0 02/17115 A2

=

(19) World Intellectual Property Organization

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

International Bureau

(43) International Publication Date

(10) International Publication Number

28 February 2002 (28.02.2002) PCT WO 02/17115 A2
(51) International Patent Classification’: GOG6F 17/00 (74) Agent: BERESKIN & PARR; 40th floor, 40 King Street
West, Toronto, Ontario MSH 3Y2 (CA).
(21) International Application Number: PCT/CA01/01207
(81) Designated States (national): AE, AG, AL, AM, AT, AU,
2 . . . AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
(22) International Filing Date: 21 August 2001 (21.08.2001) CZ. DE, DK, DM, DZ EE, ES, FI, GB, GD, GE, GH, GM,
HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK,
(25) Filing Language: English LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX,
MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL,
(26) Publication Language: English TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
I 84) Designated States (regional): ARIPO patent (GH, GM,
(30) Priority Data: (.
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
60/226,572 21 August 2000 (21.08.2000) US patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
. patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,
(71) Applicant (for all designated States except US): IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF,
THOUGHTSLINGER CORPORATION [CA/CA]; CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD,
Suite 303, 100 Simcoe Street, Toronto, Ontario M5H 3G2 TG).
(CA).
Published:
(72) Inventors; and — without international search report and to be republished
(75) Inventors/Applicants (for US only): WALKER, Richard upon receipt of that report

[CA/CAL]; Suite 1801, 71 Simcoe Street, Toronto, Ontario
M5J 289 (CA). SONNENBERG, Christopher [CA/CA];
Suite 705, 2269 Lakeshore Blvd. West, Toronto, Ontario
M8V 3X6 (CA).

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: SIMULTANEOUS MULTI-USER DOCUMENT EDITING SYSTEM

1228

e

04
P
List_Container

[Tz 1"

| See Figure 5

(57) Abstract: A system and methods for simultaneous editing of one or more documents by two or more distinct users is disclosed.

Each document is divided into a number of mutually exclusive sections, which together contain the entire document. Each section is

stored in a separate data container. Each document has primary data of a primary data type. The containers that store the primary data
for each document have a common parent container, which is at the head of a document sub-tree corresponding to the document. A
document may also include embedded data, which may be of the same or a different type than the primary data. The embedded data is
typically stored in embedded data containers, which are typically child containers of the primary data containers. Each of the parent
containers is a child container of a root container, which is at the head of a container tree in which all documents in a workspace are
stored. Each workspace also includes a member list. The system may include more than one workspace, and may include users who
are members of more than one workspace. Editors are provided for editing documents and embedded data of a number of data types
that are supported by the system. Each editor is configured to allow a member to edit data in a section of a document. Typically, data
may only be edited after obtaining an exclusive lock for the container in which the section is stored. However, in some cases, data
may be edited without first locking the associated container and the modified container may be blindly posted. Different sections
of a document may be simultaneously locked by different members, allowing the members to simultaneously edit the two different
sections. Editing changes to a document are posted by each editor to a workspace server, which then broadcasts the changes to all
connected members of the workspace, allowing members to view changes to a document after they are posted.

10

15

20

25

30

WO 02/17115 PCT/CA01/01207

Title: Simultaneous Multi-User Document Editing System

Field of the Invention

This invention relates to a system and methods for storing and simultaneous
multi-user editing of documents, including text documents, presentation documents,
graphic image documents, audio/visual clips and other types of documents.

Background of the Invention

People often work together in groups to achieve common goals. Members of a
workgroup should have convenient access to all of the documents relating to a topic or
project. In contemporary workplaces, shared documents are usually stored on a file
server connected to a network and accessible through networked computers.
However, this arrangement proves restrictive when team members are situated in
widely disparate locations.

Most software applications are single-user systems. For example, with an
image editing application such as Adobe Photoshop™, a user opens an image file and
edits it. While one user works on an image file, other users may not simultaneously
open and edit the same file. Similarly, most word processors are single-user systems.
While one user has a file open and in use, other users may not simultaneously open
and edit the file.

When workers collaborate on a project, situations may arise in which two or
more workers attempt to simultaneously access a shared document. Most
collaborative groupware or computing environments offer limited or no support for such
activity.

A common approach to collaboration is to circulate documents, often as email
attachments, among members of a team. In this arrangement, all team members agree to
let one member (“ball carrier”) have exclusive control of a document until he or she
finishes editing it and emails it to another team member. There can be only one ball
carrier at a time, and only the ball carrier may edit the document. If other workgroup
members edit separate copies of the document while the ball carrier has control of it,
the multiple versions of the document must later be merged and conflicting co-edited
sections resolved.

Document type incompatibilities may arise when circulating a document in this
manner. For example, a text document may become unreadable if different team
members edit it using different word processors or even using different versions of the
same word processor. Additionally, technical problems may arise with the

10

15

20

25

30

WO 02/17115 PCT/CA01/01207

transmission of email attachments. Some email servers arbitrarily restrict the size of
attachments. Those that exceed a certain threshold size are not accepted. A large
document, such as a large slide presentation document, may not be circulable to all
workgroup members.

Some applications achieve limited collaboration. For example, Microsoft
NetMeeting™ provides application sharing. During a NetMeeting session, a user may
share an application running on his or her machine with others. The various session
participants take turns controlling the application. While one participant has control of
the application, the others can watch his or her activity, such as editing or scrolling
through a document, on their screens. However, as with document circulation, only
one user may edit a document at any given time.

Lotus Notes™, another widely used groupware system, uses a special
database to store shared information. Replicas of the database are distributed to
several network servers or client machines. A workgroup member with appropriate
access privileges may make modifications to information stored in his or her local copy
of a replicated database. All active replicas are periodically reconciled. However, if
conflicts arise as replicas are compared and merged, Notes is limited in its ability to
automatically resolve the conflicts.

Several online services provide subscribers with a “virtual hard drive” for their
documents. Subscribers may upload shared documents through a Web-based
interface o a remote storage server accessible by all workgroup members.
Documents may later be downloaded to any computer with Web access. This
arrangement is a modest improvement over circulating documents via email
attachments. However, while one team member has a document signed out of the
service, others may not work on it.

Thus, there is a need in the art for a system that facilitates simultaneous multi-
user editing of shared documents. The system is preferably platform independent to
allow users with different computing platform to utilize it.

Summary of the Invention

The present invention provides a system and methods for simultaneous editing
of a document by two or more distinct users. The system will typically include one or
more workspace servers and a number of client computers. Users access the system
by using client software (or “clients") which execute on the client computers. The
system includes a file system in which a number of workspaces are stored.

10

15

20

25

30

35

WO 02/17115 PCT/CA01/01207

One or more documents are stored in each workspace. A master copy of each
workspace is stored in the file system, which is accessible to the workspace servers.
A user may login to the system and connect to a workspace using his client. Each
client that is currently connected to a workspace also maintains a local copy of a part
or all of the workspace in its client computer. Each workspace contains a container
tree data structure and a membership list.

The container tree data structure has a root container at its head and includes a
document sub-tree for each document in the workspace. Each document sub-tree has
a parent container at its head and each parent container is a child container of the root
container. The root container is used to store information about the entire workspace,
including the name of the workspace, a description of the workspace, pointers to each
parent container, etc. Similarly, each parent container is used to store information
relating to its associated document, such as the title of the document.

Each document sub-tree includes one or more primary data containers, which
are children of the parent container of the document sub-tree. The data of a document
(i.e. the text of a text document) is divided into a number of sections, each of which is
stored in one primary data container. Each container in the container tree may be
independently locked by a user of the system.

While a user has a container locked, he or she may exclusively edit the section
of data stored in the container. The user may also delete the data in the container, in
which case the container may also be deleted. The user may also add additional
sections to the document, in which case additional containers may be created. Initially,
all such editing changes are stored in provisional copies of the affected containers
locally on the client computer. When the user has completed editing a locked section of
a document, the user posts all of the provisional locked and new containers to a
workspace server.

A workspace server receives the locked and new containers, and incorporates
them into the master copy of the container tree. In addition to modifying containers that
he has locked, a user may attempt to modify unlocked containers using a Blind Post
operation. The workspace server updates the blindly posted container, unless the
blindly posted container is out-of-date or locked by another user.

While one user has a section of a document locked, another user may have
other sections of the same document locked. Each of the users may simultaneously
edit his or her respective locked sections of the document. In this way, multiple users
may simultaneously lock and edit different sections of the same document. Locking,
editing and posting operations are done by each user using document editors built into

10

15

20

25

30

35

WO 02/17115 PCT/CA01/01207

the client software. In addition, the document editors allow a user to simply view a
document by downloading sections of it and displaying them on a screen connected to
a client computer.

After updating the master copy of the container tree in response to a Post
request, the workspace server broadcasts the updated containers to all other users
(and possibly also to the user that originated the Post request) in an Update message.
Each client modifies the user's local copy of the container tree, at least to the extent
necessary to update any section of a document that is currently being displayed to a
user. Update messages may be Chubby, in which case all information required to fully
update a container is transmitted to a client, or they may be Skinny, in which case the
client is only advised that a container has changed, but is not fully advised as to the
change. The client may mark the container as invalid and subsequently obtain an up-to-
date copy of it from the workspace server.

Similarly, Update messages may be broadcasted to advise clients when
containers are locked and unlocked. A client may be configured to indicate whether a
container is locked by using an indicator on the screen of the client computer.

The Update messages allow each user to see the changes being made to the
workspace soon after they are posted to the workspace server.

The system may also include a master server which regulates the registration
of users, allows users to log into the system and other tasks. Access to each
workspace may be restricted to members of the workspace, each of whom must be or
become a user of the system prior to connecting to the workspace. Typically, a
workspace is used to aggregate related documents. For example, all documents in a
workspace may relate to a specific project, company or patient. The membership in the
workspace may be limited to people who have an interest in the documents.
Alternatively, a workspace may be used to aggregate any group of documents, which
may not have any relationship between them.

Members of a workspace may have different access privileges. For example,
members with owner privileges may be allowed to perform any action in the
workspace, including inviting new members to join the workspace. Members with
worker privileges may be permitted only to edit documents stored within the
workspace. Members with only viewer privileges may be permitted to view documents
but may not be permitied to edit them.

The division of each document into sections affects the granularity with which
different users may edit adjacent sections of a document. In one embodiment, text

10

15

20

25

30

35

WO 02/17115 PCT/CA01/01207

documents are broken into paragraph sections, although this is not necessary. In other
embodiments, sentence or character sections may be used to provide finer granularity.

The documents stored in a workspace may be of many different types. Several
container classes are defined to store documents of different types. In addition, a
series of article classes are defined to store document sections of different data types.
Each container contains an article. Actual section data is stored in the articles. The
structural arrangement of the containers in the container tree corresponds to the
structural arrangement of the sections in a document. The selection of the article
within each container corresponds to the data type of the section stored in the article.
For example, in one embodiment, data sections which have a natural "next" and
"previous" relationship between them, such as paragraphs in a text document, are
stored in a series of containers connected as a linked list. In the same embodiment,
data sections within a document which do not have such a natural relationship are
stored as independent children of a common parent container. For example, text and
shape elements on a slide presentation are stored in separate containers which are not
linked to one another.

Documents may have many different types of data within them. In one
embodiment of the present invention, a primary data type is selected for each document
and the primary container structure corresponds to the primary data type. Data of
other types may be embedded in the document and are stored using a container
structure that corresponds to the data type and structure of the embedded data.
Similarly, the articles used to store the data sections of the embedded data will depend
on the data type of those sections.

A particular embodiment of the present invention may be configured to support
documents having various types of data. In one embodiment, documents of an
unsupported data type may be stored within the container tree as generic documents.
A parent container is created to store information about the generic document. The
parent container has a single child container that includes a data buffer article. The
generic document is stored within the data buffer article. A user may lock the child
container and then download and edit the document using an editor not provided with
the embodiment. The edited document may then be uploaded and stored within the data
buffer and the lock may be released. This allows users to store and access generic
documents as part of the embodiment.

In another embodiment, a generic document may be divided into separate parts,
each of which may be stored in a separate child container of the parent article, and
each of which may be independently locked for editing by different users.

10

15

20

25

30

WO 02/17115 PCT/CA01/01207

Additional aspects of the present are described in the following description of
several embodiments of it.

Brief Description of the Drawings

A preferred embodiment of the present invention will now be described in detail
with reference to the drawings, in which:

Figure 1 is block diagram of an embodiment of a simultaneous multi-user
document editing system according to the present invention;

Figure 2 illustrates a text document used to illustrate the structure and operation
of the embodiment of Figure 1;

Figure 3 illustrates a presentation document used to illustrate the structure and
operation of the embodiment of Figure 1;

Figures 4, 5 and 6 illustrate a workspace of the embodiment of Figure 1;

Figure 7 illustrates a hierarchy of container classes of the embodiment of Figure

Figure 8 illustrates a hierarchy of article classes of the embodiment of Figure 1;

Figure 9 illustrates the storage of a generic document in accordance with the
present invention;

Figure 10 illustrates a header file of the present invention;

Figure 11 illustrates a document file of the present invention;

Figure 12 illustrates a login transaction according to the present invention;

Figure 13 illustrates a Create Workspace transaction according to the present
invention;

Figures 14a and 14b illustrates a method of connecting to a workspace
according to the present invention;

Figure 15 illustrates a method of creating a new document in a workspace
according to the present invention;

Figure 16 illustrates a View/Edit Document transaction according to the present
invention;

Figure 17 illustrates a Post transaction according to the present invention;

Figure 18 illustrates a method for processing an Update message according to
the present invention;

Figure 19 illustrates a method for conducting a presentation according to the
present invention; and

Figure 20 illustrates a client of Figure 1.

10

15

20

25

30

35

WO 02/17115 PCT/CA01/01207

Detailed Description of Embodiments of the Invention

Reference is first made to Figure 1, which illustrates one exemplary embodiment
of a collaborative document editing system 100 according to the present invention.
System 100 includes a file system 104, a user database 106, a workspace database
108, one or more master servers 110a, 110b, ..., one or more workspace servers
112a, 112b, ..., a communication network 114 and one or more clients 116a, 116b,

Master servers 110 and workspace servers 112 are software processes (or
tasks) that may operate on a single computer or may be distributed among various
computers. For example, one master server 110a and one workspace server 112a
may operate on a first server computer 118a, while another workspace server 112b
operates on a second server computer 118b. Master servers 110 and workspace
servers 112 are coupled to communication network 114. System 100 may include any
number of master servers 110 and workspace servers 112. Each master server 110
and workspace server 112 will operate on a server computer 118. More than one
master server 110 and workspace server 112 may operate on a particular server
computer 118.

Clients 116 are computer processes that will typically operate on separate client
computers 119, although one or more clients may operate on a single computer 119.
Clients 116 may also operate on one or more server computers 118, although this is not
illustrated in Figure 1. Each client 116 is coupled to communication network 114,
allowing the client 116 to communicate with any master server 110 and any workspace
server 112.

File system 104 is used to store one or more workspaces 122a, 122b, ..., 122n.
Each workspace 122 includes a data structure used to store one or more documents
and a data structure used to store information about one or more members of the
workspace. (In this description, the term "document" refers generally to any complete
data object such as: a text document; an image; a stream of video or sound data; a
movie incorporating both video and sound; a "white board" document incorporating
various shapes and/or text; a presentation that may include a plurality of slides, each of
which incorporates various shapes, backgrounds and text. Many other types of
documents may be stored within a workspace.)

Workspace database 108 is used to store information about each workspace
122 stored in file system 104.

Master server 110a and workspace server 112a communicate with file system
104 and workspace database 108 using an internal communication link 120 within
server computer 118a. File system 104 and workspace database 108 are also coupled

10

15

20

25

30

35

WO 02/17115 PCT/CA01/01207

to network 114 allowing master servers 110 and warkspace servers 112 located on
other server computers 118, such as workspace server 112b located on server
computer 118b, to communicate with file system 104.

User database 106 is used to store information about users 102, who are
typically people that use clients 116 to access data stored in workspaces 122. The
structure of user database 106 is described further below.

File system 104, user database 106 and workspace server 108 may be stored
on a data storage device 121, which may be a magnetic or optical data storage device
or any other type of data storage device or system. In the present exemplary
embodiment, this data storage device is located within server computer 118a. In
another embodiment of a system according to the present invention, the data storage
device may be located in any server computer and in fact file system 104 and user
database 106 may be located in separated data storage devices on different server
computers 118a. Server computers 118 other than the specific server computer 118
on which the data storage device is located may access it as an external device
through network 114.

Several exemplary documents that will be used to explain the structure and
operation of the present invention will now be described.

Figure 2 illustrates an exemplary text document 190. Text document 190 has
five paragraphs 192a, 192b, ..., 192e and includes an embedded image and an
embedded table. Paragraphs 192a, 192c¢, and 192e contain only text. Paragraph 192b
comprises text and an embedded graphic image 194. Paragraph 192d comprises no
text and an embedded table 196. Graphic image 194 is a rectangular image with a size
of 100 x 150 pixels. Table 196 has a 2 x 3 array of cells which contain text (including
numerical text) and other data, including formulae used to calculate the value of cells
based on the content of other cells. ,

Figure 3 illustrates an exemplary presentation document 200. In this description,
a presentation document refers to a collection of slides or screens which may be
displayed sequentially or in any order. Some or all of the slides may share some
common elements, such as a background image or shading and default shapes. Each
slide will typically also have some unique content, such as text, images, video, sounds,
etc. Presentation document 200 has three slides 202, 204 and 206. Slides 202 and
204 share two common compaonents: a corporate logo 208 and vertical line 210. Slide
202 has some text 212, consisting of paragraphs 214a, 214b and 214¢. Slide 204 has
an arrow shape 216 and an audio/video clip 218. Slide 206 has a graphic image 220.

10

15

20

25

30

35

WO 02/17115 7 PCT/CA01/01207

The present invention utilizes a concept of breaking down documents into
smaller, independently editable sections. For example, a text document may be broken
down into paragraphs. Similarly, an image document may be broken down into blocks
of pixels, a table document may be broken down into cells, and a presentation
document may be broken down into slides, which may be broken down further into
constituent components such as text, image, video, sound, table, shape and other
elements. Depending on the size or structure of a document, it may treated as having
as single editable section. For example, a text document that includes a single
paragraph may have only one editable section.

The method by which a particular document is broken down depends on the
nature of the document and on the desired degree of "granularity”, which regulates the
fineness of independent multi-user editing. For example, a text document in the present
embodiment is broken down into independently editable paragraph sections. If, in an
alternative embodiment, increased granularity is desired, a text document could be
broken down into independently editable sentence, word or even character sections.
The use of smaller sections may decrease the efficiency of system 100, depending on
the amount of data which must be communicated between a client 116 and a
workspace server 112 to allow a user to view and edit each section (in methods 1000
— 1700, Figures 13 to 19). For example, depending on the selection of network 114, a
larger or smaller packet of data may have to be communicated for each section. If the
section size is selected to be very small (i.e. a character in a text document), then the
network communication overhead may become a bottleneck, preventing efficient use of
the system. In system 100, paragraph sized sections have been selected as an
efficient compromise for a text document.

Each section of a document may be independently locked by a user 102.
Different users may lock adjacent (or separated) sections, and independently edit them.
Reference is next made to Figures 4, 5 and 6, which illustrate a specific
workspace 122a, which is exemplary of the structure of all workspaces 122 according

to the present invention. Workspace 122a includes a container tree 124 and a member
list 143.

Container tree 124 is a tree data structure with a root node 126 at its head.
Each node in workspace 122a consists of a container 140, which is a data structure.
Containers 140 at different nodes may have different structures, depending on the
relationship between the container 140 and its parent, siblings, and children. Each
container 140 stores an article 142, which in turn stores independently editable data.
Articles 142 stored in different containers 140 may also have different structures,

10

15

WO 02/17115

PCT/CA01/01207

depending on their specific contents. (In Figures 4, 5 and 6, many containers 140 and
articles 142 are not identified with these reference numerals to avoid cluttering the

Figures.)

The root node 126 of the container tree 124 comprises a root container 400 that
stores a root article 402. The root node 126 of container tree 124 has two child nodes,
which comprise containers 404 and 406. These "first-level" children of root container

400 are the "parent containers" 410 of document sub-trees 412 and 414. Each

document sub-tree stores all of the information for a particular document. In the ‘
present example, document sub-tree 412 stores text document 190 and document sub-

tree 414 stores presentation document 200.

Member list 143 includes a linked list of member records 144. Each member

record 144 relates to a person who has been given access privileges to workspace
122. The person may be a user 102 of system 100 or may have been invited to join the
workspace 122, but has not yet registered as a user of system 100.

Reference is next made to Figure 7, which illustrates a hierarchy of container

data structures. In this exemplary embodiment of the present invention, each container

data structure is defined using object oriented concepts.

A Container class 300 includes the following fields:

Field
container_id

container_parent

container_lock_handle

container_excluded_handle_list

container_article

Usage
Record an identifier for the container 140. This

identifier is unique with respect to all containers in
the workspace 122 and may be unique with
respect to all workspaces 122.

A pointer to the parent container of the container
140. The root container 400 of a container tree
124 does not have a parent container, and this
field may be Null.

Used to lock the container 140 and to identify a
user 102, if any, that has locked the container 140.
Used to identify users 102 that are not permitted to
access the container 140 or the article 142
contained within it.

A pointer to the article 142 contained within the
container. Typically, the article 142 will be a
separate data structure that is associated with the

—10 —

WO 02/17115 PCT/CA01/01207

container through this pointer. Alternatively, this
field may be defined as a data buffer of any data
type or structure.

container_article_length Used to record the length of the article 142
associated with the container 140. This will
typically be measured in bytes or another measure
associated with the article.

container_valid Used by a client 116 to identify whether the
container 140 and/or article 142 associated with
the container 140 has been modified by a different
client 116, requiring the first client to download an
updated version of the container 140 before
displaying its contents.

container_time_stamp Used to record the last time that the container 140

| was updated in file system 104.

A number of container classes inherit the structure of Container class 300 and
add additional fields to it. A List_Container class 302 maintains a list of child containers
and is used to store documents (or parts of documents) that may be broken down into

5 sections that have a natural “next” and “previous” relationship between them.
List_Container class 302 inherits the structure of Container class 300 and adds the
following data fields:

Field Usage
list_head_pointer A pointer to a container 140 at the head of the list

of child containers 140.
list_tail_pointer A pointer to the container 140 at the tail of the list
of child containers 140.

10 An Array_Container class 304 maintains an array of child containers and is
used to store documents (or parts of documents) that may be broken down into
sections that may or may not have an ordered relationship between them. The array of
child containers may have any number of dimensions and each dimension may have
any size. Array_Container class 304 inherits the structure of Container class 300 and

15 adds the following fields:

-11 -

10

15

WO 02/17115 PCT/CA01/01207

Field Usage

array_dimensions Record the number of dimensions and the size of
each dimension in the array of pointers to child
containers.

child_array Record an array of pointers to child containers

140. In the present exemplary embodiment of the
present invention, this array is stored in a
growable array, which may be expanded in any
dimension, or by adding additional dimensions.
Alternatively, a reference to each child container
may be stored in a fixed length array of pointers or
it may be a linked list of pointers.

A Childless_Container class 306 inherits the structure of Container class 300.
A Childless_Container class 306 does not have any child containers.

A group of container classes, which are collectively referred to as sibling
containers, are used to form the list of child containers of a List_Container class 302.
A Sibling class 310 is defined to store information common to child containers of a
List_Container class 302 and has the following fields:

Field Usage
list_previous_pointer Points to the previous sibling container in the

doubly linked list. In the head sibling container in
the doubly linked list this field will typically be Null.

list_next_pointer Points to the next sibling container in the doubly
linked list. In the tail sibling container in the doubly
linked list this field will typically be Null.

A document that is desirably stored using sibling containers may include a
portion that is best represented using one or more List_Containers 302 that also have a
sibling relationship between them. A sibling relationship is a natural "next" and
"previous” relationship between sections of a document. For example, successive
paragraphs in a text document have a sibling relationship based on their order within
the text document. A sibling container Sibling_List_Container class 312 is defined
which may be used as part of a list of sibling containers, and which may also have its
own list of child sibling containers. The Sibling_List_Container class 312 inherits the
structure of both the Sibling class 310 and List_Container class 302.

-12 -

10

15

20

25

WO 02/17115 PCT/CA01/01207

A document that is desirably stored using sibling containers may also include a
portion that is best represented using one or more Array_Containers 304. A sibling
container Sibling_Array_Container class 314 is defined for this purpose that inherits the
structure of both Sibling class 310 and Array_Container class 304.

A Sibling_Childless_Container class 316 is defined that inherits the structure of
both Sibling class 310 and Childless_Container class 306. The
Sibling_Childless_Container class 316 may be used as part of a list of sibling containers
but has no child containers.

Container classes List_Container 302 and all containers that inherit the structure
of Sibling class 310 may be used to store documents (or parts of documents) that can
be divided into portions with a linear relationship between them. These sibling
container classes have been described as part of a doubly linked list. The present
invention is not limited to the use of a doubly linked list and any other data structure for
maintaining a list of elements may be used. For example, the relationship between
sibling containers may be represented as a singly linked list or an array of elements.
The particular structure of containers 140 used to construct a particular workspace
122 will depend on the type and structure of the documents to be stored in the
workspace 122.

Reference is next made to Figure 8, which illustrates a hierarchy of article data
structures. Articles 142 are used to store sections of documents. In this exemplary
embodiment, the structure of each article 142 is defined using object oriented
principles.

An Article class 340 includes the following fields which enables all article types
that inherit its structure to be embedded in other elements:

Field Usage
article_window Used to record the position and dimensions,

relative to another element, of the window in
which the article is displayed, if the article
describes data that is embedded in a document, in
contrast to data which is part of the main data of a
document; If the article is not embedded within a
document of a different type, this field will typically
be Null.

Several article classes are defined to store the different data types to be
included within a container tree 124.

—13 -

WO 02/17115 PCT/CA01/01207

A Text_Atrticle class 342 is used to record information about text data.
Text_Article class 342 inherits the structure of Article class 340 and adds the following

field:
Field Usage
text_attributes Record default text attributes for text data such as

typeface, font size and color, style (such as bold,
italic and underline), alignment, line spacing and
bullet style (if any).

° An Image_Article class 344 is used to record information about graphic image
data. Image_Article class 344 inherits the structure of Article class 340 and adds the
following fields:
Field Usage
image_attributes Record image information such as the width and
\ height in pixels, color model, number of bits per
pixel, horizontal and vertical resolution,
compression information.
image_thumbnail Record a thumbnail version (i.e. a smaller version)
of the entire graphic image.
10
A Table_Article class 346 is used to record information about table type data.
Table_Atrticle class 346 inherits the structure of Article class 340 and adds the
following field:
Field Usage
table_attributes Record table information such as the number of
rows and columns and the preferred cell sizes.
10 An AV_Clip_Article class 348 is used to record information about audio/video
clips. An audio/video clip may be composed of only audio data, only video data or a
combination of audio and video data. AV_Clip_Article class 348 inherits the structure
of Article class 340 and adds the following fields:
20
Field Usage
AV_format Record the format in which the audio/video data is

stored, including compression/ decompression
method, sample depth and rate.

—14 -

10

15

WO 02/17115 PCT/CA01/01207

AV_length Record the length of the audio/video clip in
seconds (or alternatively using another measure,
such as the number of frames in the audio/video

clip).

Referring briefly to Figure 4, each document sub-tree is headed by a parent
container 410 (i.e. containers 404 and 406). The structure of each sub-tree will
depend on the type and contents of the document stored in the sub-tree. A single
document may contain many types of data. For example, text document 190 includes
an image 194 and a table 196 (Figure 2). The primary data type of text document 190 is
text, and it includes "image" and "table" type data within it. Text_Article class 342,
Image_Article class 344, Table_Article class 346 and AV_Clip_Article class 348 may be
used to include, respectively, text, image, table, and audio/visual type data within a
document sub-tree for a document that has been identified has having a different
primary data type. Another embodiment of the present invention may incorporate
additional article classes to store other types of data.

A number of article classes are defined to store summary information relating to
a workspace or an entire document (depending on the primary data type of the
document). A Summary class 350 is defined to store information common to such
article classes and has the following fields:

Field Usage

summary_title Record the title or caption of the workspace 122 or
document.

summary_description Record a description of the workspace 122 or

» document.

summary_keywords Record searchable keywords pertaining to the
workspace 122 or document.

summary_log Record log entries made by workspace members
over the lifetime of the workspace 122 or
document.

summary_history Record the date, time and user handle for

important events in the lifetime of the workspace
122 or document, including its creation. In another
embodiment, other information may be stored in
this information.

—15—

WO 02/17115 PCT/CA01/01207

To record information about a workspace 122, a Workspace_Article class 354
is defined that inherits the structure of both Article class 340 and Summary class 350
and adds the following fields:

5
Field Usage
document_count Record the number of documents in the

workspace 122. This field is optional and in
another embodiment, it may be omitted. The
number of documents in a workspace may be
determined by counting the number of child
containers 140 of root container 400 (Figure 4) of
the workspace 122.

To record information about primarily text type documents, a
Text_Document_Article class 356 is defined that inherits the structure of both
10 Text_Article class 342 and Summary class 350 and adds the following fields:

Field Usage

text_document_format Record formatting information such as page size
and orientation, margins.

text_document_statistics Record statistics such as paragraph and word
count.

To record information about primarily image type documents, an
Image_Document_Article class 358 is defined that inherits the structure of both

15 Image_Article class 344 and Summary class 350.

To record information about primarily table type documents (which may be
referred to as spreadsheet documents), a Table_Document_Article class 360 is
defined that inherits the structure of both Table_Article class 346 and Summary class
350.

20 To record information about primarily audio/visual type documents, an
AV_Clip_Document_Article class 362 is defined that inherits the structure of both
AV_Clip_Article class 348 and Summary class 350.

Additional document article classes may be defined in accordance with the
present invention for data types that will typically not be found within a document that

25 is of another data type. For example, a Presentation_Document_Article class 364 is

-16 —

10

15

WO 02/17115) PCT/CA01/01207

defined in the instant embodiment to record information about entire presentation
documents. Presentation_Document_Article class 364 inherits the structure of both
Article class 340 and Summary class 350 and adds the following fields:

Field . Usage
slide_order_table Record the display order of slides in the

presentation using the slide_identifier of each slide
in a container of class Slide_Article 366 (described
below).
default_background Record default background color or gradient to be
displayed on newly created slides.
default_title_properties Record default position and font attributes of text
to be displayed on newly created title slides.
default_text_properties Record default position and font attributes of text
to be displayed on newly created text slides.
default_shapes Record a collection of graphical elements to be
displayed by default on newly created slides.
current_slide Record the slide currently being displayed in an
active presentation (i.e. it is currently being
presented); when the presentation is not active,
this field will be -1. The operation of an active
presentation is described below in relation to
method 1700 on Figure 19.

The present exemplary embodiment supports the storage of generic documents
which are of a data type that is not otherwise supported by the embodiment. A
Generic_Document_Article class 352 is defined to store information about generic
documents. Generic_Document_Article class 352 inherits the structure of Article class
340 and Summary class 350.

If in a particular embodiment of the present invention, it is desirable to allow
presentation type data to be embedded within a document of a different primary data
type, then a Presentation_Article class having the fields described above for
Presentation_Document_Article class 364 with the structure of Article class 340 and
without the structure of Summary class 350 could be defined.

A number of article classes are defined for data types that, in the present
embodiment of the invention, appear only within documents that have a different
primary data type.

- 17 —

WO 02/17115 ~ PCT/CA01/01207

A Slide_Article class 366 is defined to store the information relating to slides in a
presentation document. Slide_Article class 366 inherits the structure of Article class
340 and adds the following fields:

Field Usage
slide_identifier Record the unique identifier of the slide within the

presentation. In this exemplary embodiment, the
unique container_id of the of the container within
which the Slide_Atrticle is contained. In another
embodiment, this field may be set in a different
manner. In another embodiment where the
container_id is used for this field, the field may be
omitted and the container_id field of the container
may be used in an equivalent manner.

slide_type Record the type of slide (such as title, text slide or
blank) to guide the default display and attributes of
slide-specific elements. In the present exemplary
embodiment, several standard slide types are
defined, including text, title and blank slides. The
format of all slides of a particular type may be
modified by modifying an associated default slide
format.

slide_background Record the background color or gradient if it
differs from the default stored in the
default_background field of an associated
Presentation_Document_Article class 364.

default_shapes_flag Record a flag indicating whether or not the default
shapes stored in the default_shapes field of an
associated Presentation_Document_Article class

364 are to be displayed.
advancement_effect Record the type of graphical effect to be used as
the slide is advanced during a presentation.
advancement_interval Record the time interval for automatic slide
advancement.

—18 -

WO 02/17115 7 PCT/CA01/01207

To record information about graphical shapes that are embeddable in slides, a
Shape_Article class 368 is defined that inherits the structure of Article class 340 and
adds the following fields:

Field Usage

shape_type Record the type of shape (line, rectangle, ellipse,
arrow etc).

shape_attributes Record shape-specific information, such as major

and minor semiaxis in the case of an ellipse,
required to create an instance of the shape.

A Paragraph_Article class 370 is used to store character and formatting
information for a paragraph of text. Paragraph_Article class 370 inherits the structure
of Article class 340 and adds the following fields:

Field Usage
character_data Record an array of character data for the

paragraph.
formatting_data Record differences in the character formatting
between the data in the character_data field and
the default attributes set out in the text_attributes
field of an associated Text_Article 342. In the
present embodiment, this is done by recording the
type of formatting change and the offset from the
beginning of the character_data field at which the
change occurs. For example, a formatting attribute
that applies to all data in the character_data field
begins at offset 0. In an alternative embodiment,
this field may be omitted and formatting data may
be embedded within the character_data field.
change_tracking_data Record array offsets, member handies and time
stamps of editing changes.
10
A Pixel_Article class 372 is used to store pixel data for graphic images.
Pixel_Article class 372 inherits the structure of Article class 340 and adds the following
field:

Field Usage

-19 -

WO 02/17115 PCT/CA01/01207

pixel_data Record pixel data for a graphic image.

A Cell_Article class 374 is defined to store data for cells within tables (or
spreadsheets). Cell_Article class 374 inherits the structure of Article class 340 and
adds the following field:

Field Usage
cell_data contains a data value for the cell, which may be

alphanumeric or a formula for calculating a value
for the cell, which may be based on the value of

10

15

20

25

30

other cells.

An AV_Data_Article class 376 is used to store segments of audio/video clips or
movies. AV_Data_Article class 376 inherits the structure of Article class 340 and adds
the following field:

Field Usage
av_data Record the audio/video data for the segment.

A Data_Article class 378 is used to store data associated with generic
documents. Data_Article class 378 inherits the structure of Article class 340.

The present invention is not limited to the use of objected oriented techniques to
define the structure of containers 140 and articles 142 and any mechanism for defining
data structures having the same operation and function as those described above may
be used. For example, independent data structures may be defined for each container
and article subclass. Alternatively, independent variables may be defined for each field
in a data structure, without formally defining the structural relationship of the fields.

The data of a document may be divided between different types of articles 142.
For example, the appearance of a slide in a presentation document may depend on the
contents of a Presentation_Document_Article 364 (in particular, the default_background
field, default_text_properties field, and default_shapes field), a Slide_Article 366 (in
particular, the slide_background field and default_shapes field), and several
Shape_Atrticles 368.

The data of a document may alternately be stored within a single article 142.
Articles 370, 372, 374 and 376 have been described as being used to store
independently editable subdivisions of a document. In fact, an article, such as articles
370, 372, 374 and 376, may store all of the editable data within a document. For
example a short text document may be stored in a single Paragraph_Article 370.

- 20 -

10

15

20

25

WO 02/17115 PCT/CA01/01207

Reference is again made to Figures 4, 5 and 6, which illustrate exemplary
workspace 122a. Workspace 122a is used to store exemplary text document 190 and
exemplary presentation document 200. The root node 126 of workspace 122a
comprises root container 400 of class Array_Container 304 (Figure 7). The
container_article field of container 400 contains (or includes a pointer that points to) a
root article 402 of class Workspace_Article 354 (Figure 8). Container 400 has the
following contents:

Field Contents
container_id 1234
container_parent Null
container_lock_handle Null
container_excluded_list_handle Null
container_article 402
container_article_length 724 bytes
container_valid TRUE
container_time_stamp June 10, 2001 : 13:36:43
array_dimensions 2x1
child_array [404 406]

Root container 400 has a unique container_id of 1234. The unique container_id
is assigned to each container 140 when the container 140 is created, as is described
below. The container_parent field of container 400 has a value of Null, since root
container 400 is at the root node 126 of container tree 124 and accordingly has no
parent container. The container_lock_handle of root container 400 also has a value of
Null, indicating that container 400 is not locked by any user 102. The
container_excluded_handle_list also has a value of Null, indicating that no user 102 is
excluded from accessing root container 400. (Access to root container 400 and the
remainder of container tree 124 is also regulated by membership in workspace 122,
which is described below.) The container_article field of root container 400 points to
article 402, which has a length of 724 bytes (as indicated by the
container_article_length field). The container_valid field has a value of TRUE, indicating
that the contents of the container 400, and the associated article 402 have not been
changed by a client 116. The container_time_stamp field records that the container 400
was last updated in file system 104 on June 10, 2001 at 13:36:43. The
array_dimensions field indicates that the array of child containers 140 is one
dimensional and contains two elements in its sole dimension. The child_array field

21—

WO 02/17115 PCT/CA01/01207

contains a one dimensional array storing pointers to containers 404 and 406 as child
containers of container 400.

Root article 402 is of class Workspace_Article 354 and has the following
contents:

Field Contents

article_window Null

summary_title Exemplary workspace
summary_description Exemplary workspace for patent application
summary_keywords exemplary, patent

summary_log June 7, 2001, 11:06:14 rpw1: | created this

workspace to store documents relating to my

10

15

20

25

patent application
summary_history June 7, 2001: 11:04:27, rpw1, CREATE
document_count ‘ 2

The article_window field of root article 402 is Null, indicating that the root article
402 is not embedded within a document having a data type different from data of the
root article 402. Root article 402 identifies the name of workspace 122 as “Exemplary
workspace” (in the summary_title field), describes the workspace as “Exemplary
workspace for patent application” (in the description field). The keywords field of root
article 402 indicate that workspace 122b can be searched for by using the keywords
“‘exemplary” and “patent” using a workspace searching engine built into master server
110. (The structure and operation of the workspace searching engine is typical and
will be understood by skilled persons and are not described in detail. Typically,
workspace searching engine may be activated from any screen of a client 116, which
is described in greater detail below.) The summary_log field records the first entry in
the log. The summary_history field records the date and time of the “CREATE” event
and the workspace creator’s handle. The document_count field indicates that there are
two documents in the workspace.

The root container 400 of a container tree 124 has one child container for each
document that is stored in the workspace 122. Each of the child containers of the root
container is a parent container 410 of a document sub-tree that stores the contents of
the associated document. In workspace 122a, root container 400 has two child
containers 404 and 406. Containers 404 and 406 are parent containers 410,
respectively, for document sub-tree 412, in which text document 190 is stored, and for

—22_

10

15

20

25

WO 02/17115 PCT/CA01/01207

document sub-tree 414, in which presentation document 200 is stored. The article
contained within each parent container 410 is referred to as a parent article.

.In the present embodiment, text documents, such as document 190 are broken
down into paragraph sections. The order of paragraphs in a text document is defined
by their order of appearance in the document, and each paragraph may be said to have
a "previous" and "next" relationship with its adjacent paragraphs. (The first paragraph
has no "previous" paragraph and the last paragraph has no "next' paragraph.) The
previous and next ordering of paragraphs is maintained in document sub-tree 412 by
storing the paragraph sections in a linked list formed of sibling containers 140. The
storage of text document 190 in document sub-tree 412 will now be explained with
reference to Figure 5.

Parent container 404 is of class List_Container 302 and has the following
contents:

Container 404 (Class List_Container 302)

Field Contents
container_id 2123
container_parent 400
container_lock_handle Null
container_excluded_handle_list Null
container_article 416
container_article_length 786 bytes
container_valid TRUE
container_time_stamp June 20, 2001 : 08:54:17
list_head_pointer 420
list_tail_pointer 436

The container_id, container_parent, container_lock_handle,
container_excluded_handle_list, container_article_length, container_valid and
container_time_stamp fields are analogous to the corresponding fields of root container
400. The container_article field points to article 416, which is of class
Text_Document_Article 356. As illustrated in Figure 5, container 404 has five child
containers: containers 420, 424, 428, 432 and 436, which formed a list. The
list_head_pointer field of container 404 points to container 420, the first container in the
list and the list_tail_pointer field of container 404 points to container 436, the last
container in the list.

—23

10

15

20

WO 02/17115 PCT/CA01/01207

Parent article 416 is of class Text_Document_Article 356, indicating that the
document stored in sub-tree 412 is a text document. Parent article 416 has the
following contents:

Article 416 (Class Text_Document_Article 356)

Field Contents

article_window Null

text_attributes Arial, 12 point, black, left justification, single
spacing

summary_title Patent Description

summary_description Description of Thoughtslinger collaborative editing
system

summary_keywords collaborative, editing

summary_log June 10, 2001, 16:52:33 cs1: Began writing

description of system

June 15, 2001, 04:23:12 cs1: Finished first draft
summary_history June 10, 2001, 16:50:32 cs1: CREATE
text_document_format 8.5 x 11 paper, portrait orientation, top margin: 1

inch; left margin: 1 inch; right margin 0.5 inches;

bottom margin: 1.5 inches; page number: (format:

"4#-", position bottom center)
text_document_statistics 7234 words; 511 lines; 103 paragraphs

The text_attributes field indicates the default format for each section of the text
document 190. The text_document_format indicates the document format of document
190. The text attributes of text data within document 190 may be changed and any
such changes are stored in containers 420, 424, 428, 432 and 436. The
text_document_statistics field indicates the number of words, lines and paragraphs
contained in the document 190. The summary_title field sets out the title of document
190. The remaining fields of article 416 are analogous to those of article 404.

As described above, the present exemplary embodiment divides text document
190 into paragraph sections for storage in its document sub-tree 412. Text document
190 contains 5 paragraphs 192a — 192e. Accordingly, the text of text document 190 is
stored in the 5 child containers of container 404: 420, 424, 428, 432, 436.

Container 420, which is at the head of the list of child containers 420, 424, 428,
432, 436 of container 404 is of class Sibling_Childless_Container 316 and has the
following contents:

— 24 —

10

15

20

WO 02/17115 PCT/CA01/01207

Container 420 (Class Sibling_Childless_Container 316)

Field Contents
container_id 3123
container_parent 404
container_lock_handle Null
container_excluded_list_handle Null
container_article 422
container_article_length 4323 bytes
container_valid TRUE
container_time_stamp June 19, 2001 : 17:35:14
list_previous_pointer Null
list_next_pointer 424

The list_previous pointer of container 420 is Null since it is the first container in
the list of sibling child containers of parent container 404. The list_next_pointer of
container 420 points to container 424. The container_article 420 field points to article
422, which has a length of 4323 bytes (as indicated by the container_article_length
field). Article 422 is of class Paragraph_Article 370 and has the following contents:

Article 422 (Class Paragraph_Article 370)

Field Contents

article_window Null

character_data <Text of paragraph 192a>

formatting_data offset 23: bold+italic on; offset 39: bold+italic off
change_tracking_data offsets 17-35: rpw1, delete, 10-7-2001 14:22:16

The article_window field of article 422 is Null, indicating the data in article 422 is
part of the main body of text document 190. The character_data field contains the text
of paragraph 192a. This text is initially presented in accordance with the text
formatting set out in the text_attributes field of article 416.

The formatting_data field is used to modify the initial text and document
formatting. The formatting_data indicates that, beginning with the 23" character from
the beginning of the character_data, the text is to be bolded and italicized. These
formatting attributes are to be turned off beginning with the 39" character in the
character_data. The change_tracking_data field indicates that text in the range
between offsets of 17 and 35 characters from the beginning of the character_data
was deleted by a user with the user_handle rpw1 on July 10, 2001 at 14:22:16. The

— 25—

10

15

WO 02/17115 PCT/CA01/01207

use of the formatting_data and change_tracking_data fields to specify formatting
changes and to track editing changes in the character_data is optional. Alternatively,
such information may be embedded within the character_data itself at the offsets
specified in the formatting_data and change_tracking_data fields.

The second paragraph of text document 190, paragraph 192b (Figure 2), is
stored in container 424 (and its children). Container 424 is of class
Sibling_Array_Container 314 and has the following contents:

Container 424 (Class Sibling_Array_Container 314)

Field Contents
container_id 3124
container_parent 404
container_lock_handle Null
container_excluded_list_handle Null
container_article 426
container_article_length 2326 bytes
container_valid TRUE
container_time_stamp June 26, 2001 : 14:22:16
list_previous_pointer 420
list_next_pointer 428
array_dimensions 1x1
child_array [440]

The text of paragraph 192b is stored in article 426, which is similar to article
422. The contents of article 426 are set out in Appendix A. In addition to text,
paragraph 192b also contains a graphic image 194. The present embodiment stores
graphic images using an Array_Container 304 (Figure 7) having one or more child
containers to store the graphic image. Graphic image 192 is stored using container 440
and its child containers. Container 440 is the only child of container 424 and is of class
Array_Container 304 (Figure 7) and has the following contents:

Container 440 (Class Array_Container 304)

Field Contents
container_id 4123
container_parent 428
container_lock_handle Null
container_excluded_list_handle Null
container_article 442

- 26—

10

15

20

WO 02/17115 PCT/CA01/01207

container_article_length 234 bytes
container_valid TRUE
container_time_stamp June 20, 2001 : 08:14:09
array_dimensions 2x2
child_array 444 448

[452 456J

Container 440 contains an article 442 and the child_array defines a two by two
array of pointers to child containers 444, 448, 452, 456. Article 442 is of class
Image_Article 344 (Figure 8) and has the following contents:

Article 442 (Class Image_Article 344)

Field Contents
article_window x=175, y=0, width=200, height=100
image_attributes width: 100; height: 150; model: RGB color; bits per

pixel: 24; horizontal resolution: 300 pixels per inch;

vertical resolution: 300 pixels per inch;
compression: JPEG
image_thumbnail JPEG Thumbnail data

The article_window field of article 442 is used to define the position at which
graphic image 194 is displayed relative to paragraph 192b, in which graphic image 194
is embedded. The article_window field indicates that graphic image 194 is to be
displayed in a 200 x 100 pixel window positioned 175 pixels right and 0 pixels down
from a selected anchor point in paragraph 192b. Typically, the anchor point will be the
upper left corner of the paragraph, although any other anchor point may be used. The
article_window field may also be used to define attributes of the window such as the
anchor point, the color and thickness of a border for the window, the spacing between
the edge of the window and the graphic image, etc. A skilled person will be capable of
selecting appropriate attributes for any particular embodiment of the present invention
and for any particular graphic image.

The image_attributes field of the article 442 is used to define attributes of
graphic image 194. Graphic image 194 is defined as a 100 x 150 pixel image using a 24
bit RGB color model with horizontal and vertical resolutions of 300 pixels per inch. The
image is stored using JPEG compression. The image_thumbnail field stores the
thumbnail image data which may be used as an icon for graphic image 194 or for other
purposes.

—27—

10

15

20

WO 02/17115 PCT/CA01/01207

When graphic image 194 is displayed, it may be shrunk or stretched horizontally
and vertically to fit its dimensions into the window in which it is displayed. In this
example, graphic image 194 has an actual size of 100 x 150 pixels and will be
displayed in a window of 200 x 100 pixels. To accomplish this, graphic image 194 will
have to be horizontally stretched and vertically compressed.

Container 440 has four child containers 444, 448, 452, 456, each containing an
article of class Pixel_Article 372. Container 444 and its article 446 have the following
contents:

Container 444 (Class Childless_Container 306)

Field Contents

container_id 5890

container_parent 440

container_lock_handle Null

container_excluded_list_handle Null

container_article 446

container_article_length 11250 bytes

container_valid TRUE

container_time_stamp June 20, 2001 : 08:14:09

Article 446 (Class Pixel_ Article 372)

Field Contents

article_window Null

pixel_data <50 x 75 pixel image — upper left section of image
194>

The pixel_data field of article 446 contains a 50 x 75 pixel image, which
corresponds to the upper left section of graphic image 194. The remainder of graphic
image 194 is stored in articles 450, 454 and 458, the contents of which are set out in
Appendix A. Graphic image 194 is thus divided into four sections which may be
fndependently edited.

In an alternative embodiment, a graphic image may be divided into layer sections
rather (or possibly in addition to) pixel block sections. Each layer section would be
stored in a separate container. If the graphic image is divided into layer sections which
are then divided into pixel sections, the Image_Atrticle 344 (or Image_Document_Article

' 358) would have a three-dimensional array of child containers, each of would contain

a Pixel_Article 372.

—28-—

10

15

20

WO 02/17115 PCT/CA01/01207

Paragraph 192c¢ of the text document 190 is stored in container 428 which
includes article 430, the contents of which are set out in Appendix A. The contents of
container 428 and article 430 are analogous to the contents of containers 420 and 424
and articles 422 and 426.

Paragraph 192d (Figure 2) has no text component and includes table 196.
Paragraph 192d is stored in container 432, container 460 and its child containers 464,
468, 472, 476, 480 and 484. Paragraph 192d is divided and stored in a manner similar to
the manner in which graphic image 194 is divided and stored in container 424 and its
child containers. The sub-tree headed by container 432 is set out in Appendix A.

Article 434, which is part of container 432, has the following structure:

Article 434 (Class Paragraph_Article 370)

Field Contents

article_window Null

character_data Null (Paragraph 192d contains no text, although
text may be added in the future)

formatting_data Null

change_fracking_data Null

Since paragraph 192d contains no text, the character_data field of article 434 is
Null. If any text is subsequently added to the paragraph, it will be added to the
character_data field and the change_tracking_data field will be updated accordingly if
change tracking is enabled.

Table 196 has a 2x3 cell array, and is naturally divided into six sections, each of
which corresponds to one cell. Container 432 has a single child container 460 of class
Array_Container 304, which has the following contents:

Container 460 (Class Array_Container 304)

Field Contents

container_id 4124

container_parent 432
container_lock_handle Null
container_excluded_list_handle Null

container_article 462
container_article_length 234 bytes
container_valid TRUE
container_time_stamp June 25, 2001 : 10:58:51
array_dimensions 2x3

—29—

10

15

20

WO 02/17115 PCT/CA01/01207

child_array 464 468
' 472476
480484

Container 460 has 6 child containers 464, 468, 472, 476, 480, 484, each of
which corresponds to one cell of table 196. The appearance of table 196 within
document 190 is defined in article 462, which has the following contents:

Article 462 (Class Table_Article 346)

Field Contents

article_window x=12, y=0, width=200, height=375

table_attributes 3 rows, 2 columns; preferred cell size 100 x 125
pixels

The article_window field of article 462 indicates that table 196 is to bé displayed
in a 200 x 375 pixel window positioned 12 pixels right and 0 pixels down from the
anchor point of paragraphs 192d. The table_attributes field indicates that the 200 x 375
pixel window is to be divided in a 2 column by 3 row array with each cell preferably
having dimensions of 100 pixels by 125 pixels.

Each cell of table 196 is stored in one of the child containers 464, 468, 472, 476,
480, 484 of container 460. Container 464 and its article 466 correspond to the cell at
the (1,1) position of table 196 and have the following contents:

Container 464 (Class Childless_Container 306)

Field Contents

container_id 5894

container_parent 460

container_lock_handle Null

container_excluded_list_handle Null

container_article 466

container_article_length 32 bytes

container_valid TRUE

container_time_stamp June 25, 2001 : 10:54:16-
Article 466 (Class Cell_Article 374)

Field Contents

article_window Null

cell_data <contents of cell (1,1) of table 196>

-30—

10

15

20

25

30

35

WO 02/17115 PCT/CA01/01207

The cell_data field of article 466 contains the contents of cell (1,1) of table 196.
These contents may be text, numeric, a formula that utilizes the contents of other cells
in table 196, or any other type of data object, including a reference to a data object
stored in another location (for example, on the Internet at another location). A cell of a
table may also include data such as a graphic image, which will be stored in the same
manner as graphic image 194: a container such as container 440 will be used to record
the structure and display attributes of the graphic image and one or more child
containers, such as containers 444, 448, 452, 456, will be used to store the graphic
image.

The remaining cells of table 196 are stored in articles 470, 474, 478, 482, 486,
which are set out in Appendix A.

Paragraph 192e of text document 190 is stored in container 436 and article 438
in a manner analogous to the storage of paragraph 192a in container 420 and article
422. Container 436 and article 438 are set out in Appendix A. Since paragraph 192e is
the last paragraph of text document 190, the list_next_pointer of container 436 is Null.

In this manner, text document 190 is stored within document sub-tree 412. The
structure described here for the storage of a text document is only exemplary, and may
be modified depending on the specific requirement of another embodiment of the
present invention. In particular, an alternative embodiment may store a text document
using a document sub-tree with higher or lower granularity, depending the desired
degree of simultaneous editing by different users, while taking into account the
potential efficiency trade-offs mentioned above.

The particular rules by which a document is stored in a sub-tree are pre-
determined for each document type in any embodiment of present invention. In the
exemplary document sub-tree 412, document 190 has been divided into paragraph
sized sections, and non-text data embedded within a paragraph is stored in a set of
child containers below the primary container for the paragraph (i.e. graphic image 194
is stored in container 440 and its children below container 424). This method of
embedding data within a paragraph is not limited to data having a different data type
than the main data type of a document. A text document may have a paragraph with
primary text and embedded text which is to be displayed in a window. Such embedded
text may be stored below the primary container for the paragraph using a
List_Container 302 (since the embedded data is text, which has a natural next and
previous relationship between its sections) which may have one or more child sibling
containers connected in a list to store the sections of the embedded text. Such

—31—

WO 02/17115 PCT/CA01/01207

embedded text may be displayed in a window, the attributes of which will be defined in
the article_window field of a Text_Article 342 within the List_Container 302.
Reference is next made to Figure 6, which illustrates the storage of
presentation document 200 in document sub-tree 414. The parent container 410 of
5 document sub-tree is container 406, which has the following contents:

Container 406 (Class Array_Container 304)

Field Contents
container_id 2124
container_parent 400
container_lock_handle Null
container_excluded_list_handle Null
container_article 418
container_article_length 234 bytes
container_valid TRUE
container_time_stamp July 5, 2001 : 17:12:41
array_dimensions 3x1
child_array [490 494 498]

Container 406 has one child container for each slide 202, 204, 206 in
10 presentation document 200: containers 490, 494, 498.
Container 406 contains an article 418 of class Presentation_Document_Article
364 and having the following contents:

Article 418 (Class Presentation_Document_Article 364)

Field Contents |

article_window Null

summary_title Intellectual Property Presentation

summary_description Presentation relating to patent application

summary_keywords patent

summary_log July 5, 2001, 16:52:33 cs1: Started first draft of
presentation using provisional application

summary_history July 5, 2001, 16:55:00 cs1: CREATE

slide_order_table [3134, 3132, 3133]

default_background vertical gradient, blue (top) to black (bottom)

default_title_properties Helvetica, 16 point, bold, x=20 pixels, y=30 pixels,
width=300 pixels, height=100 pixels

default_text_properties Times Roman, 14 point, round bullet, x=20 pixels,

-32-

10

15

20

WO 02/17115 PCT/CA01/01207

y=100 pixels, width=200 pixels, height=200 pixels
default_shapes line: p1.x=30, p1.y=0, p2.x=30, p2.y=400,

thickness=5, color=red

logo text: “Thoughtslinger”, font=Garamond, 9

point, normal, x=720, y=540, width=40, height=10
current_slide -1 (live presentation not presently underway)

The slide_order_table field defines the display order of the slides in the
presentation document, using the slide_identifier of each slide's associated
Slide_Article. This allows the order of slides in the presentation to be changed by
simply modifying the slide_order_table field. In another embodiment of the present
invention, the order of slides in a presentation document could be defined by the order
in which the container for each slide appears in the child_array field of the parent
container for the document sub-tree (i.e. container 406). In another alternative
embodiment of the present invention, a List_Container 302 could be used as the parent
container of the document sub-tree for a presentation document and the order of slides
could be defined by the position of each slide's associated sibling container in the list of
child sibling containers for the List_Container.

The default_background, default_title_properties, default_text_properties and
default_shapes fields define default properties for the display of the slides of document
presentation 200. The current_slide field indicates that a live presentation is not
currently being conducted using presentation 200.

Slide 202 is stored in container 490 and its children. Container 490 is of class
Array_Container and contains an article 492 of class Slide_Article 366. Container 490
and Article 492 have the following contents:

Container 490 (Class Array_Container 304)

Field Contents

. container_id 3132
container_parent 406
container_lock_handle Null
container_excluded_list_handle Null
container_article 492
container_article_length 1364 bytes
container_valid TRUE
container_time_stamp July 5, 2001 : 17:16:11
array_dimensions 1x1

- 33—

10

15

WO 02/17115

child_array

Article 492 (Class Slide_Article 366)
Field
article_window

slide_identifier
slide_type
slide_background
default_shapes_flag
advancement_effect
advancement_interval

PCT/CA01/01207

[502]

Contents
Null

3132

Text slide

Null (use default background)
TRUE (display default shapes)
Fade through black

3 seconds

Container 490 has a single child container 502. Article 492 defines the
slide_identifier of slide 202 as 01 and indicates that slide 202 is a Text slide. The
slide_background field indicates that the default_background set out in article 418 is to
be displayed on slide 202. The default_shapes_flag indicates that the default shapes
defined in article 418 are to be displayed on slide 202. The advancement_effect
defines the visual effect used to display slide 202 during a presentation. The
advancement_interval field defines the time interval for display of slide 202 during an

automatically advancing presentation.

Container 502 is of class List_Container 302 and contains an article 504 of
class Text_Article 342. Container 502 and Article 504 have the following contents:

Container 502 (Class List_Container 302)
Field
container_id

container_parent
container_lock_handle
container_excluded_list_handle
container_article
container_article_length
container_valid
container_time_stamp
list_head_pointer
list_tail_pointer

Article 504 (Class Text_Article 342)

Contents
4125

490

Null

Null

504

786 bytes

TRUE

July 5, 2001 : 17:16:11
506

514

—-34 -

10

15

20

WO 02/17115 PCT/CA01/01207

Field Contents

article_window x=100, y=75, width=430, height=300

text_attributes Helvetica, 18 point, yellow, left justification, single
spacing

Container 502 has a list of three child sibling containers: containers 506, 510,
514, which are linked together in a list. The article_window field of article 504 defines
the window in which the text sections of slide 202 are to be displayed relative to an
anchor point of slide 202. Typically, the anchor point will be the upper left corner of the
slide, although any other anchor point may be used. The text_attributes field of article
504 defines the default attributes of the text sections of slide 202.

The text sections 214a, 214b, 214c of slide 202 are stored in containers 5086,
510 and 514. Container 506 is of class Sibling_Childless_Container 316 and contains
an article 508 of class Paragraph_Article 370. The contents of the container 506 are
set out in Appendix A. Article 508 has the following contents:

Article 508 (Class Paragraph_Article 370)

Field Contents

article_window Null

character_data <Text of paragraph 214a>
formatting_data bullet style: square
change_tracking_data Null

The article_window field of article 508 is Null, so the text of paragraph 214a
(stored in the character_data field) will be displayed in the article_window defined in
article 504. The formatting_data field modifies the default bullet style defined in the
default_text_properties in article 418.

Containers 510 and 514 and their associated articles 512 and 516 are set out in
Appendix A.

Slide 204 is stored in container 494 and its children. Container 494 is of class
Array_Container 304, which has the following contents:

Container 494 (Class Array_Container 304)

Field Contents
container_id 3133
container_parent 406
container_lock_handle Null
container_excluded_list_handle Null
container_article 496

—35—

WO 02/17115 PCT/CA01/01207

container_article_length 345 bytes
container_valid TRUE
container_time_stamp July 5, 2001 : 17:24:44
array_dimensions 2x1

child_array [518 522]

Container 494 has two child containers 518, 522 to store the two elements of
slide 204 (arrow 216 and audio/video clip 218) that are not defined as default shapes in
article 418. Container 494 contains an article 496 of class Slide_Article 366, which has

5 the following contents:

Article 496 (Class Slide_Article 366)

Field Contents

article_window Null

slide_identifier 3133

slide_type Blank slide

slide_background Null (use default background)
default_shapes_flag TRUE (display default shapes)
advancement_effect Fade through black
advancement_interval 3 seconds

The slide_type field article 496 designates slide 204 as a blank slide, on which
10 the elements defined in the child containers of container 494 are displayed.
Arrow shape 216 is stored in container 518 which is of class
Childless_Container 306 and article 520 which is of class Shape_Atrticle 368.
Container 518 is set out in Appendix A. Article 520 has the following contents:

15 Article 520 (Class Shape_Article 368)

Field Contents

article_window Null

shape_type Arrow

shape_attributes x=500, y=80, width=100, height=200, color=blue,

line thickness=2, fill=none, direction=down -

Article 520 defines arrow shape 216 as an arrow positioned 500 pixels right
and 80 pixels down from the anchor point of slide 204, and having a width of 100
pixels, a height of 200 pixels as well as the other attributes listed in the
20 shape_attributes field.

- 36 —

10

15

20

25

30

WO 02/17115 PCT/CA01/01207

Audio/video clip 218 is stored in containers 522, 526. Container 522 is of type
Array Container 304 and contains an article 524 of type AV_Clip_Article. Container
522 is set out in Appendix A. Article 524 has the following contents:

Article 524 (Class AV_Clip_Article 348)

Field Contents

article_window x=300, y=280, width=320, height=200
AV_format MPEG

AV_length 12800 frames

Article 524 defines audio/video clip 218 as an MPEG format audio/video clip
having 12800 frames that will be displayed in a 320 x 200 pixel window positioned 300
pixels right and 280 pixels down from the anchor point of slide 204. The data of
audio/video clip 218 is stored in article 528 of container 526. Container 526 is of class
Childless_Container and is set out in Appendix A. Article 528 is of class
AV_Data_Atrticle 376 and has the following contents:

Article 528 (Class AV_Data_Article 376)

Field Contents
article_window Null
av_data <encoded audio/visual data of clip 218>

The av_data field of article 528 contains audio/video clip 218.

Slide 206 is stored in container 498, container 530, and its child containers 534,
538, 542, 546 and their associated articles 500, 532, 536, 540, 544, 548. Slide 206 has
a single element: graphic image 220. Graphic image 220 is divided into four sections,
which are stored in containers 534, 538, 542, 546 in a manner analogous to the
storage of graphic image 194 of text document 190 (Figure 2) in container 440 and its
child containers (Figure 5). Containers 498, 530, 534, 538, 542, 546 are set out in
Appendix A.

The structure of container tree 124 is directly related to the types of documents
(text document 190 and presentation document 200) stored in container tree 124, and
to the contents of the documents. In addition, the structure of container tree 124
depends on the specific containers and articles selected for a specific embodiment of
the present invention. For example, text documents may be divided into differently
sized sections. Similarly, other types of documents may divided into differently sized
independently editable sections with greater or lesser granularity. Many different kinds
of container 140 are possible. For example, a List_And_Array_Container class (not
shown) maintains a list of child sibling containers and also maintains a separate array

—37 -

10

15

WO 02/17115

PCT/CA01/01207

of child containers. List_And_Array_Container class could be used to as the parent
container 410 for documents that may be partially broken down into sections that have
a natural “next” and “previous” relationship between them, and partially broken down
into sections that may or may not have an ordered relationship between them. The
List_And_Array_Container class could be used as the parent container 410 of a
document sub-tree storing a “game” document. The List_And_Array_Container's child
sibling containers could include articles storing the sequential levels presented by a
game viewer in client 116 that a player must proceed through in order to complete the
game. lts array of child containers could include articles storing environments or
animated characters that may be randomly applied to each level in the game by game

viewer in client 116.

Referring again to Figure 1, system 100 includes a user database 106. User
database 106 includes a record for each user 102, each of whom may be a member of
any of the workspaces 122 stored in file system 104. The record for each user 102

includes the following information:

Field
user_name

user_password

user_contact_info

user_e_mail
user_handle

user_screen_name

Contents
Identifies the name of the user

A password used to authorize or authenticate
access to system 100 by the user. This
password will typically, but not necessarily be
stored in an encrypted format.

Record the address, telephone number, fax
number, etc. that may be used to contact the user.
Records the user's e-mail address.

Record a unique handle that is used to identify the
user internally within system 100. As an example,
the user_handle is used to identify the user when
he or she has locked a container 140 and in logs,
transaction histories and change tracking
information for various containers 140; In this
exemplary embodiment, a user's user_handle is
permanent once assigned. In another embodiment,
the user_handle may be changeable.

Record a screen name that is used to identify the
user externally by system 100. The
user_screen_name may be displayed by clients to

-38—

WO 02/17115

user_workspace_list

PCT/CA01/01207

users 102 to identify the user that has locked a
section of a document (which corresponds to a
container). In this exemplary embodiment, a user
is permitted to change his user_screen_name
using a typical method, which is not described
further.

A list of workspaces of which the user is a
member.

Several exemplary records from an exemplary user database 106 are set out in

Appendix B.

A workspace 122 is considered "active" if it is currently being used by at least
one of its members. An active workspace will be hosted by a workspace server 112.

System 100 includes a workspace database 108, which includes one record for each

workspace 122. The record for each workspace has the following structure:

Field
workspace_id

workspace_title

workspace_host

workspace_owner

workspace_size

Contents
Unique identifier for each workspace. In the

exemplary embodiment of the present invention,
this field is identical to the container_id of the root
container of the workspace. In an another
embodiment, any other unique value may be used.
The title of the workspace set out in the
summary_title field of the root container 400 of the
workspace's container tree 124.

If the workspace is currently active, this field
identifies the workspace server 112 that is
currently hosting the workspace 122.

If the workspace 122 is inactive, this field is Null.
The user_handle(s) of the owner(s) of the
workspace. One of more members of a
workspace may be designated as having
ownership privileges, allowing the member to
modify the privileges of other members to view or
edit documents in the workspace and to edit the
contents of the root article 402 of the workspace.
The size of the workspace, typically in bytes.

— 39 —~

WO 02/17115 PCT/CA01/01207

workspace_location The location at which the data files associated
with the workspace are stored in file system 104.

Several exemplary records from an exemplary workspace database 108 are
set out in Appendix C.

In addition to container tree 124, each workspace includes a member list 143.
Member list 143 includes a list of member records 144, which have the following

structure:

Field Contents

user_handle User_handle of the member from user database
106. |

user_screen_name User_screen name of the member from user
database 106. This field is optional and in an
alternative embodiment, the user_screen_name
may be stored only in the user database 106.

user_e_mail User_e_mail of the member from user database
106.

member_privileges List of the member's privilege levels.

In this exemplary embodiment of the present
invention, a member may have one of three
privilege levels with respect to any document: an
"owner" may modify the document in any way,
including the contents of the root article of the
workspace and may control the membership of
other users in the workspace and their privilege
levels; a "worker" is permitted to edit the
documents stored in the workspace and
associated summary information, but may not
control the membership and privilege levels of
other users; a "viewer" is permitted only to view
the documents contents, log and transaction
history.

In this exemplary embodiment, a member's privilege
level is uniform for all documents in a workspace.

—40 -

WO 02/17115

member_status

PCT/CA01/01207

In an alternative embodiment, a member's privilege
may be set for each document in the workspace
and for the authority to control membership and
privilege levels of other members.

In the present embodiment, the
container_excluded_handle_list field in each
container overrides a member's access privileges
set in this field. As a result, any member will not
be able to view or edit the article stored in a
container if the member's handle has been entered
into the container_excluded_handle_list field for
the container.

The specific privilege levels set out here are only
exemplary, In another embodiment of the present
invention, a member's privileges may be defined
with any number and type of access privilege
levels.

The member's current status with respect to the
workspace 122. This field may have several
values:

“Invited”: - the member has been invited to join the
workspace 122 but has yet to connect to the
workspace.

"Connected" — the member is currently connected
to the workspace 122.

"Not Connected" — the member is currently not
connected to the workspace 122.

"Connecting" — the member is in the process of
connecting to the workspace 122.

—41 -

5

10

15

20

25

30

WO 02/17115 PCT/CA01/01207

This field is used to ensure that a workspace 122
is not de-activated while a member is attempting to
connect to it.

Appendix D illustrates an exemplary set of member records 144 for the
exemplary workspace 122a illustrated in Figure 4 and Appendix D.

Reference is again made to Figures 4, 5 and 6. A master copy of each
workspace 122 is stored in file system 104 using three types of data files:

(a) a header file, which stores the root container 400 at the root node 126

(i.e. container 400 in exemplary container tree 124) and a copy of the
parent container 410 of each document sub-tree (i.e. containers 404
and 406 in exemplary container tree 122);

(b) for each document stored in the workspace, a document file containing
all of the containers in the document's sub-tree including the parent
container 410 of the document sub-tree; and

(c) a membership file for the entire member list 143 of the workspace.

The parent container for each document sub-tree is stored in both the header
file for the entire workspace and in the document file for the associated document. The
stored data in header files, document files and membership file may be manipulated by
any master server 110 or any workspace server 112.

The master copy of each workspace 122 is accessed directly by master
servers 110 and workspace server 112 and is updated based on changes in
membership in the workspace and changes in the documents stored in the workspace.
A workspace server will update the structure and contents of the master copy of the
container tree 124 stored in header file 660 and document files 662 based on Lock
requests and Post requests from clients 116, as described below.

Reference is next made to Figure 10, which illustrates the structure of an
exemplary header file 660 and an exemplary document file 662.

Header file 660 stores the root container 400 and parent container 404 and 406
of container tree 124 as follows. Each container 140 is stored sequentially with three
fields for each container: the container_id field, the container_article_length field, and
the byte buffer representing the container_article field. At the end of header file 660, a
directory 664 is stored with seven fields for each container: an index representing the
type of container (List_Container, Array_Container etc.), the container_id field, the
container_article_length field, the container_lock_handle field, the
container_excluded_handle_list field, container_time_stamp field and an index value.

10

15

20

25

30

35

WO 02/17115 PCT/CA01/01207

The index value indicates the position of the main portion of the container within header
file 660. Typically, the index value for each container 140 will be an offset from the
beginning of header file 660 indicating where the first byte of the container is stored. In
addition, the record for each parent container 410 in directory 664 contains a field for
the location of the corresponding document file 662 in file system 104.

This file structure allows containers 140 to be locked and unlocked efficiently,
and also allows individual containers 140 to be accessed quickly. When a request is
received to lock a container 140 for a member with owner or worker privileges (for
example, in accordance with step 1218 of Method 1200 on Figure 14b, described
below) it is only necessary to (i) check whether the member's user_handle is listed in
the container_excluded_handle_list and, if permitted, (ii) enter the user_handle in the
container_lock_handle field. Since these steps can be taken by looking only at the
directory of the header file, it is not necessary to read or parse the entire header file
(or a large part of it) to find the required fields. If a get request is received for a
container 140, the index_value of the directory allows the container to be quickly
accessed for transmission to a client (along with the container_lock_handle and
container_excluded_handle_list from the directory).

Figure 11 illustrates that document files 662 are organized in the same way.
Each container 140 is stored sequentially without its container_lock_handle and
container_excluded_handle_list fields, which are stored in a directory 668 along with
an index_value specifying the position of the container within the document file 662.
Typically, document files 662 will be larger than header files and may receive more
get/post activity. As a result, the benefit of efficient locking and unlocking and rapid
access to an entire container may be even greater in respect of document files.

The use of header files 660 and document files 662 and directories 664, 668 is
not necessary to the present invention. A container tree 124 may be stored in any
format suitable for a specific embodiment. For example, an alternative embodiment may
store each container 140 in a separate data file. Another alternative embodiment may
use a single flat file for all containers 140.

Each client 116 is a software application or package that is executed on a client
computer 119. A client 116 has several functions:

(a) communicating with master servers 110 and workspace servers 112 to

report changes to the workspace 122 made by the user 102 of the client
116 and to receive changes made by other users 102, in addition to
other information;

~43 -

10

15

20

25

30

35

WO 02/17115 PCT/CA01/01207

(b) managing the structure of workspace 122 based on changes in the
workspace's container tree 124 made by the client's user 102 or based
on Update Messages received from a workspace server 112;

(c) editing features for the documents recorded in container tree 124.

A client software package 116 may be installed on a client computer 119 in
various ways. For example, client software package 116 may be installed from a
computer readable medium such as a floppy disc, compact disc (CD), digital versatile
disc (DVD) or a solid state memory device. A client software package 116 may also be
downloaded over the Internet and installed on a client computer 119. In addition, a
client software package 116 may be installed or updated during step 1005 of method
1000 described below.

Many different types of documents may be stored in a workspace 122. Text
document 190 and presentation document 200 are only exemplary of the many types of
documents that can be stored in a workspace 122. For example, table documents (or
spreadsheet documents), graphic documents (which will typically comprise one or
more graphic images), audio/video documents (which will typically comprise one or
more audio/video clips) may also be stored in a workspace 122. Any of these
documents may include embedded elements of a different data type than their primary
data type.

Reference is made to Figure 20. Clients 116 include editing software, or editors,
for each type of document supported by any particular embodiment of the present
invention, with the exception of generic documents. In the present exemplary
embodiment, clients 116 include a text editor 800 for editing text documents,
spreadsheet editor 808 for editing table documents, a graphic image editor 802 for
editing graphic images, a video editor 806 for editing AV clip documents, a presentation
editor 804 for editing presentations. The presentation editor 804 is principally used to
edit the sequence of slides in presentations and incorporates a slide editor 810 for
editing slides within presentations.

Each editor built into a client 116 is configured to maintain the structure of a
document sub-tree in which a document of the associated type is stored. For example,
the text editor 800 in the clients 116 of the present embodiment is configured to allow a
user to view and edit text document 190 and to maintain the structure of document sub-
tree 412 to contain text document 190 as it is edited. Each editor is also configured to
create a document sub-tree for a new document and to delete document sub-trees
when a document is deleted.

_ 44 —

10

15

WO 02/17115 PCT/CA01/01207

In addition to editing entire documents, each editor may be executed within any
other editor for editing embedded sections of documents. For example, the graphic
image editor 802 may be invoked by the text editor 800 to allow a user editing a text
document to edit an embedded graphic image.

The present embodiment also supports the storage of generic documents of a
data type for which an editor is not provided, within a container tree 124. Reference is
made to Figure 9, which illustrates the storage of an exemplary generic document in a
document sub_tree 648. Document sub-tree 648 has a parent container 650 of class
Array_Container 304 which has the following contents:

Container 650 (Class Array_Container 304)

Field Contents

container_id 2987
container_parent <Root Container of container tree>
container_lock_handle Null
container_excluded_handle_list Null

container_article 652
container_article_length 624 bytes
container_valid TRUE
container_time_stamp July 30, 2001, 3:38:14
array_dimensions 1x1

child_array [654]

Container 650 is a parent container 410 having the root container of a container
tree (such as root container 400) as its parent. Container 650 has a single child
container identified in its child_array field. The generic document stored in the
document sub-tree 648 is identified in the article 652 of container 650. Article 652 is of
class Generic_Document_Article 352 and has the following contents:

Article 6562 (Class Generic_Document_Article 352)

Field Contents

article_window Null

summary_title Exemplary generic document
summary_description Exemplary generic document for patent application
summary_keywords Exemplary, generic

summary_log July 30, 2001, 3:38:14 br1: Created this document

as an example of a generic document
summary_history July 30, 2001, 3:38:34 br1: CREATE

— 45 —

10

15

20

25

WO 02/17115 PCT/CA01/01207

Container 654 is of class Childless_Container 306 having the following

contents:

Container 654 (Class Childless_Container 306)
Eield Contents
container_id 3985
container_parent 650
container_lock_handle Null
container_excluded_list_handle Null
container_article 656
container_article_length 32424 bytes
container_valid TRUE
container_time_stamp July 30, 2001, 3:38:14

The article 656 of container 654 is of class Data_Article 378 and has the
following contents:

Article 656 (Class Data_Article 378)

Field Contents
article_window Null
generic_data <Contents of generic document>

The article_window field of article 656 is Null, since the generic document will
not be displayed by a client 116 (since the client does not have an editor capable of
displaying the generic document). The generic document is stored in its entirety in the
generic_data field of Article 656.

Generic documents may be edited by a user with an editor not included with a
client 116. For example, if in a particular embodiment of the present invention, a text
editor is not provided in the clients 116, then text documents may be stored in a
workspace as a generic document and may be edited using a third party word
processor.

The current client 116 of system 100 may evolve over time as changes and
improvements are made to the different pieces of editing software and other parts of
the client 116. This can cause the client 116 installed on any client computer 119 to
become out-of-date. An out-of-date client installed on a client computer is updated in

step 1005 of method 1000. To facilitate such updates, each version of the client is

assigned a version number and is time stamped.

— 46—

10

15

20

25

30

35

WO 02/17115 PCT/CA01/01207

A number of transactions by which a user 102 may use system 100 will now
be described. System 100 contains a number of transactions which a skilled person
will be able to understand from the description of methods 1000 — 1600, below,
including:

-registration of a user

-inviting a user to become a member of a workspace

-modifying the privileges of a member in a workspace

-deleting 2 member from a workspace

-deleting a workspace

-deleting a document from a workspace.

Reference is next made to Figure 12, which illustrates a method 1000 for a
Login Transaction by which an exemplary user 102 may login to system 100 and gain
access to a workspace of which the user 102a is a member. Method 1000 (and
methods 1100, 1200, 1300, 1400, 1500, 1600 and 1700 set out below) is described
here in the context of a specific user 102a (Figure 1), who is the user Chris
Sonnenberg described in Appendix B.

Method 1000 begins at step 1002, in which user 102a accesses a login screen
700 of system 100. Login screen 700 may be a web page that may be accessed by
user 102a using a web browser operating on a client computer 119a. The web page
may be displayed by a master server 110 (possibly through a web server operated as
part of system 100), or by another process. On login screen 700, user 102a enters his
name and password. Alternatively, the user 102a may be permitted to enter his or her
screen name or user handle, in addition to his or her password. Alternatively, a
previously installed "cookie" on client computer 119a may identify the user's name and
possibly his password.

Method 1000 next proceeds to decision step 1004. If the combination of the
name and password entered by user 102a in step 1002 is authentic (i.e. the name and
password are found in a single record in the user database 106), then method 1000
proceeds to step 1005. Otherwise, method 1000 ends.

In step 1005, a complete and current version of client 116 is installed on client
computer 119a. This may require a completely new client software package to be
transmitted to client computer 119a, along with software for installing the client 116 (if
no client 116 has ever been installed on client computer 119a or if the client 116
installed on client computer 119a is so out-of-date that it cannot be efficiently updated).
Alternatively, this may involve the transmission of only a part of the current client,

—47 -

10

15

20

25

30

35

WO 02/17115 PCT/CA01/01207

which is then combined with components of a previously installed client to fully update
the installed client 116.
This updating process may be performed by various known techniques. For

' example, the login screen 700 described in step 1002 may check the version, if any, of

a previously installed client on client computer 119a. Login screen 700 may then
update the previously installed client. If login screen 700 is a web page as described
above, then this function may be programmed in the web page. Such an operation will
be well understood by skilled persons. Alternatively, any previously installed version of
a client may be executed on client computer 119a and may download any required
components any may update itself. Client 116 may be installed or updated on client
computer 119a using any other method, and any combination of methods may be used.

In step 1006, a master server 110 is selected to communicate with client
computer 119a. The selection of the master server 110s may be based on load
balancing criteria to ensure that all master servers 110 have similar loads, or may be
based on any other rule or criteria, including a random selection criteria. The selected
master server is referred to with the reference numeral 110s.

Method 1000 next proceeds to step 1008, in which the client 116a installed on
client computer 119a is executed and the address of selected master server 110s and
the user 102a’s user_handle, user_screen_name, and user_e_mail are passed to client
116a. In the present exemplary embodiment, client 116a is executed within a web
browser installed on client computer 119a. Alternatively, client 116a may be executed
as an independent application. In the current embodiment, master server 110s may
provide client 116a with the current system time for system 100 and client 116a may
update the system clock of client computer 119a so that it is synchronized with the
system clock. Alternatively, the current system time of system 100 may be
synchronized to a selected network time server and client 116a may synchronize the
system clock of client computer 119a to the same network time server.

Method 1000 next proceeds to step 1010, in which the client 116a connects to
master server 110s and master server 110s transmits the list of workspaces stored in
the user_workspace_list field of the user's record in the user database 106 to the
client 116a, which displays the list to the user 102a. If the user 102a is not a member
of any workspace 122, then the master server 110s indicates this to the client 1163,
and the client 116a displays an appropriate message, such as "You are not a member
of any workspace."

Method 1000 hext proceeds to step 1012, in which the user 102a is offered a
choice of:

— 48 —

10

15

20

25

30

35

WO 02/17115

(a)

(b)

(c)

(d)

PCT/CA01/01207

Creating a new workspace 122. |f the user selects this option, a Create
Workspace transaction, described below as method 1100, is performed.
Deleting an existing workspace 122. If the user selects this option, the
user is permitted to select a workspace 122 for which he has owner
privileges and the workspace is deleted from system 100 in step 1020.
A skilled person will understand how a workspace may be deleted and
accordingly, a detailed method for doing so is not set out here. Ina
particular embodiment, a workspace may be "deleted" by identifying it as
such, but without actually removing it from file system 104. This allows
the "deleted" workspace to be subsequently restored. In addition,
system 100 may optionally be configured to permit a workspace to be
deleted only if no member (or no member with a selected privilege level)
of the workspace is connected to it. After step 1020, method 1000
returns to step 1010.

Selecting one of the workspaces 122 of which he is a member. If the
user 102a selects a workspace 122, the workspace 122 is opened in
accordance with an "Open Workspace" transaction, described below
as method 1200. The selected workspace is identified with the
reference numeral 122s.

Logging out of system 100. If the user selects this option, method 1000
proceeds to step 1018.

In step 1018, client 1018 stops executing and method 1000 ends.

Reference is next made to Figure 13, which illustrates a method 1100 for a
"Create Workspace" transaction, which is used to create a new workspace 122n.

Method 1100 begins in step 1102, in which client 116a creates a new root

container 400 for the new workspace 122n. In the present exemplary embodiment, the
new root container 400 is an Array_Container 304. Client 116a selects the values for
the fields of the new root container 400 as follows:

(i

(if)

A value is chosen for the container_id field. This value may be chosen
randomly, or may be chosen using a selected mechanism. In the
present embodiment, the value chosen for this field is based on the
current time, which is provided by the system clock. In any case, the
container_id chosen by the client 116a is considered a preliminary value.
The new root container 400 is created with the most current structure
of an Array_Container 304. If, in a different embodiment of the present

—49 —

10

15

20

25

30

35

WO 02/17115 PCT/CA01/01207

invention, another type of container is used as the root container 400,
the current version of that container type is used.

(iii) The container_parent field is set to Null.

(iv) The container_lock_handle field is set to Null.

(v) The container_excluded_handle_list is set to Null.

(viy Client 116a creates a new root article 402 of type Workspace_Article

354 and sets the container_article field to point to the new root article
402.

(vi) The container_article_length field is initially set to 0 bytes.

(viii)y The container_valid field is set to TRUE.

(ix) The container_time_stamp field is set to Nuill.

(x) The child_array field is set to Null, indicating that the new root container

400 has no child containers.

Method 1100 next proceeds to step 1104, in which client 116a creates a new
member list 144 for the new workspace 122n. Client 116a creates a single member
record 143 and selects the value of its fields as follows:

(i) user 102a's user_handle, user_screen_name and user_e_mail fields are

set to the values provided to client 116a as described above in step
1008 of method 1000;

(i) user 102a's member_privileges are set to Owner; and

(iii) user 102a's member_status is set to Not Connected.

Method 1100 next proceeds to step 1106, in which client 116a displays a dialog
box allowing user 102a to define the following fields of the new root article 402:

(i summary_title;

(i) summary_description;

(iii) summary_keywords; and

(iv) summary_log.

Client 116a adds a "CREATE" entry to the summary_history field of the new root
article 402, indicating the handle of user 102a, and the date and time at which the new
workspace 122n was created. The container_article_length field of the root container
402 is updated to reflect the length of the root article 402.

Method 1100 next proceeds to step 1108, in which client 116a transmits the
new workspace 122n to master server 110s. At this step, the new workspace 122n
comprises the new root container 400, which includes the new root article 402, and
the new member list 144.

—-50-—

10

15

20

25

30

35

WO 02/17115 PCT/CA01/01207

Method 1100 next proceeds to step 1110, in which master server 110s checks
the container_id of the new root container 400. If the container_id is not unique
compared to that of all other containers 140 stored in any workspace 122 in system
100, master server 110s modifies it so that it is unique.

Method 1100 next proceeds to step 1112, in which the new workspace 122n is
stored in file system 104. Master server 110s communicates with user database 106
to add the newly created workspace 122n to the user 102a’s list of workspaces.
Master server 110s also communicates with workspace database 108 to add a new
workspace record for the newly created workspace 122.

Method 1100 then returns to step 1012, and the new workspace 122n is
treated as the selected workspace 122s.

At the end of method 1100, the user 102a has created a new workspace 122n,
defined the contents of the root article 402 of the workspace 122n and is the only
member of the workspace 122n.

Reference is next made to Figures 14a and 14b, which illustrate a method 1200
for an "Open Workspace" transaction. An Open Workspace transaction is initiated in
accordance with step 1012 described above.

Method 1200 begins in step 1201 in which master server 110s first freezes the
record corresponding to the selected workspace 122s in workspace database 108 so
that no process other than master server 110s may modify that entry. If the record
corresponding to the selected workspace 122s in workspace database 108 is already
frozen by another process, master server 110s waits until the entry is not frozen.

The terms "freeze" and "frozen" are used in this description to refer to data
elements that have been locked by a particular process, entity or thread (such as a
master server 110 or a workspace server 112) for synchronization purposes. The
terms are used to avoid confusion with the word "lock", which is generally used to
refer to containers 140 that have been locked by a user to allow the contents of the
container to be edited exclusively by that user. The synchronization locks referred to
with the terms "freeze" and "frozen” may be implemented in various computing
environments using semaphores, shared memory space, message passing and other
known techniques.

Method 1200 next proceeds to step 1202, in which master server 110s
determines whether the selected workspace 122s is active. Master server 110s
checks the workspace_host field of the record for workspace 122s in the workspace
database 108.

—51—

10

15

20

25

30

35

WO 02/17115 PCT/CA01/01207

If the workspace_host field is Null, then the workspace is currently inactive,
and method 1200 proceeds to step 1204.

Otherwise, the workspace_host field will contain the address of a
workspace_server 110, which is then identified as the host workspace server 112h of
the workspace 122s. The presence of an address in the workspace_host field
indicates that the selected workspace 122s is currently active and initialized. In this
case, method 1200 proceeds directly to step 1206.

In step 1204, master server 110s selects a workspace server 112 to host the
selected workspace 122s. Typically, a workspace server 112 will be capable of
hosting more than one workspace 122. In the present embodiment, master server 110s
selects the workspace server 112 in order to keep the workload of different
workspace servers 112 generally equal. Alternatively, master server 110s may select
the workspace server 112 based on a rule that a specific workspace 122 is always
hosted by a specific workspace server 112, based on a random selection or based on
any other method or rule. The workspace server 112 is designated as the host
workspace server 112h for the selected workspace 122s.

Master server 110s sends a message to host workspace server 112h
indicating the workspace server 112h is to start hosting workspace 122s. In
response, workspace server 112h "initializes" the workspace 122s by loading the
directory 664 from the header file 660 and the member list 143 from the membership
file.

When the workspace 122s has been initialized, workspace server 112h sends
a confirmation message to master server 110s, which updates the workspace_host
field of the record for workspace 122s in the workspace database 108.

In step 1206, master server 110s sends a message to host workspace server
112h indicating the connecting user 102a’s user_handle and user_e_mail. Workspace
server 112h sets the member_status field of user 102a's member record in member list
143 of selected workspace 122s to "Connecting”". Master server 110s transmits the
address of the host workspace server 112h to the client 116a.

Method 1200 next proceeds to step 1207, in which master server 110s
unfreezes the record corresponding to the selected workspace 122s in workspace
database 108.

In step 1208, client 116a contacts host workspace server 112h. In the present
embodiment, client 116a transmits a "Connect" message to the host workspace server
112h, and opens a persistent bi-directional communication link with the host workspace
server 112h. The persistent bi-directional communication link is used by the client 116a

— 52—

10

15

20

25

30

35

WO 02/17115 PCT/CA01/01207

to communicate with workspace server 112h. When this communication link has been
established, client 116a is considered to be connected to workspace 122s.

In the present embodiment, workspace server 112h instantiates a separate
process to communicate with client 116a. Similarly every other client that connects
with workspace server 112h will communicate with a separate process operating
within workspace server 112h. In the remainder of this description, the separate
process will be treated as a part of workspace server 112h and will not be referred to
separately.

Method 1200 next proceeds to step 1209 in which workspace server 112h
retrieves the member_privileges field from user 102a's entry in the member list 143 for
the selected workspace 122s and sets the member_status field of the same entry to
"Connected".

As indicated above, a workspace member's member_status field may have one
of four settings in the present embodiment (although additional settings may be used in
other embodiments): Invited, Connected, Connecting and Not Connected. When an
owner of a workspace 122 (or a worker, if workers are permitted to do so) initially
adds a member record 144 to the member list 143, the new member may or may not be
a user of system 100. If the new member is not a user of system 100, then the
member will not have a user_handle, which is defined in the user's entry in the user
database 106. The owner of the workspace identifies the new member by entering the
e-mail address into the user_e_mail field of the new member record. The
member_handle field is left blank. Client 116 sets the member_status field of the new
member record to "Invited".

Subsequently, the new member may register with system 100, at which time a
user_handle will be assigned for the new user. When the new user attempts to
connect to the workspace 122 for the first time, master server 110s transmits the new
user's user_handle, and user_e_mail fields to the workspace server 112h in step 1206.
In this step, workspace server 112h may then find the corresponding member record
using the user_e_mail field. Workspace server 112h then enters the user_handle
received from the master server into the user_handle field of the member record.
Workspace server 112h subsequently may use the user_handle to find the member's
member record 144.

In the case where a registered user is added as a new member to a
workspace 122, the new member record 144 may be completed by the owner of the
workspace 122. [n this case, the user_handle or user_e_mail fields may be used to
find the member's member record 144 in this step.

— 53 —

10

15

20

25

30

35

WO 02/17115 PCT/CA01/01207

Workspace server 112h then transmits a Confirm Connect message and the
member_privileges back to client 116a. Workspace server 112h also broadcasts a
Connect Update message to all clients 116 connected with the workspace 122s to
advise them of the screen_name of the of the newly connected user 102a. Client
116a, which transmitted the originating Connect message, ignores the Connect Update
message after determining that it relates to its own connection. Every other connected
client 116 displays an appropriate message to its corresponding user 102, such as
“Chris has connected to the workspace”. In this way, every client 116 that is currently
connected to workspace 122s is advised of the connection of every other client 116
as it occurs. Similarly, workspace server 112h broadcasts a Disconnect Update
message advising all clients when a user 102 disconnects from a workspace.

Method 1200 next proceeds to step 1210 in which client 116a gets the following
components of workspace 122 from workspace server 112h:

(i) The root container 400 and all parent containers 410 of each document
sub-free in the container tree 124. In the case of the exemplary
container tree illustrated in Figures 4, 5 and 6, client 116a would get the
root container 400 and containers 404 and 406. Client 116a requests
the root container 400 and all parent containers 410 from workspace
server 112h and in response workspace server 112h transmits all of
the containers stored in the header file 660 for the workspace 122s.
The location of the header file 660 is stored in the workspace_location
field of the workspace's entry in the workspace database 108.

(i) The member list 143. Client 116a requests the member list 143 from
workspace server 112h. In response, workspace server 112h transmits
the member list 143.

While workspace 122s is active, workspace server 112s preferably keeps the
header file directory 664, comprising the root container 400 and parent containers 410,
and member list 143 in memory to facilitate rapid access. However, this may not be
practical or possible depending on the number of workspaces 122 being hosted by
workspace server 112h and the size of its local memory space. In any case,
workspace server 112h preferably keeps header file 660,document files 662 and
membership file stored in file system 104 updated at all times to reduce the chance of
data being lost due to a breakdown or crash of workspace server 112h.

Method 1200 next proceeds to step 1211, in which client 116a displays the title
(from summary_title field of the parent article stored in parent container 410 of each
document's document sub-tree) and/or an icon or thumbnail image representing each

—54 —

10

15

20

25

30

35

WO 02/17115 PCT/CA01/01207

document stored in the workspace 122s except those in which the user 102a’s
user_handle has been entered in the parent container 410’s
container_excluded_handle_list field. In the present exemplary case, client 116a
displays the title and an icon for text document 190 and for presentation document 200.

Method 1200 next proceeds to step 1212, in which client 116a offers user 102a
the following choices:

0 Select one of the documents in the workspace 122s. If the user 102a
selects this option, method 1200 proceeds to step 1214.
(i) If the user 102a has owner or worker privileges for the workspace

122s, he may choose to edit the contents of the root article of the
workspace. If the user 102a selects this option, then method 1200
proceeds to step 1230.

(i) If the user 102a has owner or worker privileges for the workspace, he
may choose to create a new document in the workspace 122s. If the
user 102a selects this option, then a "Create Document" transaction,
described below as method 1300, is performed.

(iv) Exit from the workspace. If the user 102a selects this option, then
method 1200 proceeds to step 1220.

In step 1214, client 116a displays the contents of the parent article (i.e. article

4186, if text document 190 is selected) contained in the parent container 410 of the
selected document.

Method 1200 next proceeds to step 1216, in which the user 102a is offered the
following choices:

) If the user 102a has owner or worker privileges for the workspace
122s, the user 102a may choose to edit the contents of the parent
article contained in the parent container 410 of the selected document.
If the user 102a chooses this option, method 1200 proceeds to step
1218.

(ii) View or edit the contents of the selected document. If the user chooses
this option, then a View/Edit Document transaction, described below as
method 1400, is performed.

In step 1218, client 116a transmits a Lock Request message for the parent
container 410 of the selected workspace 122s to workspace server 112h. In
response, workspace server 112h determines whether the parent container 410 is
already locked by another user 102 (i.e. the container_lock_handle field of the parent
container 410 contains the user_handle of the other user 102). If so, then workspace

— 55—

10

15

20

25

30

35

WO 02/17115 PCT/CA01/01207

server 112h transmits a Refused Lock message to client 116a. Client 116a displays a
message indicating the parent article cannot currently be edited (and possibly an
explanation that the parent container 410 is currently be edited by another member of
the workspace) and method 1200 returns to step 1212.

If the parent container 410 is not locked (i.e. the container_lock_handle field of
the parent container 410 is Null), then workspace server 112h locks the parent
container for user 102a by setting the container_lock_handle field to user 102a's
user_handle (in both the header file 660 for the selected workspace 122s and the
document file 662 for the selected document). Workspace server 112h then transmits
a Confirmed Lock message to client 116a.

Client 116a then displays a dialog box allowing the user 102a to edit the
summary_title, summary_description, summary_keywords, summary_log fields and
possibly additional fields, depending on the document type (i.e. the text_attributes and
text_document information fields for text documents) of the parent article for the
selected document. Typically, the user 102a will not be able to directly edit the
article_window, summary_history and other fields that are updated automatically by
editors in client 116a (such as the text_document_statistics field for text documents).

When user 102a has finished editing the parent article, client 116a posts the
revised parent container 410 (of which the revised parent article is a part) to the
workspace server 112h for storage in file system 104.

System 100 supports several different types of Post requests, which are used
by a client 116 to transmit changes in a workspace 122 to a workspace server 112.
More specifically, Post requests are used to add, modify and delete entire documents
as well as sections of documents. Typically, a client 116 makes a Post request by
transmitting three pieces of information to a workspace server 112h that is hosting the
relevant workspace 122:

(i) a specific action to take;

(ii) the identity of a container 140 on which to take the action; and

(i) zero or more provisional containers with which to take the action.

A provisional container is a container 140 that has been prepared by a client for
incorporation in container tree 124. In response to a Post request, a workspace server
112 either confirms or refuses the Post request. If the Post request is confirmed, the
client 116 incorporates the provisional containers into its local container tree 124. If the
Post request is refused, then the client 116 does not incorporate the provisional
containers into its local container tree 124. The client 116 may re-attempt the Post

—56 —

10

15

20

25

30

35

WO 02/17115 PCT/CA01/01207

request, or it may discard the provisional containers, or it may display a message to its
user 102 and allow the user to select a course of action.

For some Post requests, only some of this information is required and in others,
additional information is required. In response to the Post requests from a client 116,
the host workspace server 112h takes the requested action by modifying the
workspace's header file 660 and document files 662 in file system 104.

In step 1218, client 116a sends the following information to workspace server
112h:

(i Post and Unlock request;

(i) the revised parent container 410, including the revised parent article.

In response, workspace server 112h replaces the parent container 410 stored
in both the header file 660 for the selected workspace 122s and the document file 662
for the selected document. Workspace server 112h also sets the
container_lock_handle field for the parent container 410 (in both the header and
document files) to Null, thereby unlocking the parent container 410. Workspace server
112h then transmits a Confirm Post and Unlock message to client 116a. Workspace
server 112h also broadcasts a Post and Unlock Update message to all clients 116
connected with the workspace 122s to advise them of the newly posted parent
container. Client 116a, which transmitted the original request, ignores the broadcasted
message after determining that it relates to its own connection. The nature of the
broadcasted message (which may be "skinny" or "chubby") and the response of every
other connected client 116 is described below in method 1500 (Figure 17) and method
1600 (Figure 18). Method 1200 then returns to step 1212.

In step 1220, client 116a transmits a Disconnect message to workspace server
112h. Workspace server 112h responds to the Disconnect message by:

(i) Setting the member_status field for the user 102a to "Disconnected".

(i) Broadcasting a Disconnect Update message to all clients 116 connected

with the workspace 122s as described above in step 1209. ‘

(iii) If client 116a is the only client 116 currently connected to workspace

122s, then workspace server 112h de-activates the workspace 122s
as follows. Workspace server 112h freezes the record corresponding
to the selected workspace 122s in workspace database 108. If the
record corresponding to the selected workspace 122s in workspace
database 108 is already frozen by another process, then workspace
server 112h waits until the entry becomes unfrozen and then attempts
to freeze it. If during this waiting period, another client (say, client 116b,

~-57—

10

15

20

25

30

35

WO 02/17115 PCT/CA01/01207

in use by user 102b) attempts to connect to workspace 122s, then
workspace server 112h abandons the attempt to de-activate
workspace 122s and method 1200 returns to step S1010 of method
1000, in respect of user 102a. (In respect of the other client 116b and
user 102b, system 100 continues at step 1208.)

When workspace 112h is able to freeze the record corresponding to the
selected workspace 122s in workspace database 108, it deactivates
workspace 122s by ensuring that its header file 660 and document files
662 are stored in file system 104. Workspace server 112h then sets the
workspace_host field in the record for workspace 122s in the
workspace database to Null, indicating the workspace 122s is inactive.
Method 1200 then returns to step 1010 of method 1000.

In step 1230, client 116a transmits a Lock Request for the root container 400 of
the selected workspace 122s to workspace server 112h. In response, workspace
server 112h determines whether the root container 400 is already locked by another
user 102 (i.e. the container_lock_handle field of the root container 400 contains the
user_handle of the other user 102). If so, then workspace server 112h transmits a
Refused Lock message to client 116a. Client 116a displays a message indicating the
root article cannot currently be edited (and possibly an explanation that the root
container 400 is currently being edited by another member of the workspace) and
method 1200 returns to step 1212.

If the root container 410 is not locked (i.e. its container_lock_handle field is Null),
then workspace server locks the root container 410 for user 102a by setting the
container_lock_handle field to user 102a's user_handle. Workspace server 112h then
transmits a Confirmed Lock message to client 116a.

Client 116a then displays a dialog box allowing the user 102a to edit certain
fields of the root article 402 for the workspace 122s. If the user 102a has owner
privileges in workspace 122s, he may edit the summary_title, summary_description,
summary_keywords and summary_log fields of the root article 402 for the workspace
122s. If the user 102a has worker privileges in workspace 122s, he may edit only the
summary_log field of the root article 402 for the workspace 122s. Typically, the user
102a will not be able to directly edit the summary_history and document_count fields,
which are updated automatically by client 116a. When user 102a has finished editing
the root article 402, client 116a sends a Post and Unlock message containing the root
container 400, including the revised root article 402, to workspace server 112h.

- 58—

10

15

20

25

WO 02/17115 PCT/CA01/01207

Workspace server 112h replaces the root container 400 in the header file 660 for the
selected workspace 122s. Workspace server 112h also sets the
container_lock_handle field for the root container 400 (in the header file 660) to Null,
thereby unlocking the root container 400. Workspace server 112h then transmits a
Confirm Post and Unlock message to client 116a. Workspace server 112h also
broadcasts a Post and Unlock Update message to all clients 116 connected with the
workspace 122s to advise them of the newly updated root container 400. Client 1163,
which transmitted the original request, ignores the broadcasted message aiter
determining that it relates to its own connection. The nature of the broadcasted
message and the response of every other connected client 116 is described below in
method 1500 (Figure 17) and method 1600 (Figure 18). Method 1200 then returns to
step 1212.

Reference is next made to Figure 15, which illustrates a method 1300 by which
a new document is added to the workspace 122s.

Method 1300 begins in step 1302, in which the user 102a specifies the type of
the new document to be added to the workspace 122s. Typically, client 116a displays
a menu of document types that are supported by system 100 (or another embodiment
of the present invention). The type of the parent container 410 for the document sub-
tree for the new document will depend on the document type. In the present
embodiment, the document type and associated type of the parent container are related
as shown in Table 1:

Document Type Parent Container Type 410 | Initial Document Section
Text Document List_Container Empty paragraph

Table Array_Container Empty cell

Image Array_Container Entire image
Presentation Array_Container Initial blank slide

Generic Document | Array_Container Entire Generic Document

TABLE 1: Relationship between document type, parent container type and initial
document section in the present exemplary embodiment.

When user 102a selects a document type, method 1300 proceeds to step 1304.

In step 1304, client 116a creates a parent container 410n for the new
document, in accordance with Table 1. Client 116a creates the new parent container
410n as follows:

— 59—

10

15

20

25

30

35

WO 02/17115

0

(i)

(v)

(vi)

(vii)

(viii)

(i)

PCT/CA01/01207

A value is chosen for the container_id field. This value may be chosen
randomly, or may be chosen using a selected mechanism. In the
present embodiment, the value chosen for this field is based on the
current time, which is provided by the system clock. In any case, the
container_id chosen by the client 116a is considered a preliminary value.
The new parent container 410n is created with the structure of the
appropriate container class (i.e. a List_Container 302 or
Array_Container 304).

A provisional copy of the root container 400p is made, including a
provisional copy of its root article 402p. The container_parent field of
new parent container 410n is set to point to the provisional root
container 400p.

The container_lock_handle field of new parent container 410n is set to
Null.

The container_excluded_handle_list of new parent container 410n is set
to Null.

Client 116a creates a new parent article for the new parent container
410n of the appropriate type for the selected document type. For
example, if a text document is selected, the parent article will be a
Text_Document_Article 356; if a presentation document is selected, the
parent article will be a Presentation_Document_Article 364. The
container_article field of new parent container 410n is set to point to the
new parent article. '

The container_article_length field of new parent container 410n is
initially set to the length of the new parent article.

The container_valid field of new parent container 410n is set to TRUE.
The container_time_stamp field is set to Null.

Client 116a may create a child container or containers for the new parent

container to provide an initial document section, as set out in Table 1. For example, in

the case of a new text document, client 116a creates a new
Sibling_Childless_Container 316 (identified as a container 140n) and sets its fields in a
manner analogous to that set out above for the new parent container. The

container_parent of the new container 140n is set to point to the new parent container

410n and the list_head_pointer and list_tail_pointer fields of the new parent container
410n are set to point to the new child container 140n. In addition, client 116a creates a
new Paragraph_Article 370 for the new container 140n and sets its fields so that it has

—60 —

10

15

20

25

30

35

WO 02/17115 PCT/CA01/01207

an empty character_data field and no formatting or change tracking information. In a
similar way, a new presentation document is provided with an initial blank slide and a
new table document is provided with an initial empty cell.

Image and generic documents are generally, although not necessarily, created
only when an image or generic data file already exists. To create a new image
document, client 116a creates a new parent container 410n of class Array_Container
304 having an article of class Image_Document_Article 358. Client 116a then loads the
image data for the new image document from a data device specified by user 102a
such as a floppy disk, CD-ROM or other storage device, which may be coupled to client
computer 119a or which may be accessible via a network (including network 114).
Client 116a then displays a dialog box allowing user 102a to specify how the new
image document should be divided into mutually exclusive sections. Typically an image
document is divided into rectangular sections, which may have the same or different
dimensions. Client 116a then creates one or more child containers (one child container
for each section), including articles of class pixel_article 372, for the new image
document and stores the image data in the new child containers. The fields of the new
child containers are set in a manner analogous to those of containers 444, 448, 452
and 456 (Figure 5) used to store graphic image 194 (Figure 2).

To create a new generic document, client 116a similarly creates a new parent
container 410n of type Array_Container 304 with an article of class
Generic_Document_Article 352. Client 116a also creates a child container 140n for the
new parent container 410n with an article of class Data_Article 378. Client 116a then
loads the generic data from a data device specified by user 102a and stores the
generic data in the article of the new child container 140n. The remaining fields of the
new parent container 410n and the new child container 140n are set in a manner
analogous to those of containers 650 and 654 (Figure 9) used to store the exemplary
generic document described above.

Method 1300 next proceeds to step 1306, in which client 116a transmits a Lock
Request message for the root container 400 of the selected workspace 122s to
workspace server 112h as described above in step 1230. Upon receipt of a Confirmed
Lock message from workspace server 112h, client 116a adds a NEW DOCUMENT entry
to the summary_history field of its provisional copy of the root article 402p, indicating
the handle of user 102a, the date and time at which the new document was added,
and adjunctive information identifying the type and source of the document. The
container_article_length field of the provisional root container 400p is updated to reflect
the modified length of the provisional root article 402p. Client 116a then links the

- 61—~

10

15

20

25

30

35

WO 02/17115 PCT/CA01/01207

provisional root container 400p to the new parent container 410n. Client 116a does this
by adding a pointer to the new parent container 410n to the child_array of the
provisional root container (which is an Array_Container 304 in the present
embodiment).

Method 1300 next proceeds to step 1308, in which the new document is then
posted to workspace server 112h. Client 116a sends the following to workspace
server 112h to post the new document:

(i) a Post New Document request; and

(i) a branch of the container tree 124 including the provisional root

container 400p and the entire new document sub-tree, including the
new parent container 410n and all of its child containers.

The identity of the container on which to take the action, nameiy the root
container 400, is implicit in the request. Method 1300 next proceeds to step 1310, in
which client 116a waits for a Confirm Post and Unlock message from workspace
server 112h. This message is sent by workspace server 112h to confirm that it has
received the Post request from client 116a, that the workspace's header file 660 has
been modified and a new document file 662 created, and that the root container 400
has been unlocked. If a Confirm Post and Unlock message is not received within a
selected time out period, client 116a may be configured to re-transmit the Post request
or to discard the newly added document or take another corrective action, such as
informing user 102a of the missing confirmation message and allowing the user to
choose a course of action. Workspace server 112h broadcasts a Post and Unlock
Update message to all clients 116 connected with the workspace 122s to advise them
of the newly updated root container 400 and the newly added document sub-tree. The
nature of the broadcasted message and the response of every other connected client
116 is described below in method 1500 of Figure 17 and method 1600 of Figure 18.
Upon receipt of a Confirm Post and Unlock message from workspace server 112h,
client 116a freezes its copy of container tree 124, replaces the root container 400 with

“the provisional root container 400p (including its provisional root article 402p), and adds

the new parent container 410n to the root container 400’s array of children. Client
116a then unfreezes its local copy of container tree 124. In this way, client 116a’s
local copy of container tree 124 is synchronized with workspace server 112h’s master
copy of container tree 124.

Method 1300 then ends.

Reference is next made to Figure 16, which illustrates a method 1400 for a
View/Edit Document transaction. Method 1400 is described above as following step

- 62 -

10

15

20

25

30

35

WO 02/17115 PCT/CA01/01207

1216 if the user 102a chooses to view or edit the selected document. In another
embodiment, method 1400 may also be initiated directly from step 1212 by providing
user 102a with an option to select a document and directly view or edit it.

Method 1400 begins in decision step 1402, in which client 116a determines
whether it has previously gotten the document sub-tree (which is stored in a document
file 662 in file system 104) in which the selected document is stored. As described in
relation to step 1210 of method 1200, when client 116a initially opens a workspace, it
gets the root container 400 for the container tree and the parent containers 410 for
each document sub-tree. Client 116a does not get the entire document sub-tree for
each document stored in the workspace. Accordingly, client 116a must get the
document sub-tree (or at least a part of if) in order to display the document for user
102a to view and/or edit.

If the client has previously downloaded the document sub-tree during the
current connect session, method 1400 proceeds to step 1404. Otherwise, method
1400 proceeds to step 1408.

In step 1404, client 116a checks each container 140 in its local copy of the
document sub-tree (i.e. the copy stored by client 116a in client computer 119a) for the
selected document to determine if any such container 140, including the parent
container 410, has its container_valid field set to FALSE. Such a container 140 is
referred to as an invalid container.

A container's container_valid field may be set to FALSE in accordance with
method 1600 (Figure 18), described below, when the copy of the container 140 stored
by a client is not consistent with the copy of the same container 140 stored by
workspace server 112h in file system 104. Should any container 140 in a document
sub-tree be invalid, a client 116 must get a new, valid copy of the container 140 from
workspace server 112h before subsequently displaying its contents to a user 102.

If any container 140 in the document sub-tree for the selected document has
had its container_valid field set to FALSE, then method 1400 proceeds to step 1406.
Otherwise method 1400 proceeds to step 1410.

In step 14086, client 116a gets all invalid containers in its document sub-tree for
the selected document from workspace server 112h. In the present embodiment, client
116a does this by making a Get Flagged Containers request. Client 116a transmits the
following information to workspace server 112h:

(i) a Get Flagged Containers request;

(ii) the container_id of the parent container 410 of the document sub-tree;

-63—

10

15

20

25

30

35

WO 02/17115 PCT/CA01/01207

(iii) a portion of the container tree 124, which includes parent container 410
and all of its children (and their children, recursively), in a special format
in which each node contains the container_id of the container 140 at
that node and a "get_flag", which is marked FALSE if the client does not
require a new valid copy of the container (i.e. the container_valid field of
the container is marked as TRUE in the local copy of the container tree
124) or is marked as TRUE if the client does require a new valid copy of
the container.

Workspace server 112h responds to the Get Flagged Containers request by
transmitting a portion of the document sub-tree beginning with the identified parent
container 410 and then transmitting each child (including grandchildren, etc.) of the
parent container 410. Any container for which the get_flag was marked as TRUE is
transmitted in full. In contrast, any container for which the get_flag was marked as
FALSE is transmitted in an abridged format which does not include the container's
article 142 and may not include other fields of the container. The abridged form of a
container may consist only of the container's container_id field. Alternatively,
containers for which the get_flag was FALSE may be omitted by the workspace
server 112h in its return transmission to client 116a.

The Get Flagged Containers request described is used to allow a client to get
any number of containers that have a common parent (or grandparent, etc.) container,
simply by identifying the common parent and flagging each container to be gotten.
Alternatively, branches of the container sub-tree for which the container_valid field is
TRUE in all children (including grandchildren, etc) may be omitted from the sub-tree
transmitted by client 116a to workspace server 112h. In another alternative
embodiment, client 116a may simply send a list of containers that it wishes to get and
workspace server 112h may simply transmit up-to-date versions of only those
containers. Any mechanism by which client 116a can request and receive an updated
copy of every invalid container in the document sub-tree for the selected document
may be used in this step. After step 1406, method 1400 proceeds to step 1410.

In step 1408, client 116a gets the entire document sub-tree for the selected
document by sending the following information to workspace server 112h:

(i) a Get Document request;

(i) the container_id of the parent container 410 of the document sub-tree.

Workspace server 112h responds by transmitting the entire document sub-tree
for the selected document, including the parent container 410. Workspace server 112h
sends all of the containers stored in the document file 662 for the selected document to

—64 —

10

15

20

25

30

35

WO 02/17115 PCT/CA01/01207

client 116a. The location of the document file 662 is set out in the directory 664 of the
workspace's header file 660. Method 1400 next proceeds to step 1410.

In step 1410 client 116a freezes its local copy of the container tree 124 to
ensure that no other process modifies the container tree. Client 116a then updates its
local copy of container tree 124. If client 116a executed step 1406 above, client 116a
replaces the invalid containers 140 with the up-to-date versions transmitted by
workspace server 112h, thereby rendering each container in the document sub-tree
for the selected document valid (each new container will have its container_valid field
set as TRUE when the container is transmitted by workspace server 112h). If client
116a executed step 1408 above, client 116a adds the complete document sub-tree
retrieved in step 1408 to its local copy of container tree 124. In this way, client 116a
synchronizes its local copy of the selected document’s sub-tree with workspace
server 112h’s master copy of the sub-tree prior to viewing and/or editing the selected
document. Client 116a then unfreezes container tree 124 and method 1400 proceeds
to step 1412.

When step 1412 begins, client 116a has a fully updated copy of the document
sub-tree for the selected document. In step 1412, one of the editors included in client
116a is invoked to display the selected document to user 102a and, if user 102a has
owner or worker privileges in the selected workspace 122s, to allow the user 102a to
edit the selected document. Client 116a is able to determine the data type of the
selected document based on the class of the parent article of the document sub-iree.
Client 116a invokes the appropriate editor to display the document and to allow user
102a to edit it. Method 1400 then terminates.

If the selected document is a text document, such as text document 190, which
is stored in document sub-tree 412 of container tree 124 (Figure 5), then client 116a
will initiate text editor 800. The operation of text editor 800 is explained below in the
context of text document 190.

As described above, a text document is divided into sections which, in the
present embodiment, correspond to the text document's paragraphs. Each paragraph
is stored in a Paragraph_Atrticle 370, which is contained in a sibling container. The
sibling containers form a linked list in an order corresponding to the order of the
associated paragraphs in the text document. The specific sibling container used for
any particular paragraph depends on whether the paragraph contains elements other
than text. The sibling containers have a common parent container 410. Text editor 800
is configured to display a text document to user 102 by progressively extracting, from

-65—

10

15

20

25

30

35

WO 02/17115 PCT/CA01/01207

the linked list of sibling containers, the text of each paragraph as well as any
associated elements and displaying the extracted information.

Typically, text editor 800 will display text document 190 in a window on the
display screen of client computer 119a. When text editor 800 is initially invoked to edit
text document 190, it begins extracting and displaying the text of the first paragraph of
document 190 from article 426 in container 424, and progressively extracts and
displays text and other elements (such as graphic image 193 stored in containers 444,
448, 452 and 456) from successive sibling containers and their children to fill the
display window in which document 190 is displayed. In typical fashion, text editor 800
provides a caret which may be moved in the display window by user 102a using
typical caret navigation keys. When the caret is moved out of the portion of text
document 190 displayed in the window, or when user 102a scrolls up or down through
the text document 190, text editor 800 extracts additional text and other elements of the
text document 190 from document sub-tree 412 and displays these elements. In this
fashion, text editor 800 allows a user 102 to view any part of text document 190.

In addition to allowing a user 102 to view text document 190, text editor 800
also permits users 102 with owner or worker privileges in workspace 122 to edit the
contents of the selected document, except for sections of the document stored in
containers in which the user's user_handle has been entered in the
container_excluded_handle_list field. Before allowing a user 102, such as user 1023,
to edit a section of text document 190 (or in conjunction with allowing a user 102 to do
s0), client 116 obtains a lock for the corresponding container as described below. In
this document, the term "edit a document" refers to any activity or operation that may
modify the contents of the document or any section of it. In the case of a text
document, this includes any change in the character_data field of a Paragraph_Article
370 in the document's sub-tree. Editing also includes any activity that may result in the
addition of new sections to a document or the deletion of existing sections.

When a user 102 indicates that he wishes to edit a section of a document, client
116 checks the container_lock_handle field of its local copy of the associated
container. If it is Null or if it the user_handle of user 102a, transmits a Lock request to
workspace server 112h to lock the corresponding container 140. If the
container_lock_handle field is not Null, then text editor 800 provides an indication (such
as a message on the screen of client computer 119a or an audio indication) that the
container is locked by another user 102. Text editor is configured to interpret any of
the following actions by a user 102 as an indication that the user wishes to edit a
section of a text document:

— 66 —

10

15

20

25

30

35

WO 02/17115 PCT/CA01/01207

(i) selecting the section of the document, or positioning the caret in a

section and then pressing a "Lock" button; or

(i) positioning the caret in a section and then modifying the section by

typing or deleting a character; or

(iii) selecting the section of the document and pressing a tool button which

modifies any attributes (such as bold, italic, underline, justification) of the
selected text; or

(iv) selecting the section of the document and pressing a “Cut” button to

delete the selected section and place the contents in an internal
clipboard; or

(v) selecting the section of the document, or positioning the caret in a

section and then pressing a “Paste” button to replace the selected
section with the contents of the internal clipboard or insert the clipboard
contents at the caret location respectively; or

(vi) selecting the section of the document, or positioning the caretin a

section and then pressing a tool button to replace the selected section
with an embedded object or insert the embedded object at the caret
location respectively.

In another embodiment of the present invention, some of these actions may not
automatically be interpreted as an indication that a user 102 wishes to edit a section of
a document and/or additional actions may be interpreted as such an indication.

For example, if text document 190 is displayed on the screen of client computer
119a, user 102a may edit paragraph 192c by positioning the caret in paragraph 192¢
and then pressing a Lock button displayed by text editor 800 or by pressing certain
character keys on the attached keyboard or by deleting any portion of the text.

Text editor 800 is configured to allow a user 102 to simultaneously lock more
than one section of a text document to facilitate editing of a portion of the text document
longer than a paragraph. A user 102 may lock multiple sections of a text document by
selecting, either via mouse or keyboard commands, some or all of the sections and
pressing the Lock button. After locking one section of a text document, a user 102 may
also lock additional sections of the document by moving the caret to another paragraph
of the text document and pressing a character key or deleting one or more characters.
In the présent embodiment, text editor 800 is configured to allow only contiguous parts
of a text document to be locked by one user 102. Accordingly, a user 102 may only
obtain locks for paragraphs that are adjacent to one another in the list of child sibling

—67 —

10

15

20

25

30

35

WO 02/17115 PCT/CA01/01207

containers of the parent container 410 of a text document (i.e containers 420, 424, 428,
432, 436 (Figure 5) in the case of text document 190 (Figure 2)).

When text editor 800 transmits a Lock Request message identifying one or more
containers 140, workspace server 112h checks the container_lock_handle field of
each indicated container. If all of the indicated containers 140 are unlocked,
workspace server 112h locks all of them by setting their container_lock_handle field to
the requesting user's user_handle. Workspace server 112h then transmits a Confirm
Lock message to text editor 800. Text editor 800 may then display the locked sections
of the text document in a selected color to indicate that they have been locked. (Text
editor 800 is a part of client 116 and is able to communicate with workspace server
and other entities using the communication link established in step 1208). If one or more
of the identified containers is already locked by another user 102 (i.e. the
container_lock_handle field records the user_handle of the other user 102),
workspace server 112h transmits a Refused Lock message to text editor 800.

In response to a Refused Lock message, text editor 800 may optionally be
configured to display a message indicating that the paragraph (or, more precisely, its
corresponding container 140) is locked by another user and therefore cannot be
edited. The other user may or may not be identified in the message. For efficiency,
text editor 802 may optionally be configured to allow a user to begin editing a paragraph
after first indicating that he wishes to do so, but before a Confirm Lock message is
received. This allows the user to edit paragraphs without delays resulting from
communication delays between text editor 800 and workspace server 112h. Ifa
Refused Lock message is received, any editing performed on the paragraph (or any
formatting change) is discarded.

When workspace server 112h transmits a Confirm Lock message to a client
116, it also broadcasts a Lock Update message to all clients 116 connected with the
workspace to advise them of the newly granted lock(s) and the user_handle of the
user 102 that obtained the lock(s). For example, if user 102a locks containers 424 and
428, workspace server 112h will transmit a Lock Update message to all clients
indicating both user 102a's user_handle and identifying the locked containers. Client
116a, which transmitted the Lock Request message, ignores the Lock-Update message
after determining that it relates to a lock obtained by client 116a. Alternatively,
workspace server 112h may transmit a Lock Update message to all clients with the
exception of the originating client 116a. Every other connected client 116 modifies the
container_lock_handle field of the indicated containers 140, if those containers have
been previously downloaded by the particular client 116. In this way, every client 116

- 68—

10

15

20

25

30

35

WO 02/17115 PCT/CA01/01207

that is currently displaying a document (through one of the editors built into the client
116) is advised of every lock granted for any section of the document. Similarly,
workspace server 112h transmits an Unlock Update message advising all clients when
a container is unlocked (See step 1511 (Figure 17)).

While one user 102a is editing one locked portion (consisting of one or more
contiguous sections) of a text document, another user (i.e. user 102b) may lock and
edit another portion of the text document. Workspace server 112h will accept and
confirm Lock Requests from different clients 116 (or, more precisely, from their text
editors) at the same time.

Each text editor 800 may display unlocked sections, sections locked by the local
user (i.e. user 102a of the client 116a) and sections locked by other users 102 in
different colors to identify their status. Text editor 800 may be configured to display
sections locked by all different users in different colors, or may display the
user__screen_name of the user 102 that has locked each section adjacent to or over
the section. In this way, a user 102 is kept informed about any locked sections of the
document that he is viewing, even if the user has no sections of the document locked.

When the user 102 has finished editing a part of a text document (which may
be one or more contiguous sections) that he has previously locked, text editor 800
posts the edited sections by transmitting the following to workspace server 112h:

0 a Post request;

(i) the container_id of the parent container of the container (or containers)

that are being posted; and

(iii) the modified containers 140 (including their articles 142 with their edited

character_data fields) to be posted. If all sections associated with the
locked containers have been provisionally removed from document sub-
tree 412, there will be ho modified containers 140 to be posted, and the
Post request will be interpreted by workspace server 112h as a request
to remove the locked containers from the master copy of container tree
124,

In the present exemplary embodiment, text editor 800 transmits the container_id
of the parent container of the containers so that a single Post request may be used to
identify the location in the container tree 124 under which the modified containers are
to be posted. In an alternative embodiment, text editor 800 may post the new or
updated container(s) by simply transmitting the Post request and the container(s)
themselves.

— 69—

10

15

20

25

30

35

WO 02/17115 PCT/CA01/01207

The operation of the workspace server 112h when it receives the Post request
is described below as method 1500.

In response to the Post request, workspace server 112h will transmit either a
Confirm Post message or a Refuse Post message. If a Confirm Post message is
received from workspace server 112h, then the provisionally posted containers are
made permanent. If a Refuse Post message is received, then text editor 800 may be
configured to discard the previously provisionally posted edits and restore the
container sub-tree to the condition prior to obtaining the locks on the posted containers,
or it may be configured to re-transmit the Post message one or more times, or it may be
configured to display a message to user 102a and allow him to select a course of
action, or a combination of these actions.

Text editor 800 may make various types of Post requests. The simple Post
request above does not result in the containers that are being posted becoming
unlocked. If the user 102a indicates that a lock is to be released, or if text editor 800
determines that a lock must be released, text editor 800 will transmit a Post and Unlock
request, which is otherwise the same as a Post request.

As user 102a edits a text document, text editor 800 automatically adds and
deletes containers in a provisional list of child sibling containers of the parent container
410 of the document sub-tree as new sections (paragraphs) are added and deleted.
Text editor 800 also permits the user 102a to add, edit or delete embedded elements
within paragraphs. When the user 102 attempts to edit or delete an element embedded
within a paragraph, text editor 800 requests a lock, as described above, for the
associated child container of the sibling container in which the paragraph text is stored.
Text editor 800 then invokes the appropriate editor for the type of embedded data. If
the embedded data is text, then text editor 800 may control the editing of the embedded
text itself or may invoke another instance of a text editor 800 to control the editing of
the embedded text.

To create a new paragraph and add it to a text document, the user 102 typically
presses the Enter key while the caret is positioned in a paragraph (“the current
paragraph”) which is either unlocked or is locked by the user 102. If the user presses
the Enter key while the caret lies in an unlocked paragraph, client 116 transmits a Lock
request to gain a lock on the unlocked paragraph. A new paragraph is created and
inserted into the text document either before or after the current paragraph depending
on the position of the caret when the Enter key is pressed. If the caret lies prior to the
first character in the current paragraph, a new empty paragraph is inserted into the
document prior to the current paragraph. If the caret lies within the current paragraph,

—-70 -

10

15

20

25

30

35

WO 02/17115 PCT/CA01/01207

the current paragraph is truncated at the caret location and the remaining character
data is used to initialize a new paragraph which is inserted after the current paragraph.
If the caret lies after the final character in the current paragraph, a new empty
paragraph is inserted into the document after the current paragraph. User 102a may
similarly add new paragraphs immediately prior to, within, between, or immediately after

_paragraphs locked by the user 102a. Whenever a new paragraph is created, text

editor 800 creates a new Sibling_Childless_Container 316 (Figure 7) for the new
paragraph and links it into the provisional list of child sibling containers of the parent
container for the document sub-tree. If an embedded element is subsequently added to
the paragraph, the Sibling_Childless_Container 316 may be replaced with a
Sibling_Array_Container 314 or a Sibling_List_Container 312 (Figure 7).

Text editor 800 manages merging of adjacent paragraphs in a similar manner. If
the user 102 presses the Backspace key while the caret is positioned prior to the first
character in a paragraph, an attempt is made to merge the current paragraph with the
previous paragraph. If the user 102 presses the Delete key while the caret is
positioned after the final character in a paragraph, an attempt is made to merge the
current paragraph with the next paragraph. If either of the paragraphs to be merged is
not locked by user 102a, text editor 800 makes a Lock request for unlocked
paragraph(s). If the lock(s) are confirmed by the workspace server 112h, then text
editor 800 combines the paragraphs by extracting the character data from one
paragraph (or more precisely, from the Paragraph_Article field of the article 142
contained within the container 140 corresponding to the paragraph) and adding it to the
character data in the other paragraph. Text editor 800 removes the empty paragraph
from the document and removes its corresponding sibling container from the provisonal
list of sibling containers in the document sub-tree, updating the list_next_pointer and
list_previous_pointer fields of the adjacent containers in the provisional list. During a
later Post request, workspace server 112h replaces the two locked containers 140
with the single container containing the merged Paragraph_Article.

When the user 102 has completed editing a contiguous portion of the document
(which may include embedded elements, or may comprise an entire embedded element
or contiguous sections of an embedded element or a single section of an embedded
element), text editor 800 (or another editor invoked to control editing of an embedded
element) provisionally creates new containers and/or modifies existing containers and
posts them to workspace server 112h. For each new paragraph in the text document,
a new container (typically a Sibling_Childless_Container 316) and a new
Paragraph_Article 370 (with character_data field set to new text), is provisionally

~71—

10

15

20

25

30

35

WO 02/17115 PCT/CA01/01207

created. The remaining fields of the new containers are also appropriately initialized.
Upon receiving a Confirm Post message from workspace server 112h, text editor 800
(or another editor invoked to control editing of an embedded element) freezes its local
copy of container tree 124, updates the document sub-tree (making provisional
containers permanent), and unfreezes container tree 124.

Text editor 800 (and any other editor that is invoked by text editor 800) also
modifies the contents of the parent article of a document sub-tree to update the
summary_history field to track major events in the history of a document, the
text_format and text_document_format fields to modify the default text and document
formats, as well as the formatting_data and change_tracking_data fields to track
subsequent format changes and the editing history of the document. Some fields of the
parent article, such as the text_document_statistics field, may not be calculable until
child containers are ready to be posted. To avoid persistently locking the parent
container during multi-user editing sessions so that calculated fields in its parent article
may be updated, an alternative form of a Post request may be used to post the
unlocked parent container 410 at the same time as the child containers are posted. In
this form, text editor 800 updates the calculated fields in a provisional copy of the
parent article in anticipation of workspace server 112h successfully replacing the
unlocked parent container 410. The parent container and new or modified child
containers are posted to workspace server 112h using a Blind Post request as
described below in step 1506 of method 1500 in Figure 17.

Reference is made to Figures 2 and 4. For example, as user 102a is editing text
document 190, text editor 800 updates the structure and contents of its local copy of
container sub-tree 412. i user 102a is editing paragraph 192a, then text editor 800 will
have obtained a lock for container 420 for user 102a. If user 102a then moves the
caret into paragraph 192b and begins to edit it, text editor 800 will obtain a lock on
container 424. If user 102a then moves the caret into graphic image 194 and indicates
that he wishes to edit it (for example, by double clicking on graphic image 194), then
text editor 800 will invoke a graphic image editor 802 to control the editing of graphic
image 194. In the present embodiment, when user 102a initiates editing of an
embedded element, text editor 800 posts and unlocks all containers that it currently has
locked before allowing the embedded element to be edited. Graphic image editor 802 is
then invoked and allows user 102a to identify one or more sections of graphic image
194 that he wishes to edit. When user 102a identifies a section, graphic image editor
802 obtains a lock on the corresponding container. For example, if user 102a wishes
to edit the upper right corner of graphic image 194, then graphic image editor 802 will

~72 —

10

15

20

25

30

35

WO 02/17115 PCT/CA01/01207

obtain a lock on container 450. Simultaneously, another user 102 may lock another
section of graphic image 194 by locking one or more of containers 444, 452 and 456. In
this way, two users 102a may simultaneously edit different sections of an embedded
element in a text document. Graphic image editor 802 may display the boundaries of
locked sections of graphic image 194 in different colors to identify users 102 that have
locked those sections, based on the locks that graphic image editor 802 has obtained
and based on Lock Update messages received from workspace server 112h.

In another embodiment, the text editor may allow embedded elements to be
edited without releasing its locked containers. Such a text editor may be configured to
lock non-embedded and embedded sections of a document, either contiguously (based
on their appearance in the document) or non-contiguously.

If a user 102 wishes to edit the overall image attributes of graphic image 194,
then graphic image editor 802 will obtain a lock on container 440 and display a dialog
box which allows the editable attributes recorded in the image_attributes field to be
edited. Graphic image editor 802 will then post container 440.

If a user 102 wishes to modify the way in which graphic image 194 is divided
into sections, the graphic image editor 802 will obtain a lock on container 440 and all of
its child containers 444, 448, 452, 456 that are used to store graphic image 194 and
then display a dialog box allowing user 102 to specify the new division of image 194
into sections. Graphic image editor 802 will then modify the child containers (including
adding and/or deleting containers) as well as modifying container 444 (the
array_dimensions and child_array fields). Graphic image editor 802 will then post all of
the locked containers.

Prior to posting any container, text editor 800 and graphic image editor 802 (and
all other parts of client 116) recalculate the container_article_length field of the
container.

The operation of other editors built into client 116 in the present embodiment is
analogous to the operation of text editor 800. Each particular editor has some
operational differences based on the type of document that the editor is intended for.

The presentation editor 804 is configured to allow a user 102 to edit the
structure and content of a presentation document, such as presentation document 200.
Incorporated within presentation editor 804 is a slide editor 810 that is invoked to allow
a user 102 to edit an individual slide. A slide may comprise various types of data such
as text (i.e. paragraphs 214 on slide 202), images (i.e. graphic image 220 on slide 206),
shapes (i.e. vertical line 210 on slide 202 and arrow 216 on slide 204), windows for
displaying audio/video clips (i.e. audio/video clip 218 on slide 204) and other elements.

—73 -

10

15

20

25

30

35

WO 02/17115 PCT/CA01/01207

To edit the contents of these individual elements, slide editor 810 invokes an
appropriate editor that is configured to lock the associated containers 140, allow a user
102 to edit the articles of the containers, update the container fields and then post the
revised containers 140. In some cases, a user may wish to make a common change to
one or more elements on a slide. For example, a user may wish to select a number of
elements and move them all 20 pixels to the left. Slide editor 810 allows this by
obtaining a lock for the containers corresponding to all of the selected elements,
allowing the user to specify the change desired and then modifying the articles of all of
the locked containers before posting them. In this example, the article_window field of
the associated article for each element would be modified. (Child containers used to
store parts of elements, such as pixel blocks, may not need to be modified. For
example, to move and/or resize graphic image 208, only the article_window field of
article 532, in container 530, must be changed.)

If a user 102 attempts to move a single element in a slide, it may be desirable to
allow the user to do so by simply clicking and holding on the element, dragging it to a
new location and unclicking. To facilitate this, slide editor 810 is configured to transmit
a Lock Request to obtain a lock for the container associated with the article, and then
to transmit a Post and Unlock request after the Lock is obtained and after the user 102
is finished moving the element. It is possible that due to communication speed
limitations, the user may be finished moving the element before the lock is obtained. In
this case, slide editor waits until after the lock is obtained to modify the locked container
and then posts it. If the Lock request or the Post request is refused by the workspace
server 112h, the element is returned to its original position prior to the user clicking on it,
and an explanatory message is displayed to the user 102. Alternatively, slide editor
810 may be configured to allow a user to move or edit a slide element without locking it.
When the user has completed the move or editing operation, the container
corresponding to the element is posted using a Blind Post request described below in
step 1506 of method 1500 in Figure 17.

Changes to the default properties of the presentation are controlled by the
presentation editor 804 in a similar way by locking the parent container of the
presentation document's document sub-tree, allowing the default_background,
default_title_properties, default_text_properties and default_shapes of its article to be
edited, then transmitting a Post and Unlock message to update the parent container and
its article.

The other editors of clients 116 are similarly configured to allow documents and
embedded elements within documents to be edited by a user by locking the containers

— 74—

10

15

20

25

30

35

WO 02/17115 PCT/CA01/01207

associated with one or more sections of the document or element, allowing the user to
edit the selected sections, updating the articles of the locked containers and posting the
locked containers.

The contiguity rule described above in relation to text editor 800 is not applied by
graphic image editor 802, presentation editor 804, table editor 806, audio/video clip
editor 808 or slide editor 810. Documents typically edited by these editors 802, 804,
806, 808, 810 are stored using an Array_Container 304 at the head of the document
sub-tree. In addition, embedded elements (such as graphic image 194 (Figure 2) edited
by these editors are typically stored in a portion of a document sub-tree that has an
Array_Container 304 as a parent (typically the Array_Container will be a child of
another container, such as a List container (for example, Array_Container 440, which
is the parent of a part of document sub-tree 412 is itself the child of container 424)). In
both cases, the child containers of an Array_Container 304 typically do not have any
inherent or necessary "next" or "previous" relationship between them, and accordingly
the concept of contiguity does not apply.

The child containers of an Array_Container 304 (such as container 494 (Figure
6)) may have an order relationship. For example, the "z-order" of elements (the order
in which elements are drawn on a slide, so that elements drawn later overlap or
obscure elements drawn earlier) in a slide may be determined by the order in which the
pointer to the child container associated with each element appears in the child_array
field of their common parent Array_Container 304. If a user edits the z-order of
elements in a slide, slide editor 810 will lock the Array_Container 304, edit its
child_array field, and post the container. This allows the z-order of elements to be
changed without locking all containers for each element being reordered and may
reduce the amount of data that must be transferred if the elements being reordered are
large.

Reference is next made to Figure 17 which illustrates a method 1500 by which
a workspace server 112h responds to a Post or a Post and Unlock message from a
client 116, such as client 116a. Method 1500 begins in step 1502, in which workspace
server 112h receives a Post request from client 116a.

Method 1500 next proceeds to step 1504 in which workspace server 112h
freezes its master copy of the container tree 124, effectively freezing the header file
660 and the document files 662. As described above in relation to step 1208 (Figure
14a), a separate process is instantiated within workspace server 112h to handle every
client that connects to workspace 122s. Freezing the master copy of the container

— 75—

10

15

20

25

30

35

WO 02/17115 PCT/CA01/01207

tree 124 ensures that none of these other processes modifies shared structures while
the Post request is being handled.

Method 1500 next proceeds to step 1506, in which workspace server 112h
checks its master copy of the container tree 124 to ensure that the Post request may
be completely accepted. The Post request received in step 1502 may include
containers that are being blindly posted by client 116a (i.e. which are being posted
without having been previously locked by client 116a) and containers 140 which are
being posted after having previously being locked by client 116a (i.e a regular Post
request).

Workspace server 112h will accept a Blind Post request for a container 140 if:

i the container is not currently locked by any user 102 other than user

102a;

i the time stamp of the container received from in the Post request

matches the time stamp of the container in the master copy of the
container tree 124.

Every time that workspace server 112h modifies a container 140 in the master
copy of container tree 124, it updates the time stamp of the container (in step 1508). If
the time stamp of a blfndiy posted container 140 is different from the time stamp of the
same container 140 in master copy of container tree 124, then the container 140 in the
master copy of container tree 124 has been modified after the container 140 was last
received by client 116a, (either as part of an Update message or at the request of client
116a). This may occur if the container 140 has just been posted by another client 116,
but an Update message relating to the Post request has not yet been processed by
client 116a. If the container 140 in the master copy of the container tree was to be
replaced with the posted container 140, any such modification would likely be lost.
Accordingly, if the two time stamps do not match, the Blind Post request is refused.

Workspace server 112h will accept a regular Post request if the container is
locked in the master copy of container tree 124 by user 102a (i.e. the
container_lock_handle field of the container contains user 102a's user_handle).

If any of the conditions for posting any container in the Post request are not
met, whether the container is being blindly posted or regularly posted, then workspace
server 112h returns a Post Refused message to client 116 and method 1500 ends. A
Post Refused message may include an explanation of the reason that a Post request
was refused, allowing the client 116 that originated the Post request to display an
appropriate message to its user 102 proceeds to step 1508.

—-76 -

10

15

20

25

30

35

WO 02/17115 PCT/CA01/01207

In step 1508, workspace server 112h modifies the container tree 124 to include
the containers posted by client 116a. This may involve editing header file 660 and/or
document files 662. Any out-dated containers 140 are discarded. In another
embodiment, such out-dated containers may be stored temporarily or permanently to
allow older versions of documents stored in a workspace 122 to be recreated. If a
new container 140 is posted (i.e. a container 140 that did not exist in the container tree
124 previously), it is added to the container tree 124 and header file 660 and document
files 662 are updated accordingly.

System 100 supports several different types of Post requests, which may be
specific to the kind of parent container 410 involved. The response of workspace
server 112h to the Post request received in step 1502 may depend on the type of
containers 410 involved.

For example, in the present embodiment, text document 190 is stored using a
List_Container 302 as the parent container 410 of document sub-tree 412 and using
sibling containers 420, 424, 428, 432 and 436 to store paragraphs 192a, 192b, 192c,
192d and 192e. When a user 102a has containers 428 and 432 (which correspond to
paragraphs 192c and 192d) locked, user 102a may perform any editing operation that
adds paragraphs before paragraphs 192c, between paragraphs 192c¢ and 192d or
after paragraph 192d. Similarly, user 102a may delete either or both of paragraphs
192¢ or 192d. Any such operation will result in fewer or more containers being posted
to workspace server 112h than were initially locked. To simplify such post operations
with respect to sibling lists, workspace server 112h processes them by splicing all of
the posted containers into the sibling list, in the place of the previously locked
containers 428 and 432. As part of the splice operation, workspace server 112h
updates the list_next_pointer and list_previous_pointer fields of any containers
adjacent to the newly spliced containers in the sibling list.

Similarly, post transactions relating to Array_Container 304 and its children may
be handled using an add children operation, which adds one or more posted containers
to the Array_Container's list of child of containers 140, a replace children operation,
which allows some or all of the containers 140 locked by a client 116a to be replaced in
one Post request or delete children operation, which allows some or all of the
containers 140 locked by a client 116a to be deleted.

All containers 140 successfully posted by a client will be valid containers and
will accordingly have their container_valid flags set to TRUE. All containers that are
stored in the header file 660 and document file 662 at any time are considered valid
containers, even if they are locked and are currently being edited by a user 102.

—~77 -

10

15

20

25

30

35

WO 02/17115 PCT/CA01/01207

Method 1500 next proceeds to decision step 1510. If the Post request received
from client 116a includes an Unlock request, method 1500 proceeds to step 1511.
Otherwise, the request is merely a Post request and method 1500 proceeds to step
1512.

In step 1511, workspace server 112h unlocks all containers included in the
current Post and Unlock request (other than those containers deleted in step 1508) by
setting their respective container_lock_handie fields to Null.

Method 1500 next proceeds to step 1512, in which the workspace is unfrozen.
Workspace 112h returns a Confirm Post message to client 116. In response, client 116
freezes its local copy of container tree 124, updates container tree 124, then
unfreezes container tree 124. New containers 140 which were provisionally created
by client 116 prior to the Post request are added to container tree 124. Existing
containers for which provisional copies were made by client 116 prior to the Post
request are replaced in container tree 124. In this way, client 116’s local copy of
container tree 124 is synchronized with workspace server 112h’s master copy of
container tree 124.

Method 1500 next proceeds to decision step 1514, in which workspace server
112h determines the method in which all clients 116 that are connected to the
workspace 122 are to be advised of the changes to the container tree 124.

Workspace server 112h determines the size of an Update Message
corresponding to the Post request received in step 1502, including, if applicable, an
Unlock message. Workspace server 112h may do this by summing the sizes of all
posted containers and any additional information that may have to be sent, such as the
identify of the originating client 116a. The size of such an Update message is
compared to a selected Push Update Threshold. In the present embodiment, the Push
Update Threshold is 32 kilobytes, although a different threshold may be chosen based
on the speed of the communication network 114 and other factors. If the Update
Message exceeds the Push Update Threshold, method 1500 proceeds to step 1518.
Otherwise, method 1500 proceeds to step 1516.

In step 1516, workspace server 112h prepares an Update Message containing
the entire posted sub-tree, including the contents of every container 140 that was
posted, and identifies containers that have been unlocked as part of the Post request.
The Update Message also identifies the client 116 (the "originating client") from which
the Post request was received in step 1502. Each posted container is set out in its
current valid form as it is recorded in the header file 660 or the document files 662.
This Update Message is referred to as a "Chubby Update Message", since it includes

—78 —

10

15

20

25

30

WO 02/17115 PCT/CA01/01207

the entire posted sub-tree and the full contents of the containers updated in step 1508.
Workspace server 112h then transmits the Update Message to all clients connected to
the workspace. Method 1500 then ends.

In step 1518, workspace server 112h creates a "Skinny Update Message"
which comprises the entire posted container sub-tree with the container_article field
set to Null for all containers. Each container in the sub-tree is transmitted in a special
format in which each node contains the container_id of the container 140 at that node
and a "post_flag", which is marked TRUE if the container was posted, and FALSE if it
was not posted in step 1508. The Skinny Update Message also identifies the originating
client 116 from which the Post request was received in step 1502. Workspace server
112h transmits the Skinny Update Message to all clients 116 connected to the
workspace 122. Method 1500 then ends.

Workspace server 112h broadcasts Update messages to all clients 116
connected with an active workspace 122 in response to various client-server
transactions. In this way, every client 116 that is currently connected to workspace
122s is advised of the activities of every other client 116 as they are posted. A client
116a which performs the originating transaction ignores all Update messages that
relate to its own connection. Clients 116 respond to an Update message in a manner
that is appropriate to the kind of Update message being broadcasted. System 100
supports several different kinds of Update messages, including Connect Update,
Disconnect Update, Lock Update, Unlock Update, Post Update, Post and Unlock Update,
etc. The Update message corresponds to the originating transaction and additionally
includes the user_handle of the originating user.

Reference is next made to Figure 18, which illustrates a method 1600 by which
a client 116 processes an Post Update message (which may be Chubby or Skinny)
from a workspace server 112h.

Method 1600 begins in step 1602 in which the client 116 receives the Update
Message.

Method 1600 next proceeds to decision step 1603, in which the originating user
102 of the Post which resulted in the Update Message is identified. If the originating
user 102 is the same user operating the client 116, then the Update Message is
discarded and method 1600 ends. Otherwise, method 1600 proceeds to step 1604.

In step 1604, the client 116 freezes its local copy of the container tree 124 to
ensure that no editor or other process modifies the container tree.

—-79—

10

15

20

25

30

35

WO 02/17115 PCT/CA01/01207

Method 1600 next proceeds to decision step 1606. If the received Update
Message is Chubby, then method 1600 proceeds to step 1608. Otherwise, method
1600 proceeds to step 1612.

In step 1608, client 116 updates its local copy of the container tree 124 to
include the updated containers 140. If the Chubby Update Message relates to a
document for which client 116 has never done a View/Edit transaction (Method 1400,
Figure 16) during the current session, then only the parent container 410 of the
document is updated. The remaining containers in the Chubby Update Message are
discarded. If, within the document sub-tree for a document for which a View/Edit
transaction has been performed, client 116 has not previously gotten a container that is
indicated in the Chubby Update Message, the container is added to the client's local
copy of container tree 124 and is updated. If the Chubby Update Message indicates
that a container 140 has been deleted from container tree 124, client 116 deletes the
container 140 from its local copy of container tree 124.

Method 1600 next proceeds to step 1610, in which client 116 unfreezes its local
copy of container tree 124. Method 1600 next proceeds to step 1620.

In step 1612, client 116 marks its local copy of each container 140 indicated in
the Skinny Update Message as invalid by setting the container's container_valid flag to
FALSE. If the Skinny Update Message relates to a document for which client 116 has
never done a View/Edit transaction (Method 1400, Figure 16) during the current
session, then only the parent container 410 of the document is marked as invalid. The
remaining containers in the Skinny Update Message are discarded. If, within the
document sub-tree for a document for which a View/Edit transaction has been
performed, client 116 has not previously gotten a container that is indicated in the
Skinny Update Message, the container is added to the client's local copy of container
tree 124 and marked as invalid. Fields of the new container 140 that are not included in
the Skinny Update Message (i.e. the container_article field) are left blank. If the Skinny
Update Message indicates that a container 140 has been deleted from container tree
124, client 116 deletes the container 140 from its local copy of container tree 124.

Method 1600 next proceeds to step 1614, in which client 116 unfreezes the
container tree 124. '

Method 1600 next proceeds to step 1616, in which client 116 determines if any
container in the document sub-tree of the document it is currently displaying has been
marked as invalid. If not, method 1600 proceeds to step 1620. Otherwise, method
1600 proceeds to step 1618.

- 80 -

10

15

20

25

30

35

WO 02/17115 PCT/CA01/01207

In step 1618, client 116 gets all invalid containers in the document sub-tree for
the document that it is currently displaying. This is done in the same manner as in step
1406. Method 1600 next proceeds to step 1620.

In step 1620, client 116 updates its display if required. For example, during text
editing, this may result in some paragraphs that are currently being displayed being
modified due to edits originated in other clients 116. The associated user 102 (i.e. user
102a of client 116a) will then be able to see any edits made by any other user, soon
after the edits were posted to workspace server 112h.

In this way, changes made by any user 102 to a document in a workspace 122
are transmitted to all other connected clients to be displayed to their associated users
102. The use of Skinny Update Messages to simply indicate that a change has been
made to a container rendering the copy stored by a client invalid has the advantage that
a comparatively small Skinny Update Message suffices to ensure that a client does not
erroneously display an out-of-date section of a document, without requiring a possibly
lengthy Chubby Update Message, which may simply be discarded by client 116 in step
1608, to be transmitted.

In other embodiments, method 1600 may operate differently. For example, in an
alternative embodiment, all Update Messages may be Chubby. This may require
substantially more data to be transmitted to all clients, but eliminates the need to update
invalid containers as in step 1618. In another embodiment, all Update Messages may be
Skinny, so that a document which was previously viewed, but is not currently being
viewed by a user 102 is not kept up to date, potentially reducing the memory
requirements for container tree 124.

In another embodiment, clients 116 may be configured to update their document
sub-trees for a document that is not currently being displayed when a Chubby Update
Message is received only if it is smaller than a selected threshold. If the Chubby
Update Message exceeds the threshold, all containers in the client's local copy of the
document sub-tree are deleted, and if the associated user decides to view or edit the
document again, the client gets it in step 1408.

One embodiment of the present invention is implemented using Java™, a non-
platform specific programming language that operates within network browsers. This
has the advantage that system 100 may be used on any platform that supports Java.
This is not necessary, however, and any particular embodiment of present invention
may operate only on one or more selected platforms and specific versions of clients
116 may be developed for each platform. A skilled person will recognize that Java
does not support multiple inheritance, which is used to describe the definition of

-81-

10

15

20

25

WO 02/17115 PCT/CA01/01207

container and article classes. A skilled person will be capable of defining equivalent
container and article classes without using multiple inheritance. Alternatively, the
present invention may be implemented using a programming environment such as
Microsoft™ C# and .NET™.

In another embodiment of the present invention, it may be desirable to limit users
102 from having multiple simultaneous logins to the system, or from connecting to more
than one workspace at a time. In such an embodiment, a presence table may be used.
A presence table includes one record for each user 102 who is presently logged into
the system. The record for each user has the following structure:

Field Contents
presence_handle Unique identifier identical to the user_handle field

of the user 102’s user record in user database
106

presence_id Unique identifier identical to the workspace_id field
for the workspace 122 to which user 102 is
presently connected, or Null in the event user 102
is not presently connected to a workspace 122

presence_time_stamp Records the last time at which the user 102
communicated with a master server 110. This field
is kept up to date by the master servers 110.

The presence table is used to measure overall user load on the system and to
prevent duplicate logins. It is also used to timeout and disconnect inactive users 102.
When a user 102 performs a Login transaction as described above in method 1000
(Figure 12), a record is added to the presence table with its presence_handle field set
to the user_handle of the user 102 and the presence_id field set to Null. When the user
102 performs a Connect transaction and opens a workspace 122 as described above
in method 1200 (Figures 14a and 14b), the presence_id field of user 102’s record in
presence table 109 is updated to record the workspace_id of the newly opened
workspace 122. When the user 102 disconnects from a workspace 122, the
presence_id field of user 102’s record in presence table 109 is reset to Null. When the
user 102 logs out of system 100, the user 102’s record is removed from presence table
109. |

Using the presence table, a master server 110 may forcibly log out users who
are not actively using the system. If a user's record in the presence table indicates that
the user is not connected to a workspace (i.e. the presence_id field is Null) and the

-82-

10

15

20

25

30

35

WO 02/17115 PCT/CA01/01207

presence_time_stamp field has not been updated for a selected time_out_threshold, the
user may be forcibly logged out.

Similarly, workspaces servers 112 may use a separate presence table to frack
the activity of each user connected to a workspace. A user who has not
communicated with a workspace server 112 for a selected timeout threshold may be
forcibly dis-connected from the workspace. Depending on the environment in which a
particular embodiment is implemented, the environment may provide a facility for timing
out inactive connections between workspace servers 112 and clients 116.

System 100 has been described using a single container tree for storing all
documents within a workspace 122. In an alternative embodiment, different data
structures may be used to store the document sub-tree for each document within a
workspace. As an example of such an embodiment, each workspace may be stored
within a single folder or directory within file system 104. Within the single directory,
each document sub-tree may stored in a separate file. The member list 143 may be
stored in a separate file, which may have a pre-selected name and the Icontents of the
root container 400 of the workspace 122 may be set out in a separate file, which may
also have a pre-selected name.

The Update messages transmitted by a workspace server 112 to update clients
116 regarding locks, posts, membership changes, etc. have been described as being
sent to all clients 116, including the client 116 that originated a Post message that then
resulted in the Update message. The originating client has been described as ignoring
such Update messages. In an alternative embodiment, the originating client may be
excluded from the broadcast of such Update messages.

As mentioned above in relation to step 1208, when a client 116 connects to a
workspace server 112, the workspace server initiates a separate process to
communicate with the client 116. Client 116 initiates two separate threads to
communicate with the separate process created for the client 116: a primary
communication thread and a listener thread. The primary communication thread is used
to perform Lock requests, Get Requests, Post Requests and other communications
with the workspace server. The listener thread is intended only to receive Update
messages from the workspace server 112. In another embodiment, the workspace
server 112 may initiate a single broadcast thread which communicates with the listener
threads of all clients 116 connected to a workspace 122.

In another embodiment of a system according to the present invention, the
contents of some or all of the articles 142 contained within the containers 140 may be
encrypted. Typically, the containers 140 will not be encrypted to allow the other

—-83-—

10

15

20

25

30

35

WO 02/17115 PCT/CA01/01207

container fields to be read. By encrypting only the contents of articles 142, the
contents of the stored document may be concealed. Every member of a workspace, or
at least every connected member of a workspace 122 may be provided with a key for
decrypting the encrypted articles.

In system 100, clients 116 create provisional containers to store modified
versions of containers 140 which are then posted to workspace server 112h. If the
Post request is confirmed, the provisional containers are made permanent by adding
them to the client's local copy of the container tree 124. Alternatively, the client 116
may be configured to modify its local copy of container tree 124 and to store the
original version of modified containers in provisional containers, which would then be
re-inserted into the client's local container tree 124, if a related Post request is refused.

In system 100, header file 660 and document files 662 are kept up-to-date at all
times by workspace server 112h. The parent container 410 for each document sub-
tree is stored in both the header file 660 and one document file 662. To improve the
efficiency of updating a parent container 410, the directory 664 record for each parent
container 410 in the header file 660 may include a field for indicating that the parent
container 410 has been modified, but that the modification has not been made in the
corresponding document file 662. Subsequently, when the document file 662 is
accessed, the parent container 410 may be updated in conjunction with another
change to it.

System 100 has been described with an Array_Container 304 as its root
container 400. In an alternative embodiment, a List_Container 302 may be used as the
root container 400 for a workspace 122. In this case, Sibling_List_Containers 312 and
Sibling_Array_Containers 314 may be used in the place of List_Containers 302 and
Array_Containers 304 as the parent containers 410 for document sub-trees.

In system 100, embedded data is defined in direct or indirect child containers of
another container. In an alternative embodiment, data may be embedded in a document
by reference. An "Embed_By_Reference_Article" may be used to refer to a container
at the head a sub-tree that stores the embedded data. An editor included in client 116
may be configured to treat the embedded data as if it was linked directly in the
document sub-tree.

When a user logs in to system 100, a complete up-to-date client is installed on
the user's client computer 119a in step 1005, if necessary. In an alternative
embodiment, only those portions of client 116 that are needed by a user 102 may be
transmitted to the client computer 119. For example, the user may be provided with a
list of out-of-date components in his installed client 116 and may be permitted to select

-84 —

10

15

20

25

30

35

WO 02/17115 PCT/CA01/01207

the components that he wishes to update. If any other component becomes necessary
for client 116, that additional component may be subsequently updated. Alternatively,
each component of client 116 may be updated automatically every time it is invoked by
first checking to see if the latest version of the component is included in a user's
installed client 116 and automatically updating it if the installed version is out-of-date.
These alternatives allow a user 102 to login to the system without obtaining an update
for many components that the user 102 may not use during a particular session or at
all.

In system 100, a member's privileges within a workspace are defined in the
member's record 144 in the workspace's member list 143 and are constant for all
documents in the workspace 122. Alternatively, a member's privileges may be defined
for each document in a workspace, as mentioned above. In addition, various editing
operations for each document may be restricted to certain members. For example, an
owner of a text document may be permitied to change its default text_attributes, but
workers may not be permitted to modify this field or the formatting_data field of any
Paragraph_Article 370. This allows only the owner to modify the text_attributes of the
entire document. At the same time, another document may have different restrictions
for the members permitted to access it.

System 100 has been described as permitting a user 102 to edit a document in a
window using an editor incorporated into client 116. An editor may be configured to
allow a user to open multiple windows for a single document. Each window
independently displays one or more sections of the document. Similarly, two or more
different editors, or two or more instances of the same editor, may be instantiated to
allow a user 102 to simultaneously edit two or more documents within a workspace
122.

Reference is next made to Figure 19, which illustrates a method 1700 for
conducting a "live" presentation of a presentation document. A user 102 with owner or
worker privileges in a workspace 122 may conduct a live presentation using a
presentation document, such as presentation document 200. The user 102 who
conducts the presentation is the “presenter” and all other users 102 who are
connected to workspace server 112h and who observe the presentation are
“observers”. More than one presentation may be conducted at the same time in a
workspace 122, While a presenter is conducting a presentation and observers are
observing it, other non-observing users 102 who are connected to workspace 122
may simultaneously view or edit any document in the workspace 122, including the
presentation document being presented.

—85-—

10

15

20

25

30

35

WO 02/17115 PCT/CA01/01207

Method 1700 begins in step 1702, in which a presenter 102a’s client 116a
sends a Get Document request to workspace server 112h as described above in step
1216 of method 1200 to retrieve a presentation document.

Method 1700 proceeds to step 1704, in which presenter 102a starts a
presentation. To start a presentation, client 116a sets the current_slide field of the
parent Presentation_Document_Article 364 to the value of the slide_identifier field of a
selected initial Slide_Article 366, and then blindly posts the parent container 410 as
described above in method 1500.

Every other client 116 that receives the Post Update message determines that
the Post Update message relates to the start of a presentation. The other clients 1186,
which may be referred to as observer clients, may make this determination by
observing that the current_slide field of the parent article has changed from -1 to
another value, or based on a "Begin Presentation" indicator included with the Post
Update message.

Method 1700 next proceeds to decision step 1706. Each observer client
displays a message to its associated user 102 indicating that the presentation is
starting. The associated user 102 may choose to observe the presentation or ignore it.
If the user 102 chooses to observe the presentation, method 1700 proceeds to step
1708. Otherwise, method 1700 terminates. A user 102 may choose to later observe
an active presentation, in which case, method 1700 is entered at step 1708.

In step 1708, the observer client automatically activates a presentation viewer
and gets the presentation document if it has not already been gotten. The presentation
viewer displays the slide corresponding to the current_slide field of the parent article.
The presentation viewer responds to subsequent Update Post messages, generated
by workspace server 112 in response to presenter 102a re-posting the parent
container, by displaying the slide corresponding to the current_slide field of the parent
Presentation_Document_Article 364. If the current_slide field is set to —1, the
presentation is complete and client 116b goes to step 1210.

If a user 102 who is not observing a presentation chooses to perform a
View/Edit Transaction for the associated presentation document, presentation editor
804 prompts the user 102 with a suitable message such as “This presentation is in
progress. Do you wish to observe?”. If the user 102 chooses to observe the
presentation, his presentation viewer is activated and the current slide is extracted and
displayed as described above. If the user 102 chooses not to observe, he may later
press a “Join Presentation” button, which is displayed by presentation editor 804 and
slide editor 810 during an active presentation, to later observe.

— 86 —

WO 02/17115 PCT/CA01/01207

An exemplary embodiment of the present invention has been described in detail
and several alternatives for some aspects of the invention have been described. Many

other variations may be made within the scope of the present invention, which is limited
only by the appended claims.

-87 —

WO 02/17115

PCT/CA01/01207

APPENDIX A — Contents of containers and articles in Container Tree 124

Container 400 (Root Node) (Class Array_Container 304)

Field
container_id

container_parent
container_lock_handle
container_excluded_handle_list
container_article
container_article_length
container_valid
container_time_stamp
array_dimensions

child_array

Contents
1234

Null

Null

Null

Article 402

724 bytes

TRUE

June 10, 2001: 13:36:43
2x1

[404, 406]

5 Article 402 (Root Node) (Class Workspace_Atrticle 354)

Field
article_window

summary_title
summary_description
summary_keywords
summary_log

summary_history
document_count

Container 404 (Class List_Container 302)
Field
container_id

container_parent
container_lock_handle
container_excluded_list_handle
container_article
container_article_length
container_valid
container_time_stamp
list_head_pointer

Contents
Null

Exemplary workspace

Exemplary workspace for patent application
Exemplary, patent

June 7, 2001, 11:06:14 rpw1: | created this
workspace to store documents relating to my
patent application

June 7, 2001: 11:04:27, rpw1, CREATE

2

Contents
2123

400

Null

Null

416

786 bytes

TRUE

June 20, 2001: 08:54:17
420

-88—

WO 02/17115

list_tail_pointer

PCT/CA01/01207

436

Article 416 (Class Text_Document_Article 356)

Field

article_window
text_attributes

summary_title
summary_description

summary_keywords
summary_log

summary_history
text_document_format

text_document_statistics

Contents
Null

Arial, 12 point, black, left justification, single
spacing

Patent Description

Description of Thoughtslinger collaborative editing
system

collaborative, editing

June 11, 2001, 16:52:33 cs1: Began writing
description of system

June 15, 2001, 04:23:12 cs1: Finished first draft
June 10, 2001, 16:50:32 cs1: CREATE

8.5 x 11 paper, portrait orientation, top margin: 1
inch; left margin: 1 inch; right margin 0.5 inches;
bottom margin: 1.5 inches; page number: (format:
"#-", position bottom center)

7234 words; 511 lines; 103 paragraphs

Container 420 (Class Sibling_Childless_Container 316)

Field
container_id

container_parent
container_lock_handle
container_excluded_list_handle
container_article
container_article_length
container_valid
container_time_stamp
list_previous_pointer
list_next_pointer

Article 422 (Class Paragraph_Article 370)
Field
article_window

character data

Contents
3123

404

Null

Null

422

4323 bytes

TRUE

June 19, 2001: 17:35:14
Nuli

424

Contents
Null

<Text of paragraph 192a>

-89 -

WO 02/17115 PCT/CA01/01207

formatting_data offset 23: bold+italic on; offset 39: bold+italic off

change_tracking_data offset 17: rpw1, delete, 10-7-2001 18:22:16

Container 424 (Class Sibling_Array_Container 314)

Field Contents

container_id 3124

container_parent 404

container_lock_handle Null

container_excluded_list_handle Null

container_article 426

container_article_length 2326 bytes

container_valid TRUE

container_time_stamp June 20, 2001: 14:22:16

list_previous_pointer 420

list_next_pointer 428

array_dimensions ‘ 1x1

child_array [440]

Article 426 (Class Paragraph_Article 350)

Field Contents

article_window Null

character data <Text of paragraph 192b>

formatting_data offset 23: bold on; offset 39: bold off

change_tracking_data offsets 17 through 44: rpw1, delete, 26-06-2001
14:22:16

Container 440 (Class Array_Container 304)

Field Contents

container_id 4123

container_parent 424

container_lock_handle Null

container_excluded_list_handle Null

container_article 442

container_article_length 234 bytes

container_valid TRUE

container_time_stamp June 20, 2001: 08:15:09

array_dimensions 2x2

child_array 444 448
[452 456J

—-90 -

WO 02/17115

Article 442 (Class Image_Article 344)
Field
article_window

image_attributes

image_thumbnail

PCT/CA01/01207

Contents
x=175, y=0, width=200, height=100

width: 100; height: 150; model: RGB color; bits per
pixel: 24; horizontal resolution: 300 pixels per inch;
vertical resolution: 300 pixels per inch;
compression: JPEG

JPEG Thumbnail Data

Container 444 (Class Childless_Container 306)

Field
container_id

container_parent
container_lock_handle
container_excluded_|list_handle
container_article
container_article_length
container_valid
container_time_stamp

Article 446 (Class Pixel_ Article 372)
Field
article_window

pixel_data

Contents
5890

440

Null

Null

446

11250 bytes

TRUE

June 20, 2001: 08:14:09

Contents
Null

<50 x 75 pixel image — upper left section of image
194>

Container 448 (Class Childless_Container 306)

Field
container_id

container_parent
container_lock_handle
container_excluded_list_handle
container_article
container_article_length
container_valid
container_time_stamp

10 Article 450 (Class Pixel_Article 372)
Field
article_window

Contents
5891

440

Null

Null

450

12350 bytes

TRUE

June 20, 2001: 08:14:09

Contents
Null

—-91 -

10

WO 02/17115

pixel_data

PCT/CA01/01207

<50 x 75 pixel image — upper right section of image
194>

Container 452 (Class Childless_Container 306)

Field
container_id

container_parent
container_lock_handle
container_excluded_list_handle
container_article
container_article_length
container_valid
container_time_stamp

Article 454 (Class Pixel_Article 372)
Field
article_window

pixel_data

Contents
5892

440

Null

Null

454

11556 bytes

TRUE

June 20, 2001: 08:14:09

Contents
Null

<50 x 75 pixel image — lower left section of image
194>

Container 456 (Class Childless_Container 306)

Field
container_id

container_parent
container_lock_handle
container_excluded_list_handle
container_article
container_article_length
container_valid
container_time_stamp

Article 458 (Class Pixel_Article 372)
Field
article_window

pixel_data

Contents
5893

440

Null

Null

458

11875 bytes

TRUE

June 20, 2001: 08:14:09

Contents
Null

<50 x 75 pixel image — lower right section of image
194>

Container 428 (Class Sibling_Childless_Container 316)

Field
container_id

container_parent

Contents
3125

404

~-92 -

WO 02/17115 PCT/CA01/01207

container_lock_handle Null
container_excluded_list_handle Null
container_article 430
container_article_length 456 bytes
container_valid TRUE
container_time_stamp June 26, 2001: 14:22:16
list_previous_pointer 424
list_next_pointer 432

Article 430 (Class Paragraph_Article 350)
Eield Contents
article_window Null
character data <Text of paragraph 192c>
formatting_data offset 23: italics on; offset 39: italics off
change_tracking_data Null

Container 432 (Class Sibling_Array_Container 314)

Field Contents
container_id 3126
container_parent 404
container_lock_handle Null
container_excluded_list_handle Null
container_article 434
container_article_length 10121 bytes
container_valid TRUE
container_time_stamp June 25, 2001: 11:21:27
list_previous_pointer 428
list_next_pointer 436
array_dimensions 1x1
child_array [460]
Article 434 (Class Paragraph_Article 350)
Field Contents
article_window Null
character data Null (Paragraph 192d contains no text, although
text may be added in the future)
formatting_data Null
change_tracking_data Null

— 93—

WO 02/17115

Container 460 (Class Array_Container 304)
Field
container_id

container_parent
container_lock_handle
container_excluded_list_handle
container_article
container_article_length
container_valid
container_time_stamp
array_dimensions

child_array

Article 462 (Class Table_Article 346)
Field
article_window

table_attributes

PCT/CA01/01207

Contents
4124

432
Null
Null
462
234 bytes
TRUE
June 25, 2001: 10:58:51
2x3
464 468
472476
480484

Contents
x=12, y=0, width=200, height=375

3 rows, 2 columns; preferred cell size 100 x 125
pixels

5 Container 464 (Class Childless_Container 306)

Field
container_id

container_parent
container_lock_handle
container_excluded_list_handle
container_article
container_article_length
container_valid
container_time_stamp

Article 466 (Class Cell_Article 374)
Field
article_window

cell_data

Contents
5894

460

Null

Null

466

32 bytes

TRUE

June 25, 2001: 10:54:16

Contents
Null

<contents of cell (1,1) of table 196>

Container 468 (Class Childless_Container 306)

Field
container_id

Contents
5895

—94 -

WO 02/17115

container_parent
container_lock_handle
container_excluded_list_handle
container_article
container_article_length
container_valid
container_time_stamp

Article 470 (Class Cell_Article 374)
Field
article_window

cell_data

PCT/CA01/01207

460

Null

Null

470

23 bytes

TRUE

June 25, 2001: 10:56:19

Contents
Null

<contents of cell (2,1) of table 196>

Container 472 (Class Childless_Container 306)

Field
container_id

container_parent
container_lock_handle
container_excluded_list_handle
container_article
container_article_length

- container_valid
container_time_stamp

Article 474 (Class Cell_Article 374)
Field
article_window

cell_data

Contents
5896

460

Null

Null

474

55 bytes

TRUE

June 25, 2001: 10:55:21

Contents
Null

<contents of cell (1,2) of table 196>

Container 476 (Class Childless_Container 306)

Field
container_id

container_parent
container_lock_handle
container_excluded_list_handle
container_article
container_article_length
container_valid
container_time_stamp

Contents
5897

460

Null

Null

478

234 bytes

TRUE

June 25, 2001: 10:56:27

- 05 —

10

WO 02/17115 PCT/CA01/01207

Article 478 (Class Cell_Article 374)

Field Contents
article_window Null
cell_data <contents of cell (2,2) of table 196>

Container 480 (Class Childless_Container 306)

Field Contents

container_id 5898

container_parent 460

container_lock_handle Null

container_excluded_list_handle Null

container_article 482

container_article_length 234 bytes

container_valid TRUE

container_time_stamp June 25, 2001: 10:58:51
Article 482 (Class Cell_Article 374)

Field Contents

article_window Null

cell_data <contents of cell (1,3) of table 196>

Container 484 (Class Childless_Container 306)

Field Contents

container_id 5899

container_parent 460

container_lock_handle Null

container_excluded_list_handle Null

container_article 486

container_article_length 112 bytes

container_valid TRUE

container_time_stamp June 25, 2001: 10:56:49
Article 486 (Class Cell_Article 374)

Field Contents

article_window Null

cell_data <contents of cell (2,3) of table 196>

Container 436 (Class Sibling_Childless_Container 316)

Field Contents
container_id 3127
container_parent 404

— 96—

5

WO 02/17115

container_lock_handle
container_excluded_list_handle
container_article
container_article_length
container_valid
container_time_stamp
list_previous_pointer
list_next_pointer

Article 438 (Class Paragraph_Article 350)
Field
article_window

character data
formatting_data
change_tracking_data

Container 406 (Class Array_Container 304)
Field
container_id

container_parent
container_lock_handle
container_excluded_list_handle
container_article
container_article_length
container_valid
container_time_stamp
array_dimensions

child_array

PCT/CA01/01207

Null

Null

438

456 bytes

TRUE

June 25, 2001: 11:21:27
432

Null

Contents
Null

<Text of paragraph 192e>
offset 23: bold on; offset 39: bold off
Null

Contents
2124

400

Null

Null

418

234 bytes

TRUE

July 5, 2001: 17:12:41
3x1

[490 494 498]

Article 418 (Class Presentation_Document_Article 316)

Field
article_window

summary_title
summary_description
summary_keywords
summary_log

summary_history

Contents
Null

Intellectual Property Presentation

Presentation relating to patent application
patent

July 5, 2001, 16:52:33 cs1: Started first draft of
presentation using provisional application

July 5, 2001, 16:55:00 cs1: CREATE

—97 -

WO 02/17115

slide_order_table
default_background
default_title_properties

defauli_text_properties

default_shapes

current_slide

Container 490 (Class Array_Container 304)

Field
container_id

container_parent
container_lock_handle
container_excluded_list_handle
container_article
container_article_length
container_valid
container_time_stamp
array_dimensions

child_array

Article 492 (Class Slide_Article 366)
Field
article_window

slide_identifier
slide_type
slide_background
default_shapes_flag
advancement_effect
advancement_interval

Container 502 (Class List_Container 302)

Field
container_id

container_parent

PCT/CA01/01207

[3134, 3132, 3133]

vertical gradient, blue (top) to black (bottom)
Helvetica, 16 point, bold, x=20 pixels, y=30 pixels,
width=300 pixels, height=100 pixels

Times Roman, 14 point, round bullet, x=20 pixels,
y=100 pixels, width=200 pixels, height=200 pixels
line: p1.x=30, p1.y=0, p2.x=30, p2.y=400,
thickness=5, color=red

logo text: “Thoughtslinger”, font=Garamond, 9
point, normal, x=720, y=540, width=40, height=10
-1 (live presentation not presently underway)

Contents
3132

406

Null

Null

492

1364 bytes

TRUE

July 5, 2001: 17:16:11
1x1

[502]

Contents
Null

3132

Text slide

Black, no gradient (override default background)
TRUE (display default shapes)

Fade through black

3 seconds

Contents
4125

490

- 98—

WO 02/17115 PCT/CA01/01207

container_lock_handle Null
container_excluded_list_handle Null
container_article 504
container_article_length 786 bytes
container_valid TRUE
container_time_stamp July 5, 2001: 17:16:11
list_head_pointer 506
list_tail_pointer 514
Article 504 (Class Text_Article 342)
Field Contents
article_window x=100, y=75, width=430, height=300
text_attributes Helvetica, 18 point, yellow, left justification, single
spacing

Container 506 (Class Sibling_Childless_Container 316)

Field Contents
container_id 5900
container_parent 502
container_lock_handle Null
container_excluded_list_handle Null
container_article 508
container_article_length 23 bytes
container_valid TRUE
container_time_stamp July 5, 2001: 17:18:46
list_previous_pointer Null
list_next_pointer 510

Article 508 (Class Paragraph_Article 370)

Field Contents

article_window Null

character_data <Text of paragraph 214a>
formatting_data bullet style: square
change_tracking_data Null

Container 510 (Class Sibling_Childless_Container 316)

Field Contents
container_id 5901
container_parent 502
container_lock_handle Null

—99 -

WO 02/17115

container_excluded_list_handle
container_article
container_article_length
container_valid
container._time_stamp
list_previous_pointer
list_next_pointer

Article 512 (Class Paragraph_Article 370)

Field
article_window

character_data
formatting_data
change_tracking_data

PCT/CA01/01207

Null

512

32 bytes

TRUE

July 5, 2001: 17:18:46
506

514

Contents

Null

<Text of paragraph 214b>
bullet style: square

Null

Container 514 (Class Sibling_Childless_Container 316)

Field
container_id

container_parent
container_lock_handle
container_excluded_list_handle
container_article
container_article_length
container_valid
container_time_stamp
list_previous_pointer
list_next_pointer

Article 512 (Class Paragraph_Article 370)

Field
article_window

character_data
formatting_data
change_tracking_data

Container 494 (Class Array_Container 304)

Field
container_id

container_parent
container_lock_handle

Contents
5902

502

Null

Nuli

516

35 bytes

TRUE

July 5, 2001: 17:18:46
510

Null

Contents
Null

<Text of paragraph 214c>

bullet style: square
Null

Contents
3133

406
Null

- 100 -

WO 02/17115 PCT/CA01/01207

container_excluded_list_handle Null
container_article 496
container_article_length 345 bytes
container_valid TRUE
container_time_stamp July 5, 2001: 17:24:44
array_dimensions 2x1
child_array [518 522]
Article 496 (Class Slide_Article 366)
Field Contents
article_window Null
slide_identifier 3133
slide_type Blank slide
slide_background Null (use default background)
default_shapes_flag TRUE (display default shapes)
advancement_effect Fade through black
advancement_interval 3 seconds

Container 518 (Class Childless_Container 306)

Field Contents
container_id 4126
container_parent 494
container_lock_handle Null
container_excluded_list_handle Null
container_article 520
container_article_length 50 bytes
container_valid TRUE
container_time_stamp July 5, 2001: 17:23:17
Article 520 (Class Shape_Article 368)
Field Contents
article_window Null
shape_type Arrow
shape_attributes x=500, y=80, width=100, height=200, color=blue,

line thickness=2, fill=none, direction=down

Container 522 (Class Array_Container 304)

Field Contents
container_id 4127
container_parent 494

-101 -

WO 02/17115 PCT/CA01/01207

container_lock_handle Null
container_excluded_list_handle Null
container_article 524
container_article_length 34 bytes
container_valid TRUE
container_time_stamp July 5, 2001: 17:24:44
array_dimensions 1x1
child_array [526]
Article 524 (Class AV_Clip_Article 348)
Field Contents
article_window x=300, y=280, width=320, height=200
AV_format MPEG
AV_length 12800 frames
Container 526 (Class Childless_Container 306)
Field Contents
container_id . 5903
container_parent 522
container_lock_handle Null
container_excluded_list_handle Null
container_article 528
container_article_length 1293459872 bytes
container_valid TRUE
container_time_stamp July 5, 2001: 17:24:44
Article 528 (Class AV_Data_Article 376)
Field Contents
article_window Null
av_data <encoded audio/visual data of clip 218>

Container 498 (Class Array_Container 304)

Field Contents
container_id 3134
container_parent 406
container_lock_handle Null
container_excluded_list_handle Null
container_article 502
container_article_length 254 bytes
container_valid TRUE

-102 -

WO 02/17115 PCT/CA01/01207

container_time_stamp July 5, 2001: 17:37:19
array_dimensions 1x1
child_array [630]

Article 500 (Class Slide_Article 366)
Field Contents
article_window Null
slide_identifier 3134
slide_type Blank slide
slide_background Black, no gradient (override default background)
default_shapes_flag FALSE (do not display default shapes)
advancement_effect Fade through black
advancement_interval 3 seconds

Container 530 (Class Array_Container 304)

Field Contents
container_id 4128
container_parent 498
container_lock_handle Null
container_excluded_list_handle Null
container_article 532
container_article_length 234 byes
container_valid TRUE
container_time_stamp July 5, 2001: 17:37:19
array_dimensions 2x2
child_array [534, 538, 542, 546]
Article 5632 (Class Image_Article 344)
Field Contents
article_window x=200, y=400, width=400, height=300
image_attributes width=800; height=600; model: RGB color; bits per

pixel: 24; horizontal resolution: 150 pixels per inch;
vertical resolution: 300 pixels per inch;
compression: JPEG

image_thumbnail JPEG Thumbnail Data
Container 534 (Class Childless_Container 306)

Field Contents

container_id 5904

container_parent 530

-103 -

WO 02/17115 PCT/CA01/01207

container_lock_handle Null
container_excluded_list_handle Null
container_article 536
container_article_length 11250 bytes
container_valid ' TRUE
container_time_stamp July 5, 2001: 17:37:19
Article 536 (Class Pixel_Article 372)
Field Contents
article_window Null
pixel_data <400x300 pixel image — upper left corner of image
220>
Container 538 (Class Childless_Container 308)
Field Contents
container_id 5905
container_parent 530
container_lock_handle Null
container_excluded_list_handle Null
container_article 540
container_article_length 12350 bytes
container_valid TRUE
container_time_stamp July 5, 2001: 17:37:19
Article 540 (Class Pixel_Article 372)
Field Contents
article_window Null
pixel_data <400x300 pixel image — upper right corner of
image 220>
Container 542 (Class Childless_Container 306)
Field Contents
container_id 5906
container_parent 530
container_lock_handle Null
container_excluded_list_handle Null
container_article 544
container_article_length 11556 bytes
container_valid TRUE
container_time_stamp July 5, 2001: 17:37:19

~ 104 -

WO 02/17115

Article 544 (Class Pixel_Article 372)
Field
article_window

pixel_data

PCT/CA01/01207

Contents
Null

<400x300 pixel image — lower left corner of image
220>

.Container 546 (Class Childless_Container 306)

Field
container_id

container_parent
container_lock_handle
container_excluded_Jist_handle
container_article
container_article_length
container_valid
container_time_stamp

Article 548 (Class Pixel_Article 372)
Field
article_window

pixel_data

Contents
5907

530

Null

Null

548

11875 bytes

TRUE

July 5, 2001: 17:37:19

Contents
Null

<400x300 pixel image — lower right corner of
image 200>

- 105 -

WO 02/17115 PCT/CA01/01207

Appendix B

Field Contents

user_name Rick Walker

user_password ricardo

user_contact_info 123 Easy Street, Toronto, ON

user_e_mail rw@thoughtslinger.com

user_handle rpw1

user_screen_name Rick

user_workspace_list Exemplary Workspace
Second Workspace
Third workspace

Field Contents

user_name Chris Sonnenberg

user_password chaos

user_contact_info 456 King Street, Toronto, ON

user_e_mail cs@thoughslinger.com

user_handle cs1

user_screen_name Chris

user_workspace_list Exemplary Workspace
First Workspace
Second Workspace
Third Workspace

Field Contents

user_name Bhupinder Randhawa

user_password beside

user_contact_info 40 King Street, Toronto, ON

user_e_mail br@bp.com

user_handle br9

user_screen_name Bhupinder

user_workspace_list Exemplary Workspace

5 Appendix C

Field Contents

workspace_id 1234

workspace_title Exemplary workspace

workspace_host Workspace server 112b

workspace_owner rpw1

workspace_size 1,234,567 bytes

workspace_location \workspaces\ws1\

Field Contents

workspace_id 1345

workspace_title First Workspace

workspace_host Null

- 106 -

WO 02/17115

workspace_owner
workspace_size

workspace_location

Field
workspace_id
workspace_title
workspace_host
workspace_owner
workspace_size

workspace_location

‘Field
workspace_id
workspace_title
workspace_host
workspace_owner
workspace_size

workspace_location

Appendix D

Field

user_handle
user_screen_name
user_e_mail
member_privileges
member_status

Field

user_handle
user_screen_name
user_e_mail
member_privileges
member_status

Field

user_handle
user_screen_name
user_e_mail
member_privileges
member_status

PCT/CA01/01207

csi
345,232 byes

\workspaces\ws2\

Contents

1456

Second Workspace
Null

cs1

12,412 bytes

\workspaces\ws3\

Contents

1567

Third Workspace
Workspace server 112a
rpw1

123,123 bytes

\workspaces\ws4\

Contents

rpw1

Rick
rw@thoughtslinger.com
Owner

Not connected

Contents

cs1

Chris
cs@thoughtslinger.com
Worker

Not connected

Contents
br9
Bhupinder
br@bp.com
Viewer
Connected

-~ 107 -

10

15

20

25

30

35

WO 02/17115 PCT/CA01/01207

We claim:

1. A method for simultaneous multi-user editing of a document by a plurality of
users including a first user and a second user, the method comprising:
(a) dividing the document into two or more sections;
(b) storing each of the sections in a separate container, wherein each of
said containers may be locked by one of said users;
(c) locking one of said containers at the request of said first user;
(d) allowing said first user to edit the section of said document stored within
said one container;
(e) locking another of said containers at the request of said second user;
and
(f) allowing said second user to edit the section of said document stored
within said other container,
wherein steps (d) and (f) occur during at least partially overlapping time periods.

2. The method of claim 1 further comprising:
(9) after step (d), receiving a modified version of said one container from
said first user; and
(h) modifying a master copy of said one container in accordance with said
modified version.

3. The method of claim 1 further comprising:

(i) broadcasting said modified master copy to said second user.
4. The method of claim 2 further comprising:

) after step (h), unlocking said one container.
5. The method of claim 4 further comprising:

(k) after step (j), locking said one container at the request of said second
user and allowing said second user to edit said one container.

6. The method of claim 1 wherein step (c) is performed by:
I. allowing said first user to specify said one container;
l. ensuring that said one container is not already locked by any user; and
ii. identifying said one container as being locked by said first user.

-~ 108 —

10

15

20

25

30

35

WO 02/17115

10.

PCT/CA01/01207

The method of claim 1 wherein step (c) is performed by:

allowing said first user to specify said one container:
ensuring that said one container is not already locked by any user other
than said first user; and

identifying said one container as being locked by said first user.

A method of editing a document comprising:

(a)

(b)
(c)

(d)

obtaining an up-to-date local copy of a document sub-tree

corresponding to said document, wherein said local copy corresponds

to a master copy of said document sub-tree;

allowing a first user to select a section of said document;

attempting to lock a selected container within said document sub-tree

corresponding to said selected section; and

if said selected container is locked in step (c), then:

i. allowing the first user to edit the locked section to produce a
modified version of said locked section; and

i posting said modified version of said locked section to a
workspace server, wherein said workspace server is
configured to modify said master copy of said document sub-
tree to correspond to said modified version.

The method of claim 8 wherein step (i) is performed by:

0]
(i)
(i)

obtaining an initial up-to-date local copy of said document sub-tree:
receiving one or more Update messages; and

modifying said local copy of said identified containers in accordance
with said Update message, to update said local copy to an up-to-date
condition.

The method of claim 8 wherein step (a) is performed by:

(1)
(ii
(il
(iv)

obtaining an initial up-to-date local copy of said document sub-tree;
receiving one or more Update messages;

marking said identified containers as being invalid containers; and
obtaining up-to-date copies of said invalid containers to update said local
copy to an up-to-date condition.

- 109 -

10

15

20

25

30

35

WO 02/17115 PCT/CA01/01207

1. The method of claim 8 wherein step (c) is performed by:
(i) transmitting a Request Lock message identifying said selected container
to said workspace server; and
(ii) receiving a Lock Confirmed message from said workspace server.

12. The method of claim 8 wherein during step (d)(i), the first user is allowed to
select additional sections of said document and wherein a lock is obtained for selected
containers corresponding to said additional section and wherein, during step (d)(ii) all
of said locked containers are posted to the workspace server.

13. The method of claim 12 wherein said locked containers correspond to
contiguous sections of said document.

14. The method of claim 8 wherein steps (a) to (d) are performed independently in
respect of a second user, and wherein, in respect of the second user, during step (c)
said second user is not permitted to select a section of a document that corresponds to
a container locked in respect of said first user in step (c).

15. A method of storing a document having primary data of a primary data type, the
method comprising:
(a) specifying a primary section type corresponding to the primary data
type;
(b) dividing the primary data into one or more sections corresponding to the
section type; and
(c) storing each of said sections in a primary data container, wherein each
of said primary data containers includes a field for indicating whether
the container has an editing lock set for it.

16. The method of claim 15 further comprising:
(d) storing a parent container for said document, the parent container being
linked, directly or indirectly, to each of said primary data containers.

17. The method of claim 16 further comprising:

(e) storing document information relating to said document in said parent
container.

- 110 -

10

15

20

25

30

WO 02/17115 PCT/CA01/01207

18. The method of claim 17 wherein said document information includes the title of
the document.

19. The method of claim 18 wherein said document information includes one or
more items selected from the list consisting of:

i a description of the document;

. keywords relating to the document; and

ii a full or partial history of editing changes relating to the document.

20. . The method of claim 16 wherein said document is a text document and wherein
said primary data containers are formed into a linked list having a head primary data
container and a tail primary data container and wherein said parent container contains
a link to said head primary data container.

21. The method of claim 20 wherein said document information includes one or
more default text attributes for said document.

22. The method of claim 21 wherein said document information further includes a
format for the document.

23. The method of claim 20 wherein said section type is a paragraph.

24, The method of claim 16 wherein said parent container is linked directly to said
primary data containers.

25. The method of claim 16 wherein said document is a presentation document and
wherein said primary data type is a slide.

26. The method of claim 15 or A2, wherein said document includes embedded data
of a secondary data type and further comprising:
(f) specifying a secondary section type corresponding to said secondary
data type;
(9) dividing said embedded data into one or more embedded sections
corresponding to secondary section type; and

-11-

10

15

20

25

30

35

WO 02/17115 PCT/CA01/01207

(h) storing each of the sections of step (g) in an embedded data container,
wherein each of said secondary data containers includes a field for
indicating whether the container has an editing lock set for it,

wherein each of said embedded container is a direct or indirect child of a primary data
container.

27. The method of claim 16, wherein said document includes embedded data of a
secondary data type and further comprising:
) specifying a secondary section type corresponding to said secondary
data type;
(9) dividing said embedded data into one or more embedded sections
corresponding to secondary section type; and
(h) storing each of the sections of step (g) in an embedded data container,
wherein each of said secondary data containers includes a field for
indicating whether the container has an editing lock set for it,
wherein each of said embedded container is a direct or indirect child of a primary data
container.

28. The method of claim 26 wherein each embedded container includes a window
field specifying how the embedded data stored in the embedded data container is to be
displayed with respect to the primary data stored in the primary data container of
which the embedded container is a child.

29. The method of claim 28 wherein said window field specifies the dimensions of
a window in which said embedded data stored in the embedded data container is to be
displayed.

30. The method of claim 29 wherein said window field further specifies a horizontal
offset and a vertical offset at which said window is to be displayed from an anchor
point of said primary data stored in the primary data container of which the embedded
container is a child.

31. A system for storing a document comprising:
(a) a network;
(b) a workspace server coupled to said network;
(c) a client coupled to said network;

-112 -

10

15

20

25

30

35

WO 02/17115 PCT/CA01/01207

(d) a file system for storing said documents, wherein

32. A computer readable medium containing a data structure for storing a document
comprising:

(a) one or more primary data containers for storing a section of said
document, wherein each primary data container stores a mutually
exclusive section, wherein each of said primary data containers
includes a field for indicating whether an editing lock has been set for
the container;

(b) a parent container having a direct or indirect link to each of said primary
data containers.

33. The computer readable medium of claim 32 wherein said primary data
containers collectively store all sections of said document.

34. The computer readable medium of claim 32 or G2 wherein said document is a
text document, wherein said primary data containers form a linked list having a head
primary data container and wherein said parent container maintains a direct link to said
head primary data container.

35. The computer readable medium of claim 34 wherein said linked list has a tail
primary data container and wherein said parent container maintains a direct link to said
tail primary data container.

36. The computer readable medium of claim 33 wherein said document is a text
document, wherein said primary data containers form a linked list having a head
primary data container and wherein said parent container maintains a direct link to said
head primary data container.

37. The computer readable medium of claim 32 wherein said parent container
maintains a direct link to each of said primary data containers.

38. The computer readable medium of claim 32 wherein said parent container
maintains a link

- 113 -

WO 02/17115 PCT/CA01/01207

39. The computer readable medium of claim 34 wherein said data structure includes
two or more such parent containers, each of said parent containers being at the head
of a document sub-tree, each of said document relating to a separate document, and
each of said document sub-trees including one or more such primary data containers.

40. The computer readable medium of claim 39 wherein the data structure further

includes a root container, wherein each of said parent containers is a child of said root
container.

~114 -

PCT/CA01/01207

WO 02/17115

1/16

ugLi

|

uglt .\

a6l ..\

B6L1 \\

1 ainbiy

¢_‘_‘|\

qcti

agil |\

tgL — 1

E0

34

/ egllL

eczl

ozel

PCT/CA01/01207

2/16

WO 02/17115

Z ainbiq
T~ — a6l
¢ ainbi4
x
00z —— pz6l
\\ 961 ——A
—
—_— =~ ozl
opig t—"1 J—
ariz g E—
¥ E— =t s—
eyle \ . ~ o1z (V/V/\ ||I||J
] 61 |\\ © — | %
202 S/ ziz S
A
06l A

PCT/CA01/01207

WO 02/17115

3/16

¥ 2inbi4

9 ainbi4 893

-~ -

\ﬁ spiuy uBWNo0 UoRBUaSald /
gLy " ™

suejuoD Aeuy

%

——— 0Pl

— ¢l vl
ovL l.\\ Jauleiuon ISt

e

W G ainbi4 asg

L{ oIV JUSWINJ0Q XL r

oLy

— 0¥

/ rA%4

90— k
\\ oLy
Piy

/\

A

1443

2o — 7

ozt

¥ Sjo1y soedSHOM

.\ lauieuo) Aeuy

[~ ¥l

oov \\

[(V4%

eZel

144

PCT/CA01/01207

WO 02/17115

4/16

98y ~1

~ sjomy 18D ;

Ve

JBUIBIUCDSSIIPIYD

_ alomY 119D

JBUBILOD T SSBIPIYD

"~~~ Z8Y

) [o214

4°14 \\ :

8Ly ~1

sjopy 180 _

JBulBIU0) T SSOIPIYD

_l aPRY 80

JBUIBIU0D T SSBIPIYD

A

4

VA4 .\\

0Ly —1

sjomv @D

7

JBUIRIUODTSSIPIYD

—? sy 18D

Jaulejuo) T SSaIPIYD

89y -~/ »Ilil_

g oY 3jgEL _

zoy —1

Jauigjuo)~Aeuy

el 4 l\ 1

— 9oy ydeiberey ~\

<,

G ainbi

Sjoy fexid

_ sy exid 4

~— PS¥

JBUIBJUGDTSSIPIYD

1BUBILOD SSAIPIUD

4 ~\|
— Lt 85y —1 _ _
1OUIBIICTSSBIPIYD JoURODSSBIPIYD
3)
N zLy 98p AN Z5y
_ Sy [8Xid _ Sy oxd
L/
~— 9g9¥ 05y —1

~— ovy

_—

— 88p

sy ydeibeiey b

Py ydeiBeled _

1
4

h 4

_ oy ebewy J_

(444 —1

Jaulejuon” Aeiiy

4144 |\

% f{ 1444

sy ydeibered 11_

sjony ydesbesed

JaUBILODSSSIPIYD” BUNGIS

ey —

Jsugiuo)~ Aeny Buygis

0ey —

lautejuo Tssalpiiyd Bulais

oey I\

454

(A% 4 \

:14 4 .\

ozy -

Jsupuo " Aeuy T Bulqis

|
ey .l\\

JaugeIoDSsa|pIyD BUlalS

ey ..K

\M ajotuy Juswinooq IxXa). _

I

vov 1\\

Jautejuo IS

/. 5134

(44 .\

PCT/CA01/01207

WO 02/17115

5/16

85 —1

ovs «\

0ys —1

g aInbi4
_ 3oy jexid _ — SOy 1oXid 7
|/ - ~— ¥¥S
lauieluoy” ssalp|! Isulejuo)Ssopit
00 ssBIPIYD U0 SSAIPHUD [2bg
w » _— 98§ _— 82§ P _— 808
y A 4 4
F oY jexid _ _ Sy Joxid _ _ SOy " Ble@ AY _ ajoy ydesbered hm_u_uﬁﬁmas& _ sy ydesbesed
4 >
- - — Jsuuon” JauRoY 18uRoy
SUIRIU SS9|PI! Jautejl
1BUIRUOD SSRIPID 1BUIRIIOD SSAIPIAD 0D SSAPID SSoipIUD - Bunals ssejpjyD Bulals ssapuobulals

8es |\ i

zes —1

00§ ~

301Uy abew

1BUIBIUOD Ay

0es .\\ i

\ sy opys

lauieuon~ Aely

86V |\

viv

F N\ eS T 9zs

¥2s —1

yis .\

Y _— 025
_ ajomy dig AY _ _ sy adeys ~\

v

Jaugluon " Aeny

(44} |\

JaulRjuo)SSIPIYD

[8Lg

\ |y opS
96V ~
Isuiejuod Aeny

1454 1\

* QJOINY JUBWND0 UOIBUSSIid H

gLy —

90 1\

JBuieo Aely

[oly

oS

(40 !\ 1

0lg l\

_ 9oy XSL _

Jauguog s

T6¥ —

oY ops

Jaujejuo) Aely

06y I\

[90%

PCT/CA01/01207

WO 02/17115

6/16

laulRjuod ssolpiiyy bullqlis

/ 8Inbi4

olE \

Jaueluon Aeuy buiqig

lauleluod ss9|pliyo

90¢e .\

vie \\

lsureuo) 181 Bulqis

Jaulejuon Aeuy

gm.\

cle \

Jauieuon s

Bujais

oem\

<0 .\

00e

Jaulejuo)

PCT/CA01/01207

WO 02/17115

7/16

8 aunbi4

8L€ |\

ooy ejeq

e —-| SPHY ERQ AV

74> u\

sy 1o

SOy jexid
2le n\ ! _

we—"| Sy ydeibeiey

sjpwy edeys
89¢ ..\

S[OILY JUSWINO0(] uoljejussaid

oY juswnoog difD” AY

eIy JuUsWINood ejge

oIy juswnooq sbewy

SPOINY UBWNo0Q XL

SOy S0BdSHION

S[OIUY JUBWND0(dLBUBD

9Py ap!
ooe — [oIYy eplS
sy dio AY
8V 1\
sy ojqe].
ove |\
oIy abeuw
e 1\
SOy IXal
(4% |\
) Arewwing)
0se ove

SjoIy

WO 02/17115

8/16

1
64& § 410
Array_Container -/
650
652 Generic_Document_ ||
] Atticle
Childless_Container
656\ Data_Article /554
Figure 9
660.
N1 4 »
- 420
406 424
664

440
Figure 10 »
®
116 o
\ .
480

800 — 804
4 484

802 810
668
806 808
Figure 11

Figure 20

PCT/CA01/01207

662

WO 02/17115 PCT/CA01/01207
9/16

1000 User 102

accesses
login screen
700 and
enters

password __ 11002

User name and
password
authentic?

Update (Stop)
client 116 if

necessary

|

Select
master
server 110

|
Execute
S1010 client 116 on
client
computer

119 1008

1005

Figure 12

1006

]

List
workspaces
of which
useris a

member __ lo10

Choose an action:
create, delete,
open, logoff?

Open Workspace Create Workspace

Logoff Delete

Perform
“Create
Workspace
transaction

Perform
“Open
Workspace”
transaction

Client 116 Delete
stops selected
executing 1018 workspace 1020

WO 02/17115

1100

GO

Client 116 creates new root
container 400 for new
workspace 122n

Client 116 creates new
member list 144 and
member record 143 for
workspace 122n

User 102 defines contents of
root article

r

Client 116 transmits new
workspace 122n to master
server 110

|

Master server 100 changes
container_id if necessary

[

Master server 100 stores
new workspace 122n in file
system 104

Figure 13

1102

1104

1106

1108

1110

1112

10/16
1200

§1210

PCT/CA01/01207

Freeze workspace record in
workspace database 108

1201

Is workspace
122s active?

Select host workspace
server 112h and activate
workspace 122s

workspace 122s

1204
Workspace server 112h sets
user status to “Connecting”
1208
l
Unfreeze workspace record
in workspace database
1207
B
Client 116 connects to
workspace server 112h 1208
Workspace server 112h sets
member status to
“Connected” and broadcasts
Connect Update 1209
]
Client 116 gets root, parents
and member fist 1210
Client 116 dispiays title, etc.
of each document in 1911

S1212

Figure 14a

WO 02/17115 PCT/CA01/01207

11/16
12{‘: S1212
Disconnect Select next Edit Root Article
\ action
121
" 2
Send Disconnect L:gi;gci){a té:otntatmerf
Message to : root acrtinlenfs °
Workspace server ol®
1990 119h selected workspace
Select 122s, if possible 1230
Document
S1010 Create New Document
|
Perform “Create
Document”
transaction
Display contents of
parent article of
selected document |1944
sub-tree
View/Edit
. Select next Document
Edit Parent action
Article
Lopk parent Perform “View/Edit
container and edit Document”
contents of parent transaction
article of selected 1218
document’s sub-
tree, if possible
Figure 14b

WO 02/17115

1300

Ce=)

Select document
type

1302

Create new
document sub-tree
including new parent

container 1304

Lock root container,
update provisional

root article
1306

Post new document
to workspace server

112h 1308

Freeze, update and
unfreeze local
container tree 124 | 4340

l $1210 I

Figure 156

PCT/CA01/01207
12/16

1400

/

Does client 116a
have a local copy
of the document
sub-tree?

Are any
containers in the
local copy of the
document sub-

1408

Get
document
sub-tree

Get all invalid
containers in
document sub-tree 1406

Freeze, update and
unfreeze container
free 124 1410

Display document
and allow user 102a
to view and/or edit
document

l §1210 l

Figure 16

1412

WO 02/17115

Receive Post request
from client

]

Freeze workspace

All conditions for
accepting Post
request met?

Update container tree
124, including header file
600, document file 662
and directory 664

Unlock?

PCT/CA01/01207

13/16

1500

1502
Figure 17

1504

No

(Stop }

1508

Yes . .
Unlock containers

1511

No

Unfreeze workspace and
notify client

Does total size of
chubby Update
Message exceed
Push Update
Threshold?

Push Chubby Update
Message

1512

Yes

Transmit Skinny Update

Message 1618

1516

{ Stop)

WO 02/17115

Receive Post request
from client

Freeze workspace

All conditions for
accepting Post
request met?

Update container tree
124, including header file
600, document file 662
and directory 664

Unlock?

PCT/CA01/01207
14/16

1500

/

1502
Figure 17

1504

No

(Stop)

1508

Yes)
Unlock containers

1511

No

Unfreeze workspace and
notify client

Does total size of
chubby Update
Message exceed
Push Update
Threshold?

Push Chubby Update
Message

1512

Yes

Transmit Skinny Update
Message

1518

1516

l Stop)

WO 02/17115

PCT/CA01/01207
15/16

1600

Receive Update
message

1602 A/

Is the same client
identified as the
originating client?

Figure 18

Yes

1603

Freeze container
tree

(Stop)

1604

Is Update
message skinny

Skinny

or chubby?
Mark updated
containers as
invalid, if required 1612
Update container -
tree, if required Unfreeze container
1608 tree 1614
Unfreeze container
tree 1610 Are any
No containers in sub-
tree for currently
displayed
ocument invalid?
1616
Get all invalid
containers in sub-
tree of currently
displayed document
| 1618
Update display, if
required 1620

WO 02/17115

51708

16/16

1700

G J

Presenter retrieves
Presentation_Document

1702

Set current_slide
field and Post
Update

Client 116b
chooses to
observe

1704

PCT/CA01/01207

Yes 1706

Display slide and
listen for updates

1708

{ Stop)

Figure 19

§1210

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

