






C. L. DEPOLLIER.

BRACELET.

APPLICATION FILED MAR. 5, 1915.

1,151,669.

Patented Aug. 31, 1915.

WITNESSES

WITNESSES
Geschwätz.
Kellie V. Nichols

INVENTOR

INVEN
Charles L. Depollier

RY

Redding, Greeley & Goddard
ATTORNEYS

UNITED STATES PATENT OFFICE.

CHARLES L. DEPOLLIER, OF BROOKLYN, NEW YORK.

BRACELET.

1,151,669.

Specification of Letters Patent. Patented Aug. 31, 1915.

Application filed March 5, 1915. Serial No. 12,449.

To all whom it may concern:

Be it known that I, CHARLES L. DEPOLLIER, a citizen of the United States, residing in the borough of Brooklyn of the city of New York, in the county of Kings, in the State of New York, have invented certain new and useful Improvements in Bracelets, of which the following is a specification, reference being had to the accompanying drawings, forming a part hereof.

Bracelets for ladies' wear, particularly those which are used with wrist watches, are now usually made with expansion links so that they may conform more closely to the wrists of the wearers. In such bracelets each link consists usually of an outer member, an inner member and an interposed spiral spring which normally maintains the two members of the link in their contracted relation but yields to permit relative longitudinal movement of the two members. The outer member consists of two side bars connected near their ends by cross pins. The inner member consists of an elongated loop which embraces the pin at one end of the corresponding outer member and the pin at the adjacent end of the outer member of the next link, the other end of the inner member being guided in the outer member. The spring is placed within the inner member, bearing at one end against the corresponding end of the inner member and at the other end against the cross pin. As such bracelets are sold to the retail jewelers each bracelet usually has eight of such expansion links, but it sometimes happens that for a slender wrist seven links are sufficient and that for a thick wrist nine links are required. If the inner member of each link is a closed loop (usually closed by soldering in the manufacture), it must be cut to permit the link to be removed from one bracelet and have its ends reunited if it is applied again to another bracelet. This operation requires care and labor, sometimes out of proportion to the selling price of the bracelet. To meet this objection bracelets are sometimes made with the inner links cut at one point, with the ends abutting or slightly overlapping.

With the inner members of the links so constructed it is easy for the retail jeweler to take out a link from one bracelet and to put it into another. The cutting of the inner member, however, introduced an element of weakness, for as each link is itself curved, any considerable strain on the link, as when

the bracelet is slipped over the hand, tends to straighten out the link and to separate the ends, at each side of the cut, since it is always the inner side of the inner member that is cut. The inner member is therefore distorted and the bracelet sometimes comes apart accidentally.

It is the object of this invention to provide for such a bracelet an improved inner member for the link which will permit a link to be removed readily from one bracelet and put in another, but shall resist effectually the tendency of the link, or its inner member, to become straightened out under longitudinal strain.

In accordance with the invention the inner member of the link is cut through its inner side, that is, it is made up with a line of separation at some point in its inner side, and the two ends, at opposite sides of the cut or line of separation, are made to interengage in such manner that the tendency of the two ends to become separated under longitudinal strain is effectually resisted.

The invention will be more fully explained hereinafter with reference to the accompanying drawings in which it is illustrated and in which—

Figure 1 is a view in perspective showing a bracelet with a wrist watch. Fig. 2 is a detail view on a larger scale and in longitudinal central section of a portion of the bracelet shown in Fig. 1. Fig. 3 is a detail view in side elevation of one of the links detached. Fig. 4 is a detail view, on a still larger scale, of the inner member of one of the links, the ends being shown as engaged. Fig. 5 is a view similar to Fig. 4 but with the ends of the inner member separated. Fig. 6 is a view in section on the plane indicated by the line 6—6 of Fig. 4, looking in the direction of the arrows. Fig. 7 is a detail view in section on the plane indicated by the line 7—7 of Fig. 5, looking in the direction of the arrows.

In Fig. 1 of the drawing a wrist watch *a* is shown as connected to the ends of an expansion bracelet *b*. Each of the links *c* of the bracelet, or one or more of the links *c*, comprises an outer member consisting of side bars *d* and cross pins *d'* by which the side bars are held in parallelism but spaced somewhat apart as usual in bracelets of the character indicated; an inner member *e*; and a spring *f*. The inner member is cut, or has its ends disunited at a convenient point, as

at e' , with the ends, at opposite sides of the cut or line of separation, adapted to be interengaged so as to resist separation when the link member is subjected to longitudinal strain. Such interengagement of the two ends may be accomplished in various ways.

A convenient device for effecting the interengaging of the ends is shown in the drawing, one end, as e^2 , having a T-head as 10 at e^3 , while the other end, as e^4 has in its end a slot, as shown plainly at e^5 in Fig. 7, to engage the neck e^6 of the head e^3 , the end e^4 being turned substantially at right angles to the general direction of length of the link 15 member, so that when the two ends are interengaged, as shown in Figs. 2, 3, 4 and 6, the tendency of the two ends to separate when the link member is subjected to longitudinal strain, shall be resisted effectually.

20 It will be understood that if the ends are prevented from separation the tendency of the link member to become straightened under longitudinal strain will be resisted and deformation of the link member therefore 25 prevented. At the same time it is a very simple matter for the retail jeweler to disengage and separate the ends of the inner member of the link so as to permit a link to be taken out of one bracelet or to be put 30 into another, as may be required.

The hook end of one terminal link may be opened readily and engaged with a bow or loop of the watch case. The outer member of the other terminal link may be opened by 35 the use of a suitable tool, engaged with a bow or loop of the watch case, and then re-fastened, or, if desired, an ordinary snap ring may be employed.

It will be obvious that interengagement of the two ends, so as to prevent separation under longitudinal strain, might be effected by other means than shown, but such means are desirable because of their simplicity.

I claim as my invention:—

1. An inner link member for a bracelet 45 having its ends disunited at a convenient point, one of such ends being formed with a T-head and the other turned substantially at right angles and slotted to engage the neck of the T-head.

2. In a bracelet, a link composed of an outer member with side bars and cross pins and an inner member formed as a flattened loop with its ends disunited, the ends being provided with devices for detachable locking interengagement transversely with respect to the longitudinal axis of the link, whereby the tendency of the ends to separate under longitudinal strain is resisted.

3. In a bracelet, a link composed of an outer member with side bars and cross pins and an inner member formed as a flattened loop with its ends disunited, one end being formed with a T-head and the other end being turned substantially at right angles and slotted for engagement with the neck of the T-head, whereby the ends may be detachably engaged and the tendency of the ends to separate under longitudinal strain be resisted.

This specification signed and witnessed this second day of March A. D., 1915.

CHARLES L. DEPOLLIER.

Signed in the presence of—

W. B. GREELEY,

WORTHINGTON CAMPBELL.