

(11)

EP 2 693 506 B1

(12)

EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention of the grant of the patent:

27.02.2019 Bulletin 2019/09

(21) Application number: 11861994.9

(22) Date of filing: 13.12.2011

(51) Int Cl.:

H01L 51/54 (2006.01)

(86) International application number:

PCT/JP2011/078793

(87) International publication number:

WO 2012/132126 (04.10.2012 Gazette 2012/40)

(54) ORGANIC ELECTROLUMINESCENT ELEMENT AND METHOD FOR MANUFACTURING ORGANIC ELECTROLUMINESCENT ELEMENT

ORGANISCHES ELEKTROLUMINESZENELEMENT UND VERFAHREN ZUR HERSTELLUNG EINES ORGANISCHEN ELEKTROLUMINESZENELEMENTS

ÉLÉMENT ÉLECTROLUMINESCENT ORGANIQUE ET SON PROCÉDÉ DE FABRICATION

(84) Designated Contracting States:

**AL AT BE BG CH CY CZ DE DK EE ES FI FR GB
GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO
PL PT RO RS SE SI SK SM TR**

(30) Priority: 31.03.2011 JP 2011078362

(43) Date of publication of application:

05.02.2014 Bulletin 2014/06

(73) Proprietor: **Dai Nippon Printing Co., Ltd.**
Tokyo-to 162-8001 (JP)

(72) Inventors:

- OTSUKI, Eiji
Shinjuku-ku, Tokyo 162-8001 (JP)
- UENO, Shigehiro
Shinjuku-ku, Tokyo 162-8001 (JP)

(74) Representative: **Beck Greener**

**Fulwood House
12 Fulwood Place
London WC1V 6HR (GB)**

(56) References cited:

EP-A1- 1 954 102	JP-A- 2001 284 055
JP-A- 2002 075 651	JP-A- 2003 031 367
JP-A- 2003 077 671	JP-A- 2004 071 395
JP-A- 2005 142 122	JP-A- 2007 088 015
JP-A- 2009 155 325	JP-A- 2010 198 935
JP-A- 2011 020 970	

- HUAPING LI ET AL: "Molecular Design, Device Function and Surface Potential of Zwitterionic Electron Injection Layers", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 131, no. 25, 1 July 2009 (2009-07-01) , pages 8903-8912, XP055283870, US ISSN: 0002-7863, DOI: 10.1021/ja9018836

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

Description

Technical Field

5 [0001] The present invention relates to an organic electroluminescent element with the use of an organic boron compound, and a manufacturing method therefor.

Background Art

10 [0002] Organic electroluminescent (hereinafter, the term of electroluminescent may be abbreviated as EL) elements that interpose an organic layer between a pair of electrodes and applies a voltage between both electrodes to emit light have advantages such as high levels of visibility due to self-luminescent colors, excellent impact resistance because of being all-solid elements unlike liquid crystal elements, high response speeds, to be less affected by change in temperature, and wide viewing angles, and the use thereof as light emitting elements in display devices and lighting devices has been 15 attracting attention.

[0003] As the organic EL elements, it is known that multiple layers of organic layers such as a hole injection and transport layer, a light emitting layer, and an electron injection and transport layer are stacked between an anode and a cathode. Vapor deposition methods and application methods have been widely adopted commonly as methods for forming the organic layer films.

20 [0004] The vapor deposition methods have the advantage of easily stacking layers and thus being able to construct a functionally separated multi-layer structure, thereby achieving increased efficiencies and lifetimes. However, it is difficult to uniformly control film thicknesses in large areas, and the formation of large-area organic layers has the problems of requiring long periods of time, thus resulting in a poor production efficiency, and requiring a large-scale vacuum system, thus resulting in high manufacturing cost. In addition, for example, in the case of forming an organic layer film by co-deposition of a host of an organic compound and a dopant of a metal or a metal compound, there is a possibility that the lifetime will be shortened due to the organic compound decomposed during the deposition, or decomposed and mixed in the film, because the deposition temperature of the metal or metal compound is higher than the deposition temperature of the organic compound.

25 [0005] It is to be noted that, Patent Literature 1 discloses the use of a metal borate or a metal organic boron compound as an electron injecting material that is comparable in dopant deposition temperature to organic compounds and relatively unlikely to damage organic compounds.

30 [0006] On the other hand, the application methods are advantageous in terms of cost, and also have the advantage of easily achieving larger areas, as compared with the vapor deposition methods. In addition, organic compounds are not decomposed during film formation as observed in the vapor deposition methods. Therefore, various methods for 35 manufacturing organic EL elements have been proposed in which organic layers are formed by application methods. Above all, electron injection and transport layers formed on light emitting layers are formed mainly by vapor deposition methods, and studies have been thus made for forming electron injection and transport layers by application methods (see Patent Literatures 2 and 3). It is to be noted that in the application methods, materials have to be dissolved or dispersed in solvents in order to use coating liquids, materials for use in vapor deposition methods are not able to be 40 directly diverted, and it is thus necessary to select materials appropriately.

45 [0007] For example, Patent Literature 2 proposes a method in which an electron injecting layer is formed by a wet process with the use of a non-ionic organic metal complex or a metal phthalocyanine. Patent Literature 3 proposes the formation of an electron injecting organic layer by application with the use of an organometallic salt or an organometallic complex compound. Moreover, although not for electron injection and transport layers, Patent Literature 4 proposes a method of forming a light emitting layer by a wet process with the use of a non-ionic organometallic complex as an electron transporting luminescent agent.

50 [0008] Then, in recent years, organic boron compounds have been attracting attention as materials for organic EL elements, because of being relatively stable against water and air.

[0009] For example, Patent Literature 5 proposes the use of an organic boron compound as a luminescent substance for emitting blue light of high color purity.

[0010] Patent Literatures 6 and 7 both describe OLEDs comprising an organic boron compound in an electron injection layer.

Citation List

55 Patent Literature

[0011]

Patent Literature 1: Japanese Patent Application Laid-Open No. 2005-142122
 Patent Literature 2: Japanese Patent Application Laid-Open No. 2001-284055
 Patent Literature 3: Japanese Patent Application Laid-Open No. 2003-347061
 Patent Literature 4: Japanese Patent Application Laid-Open No. 2000-252072
 5 Patent Literature 5: Japanese Patent No. 3969941
 Patent Literature 6: JP2007-88015
 Patent Literature 7: JP2003077671

Summary of Invention

Technical Problem

[0012] The inventors have carried out various studies on characteristics of organic EL elements including an electron injection and transport layer containing an organic boron compound.

[0013] While Patent Literature 1 discloses, as described above, the use of a metal borate or a metal organic boron compound as an electron injecting material that is comparable in dopant deposition temperature to organic compounds and relatively unlikely to damage organic compounds, tetraboric acid and the like are supposed to have a deposition temperature of about 500°C, whereas tetraphenyl borate and the like are supposed to have a deposition temperature of about 300°C to 400°C, and at the deposition temperatures which are still high, there is fear that the organic compounds will be decomposed during vapor deposition. In addition, the metal organic boron compound itself is also an organic substance, and there is thus a possibility that the compound will be decomposed during vapor deposition. In this case, the service life is unable to be improved.

[0014] The present invention has been achieved in view of the circumstances mentioned above, and a main object of the present invention is to provide an organic EL element comprising an electron injection and transport layer containing an organic boron compound, which has excellent characteristics such as efficiency and service life.

Solution to Problem

[0015] The inventors have found, as a result of earnest studies carried out for solving the problems mentioned above, that due to the fact that an amorphous film is obtained when a film of an organic boron compound is formed by a vapor deposition method, whereas a crystalline film is obtained when a film of an organic boron compound is formed by an application method, whether the state of the organic boron compound is crystalline or amorphous has an influence on element characteristics, thereby completing the present invention.

[0016] It is to be noted that Patent Literatures 2 and 3 disclose the formation of an electron injecting layer by an application method with the use of a non-ionic organometallic complex, metal phthalocyanine, or an organometallic complex compound, but fails to disclose the use of an organic boron compound at all. Moreover, Patent Literatures 1 to 5 all fail to consider the relationship between the crystalline or amorphous state of an organic layer and element characteristics.

[0017] More specifically, the present invention provides an organic EL element comprising: an anode; a light emitting layer formed on the anode; an electron injection and transport layer formed on the light emitting layer, containing an organic boron compound, and having a crystalline structure; and a cathode formed on the electron injection and transport layer.

[0018] According to the present invention, the electron injection and transport layer containing the organic boron compound has a crystalline structure, and can be thus improved in service life, as compared with amorphous films which have an organic boron compound decomposed or have a decomposed organic boron compound mixed therein. In addition, a high light emitting efficiency can be achieved, because the organic boron compound is used in the electron injection and transport layer. Therefore, it is possible to achieve a long-life and high-efficiency organic EL element.

[0019] In the present invention, the organic boron compound contains an alkali metal. This is because the alkali metal has a favorable electron injecting property.

[0020] In addition, in the present invention, the electron injection and transport layer may further contain an electron transporting organic compound. In the case where the electron injection and transport layer contains the organic boron compound and the organic compound, a favorable carrier balance can be maintained even when the electron injection and transport layer is increased in film thickness, thus making it possible to ensure an adequate film thickness, to form a uniform film, and to increase the film strength. In addition, the use of the electron transporting organic compound can lower the driving voltage. Furthermore, in the case where an organic compound which has hole-blocking properties in addition to electron-transporting properties is added to the electron injection and transport layer, the charge recombination probability is improved, and the light emitting efficiency can be thus improved.

[0021] In this case, the electron transporting organic compound may be a polymer compound. While it is generally

difficult to form films of polymer compounds by vapor deposition methods, it is also possible to use the polymer compound because the electron injection and transport layer which has a crystalline structure according to the present invention is formed by an application method. In addition, in the case where the electron injection and transport layer contains a polymer compound, migration of the organic boron compound into the light emitting layer is less likely to be caused, and the durability of the element is thus expected to be improved.

[0022] Furthermore, the present invention provides a method for manufacturing an organic EL element comprising: an anode; a light emitting layer formed on the anode; an electron injection and transport layer formed on the light emitting layer and containing an organic boron compound; and a cathode formed on the electron injection and transport layer; the method comprises an electron injection and transport layer forming step of applying a coating liquid for an electron injection and transport layer, which contains the organic boron compound and a solvent, to form an electron injection and transport layer.

[0023] According to the present invention, the electron injection and transport layer containing the organic boron compound is formed by an application method, and a crystalline film can be thus obtained, so that the service life can be improved, without having an organic boron compound decomposed or having a decomposed organic boron compound mixed in during film forming as in a case of using a vapor deposition method. In addition, a high light emitting efficiency can be achieved because the organic boron compound is used to form the electron injection and transport layer. Therefore, it is possible to obtain a long-life and high-efficiency organic EL element.

[0024] In the present invention, drying by heating is preferably carried out after applying the coating liquid for an electron injection and transport layer in the electron injection and transport layer forming step mentioned above. This is because the heating further improves the light emitting efficiency.

[0025] In addition, in the present invention, the light emitting layer and the cathode are preferably formed by an application method. The application method requires no expensive vacuum equipment as in vapor deposition methods, and can thus reduce the manufacturing cost.

[0026] Furthermore, the present invention provides a coating liquid for an electron injection and transport layer, which contains an organic boron compound and a solvent.

[0027] The formation of an electron injection and transport layer by an application method with the use of the coating liquid for an electron injection and transport layer according to the present invention makes it possible to obtain a long-life and high-efficiency organic EL element.

[0028] The coating liquid for an electron injection and transport layer according to the present invention may further contain an electron transporting organic compound. In the case of forming an electron injection and transport layer with the use of the coating liquid for an electron injection and transport layer, which contains the organic boron compound and the organic compound, it is possible to ensure an adequate film thickness, and a uniform film can be easily formed. In addition, the use of the electron transporting organic compound allows for low voltage drive.

[0029] In this case, the electron transporting organic compound may be a polymer compound. While it is generally difficult to form films of polymer compounds by vapor deposition methods, it is also possible to use the polymer compound because the electron injection and transport layer is formed by an application method in the present invention. In addition, the addition of the polymer compound to the coating liquid for an electron injection and transport layer makes migration of the organic boron compound to the light emitting layer less likely to be caused, and the durability of the element can be thus expected to be improved.

40 Advantageous Effects of Invention

[0030] The present invention produces the effect of being able to achieve a higher efficiency and a longer service life.

45 Brief Description of Drawings

[0031]

50 FIG. 1 is a schematic cross-sectional view illustrating an example of an organic EL element according to the present invention.

FIGS. 2A to 2D are a process drawing illustrating an example of a method for manufacturing an organic EL element according to the present invention.

FIG. 3 is a diagram showing an example of an X-ray diffraction pattern on an electron injecting layer formed by an application method.

55 FIG. 4 is a diagram showing an example of an X-ray diffraction pattern on an electron injecting layer formed by a vapor deposition method.

FIGS. 5A to 5C are each a diagram showing an example of an infrared absorption spectrum on an electron injecting layer formed by an application method.

FIGS. 6A to 6C is a diagram showing an example of an infrared absorption spectrum on an electron injecting layer formed by a vapor deposition method.

5 Description of Embodiments

[0032] An organic EL element, a method for manufacturing an organic EL element, and a coating liquid for an electron injection and transport layer according to the present invention will be described below in detail.

10 A. Organic EL Element

[0033] First, an organic EL element according to the present invention will be described.

[0034] The organic EL element according to the present invention comprises: an anode; a light emitting layer formed on the anode; an electron injection and transport layer formed on the light emitting layer, contains an organic boron compound, and has a crystalline structure; and a cathode formed on the electron injection and transport layer.

15 [0035] The organic EL element according to the present invention will be described with reference to the drawing.

[0036] FIG. 1 is a schematic cross-sectional view illustrating an example of the organic EL element according to the present invention. As shown in FIG. 1, the organic EL element 1 comprises: a substrate 2; an anode 3 formed on the substrate 2; a hole injection/transport layer 4 formed on the anode 3; a light emitting layer 5 formed on the hole injection/transport layer 4; an electron injection and transport layer 6 that is formed on the light emitting layer 5, contains an organic boron compound, and has a crystalline structure; and a cathode 7 formed on the electron injection and transport layer 6.

20 [0037] In the present invention, the electron injection and transport layer containing an organic boron compound has a crystalline structure. When a layer of the organic boron compound is formed by a vapor deposition method herein, the deposited film is considered amorphous, because, during vapor deposition, the organic boron compound is decomposed, or the decomposed organic boron compound is mixed in the film. On the other hand, when a layer of the organic boron compound is formed by an application method, the deposited film is considered crystalline, because the organic boron compound can be prevented from being decomposed, and the decomposed organic boron compound can be prevented from being mixed. The crystalline film is presumed to have an electron transporting property improved, because the film has highly ordered atoms or molecules, and contains no impurities.

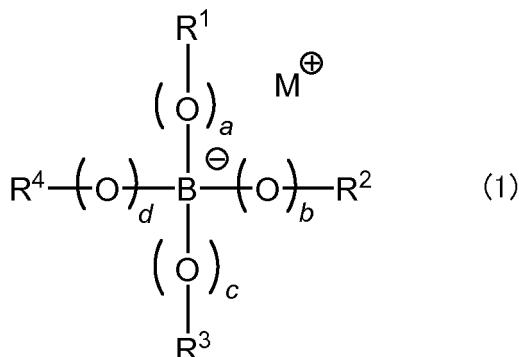
25 [0038] In addition, when the organic boron compound is film-formed by a vapor deposition method, there is a possibility that migration of decomposed products into the light emitting layer will be caused in driving the organic EL element to affect the light emitting characteristics of the element. On the other hand, when the organic boron compound is film-formed by an application method, migration is less likely to be caused in driving the organic EL element because there is no decomposed product, and it becomes possible to stably drive the element.

30 [0039] Moreover, there is a possibility that crystallization will be progressed by heat or electrical energy in the amorphous film to degrade the element characteristics, whereas the crystalline film is presumed to be advantageous for continuously driving the element because the change in state is small in the film.

[0040] Therefore, in the present invention, it is possible to achieve a long service life.

35 [0041] In addition, a high light emitting efficiency can be achieved, because the organic boron compound is used in the electron injection and transport layer. Therefore, in the present invention, it is possible to achieve a long-life, high-efficiency, high-performance organic EL element.

[0042] The respective components of the organic EL element according to the present invention will be described below.


40 1. Electron injection and transport layer

[0043] The electron injection and transport layer according to the present invention is formed on the light emitting layer, contains an organic boron compound, and has a crystalline structure.

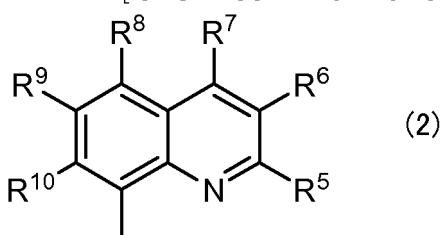
45 [0044] It is to be noted that it can be confirmed by an X-ray diffraction method that the electron injection and transport layer "has a crystalline structure". Specifically, depending on the presence or absence of a crystal peak found by the X-ray diffraction method, it can be confirmed that the layer has a crystalline structure (is crystalline) or is amorphous. In addition, the film can be also determined as having a crystalline structure (being crystalline) or being amorphous, with the use of an electron diffraction image obtained under a transmission electron microscope.

[0045] The organic boron compound of the invention is represented by the following general formula (1).

[Chemical Formula 1]

15 [0046] In the formula (1), M represents an alkali metal element, R¹, R², R³, and R⁴ are aromatic ring groups, which may be identical or different, and "a", "b", "c", and "d" are each independently 0.

[0047] The aromatic ring groups are preferably aromatic hydrocarbon groups or heterocyclic groups.


[0048] The aromatic hydrocarbon groups may be monocyclic or polycyclic, which preferably have 6 to 12 carbon atoms. Above all, a phenyl group and a naphthyl group are preferred, and a phenyl group is particularly preferred.

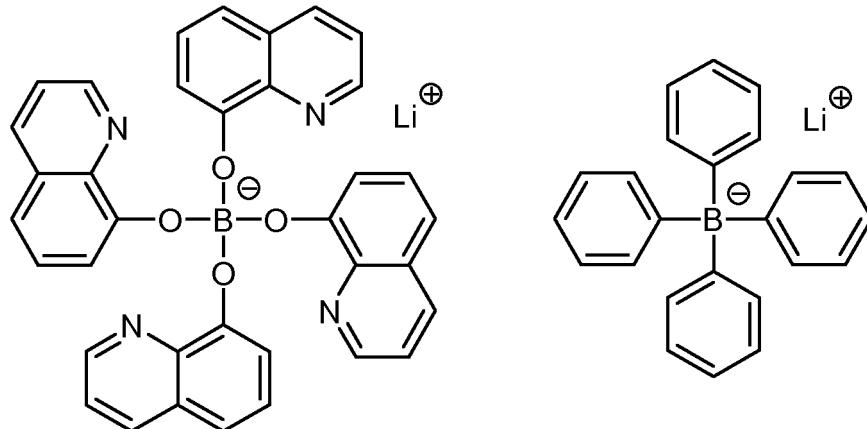
20 [0049] The aromatic hydrocarbon groups may have substituents, examples of which include an alkyl group, an alkoxy group, an alkylthio group, a perfluoroalkyl group, a phenyl group, an aryloxy group, halogen atoms, an amino group, a cyano group, and a nitro group. The alkyl group and the perfluoroalkyl group may be linear or branched, which preferably have 1 to 10 carbon atoms, and specifically, examples thereof include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, and a perfluoropropyl group.

25 [0050] The heterocyclic groups may be monocyclic or polycyclic, where one of the rings is preferably a five-membered ring or a six-membered ring. Examples thereof include a pyrrole ring, an imidazole ring, a pyrazole ring, an oxazole ring, a thiazole ring, a triazole ring, an oxadiazole ring, a thiadiazole ring, a pyridine ring, a pyrimidine ring, a triazine ring, an indole ring, a benzoxazoline ring, a benzothiazoline ring, a quinoline ring, and a thiophene ring. The heterocyclic groups may have substituents on their rings, and examples of the substituents include an alkyl group, an alkoxy group, an alkylthio group, a phenyl group, an aryloxy group, an arylthio group, halogen atoms, an amino group, a cyano group, and a nitro group. The alkyl group and the perfluoroalkyl group may be linear or branched, which preferably have 1 to 10 carbon atoms, and specifically, examples thereof include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, and a perfluoropropyl group.

30 [0051] The heterocyclic groups are preferably a quinoline ring group specifically represented by the following general formula (2).

[Chemical Formula 2]

[0052] In the formula (2), R⁵ to R¹⁰ are each independently a hydrogen atom or the substituent mentioned above.


[0053] M⁺ represents a monovalent cation, and M is an alkali metal element such as lithium (Li), sodium (Na), potassium (K), rubidium (Rb), and cesium (Cs), wherein sodium (Na), and potassium (K) are preferred. This is because the alkali metal has a favorable electron injecting property.

[0054] Examples of the organic boron compound represented by the formula (1) include, for example, lithium tetraphenylborate, sodium tetraphenylborate, potassium tetraphenylborate, rubidium tetraphenylborate, and cesium tetraphenylborate. In addition, the examples include compounds of tetraphenylborates with substituents added to phenyl groups of the tetraphenylborates, such as compounds of tetraphenylborates substituted with fluorine: lithium tetrakis-4-fluorophenylborate; sodium tetrakis-4-fluorophenylborate (aka: kalibor); potassium tetrakis-4-fluorophenylborate; rubidium tetrakis-4-fluorophenylborate; and cesium tetrakis-4-fluorophenylborate, or compounds of tetraphenylborates substituted with chlorine: lithium tetrakis-4-chlorophenylborate; sodium tetrakis-4-chlorophenylborate; potassium tetrakis-4-chlorophenylborate; rubidium tetrakis-4-chlorophenylborate; and cesium tetrakis-4-chlorophenylborate, or compounds

substituted with a methyl group: lithium tetrakis-p-tolylborate; sodium tetrakis-p-tolylborate; potassium tetrakis-p-tolylborate; rubidium tetrakis-p-tolylborate; and cesium tetrakis-p-tolylborate, or compounds of tetraphenylborates substituted with a trifluoromethyl group: lithium tetrakis-4-fluoromethyl phenylborate; sodium tetrakis-4-fluoromethyl phenylborate; potassium tetrakis-4-fluoromethyl phenylborate; rubidium tetrakis-4-fluoromethyl phenylborate; and cesium tetrakis-4-fluoromethyl phenylborate. Furthermore, the examples can include lithium tetrakis-2-thienylborate, sodium tetrakis-2-thienylborate, potassium tetrakis-2-thienylborate, rubidium tetrakis-2-thienylborate, cesium tetrakis-2-thienylborate; lithium tetrakis-1-imidazolylborate, sodium tetrakis-1-imidazolylborate, potassium tetrakis-1-imidazolylborate, rubidium tetrakis-1-imidazolylborate, cesium tetrakis-1-imidazolylborate. Only one of these organic boron compounds may be used, or two or more thereof may be used in combination.

[0055] The organic boron compound represented by the formula (1) is preferably lithium tetraphenylborate specifically.

[Formula 3]

[0056] The electron injection and transport layer may further contain an organic compound in addition to the organic boron compound described above. More specifically, the electron injection and transport layer may be composed of only the organic boron compound, or may contain the organic boron compound and the organic compound. In the case where the electron injection and transport layer is composed of only the organic boron compound, there is a possibility that when the electron injection and transport layer is increased in film thickness, the carrier balance will be lowered to degrade the element performance, whereas a favorable carrier balance can be maintained even when the electron injection and transport layer is increased in film thickness in the case where the electron injection and transport layer contains the organic boron compound and the organic compound. Therefore, in the case where the electron injection and transport layer contains the organic boron compound and the organic compound, it is possible to ensure an adequate film thickness, thereby making it easy to form a uniform film, and making it possible to increase the film strength. In addition, when the organic boron compound is likely to aggregated, the electron injection and transport layer further containing the organic compound is also expected to suppress the aggregation of the organic boron compound and achieve a uniform film.

[0057] While the organic compound for use in the electron injection and transport layer is not particularly limited as long as the compound is able to form the electron injection and transport layer as a thick film while maintaining the carrier balance, the compound is preferably, above all, an electron transporting organic compound. This is because the use of the electron transporting organic compound can lower the driving voltage. Furthermore, in the case where the electron transporting organic compound added has hole-blocking properties, the charge recombination probability is improved, and the light emitting efficiency can be thus improved.

[0058] The electron transporting organic material may be low molecular weight compounds or high molecular weight compounds. While it is generally difficult to form films of polymer compounds by vapor deposition methods, it is also possible to use the polymer compound because the electron injection and transport layer which has a crystalline structure according to the present invention is formed by an application method. In addition, in the case where the electron injection and transport layer contains a polymer compound, migration of the organic boron compound into the light emitting layer is less likely to be caused, and the durability of the element is thus expected to be improved.

[0059] It is to be noted that the "low molecular weight compounds" refer to compounds without having any repeating units. The low molecular weight compounds may have a weight average molecular weight of 1000 or less.

[0060] The "high molecular weight compounds" refer to compounds having any repeating units. The high molecular weight compounds may have a weight average molecular weight of 1000 or more. The high molecular weight compounds may be compounds having a smaller number of repeating units, such as oligomers, as long as the compounds have

any repeating units.

[0061] In addition, while the electron transporting organic compound is not particularly limited, the compound is preferably an aromatic compound, and examples of the compound include, naphthalene, anthracene, tetracene, pyrene, chrysene, coronene, naphthacene, phenanthrene, acridine, quinoline, quinoxaline, perylene, phthaloperylene, naphthaloperylene, perynone, phthaloperynone, naphthaloperynone, oxadiazole, triazole, thiadiazole, fluorene, fluorescein, diphenyl butadiene, tetraphenyl butadiene, bisbenzoxazoline, bisstyryl, pyrazine, cyclopentadiene, silole, oxine(quinolinol), aminoquinoline, diphenylethylene, vinylanthracene, diaminocarbazole, pyran, thiopyran, polymethine, merocyanine, quinacridone, Rubrene, phenanthroline, bathophenanthroline, phenanthridine, pyridine, bipyridine, terpyridine, and derivatives thereof. In addition, the examples can include metal complexes such as tris(8-quinolinolato)aluminum (Alq_3) and bis(2-methyl-8-quinolinolato) (p-phenylphenolato) aluminum ($BAlq$). Only one of these organic boron compounds may be used, or two or more thereof may be used in combination.

[0062] In the case where the electron injection and transport layer contains the organic boron compound and the organic compound, the content of the organic boron compound in the electron injection and transport layer is not particularly limited as long as the carrier balance can be maintained, and can be set within the range of 1 mass% to 99 mass%.

[0063] The film thickness of the electron injection and transport layer is not particularly limited as long as the thickness adequately achieves the function of stabilizing the injection of electrons into the light emitting layer, and selected appropriately depending on the composition of the electron injection and transport layer. In the case where the electron injection and transport layer is composed of only the organic boron compound, the film thickness of the electron injection and transport layer is preferably within the range of 0.1 nm to 100 nm. In the case where the electron injection and transport layer contains the organic boron compound and the organic compound, the film thickness of the electron injection and transport layer is preferably within the range of 0.1 nm to 500 nm. This is because there is possibility that the decreased film thickness of the electron injection and transport layer will fail to achieve adequate electron injecting properties, whereas the increased film thickness thereof will decrease the light emitting efficiency.

[0064] The method for forming the electron injection and transport layer is an application method. It is to be noted that the application method refers to a method with the use of a coating liquid. The method for forming the electron injection and transport layer will be described in detail later in the section of "B. Method for Manufacturing Organic EL Element", and the description will be thus omitted here.

2. Light Emitting Layer

[0065] The light emitting layer in the present invention is formed on the anode.

[0066] Materials for use in the light emitting layer include, for example, light emitting materials such as dye materials, metal complex materials, and polymer materials.

[0067] The dye materials include cyclopentadiene derivatives, tetraphenylbutadiene derivatives, triphenylamine derivatives, oxadiazole derivatives, pyrazolo quinoline derivatives, distyrylbenzene derivatives, distyrylarylene derivatives, silole derivatives, thiophene ring compounds, pyridine ring compounds, perinone derivatives, perylene derivatives, oligothiophene derivatives, trifumanyl amine derivatives, oxadiazole dimers, and pyrazoline dimers.

[0068] The metal complex materials include metal complexes having Al, Zn, Be, or the like; a rare-earth metal such as Tb, Eu, or Dy; or a transition metal such as Pt or Ir as a central metal, and having an oxadiazole, thiadiazole, phenylpyridine, phenylbenzimidazole, or quinoline structure as a ligand, such as aluminum quinolinol complexes, benzoquinolinol beryllium complexes, benzoxazole zinc complexes, benzothiazole zinc complexes, azomethyl zinc complexes, porphyrin zinc complexes, and europium complexes.

[0069] The polymer materials can include polyparaphenylenevinylene derivatives, polythiophene derivatives, polyparaphenylene derivatives, polysilane derivatives, polyacetylene derivatives, polyvinylcarbazole, polyfluorene derivatives, polyquinoxaline derivatives, and copolymers thereof. In addition, the polymer materials can include materials obtained by polymerization of the dye materials and metal complex materials mentioned above.

[0070] In the light emitting layer, a doping agent may be added for purposes such as improvements in light emitting efficiency and changes in emission wavelength. Examples of this doping agent include perylene derivatives, coumarin derivatives, rubrene derivatives, quinacridone derivatives, squarium derivatives, porphyrin derivatives, styryl dyes, tetracene derivatives, pyrazoline derivatives, decacyclene, phenoxazone, quinoxaline derivatives, carbazole derivatives, and fluorene derivatives.

[0071] The thickness of the light emitting layer is not particularly limited as long as the thickness can provide the field for recombination of electrons and holes to develop the light emitting function, and can be set to about 1 nm to 500 nm.

[0072] The light emitting layer may be formed in a pattern form so as to have light emitting sections of multiple colors such as red, green, and blue. Thus, an organic EL panel can be achieved which is capable of color display.

[0073] As the method for forming the light emitting layer, common methods for forming the light emitting layer can be employed, and both application methods and vapor deposition methods can be used. The application methods include, for example, an ink-jet method, a spin coating method, a casting method, a dipping method, a barcode method, a blade

coating method, a roll coating method, a spray coating method, a gravure coating method, a flexographic printing method, a gravure printing method, and a screen printing method. The vapor deposition methods, for which physical vapor deposition methods (PVD methods) can be used, include, for example, vacuum deposition methods and sputtering methods.

5 [0074] In the case of forming the light emitting layer by an application method, no expensive vacuum equipment as in vapor deposition methods is required, which is advantageous in terms of cost.

3. Anode

10 [0075] The anode for use in the present invention may or may not have a light transmission property, and is selected appropriately depending on the light extraction surface. In the case of extracting light from the anode side, the anode serves as a transparent electrode.

[0076] The anode is preferably low in resistance and metal materials as conductive materials are used commonly, while organic compounds or inorganic compounds may also be used.

15 [0077] As the material for use in the anode, it is preferable to use a conductive material that is large in work function so that holes are easily injected. Examples of the conductive material include, metals such as Au, Ta, W, Pt, Ni, Pd, Cr, Cu, and Mo, alkali metals, and alkali-earth metals; oxides of these metals; alloys such as Al alloys, e.g., AlLi, AlCa, and AlMg, Mg alloys, e.g., MgAg, Ni alloys, Cr alloys, alloys of alkali metals, and alloys of alkali-earth metals; inorganic oxides such as indium tin oxide (ITO), indium zinc oxide (IZO), zinc oxide (ZnO), and indium oxide; conductive polymers such as metal-doped polythiophene, polyaniline, polyacetylene, polyalkylthiophene derivatives, and polysilane derivatives; and α -Si and α -SiC. These conductive materials may be used by themselves, or two or more thereof may be used in combination. In the case of using two or more of the conductive materials, layers composed of the respective materials may be stacked.

20 [0078] As the method for forming a film of the anode, common methods for forming electrodes can be used, and both dry processes and wet processes can be applied. The dry processes include, for example, physical vapor deposition (PVD) methods such as a vacuum deposition method, a sputtering method, an EB deposition method, and an ion plating method, or chemical vapor deposition (CVD) methods. In addition, when the anode is formed in a pattern form, the patterning method is not particularly limited as long as the method can form the anode in a desired pattern with a high degree of accuracy, and examples of the method can include a photolithography method.

30 4. Cathode

35 [0079] The cathode for use in the present invention may or may not have a light transmission property, and is selected appropriately depending on the light extraction surface. In the case of extracting light from the cathode side, the cathode serves as a transparent electrode.

[0080] The cathode is preferably low in resistance and metal materials as conductive materials are used commonly, while organic compounds or inorganic compounds may also be used.

40 [0081] As the material for use in the cathode, it is preferable to use a conductive material that is small in work function so that electrons are easily injected. Examples of the material include, metals such as Li, Ca, Mg, Al, and In, and alloys such as Mg alloys, e.g., MgAg, Al alloys, e.g., AlLi, AlCa, and AlMg, and alloys of alkali metals such as Li, Cs, Ba, Sr, and Ca and alloys of alkali-earth metals. In addition, metals such as Au, Ag, Pd, Ni, and Cu can be also used.

[0082] The film forming method and patterning method for the cathode can be the same as the film forming method and patterning method for the anode described above.

45 [0083] In the case of forming the cathode by a wet process, no expensive equipment as in dry processes is required, which is advantageous in terms of cost. Examples of the wet process include, a method of applying a conductive paste with metal particles such as Au, Ag, Pd, Ni, and Cu dispersed in a resin and curing the resin; a method of applying a conductive paste with metal particles of a low melting point metal dispersed in a resin and melting and cooling the low melting point metal; a method of applying a paste-like metal including a liquid metal that is liquid at normal temperature; a method of stacking a substrate partitioning the perimeter so as to provide a predetermined depth and including a storage section for holding a low melting point metal inside the partition, and a stacked body having layers such as an anode, a light emitting layer, an electron injection and transport layer stacked, such that the storage section and the electron injection and transport layer are opposed, and sealing a low melting point metal or a liquid metal that is liquid at normal temperature in the storage section; and a method of partitioning the perimeter of the space sandwiched between an electron injection and transport layer and substrate placed to be opposed to the electron injection and transport layer, forming a gap provided with one or more holes leading to the outside, and injecting a low melting point metal or a liquid metal that is liquid at normal temperature through the holes into the gap.

55 [0084] Above all, the methods are preferred which use the low melting point metal or the liquid metal that is liquid at normal temperature.

[0085] The method using the low melting point metal and the method using the liquid metal that is liquid at normal temperature will be separately described below.

5 (1) Method using Low Melting Point Metal

[0086] The low melting point metal may be a single element metal or an alloy, and is not particularly limited as long as a common low melting point metal is used.

[0087] It is to be noted that the "alloy" in this specification means an apparently homogeneous metal composed of two or more metals, for which the metal bond formed between dissimilar metals is not necessarily required.

[0088] The melting point of the low melting point metal is preferably 30°C higher than the glass transition temperatures of organic layers such as a light emitting layer, an electron injection and transport layer, and a hole injection/transport layer, and specifically, preferably 70°C or higher and 160°C or lower. If the melting point of the low melting point metal is over 30°C higher than the glass transition temperatures of the organic layers, there is a possibility that serious damage will be caused to the organic layers. In addition, in order to use the organic EL element stably even under high-temperature environments such as in vehicles in midsummer, the melting point of the metal or alloy constituting the electrode has a lower limit of 70°C for practical purposes. If the melting point of the low melting point metal is lower than 70°C, there is concern about thermal melting. On the other hand, if the melting point of the low melting point metal exceeds 160°C, there is a possibility that great damage will be caused to the organic layers during the formation of the electrode.

[0089] Preferred low melting point metals include Bi alloys and InSn alloys. The Bi alloys preferably contain Bi, and at least one metal selected from the group consisting of Sn, Pb, Cd, Sb, In, and Ag. Specifically, examples thereof include the low melting point metals shown in Table 1.

25 [Table 1]

No.	Alloy Constituent (mass%)	Melting Point (°C)
1	Bi-Pb-Sn (50 :25 :25)	93
2	Bi-Pb-Sn (50.0 :31.2 :18.8)	94
3	Bi-Pb-Sn (50.0 :28.0 :22.0)	100
4	Bi-Pb-Sn-Cd (40.0 :40.0 :11.5 :8.5)	130
5	Bi-Pb-Sn-Sb (47.7 :33.2 :18.8 :0.3)	130
6	Bi-Pb-Sn-Cd (50.0 :26.7 :13.3 :10.0)	70
7	Bi-Pb-Sn-Cd (50.0 :25.0 :12.5 :12.5)	72
8	Bi-Cd (60.0 :40.0)	144
9	Bi-Cd-In (60.0 :35.5 :5.0)	137
10	Bi-Sn-Ag (57.0 :42.0 :0.5)	194
11	Sn-Bi (57.0 :43.0)	139
12	In-Sn (52.0 :48.0)	117

45 [0090] It is to be noted that the alloy compositions in Table 1 mean compositions based on the prepared weights of respective metal constituents weighed in advance, or on the measurement results obtained by an X-ray diffraction method, an XPS method, or other appropriate method.

[0091] Alkali metals or alkali-earth metals may be added to the low melting point metal, in order to enhance the electron injecting function. The alkali metals or alkali-earth metals are preferably selected from the group consisting of Ca, Li, Cs, Mg, and Sr.

50 [0092] The additive amount of the alkali metals or alkali-earth metals preferably falls within the range of 0.01% to 1% in terms of ratio by volume or ratio by weight, and above all, within the range of 0.05% to 0.5% with respect to the low melting point metal as a matrix. As long as the additive amount of the alkali metals or alkali-earth metals falls within the range mentioned above, the melting point of the low melting point metal undergoes no change.

55 [0093] The method for having the alkali metal or alkali-earth metal contained in the low melting point metal as a matrix can be achieved by a common method for handling atmospheric combustible metals. For example, a method can be used in which the low melting point metal and the alkali metal or alkali-earth metal are melted, mixed, and cooled in a heating furnace or a vacuum heating furnace with an atmosphere replaced by an inert gas such as nitrogen or argon.

[0094] As the method for applying the conductive paste with metal particles of the low melting point metal dispersed in a resin, for example, a screen printing method is used.

[0095] It is to be noted that the same method as described in, for example, Japanese Patent Application Laid-Open No. 2005-285732 can be adopted for the method for forming electrodes with the use of low melting point metal, such as: methods of applying a conductive paste with metal particles of the low melting point metal dispersed in a resin, and melting and cooling the low melting point metal; the method of stacking a substrate partitioning the perimeter so as to provide a predetermined depth and including a storage section for holding a low melting point metal inside the partition, and a stacked body of layers such as an anode, a light emitting layer, and an electron injection and transport layer stacked, such that the storage section and the electron injection and transport layer are opposed, and sealing a low melting point metal in the storage section; and the method of partitioning the perimeter of the space sandwiched between an electron injection and transport layer and substrate placed to be opposed to the electron injection and transport layer, forming a gap provided with one or more holes leading to the outside, and injecting a low melting point metal through the holes into the gap.

15 (2) Method using Liquid Metal that is Liquid at Normal Temperature

[0096] The liquid metal refers to a metal in a liquid state at normal temperature (5°C to 45°C as a guide), which exhibits sufficient fluidity at normal temperature or relatively low temperatures up to about 50°C even if heated. The melting point of the liquid metal is preferably 50°C or lower.

20 [0097] It is possible to form a film of the liquid metal by a wet process on heating at normal temperature or low temperature, and electrodes in any shape can be formed by the wet process, without relying on any dry processes such as vapor deposition. Therefore, the manufacturing cost is inexpensive as compared with dry processes, further, the electrode size is not restricted by the size of a vapor deposition apparatus in the manufacturing process, and the increase in the size of the organic EL element and the reduction in the manufacturing cost thereof can be thus achieved.

25 [0098] In addition, the electrode composed of the liquid metal is not disconnected, and even when the electrode is disconnected by pressure or the like, the electrode is again integrally connected when fluidity is provided by leaving or inclining the organic EL element on heating at normal temperature or low temperature, so the problem of disconnection does not occur practically. Therefore, a highly reliable organic EL element is achieved which causes no electrode disconnection, and can be preferably used as a flexible organic EL element in the case of using a flexible substrate composed of resin.

30 [0099] The liquid metal may be a single element metal or an alloy, which is not particularly limited as long as the metal is liquid at normal temperature. Above all, Ga or a Ga alloy is preferably used in terms of fluidity and low toxicity at normal temperature.

35 [0100] The Ga alloy contains Ga as its main constituent, and Ga preferably accounts for 40 mass%, and further preferably 50 mass% of the metals constituting the Ga alloy.

40 [0101] The single Ga element with a melting point of 30°C and a boiling point of 2400°C is liquid over a wide range of temperatures from room temperature to high temperature. Ga alloys containing at least one metal of In, Sn, and Zn as an essential constituent along with Ga can be used as metals that can keep a liquid state at lower temperatures. Specifically, the metals include the Ga and Ga alloys shown in Table 2.

[Table 2]

No.	Alby Constituent (mass%)	Melting Point (°C)
1	Ga (100)	30
2	Ga-In (75.5 :24.5)	16
3	Ga-In-Sn (62.0 :25.0 :13.0)	5
4	Ga-In-Zn (67.0 :29.0 :4.0)	13
5	Ga-Sn (92.0 :8.0)	20
6	Ga-Zn (95.0 :5.0)	25

55 [0102] It is to be noted that the alloy compositions in Table 2 mean compositions based on the prepared weights of respective metal constituents weighed in advance, or on the measurement results obtained by an X-ray diffraction method, an XPS method, or other appropriate method.

[0103] If necessary, other constituents may be added to the liquid metal. For example, in order to improve the electron injection efficiency, at least one metal selected from alkali metals and alkali-earth metals can be added as a substance

that is low in work function. The alkali metal or alkali-earth metal is preferably at least one metal selected from Ca, Li, Na, K, Mg, Rb, Cs, Ba, Be, and Sr.

[0104] Alkali metals and alkali-earth metals are classified in terms of the melting point broadly into a low melting point group: Li (180°C); Na (98°C); K (64°C); Rb (39°C); and Cs (29°C), and a high melting point group: Ca (839°C); Mg (650°C); Ba (725°C); Be (1284°C); and Sr (770°C). The alkali metal or alkali-earth metal is hazardous because of its strong oxidization-combustibility in the atmosphere, and thus preferably handled typically in a glove box with an atmosphere replaced by an inert gas.

[0105] The low melting point group mentioned above can be melted by heating in a glove box with relative safety, and can be thus weighed and mixed in the Ga or Ga alloy. On the other hand, even in a glove box, it is highly hazardous for the high melting point group mentioned above to be melted by heating and mixed directly in the Ga or Ga alloy, because of a large amount of heat. For this reason, an alloy with other metal is preferably prepared in advance in a vacuum melting furnace that can prevent combustion, and then handled in the safe condition.

[0106] Alkali metals and alkali-earth metals are all preferred because the metals are low in work function, and can develop a high electron injecting function, and Ca (work function: 2.87 eV), Li (work function: 2.4 eV), Na (work function: 2.36 eV), K (work function: 2.28 eV), Mg (work function: 3.66 eV), Rb (work function: 2.16 eV), Cs (work function: 2.14 eV), Ba (work function: 2.52 eV), Be (work function: 2.45 eV), and Sr (work function: 2.59 eV) can be preferably used. It is to be noted that the values of "work function" for each element are based on the data listed on p. 4729 of 'J. Appl. Phys. Vol. 48' (1977), and data actually measured by an ionization potential measuring apparatus.

[0107] In the case of applying a paste-like metal containing the liquid metal, among alkali metals and alkali-earth metals, Ca is particularly preferred because a large amount of Ca can be easily mixed in the Ga or Ga alloy. It is considered that Ca is very higher in molar volume than other metals, and able to blend in large amounts into the Ga or Ga alloys. In addition, Ca can easily achieve an electrode for a high power conversion efficiency, and also a long element lifetime. Further, examples of the molar volumes for each metal are listed below.

Ca 26.2×10^3 (m³/mol)

Li 13.0×10^{-6} (m³/mol)

Na 23.8×10^{-3} (m³/mol)

K 45.9×10^{-3} (m³/mol)

Mg 14.0×10^{-3} (m³/mol)

Rb 55.8×10^{-6} (m³/mol)

Cs 70.9×10^{-3} (m³/mol)

Ba 38.2×10^{-3} (m³/mol)

Be 4.9×10^{-3} (m³/mol)

Sr 33.9×10^{-3} (m³/mol)

[0108] The additive amount of the alkali metal or alkali-earth metal for developing a high electron injecting performance preferably falls within the range of 0.01% to 1%, and further preferably within the range of 0.05% to 0.5% in terms of ratio by volume or ratio by weight with respect to the Ga or Ga alloy as a matrix. As long as the additive amount falls within the range mentioned above, the melting point of the Ga or Ga alloy undergoes no change.

[0109] In addition, in the case of applying the paste-like metal containing the liquid metal, it is preferable to contain 5 mass% to 30 mass% of Ca, in particular, in order to make the liquid metal in a strongly viscous paste form. The Ca concentration in the range mentioned above can achieve a viscosity of 5 Pa·s to 100 Pa·s suitable for various types of printing methods, and develop, as an electrode, an adequate electron injecting function required for the organic EL element. The viscosity depending on the Ca concentration, as well as somewhat depending on the type of the Ga alloy and the type of a metal with a melting point of 300°C or lower as described later.

[0110] In the case described above, where at least one metal selected from alkali metals and alkali-earth metals other than Ca is contained along with Ca, the additive amount of the alkali metals and alkali-earth metals other than Ca is preferably 1 mass% or less, and more preferably within the range of 0.05 mass% to 2 mass%. As long as the additive amount falls within the range mentioned above, the paste property of the paste-like metal is not affected.

[0111] In or Sn is preferred as the other metal forming an alloy with the alkali metal or alkali-earth metal. The alloy of the alkali metal or alkali-earth metal with In or Sn is melted in the Ga or Ga alloy at room temperature in the atmosphere, and can be thus easily weighed and mixed. In addition, In or Sn is easily melted in Ga, and thus, even when the alloy described above is dissolved in the Ga or Ga alloy, a homogeneous paste-like liquid metal can be produced without separating In or Sn as a solid phase.

[0112] While it is obvious that the alkali metals and alkali-earth metals of the high melting point group can be even also alloyed with the Ga or Ga alloy directly in a vacuum melting furnace, it is easier to change the conditions, such as to adjust the concentrations, when the alloy of the alkali metal or alkali-earth metal with In or Sn is prepared in advance, and mixed in the Ga or Ga alloy.

[0113] The Ga alloy obtained by this method turns to liquid at a lower temperature (has a lower melting point) than a single Ga element, thus making the handling easier.

[0114] Conventionally, alkali metals or alkali-earth metals have been used only in film-forming processes under vacuum, because the metals are strongly oxidizable and combustible, unstable, and difficult to handle. In contrast, in the method described above, the alkali metal or alkali-earth metal is quite easy to handle, because the metal can be mixed in the liquid metal, and used in a wet process to form an electrode.

[0115] The method for having the alkali metal or alkali-earth metal contained in the Ga or Ga alloy as a matrix can be achieved by a common method for handling atmospheric combustible metals. For example, a method can be used in which the Ga or Ga alloy and the alkali metal or alkali-earth metal are melted, mixed, and cooled in a heating furnace or a vacuum heating furnace with an atmosphere replaced by an inert gas such as nitrogen or argon.

[0116] In the case of applying the paste-like metal containing the liquid metal, the paste-like metal preferably further contains a metal with a melting point of 300°C or lower, and turns to paste at a temperature not lower than the softening point while the paste-like metal is solid at normal temperature. As described above, the addition of the metal with a melting point of 300°C or lower to the liquid metal produces a paste-like metal that turns to paste at a temperature not lower than the softening point while the paste-like metal is solid at normal temperature.

[0117] The paste-like metal is solid at normal temperature. On heating, the paste-like metal starts to be softened at a given temperature, and further heating, undergoes a transition to the liquid state through a viscous paste.

[0118] Examples of the metal with a melting point of 300°C or lower include In, Sn, Bi, or alloys containing these metals as main constituents. Among these metals, InSn can be preferably used. Table 3 shows examples of the metal with a melting point of 300°C or lower.

[Table 3]

No.	Alby Constituent (mass%)	Melting Point (°C)
1	In (100)	160
2	In-Sn (52.0 :48.0)	117
3	Sn (100)	230
4	Sn-Bi (57.0 :43.0)	139
5	Sn-Ag (96.5 :3.5)	221
6	Bi (100)	270
7	Bi-Pb-Sn (50.0 :28.0 :22.0)	100
8	Bi-Pb-Sn-Cd (40.0 :40.0 :11.5 :8.5)	130
9	Bi-Pb-Sn-Sb (47.7 :33.2 :18.8 :0.3)	130
10	Bi-Cd (60.0 :40.0)	144
11	Bi-Cd-In (60.0 :35.5 :5.0)	137
12	Bi-Sn-Ag (57.0 :42.0 :0.5)	194

[0119] The paste-like metal turns to a completely liquid state at such high temperatures that further exceeds the softening point. Therefore, the paste is considered as a state in a viscous range intermediate between the liquid state and the solid state. The paste-like metal is preferably paste in the temperature range of 5°C or more. With this range of temperature width, the organic EL element can be manufactured in a stable manner.

[0120] In addition, the softening point of the paste-like metal is preferably 50°C or higher. If the softening point is lower than 50°C, the formed electrode may be melted and peeled by environmental changes or the like in some cases.

[0121] In order to add the metal with a melting point of 300°C or lower, the alloy of the alkali metal or alkali-earth metal with In or Sn is dissolved in the Ga or Ga alloy to form a paste-like liquid metal, and the metal with a melting point of 300°C or lower is then mixed into the paste-like liquid metal by heating to the temperature at which the metal with a melting point of 300°C or lower is melted.

[0122] As the method for applying the paste-like metal containing the liquid metal, a screen printing method, a metal mask method, or a dispenser application method is used, for example.

[0123] It is to be noted that the paste-like metal refers metal solely in a paste form without containing any resin. The electrode formed with the use of the paste-like metal has an excellent electron injecting function, because of containing no resin.

[0124] It is to be noted that the same methods as described in, for example, Japanese Patent Application Laid-Open No. 2006-048986 (Japanese Patent No. 4544937) and Japanese Patent Application Laid-Open No. 2006-144112 can

be adopted for methods for forming electrodes with the use of a liquid metal that is liquid at normal temperature, such as: the method of applying the paste-like metal containing a liquid metal that is liquid at normal temperature; the method of stacking a substrate partitioning the perimeter so as to provide a predetermined depth and including a storage section for holding a low melting point metal inside the partition, and a stacked body of an anode, a light emitting layer, an electron injection and transport layer, etc. stacked, such that the storage section and the electron injection and transport layer are opposed, and sealing a liquid metal that is liquid at normal temperature in the storage section; and the method of partitioning the perimeter of the space sandwiched between an electron injection and transport layer and substrate placed to be opposed to the electron injection and transport layer, forming a gap provided with one or more holes leading to the outside, and injecting a liquid metal that is liquid at normal temperature through the holes into the gap.

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200 205 210 215 220 225 230 235 240 245 250 255 260 265 270 275 280 285 290 295 300 305 310 315 320 325 330 335 340 345 350 355 360 365 370 375 380 385 390 395 400 405 410 415 420 425 430 435 440 445 450 455 460 465 470 475 480 485 490 495 500 505 510 515 520 525 530 535 540 545 550 555 560 565 570 575 580 585 590 595 600 605 610 615 620 625 630 635 640 645 650 655 660 665 670 675 680 685 690 695 700 705 710 715 720 725 730 735 740 745 750 755 760 765 770 775 780 785 790 795 800 805 810 815 820 825 830 835 840 845 850 855 860 865 870 875 880 885 890 895 900 905 910 915 920 925 930 935 940 945 950 955 960 965 970 975 980 985 990 995 1000 1005 1010 1015 1020 1025 1030 1035 1040 1045 1050 1055 1060 1065 1070 1075 1080 1085 1090 1095 1100 1105 1110 1115 1120 1125 1130 1135 1140 1145 1150 1155 1160 1165 1170 1175 1180 1185 1190 1195 1200 1205 1210 1215 1220 1225 1230 1235 1240 1245 1250 1255 1260 1265 1270 1275 1280 1285 1290 1295 1300 1305 1310 1315 1320 1325 1330 1335 1340 1345 1350 1355 1360 1365 1370 1375 1380 1385 1390 1395 1400 1405 1410 1415 1420 1425 1430 1435 1440 1445 1450 1455 1460 1465 1470 1475 1480 1485 1490 1495 1500 1505 1510 1515 1520 1525 1530 1535 1540 1545 1550 1555 1560 1565 1570 1575 1580 1585 1590 1595 1600 1605 1610 1615 1620 1625 1630 1635 1640 1645 1650 1655 1660 1665 1670 1675 1680 1685 1690 1695 1700 1705 1710 1715 1720 1725 1730 1735 1740 1745 1750 1755 1760 1765 1770 1775 1780 1785 1790 1795 1800 1805 1810 1815 1820 1825 1830 1835 1840 1845 1850 1855 1860 1865 1870 1875 1880 1885 1890 1895 1900 1905 1910 1915 1920 1925 1930 1935 1940 1945 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025 2030 2035 2040 2045 2050 2055 2060 2065 2070 2075 2080 2085 2090 2095 2100 2105 2110 2115 2120 2125 2130 2135 2140 2145 2150 2155 2160 2165 2170 2175 2180 2185 2190 2195 2200 2205 2210 2215 2220 2225 2230 2235 2240 2245 2250 2255 2260 2265 2270 2275 2280 2285 2290 2295 2300 2305 2310 2315 2320 2325 2330 2335 2340 2345 2350 2355 2360 2365 2370 2375 2380 2385 2390 2395 2400 2405 2410 2415 2420 2425 2430 2435 2440 2445 2450 2455 2460 2465 2470 2475 2480 2485 2490 2495 2500 2505 2510 2515 2520 2525 2530 2535 2540 2545 2550 2555 2560 2565 2570 2575 2580 2585 2590 2595 2600 2605 2610 2615 2620 2625 2630 2635 2640 2645 2650 2655 2660 2665 2670 2675 2680 2685 2690 2695 2700 2705 2710 2715 2720 2725 2730 2735 2740 2745 2750 2755 2760 2765 2770 2775 2780 2785 2790 2795 2800 2805 2810 2815 2820 2825 2830 2835 2840 2845 2850 2855 2860 2865 2870 2875 2880 2885 2890 2895 2900 2905 2910 2915 2920 2925 2930 2935 2940 2945 2950 2955 2960 2965 2970 2975 2980 2985 2990 2995 3000 3005 3010 3015 3020 3025 3030 3035 3040 3045 3050 3055 3060 3065 3070 3075 3080 3085 3090 3095 3100 3105 3110 3115 3120 3125 3130 3135 3140 3145 3150 3155 3160 3165 3170 3175 3180 3185 3190 3195 3200 3205 3210 3215 3220 3225 3230 3235 3240 3245 3250 3255 3260 3265 3270 3275 3280 3285 3290 3295 3300 3305 3310 3315 3320 3325 3330 3335 3340 3345 3350 3355 3360 3365 3370 3375 3380 3385 3390 3395 3400 3405 3410 3415 3420 3425 3430 3435 3440 3445 3450 3455 3460 3465 3470 3475 3480 3485 3490 3495 3500 3505 3510 3515 3520 3525 3530 3535 3540 3545 3550 3555 3560 3565 3570 3575 3580 3585 3590 3595 3600 3605 3610 3615 3620 3625 3630 3635 3640 3645 3650 3655 3660 3665 3670 3675 3680 3685 3690 3695 3700 3705 3710 3715 3720 3725 3730 3735 3740 3745 3750 3755 3760 3765 3770 3775 3780 3785 3790 3795 3800 3805 3810 3815 3820 3825 3830 3835 3840 3845 3850 3855 3860 3865 3870 3875 3880 3885 3890 3895 3900 3905 3910 3915 3920 3925 3930 3935 3940 3945 3950 3955 3960 3965 3970 3975 3980 3985 3990 3995 4000 4005 4010 4015 4020 4025 4030 4035 4040 4045 4050 4055 4060 4065 4070 4075 4080 4085 4090 4095 4100 4105 4110 4115 4120 4125 4130 4135 4140 4145 4150 4155 4160 4165 4170 4175 4180 4185 4190 4195 4200 4205 4210 4215 4220 4225 4230 4235 4240 4245 4250 4255 4260 4265 4270 4275 4280 4285 4290 4295 4300 4305 4310 4315 4320 4325 4330 4335 4340 4345 4350 4355 4360 4365 4370 4375 4380 4385 4390 4395 4400 4405 4410 4415 4420 4425 4430 4435 4440 4445 4450 4455 4460 4465 4470 4475 4480 4485 4490 4495 4500 4505 4510 4515 4520 4525 4530 4535 4540 4545 4550 4555 4560 4565 4570 4575 4580 4585 4590 4595 4600 4605 4610 4615 4620 4625 4630 4635 4640 4645 4650 4655 4660 4665 4670 4675 4680 4685 4690 4695 4700 4705 4710 4715 4720 4725 4730 4735 4740 4745 4750 4755 4760 4765 4770 4775 4780 4785 4790 4795 4800 4805 4810 4815 4820 4825 4830 4835 4840 4845 4850 4855 4860 4865 4870 4875 4880 4885 4890 4895 4900 4905 4910 4915 4920 4925 4930 4935 4940 4945 4950 4955 4960 4965 4970 4975 4980 4985 4990 4995 5000 5005 5010 5015 5020 5025 5030 5035 5040 5045 5050 5055 5060 5065 5070 5075 5080 5085 5090 5095 5100 5105 5110 5115 5120 5125 5130 5135 5140 5145 5150 5155 5160 5165 5170 5175 5180 5185 5190 5195 5200 5205 5210 5215 5220 5225 5230 5235 5240 5245 5250 5255 5260 5265 5270 5275 5280 5285 5290 5295 5300 5305 5310 5315 5320 5325 5330 5335 5340 5345 5350 5355 5360 5365 5370 5375 5380 5385 5390 5395 5400 5405 5410 5415 5420 5425 5430 5435 5440 5445 5450 5455 5460 5465 5470 5475 5480 5485 5490 5495 5500 5505 5510 5515 5520 5525 5530 5535 5540 5545 5550 5555 5560 5565 5570 5575 5580 5585 5590 5595 5600 5605 5610 5615 5620 5625 5630 5635 5640 5645 5650 5655 5660 5665 5670 5675 5680 5685 5690 5695 5700 5705 5710 5715 5720 5725 5730 5735 5740 5745 5750 5755 5760 5765 5770 5775 5780 5785 5790 5795 5800 5805 5810 5815 5820 5825 5830 5835 5840 5845 5850 5855 5860 5865 5870 5875 5880 5885 5890 5895 5900 5905 5910 5915 5920 5925 5930 5935 5940 5945 5950 5955 5960 5965 5970 5975 5980 5985 5990 5995 6000 6005 6010 6015 6020 6025 6030 6035 6040 6045 6050 6055 6060 6065 6070 6075 6080 6085 6090 6095 6100 6105 6110 6115 6120 6125 6130 6135 6140 6145 6150 6155 6160 6165 6170 6175 6180 6185 6190 6195 6200 6205 6210 6215 6220 6225 6230 6235 6240 6245 6250 6255 6260 6265 6270 6275 6280 6285 6290 6295 6300 6305 6310 6315 6320 6325 6330 6335 6340 6345 6350 6355 6360 6365 6370 6375 6380 6385 6390 6395 6400 6405 6410 6415 6420 6425 6430 6435 6440 6445 6450 6455 6460 6465 6470 6475 6480 6485 6490 6495 6500 6505 6510 6515 6520 6525 6530 6535 6540 6545 6550 6555 6560 6565 6570 6575 6580 6585 6590 6595 6600 6605 6610 6615 6620 6625 6630 6635 6640 6645 6650 6655 6660 6665 6670 6675 6680 6685 6690 6695 6700 6705 6710 6715 6720 6725 6730 6735 6740 6745 6750 6755 6760 6765 6770 6775 6780 6785 6790 6795 6800 6805 6810 6815 6820 6825 6830 6835 6840 6845 6850 6855 6860 6865 6870 6875 6880 6885 6890 6895 6900 6905 6910 6915 6920 6925 6930 6935 6940 6945 6950 6955 6960 6965 6970 6975 6980 6985 6990 6995 7000 7005 7010 7015 7020 7025 7030 7035 7040 7045 7050 7055 7060 7065 7070 7075 7080 7085 7090 7095 7100 7105 7110 7115 7120 7125 7130 7135 7140 7145 7150 7155 7160 7165 7170 7175 7180 7185 7190 7195 7200 7205 7210 7215 7220 7225 7230 7235 7240 7245 7250 7255 7260 7265 7270 7275 7280 7285 7290 7295 7300 7305 7310 7315 7320 7325 7330 7335 7340 7345 7350 7355 7360 7365 7370 7375 7380 7385 7390 7395 7400 7405 7410 7415 7420 7425 7430 7435 7440 7445 7450 7455 7460 7465 7470 7475 7480 7485 7490 7495 7500 7505 7510 7515 7520 7525 7530 7535 7540 7545 7550 7555 7560 7565 7570 7575 7580 7585 7590 7595 7600 7605 7610 7615 7620 7625 7630 7635 7640 7645 7650 7655 7660 7665 7670 7675 7680 7685 7690 7695 7700 7705 7710 7715 7720 7725 7730 7735 7740 7745 7750 7755 7760 7765 7770 7775 7780 7785 7790 7795 7800 7805 7810 7815 7820 7825 7830 7835 7840 7845 7850 7855 7860 7865 7870 7875 7880 7885 7890 7895 7900 7905 7910 7915 7920 7925 7930 7935 7940 7945 7950 7955 7960 7965 7970 7975 7980 7985 7990 7995 8000 8005 8010 8015 8020 8025 8030 8035 8040 8045 8050 8055 8060 8065 8070 8075 8080 8085 8090 8095 8100 8105 8110 8115 8120 8125 8130 8135 8140 8145 8150 8155 8160 8165 8170 8175 8180 8185 8190 8195 8200 8205 8210 8215 8220 8225 8230 8235 8240 8245 8250 8255 8260 8265 8270 8275 8280 8285 8290 8295 8300 8305 8310 8315 8320 8325 8330 8335 8340 8345 8350 8355 8360 8365 8370 8375 8380 8385 8390 8395 8400 8405 8410 8415 8420 8425 8430 8435 8440 8445 8450 8455 8460 8465 8470 8475 8480 8485 8490 8495 8500 8505 8510 8515 8520 8525 8530 8535 8540 8545 8550 8555 8560 8565 8570 8575 8580 8585 8590 8595 8600 8605 8610 8615 8620 8625 8630 8635 8640 8645 8650 8655 8660 8665 8670 8675 8680 8685 8690 8695 8700 8705 8710 8715 8720 8725 8730 8735 8740 8745 8750 8755 8760 8765 8770 8775 8780 8785 8790 8795 8800 8805 8810 8815 8820 8825 8830 8835 8840 8845 8850 8855 8860 8865 8870 8875 8880 8885 8890 8895 8900 8905 8910 8915 8920 8925 8930 8935 8940 8945 8950 8955 8960 8965 8970 8975 8980 8985 8990 8995 9000 9005 9010 9015 9020 9025 9030 9035 9040 9045 9050 9055 9060 9065 9070 9075 9080 9085 9090 9095 9100 9105 9110 9115 9120 9125 9130 9135 9140 9145 9150 9155 9160 9165 9170 9175 9180 9185 9190 9195 9200 9205 9210 9215 9220 9225 9230 9235 9240 9245 9250 9255 9260 9265 9270 9275 9280 9285 9290 9295 9300 9305 9310 9315 9320 9325 9330 9335 9340 9345 9350 9355 9360 9365 9370 9375 9380 9385 9390 9395 9400 9405 9410 9415 9420 9425 9430 9435 9440 9445 9450 9455 9460 9465 9470 9475 9480 9485 9490 9495 9500 9505 9510 9515 9520 9525 9530 9535 9540 9545 9550 9555 9560 9565 9570 9575 9580 9585 9590 9595 9600 9605 9610 9615 9620 9625 9630 9635 9640 9645 9650 9655 9660 9665 9670 9675 9680 9685 9690 9695 9700 9705 9710 9715 9720 9725 9730 9735 9740 9745 9750 9755 9760 9765 9770 9775 9780 9785 9790 9795 9800 9805 9810 9815 9820 9825 9830 9835 9840 9845 9850 9855 9860 9865 9870 9875 9880 9885 9890 9895 9900 9905 9910 9915 9920 9925 9930 9935 9940 9945 9950 9955 9960 9965 9970 9975 9980 9985 9990 9995 9999 10000 10005 10010 10015 10020 10025 10030 10035 10040 10045 10050 10055 10060 10065 10070 10075 10080 10085 10090 10095 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 101510 101511 101512 101513 101514 101515 101516 101517 101518 101519 101520 101521 101522 101523 101524 101525 101526 101527 101528 101529 101530 101531 101532 101533 101534 101535 101536 101537 101538 101539 1015310 1015311 1015312 1015313 1015314 1015315 1015316 1015317 1015318 1015319 1015320 1015321 1015322 1015323 1015324 1015325 1015326 1015327 1015328 1015329 1015330 1015331 1015332 1015333 1015334 1015335 1015336 1015337 1015338 1015339 10153310 10153311 10153312 10153313 10153314 10153315 10153316 10153317 10153318 10153319 10153320 10153321 10153322 10153323 10153324 10153325 10153326 10153327

[0137] The method for forming the hole injection/transport layer can be the same as the method for forming the light emitting layer mentioned above.

8. Substrate

[0138] In the present invention, the anode, the light emitting layer, the electron injection and transport layer, the cathode, etc. may be stacked on a substrate. The substrate for use in the present invention is intended to support members such as the anode, the light emitting layer, the electron injection and transport layer, and the cathode. In the case where the anode has a predetermined strength, the anode itself can serve as a support, and the anode may be formed on a substrate that has a predetermined strength.

[0139] The substrate may or may not have a light transmission property, and the substrate is selected appropriately depending on the light extraction surface. In the case of extracting light from the substrate side, the substrate serves as a transparent substrate.

[0140] For example, glass substrates such as soda-lime glass, alkali glass, lead alkali glass, borosilicate glass, aluminosilicate glass, and silica glass, and resin substrates that are able to be formed into films can be used as the substrate.

[0141] The resins for use in the resin substrates preferably have relatively high solvent resistance and heat resistance. Specifically, the resins include fluorine resins, polyethylene, polypropylene, polyvinyl chloride, polyvinyl fluoride, polystyrene, ABS resins, polyamide, polyacetal, polyester, polycarbonate, modified polyphenylene ether, polysulfone, polyarylate, polyetherimide, polyethersulfone, polyamideimide, polyimide, polyphenylene sulfide, liquid crystalline polyester, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polyoxymethylene, polyethersulfone, polyetheretherketone, polyarylate, acrylonitrile-styrene resins, phenolic resins, urea resins, melamine resins, unsaturated polyester resins, epoxy resins, polyurethane, silicone resins, and amorphous polyolefin. In addition, copolymers of these resins can be also used. Furthermore, if necessary, substrates may be also used which have gas barrier properties for blocking gases such as moisture and oxygen.

[0142] The thickness of the substrate is appropriately selected depending on the constituent material of the substrate and the use application of the organic EL element. Specifically, the substrate has a thickness of about 0.005 mm to 5 mm.

9. Other Configuration

[0143] The organic EL element according to the present invention may have any other constituent members, besides the constituent members described above.

[0144] For example, in the case where the anode is formed in a pattern on the substrate, an insulating layer may be formed so as to cover ends of the anode pattern. In addition, the insulating layer may be formed so as to define pixels. As the insulating layer, insulating layers can be used which are common in organic EL elements.

[0145] In addition, in the case of using the organic EL element according to the present invention for a display device, TFT elements may be formed on the substrate. As the TFT elements, TFT elements can be used which are common in organic EL elements.

[0146] When the organic EL element according to the present invention is used to prepare a full-color or multicolor display device, partition walls may be formed on the substrate. When partition walls are formed, it becomes possible to form the cathode in a pattern without using any metal mask or the like.

[0147] As the material for the partition walls, common materials for partition walls in organic EL elements can be used, examples of which can include, for example, light curing resins such as photosensitive polyimide resins and acrylic resins, or thermosetting resins, and inorganic materials.

[0148] In the formation of the light emitting layer in a pattern, the partition walls may be subjected in advance to a surface treatment for changing surface energy (wettability).

10. Application

[0149] The organic EL element according to the present invention may be a bottom-emission type for extracting light from the anode side, may be a top-emission type for extracting light from the cathode side, or may be a both-side emission type for extracting light from both the anode and cathode sides.

[0150] The organic EL element according to the present invention can be preferably used for display devices and lighting devices. The display devices may work by passive-matrix driving or active-matrix driving.

55 B. Method for Manufacturing Organic EL Element

[0151] Next, a method for manufacturing the organic EL element according to the present invention will be described.

[0152] The method for manufacturing the organic EL element according to the present invention is a method for

manufacturing an organic EL element comprising: an anode; a light emitting layer formed on the anode; an electron injection and transport layer that is formed on the light emitting layer, and contains an organic boron compound; and a cathode formed on the electron injection and transport layer, and the method comprising an electron injection and transport layer forming step of applying a coating liquid for an electron injection and transport layer, which contains an organic boron compound and a solvent, to form an electron injection and transport layer.

[0153] FIGS. 2A to 2D are process drawings illustrating an example of a method for manufacturing an organic EL element according to the present invention. First, as shown in FIG. 2A, a hole injection/transport layer 4 is formed on a substrate 2 with an anode 3 formed. Then, as shown in FIG. 2B, a light emitting layer 5 is formed on the hole injection/transport layer 4. Subsequently, as shown in FIG. 2C, a coating liquid for an electron injection and transport layer, which contains an organic boron compound and a solvent, is applied onto the light emitting layer 5 to form an electron injection and transport layer 6 (electron injection and transport layer forming step). Next, as shown in FIG. 2D, a cathode 7 is formed on the electron injection and transport layer 6. In this way, an organic EL element 1 can be manufactured.

[0154] When the organic boron compound is film-formed by a vapor deposition method herein, the deposited film is amorphous, because, during vapor deposition, the organic boron compound is decomposed, or the decomposed organic boron compound is mixed in the film. On the other hand, when the organic boron compound is film-formed by an application method, the deposited film is crystalline, because the organic boron compound can be prevented from being decomposed, and the decomposed organic boron compound can be prevented from being mixed.

[0155] According to the present invention, the electron injection and transport layer containing the organic boron compound is formed by an application method, and a crystalline film can be thus obtained, without having an organic boron compound decomposed or having impurities such as a decomposed organic boron compound mixed in during film forming as in a case of using a vapor deposition method. The crystalline film is presumed to have an electron transporting property improved, because the film has highly ordered atoms or molecules.

[0156] In addition, when the organic boron compound is film-formed by a vapor deposition method, there is a possibility that migration of decomposed products into the light emitting layer will be caused in driving the organic EL element to affect the light emitting characteristics of the element. On the other hand, when the organic boron compound is deposited by an application method, migration is less likely to be caused in driving the organic EL element, and it becomes possible to stably drive the element because of no decomposed organic boron compound.

[0157] Moreover, there is a possibility that crystallization will be progressed by heat or electrical energy in the amorphous film to degrade the element characteristics, whereas the crystalline film is presumed to be advantageous for continuously driving the element because the change in state is small in the film.

[0158] Therefore, in the present invention, it is possible to achieve a long service life.

[0159] In addition, a high light emitting efficiency can be achieved, because the organic boron compound is used in the electron injection and transport layer. Therefore, in the present invention, it is possible to manufacture a long-life, high-efficiency, high-performance organic EL element.

[0160] The respective steps in the method for manufacturing the organic EL element according to the present invention will be described below.

1. Electron injection and transport layer Forming Step

[0161] The electron injection and transport layer forming step in the present invention is a step of applying a coating liquid for an electron injection and transport layer, which contains an organic boron compound and a solvent, to form an electron injection and transport layer.

[0162] It is to be noted that the coating liquid for an electron injection and transport layer will be described in detail later in the section of "C. Coating Liquid for Electron injection and transport layer", and the description will be thus omitted here.

[0163] The electron injection and transport layer can be formed by applying a coating liquid for an electron injection and transport layer, in which an organic boron compound is dissolved or dispersed in a solvent.

[0164] The method for applying the coating liquid for an electron injection and transport layer is not particularly limited as long as the method uses a coating liquid, and examples of the method include a dip coating method, a roll coating method, a blade coating method, a spin coating method, a micro gravure coating method, a gravure coating method, a barcode method, a wire barcode method, a spray coating method, a cast printing method, an ink-jet printing method, a flexographic printing method, a gravure printing method, an offset printing method, and a screen printing method.

[0165] Above all, in the case where the electron injection and transport layer is composed of only the organic boron compound, it is difficult to make the electron injection and transport layer a thick film, and it is thus preferable to use a method that is able to uniformly form the electron injection and transport layer as a thin film. Such application methods include, specifically, a flexographic printing method, a gravure printing method, an ink-jet printing method, a cast printing method, and a spray coating method.

[0166] After applying the coating liquid for the formation of an electron injection and transport layer, drying is generally

carried out for removing the solvent remaining in the coating film. Methods for the drying include, for example, natural drying, drying by heating, and reduced-pressure drying. Above all, drying by heating is preferably carried out. This is because heating the electron injection and transport layer makes it possible to further increase the efficiency of the organic EL element.

5 [0167] While the heating temperature for the drying by heating is not particularly limited as long as the organic boron compound is not decomposed at the temperature, the heating temperature preferably falls within the range of, specifically, 30°C to 300°C, and above all, more preferably within the range of 50°C to 250°C. There is possibility that excessively high heating temperatures will decompose the organic boron compound to degrade the element characteristics, whereas the excessively low heating temperature may fail to adequately achieve the effect of the increase in efficiency in some cases.

10 [0168] The drying time for the drying by heating is not particularly limited unless the drying by heating deteriorates the organic boron compound or organic compound contained in the coating liquid for an electron injection and transport layer, and adjusted appropriately depending on the heating temperature. Specifically, the drying time can be set in the range of 1 second to 60 minutes.

15 [0169] The degree of vacuum for reduced-pressure drying is not particularly limited as long as the solvent in the coating liquid for an electron injection and transport layer can be removed, and is adjusted appropriately.

[0170] In the reduced-pressure drying, heating may be carried out for purposes such as a reduction in the drying time. The heating temperature therefor may be any temperature not higher than the heating temperature for the drying by heating.

20 [0171] In addition, the atmosphere for the drying may be the air atmosphere, or may be an inert gas atmosphere. The air atmosphere is advantageous for the process, because no equipment cost is required. On the other hand, the element characteristics can be further improved in the case of the inert gas atmosphere.

[0172] It is to be noted that the electron injection and transport layer has been described in detail in the section of Electron injection and transport layer in the "A. Organic EL Element", and the description will be thus omitted here.

25

2. Other Steps

30 [0173] The method for manufacturing an organic EL element according to the present invention may include, in addition to the electron injection and transport layer forming step, other steps such as a hole injection/transport layer forming step, an electron transporting layer forming step, an electron injecting layer forming step, and a cathode forming step if necessary. It is to be noted that the methods for forming the respective layers have been described in detail in the section of "A. Organic EL Element", and the descriptions will be thus omitted here.

35 [0174] Above all, all of the layers from the hole injection/transport layer to the cathode are preferably formed by an application method. This is because the application method requires no expensive equipment as in vapor deposition methods, and can thus reduce the manufacturing cost.

C. Coating Liquid for Electron injection and transport layer

40 [0175] Next, the coating liquid for an electron injection and transport layer according to the present invention will be described.

[0176] The coating liquid for an electron injection and transport layer according to the present invention comprises an organic boron compound and a solvent.

45 [0177] The formation of an electron injection and transport layer by an application method with the use of the coating liquid for an electron injection and transport layer according to the present invention makes it possible to obtain a long-life and high-efficiency organic EL element.

[0178] The coating liquid for an electron injection and transport layer according to the present invention may contain an organic compound in addition to the organic boron compound and the solvent.

50 [0179] It is to be noted that the organic boron compound and the organic compound have been described in detail in the section of Electron injection and transport layer in the "A. Organic EL Element", and the description will be thus omitted here. The other constituents in the coating liquid for an electron injection and transport layer according to the present invention will be described below.

1. Solvent

55 [0180] The solvent for use in the present invention is not particularly limited as long as the solvent can dissolve or disperse the organic boron compound and the organic compound, and is selected appropriately depending on the types of the organic boron compound and organic compound. Examples of the solvent include, polar solvents, e.g., alcohols such as glycerin, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, ethylene glycol, propylene glycol, methyl diglycol,

isopropyl glycol, butyl glycol, isobutyl glycol, methylpropylene diglycol, propylpropylene glycol, and butylpropylene glycol; ethers such as tetrahydrofuran, diethylene glycol monobutyl ether acetate, diethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, diethylene glycol dimethyl ether, diethylene glycol ethyl methyl ether, diethylene glycol diethyl ether, ethylene glycol monoethyl ether, and ethylene glycol monobutyl ether; 5 ketones such as acetone and diacetone alcohol; and amides such as dimethylformamide. One of these solvents may be used by itself, or two or more thereof may be mixed.

2. Coating Liquid for Electron injection and transport layer

10 [0181] The solid content concentration of the coating liquid for an electron injection and transport layer according to the present invention is not particularly limited as long as the coating liquid for an electron injection and transport layer can be applied onto the light emitting layer or the electron transporting layer, so that it is possible to form a uniform film, and specifically, can be set in the range of 0.01 mass% to 99 mass%. This is because the excessively increased solid content concentration makes it difficult to form a uniform film, whereas the excessively decreased solid content concentration requires longer time for drying to decrease the production efficiency.

15 [0182] The coating liquid for an electron injection and transport layer according to the present invention can be prepared by dissolving or dispersing the organic boron compound and the organic compound in the solvent.

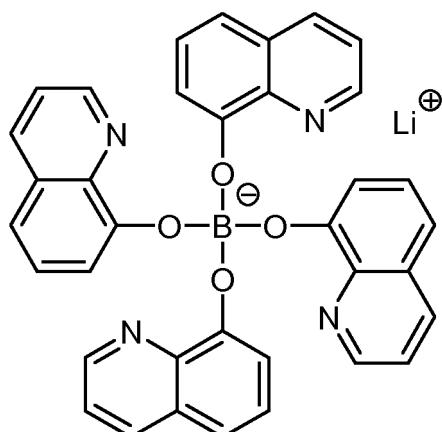
20 [0183] The present invention is not limited to the embodiment described above. The embodiment has been described by way of example, and the technical scope of the present invention encompasses any of embodiments that have substantially the same technical idea of as that of the present invention as specified in the claims, and produce similar effects.

[Examples]

25 [0184] The present invention will be specifically described with reference to examples and comparative examples.

[Example 1] (not forming part of the invention)

30 [0185] As an anode, an ITO of 150 nm thick was formed in a striped pattern on a glass substrate of 25 mm × 25 mm × 0.7 mm (manufactured by Sanyo Vacuum Industries Co., Ltd). This ITO substrate was subjected to ultrasonic cleaning in the order of a neutral detergent and ultrapure water, and to UV ozone cleaning for 10 minutes.

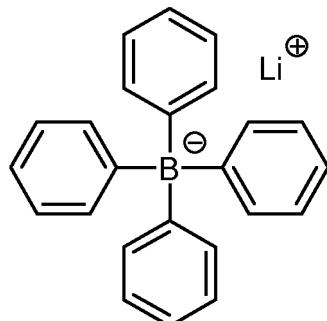

35 [0186] As a hole injecting layer, a PEDOT-PSS thin film (thickness: 30 nm) was formed on the ITO substrate. The PEDOT-PSS thin film was formed by applying a PEDOT-PSS solution (manufactured by Bayer AG, Baytron P AI 4083™). After the application of the solution, drying at 200°C for 30 minutes was carried out with the use of a hot plate in order to evaporate the solvent.

40 [0187] As a hole injection/transport layer, a conjugated polymer material, poly[(9,9-diethylfluorenyl-2,7-diyl)-co-(4,4'-(N-(4-sec-butylphenyl)diphenylamine)] (TFB) thin film (thickness: 10 nm) was formed on the hole injecting layer. The TFB thin film was formed in such a way that a solution of TFB dissolved in xylene at a concentration of 0.4 weight% was applied by a spin coating method. After the application of the solution, drying at 200°C for 30 minutes was carried out with the use of a hot plate in order to evaporate the solvent.

45 [0188] Next, as a light emitting layer, a mixed thin film (thickness: 80 nm) containing Tris[2-(p-tolyl)pyridine]iridium(III) (Ir(mppy)3) as a light emitting dopant and containing Poly(N-vinylcarbazole) (PVK) and 1,3-bis[(4-tert-butylphenyl)-1,3,4-oxidiazolyl]phenylene (OXD-7) as a host was formed on the hole injection/transport layer. The mixed thin film was formed in such a way that a solution of Ir(mppy)3, PVK, and OXD-7 dissolved in toluene at a concentration of 1.8 weight% was applied by a spin coating method. The solid content in the solution was adjusted to PVK : OXD-7 : Ir(mppy)3 = 70 : 20 : 10 in terms of ratio by weight. After the application of the solution, drying at 110°C for 30 minutes was carried out with the use of a hot plate in order to evaporate the solvent.

50 [0189] As an electron injection and transport layer, a LiBq thin film (thickness: 5 nm or less) was formed on the light emitting layer. The LiBq thin film was formed in such a way that a solution of LiBq represented by the following formula dissolved in 1-butanol at a concentration of 0.2 weight% was applied by a spin coating method. After the application of the solution, drying at 110°C for 15 minutes was carried out with the use of a hot plate in order to evaporate the solvent.

[Chemical Formula 4]


[0190] As a cathode, Al (thickness: 100 nm) was film-formed on the electron injection and transport layer. The Al was formed by a resistance heating vapor deposition method in vacuum (1×10^{-4} Pa).

20 [0191] Finally, after the formation of the cathode, sealing was carried out with the use of non-alkali glass and an UV curing epoxy resin in a glove box to prepare an organic EL element.

[Example 2]

25 [0192] Except that LiBPh represented by the following formula was used instead of LiBq to form an electron injection and transport layer, an organic EL element was prepared in the same way as in Example 1.

[Chemical Formula 5]

[Reference Example 1]

[0193] Except that Ca was used instead of LiBq to form an electron injection and transport layer, an organic EL element was prepared in the same way as in Example 1.

[Evaluation]

45 [0194] A voltage was applied between the anodes and cathodes of the organic EL elements according to Examples 1 and 2 and Reference Example to measure current efficiencies at 10 mA/cm^2 . Table 4 shows the relative ratios to the current efficiency for Reference Example 1 as 100.

[Table 4]

	Voltage (V)	Current Efficiency (Relative Ratio)
Reference Example 1	7.0	100
Example 1	8.3	104
Example 2	8.4	100

[0195] From Table 4, the organic EL elements with the use of the organic boron compound according to Examples 1 and 2 exhibit favorable characteristics as in the organic EL element with the use of Ca according to Reference Example.

5 [Example 3] (not forming part of the invention)

[0196] Except that the solid content in the solution was adjusted to PVK : OXD-7 : Ir(mppy) 3 = 70 : 10 : 20 in terms of ratio by weight in the formation of the light emitting layer, an organic EL element was prepared in the same way as in Example 1.

10 [Comparative Example 1]

[0197] Except that an electron injection and transport layer was formed by a vapor deposition method under the following conditions, an organic EL element was prepared in the same way as in Example 3.

15 [0198] The electron injection and transport layer of 2 nm thick was formed by a resistance heating vapor deposition method (vapor deposition temperature: 300°C) with a pressure: 1×10^{-4} Pa.

[Reference Example 2]

20 [0199] In order to check the states of electron injection and transport layers, electron injecting layers for measurement were formed respectively by an application method and a vapor deposition method.

[0200] In the application method, a solution of LiBq dissolved in 1-butanol at a concentration of 0.4 weight% was prepared, delivered by drops onto a glass substrate, and then dried at 110°C for 15 minutes with the use of a hot plate in order to evaporate the solvent to form a film of 1000 nm in thickness.

25 [0201] In the vapor deposition method, a film of 1000 nm in thickness was formed by a resistance heating vapor deposition method (vapor deposition temperature: 300°C) with a pressure: 1×10^{-4} Pa.

[0202] For each electron injecting layer for measurement, measurements were carried out with the use of an X-ray diffractometer (Smartlab™ from Rigaku Corporation) and an infrared spectrometer (FT-IR610™ from JASCO Corporation). FIGS. 3 and 4 show X-ray diffraction patterns for each electron injecting layer for measurement, and FIGS. 5A to 30 5C and 6A to 6C show infrared absorption spectra for each electron injecting layer for measurement. It is to be noted that, FIGS. 3 to 6 show measurement results for the LiBq powder used in the electron injecting layer for measurement as a reference.

35 [0203] It has been confirmed from the X-ray diffraction patterns shown in FIGS. 3 and 4 that the electron injecting layer formed by the application method has a crystalline structure, whereas the electron injecting layer formed by the vapor deposition method is amorphous. In addition, in the infrared absorption spectra shown in FIGS. 5 and 6, the spectrum undergoes no substantial change in the case of the application method, while in the case of the vapor deposition method, the absorption band attributed to the -OH bond is increased in intensity, whereas the absorption bands attributed to the B-O bond and the -C-O bond are decreased in intensity. From the foregoing, it is presumed that the LiBq is not decomposed during the formation of the electron injecting layer in the case of the application method, whereas the film is formed while decomposing the LiBq in the case of the vapor deposition method.

40 [Evaluation]

45 [0204] A voltage was applied between the anodes and cathodes of the organic EL elements according to Example 3 and Comparative Example 1 to measure current efficiencies at 10 mA/cm². In addition, a current was set for brightness of 1000 cd/m² to measure the time (brightness half lifetime) until the decrease in brightness down to 500 cd/m² in the case of continuously applying the constant current. Table 5 shows relative ratios to each of the current efficiency and brightness half lifetime for Comparative Example 1 as 100.

[Table 5]

50

	Voltage (V)	Current Efficiency (Relative Ratio)	Brightness Half Lifetime (Relative Ratio)
Comparative Example 1	7.6	100	100
Example 3	7.5	98	105

55 [0205] From Table 5, the organic EL element according to Example 3 with the electron injecting layer formed by the application method has a longer lifetime, as compared with the organic EL element according to Comparative Example 1 with the electron injecting layer formed by the vapor deposition method. This is presumed to be due to the difference

between the application method and the vapor deposition method in the crystalline/amorphous state of the electron injecting layer.

5 [Example 4] (not forming part of the invention)

[0206] Except that an electron injection and transport layer was formed as described below, an organic EL element was prepared in the same way as in Example 3.

10 **[0207]** As the electron injection and transport layer, a mixed thin film (thickness: 15 nm) containing LiBq and tris[3-(3-pyridyl)mesityl]borane (3TPYMB) was formed on the light emitting layer. The mixed thin film was formed in such a way that a solution of LiBq and 3TPYMB dissolved in 1-butanol at a concentration of 0.4 weight% was applied by a spin coating method. The solid content in the solution was adjusted to LiBq : 3TPYMB = 1 : 2 in terms of ratio by weight. After the application of the solution, drying at 110°C for 15 minutes was carried out with the use of a hot plate in order to evaporate the solvent.

15 [Example 5]

[0208] Except that LiBPh was used instead of LiBq to form an electron injection and transport layer, an organic EL element was prepared in the same way as in Example 4.

20 [Comparative Example 2]

[0209] Except that an electron injection and transport layer was formed by a vapor deposition method under the following conditions, an organic EL element was prepared in the same way as in Example 3.

25 **[0210]** The electron injection and transport layer was formed by co-deposition with the use of a resistance heating method in vacuum (pressure: 1×10^{-4} Pa), for LiBq : 3TPYMB = 1 : 1 in terms of ratio by volume and a film thickness of 20 nm in total.

[Evaluation]

30 **[0211]** A voltage was applied between the anodes and cathodes of the organic EL elements according to Examples 4 and 5 and Comparative Example 2 to measure current efficiencies at 10 mA/cm². In addition, a current was set for brightness of 1000 cd/m² to measure the time (brightness half lifetime) until the decrease in brightness down to 500 cd/m² in the case of continuously applying the constant current. Table 6 shows relative ratios to each of the current efficiency and brightness half lifetime for Comparative Example 2 as 100.

35 [Table 6]

	Voltage (V)	Current Efficiency (Relative Ratio)	Brightness Half Lifetime (Relative Ratio)
Comparative Example 2	8.4	100	100
Example 4	8.3	102	109
Example 5	8.6	100	106

40 **[0212]** From Table 6, the organic EL elements according to Examples 4 and 5 with the electron injection and transport layer formed by the application method have longer lifetimes, as compared with the organic EL element according to Comparative Example 2 with the electron injection and transport layer formed by the vapor deposition method. This is presumed to be due to the difference between the application method and the vapor deposition method in the crystalline/amorphous state of the electron injection and transport layer.

45 [Example 6] (not forming part of the invention)

[0213] Except that a cathode was formed as described below, an organic EL element was prepared in the same way as in Example 1.

50 **[0214]** A metal (alloy) of a composition Bi-Pb-Sn (50% : 25% : 25%) was melted to form a cathode of 30 µm in thickness on the electron injection and transport layer. The metal of the composition was film-formed by heating the metal on a hot plate kept at 103°C, which was 10°C higher than the melting point of the metal alloy, and melting the metal on the electron injection and transport layer.

[Comparative Example 3]

[0215] Except that a cathode was formed as in Example 6, an organic EL element was prepared in the same way as in Comparative Example 1.

5

[Evaluation]

10

[0216] For the organic EL elements according to Example 6 and Comparative Example 3, the current efficiency and the brightness half lifetime were measured in the same way as in the evaluation described above. Table 7 shows relative ratios to each of the current efficiency and brightness half lifetime for Comparative Example 3 as 100. The organic EL element according to Example 6 with the electron injection and transport layer formed by the application method has a longer lifetime, as compared with the organic EL element according to Comparative Example 3 with the electron injection and transport layer formed by the vapor deposition method.

15

[Table 7]

	Voltage (V)	Current Efficiency (Relative Ratio)	Brightness Half Lifetime (Relative Ratio)
Comparative Example 3	9.4	100	100
Example 6	9.4	104	110

20

[Example 7] (not forming part of the invention)

25

[0217] Except that a cathode was formed as in Example 6, an organic EL element was prepared in the same way as in Example 4.

20

[Comparative Example 4]

30

[0218] Except that a cathode was formed as in Example 6, an organic EL element was prepared in the same way as in Comparative Example 2.

35

[Evaluation]

30

[0219] For the organic EL elements according to Example 7 and Comparative Example 4, the current efficiency and the brightness half lifetime were measured in the same way as in the evaluation described above. Table 8 shows relative ratios to each of the current efficiency and brightness half lifetime for Comparative Example 4 as 100. The organic EL element according to Example 7 with the electron injection and transport layer formed by the application method has a longer lifetime, as compared with the organic EL element according to Comparative Example 4 with the electron injection and transport layer formed by the vapor deposition method.

40

[Table 8]

	Voltage (V)	Current Efficiency (Relative Ratio)	Brightness Half Lifetime (Relative Ratio)
Comparative Example 4	9.8	100	100
Example 7	9.6	110	107

45

[Example 8] (not forming part of the invention)

50

[0220] Except that a cathode was formed as described below, an organic EL element was prepared in the same way as in Example 1.

55

[0221] A metal (alloy) of a composition Ga-In-Sn (62.0% : 25.0% : 13.0%) was discharged from a dispenser to form a cathode of 30 μm in thickness on the electron injection and transport layer.

55

[Comparative Example 5]

[0222] Except that a cathode was formed as in Example 8, an organic EL element was prepared in the same way as in Comparative Example 1.

[Evaluation]

[0223] For the organic EL elements according to Example 8 and Comparative Example 5, the current efficiency and the brightness half lifetime were measured in the same way as in the evaluation described above. Table 9 shows relative ratios to each of the current efficiency and brightness half lifetime for Comparative Example 5 as 100. The organic EL element according to Example 8 with the electron injection and transport layer formed by the application method has a longer lifetime, as compared with the organic EL element according to Comparative Example 5 with the electron injection and transport layer formed by the vapor deposition method.

[Table 9]

	Voltage (V)	Current Efficiency (Relative Ratio)	Brightness Half Lifetime (Relative Ratio)
Comparative Example 5	9.6	100	100
Example 8	9.8	100	108

[Example 9] (not forming part of the invention)

[0224] Except that a cathode was formed as in Example 8, an organic EL element was prepared in the same way as in Example 4.

[Comparative Example 6]

[0225] Except that a cathode was formed as in Example 8, an organic EL element was prepared in the same way as in Comparative Example 2.

[Evaluation]

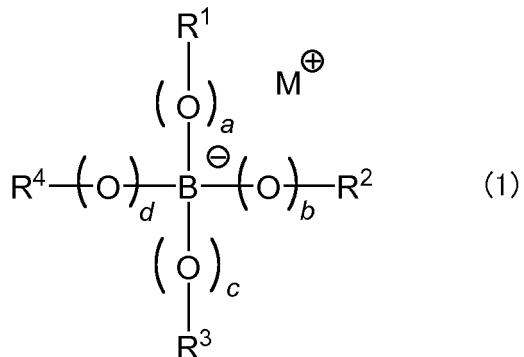
[0226] For the organic EL elements according to Example 9 and Comparative Example 6, the current efficiency and the brightness half lifetime were measured in the same way as in the evaluation described above. Table 10 shows relative ratios to each of the current efficiency and brightness half lifetime for Comparative Example 6 as 100. The organic EL element according to Example 9 with the electron injection and transport layer formed by the application method has a longer lifetime, as compared with the organic EL element according to Comparative Example 6 with the electron injection and transport layer formed by the vapor deposition method.

[Table 10]

	Voltage (V)	Current Efficiency (Relative Ratio)	Brightness Half Life time (Relative Ratio)
Comparative Example 6	10.1	100	100
Example 9	10.0	103	110

Reference Signs List

[0227]


- 1: organic EL element
- 2: substrate
- 3: anode
- 4: hole injection/transport layer
- 5: light emitting layer
- 6: electron injection and transport layer
- 7: cathode

Claims

1. An organic electroluminescent element (1) comprising:

an anode (3);
 a light emitting layer (5) formed on the anode (3);
 an electron injection and transport layer (6) formed on the light emitting layer (5), containing an organic boron compound, and
 5 a cathode (7) formed on the electron injection and transport layer (6),
 wherein the organic boron compound is represented by the following chemical formula (1)

[Chemical Formula 1]

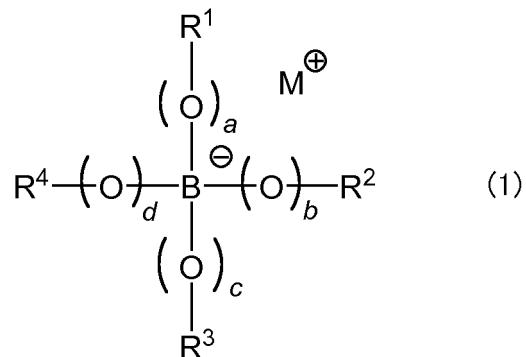
wherein M represents an alkali metal element, R¹, R², R³, and R⁴ are aromatic ring groups, which may be identical or different, and "a", "b", "c", and "d" are each 0,
 characterised in that the electron injection and transport layer has a crystalline structure and is non-amorphous.

25

2. The organic electroluminescent element (1) according to claim 1, characterised in that the electron injection and transport layer (6) further contains an electron transporting organic compound.
- 30 3. The organic electroluminescent element (1) according to claim 2, characterised in that the electron transporting organic compound is a polymer compound.
- 35 4. The organic electroluminescent element (1) according to any one of claims 1 to 3, characterised in that the organic boron compound is selected from the group consisting of lithium tetraphenylborate, sodium tetraphenylborate, potassium tetraphenylborate, rubidium tetraphenylborate, cesium tetraphenylborate, and compounds of tetraphenylborates with substituents added to the phenyl groups of the tetraphenylborates; or is selected from the group consisting of lithium tetrakis-2-thienylborate, sodium tetrakis-2-thienylborate, potassium tetrakis-2-thienylborate, rubidium tetrakis-2-thienylborate, cesium tetrakis-2-thienylborate, lithium tetrakis-1-imidazolylborate, sodium tetrakis-1-imidazolylborate, potassium tetrakis-1-imidazolylborate, rubidium tetrakis-1-imidazolylborate, and cesium tetrakis-1-imidazolylborate.
- 40 5. The organic electroluminescent element (1) according to claim 4, characterised in that the organic boron compound is selected from the group consisting of lithium tetraphenylborate, sodium tetraphenylborate, potassium tetraphenylborate, rubidium tetraphenylborate, cesium tetraphenylborate, lithium tetrakis-4-fluorophenylborate, sodium tetrakis-4-fluorophenylborate, potassium tetrakis-4-fluorophenylborate, rubidium tetrakis-4-fluorophenylborate, cesium tetrakis-4-fluorophenylborate, lithium tetrakis-4-chlorophenylborate, sodium tetrakis-4-chlorophenylborate, potassium tetrakis-4-chlorophenylborate, rubidium tetrakis-4-chlorophenylborate, cesium tetrakis-4-chlorophenylborate, lithium tetrakis-p-tolylborate, sodium tetrakis-p-tolylborate, potassium tetrakis-p-tolylborate, rubidium tetrakis-p-tolylborate, cesium tetrakis-p-tolylborate, lithium tetrakis-4-fluoromethyl phenylborate, sodium tetrakis-4-fluoromethyl phenylborate, potassium tetrakis-4-fluoromethyl phenylborate, rubidium tetrakis-4-fluoromethyl phenylborate, cesium tetrakis-4-fluoromethyl phenylborate, lithium tetrakis-2-thienylborate, sodium tetrakis-2-thienylborate, potassium tetrakis-2-thienylborate, rubidium tetrakis-2-thienylborate, cesium tetrakis-2-thienylborate, lithium tetrakis-1-imidazolylborate, sodium tetrakis-1-imidazolylborate, potassium tetrakis-1-imidazolylborate, rubidium tetrakis-1-imidazolylborate, and cesium tetrakis-1-imidazolylborate.
- 55 6. The organic electroluminescent element (1) according to claim 5, characterised in that the organic boron compound is lithium tetraphenylborate
7. A method for manufacturing an organic electroluminescent element (1) comprising: an anode (3); a light emitting

layer (5) formed on the anode (3); an electron injection and transport layer (6) formed on the light emitting layer (5) and containing an organic boron compound; and a cathode (7) formed on the electron injection and transport layer (6), the method comprising

5 an electron injection and transport layer (6) forming step of applying a coating liquid for an electron injection and transport layer (6), which contains the organic boron compound and a solvent, to form an electron injection and transport layer (6) having a crystalline structure,


characterized in that the organic boron compound is represented by the following general formula (1)

10

[Chemical Formula 1]

15

20

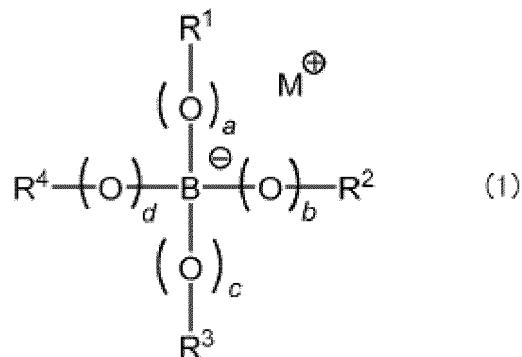
25 wherein M represents an alkali metal element, R¹, R², R³, and R⁴ are aromatic ring groups, which may be identical or different, and "a", "b", "c", and "d" are each 0.

30

8. The method for manufacturing an organic electroluminescent element (1) according to claim 7, **characterized in that** drying by heating is carried out after applying the coating liquid for an electron injection and transport layer (6), in the electron injection and transport layer forming step.
9. The method for manufacturing an organic electroluminescent element (1) according to claim 7 or 8, **characterized in that** the light emitting layer (5) and the cathode (7) are formed by an application method.

35

Patentansprüche


40

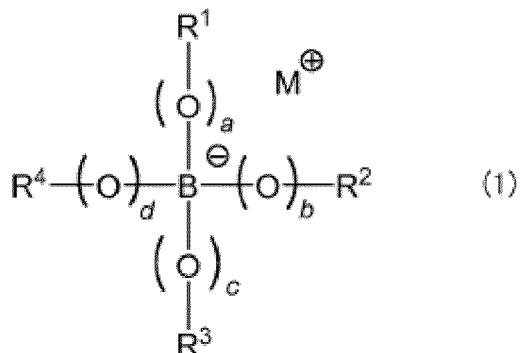
1. Organisches elektrolumineszierendes Element (1), das umfasst:
- 45 eine Anode (3);
eine lichtemittierende Schicht (5), die auf der Anode (3) gebildet ist;
eine Elektroneninjektions- und Elektronentransportschicht (6), die auf der lichtemittierenden Schicht (5) gebildet ist, die eine organische Borverbindung enthält, und
eine Kathode (7), die auf der Elektroneninjektions- und Elektronentransportschicht (6) gebildet ist, wobei die organische Borverbindung durch die folgende chemische Formel (1) dargestellt ist:

50

55

[Chemische Formel 1]

wobei M ein Alkalimetallelement darstellt, R¹, R², R³ und R⁴ aromatische Ringgruppen sind, die identisch oder verschieden sein können, und "a", "b", "c" und "d" jeweils 0 sind,
dadurch gekennzeichnet, dass die Elektroneninjektions- und Elektronentransportschicht eine kristalline Struktur aufweist und nicht amorph ist.


2. Organisches elektrolumineszierendes Element (1) nach Anspruch 1, **dadurch gekennzeichnet, dass** die Elektroneninjektions- und Elektronentransportschicht (6) ferner eine organische Elektronentransportverbindung enthält.
3. Organisches elektrolumineszierendes Element (1) nach Anspruch 2, **dadurch gekennzeichnet, dass** die organische Elektronentransportverbindung eine Polymerverbindung ist.
4. Organisches elektrolumineszierendes Element (1) nach einem der Ansprüche 1 bis 3, **dadurch gekennzeichnet, dass** die organische Borverbindung aus der Gruppe ausgewählt ist, bestehend aus Lithiumtetraphenylborat, Natriumtetraphenylborat, Kaliumtetraphenylborat, Rubidiumtetraphenylborat, Cäsiumtetraphenylborat und Verbindungen von Tetraphenylboraten mit Substituenten, die zu den Phenylgruppen der Tetraphenylborate addiert sind; oder aus der Gruppe ausgewählt ist, bestehend aus Lithiumtetrakis-2-thienylborat, Natriumtetrakis-2-thienylborat, Kaliumtetrakis-2-thienylborat, Rubidiumtetrakis-2-thienylborat, Cäsiumtetrakis-2-thienylborat, Lithiumtetrakis-1-imidazolylborat, Natriumtetrakis-1-imidazolylborat, Kaliumtetrakis-1-imidazolylborat, Rubidiumtetrakis-1-imidazolylborat und Cäsiumtetrakis-1-imidazolylborat.
5. Organisches elektrolumineszierendes Element (1) nach Anspruch 4, **dadurch gekennzeichnet, dass** die organische Borverbindung aus der Gruppe ausgewählt ist, bestehend aus Lithiumtetraphenylborat, Natriumtetraphenylborat, Kaliumtetraphenylborat, Rubidiumtetraphenylborat, Cäsiumtetraphenylborat, Lithiumtetrakis-4-fluorphenylborat, Natriumtetrakis-4-fluorphenylborat, Kaliumtetrakis-4-fluorphenylborat, Rubidiumtetrakis-4-fluorphenylborat, Cäsiumtetrakis-4-fluorphenylborat, Lithiumtetrakis-4-chlorphenylborat, Natriumtetrakis-4-chlorphenylborat, Kaliumtetrakis-4-chlorphenylborat, Rubidiumtetrakis-4-chlorphenylborat, Cäsiumtetrakis-4-chlorphenylborat, Lithiumtetrakis-p-tolylborat, Natriumtetrakis-p-tolylborat, Kaliumtetrakis-p-tolylborat, Rubidiumtetrakis-p-tolylborat, Cäsiumtetrakis-p-tolylborat, Lithiumtetrakis-4-fluormethylphenylborat, Natriumtetrakis-4-fluormethylphenylborat, Kaliumtetrakis-4-fluormethylphenylborat, Rubidiumtetrakis-4-fluormethylphenylborat, Cäsiumtetrakis-4-fluormethylphenylborat, Lithiumtetrakis-2-thienylborat, Natriumtetrakis-2-thienylborat, Kaliumtetrakis-2-thienylborat, Rubidiumtetrakis-2-thienylborat, Cäsiumtetrakis-2-thienylborat, Lithiumtetrakis-1-imidazolylborat, Natriumtetrakis-1-imidazolylborat, Kaliumtetrakis-1-imidazolylborat, Rubidiumtetrakis-1-imidazolylborat und Cäsiumtetrakis-1-imidazolylborat.
6. Organisches elektrolumineszierendes Element (1) nach Anspruch 5, **dadurch gekennzeichnet, dass** die organische Borverbindung Lithiumtetraphenylborat ist.
7. Verfahren zum Herstellen eines organischen elektrolumineszierenden Elements (1), das umfasst: eine Anode (3); eine lichtemittierende Schicht (5), die auf der Anode (3) gebildet ist; eine Elektroneninjektions- und Elektronentransportschicht (6), die auf der lichtemittierenden Schicht (5) gebildet ist und eine organische Borverbindung enthält; und eine Kathode (7), die auf der Elektroneninjektions- und Elektronentransportschicht (6) gebildet ist, wobei das Verfahren umfasst:

einen Schritt zum Bilden einer Elektroneninjektions- und Elektronentransportschicht (6) des Auftragens einer

Beschichtungsflüssigkeit für eine Elektroneninjektions- und Elektronentransportschicht (6), die die organische Borverbindung und ein Lösungsmittel enthält, um eine Elektroneninjektions- und Elektronentransportschicht (6) mit einer kristallinen Struktur zu bilden,

5 **dadurch gekennzeichnet, dass** die organische Borverbindung durch die folgende allgemeine Formel (1) dargestellt ist:

[Chemische Formel 1]

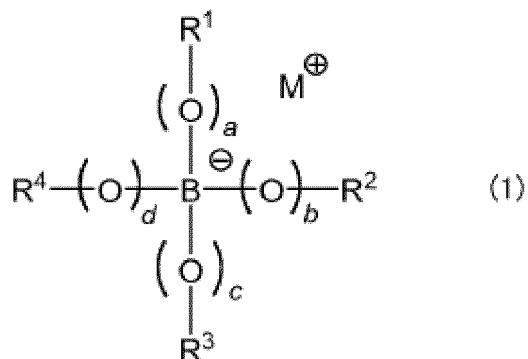
wobei M ein Alkalimetallelement darstellt, R¹, R², R³ und R⁴ aromatische Ringgruppen sind, die identisch oder verschieden sein können, und "a", "b", "c" und "d" jeweils 0 sind.

25 8. Verfahren zum Herstellen eines organischen elektrolumineszierenden Elements (1) nach Anspruch 7, **dadurch gekennzeichnet, dass** ein Trocknen durch Erhitzen nach Auftragen der Beschichtungsflüssigkeit für eine Elektroneninjektions- und Elektronentransportschicht (6) im Schritt zum Bilden einer Elektroneninjektions- und Elektronentransportschicht durchgeführt wird.

30 9. Verfahren zum Herstellen eines organischen elektrolumineszierenden Elements (1) nach Anspruch 7 oder 8, **dadurch gekennzeichnet, dass** die lichtemittierende Schicht (5) und die Kathode (7) durch ein Auftragungsverfahren gebildet werden.

35 **Revendications**

1. Élément électroluminescent organique (1) comprenant :


40 une anode (3) ;
 une couche (5) d'émission de lumière formée sur l'anode (3) ;
 une couche (6) d'injection et de transport d'électrons formée sur la couche (5) d'émission de lumière, contenant un composé organique du bore ; et
 une cathode (7) formée sur la couche (6) d'injection et de transport d'électrons,
 dans lequel le composé organique du bore est représenté par la formule chimique suivante (1) :

45

50

55

[Formule chimique 1]

dans laquelle M représente un élément métal alcalin, R¹, R², R³ et R⁴ sont des groupes à noyau aromatique, qui peuvent être identiques ou différents, et « a », « b », « c » et « d » sont chacun 0, **caractérisé par le fait que** la couche d'injection et de transport d'électrons a une structure cristalline et est non amorphe.

20

2. Elément électroluminescent organique (1) selon la revendication 1, **caractérisé par le fait que** la couche (6) d'injection et de transport d'électrons contient en outre un composé organique de transport d'électrons.

25

3. Elément électroluminescent organique (1) selon la revendication 2, **caractérisé par le fait que** le composé organique de transport d'électrons est un composé polymère.

30

4. Elément électroluminescent organique (1) selon l'une quelconque des revendications 1 à 3, **caractérisé par le fait que** le composé organique du bore est choisi dans le groupe consistant en le tétraphénylborate de lithium, le tétraphénylborate de sodium, le tétraphénylborate de potassium, le tétraphénylborate de rubidium, le tétraphénylborate de césium, et les composés de tétraphénylborates avec des substituants ajoutés aux groupes phényle des tétraphénylborates ; ou est choisi dans le groupe consistant en le tétrakis-2-thiénylborate de lithium, le tétrakis-2-thiénylborate de sodium, le tétrakis-2-thiénylborate de potassium, le tétrakis-2-thiénylborate de rubidium, le tétrakis-2-thiénylborate de césium, le tétrakis-1-imidazolylborate de lithium, le tétrakis-1-imidazolylborate de sodium, le tétrakis-1-imidazolylborate de potassium, le tétrakis-1-imidazolylborate de rubidium et le tétrakis-1-imidazolylborate de césium.

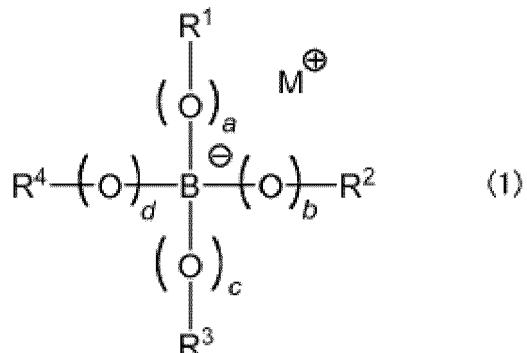
35

5. Elément électroluminescent organique (1) selon la revendication 4, **caractérisé par le fait que** le composé organique du bore est choisi dans le groupe consistant en le tétraphénylborate de lithium, le tétraphénylborate de sodium, le tétraphénylborate de potassium, le tétraphénylborate de rubidium, le tétraphénylborate de césium, le tétrakis-4-fluorophénylborate de lithium, le tétrakis-4-fluorophénylborate de sodium, le tétrakis-4-fluorophénylborate de potassium, le tétrakis-4-fluorophénylborate de rubidium, le tétrakis-4-fluorophénylborate de césium, le tétrakis-4-chlorophénylborate de lithium, le tétrakis-4-chlorophénylborate de sodium, le tétrakis-4-chlorophénylborate de potassium, le tétrakis-4-chlorophénylborate de rubidium, le tétrakis-4-chlorophénylborate de césium, le tétrakis-p-tolylborate de lithium, le tétrakis-p-tolylborate de sodium, le tétrakis-p-tolylborate de potassium, le tétrakis-p-tolylborate de rubidium, le tétrakis-p-tolylborate de césium, le tétrakis-4-fluorométhyl phénylborate de lithium, le tétrakis-4-fluorométhyl phénylborate de sodium, le tétrakis-4-fluorométhyl phénylborate de potassium, le tétrakis-4-fluorométhyl phénylborate de rubidium, le tétrakis-4-fluorométhyl phénylborate de césium, le tétrakis-2-thiénylborate de lithium, le tétrakis-2-thiénylborate de sodium, tétrakis-2-thiénylborate de potassium, le tétrakis-2-thiénylborate de rubidium, le tétrakis-2-thiénylborate de césium, le tétrakis-1-imidazolylborate de lithium, le tétrakis-1-imidazolylborate de sodium, le tétrakis-1-imidazolylborate de potassium, le tétrakis-1-imidazolylborate de rubidium et le tétrakis-1-imidazolylborate de césium.

40

6. Elément électroluminescent organique (1) selon la revendication 5, **caractérisé par le fait que** le composé organique du bore est le tétraphénylborate de lithium.

45


7. Procédé de fabrication d'un élément électroluminescent organique (1) comprenant : une anode (3) ; une couche (5) d'émission de lumière formée sur l'anode (3) ; une couche (6) d'injection et de transport d'électrons formée sur la couche (5) d'émission de lumière et contenant un composé organique du bore ; et une cathode (7) formée sur

50

55

la couche (6) d'injection et de transport d'électrons, le procédé comprenant
 une étape de formation de la couche (6) d'injection et de transport d'électrons consistant à appliquer un liquide de
 revêtement pour une couche (6) d'injection et de transport d'électrons, laquelle contient le composé organique du
 bore et un solvant, pour former une couche (6) d'injection et de transport d'électrons ayant une structure cristalline,
 5 **caractérisé par le fait que** le composé organique du bore est représenté par la formule générale (1) :

[Formule chimique 1]

dans laquelle M représente un élément métal alcalin, R¹, R², R³ et R⁴ sont des groupes à noyau aromatique, qui peuvent être identiques ou différents, et « a », « b », « c » et « d » sont chacun 0.

25 8. Procédé de fabrication d'un élément électroluminescent organique (1) selon la revendication 7, **caractérisé par le fait qu'** un séchage par chauffage est effectué après application du liquide de revêtement pour une couche (6) d'injection et de transport d'électrons, dans l'étape de formation de la couche d'injection et de transport d'électrons.

30 9. Procédé de fabrication d'un élément électroluminescent organique (1) selon l'une des revendications 7 ou 8, **caractérisé par le fait que** la couche (5) d'émission de lumière et la cathode (7) sont formées par une méthode d'application.

35

40

45

50

55

FIG. 1

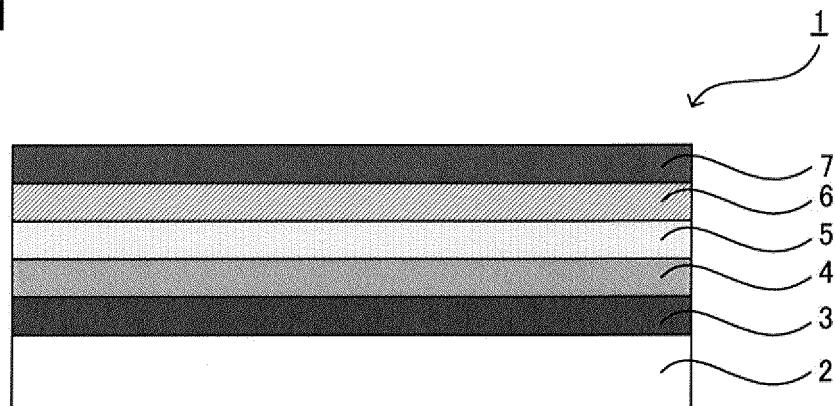


FIG. 2A

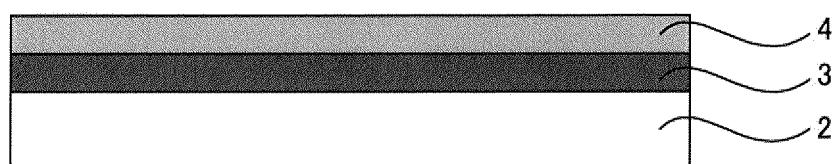


FIG. 2B

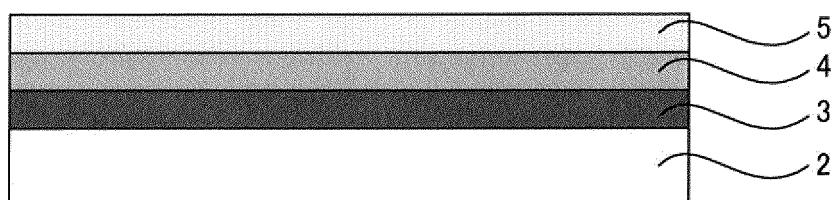


FIG. 2C

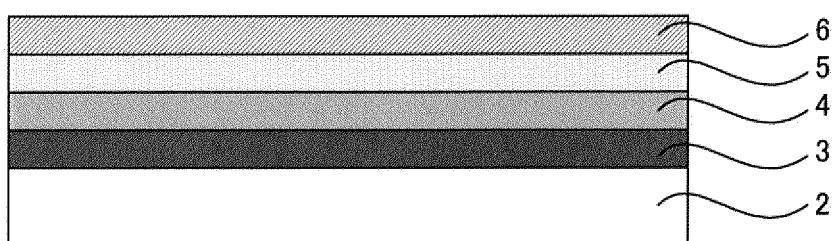


FIG. 2D

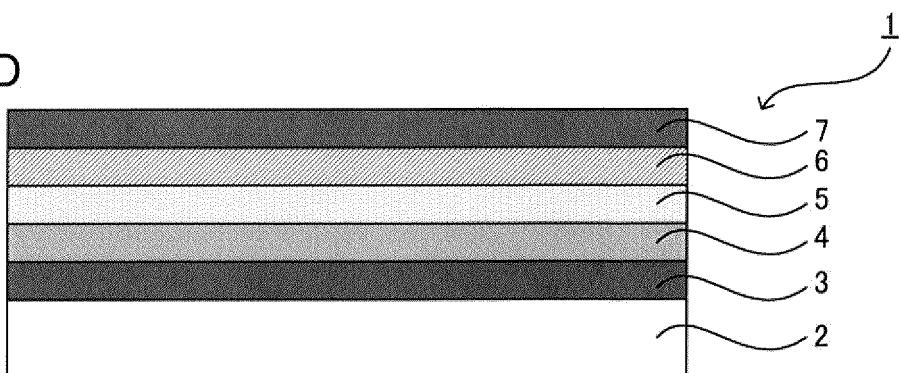


FIG. 3

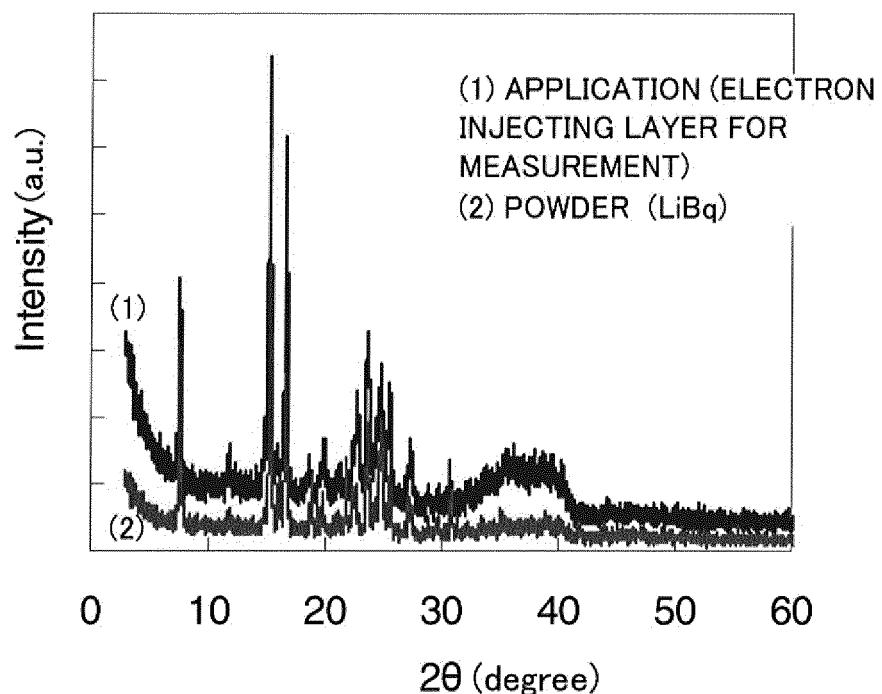


FIG. 4

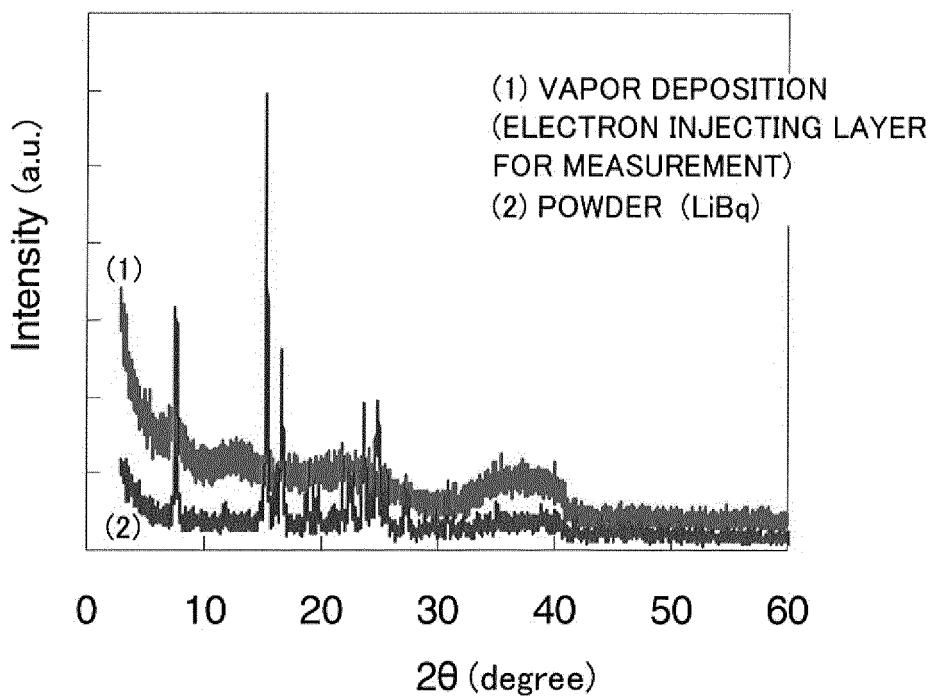


FIG. 5A

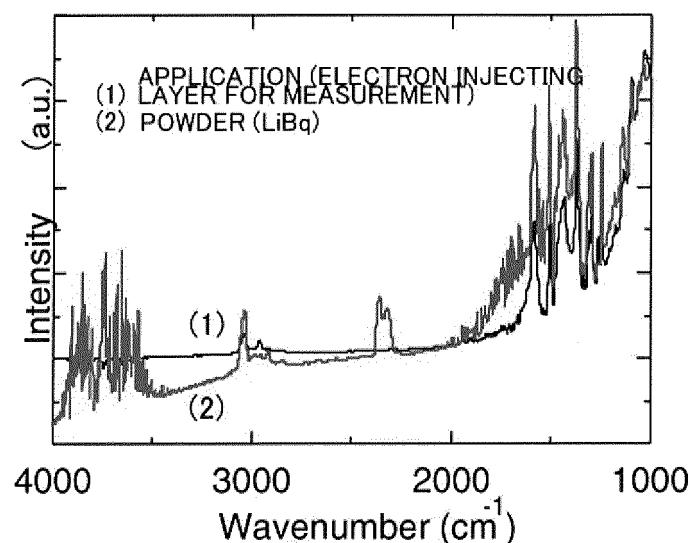


FIG. 5B

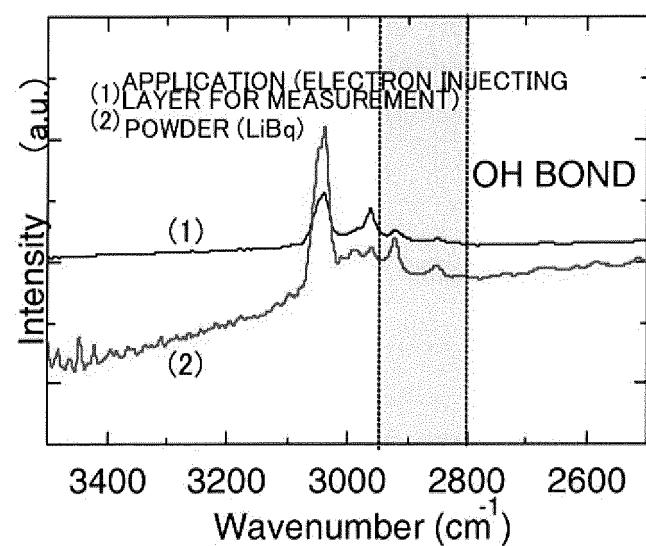


FIG. 5C

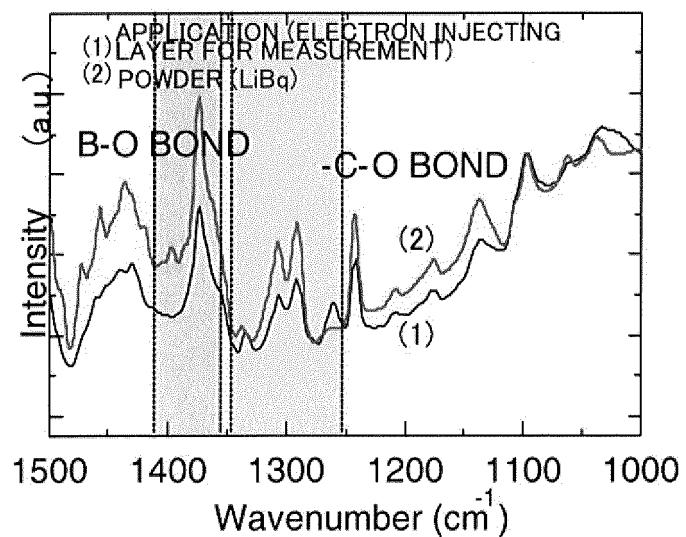


FIG. 6A

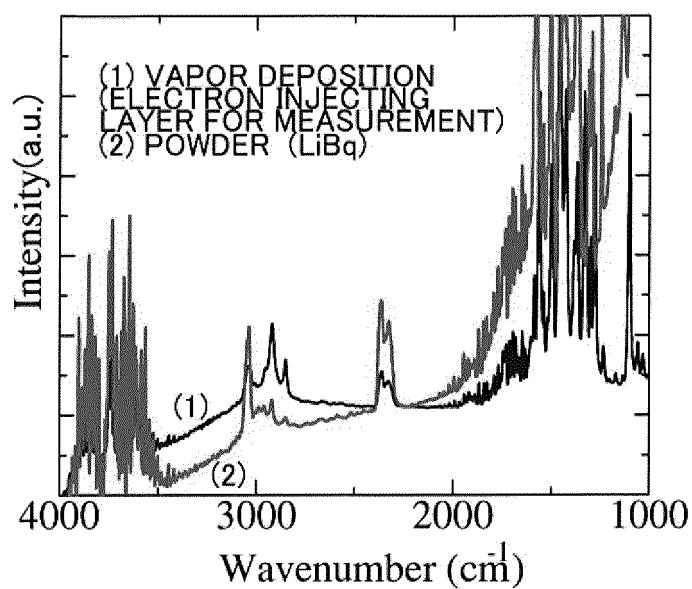


FIG. 6B

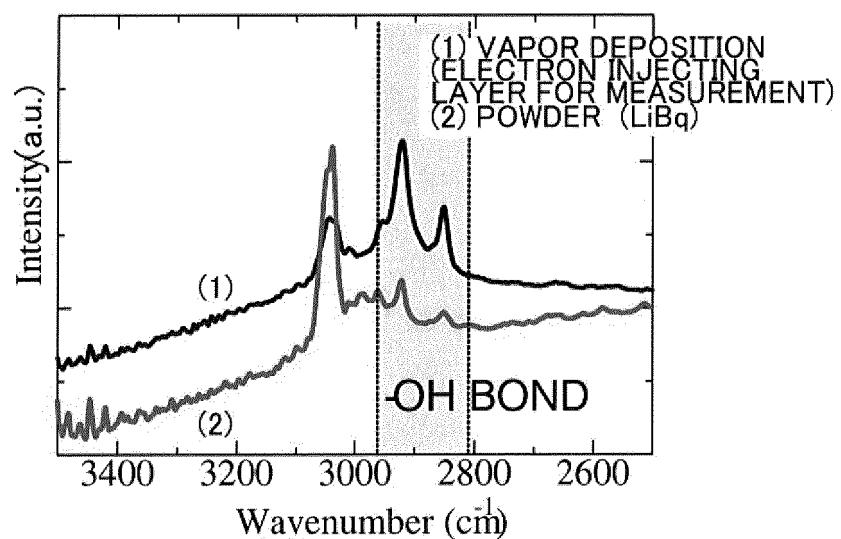
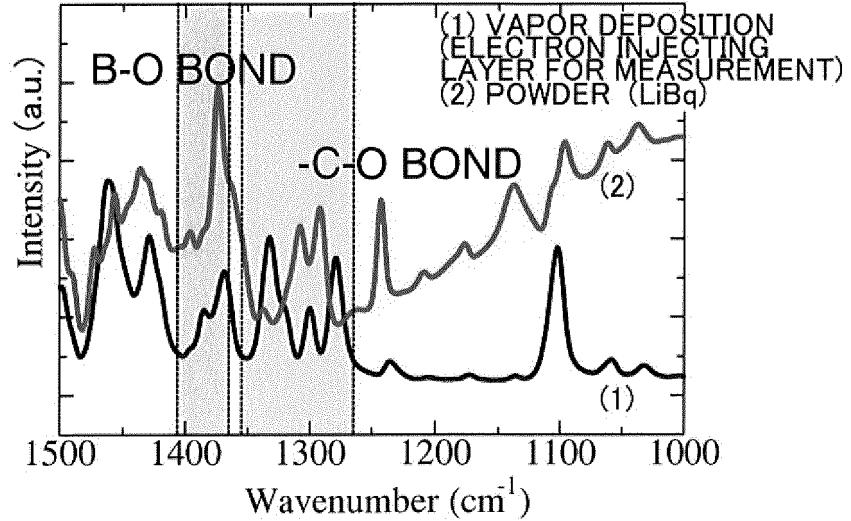



FIG. 6C

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- JP 2005142122 A [0011]
- JP 2001284055 A [0011]
- JP 2003347061 A [0011]
- JP 2000252072 A [0011]
- JP 3969941 B [0011]
- JP 2007088015 A [0011]
- JP 2003077671 B [0011]
- JP 2005285732 A [0095]
- JP 2006048986 A [0124]
- JP 4544937 B [0124]
- JP 2006144112 A [0124]

Non-patent literature cited in the description

- *J. Appl. Phys.*, 1977, vol. 48, 4729 [0106]