2/073861 A2

=

BNSDOCID: <WO

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date

AP0 R0

(10) International Publication Number

19 September 2002 (19.09.2002) PCT WO 02/073861 A2
(51) International Patent Classification’: HO4L (74) Agents: ALBERT, Philip, H. et al.; Townsend and
Townsend and Crew LLP, Two Embarcadero Center,
(21) International Application Number: PCT/US02/07392 Eighth Floor, San Francisco, CA 94111 (US).

(22) International Filing Date: 11 March 2002 (11.03.2002)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
60/274,457
Not furnished

9 March 2001 (09.03.2001)
8 March 2002 (08.03.2002)

uUs
Us
(71) Applicant: ARCOT SYSTEMS, INC. [US/US]; 3200
Patrick Henry Drive, Suite 200, Santa Clara, CA 95054
(US).

(72) Inventors: ALLEN, Robert; 64 Roosevelt Circle, Palo
Alto, CA 94306 (US). JERDONEK, Robert, A.; 454-C
Costa Mesa Terrace, Sunnyvale, CA 94085 (US). WANG,
John; 1265 Lakeside Drive #1175, Sunnyvale, CA 94085
(US). WU, Tom; 842 North Rengstorff Avenue, Apt. E,
Mountain View, CA 94043 (US).

(t3Y)

34

Designated States (national): AE, AG, AL, AM, AT, AT
(utility model), AU, AZ, BA, BB, BG, BR, BY, BZ, CA,
CH, CN, CO, CR, CU, CZ, CZ (utility model), DE, DE
(utility model), DK, DK (utility model), DM, DZ, EC, EE,
EE (utility model), ES, FI, FI (utility model), GB, GD, GE,
GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR,
KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK,
MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU,
SD, SE, SG, SI, SK, SK (utility model), SL, TJ, TM, TN,
TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZM, ZW.

Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR,
GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent
(BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR,
NE, SN, TD, TG).

[Continued on next page]

(54) Title: METHOD AND APPARATUS FOR CRYPTOGRAPHIC KEY STORAGE WHEREIN KEY SERVERS ARE AU-
THENTICATED BY POSSESSION AND SECURE DISTRIBUTION OF STORED KEYS

M
KEY senver

Con L L)

Hanoron.

(57) Abstract: A key management system includes secured data stored on a first system secured by a control key stored securely
on a key server. The secured data is secured against attacks such as unauthorized use, modification or access, where authorization
to access the secured data is determined by knowledge of an access private key of an access key pair. When an authorized user is to
- access the secured data, the first system generates a request to the key server, signed with the access private key, wherein the request
is for a decryption control key and the request includes a one-time public key of a key pair generated by the first system for the
request. The first system can decrypt the decryption contro} key from the response, using a one-time private key. The first system
can then decrypt the secured data with the decryption control key remaining secured in transport.

02073861A2 | >

WO 02/073861 A2 MU0 O O

Published:

For two-letter codes and other abbreviations, refer to the "Guid-
— without international search report and to be republished ance Notes on Codes and Abbreviations" appearing at the begin-
upon receipt of that report ning of each regular issue of the PCT Gazette.

BNSDOCID: <WO 02073861A2 | >

10

15

20

25

30

BNSDOCID: <WO

WO 02/073861 PCT/US02/07392

METHOD AND APPARATUS FOR CRYPTOGRAPHIC KEY
STORAGE WHEREIN KEY SERVERS ARE AUTHENTICATED BY
POSSESSION AND SECURE DISTRIBUTION OF STORED KEYS

CROSS-REFERENCES TO RELATED APPLICATIONS
[01] The present application claims priority from and is a non-provisional application of
U.S. Provisional Application No. 60/274,457, entitled “METHOD AND APPARATUS FOR
CRYPTOGRAPHIC KEY STORAGE USING A VERIFIER AND ACCOMMODATING
KEY USERS THAT OPERATE INDEPENDENTLY OF THE VERIFIER” filed March 9,

2001, the entire contents of which are herein incorporated by reference for all purposes.

FIELD OF THE INVENTION

[02] The present invention relates generally to cryptographic systems and more

particularly to key storage apart from data secured by the keys.

BACKGROUND OF THE INVENTION
[03] Cryptography is used to secure data. In many systems, knowledge of a key allows

access to the data and lack of knowledge of the key secures the data against access.
Preferably, the key used to secure data is selected from a sufficiently large set of possible
keys that an attacker cannot guess the key by exhaustive trial and error, even with the use of
large amounts of computing resources. Usually, a key selected from a large set will be too
long for people to remember, so it is necessary to employ a system that stores the key on
behalf of the user and requires a passphrase to be entered before the key can be used. The
passphrase, which can be a memorized password or PIN (Personal Identification Number), is
typically converted directly into a cryptographic key and used to encrypt and decrypt the
user’s stored keys. Unfortunately, if the PIN or password is short enough‘for the user to
remember, it is also short enough for an attacker to guess by exhaustive trial and error,
thereby undermining the security of the stored key, and in turn undermining the security of
the encrypted data.

[04] One solution to the problem described above is to use central key management,
wherein the keys are stored on a centralized server that is itself secured from access by
attackers. When an attacker with access to a system having secured data thereon uses the

brute force attack and tries each possible short passphrase, the centralized server receives a

02073861A2 | >

BNSDOCID: <WO

WO 02/073861 PCT/US02/07392

query from the system each time a passphrase is tried. Once the centralized server notices an

unusual number of attempts, it can choose to ignore all further queries from that system
and/or send alerts to a fraud manager or trigger alarms, if that is part of the design of the
centralized server.

[05] The use of centralized key servers to secure data is known. In a typical arrangement,
the system that maintains data secured by the key (the “key client”) authenticates itself to the
key server and the key server authenticates itself to the key client. Following the mutual
authentication, a client-server session is established wherein the client requests keys from a
key server. In such an arrangement, the security of the system as a whole depends on the

security of this initial authentication between client and server.

SUMMARY OF THE INVENTION
[06] Inone embodiment of a key management system according to aspects of the present
invention, secured data is stored on a first system secured by a control key stored securely on
a key server. The secured data is secured against attacks such as unauthorized use,
modification or access, where authorization to access the secured data is determined by
knowledge of an access private key of an access key pair. An example of securing the
secured data is encrypting the data using the control key. When an authorized user is to
access the secured data, the first system generates a request to the key server, signed with the
access private key, wherein the request is for a decryption control key and the request
includes a one-time public key of a key pair generated by the first system for the request.
The decryption control key is the same as an encryption control key in the case of symmetric
keys. The key server verifies the signature using the access public key of the access key pair.
If the signature is valid, the key server sends the decryption control key to the first system,
encrypted using the one-time public key. The first system can then decrypt the decryption
control key from the response, using a one-time private key. The first system can then
decrypt the secured data with the decryption control key remaining secured in transport.
[07] Other features and advantages of the invention will be apparent in view of the

following detailed description and preferred embodiments.

DESCRIPTION OF THE DRAWINGS
[08] Fig. 1 is a block diagram of a network system in which various authorized key servers
and authorized key clients are coupled to a network, and unauthorized servers and clients

might also be coupled to the network.

02073861A2 | >

BNSDOCID: <WO

10

15

20

25

30

WO 02/073861 PCT/US02/07392

[09] Fig. 2 is a block diagram of one key server and one key client.

[10] Fig. 3 is a swim diagram of a process for decrypting a key on a key client using a key
stored on a key server.

[11] Fig. 4 is a block diagram showing one embodiment of the key client in more detail.
[12] Fig. S is a block diagram showing another embodiment of a key client in more detail
wherein the key client uses a smart card to secure authentication data used by the key client.
[13] Fig. 6 is a block diagram of a user system.

[14] Fig. 7 is a block diagram of a key authority server.

DETAILED DESCRIPTION OF THE INVENTION

[15] The systems shown in the figures will first be described with reference to a specific

use, that of securing application keys in a “key bag” on a first computer system, such that the
application keys in the key bag cannot be accessed without making a request to a remote key
server. As used herein, “remote” refers to being separated by a security boundary such that
access to a local system does not automatically confer access to the remote system. It should
be understood that remote does not require physical separation, but physical separation is one
way to provide for remoteness. Given that definition, it should be apparent that a system can
be configured such that a local system might be accessible to an attacker while the remote
system is not.

[16] Fig. 1is a block diagram of an example arrangement 10 wherein the present invention
might be used. As shown there, several key clients 12 and key servers 14 are coupled via a
network 16. In specific implementations, key servers 14 might be Arcot’s WebFort Key
Authority servers and key clients 12 might be end-user browsing systems with an ability to
perform secure operations on behalf of users.

[17] One goal of arrangement 10 is to allow a key client to obtain a key from a key server
relatively easily, while making security breaches difficult. One possible security breach can
occur if an interloping key client 22 is able to retrieve from a key server a key that belongs to
another key client. Another possible security breach can occur if an interloping key server 24
stands in place of an authorized key server. If interloping key client 22 were able to obtain a
key for another key client, that interloping key client 22 could then impersonate another key
client, such as by decrypting a stolen set of encrypted signing keys and then using those
signing keys to sign messages. If interloping key server 24 were able to impersonate another
key server, that interloping key server could provide a key client with defective keys and

exploit weaknesses created by that action, or might work in concert with another attack to

02073861A2 | >

BNSDOCID: <WO

WO 02/073861 PCT/US02/07392

weaken key client security without the controls and constraints that an authorized key server
would place on operations.

[18] Fig. 2 is a block diagram showing one key server 14 and one key client 12 in greater
detail. As shown there, key server 14 comprises a communications handler 30, a service
handler 32, a fraud monitor 34 and a key database 36. It should be understood that other
configurations of key servers might be used instead. In the embodiment shown,
communications handler 30 is coupled to key client 12 and handles communication.
Communications handler 30 might be an HTTP server, an FTP server, a lower level TCP/IP
packet handler, or other objects as would be known in the art. While a direct connection
between key server 14 and key client 12 is shown, it should be understood that a possibly
unsecured network might be interposed between the two, such that interloping by
unauthorized servers and clients might be possible and therefore there is a lack of trust at the
outset of a client-server connection.

[19] As shown communications handler 30 is coupled to service handler 32, which is in
turn coupled to fraud monitor 34 and key database 36. Also shown is a connection between
fraud monitor 34 and service handler 32 for the purpose of disabling keys. While specific
connections are shown, it should be understood that more connections or fewer connections
could be used without departing from the scope of the invention.

[20] In a typical operation, communications handler 30 receives a key request from a key
client and passes that request to service handler 32. Service handler 32 then in turn
determines whether to respond to the key request by obtaining a key for that key client from
key database 36 and providing that key in response to the request. Alternatively, service
provider 32 may decide not to respond to the request and so inform fraud monitor 34. Such

an action might be taken if some predetermined threshold in the number of requests from a

_particular key client are made such that it would indicate a brute force attack. Additional

details of the specific operation of service handler 32 and key database 36 are shown in
subsequent figures and/or described below.

[21] As for key client 12, it is shown comprising a communications handler 40, a security

' handler 42, a decryptor 44 and a key bag 46. Communications handler 40 handles

communication from a key client 12 to a key server. Security handler 42 is shown further
comprising various data elements, but it should be understood that additional data elements
not shown might also be included. Security handler 42 maintains a certificate 50, an access

public key 52 and an access private key 54. The access public key 52 may be encrypted and

02073861A2 | >

10

15

20

25

30

BNSDOCID: <WO

WO 02/073861 PCT/US02/07392

stored inside the certificate 50. Certificate 50 might be a certificate obtained from a
certificate authority and associated with the access key pair such that an entity that trusts the
certificate authority can be assured that if the certificate is valid, the access key pair is
certified.

[22] Various connections are shown in Figure 2 for key client 12 for data and control
passing among the various modules. It should be understood that more connections or fewer
connections might be present. In one pair of connections shown, between communications
handler 40 and security handler 42, communications handler 40 generates a one-time key pair
and sends the one-time public key to security handler 42. Another data communications path
is shown between security handler 42 and communications handler 40 for conveying a signed
request from security handler 42 to communications handler 40. As explained in more detail
below, the signed request is provided to a key ‘'server that results in communications handler
40 being provided with a key K. A communications path between communication handler 40
and decryptor 44 exists to provide key K to decryptor 44. Decryptor 44 is shown coupled to
key bag 46 such that decryptor 44 can obtain an encrypted datum, encrypted using key K, and
decrypt the datum D to make datum D available for use by key client 12.

[23] Datum D can be any of various types of data elements. In one example, datum D is a
signing key used by a browser or a PKI application. It is contemplated that key bag 46 might
serve as a repository for a large and possibly varied collection of encrypted data elements.
Elsewhere herein, datum D is a generalized to be an “access-controlled datum”.

[24] In a particular embodiment, the access-controlled datum is a conventional private key
that can be used in “key system”-unaware systems, such as a conventional browser (e.g.,
Netscape Communicator browser, Microsoft Internet Explorer browser) or custom Public
Key Infrastructure (PKI) applications. The access-controlled datum can be encrypted using
the control key and a standard symmetric encryption algorithm such as Triple DES (3DES) or
AES.

[25] If the control key correctly decrypts the datum, the key client is then assured that it is
talking to the legitimate key server, because only the legitimate key server could have
transmitted the correct control key. There are well known techniques to recognize that the
correct data was decrypted. For example, recognizable plain text could be included as part of
the access-controlled datum to ensure the correct decrypted data can be recognized, or a
keyed message authentication code (MAC) can be included with the datum.

02073861A2 | >

BNSDOCID: <WO

WO 02/073861 PCT/US02/07392

[26] Fig. 3 is a swim diagram illustrating a process whereby a key client obtains a control
key from a key server. Notably, all the required authorization can be performed in one round
trip messaging step and the control key can be obtained by the key client in that one round
trip messaging step. Referring now to the figure, a process of accessing an access-controlled
datum on the key client can begin with the key client generating a one-time key pair, OT.
The key client then compiles a request message comprising data fields such as a request Type
ID, and the public key portion (OTpub) of the one-time key pair OT. The key client then signs
the request data fields using the key client’s access private key.

[27] Theaccess private key might be protected using cryptographic camoutflage.

Examples of cryptographic camouflage are described in more detail in U.S. Pat. No.
6,170,058 issued to Kausik (the disclosure of which is incorporated herein by reference for all
purposes; hereinafter “Kausik™). The access private key might instead be stored in a
hardware device such as a smart card. Since the Kausik camouflaging process might require
detailed knowledge of the format and semantics of the datum, protecting the
access-controlled datum using the system described herein is simpler than using
cryptographic camouflage directly to protect it, as the access-controlled datum can be
encrypted using standard symmetric encryption algorithms, obviating the need for knowledge
of the format or semantics of the datum.

[28]) Referring again to Fig. 3, once the request is signed using the access private key, the
request is sent to the key server. A key client might maintain a data structure that holds a
reference to the key server to be used, a preferred key server and other key servers, or some
other arrangement to determine the address of the key server to which the request will be
directed.

[29] Once a request is received by the key server, the key server verifies the key client’s
signature using the key client’s public key. If the signature does not verify, the key server
begins fraud processing, as might be done by a service handler sending a message to a fraud
monitor.

[30] However, if the signature does verify, the key server then identifies the key client, by
the sender of the request, from a field in the request or by some other method. The key server

then obtains a control key for the identified key client from the key server’s key database.

The key server then encrypts the key client’s control key using the one-time public key

provided with the request and then sends the encrypted control key to the key client. Since
the key client generated the one-time key pair, the key client is able to decrypt the response

02073861A2 | >

10

15

20

25

30

BNSDOCID: <WO

WO 02/073861 PCT/US02/07392

from the key server using the one-time private key. The key client can then use the control
key to decrypt and access-controlled datum that is encrypted using the control key or is
decryptable using the control key. Preferably the control key is retained on the key client
only as long as it is needed for private key operations in a given session.

[31) The key server can use one or more of a variety of authentication techniques to
authenticate the key client prior to responding to the request for control key: Inone
embodiment, the key server verifies the signature using a digital certificate provided by the
key client along with the request.

[32] Insome cases, the key database is maintained in encrypted form. If that is the case,
the key server maintains a master key usable to decrypt and identify the key client’s control
key prior to encrypting the control key with the one-time public key for the response to the
key client.

[33] Referring now to Fig. 4, a network system is there shown, illustrating a system in
which the access-controlled datum might be used. As shown there, key client 12 is a system
that operates a browser, a security handler, and possibly other PKI applications. As is well
known in the art of browser interfacing, the browser might obtain certificates from various
sources and securely or unsecurely connect to a web server. In instances where the browser
requires a private key, that private key might be represented by access-controlled datum D.
In order for security handler 42 to provide the browser with datum D in an unencrypted form,
security handler 42 interacts with key server 14, as described previously, possibly through a
gateway such as an Arcot key authority (AKA) gateway, to obtain a control key from key
database 36 that would allow for the decryption of the access-controlled datum.

[34] Key clients 12 as shown in Figs. 2 and 4 use a security handler to provide the digital
identity for key client 12. In an alternative embodiment, a hardware smart card 142 as shown
in Fig. 5 is used in lieu of security handler 42. In such an embodiment, PKI applications and
browsers will interact with a smart card interface 144 when requesting an access-controlled
datum. Smart card interface 144 might also be used for interactions with a gateway or a key
server. In a typical operation, a smart card processor 150 secured within a hardware smart
card 142 receives a request for a private key operation (e.g. decryption, signing) and responds
to requests by performing the requested operation with the private key stored in internal
storage 152 and returning the result. As is well known in the art of smart cards, smart card
processor 150 can be programmed to control access to the private identity key stored in

storage 152.

02073861A2 | >

BNSDOCID: <WO

WO 02/073861 PCT/US02/07392

[35] However the access key is secured so that it provides a digital identity, knowledge of
that access key allows a system to decrypt an access-controlled datum. If the access key is
compromised, or needs to be regularly updated, or upon initialization of a key client, a new

access key and process is needed for securely loading that new access key into a security

handler or a smart card. When a security handler or a smart card is activated, the user whose

identity will be represented registers the new access private key with the key server in an
activation process.

[36] The activation process begins with the user obtaining (by download or otherwise) a
new data set for the security handler or a smart card and then activating the private key of the
new data set. The activation process begins with the key client generating a one-time key
pair and the key client composing an activation request message (“Create-Secret”) requesting
a new control key. The activation request message includes the one-time public key and is
signed by the user’s access private key. Although not required, the access private key can be
the same for all identity records (IRs) maintained by the user, where each identity record is
associated with a different set of key servers.

[37] The key client sends the activation request message to a key server. The key server
queries an authentication server to verify the signature on the request or otherwise checks a
digital certificate. The authentication server returns the result of the verification to the key
server. If signature verification is successful, the key server then parses the signed contents
of the request message and detects that generation of a control key is being requested. The
key server generates a control key, stores it securely in the key database under the requesting
user’s ID. If the user already has a control key or other secret, the key server will generate a
second secret. Also, when the key server stores the control key securely in the key database,
the key server encrypts the control key with the master key.

[38] The key server then composes a reply message to the key client comprising at least a
message type and the control key (or other secret). The reply message is encrypted with the
one-time public key and sent to the key client. The key client then decodes and decrypts the
reply message, encrypts the access-controlled datum (such as a conventional private key)
with the new control key, and stores the address of the key server that generated the control
key (if needed) in the IR. The control key can be cached in memory for subsequent
operations in one session but is preferably not stored beyond the session.

(391 The master key is used by the key server to encrypt and decrypt secret user-specific
control keys that are stored in the key database. The key server obtains the master key when

02073861A2 | >

10

15

20

25

30

BNSDOCID: <WO

WO 02/073861 PCT/US02/07392

the key server starts or initializes. The master key can be stored in a hardware device, in a
smart card or in a password-protected file. An administrator can optionally be required to
enter a password at the time of starting or initializing the key server. The password is used to
decrypt the master key to make it available for use by the key server. If the master key is
stored in a password-protected file, many standard techniques are available to store the key in
a password-protected file. One of these techniques is the PKCS#12 standard.

[40] While the system above is described with the authentication server and the key server
being separate elements, some embodiments might have the authentication server and key
server built as one server. In those embodiments, messages would not need to be sent from
the key server to the authentication server to verify signatures. Some embodiments might
secure other types of access-controlled data beyond just conventional private keys.

[41] The client software might be a browser, a PKI application, a VPN (virtual private
network) client software program that needs to have secure storage of a private key that is
used for Internet Protocol (IP) security. The PKI application might be a network log-on
program for a particular operating system such as UNIX, Linux, or Windows that requires the
secure storage of a private key. The PKI application might instead be a software program
that requires the secure storage of a private key, such as a program implementing a version of
the Kerberos security protocol, an email program, a program that uses client-authenticated

SSL (Secure Sockets Layer) or TLS (Transport Layer Security), a wireless or mobile device

' program, or a database client program. In a specific implementation of a client system, the

access-controlled datum is a signing key usable for a browser or a custom Public Key
Infrastructure (PKI) application.

[42] A specific embodiment using key fragments will now be described. In this
embodiment, the user’s key bag is encrypted with a large random symmetric key and can be
stored temporarily or permanently on the user’s computing system (usually the machine that
executes the key client). One fragment of the symmetric key is stored on a secure server,
referred to herein as a Key Authority (KA), which might have the same or similar role as the
key server described above. In order to decrypt and use a key from the key bag, the user
must prove access to identifiers that allow the user’s system to authenticate the user to the
KA, such as by entering a Personal Identification Number (PIN) or by use of a smart card in
possession of an authorized user. If those conditions are met, the KA provides a key

fragment that can be combined with a second fragment stored as part of the user credentials

02073861A2 | >

BNSDOCID: <WO

WO 02/073861 PCT/US02/07392

on the key client machine. This combination results in a key usable to decrypt a key from the
key bag.

[43] With the user client-KA interactions, strong two-factor authentication can be used to
authenticate the client to the KA and it can be implemented entirely in software, such as by
use of cryptographic camouflage described in U.S. Patent No. 6,170,058. One use for such a
system is as a replacement for hardware smart cards in PKI applications such as SMIME,
Form Signing, and SSL Client Authentication or any application that uses PKCS#11 modules
and/or CSPs.

[44] Fig. 6 is a block diagram of a user system 600 that might be used to implement such a
user system. As shown there, user system 600 includes a user credential 602 (i.e., a dataset
representing the user’s identity for key purposes), a key bag 604, a processor 606, a combiner
608, key storage 610 and a decryptor 612. User credential 602 is shown comprising an
access private key (Apriv), a certificate including an encrypted public key (Apub)
corresponding to Apriv, and an attribute set. The attribute set forms part of the user’s identity
for authentication and keying purposes and includes various data fields, including a KA
location field indicating where the KA for this user is located, a key bag location field
indicating where the key bag is located, a flag to indicate whether or not a femote key bag is
allowed, and a local key fragment, Ka. Usually, the key bag is local to the user system, but it
can be remotely stored to allow roaming and for other reasons. In some cases, the user
system would have multiple user credential 602, as for the case where a user might have been
otherwise issued multiple smart cards.

[45] Fig. 7 is a block diagram of a KA system that might interact with one or more user
systems 600. As shown there, a KA 700 comprises a certificate decryptor 702, a key
database 704, a decryptor 706 and an encryptor 708. It should be understood that Ka includes
other elements as needed to perform the actions described herein.

[46] The access private key represents the secure digital identity of the user and can be

protected using cryptographic camouflage. The keys stored in the key bag can be

conventional private keys that can be generated and used by many PKI applicatiohs that

might not be aware of cryptographic camouflage. To decrypt a key from the key bag, the
user system sends a request to the KA and the KA returns a key fragment. This process will
now be described in further detail, with reference to Figs. 6-7.

[47] The key decryption process begins when an application on user system 600 requires a

key. That application makes a key request to processor 606, which then works to generate a

02073861A2 | >

10

15

20

25

30

BNSDOCID: <WO

WO 02/073861 PCT/US02/07392

key in response to that request. Processor 606 formulates a request to the KA in the form
generally shown in Fig. 6.

[48] Certificate authority products often generate a conventional key by sending a web
page to a browser on the user’s system with key generation instructions, which are then
executed by the user’s system. In executing the instructions, the browser invokes processor
606 or makes a réquest to an already-invoked processor 606, which then might act as a
PKCS#11 module or CSP to generate a key pair and a PKCS#10 certificate request.

[49] Processor 600 determines which KA to use by examining KA location attribute of the
user credential. The request to the KA includes an indication of the type of request (e.g.,
“FETCH”), a UserlD, the certificate that includes the public key Apub in encrypted form, a
one-time public key, and possibly other fields. The request is signed using the access private
key Apriv. The one-time public key is a key of a one-time public key pair generated by
processor 606 for this particular request. The certificate might be signed as part of the
request, but need not be signed.

[50] When KA 700 receives a request, it verifies the signature using a KA domain key.
Preferably, only the KA has the domain key used by decryptor 702 to decrypt the access
public key Apub from the certificate. The domain key can be stored in a hardware device or a
password-protected file. |

[51] If verification is successful, KA 700 obtains a secret key fragment from key database
704. The particular key fragment is the key fragment associated with the user making the
request. In some embodiments, there is only one key fragment per unique user, but in other
embodiments, key database 704 might maintain more than one key fragment for a given user
and the request would specify which key fragment is being requested.

[52] In formulating a response datum, R, to include in the response to user system 600, KA
700 decrypts the key fragment Ks with a master key M, as the key fragments are all
encrypted in key database 704 for additional security. The key fragment is then encrypted
using the one-time public key, OTpub, thus forming the response datum R.

[53] The KA master key M is used to encrypt and decrypt user-specific data that is stored
in the key database. The KA obtains the master key when it starts or initializes. The master
key can be stored in a hardware device, in a smart card or in a password-protected file. An
administrator can optionally be required to enter a password at the time of starting or
initializing the KA. This password can be used to decrypt the master key to make it available
for use by the KA.

11

02073861A2 | >

BNSDOCID: <WO

WO 02/073861 PCT/US02/07392

[54] Once processor 606 receives the response, it decrypts R using the one-time private
key and then decrypts the result using the access private key to reveal the secret key Ks.
Processor 606 then provides Ks to combiner 608 that combines, by concatenation or
otherwise, Ks and Ka to form Kb. One possible combination technique is the use of a hash
algorithm such as SHA-1 or MDS5. A hash is preferred over simple concatenation because the
result of the hash combination is of a specific length. Kb is usable to decrypt one or more
conventional private keys from key bag 604. The private keys can then be used for purposes
such as signing. Kb is optionally cached in memory (e.g., storage 610) for subsequent
operations in the same session but can be reset or erased after the session is complete.

[55] The above description assumes that a user system had already established a
relationship with a KA, which would store a secret key fragment Ks for that user. In an
initialization phase, the user system might send a request with a different request type, such
as a “CREATE” request instead of a “FETCH” request. When a KA receives a CREATE

request and the signature of the request verifies, the KA generates a secret key Ks and stores

it securely in its key database under the requesting user’s UserID, encrypted using the master

key. The KA then sends a response containing the secret key Ks. The response is encrypted
using the one-time key provided in the request.

[56] Once processor 606 receives the response, it decrypts R using the one-time private
key and then decrypts the result using the access private key to reveal the secret key Ks.
Processor 606 can then user Ks to encrypt conventional private keys for storage in the key
bag, using a symmetric key, Kb, created by combining Ks and Ka.

[57] In the system described above, the conventional private keys are stored in a key bag
located on the user system and the user credentials are stored on the user system. In other
embodiments, the user credentials and/or key bag is stored on a server, which allows the user
to use the conventional private keys while away from the local user system. The KAs that
host the roaming user credentials or encrypted key bags can be separate instances of KAs
from those that provide the secret keys, or they can be the same systems. If roaming support
is to be disabled, the “KeyBagRoamingAllowed” flag of the user attributes can be set to
“No”.

[58] In the first type of roaming, the user does not need the user credential on the user’s
local machine. The user might access a server (such as a Web server using a Web browser)
that operates a roaming service. The user is prompted with a set of predefined questions such

as “Name of Pet?” or “Name of Childhood Teacher?” that form a challenge. If the questions

02073861A2 | >

10

15

20

25

30

BNSDOCID: <WO

WO 02/073861 PCT/US02/07392

are answered correctly, the user credential of that user is downloaded to the user’s current
local machine. Preferably, when the user credentials are stored in a database at the roaming
server, at least the access private keys are protected with cryptographic camouflage and the
Ka key fragment can be stored in encrypted form (using software or hardware module
encryption) to prevent knowledge of individual user Ka values at the server.

[59] With the second type of roaming, the user stores conventional private keys so that
they can be accessed while roaming. It should be understood that, in both cases, the location
of the user credential and key bag may be the same for roaming and nonroaming use, but in
the former case, the user system would act as a server for the user’s current local system.
However it is arranged, when the user is roaming and does not maintain a local copy of his or
her key bag, processor 600 would contact the server that hosts the encrypted key bag using
the user’s user credential by sending the server a signed “FETCH” message. The process and
message flow for downloading the encrypted Key Bag is identical or similar to the process
used to download secret key Ks, except that the encrypted key bag is the data sent, rather than
Ks.

[60] In previously described embodiments, the user system performed its operations while
connected to a KA via a network. In some cases, a user may need to perform private key
operations while not connected to the network. For example, the user may wish to sign or
decrypt SMIME e-mail on his or her laptop while sitting on an airplane. To allow such
operations, some embodiments include an offline mode as well as the online mode described
above.

[61] To enable offline operation, when the user credential is registered, the user selects an
offline password. When a user elects to “go offline”, processor 600 authenticates the user to
the KA using the user cred_ential and a user-entered PIN. The processor then automatically
downloads an “offline key container”. To unlock the offline key container for each
disconnected session, the user would have to provide the processor with the offline password.
The offline key container can be automatically erased after some predefined criteria is met,
such as the passage of a set amount of time, or when the user is next online. The KA might
be configured to include administrative policy settings, such as a time limit for usage of the
offline key container, tirﬁe ranges and day ranges that a user is allowed to interact with KA,
and/or IP address ranges that a user is allowed for interaction with KA.

[62] The application might involve a computational agent that represents the user, where

the computational agent runs on software and/or hardware and stands in the place of the user.

13

02073861A2 | >

BNSDOCID: <WO

WO 02/073861 PCT/US02/07392

Some embodiments might include other types of requests beyond a request for a control key

and a request to generate a new control key. If smart cards are used, they might be SIMM

cards or GSM cellular telephone compatible smart cards.

[63] Novel techniques for managing access-controlled data have now been presented. The

invention has now been described with reference to the preferred embodiments. Alternatives
and substitutions will now be apparent to persons of skill in the art. Accordingly, it is not

intended to limit the invention except as provided by the appended claims.

02073861A2 | >

WO 02/073861 PCT/US02/07392

WHAT IS CLAIMED IS:
1 1. A method of accessing encrypted data, wherein the encrypted data is stored
2 ona first secured system and a key usable for decrypting the encrypted data is stored on a
3 second secured system and wherein the first secured system maintains a private key of a first
4 secured system key pair, the method comprising:
5 obtaining a one-time key pair at the first secured system;
6 generating a request for the key including at least a public key of the one-time key pair;
7 signing the request with a private key of the first secured system;
8 sending the request to the second secured system;
9 responding to the request with a response, wherein the response includes at least the key
10 requested by the first secured system, encrypted using the one-time public key
11 provided in the request;
12 decrypting at least a part of the response using the one-time private key, so as to obtain
13 the key; and
14 using at least the key provided as part of the response to decrypt the encrypted data.

2. The method of claim 1, wherein the first secured system is a key server

2 client and second secured system is a key server.

3. The method of claim 1, wherein the second secured system is a key server

2 serving a plurality of first secured systems.

4. The method of claim 1, wherein obtaining the one-time key pair at the first

2 secured system comprises generating one-time key pair at the first secured system.

1 5. The method of claim 1, wherein the encrypted data comprises a plurality of

private keys.

6. A secured system on which encrypted data is maintained and decryptable
using a key stored on a remote system, the secured system comprising:
storage for a private key of a secured system key pair;
logic for generating or obtaining a one-time key pair;
logic for generating a request for the key including at least a public key of the one-time

key pair;

RO NV T Y FCR R

logic for signing the request with the private key of the secured system key pair;

15

BNSDOCID: <WO 02073861A2 | >

WO 02/073861 PCT/US02/07392

nse from the remote system to the request, including logic to

logic for processing a respo
the one-time key pair; and

obtain the key from the request using the private key of
a decryptor that decrypts the encrypted data using key provided by the remote system,

whereby the remote system is authenticated based on whether the key provided by

the remote system results in a correct decryption of the encrypted data.

7. A secured key server, wherein keys for a plurality of key clients are

maintained, the secured key server comprising:

a database of keys, wherein each key is associated with a key client;

ications module for receiving key requests that include one-time public keys

a commun
and that are signed by a key client;

logic for authenticating the key client based on a public key of the key client;

key and that is encrypted

logic for encrypting a response that includes the requested

using the one-time public key; and

logic for sending the response to the requesting key client.

BNSDOCID: <WO 02073861A2 | >

WO 02/073861 PCT/US02/07392
1/7

1400 v 10
key setvel b
' ,le.(l)
Ker Q'BNJ
n!23)
’Jf“‘f(z) key CL-:cNT?

ket seevew

Naz(s)

\wer cuent

Y
~
(NTERLs PNy sz_
ey server (RpRLs PN

€Y CcLIeNT

Fl6l

BNSDOCID: <WO 02073861A2 | >

WO 02/073861 PCT/US02/07392

'
KEY senvel A’ | et b

segred tepurst

p3°

Cosrmavn s ¢ AT a8

('M WM CA

Ay R AS DL
'~
-

HanoLen.

BNSDOCID: <WO 02073861A2 | >

WO 02/073861 PCT/US02/07392
3/7

setvel- REY cren

QCNELANE GHE-TIE
ke Y fﬁ\L) oT

J

Com \LE REQVEST DAV

MEewDs:
ReQuesT »

p .ek. J

veery L, REQ()

SlenrTveE < —_—] E“?m e QUEST DR
OSING ABREY 2
of CLENT REQ?NV-E*{ QWEIDI T,)

J

o T

IDENEY CAVENT

b key for
oE¥™ e 10 cuent

EclcexIT ey
“’IWM sad $ond

085 O () | Deceypr ket MO
\\“’be ey

€t 7

BNSDOCID: <WO 02073861A2 1 >

PCT/US02/07392

WO 02/073861

4/7

hvi3d

e 3N

41

A

u-d.*ﬂ..dv ..4 I)

02073861A2 | >

<WO

BNSDOCID:

BNSDOCID: <WO

WO 02/073861

5

(AEWRY

P e APP Bl e

!)

PCT/US02/07392

i

02073861A2 | >

\

SAET C ALD \Mﬁ}"”

)
%f:ues'r‘ Rosgense Fo
PRV leq.es +
ey l/

F(G.s’

(o
oay
s
[
e
=
()
=
221
=
=~
b
&
B

ﬂ .. «.u _‘&n+ﬂuo:vmu,3_|\1
Jz.;(@wu

(
A..q «ALFQ \A... «AALQVN «:.vtvv \Q‘H.ﬁ!aﬁ IN—\N&

_ My ‘
\:/ e ssodp o v ppe) yase

L e——

i)

<

WO 02/073861

02073861A2 | >

BNSDOCID: <WO

PCT/US02/07392

WO 02/073861

717

he?

(sX)"3
Aﬁ&i 3
¢+9 3
E=AH™3

»3%

{

3l

mv.v/ 5@5@.

> s4dPiong

L \r Qg0

44y
Jydnag | o

ﬁrf:«;i W@/\-

»

P

7 ()¢

O ey

02073861A2 | >

BNSDOCID: <WO

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

