
(12) STANDARD PATENT APPLICATION (11) Application No. AU 2016234999 Al 
(19) AUSTRALIAN PATENT OFFICE 

(54) Title 
PATH SCANNING FOR THE DETECTION OF ANOMALOUS SUBGRAPHS AND USE 
OF DNS REQUESTS AND HOST AGENTS FOR ANOMALY/CHANGE DETECTION AND 
NETWORK SITUATIONAL AWARENESS 

(51) International Patent Classification(s) 
HO4L 29/06 (2006.01) 

(21) Application No: 2016234999 (22) Date of Filing: 2016.09.30 

(43) Publication Date: 2016.10.20 
(43) Publication Journal Date: 2016.10.20 

(62) Divisional of: 
2013272211 

(71) Applicant(s) 
Los Alamos National Security, LLC 

(72) Inventor(s) 
Neil, Joshua Charles;Fisk, Michael Edward;Brugh, Alexander William;Hash Jnr., Curtis 
Lee;Storlie, Curtis Byron;Uphoff, Benjamin;Kent, Alexander 

(74) Agent / Attorney 
Fisher Adams Kelly Callinans, Level 6 175 Eagle Street, BRISBANE, QLD, 4000



ABSTRACT 

A system, apparatus, computer-readable medium, and computer-implemented 

method are provided for detecting anomalous behavior in a network. Historical 

parameters of the network are determined in order to determine normal activity levels.  

A plurality of paths in the network are enumerated as part of a graph representing the 

network, where each computing system in the network may be a node in the graph and 

the sequence of connections between two computing systems may be a directed edge 

in the graph. A statistical model is applied to the plurality of paths in the graph on a 

sliding window basis to detect anomalous behavior. Data collected by a Unified Host 

Collection Agent ("UHCA") may also be used to detect anomalous behavior.  

43 
2903464vl



TITLE 

PATH SCANNING FOR THE DETECTION OF ANOMALOUS SUBGRAPHS 

AND USE OF DNS REQUESTS AND HOST AGENTS FOR 

ANOMALY/CHANGE DETECTION AND NETWORK SITUATIONAL 

AWARENESS 

STATEMENT OF FEDERAL RIGHTS 

[0001] The United States government has rights in this invention pursuant to 

Contract No. DE-AC52-06NA25396 between the United States Department of Energy 

and Los Alamos National Security, LLC for the operation of Los Alamos National 

Laboratory.  

CROSS REFERENCE TO RELATED APPLICATIONS 

[0002] This application claims the benefit of U.S. Provisional Application Serial 

No. 61/614,148, filed on March 22, 2012. The subject matter of this earlier filed 

provisional patent application is hereby incorporated by reference in its entirety.  

BACKGROUND 

Field 

[0003] The present invention generally relates to detecting network intrusions, 

anomalies, and policy violations, and more particularly, to detecting network 

intrusions, anomalies, and policy violations by path scanning for the detection of 

anomalous subgraphs embedded within time-evolving graphs and, additionally relates 

1 
2903464vl



to the use of Domain Name Service ("DNS") requests for situational awareness and 

anomaly/change detection on computer networks.  

Description of the Related Art 

[0004] Sophisticated computer hacking presents a serious threat to companies, 

governmental organizations, and other entities. Generally, a hacker gains entry to a 

system through automated means. For example, if a hacker sends a phishing email to 

an organization and a user clicks a link, malware may compromise the machine. This 

gives the hacker control of the compromised machine, and thus, a foothold into the 

network in which the compromised machine resides.  

[0005] The hacker cannot choose which machines are compromised, and thus, 

where he or she lands in the network. From the initial point where the network was 

compromised, the hacker commonly traverses the network, searching for additional 

hosts to exploit. Since no single user generally has access to the entire network, the 

hacker must traverse through multiple machines to fully compromise the network.  

Often, a hacker will search for multi-user machines and use the compromised account 

to gain access - furthering his or her penetration into the network.  

[0006] Conventional methods for the detection of malicious insiders in a computer 

network generally do not capture "traversal" well. Traversal occurs when a hacker 

advances through a network, infiltrating systems, and then using that compromised 

system to further compromise other hosts. While host-based detection systems that 

monitor specific machines are somewhat mature, and intrusion detection through a 

firewall is well-researched, methods that examine multiple hops within the security 

2 
2903464vl



perimeter simultaneously to search for anomalies are generally not well-explored.  

Further, network traffic monitoring is generally performed using an elaborate system 

of network taps, router mirror ports, and router-based flow observation. This approach 

is costly and fails to provide complete coverage of traffic within a network.  

SUMMARY 

[0007] Certain embodiments of the present invention may provide solutions to the 

problems and needs in the art that have not yet been fully identified, appreciated, or 

solved by current intrusion, anomaly, and policy violation detection technologies. For 

example, some embodiments of the present invention use scan statistics for the 

detection of locally anomalous subgraphs, using DNS requests that may be used to 

infer network communications patterns. Some embodiments of the present invention 

may be applied to any type of graph having time-series data on each edge. Dynamic 

social network analysis (e.g., Twitter*, Facebook*, email networks, etc.) may be 

amenable to this kind of analysis, and there may be other graph structures, such as 

those found in biology, that may be appropriate. As such, some embodiments of the 

present invention may have applications outside of cyber security.  

[0008] In an embodiment, a computer-implemented method includes determining 

historical parameters of baseline statistical models for each "edge" (i.e., a pair of 

communicating machines) on a network to determine normal activity levels. The 

computer-implemented method also includes enumerating a plurality of paths in the 

network as part of a graph representing the network, where each computing system in 

the network may be a node in the graph and the sequence of connections between two 

3 
2903464vl



computing systems may be a directed edge in the graph. The method further includes 

applying these baseline, or statistical, models to paths formed from the edges of the 

graph under observation on a sliding window basis, and detecting anomalous behavior 

based on the applied statistical model.  

[0009] In another embodiment, an apparatus includes at least one processor and 

memory including instructions. The instructions, when executed by the at least one 

processor, are configured to cause the at least one processor to determine historical 

parameters of a network to determine normal activity levels. The instructions are also 

configured to cause the at least one processor to enumerate a plurality of paths in the 

network as part of a graph representing the network, where each computing system in 

the network may be a node in the graph and the sequence of connections between two 

computing systems may be a directed edge in the graph. The instructions are further 

configured to cause the at least one processor to apply a statistical model to the graph 

on a sliding window basis, and detect anomalous behavior based on the applied 

statistical model.  

[0010] In yet another embodiment, a system includes memory storing computer 

program instructions configured to detect anomalous behavior in a network and a 

plurality of processing cores configured to execute the stored computer program 

instructions. The plurality of processing cores is configured to determine historical 

parameters of a network to determine normal activity levels. The plurality of 

processing cores is also configured to enumerate a plurality of paths in the network as 

part of a graph representing the network, where each computing system in the network 

may be a node in the graph and the sequence of connections between two computing 

4 
2903464vl



systems may be a directed edge in the graph. The plurality of processing cores is 

further configured to apply a statistical model to the graph on a sliding window basis, 

and to detect anomalous behavior based on the applied statistical model.  

[0011] In still another embodiment, a computer-implemented method includes 

collecting data, by a computing system, from a plurality of host agents pertaining to 

network communications sent and received by respective hosts in a network. The 

computer-implemented method also includes analyzing, by the computing system, the 

collected data to detect anomalous behavior during a predetermined time period, and 

when anomalous behavior is detected, providing an indication that the anomalous 

behavior occurred during the predetermined time period.  

BRIEF DESCRIPTION OF THE DRAWINGS 

[0012] For a proper understanding of the invention, reference should be made to 

the accompanying figures. These figures depict only some embodiments of the 

invention and are not limiting of the scope of the invention. Regarding the figures: 

[0013] FIG. 1A illustrates a common initial stage of an attack by a hacker.  

[0014] FIG. 1B illustrates a second stage of an attack by a hacker.  

[0015] FIG. 1C illustrates a fourth stage of an attack by a hacker.  

[0016] FIG. 2 illustrates a system for detecting intrusions, anomalies, and policy 

violations, according to an embodiment of the present invention.  

[0017] FIG. 3 illustrates an out-star.  

[0018] FIG. 4 is a flowchart illustrating a method for detecting anomalous behavior 

on a network, according to an embodiment of the present invention.  

5 
2903464vl



[0019] FIG. 5A is a path diagram illustrating a path generated using only name

edges, according to an embodiment of the present invention.  

[0020] FIG. 5B is a path diagram illustrating a path generated using only IP-edges, 

according to an embodiment of the present invention.  

[0021] FIG. 5C is a path diagram illustrating a path beginning with three name

edges and ending with an IP-edge, according to an embodiment of the present 

invention.  

[0022] FIG. 5D is a path diagram illustrating a path with alternating name-edges 

and IP-edges, according to an embodiment of the present invention.  

[0023] FIG. 6 is a flowchart of a method for using UHCA to collect data pertaining 

to anomalies, according to an embodiment of the present invention.  

DETAILED DESCRIPTION OF THE EMBODIMENTS 

[0024] Some embodiments of the present invention examine paths through a 

network, where a path is a series of interconnected computing systems that connect to 

one another. In the graph, a "node" represents a computing system and an "edge" 

represents a sequence of connections between two computing systems. Examination 

of paths over time has shown great promise in detecting anomalous actors executing 

traversal missions in some embodiments. A stochastic model is generally developed 

for every edge in a network. Statistical tests are performed on the historic parameters 

of the model, versus parameters estimated in a given window of time under 

consideration. Deviations by a certain threshold, which may be regulated according to 

a user-defined alarm rate, from historical parameters may indicate an anomalous path.  

6 
2903464vl



[0025] Some embodiments detect anomalous activity in a set of edges linked 

together in a k-path. A k-path may be a sequence of directed edges in a graph, such 

that the destination of the first edge is the source of the second edge, the destination of 

the second edge is the source of the third edge, and so on, such that the number of 

edges in the path is k. On each edge, data is associated. This data could be counts of 

connections between hosts on a computer network per unit time in some embodiments.  

All k-paths (for some fixed number k) may be enumerated, and sliding windows of 

time may be used to examine the data. Stochastic models may be built for each path, 

and historical parameters may be compared with current estimated parameters in the 

time window to determine the level of anomalousness.  

[0026] Identifying anomalies in computer networks is generally a challenging and 

complex problem. Often, anomalies occur in extremely local areas of the network.  

Locality may be complex in this setting since there is an underlying graph structure.  

To identify local anomalies, a scan statistic may be used for data extracted from the 

edges of a graph over time. Two shapes may be especially beneficial for capturing 

locality in a graph: a star and the above-mentioned k-path. The use of the path as a 

scan window is novel. Both of these shapes are motivated by hacker behaviors 

observed in real network attacks.  

[0027] To identify local anomalies, these shapes may be enumerated over the entire 

graph using a set of sliding time windows. Local statistics in each window may be 

compared with historic behavior to capture anomalies. These local statistics may be 

model-based, and, by way of example, two models used by some embodiments of the 

present invention motivated by network flow data are discussed herein to help 

7 
2903464vl



demonstrate example scanning procedures. Data speeds on larger networks generally 

require online detection to be nimble. It may be desirable, therefore, for an anomaly 

detection system to achieve real-time analysis speed.  

[0028] The detection of attackers once they are inside the network is of a high 

priority in cyber-security for the nation and for many organizations in general. It is 

extremely difficult, if not impossible, to keep attackers out of a network altogether.  

Traversal inside the network is very common among network attacks, and is a core 

requirement of many larger missions an attacker may wish to achieve, particularly 

where the attacker is working on behalf of a nation-state. Some embodiments of the 

present invention hold promise in detecting traversals, and have a tunable false 

positive parameter available to the system operator. In addition, some embodiments 

are designed to run in real-time, providing fast detection of attacks as they occur.  

Another key part of some embodiments of the present invention is a set of forensics 

tools that allow an analyst to fully explore the traversal(s) of an attacker, and identify 

hosts that may have been compromised.  

[0029] In addition to anomalous path detection, some embodiments of the present 

invention observe DNS requests that are precursors to network traffic and infer 

subsequent network traffic from those requests. This inferred traffic can then be used 

for network reconnaissance, network situational awareness, and as a reliable source of 

data for network anomaly/change detection tools, including the subgraph detection 

tool described with respect to some embodiments of the present invention. In most 

organizations, one or two collection points field all DNS requests. The resulting data 

feed is generally smaller and easier to capture than data available from other common 

8 
2903464vl



network collection mechanisms, such as router or network tap collection mechanisms.  

In addition, DNS generally provides more complete coverage of connection-level 

traffic since the alternative of tapping each router is prohibitively expensive, and 

router taps generally suffer from congestion-based sampling. Even traffic within sub

networks that cannot be seen by a router or tap may be inferred from a DNS request in 

many cases. This may be important in terms of anomaly detection since it is generally 

not unusual for a hacker to stay within a subnet.  

[0030] For clarification, an anomalous scenario of an attack by a hacker that some 

embodiments of the present invention may detect is described. FIG. 1A illustrates a 

common initial stage 100 of an attack by a hacker. The hacker may achieve an initial 

attack by compromising a machine 102 on the network using malicious software.  

Compromised machine 102 is connected to ancillary machines 104 that are not 

connected to the traversal path. These machines are not necessarily clean, but they are 

not used for subsequent traversal in this example. One method for initially 

compromising a network is known as a phishing attack, where an email that includes a 

link to a malicious website is sent to a set of users on a network. When a user clicks 

on the link, his or her computing system may become compromised, giving the 

attacker some form of access to the user's computing system.  

[0031] The attacker generally cannot dictate which computing system is 

compromised, and the initial host is usually not the ultimate target of the attack, if 

there even is an ultimate target. Instead, the hacker may wish to move to other 

computing systems in order to locate and exfiltrate valuable data, escalate privileges, 

and/or establish a broad presence in the network for later exploitation and/or resilience 

9 
2903464vl



in the face of defensive measures made by network operators. Therefore, from this 

initial host, the attacker may proceed to other hosts, hopping from one to the next.  

FIG. 1B illustrates a second stage 110 of an attack by a hacker. Here, a second 

computing system 102 is compromised and compromised computing systems 102 are 

connected by a single edge 112. FIG. 1C illustrates a fourth stage 120 of an attack by 

a hacker where four computing systems 102 are compromised and compromised 

computing systems 102 are connected by a path 122.  

[0032] As the attacker traverses the network, he or she creates anomalous activity 

in the time series of communications along each edge that he or she traverses. This 

means that additional communications will generally be seen over the historically 

normal communications levels for each edge. In some embodiments of the present 

invention, the union of these anomalous edges in some interval of time may be 

detected, and may describe an intrusion within the system.  

[0033] FIG. 2 illustrates a computing system, or "system" 200 for detecting 

intrusions, anomalies, and policy violations, according to an embodiment of the present 

invention. System 200 includes a bus 205 or other communication mechanism for 

communicating information, and a processor 210 coupled to bus 205 for processing 

information. Processor(s) 210 may be any type of general or specific purpose 

processor, including a central processing unit ("CPU") or application specific 

integrated circuit ("ASIC"). Processor(s) 210 may also have multiple processing cores, 

and at least some of the cores may be configured to perform specific functions. Some 

embodiments may employ a multi-core, single machine approach known as 

Symmetric Multi-Processing ("SMP"). Other embodiments may be implemented 

10 
2903464vl



across multiple machines, and each machine may have multiple cores. This approach 

is known as Message Passing Interface ("MPI"). System 200 further includes a 

memory 215 for storing information and instructions to be executed by processor(s) 

210. Memory 215 can be comprised of any combination of random access memory 

("RAM"), read only memory ("ROM"), flash memory, cache, static storage such as a 

magnetic or optical disk, or any other types of non-transitory computer-readable media 

or combinations thereof. Additionally, system 200 includes a communication device 

220, such as a wireless network interface card, to provide access to a network.  

[0034] Non-transitory computer-readable media may be any available media that 

can be accessed by processor(s) 210 and may include both volatile and non-volatile 

media, removable and non-removable media, and communication media.  

Communication media may include computer-readable instructions, data structures, 

program modules or other data in a modulated data signal such as a carrier wave or 

other transport mechanism and includes any information delivery media.  

[0035] Processor(s) 210 are further coupled via bus 205 to a display 225, such as a 

Liquid Crystal Display ("LCD"), for displaying information to a user. A keyboard 

230 and a cursor control device 235, such as a computer mouse, are further coupled to 

bus 205 to enable a user to interface with system 200.  

[0036] In one embodiment, memory 215 stores software modules that provide 

functionality when executed by processor(s) 210. The modules include an operating 

system 240 for system 200. The modules further include a detection module 245 that 

is configured to detect intrusions, anomalies, and policy violations. System 200 may 

11 
2903464vl



include one or more additional functional modules 250 that include additional 

functionality.  

[0037] One skilled in the art will appreciate that a "system" could be embodied as a 

personal computer, a server, a console, a personal digital assistant ("PDA"), a cell 

phone, or any other suitable computing device, or combination of devices. Presenting 

the above-described functions as being performed by a "system" is not intended to 

limit the scope of the present invention in any way, but is intended to provide one 

example of many embodiments of the present invention. Indeed, methods, systems 

and apparatuses disclosed herein may be implemented in localized and distributed 

forms consistent with computing technology.  

[0038] It should be noted that some of the system features described in this 

specification have been presented as modules, in order to more particularly emphasize 

their implementation independence. For example, a module may be implemented as a 

hardware circuit comprising custom very large scale integration ("VLSI") circuits or 

gate arrays, off-the-shelf semiconductors such as logic chips, transistors, or other 

discrete components. A module may also be implemented in programmable hardware 

devices such as field programmable gate arrays, programmable array logic, 

programmable logic devices, graphics processing units, or the like.  

[0039] A module may also be at least partially implemented in software for 

execution by various types of processors. An identified unit of executable code may, 

for instance, comprise one or more physical or logical blocks of computer instructions 

that may, for instance, be organized as an object, procedure, or function. Nevertheless, 

the executables of an identified module need not be physically located together, but 

12 
2903464vl



may comprise disparate instructions stored in different locations which, when joined 

logically together, comprise the module and achieve the stated purpose for the module.  

Further, modules may be stored on a computer-readable medium, which may be, for 

instance, a hard disk drive, flash device, RAM, tape, or any other such medium used to 

store data.  

[0040] Indeed, a module of executable code could be a single instruction, or many 

instructions, and may even be distributed over several different code segments, among 

different programs, and across several memory devices. Similarly, operational data 

may be identified and illustrated herein within modules, and may be embodied in any 

suitable form and organized within any suitable type of data structure. The 

operational data may be collected as a single data set, or may be distributed over 

different locations including over different storage devices, and may exist, at least 

partially, merely as electronic signals on a system or network.  

[0041] When a hacker gains entry to a network, path and star anomalies may be 

observed. A star anomaly is indicative of a hacker using a compromised computing 

system to connect to other computing systems that it has access to, creating anomalies 

on multiple edges emanating from the compromised host.  

[0042] A path anomaly may indicate a more subtle attack, which is a sequence of 

traversals from each host in the path to the next. The caterpillar anomaly is a mixture 

of stars and paths. This approach was designed to monitor a computer network in real 

time, and any scheme applied to computer network data at an enterprise-level (20,000 

or more individual Internet Protocol ("IP") addresses) needs to be fast. Yet, in order 

to identify highly local anomalies, the system generally needs to monitor many small 

13 
2903464vl



windows simultaneously. Some embodiments of the present invention are capable of 

examining a large number of local objects in a corporate-sized network in real-time.  

[0043] WINDOWS IN THE CROSS PRODUCT SPACE 

[0044] It may be useful to examine windows in the Time x Graph product space.  

These sets of windows may be defined such that there is a graph G = (V, E) with node 

set V and edge set E. For each edge e E E, at discrete time points t E {1, ..., T}, there 

is a data process Xe(t). The set of time windows on edges e over discretized time 

intervals (s, s + 1, ... , k) can be denoted as f2 {[e, (s, s + 1, ... , k)]: e E E, 0 < s < 

k T}. The set of all subsets of windows, F = {{ 1 , W2 , -- }-: wj E n}, is usually very 

large, and only a subset thereof, F, c F, that contains locality constraints in time and 

in graph space is generally of interest. Attention may generally be restricted, therefore, 

to sets of windows y E F,. F is usually problem-dependent. For convenience, X(y) 

may be denoted as the data in the window given by y.  

[0045] It may be assumed that for any time point t and edge e, Xe(t) can be 

described with a stochastic process with parameter functions given by e(t). The 

values of the parameter functions may be evaluated in the corresponding set of 

windows y by 0(y). Finally, the likelihood of the stochastic process may be denoted 

on y as L((y)IX(y)).  

[0046] A SCAN STATISTIC FOR WINDOWS IN THE Time x Graph SPACE 

[0047] It is beneficial to know whether the data in a window could have been 

produced by a known function of the parameters 6(y), versus alternatives indicating 

that the parameters have changed. That is, given that it is observed that X(y) = x(y), 

it may be beneficial to test HO: 0(y) = 6(y) against alternatives that can be formed by 

14 
2903464vl



restricting the overall parameter space, e, to a subset OA c 0. The Generalized 

Likelihood Ratio Test ("GLRT") statistic may be a natural statistic to use. Let 

L(&(y) x(y)) 

sup{( E BA}L (yr x(y)) 

[0048] The size of Ay depends on the number of parameters being tested in the 

window, which may make it difficult to use directly. To address this issue, Ay may be 

normalized by converting it into a p-value, py.  

[0049] To scan for anomalies in the (Time x Graph ) product space, it is generally 

required to slide over all windows y, keeping track of the scan statistic V = minyp y .  

In practice, thresholding must generally be done on the set of p-values, so more than 

just the minimum p-value should generally be considered. For online monitoring, the 

threshold on the p-values may be set to control the false discovery rate. The higher the 

threshold, the more anomalies that will be identified, but the more false positives as 

well. The threshold should generally be set such that an analyst running monitoring 

software is not overwhelmed. Generally, when a detection occurs, a set of windows 

(not just one) exceeds the threshold, so that the union of these windows is the detected 

anomaly produced by the system.  

[0050] LOCAL SHAPES: STARS AND DIRECTED k-PATHS 

[0051] The approach discussed above can be used for batch (retrospective) or 

online (prospective) processing. However, graphs are generally combinatorial in 

nature. For a fully connected graph with n nodes, the number of subgraphs is 2 '(-').  

For practical applications, this large number of subgraphs may make using a restricted 

15 
2903464vl



set of graph windows beneficial, particularly for online settings. Windows may be 

constructed that are appropriate for identifying specific shapes of anomalies.  

[0052] DIRECTED k-PATHS 

[0053] Since one common intrusion example is that of hacker traversal in a 

computer network, a specific type of subgraph for online monitoring may be 

particularly beneficial: directed k-paths. A directed k-path is a subgraph of size k, 

which has diameter k. Here, size is the number of edges in a graph, and diameter is 

the greatest hop-distance between any pair of nodes. Informally, this means that a k

path is a sequence of edges where the destination node of the current edge in the 

sequence is the source node of the next edge in the sequence, and so on.  

[0054] The k-path has the advantage that it captures the core of many network 

attacks, since the attack may be described by a path through the network, with 

additional edges as "fuzz" around the core path. This attack shape has been observed 

in actual attacks. In addition, the k-path is highly local, allowing for the detection of 

small anomalies.  

[0055] In some embodiments, 3-paths are used. 3-paths have the advantage of 

locality, but are also large enough to capture significant traversals. In order to scan 

every 3-path in the network graph, the paths are first enumerated. This can be non

trivial for many graphs. In a fully connected graph with n nodes, eliminating cycles 

and back edges, there are n(n - 1)(n - 2)(n - 3) 3-paths.  

[0056] In reality, a network graph is generally much less connected. However, in a 

30 minute window of time, only including edges with non-zero activity in that window, 

a graph may be obtained that contains around 17,000 nodes, 90,000 edges, and 300 

16 
2903464vl



million 3-paths in an example embodiment. While the entire set of n(n - 1)(n 

2)(n - 3) possible 3-paths may be effectively scanned, an anomaly measure is 

generally not calculated on any path with an edge that has no activity in the current 

time window. Since a hacker typically needs to make at least one communication to 

traverse an edge, no activity on an edge indicates no traversal over that edge, and the 

path containing the edge is therefore not considered anomalous (in the time window of 

interest).  

[0057] Due to the large number of 3-paths, it is important to be able to enumerate 

paths quickly to maintain a near real-time response capability. An algorithm that 

enumerates k-paths may be found below. The parallelism is obtained by distributing 

the edges in the ENUMERATE for loop to a Message Passing Interface ("MPI")

based cluster. Each MPI node then computes recursively, from its edge list, all paths 

beginning at that edge. In this example, an edge A is a list of length 2, where A[1] is 

the source node and A[2] is the destination node.  

function ENUMERATE(E, K): 
// E = the list of edges representing a graph 
// K = the integer length of paths to enumerate 
for each edge A in E: // A is some edge in the graph 

list P[1] = A // A becomes the first edge in a path 
RECURSE(E, P, 1, K) / recursively append additional edges 

function RECURSE(E, P, L, K): 
// E = the list of edges representing a graph 
// P = the list of edges representing a path 
// L = the integer length of P 
// K = the integer length of paths to enumerate 
edge A = P[L] // A is the last edge in the path 
for each edge B in E: // B is some edge in the graph 

if A[2] == B[1] then: 
P[L+1] = B // B becomes the last edge in the path 

if L+1 == K: 
EMIT(P) // a K-path was found 

17 
2903464vl



else: 
RECURSE(E, P, L+1, K) / recursively append additional edges 

[0058] This algorithm uses little memory, and is trivially parallelizable. In some 

real world simulations, 30 minute windows consisting of roughly 300 million paths 

were enumerated and tested in under 5 seconds per window using a 48 core 

commodity machine. This provides room to add complexity to the models, and to 

handle larger graphs than the already sizable graphs that are currently being analyzed, 

all while keeping up with real-time data streams.  

[0059] STARS 

[0060] Stars are another interesting shape for monitoring communication networks, 

as illustrated in out-star 300 of FIG. 3. Stars are defined as the set of edges whose 

source is a given central node. In FIG. 3, central node 302 is connected by directed 

edges to outer nodes 304. While these shapes are not very localized, especially for 

high out-degree nodes, they may still pick up star-type anomalies rather well. Paths 

have the ability to describe more subtle anomalies than star windows, but star 

windows generally outperform paths on large star anomalies.  

[0061] TIME INTERVALS 

[0062] The time component may include the same interval of time over every edge 

in the graph window. This may detect anomalies that occur in the same time window 

for each edge in the shape. More elaborate options, such as sequential time windows 

or telescoping time windows, may be used to cater to specific protocols such as Secure 

Shell ("SSH").  

[0063] EDGE DATA 

18 
2903464vl



[0064] Generally, it may be beneficial to model data at the resolution of edges 

rather than at the resolution of shapes y. Two models are discussed that are motivated 

by the distribution of data on edges over time, including estimation, hypothesis testing, 

p-value calculation and thresholding.  

[0065] IP addresses define nodes, and communications between IP addresses 

define the existence of a directed edge between those nodes in the graph. There may 

be enormous variety between edges in the network, and certain characteristics may be 

representative of where a human actor is present on the originating machine.  

[0066] It is common in computer network data to observe a switching process.  

Intuitively, for many edges, this switching is caused by the human presence on the 

network. If a user is present at a machine, he or she may make non-zero counts on 

edges emanating from that machine. However, in many minutes, even though the user 

may be present, he or she may not be making non-zero counts on this edge since he or 

she may be communicating with some other machine, or not using the network at all.  

It is only known that when the user is not there, we will observe Os on this edge. This 

presence/absence induces a switching process between a purely 0 count emission and 

a higher activity count emission. While, intuitively, there will be higher counts in the 

middle of the day than at night, homogeneous models may be used in some 

embodiments for the sake of model simplicity.  

[0067] INDEPENDENCE OF EDGES IN A PATH 

[0068] In order to scan for anomalous shapes, it is generally necessary to have 

models that describe the behavior of the data in the window under normal conditions.  

The number of enumerated subgraphs tends to scale exponentially with the number of 

19 
2903464vl



nodes and an assumption of independence among the edges in the shape facilitates 

scaling the computations required to process graphs at line speeds, under reasonable 

memory requirements. This is generally because edge independence only requires 

models (and the storage of edge parameters) for each edge, whereas non-independence 

might require models for each shape, of which there may be many hundreds of 

millions, if not billions. Under the independence assumption, the path GLRT may be 

expressed as 

e Ey 

[0069] where Ae represents the GLRT scores on each edge in window y.  

[0070] OBSERVED MARKOV MODEL ("OMM") 

[0071] The first and simplest of the two models discussed herein is the two-state 

OMM, which may be denoted Bt. If there was a non-zero count in time bin t, then 

Bt 1 , otherwise Bt = 0 . This model has two parameters, 

poi P(Bt = 0|Bt-1 = 1). Its likelihood is given by 

L (polpio bi, ... , bN) 01 P1o( p 

[0072] where nij is the number of times that the consecutive pair (b, bj) was 

observed in the data. It may be assumed that the initial state is fixed and known.  

While this model captures the burstiness, it ignores the distribution of non-zero counts, 

and also does not allow for zeros to be produced in the high state. Maximum 

likelihood estimates for the OMM may be given by poi = n 1 and Pi1 = n1o 
oo+ 010 +1ji 

[0073] HIDDEN MARKOV MODEL ("HMM") 

20 
2903464vl



[0074] The HMM addresses the problems of the OMM discussed above. In some 

embodiments, a two-state HMM is employed with a degenerate distribution at zero for 

the low state and a negative binomial emission density in the high state. Negative 

binomial distribution densities do not suffer from the equidispersion property of the 

Poisson, and there is good justification for using them to monitor anomalies in 

network counts. While other models generally do not allow the high state to emit 

zeros, this model does. For instance, zero counts may be dispersed with on-zero data, 

but still may clearly be part of the "active" state. Intuitively, the active state is 

generally thought of as "the user is present at the machine," and therefore likely to 

make communications, not as "the user is making a communication on this edge." 

[0075] The observed counts, Ot, follow a "hidden" two-state HMM, Qt. The 

transition parameters are given by poi = P(Qt = 1|Qt-1 = 0) and pio = 

P(Qt = 0|Qt-1 = 1). The emission densities may be parameterized in each state as 

bo(Ot) = P(Ot|Qt = 0) = I(Ot = 0) and b1(Ot) = P(OtIi,s,Qt = 1) = 

NB(Otly,s) where I(-) is the indicator function and NB(- |p,s) is the Negative 

Binomial density function with mean [y and size s. The likelihood is given by 

L(po1, p1o, y, plO, ... ,ON) '' bql(01)Pqq2bq2(02) --- PqN-lqNbqN(ON) 

q, qN 

[0076] HMM maximum likelihood estimates have no closed form, so an 

Estimation Maximization ("EM") approach may be used. At a set of T discrete time 

points, we may observe counts x = [x1, , XT]', with xt E {0,1, ... } for t =1, , T. In 

this model, the counts are viewed as coming from one of two distributions, as 

governed by Z = [Z1, ...,ZT]', a latent two-state Markov process. Letting poi 

21 
2903464vl



Pr(Z, = 1|Z,_1 = 0) and pio = Pr(Zn = 0|Zn_1 = 1), the latent transition matrix 

may be denoted as 

[l P01 P] 
Pio0 - Pio] 

[0077] The initial state distribution is denoted w = Pr(Z 1  1).  

[0078] The marginal distribution of the count at time t, given that Zt = 0 is 

degenerate at 0, i.e.  

Pr(Xt = xt|Ze = 0) = I(Xt = 0) 

[0079] where I(-) is the indicator function. When Zt = 1, it is assumed that the 

counts are distributed according to a negative binomial distribution with mean and size 

parameters given by 4 = [p, s]', i.e.  

Pr(Xt = x|Z , = 1, P) = F(s+xt) S P 
F(s)F(xt + 1) y1 + is t + s 

[0080] A useful fact is that the joint probability distribution over both latent and 

observed variables can be factored in a way that is useful for computation since it 

separates the different parameter types: 

Pr(X = x,Z = zI0) 

T T 

= Pr(Z1 = z1n) Pr(Zt = zt|Z_1 = zt_1, A) H Pr(Xt = x| = zt, p) 
t=2 t=1 

[0081] where 0 = (n, A, 0)'. Finally, the likelihood is 

1 1 

Pr(X = x|6) = --- Pr(X = X, Z = z|6) 
Z1 =O Zt=O 

[0082] POOLING AND ESTIMATION 

22 
2903464vl



[0083] In practice, many edges in a network may be very sparse, and therefore may 

not present much opportunity to observe high state counts. To perform estimation, 

edges may be pooled according to Me, the average number of non-zero counts per day, 

averaged over a predetermined number of days. Two edge types may be defined in 

some embodiments.  

[0084] Edge Type I (ye ;; 1) consists of those edges for which sufficient data exists 

to estimate an individual model. In some model runs, this number has been -45% of 

the edges for certain networks, although the percentage may vary. Maximum 

Likelihood Estimates ("MLEs") may be used for the parameters on these edges.  

[0085] Edge Type II (Me < 1) includes the remaining edges (-55% of the edges in 

certain networks) that share a common parameter set in order to "borrow" information 

across very sparse data. The set of edges & is then extracted such that ye is among a 

predetermined number of the largest yevalues in Edge Type II. In some embodiments, 

this number may be 1,000, for example. The parameters on each of these edges are 

estimated, and the mean of these parameter vectors is taken. The common edge model 

for Edge Type II may be parameterized by this mean vector. Taking the largest 1,000 

Me values, for example, helps to ensure that the models are not overly sensitive on low 

count edges.  

[0086] ALTERNATIVE HYPOTHESES 

[0087] In order to obtain a GLRT, it is generally necessary to restrict the overall 

parameter space to allow for alternatives that reflect the types of hacker behavior to be 

detected. These alternatives may intentionally be kept general in order to catch a 

variety of behaviors. It is postulated that hacker behavior causes increases to the 

23 
2903464vl



MLEs of parameters governing the models. This is due to the fact that the hacker 

must act in addition to the normal behavior on that edge. Specifically, referring to the 

OMM, hacker behavior likely causes an increase in the probability of transitioning 

from the inactive to the active state: HO: poi = oi versus HO: pot > Poi, where poi is 

the historic MLE.  

[0088] In the HMM setting, more options are available. In some embodiments, 

three combinations of parameter changes are tested: Hp: poi > Poi, HM: y > P, and 

HB: poi > Poi where y > P. In each case, the null hypothesis is that the parameter or 

two-parameter pair is equal to its historic MLE value.  

[0089] p-VALUE CALCULATION AND THRESHOLD DETERMINATION 

[0090] We seek a p-value for the observed GLRT statistic, Ay . Under mild 

regularity conditions, the GLRT is asymptotically x 2 with degrees of freedom equal to 

the number of free parameters in 0. However, this does not hold when the true 

parameters are not on the boundary of 0. If the true parameters are on the boundary, a 

point mass at zero in the distribution of Ay will be obtained.  

[0091] STAR p-VALUES 

[0092] The star is generally the simpler of the two shapes. The number of stars in a 

graph is the number of nodes, and therefore, for each node v, the distribution of the 

GLRT AV = ZeEoutedges(v) Ae can be modeled for the star around v. Let AV have the 

distribution of the AV. A, may be modeled as A, = BvXv where Bv ~ Bernoulli(pv) 

and X, ~ Gamma(Trvi7). Since all Ae in the sum could be zero, A, should have a point 

mass at zero. This may be captured by Bv. To model the positive part of the 

distribution for AV, the Gamma distribution is attractive since it is equal to an x2 

24 
2903464vl



distribution with degrees of freedom v when -, = v and i, = 2. The asymptotic 
2 

distribution of AV is the sum of independent zero inflated x 2 distributed random 

variables. Thus, the zero inflated Gamma is expected to be able to model the 

distribution of A, fairly well. The log-likelihood of N independent, identically 

distributed samples is given by 

N 

(p, T, 7) = I(A = 0) log(1 - p) + I(AL 
i=1 

> 0) (T - 1) logli - /yII - log FTr) - T log 77 

[0093] To estimate TV and im, direct numerical optimization may be used. For 

example, this may be performed over 10 days of non-overlapping 30-minute windows 

for each star centered at node v in some embodiments as-tested. The MLEs may be 

denoted as (p, ?, nv). The for an observed AV, the upper p-value is calculated by 

P(AV > AV) = Pv(1 - FF(AV fo, iv)) where Fr is the Gamma Cumulative 

Distribution Function ("CDF").  

[0094] PATH p-VALUES 

[0095] Unlike stars, the large number of paths makes modeling Ayfor each path 

prohibitively expensive for many systems, both in computation time and memory 

requirements. Instead, a model may be built for each individual edge, and the edge 

models may be combined during the path likelihood calculation. For each edge e, let 

Ae have the null distribution of the GLRT scores for e, Ae. Again, a zero-inflated 

Gamma distribution may be used to model this. Now, however, it will only be on a 

per-edge basis. Once again, the model is motivated by the fact that asymptotically, the 

25 
2903464vl



null distribution of Ae is a zero inflated x 2 (with 50% mass at zero if testing one 

parameter).  

[0096] Let Ae = BeXe where Be ~ Bernoulli(pe), and Xe ~ Gamma(xe,ri), with 

edge specific shape Xe and shared scale 17. That is, there are two free parameters for 

each edge, Pe and Xe, and a common scale parameter for all edges r7. MLEs Pe, Xe, 

and r^ may be estimated using Aes from non-overlapping 30 minute windows. The 

likelihood is similar to that discussed with respect to stars above, but since each edge 

has its own Xe, and a shared 17, an iterative scheme has been developed that alternates 

between estimating 17 for all edges, and then, for that fixed 11, estimating an individual 

Xe . Since each step of the iteration increases likelihood, the overall procedure 

increases likelihood.  

[0097] Once the edge models are fitted, path p-values may be calculated. Let 

A, = ZeEpath BeXe. The 3-path exceedance p-value is the mixture exceedance given 

by 

P(Ap > Ap) = P(B1 = b1 )P(B 2 = b 2)P(B3 
b 1 =0 b2 =0 b 3 =0 

=b)P(Ap > ApIb 1,b 2,b 3 ) 

1 1 3 
-H 1>- pi)1-bipbt 1 -Fr AP biti, 

b 1 =0 b2 =0 b 3 =0 i=1 j=1 

[0098] using the fact that the sum of Gamma random variables with common scale 

parameters is again Gamma.  

[0099] THRESHOLD DETERMINATION 

26 
2903464vl



[0100] One way of determining thresholds is to simulate a certain period of per

minute counts for each edge with no anomalies introduced. For example, this may be 

performed for ten days. 30 minute windows, offset by ten minutes, may be slid over 

the ten days, calculating the minimum p-value in each window, just as would be done 

during a full scanning procedure. To achieve a certain false discovery rate, such as 

one alarm per day, the tenth smallest p-value in the resulting list of p-values may be 

taken, for example. Since the windows overlap, we may choose to be less 

conservative by counting minimum p-values resulting from consecutive windows on 

the same path as a single p-value, and find the tenth smallest minimum p-value 

associated with non-consecutive windows. In this way, alarms over several 

overlapping windows only contribute one alarm to the threshold determination, which 

is generally how an analyst would view a series of consecutive alarms.  

[0101] Some embodiments of the present invention are directed to detecting 

anomalous activity using data defined over time on edges of an underlying graph 

structure. Since attacks can be very localized, some embodiments of the present 

invention window locally in the Time x Graph product space. A historic model is 

used to data in this local window is behaving as would be expected in accordance with 

historical behavior. k-paths may be particularly effective for detecting traversals 

through the network.  

[0102] FIG. 4 is a flowchart 400 illustrating a method for detecting anomalous 

behavior on a network, according to an embodiment of the present invention. In some 

embodiments, the method of FIG. 4 may be performed at least in part, for example, by 

computing system 200 of FIG. 2. Historical parameters of a network are determined 

27 
2903464vl



at 410 to determine normal activity levels. The historical parameters may include the 

number of connections on an edge at various time periods, for example. In some 

embodiments, the historical parameters may be established by taking into account two 

edge types - a first type where the member edges have sufficient data to estimate an 

individual model and a second type where there is not sufficient data to estimate 

individual models for the member edges. In certain embodiments, the second type of 

edges are parameterized by a mean vector to ensure that models are not overly 

sensitive to low count edges.  

[0103] A plurality of paths in the network are enumerated at 420 as part of a graph 

representing the network. Each computing system may be a node in the graph and the 

sequence of connections between two computing systems may be a directed edge in 

the graph. A statistical model is applied to the graph on a sliding window basis at 430 

to detect anomalous behavior. In some embodiments, an Observed Markov Model 

("OMM") is used. In other embodiments, a Hidden Markov Model ("HMM") may be 

used. The OMM or HMM may be two-state models in some embodiments (e.g., "on", 

indicating user presence, and "off', indicating the user is not present). However, the 

approach of some embodiments does not necessarily depend on the model choice.  

Stated differently, various statistical models may be used in various embodiments.  

Data pertaining to the detected anomalous behavior is displayed to a user at 440.  

[0104] UNIFIED HOST COLLECTION AGENT ("UHCA") 

[0105] Host agents may be employed to defend a host by running security 

applications, such as antivirus software and firewalls. Host agents generally use a 

Unified Host Collection Agent ("UHCA") that uploads data from the host to a server 

28 
2903464vl



for anomaly detection. However, some embodiments of the present invention use 

UHCA to provide data that may include network connections from the host to other 

machines, processes associated with the connections, executables associated with the 

processes, etc.  

[0106] Conventionally, the data was collected from secondary server sources, 

instead of getting the data directly from the host. Some embodiments take this 

observed information into account to generate new events. Some embodiments also 

provide efficient aggregation of the data. The server may have one-way 

communication with the hosts where it receives messages from a large number of host 

agents. The lack of bidirectional communication in some embodiments adds to the 

efficiency.  

[0107] Some embodiments use User Datagram Protocol ("UDP") since complete 

data collection is not required for effective operation in many embodiments. These 

embodiments may capture as much information as they can, but if some is missed, 

anomaly detection will generally still function effectively. This "lossy" collection 

approach allows the communication to be one-directional since packet delivery is not 

guaranteed in the manner implemented by TCP. This also allows for higher volumes 

of data than TCP-based approaches.  

[0108] UDP streams may be encrypted so that network data is protected in some 

embodiments. Processing is a significant issue and management of data is difficult in 

large systems. Nonetheless, some embodiments are able to provide strong encryption 

and ensure privacy. The lossy nature of some embodiments helps to provide the extra 

processing required for security.  

29 
2903464vl



[0109] While UDP may be used, some embodiments also have the ability to detect 

packet loss using sequence numbering of packets. The Media Access Control 

("MAC") address plus a sequence number may be used to track packets on a per

machine basis. This information can also be used independently of anomaly detection.  

For instance, the information can be used for forensics to look at data on a given host.  

Checksums of executables may be placed in a list to determine whether a particular 

host has malware, for example.  

[0110] A weakness of most data collection infrastructures is limited visibility 

between internal nodes within the network. To improve the detection of attackers, end 

point visibility should be enhanced. Comprehensive end point visibility generally 

necessitates deploying software at the network host level. Not all network switches 

are capable of collecting network flow data at the subnet level. Likewise, DNS data 

viability typically suffers from caching and requires that adversaries use host names, 

as opposed to IP addresses, when establishing connections to target nodes.  

[0111] To improve end point visibility, some embodiments employ a cross

platform software agent (hereinafter "the agent") that runs on various operating 

systems, such as WindowsTM, Mac OS XTM, LinuxTM, AndroidTM, etc. The UHCA 

may be written in Python in some embodiments, making it easy to adapt and extend to 

various target operating systems. However, any desired programming language or 

assembly code may be used. The agent's primary purpose may be data collection, and 

the agent may be designed to have minimal impact on the host operating system.  

Testing has shown that some embodiments of the agent use only 2-8% of a single 

CPU core. The agent may collect the system state and events and encode them as 

30 
2903464vl



JavaScript Object Notation ("JSON") records called JSON Encoded Logs ("JELs").  

In some embodiments, all JELs contain a generation time stamp, agent ID (e.g., the 

MAC address), agent IP address, operating system type, and record type (e.g., network 

connection state).  

[0112] JELs may be forwarded in encrypted UDP packets to one or more central 

collection servers at relatively frequent (e.g., 1-5 minute) intervals. Multiple servers 

may be specified in the agent configuration file in some embodiments, allowing the 

system to scale horizontally. Collection capabilities of the agent may include process 

stop and start information with checksums of starting process images, network 

connection event logs, mapping of running processes to established network 

connections, and current network connection state.  

[0113] NETWORK POLLING STATE 

[0114] To detect anomalous paths, some embodiments take a list of triples (time, 

source IP address, destination IP address) of values indicating network communication 

between hosts. In order to extend such embodiments to leverage UHCA data, the 

agent should generally report uniform host network communication information across 

all of its target platforms. On LinuxTM, procfs (specifically /proc/tcp and /proc/udp) 

may be used to generate this data. OS XTM and AndroidTM implementations may parse 

the output of a call to netstat, although this is not an optimal approach. The 

WindowsTM agent may use the Python ctypes Windows IP helper module's 

GetExtendedTcpTable method (ctypes.windll.iphlpapi.GetExtendedTcpTable), which 

provides network state information similar to procfs and netstat.  

31 
2903464vl



[0115] In some embodiments, data is polled every second, or any other desired 

period. Naturally, the more frequent the polling, the more data will be available for 

analysis, and the shorter the connection types that are likely to be captured. A 

drawback of polling every second is that short-lived (i.e., subsecond) connections will 

typically be missed by the agent. This may be an issue for many detection techniques, 

but the focus of some embodiments is to detect traversal of a network in an interactive 

manner. Even automated traversals would normally need greater than one second 

resolution to maintain state on target nodes.  

[0116] To address the issue of short-lived connections being missed, using the TCP 

time wait state may be beneficial. When a client communicates with a server over 

TCP, the server maintains the state of the TCP connection. When the communication 

ends, the server must generally keep the connection information in the TIMEWAIT 

state for a period of time, commonly 30 seconds or more. This long time window 

allows the agent to capture information on sub-second network communications that 

otherwise would have been missed. In post-processing, testing is possible to see 

whether there were entries in time wait states that did not have corresponding 

established connection entries. Any such connections may be reported as short-lived 

connections.  

[0117] Although some embodiments only require a list of triples, UHCA may send 

as much detail as possible about the network connection state back to the collection 

server to provide additional information for other applications. Data may be post

processed into triples using scripts for low-volume test data or map reduce for larger 

jobs, for example. Other fields in the network connection JELs may include source 

32 
2903464vl



and destination port, state of the connection (established, listening, time wait, etc.), the 

process ID associated with the connection, and counts of the number of seconds that 

the connection was active within a one minute time window, or any other desired time 

window. Some embodiments may leverage the port information to better distinguish 

individual communications and use the count information to establish edge weights by 

collecting statistics from the counts, such as mean and variance, for the purpose of 

anomaly detection.  

[0118] In testing, some embodiments incorporating UHCA have shown nearly 

twice the edge detection rate of some embodiments without UHCA. For example, in 

one test having 30 total edges, the embodiment without UHCA detected 14 out of 30 

edges (46.7%), whereas the embodiment with UHCA detected 27 out of 30 edges 

(90%). The paths consisted of 15 name edges and 15 IP edges. This gives 

embodiments without UHCA a maximum theoretical detection rate of 50% and 

embodiments with UHCA a maximum theoretical detection rate of 100%.  

[0119] FIGS. 5A-D below show sub-paths of four of the five test paths generated 

in the experiment. The first four edges from each path are displayed for consistency, 

even though some paths contain more edges. In all cases where edges are omitted, if 

the approach detected the last edge shown, then the approach continued to detect the 

remaining edges. If the approach failed to detect the last edge, then the approach 

continued to miss all remaining edges.  

[0120] In FIGS. 5A-D, nodes (i.e., network hosts) are depicted as circles and edges 

(i.e., network communications) are depicted with either a line with a diamond end 

point (a name-edge) or an arrow end point (an IP-edge) pointing to the destination 

33 
2903464vl



node. Bars labeled DNS and UHCA are used to indicate the detection length of each 

approach. Longer bars indicate longer detected paths. Short or missing bars highlight 

where the approach failed to detect edges in a path.  

[0121] FIG. 5A is a path diagram 500 illustrating a path generated using only 

name-edges, according to an embodiment of the present invention. The path shows 

the detection results for a path with six edges (a 6-path), where all edges were 

generated with host name lookups. As predicted, this path was detected successfully 

by the non-UHCA DNS path detection approach (hereinafter "the DNS approach").  

Surprisingly, the UHCA approach missed the first two edges in the path, although the 

UHCA approach picked up the path thereafter and detected the remaining four edges.  

[0122] After analyzing the data in detail, it was determined that one host involved 

in the path (the second hop) functioned as an institutional server, constantly generating 

a large number of new connections. Since new edge behavior is modeled in some 

embodiments, the software expected this server to create new edges. Therefore, paths 

traversing through this server were deemed less anomalous, and did not exceed the 

alarm threshold. This is an exciting result, and justifies the use of the model of some 

embodiments versus simply determining all new paths (i.e., paths consisting entirely 

of new edges) as anomalous. Without such a model, all paths through this server 

would cause an alarm, increasing false alarm rates.  

[0123] FIG. 5B is a path diagram 510 illustrating a path generated using only IP

edges, according to an embodiment of the present invention. The path is a 7-path 

generated entirely with IP-edges. This experiment behaved exactly as anticipated.  

The UHCA approach detected every edge, whereas the DNS approach did not detect 

34 
2903464vl



any edges. The DNS approach simply cannot detect these types of paths since there is 

no DNS activity generated by these types of network traversals.  

[0124] FIG. 5C is a path diagram 520 illustrating a path beginning with three 

name-edges and ending with an IP-edge, according to an embodiment of the present 

invention. This was a 6-path where the first three edges were generated with name

edges while the last three edges were generated with IP-edges. The DNS approach 

was able to detect the first three edges as expected, but then failed to detect the IP

edges. The UHCA approach was able to detect the full path, as expected.  

[0125] Another variant of this path was tested as well, but the results are not shown 

for the sake of brevity. In this 5-path, the path began with two IP-edges and then 

continued with three name-edges. The UHCA approach detected the entire path, 

while the DNS approach only detected the path after it switched to name-edges.  

[0126] FIG. 5D is a path diagram 530 illustrating a path with alternating name

edges and IP-edges, according to an embodiment of the present invention. The path is 

a 6-path where the edges alternated between name-edges and IP-edges. The prediction 

was that this path would be undetectable to the DNS approach and fully detected by 

the UHCA approach. The UHCA approach did indeed detect the full path, but the 

DNS approach was able to detect the first edge of the path. Analysis of the data 

showed that this edge was part of an unrelated 3-path found by the DNS approach.  

The edge was coincidentally related to the edge chosen for this test path.  

[0127] These initial results are encouraging as they validate the hypothesis that the 

UHCA approach can lead to improved attacker detection. The results also validate 

that the DNS approach is performing at close to expected detection rates.  

35 
2903464vl



[0128] COLLECTING DATA BASED ON ANOMALOUSNESS 

[0129] It may not be possible to collect all available data on every host at all times, 

since such data volumes may be enormous, particularly in large networks. Instead, 

data may be collected proportionally to the level of anomalousness on that host as 

determined by anomaly detection methods such as those described herein. At a low 

level of anomalousness, basic network connectivity (such as DNS lookups) and 

process information may be collected. At a moderate level, more process accounting 

and services may be collected, along with more complete network behavioral data 

(such as NetFlow data). At a high level, full host behavior information, including 

process accounting, services, open files, etc., along with full packet capture for 

network visibility, may be collected. In some cases, this may only be done in local 

areas of the network, and, again, would be driven by anomaly detection. This would 

provide higher quality detection capability on those hosts, but also provide high 

quality forensic information for analysts who respond to the anomaly.  

[0130] In some embodiments, anomaly levels may be determined by path traversal 

methods described herein. Paths traversing through nodes may be deemed as only 

slightly anomalous according to the current data being collected at each node. If, 

however, the nodes in this path were behaving with a moderate level of 

anomalousness, more comprehensive data may be collected at each host in the path.  

This may be fed back into the algorithm to provide better fidelity, and the algorithm 

could then make higher quality decisions about this path (e.g., lower false positive 

rates and higher true positive rates). If the new, higher fidelity data continues to be 

deemed anomalous, full packet capture and process accounting may be enabled at the 

36 
2903464vl



hosts, providing both high quality anomaly detection data and full forensic data for use 

by security response personnel.  

[0131] FIG. 6 is a flowchart 600 of a method for using UHCA to collect data 

pertaining to anomalies, according to an embodiment of the present invention. In 

some embodiments, the method of FIG. 6 may be performed at least in part, for 

example, by computing system 200 of FIG. 2. The method begins with periodically 

polling a plurality of host agents for data at 610. The data is collected from the 

plurality of host agents pertaining to network communications sent and received by 

respective hosts in a network at 620. In some embodiments, the collected data may be 

sent as one-way communications from the host agents via UDP. The data collected 

for each host may include process stop and start information with checksums of 

starting process images, network connection event logs, a mapping of running 

processes to established network connections, and a current network connection state.  

The collected data may include a list of triples of values indicating network 

communication between hosts, and each triple may include a time when the 

communication occurred, a source IP address, and a destination IP address.  

[0132] In some embodiments, the data may be collected proportionally to a level of 

anomalousness on a respective host. At a low level of anomalousness, as deemed by 

deviation from a baseline probabilistic approach, the basic network connectivity and 

process information may be collected. At a moderate level of anomalousness, more 

process accounting and services and more complete network behavioral data may be 

collected. At a high level of anomalousness, full host behavioral information may be 

collected and full packet capture may be performed.  

37 
2903464vl



[0133] The collected data is analyzed to detect anomalous behavior during a 

predetermined time period at 630. TCP wait states are used to detect short duration 

connections at 640, and count weights are established using count information at 650.  

When anomalous behavior is detected, an indication that the anomalous behavior 

occurred during the predetermined time period is provided at 660.  

[0134] The method steps performed in FIGS. 4 and 6 may be performed by a 

computer program product, encoding instructions for the nonlinear adaptive processor 

to perform at least the methods described in FIGS. 4 and 6, in accordance with an 

embodiment of the present invention. The computer program product may be 

embodied on a computer readable medium. A computer readable medium may be, but 

is not limited to, a hard disk drive, a flash device, a random access memory, a tape, or 

any other such medium used to store data. The computer program product may 

include encoded instructions for controlling the nonlinear adaptive processor to 

implement the methods described in FIGS. 4 and 6, which may also be stored on the 

computer readable medium.  

[0135] The computer program product can be implemented in hardware, software, 

or a hybrid implementation. The computer program product can be composed of 

modules that are in operative communication with one another, and which are 

designed to pass information or instructions to display. The computer program 

product can be configured to operate on a general purpose computer, or an ASIC.  

[0136] It will be readily understood that the components of various embodiments 

of the present invention, as generally described and illustrated in the figures herein, 

may be arranged and designed in a wide variety of different configurations. Thus, the 

38 
2903464vl



detailed description of the embodiments of the present invention, as represented in the 

attached figures, is not intended to limit the scope of the invention as claimed, but is 

merely representative of selected embodiments of the invention.  

[0137] The features, structures, or characteristics of the invention described 

throughout this specification may be combined in any suitable manner in one or more 

embodiments. For example, reference throughout this specification to "certain 

embodiments," "some embodiments," or similar language means that a particular 

feature, structure, or characteristic described in connection with the embodiment is 

included in at least one embodiment of the present invention. Thus, appearances of 

the phrases "in certain embodiments," "in some embodiment," "in other embodiments," 

or similar language throughout this specification do not necessarily all refer to the 

same group of embodiments and the described features, structures, or characteristics 

may be combined in any suitable manner in one or more embodiments.  

[0138] It should be noted that reference throughout this specification to features, 

advantages, or similar language does not imply that all of the features and advantages 

that may be realized with the present invention should be or are in any single 

embodiment of the invention. Rather, language referring to the features and 

advantages is understood to mean that a specific feature, advantage, or characteristic 

described in connection with an embodiment is included in at least one embodiment of 

the present invention. Thus, discussion of the features and advantages, and similar 

language, throughout this specification may, but do not necessarily, refer to the same 

embodiment.  

39 
2903464vl



[0139] Furthermore, the described features, advantages, and characteristics of the 

invention may be combined in any suitable manner in one or more embodiments. One 

skilled in the relevant art will recognize that the invention can be practiced without 

one or more of the specific features or advantages of a particular embodiment. In 

other instances, additional features and advantages may be recognized in certain 

embodiments that may not be present in all embodiments of the invention.  

[0140] One having ordinary skill in the art will readily understand that the 

invention as discussed above may be practiced with steps in a different order, and/or 

with elements in configurations different than those that are disclosed. Therefore, 

although the invention has been described based upon these preferred embodiments, it 

would be apparent to those of skill in the art that certain modifications, variations, and 

alternative constructions would be apparent, while remaining within the spirit and 

scope of the invention. In order to determine the metes and bounds of the invention, 

therefore, reference should be made to the appended claims.  

40 
2903464vl



CLAIMS 

1. A computer-implemented method, comprising: 

collecting data, by a computing system, from a plurality of host agents 

pertaining to network communications sent and received by respective hosts in a 

network; 

analyzing, by the computing system, the collected data to detect anomalous 

behavior during a predetermined time period by applying a statistical model to a 

plurality of k-paths in a graph on a sliding window basis; and 

when anomalous behavior is detected, providing, by the computing system, an 

indication that the anomalous behavior occurred during the predetermined time period.  

2. The computer-implemented method of claim 1, wherein the collected 

data is sent as one-way communications from the host agents via User Datagram 

Protocol ("UDP").  

3. The computer-implemented method of claim 1, wherein the data 

collected for each host comprises process stop and start information with checksums 

of starting process images, network connection event logs, a mapping of running 

processes to established network connections, and a current network connection state.  

4. The computer-implemented method of claim 1, wherein the collected 

data comprises a list of triples of values indicating network communication between 

41 
2903464vl



hosts, each triple comprising a time when the communication occurred, a source 

Internet Protocol ("IP") address, and a destination IP address.  

5. The computer-implemented method of claim 1, wherein the collecting 

of the data further comprises periodically polling the host agents for the data.  

6. The computer-implemented method of claim 1, further comprising: 

using, by the computing system, a Transmission Control Protocol ("TCP") 

time wait state to collect information on short duration connections.  

7. The computer-implemented method of claim 1, further comprising: 

establishing, by the computing system, count weights using count information 

by calculating mean and variance statistics on the counts.  

8. The computer-implemented method of claim 1, wherein the data is 

collected proportionally to a level of anomalousness on a respective host, 

at a low level of anomalousness, as deemed by deviation from a baseline 

probabilistic approach, the computing system collects basic network connectivity and 

process information.  

at a moderate level of anomalousness, the computing system collects more 

process accounting and services and more complete network behavioral data, and 

at a high level of anomalousness, the computing system collects full host 

behavioral information and performs full packet capture.  

42 
2903464vl



20
16

23
49

99
   

  3
0 

Se
p 

20
16



20
16

23
49

99
   

  3
0 

Se
p 

20
16



20
16

23
49

99
   

  3
0 

Se
p 

20
16



20
16

23
49

99
   

  3
0 

Se
p 

20
16



20
16

23
49

99
   

  3
0 

Se
p 

20
16



20
16

23
49

99
   

  3
0 

Se
p 

20
16



20
16

23
49

99
   

  3
0 

Se
p 

20
16


	Bibliographic Page
	Abstract
	Description
	Claims
	Drawings

