascertain file system
changes occurring between the intervals defined by the pre
determined times.

Jun. 16, 2011

0096. A sixth step 102 includes using the ascertained file
system changes to facilitate implementing an incremental
crawl.

(0097. Note that the example method 90 may be substan
tially modified without departing from the scope of the
present teachings. For example, an alternative example
method includes performing the following steps: 1) observ
ing a file system of the computing environment during a
predetermined time interval and providing a signal when a
predetermined change to the file system is detected during the
predetermined time interval; 2) employing the signal to log a
description of detected file system changes; and 3) using a
logged description of the file system changes to perform an
incremental crawl of the file system.
0098. Any suitable programming language can be used to
implement the routines of particular embodiments including
C, C++, Java, assembly language, etc. Different program
ming techniques can be employed such as procedural or
object oriented. The routines can execute on a single process
ing device or multiple processors. Although the steps, opera
tions, or computations may be presented in a specific order,
this order may be changed in different particular embodi
ments. In some particular embodiments, multiple steps
shown as sequential in this specification can be performed at
the same time.

0099 Particular embodiments may be implemented in a
computer-readable storage medium for use by or in connec
tion with the instruction execution system, apparatus, system,
or device. Particular embodiments can be implemented in the
form of control logic in Software or hardware or a combina
tion of both. The control logic, when executed by one or more
processors, may be operable to perform that which is
described in particular embodiments.
0100 Particular embodiments may be implemented by
using a programmed general purpose digital computer, by
using application specific integrated circuits, programmable
logic devices, field programmable gate arrays, optical, chemi
cal, biological, quantum or nanoengineered systems, compo
nents and mechanisms may be used. In general, the functions
of particular embodiments can beachieved by any means as is
known in the art. Distributed, networked systems, compo
nents, and/or circuits can be used. Communication, or trans
fer, of data may be wired, wireless, or by any other means.
0101. It will also be appreciated that one or more of the
elements depicted in the drawings/figures can also be imple
mented in a more separated or integrated manner, or even
removed or rendered as inoperable in certain cases, as is
useful in accordance with a particular application. It is also
within the spirit and scope to implement a program or code
that can be stored in a machine-readable medium to permit a
computer to perform any of the methods described above.
0102. As used in the description herein and throughout the
claims that follow, “a”, “an, and “the includes plural refer
ences unless the context clearly dictates otherwise. Also, as
used in the description herein and throughout the claims that
follow, the meaning of “in” includes “in” and “on” unless the
context clearly dictates otherwise.
0103) Thus, while particular embodiments have been
described herein, latitudes of modification, various changes,
and Substitutions are intended in the foregoing disclosures,
and it will be appreciated that in some instances some features
of particular embodiments will be employed without a corre
sponding use of other features without departing from the

US 2011/O 14521.6 A1

Scope and spirit as set forth. Therefore, many modifications
may be made to adapt a particular situation or material to the
essential scope and spirit.
We claim:
1. A method for monitoring changes in an electronic file

system, the method comprising:
detecting changes to the file system when changes to the

file system occur;
collecting indications of the detected changes as the

changes are detected, wherein the detected changes
include at least one change to a permission associated
with a file in the file system; and

providing the collected indications in a record so that a
query on the record can determine at least one permis
Sion change.

2. The method of claim 1, wherein the file system is part of
an enterprise computing environment.

3. The method of claim 1, wherein the detected changes
include changes to one or more Access Control Lists (ACLS).

4. The method of claim 1, wherein collecting the detected
changes includes

logging indications of detected changes in a first file.
5. The method of claim 4, further including
flushing contents of a second file; and
copying contents of the first file to the second file at a

predetermined time.
6. The method of claim 5, wherein the predetermined time

approximately coincides with the completion of a crawl of the
file system.

7. The method of claim 5, further including performing an
incremental crawl of the file system using the second file.

8. The method of claim 7, wherein the second file is stored
via an Oracle Extensible Table (OET).

9. The method of claim 7, wherein performing an incre
mental crawl includes using a Web service to retrieve infor
mation from the second file to search software.

10. The method of claim 9, wherein the search software
includes Secure Enterprise Search (SES) software.

11. The method of claim 9, wherein detecting includes
using a File Change Detector (FCD) to determine file system
paths (UNC paths) to monitor, and then monitoring files or
folders associated with the file system paths.

12. The method of claim 11, wherein using the FCD further
includes employing the FCD to selectively activate File Sys
tem. Watcher (FSW) functionality to detect file system
changes.

13. The method of claim 11, further including using the
Web service to determine if the FCD started before comple
tion of a most recent crawl of the file system or after.

Jun. 16, 2011

14. The method of claim 11, further including performing
an incremental crawl using the detected changes if the FCD
was activated before completion of the most recent crawl.

15. A method for detecting changes in a computing envi
ronment, the method comprising:

observing a file system of the computing environment dur
ing a predetermined time interval and providing a signal
when a predetermined change to the file system is
detected during the predetermined time interval:

employing the signal to log a description of a detected file
System change; and

using a logged description of the file system change to
perform an incremental crawl of the file system.

16. The method of claim 15, wherein the predetermined
time interval includes an interval of time between crawls of
the file system.

17. The method of claim 15, wherein the predetermined
change to the file system includes a change to content of a file
or folder included in the file system.

18. The method of claim 15, wherein the predetermined
change to the file system includes a change in user access
rights to a file or folder

19. An apparatus for monitoring changes in an electronic
file system, the apparatus comprising:

a processor;
a storage device including one or more instructions execut

able by the processor for:
detecting changes to the file system when changes to the

file system occur;
collecting indications of the detected changes as the

changes are detected, wherein the detected changes
include at least one change to a permission associated
with a file in the file system; and

providing the collected indications in a record so that a
query on the record can determine at least one per
mission change.

20. A processor-readable storage device including one or
more instructions executable by the processor for:

detecting changes to the file system when changes to the
file system occur;

collecting indications of the detected changes as the
changes are detected, wherein the detected changes
include at least one change to a permission associated
with a file in the file system; and

providing the collected indications in a record so that a
query on the record can determine at least one permis
Sion change.

