2012/166816 A1 I I 0000 00 OO OO 0

W

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(43) International Publication Date
6 December 2012 (06.12.2012)

WIPOIPCT

(10) International Publication Number

WO 2012/166816 Al

(51) International Patent Classification:
HO4N 21/81 (2011.01) HO4N 21/482 (2011.01)
HO4N 21/4722 (2011.01) HO4N 21/485 (2011.01)

(21) International Application Number:
PCT/US2012/040031
(22) International Filing Date:
30 May 2012 (30.05.2012)
(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:
61/493,324 3 June 2011 (03.06.2011) US
13/225,037 2 September 2011 (02.09.2011) US
(71) Applicant (for all designated States except US): APPLE
INC. [US/US]; 1 Infinite Loop, Cupertino, CA 95014
(US).
(72) Inventors; and
(75) Inventors/Applicants (for US only): PANTOS, Roger

[CA/US]; 10431 De Anza Boulevard, MS 38-3IMG, Cu-
pertino, CA 95014 (US). BIDERMAN, David [US/US];
10431 De Anza Boulevard, MS 38-3IMG@G, Cupertino, CA
95014 (US). MAY, William [US/US]; 10431 De Anza
Boulevard, MS 38-3IMG, Cupertino, CA 95014 (US).
FLICK, Christopher [US/US]; 10431 De Anza
Boulevard, MS 38-3IMG, Cupertino, CA 95014 (US).

(74

(8D

(84)

BUSHELL, John, Samuel [AU/US]; 10431 De Anza
Boulevard, MS 38-3IMG, Cupertino, CA 95014 (US).
CALHOUN, John, Kevin [US/US]; 10431 De Anza
Boulevard, MS 38-3IMG, Cupertino, CA 95014 (US).

Agents: VINCENT, Lester, J. et al.; Blakely, Sokoloff,
Taylor & Zafman LLP, 1279 Oakmead Parkway,
Sunnyvale, CA 94085-4040 (US).

Designated States (uniess otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD,
SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,
TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ, GW,
ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: PLAYLISTS FOR REAL-TIME OR NEAR REAL-TIME STREAMING

1001

)

Variant Playlist

URL - English audio only playlist
URL - Spanish audio only playlist
URL - Chinese audio only playlist

URL - 1x playlist, bandwidth X —————~__ | ~1003
URL - 1x playlist, bandwidth Y — —~__ | —1005

,’_/
——~__| 1009
——~__| 101

FIG. 10

(57) Abstract: A content streaming system, such as an HTTP streaming system, can use a variant audio playlist that identities differ-
ent audio playlists, such as one playlist in English and one playlist in Spanish, for the same program such as a video program which
is specified by a video playlist which can be separate from the variant audio playlist. A client can use the variant audio playlist to se-
O lect a particular audio content for the same program, and the particular audio content can be referred to by one URL in the variant
audio playlist, among a set of alternative URLSs, in the variant audio playlist, for alternative audio content.

WO 2012/166816 A1 |00V O N O

Published:
— with international search report (Art. 21(3))

WO 2012/166816 PCT/US2012/040031

PLAYLISTS FOR REAL-TIME OR NEAR REAL-TIME STREAMING

RELATED APPLICATIONS
[0001] This application claims the benefit of the filing date, under 35 U.S.C. § 119(e),
of U.S. Provisional Application No. 61/493,324 filed on June 3, 2011. The present U.S.

Patent application is also related to the following U.S. Patent applications, each of which
is incorporated herein by reference:

(1) Application No. 12/479,690 (Docket No. P7437US1), filed June 5, 2009,
entitled “REAL-TIME OR NEAR REAL-TIME STREAMING;”

(2) Application No. 12/479,698 (Docket No. P7437US2), filed June 5, 2009,
entitled “VARIANT STREAMS FOR REAL-TIME OR NEAR REAL-TIME STREAMING;”

(3) Application No. 12/479,732 (Docket No. P7437US3), filed June 5, 2009,
entitled “UPDATABLE REAL-TIME OR NEAR REAL-TIME STREAMING,” and

(4) Application No. 12/479,735 (Docket No. P7437US4), filed June 5, 2009,

entitled “PLAYLISTS FOR REAL-TIME OR NEAR REAL-TIME STREAMING.”

TECHNICAL FIELD

[0002] Embodiments of the invention relate to data transmission techniques. More
particularly, embodiments of the invention relate to techniques that allow streaming of

data using non-streaming protocols such as, for example, HyperText Transfer Protocol

(HTTP).

BACKGROUND

[0003] Streaming of content generally refers to multimedia content that is constantly
transmitted from a server device and received by a client device. The content is usually
presented to an end-user while it is being delivered by the streaming server. The name
refers to the delivery method of the medium rather than to the medium itself.

[0004] Current streaming services generally require specialized servers to distribute
“live” content to end users. In any large scale deployment, this can lead to great cost, and
requires specialized skills to set up and run. This results in a less than desirable library of

content available for streaming.

SUMMARY OF THE DESCRIPTION

[0005] In one embodiment, an HTTP streaming system can use a variant playlist that

identifies different audio playlists, such as one in English and another in Spanish and

-1-

WO 2012/166816 PCT/US2012/040031

another in Chinese, for the same video program which also has a playlist for the video
content. For example, a live sports event, such as a baseball game can have a video playlist
that is transmitted from a server to a client and the same live sports event can have a variant
audio playlist that specifies different audio playlists that correspond to either different
languages or different coverage perspectives (such as a local broadcaster who broadcasts
the game versus a national broadcaster who broadcasts the game). A client device can
download from a server a video playlist and also download the variant audio playlist, and
then the client device can select the appropriate audio program from the variant audio
playlist and download the appropriate audio playlist corresponding to that selected
appropriate audio program. With both the video playlist and the selected audio playlist
downloaded, the client can begin processing both playlists concurrently and, in one
embodiment, independently, to create and present the video and audio at the client device.
[0006] A method in one embodiment at a client device can include the operations of:
receiving a variant audio playlist for a program, wherein the variant audio playlist
contains a set of URLSs for different audio content for the program and each of the URLs
in the set of URLSs refers to an audio playlist corresponding to one of the different audio
content for the program; selecting a first URL of the set of URLSs for one of the different
audio content, the first URL referring to a first playlist; transmitting the first URL which
refers to the first playlist; receiving the first playlist; and processing the first playlist to
retrieve audio content for the program. In one embodiment, the method can further
include determining an audio preference, and this audio preference can be set by a user,
such as a setting in a user preference, and this audio preference can cause the selection of
the first URL in the method. The method, in one embodiment can further include
receiving a video playlist for the program; the video playlist can contain URLSs for video
content for the program, and each of the URLs for the video content are associated with
or referred to a portion in time of the video content. This portion of time matches the
portion of time for the audio playlist being concurrently processed by the client device
while the video playlist is being processed. The method can also include switching
between URLSs for the audio content by using the variant audio playlist to select a
different audio playlist; in one embodiment, the switching between audio playlists in the
variant audio playlist can be performed independently of playback of the video playlist.
The method can further include, in one embodiment, processing the audio playlist and the
video playlist concurrently and independently; for example, a first software component

which is a player for audio can process the audio playlist independently of a second

2.

WO 2012/166816 PCT/US2012/040031

software component which processes the video playlist. Moreover, in one embodiment,
an audio download module can independently download and process audio content while
a video download module can separately download and process video content. In one
embodiment, timestamps in audio content retrieved through the audio playlist and
timestamps in the video content retrieved through the video playlist specify the same
period of time. Moreover, each of the URLSs. in the set of URLs which refer to different
audio content, include timestamps which specify the same time period.

[0007] A method performed by a server device in one embodiment of the invention
can include transmitting, in response to a request from a device, a variant audio playlist
containing a set of URLSs for different audio content for a program which was requested,
wherein each of the URLSs in the set of URLs refer to an audio playlist corresponding to
one of a different audio content for the program. The method can further include
receiving from the device a first URL in the set of URLs and transmitting, in response to
receiving the first URL, a first audio playlist to the device, wherein the first URL referred
to the first audio playlist.

[0008] Other methods are described herein, and machine readable non-transitory
storage media are also described herein, and systems which perform these methods are

also described herein.

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] The present invention is illustrated by way of example and not limitation in the
figures of the accompanying drawings in which like references indicate similar elements.
[0010] The present invention is illustrated by way of example and not limitation in the
figures of the accompanying drawings in which like references indicate similar elements.
[0011] Figure 1 is a block diagram of one embodiment of a server and clients that
can send and receive real-time, or near real-time, content.

[0012] Figure 2A is a flow diagram of one embodiment of a technique for one or
more server devices to support media content using non-streaming protocols.

[0013] Figure 2B is a flow diagram of one embodiment of a technique for one or
more server devices to provide dynamically updated playlists to one or more client
devices.

[0014] Figure 2C is a flow diagram of one embodiment of a technique for one or

more server devices to provide media content to client devices using multiple bit rates.

WO 2012/166816 PCT/US2012/040031

[0015] Figure 3A is a flow diagram of one embodiment of a technique for a client
device to support streaming of content using non-streaming protocols.

[0016] Figure 3B is a flow diagram of one embodiment of a technique for a client
device to support streaming of content using multiple bit rates.

[0017] Figure 4 is a block diagram of one embodiment of a server stream agent.
[0018] Figure 5 is a block diagram of one embodiment of a client stream agent.
[0019] Figure 6 illustrates on embodiment, of a playlist file with multiple tags.
[0020] Figure 7 is a flow diagram of one embodiment of a playback technique for
assembled streams as described herein.

[0021] Figure 8 is a block diagram of one embodiment of an electronic system.
[0022] Figure 9A is a flowchart showing an example of how a client device can
switch between alternative content in a variant playlist.

[0023] Figure 9B is a further flowchart showing how a client device can switch
between content in two playlists.

[0024] Figure 9C is a further flowchart showing an example of how a client device
can switch between content using audio pattern matching.

[0025] Figure 9D shows diagrammatically how the method of Figure 9C is
implemented with audio pattern matching.

[0026] Figure 10 shows an example of a variant playlist which can include URLSs for
different audio content for the same program.

[0027] Figure 11 is a flowchart which shows a method in one embodiment for using
a variant playlist that includes URLSs for variants of audio content for the same program.
[0028] Figure 12 shows an example of a client device having various components
which can be used in one or more of the embodiments described herein.

[0029] Figure 13 is a flowchart which shows a method according to one embodiment
performed by a server device or a set of server devices.

[0030] Figure 14 illustrates a block diagram of an exemplary API architecture which
is usable in some embodiments of the invention.

[0031] Figure 15 shows an exemplary embodiment of a software stack usable in

some embodiments of the invention.

DETAILED DESCRIPTION

[0032] In the following description, numerous specific details are set forth. However,

embodiments of the invention may be practiced without these specific details. In other

4-

WO 2012/166816 PCT/US2012/040031

instances, well-known circuits, structures and techniques have not been shown in detail in
order not to obscure the understanding of this description.

[0033] The present description includes material protected by copyrights, such as
illustrations of graphical user interface images. The owners of the copyrights, including
the assignee of the present invention, hereby reserve their rights, including copyright, in
these materials. The copyright owner has no objection to the facsimile reproduction by
anyone of the patent document or the patent disclosure, as it appears in the Patent and
Trademark Office file or records, but otherwise reserves all copyrights whatsoever.
Copyright Apple Inc. 2009.

[0034] In one embodiment, techniques and components described herein can include
mechanisms to deliver streaming experience using non-streaming protocols (e.g., HT'TP)
and other technologies (e.g., Motion Picture Expert Group (MPEG) streams). For
example, near real-time streaming experience can be provided using HTTP to broadcast a
“live” musical or sporting event, live news, a Web camera feed, etc. In one embodiment,
a protocol can segment incoming media data into multiple media files and store those
segmented media files on a server. The protocol can also build a playlist file that includes
Uniform Resource Identifiers (URIs) that direct the client to the segmented media files
stored on a server. When the segmented media files are played back in accordance with
the playlist file(s), the client can provide the user with a near real-time broadcast of a
“live” event. Pre-recorded content can be provided in a similar manner.

[0035] One aspect of this description relates to the use of audio playlist that provides
variants of audio for a selected program; for example, an audio playlist can provide
different playlists in different languages for the same video program which also has a
playlist for the video content, wherein that video playlist is separate from the audio
playlists in the different languages. These aspects will be described in conjunction with
Figures 10 through 15 after providing some background information in conjunction with
Figures 1 through 9D.

[0036] In one embodiment, the server can dynamically introduce supplementary or
alternative media content (e.g., advertisements, statistics related to a sporting event,
additional media content to the main presentation) into the broadcast event. For example,
during client playback of a media event, the server can add additional URISs to the playlist
file, the URIs may identify a location from which a client can download a supplementary

media file. The client can be instructed to periodically retrieve from the server one or

WO 2012/166816 PCT/US2012/040031

more updated playlist file(s) in order to access any supplementary or additional (or both)
media content the server has introduced.

[0037] In one embodiment, the server can operate in either cumulative mode or in
rolling mode. In cumulative mode, the server can create a playlist file and append media
file identifiers to the end of the playlist file. The client then has access to all parts of the
stream from a single playlist file (e.g., a user can start at the middle of a show) when
downloaded. In rolling mode, the server may limit the availability of media files by
removing media file identifiers from the beginning of the playlist file on a rolling basis,
thereby providing a sliding window of media content accessible to a client device. The
server can also add media file identifiers to the playlist and, in rolling mode, the server
can limit the availability of media files to those that have been most recently added to the
playlist. The client then repeatedly downloads updated copies of the playlist file to
continue viewing. The rolling basis for playlist downloading can be useful when the
content is potentially unbounded in time (e.g. content from a continuously operated web
cam). The client can continue to repeatedly request the playlist in the rolling mode until
it finds an end tag in the playlist.

[0038] In one embodiment, the mechanism supports bit rate switching by providing
variant streams of the same presentation. For example, several versions of a presentation
to be served can be stored on the server. Each version can have substantially the same
content but be encoded at different bit rates. This can allow the client device to switch
between bit rates depending on, for example, a detection of the available bandwidth,
without compromising continuity of playback.

[0039] In one embodiment, protection features may be provided to protect content
against unauthorized use. For example, non-sequential media file numbering may be
used to prevent prediction. Encryption of media files may be used. Partial media file lists
may be used. Additional and/or different protection features may also be provided.
[0040] Figure 1 is a block diagram of one embodiment of a server and clients that
can send and receive real-time, or near real-time, content. The example of Figure 1
provides a simple server-client connection with two clients coupled with a server via a
network. Any number of clients may be supported utilizing the techniques and
mechanisms described herein. Further, multiple servers may provide content and/or may
operate together to provide content according to the techniques and mechanisms

described herein. For example, one server may create the content, create the playlists and

WO 2012/166816 PCT/US2012/040031

create the multiple media (e.g. files) and other servers store and transmit the created
content.

[0041] Network 110 may be any type of network whether wired, wireless (e.g., IEEE
802.11, 802.16) or any combination thereof. For example, Network 100 may be the
Internet or an intranet. As another example, network 110 may be a cellular network (e.g.,
3G, CDMA). In one embodiment, client devices 150 and 180 may be capable of
communicating over multiple network types (e.g. each device can communicate over a
WiFi wireless LAN and also over a wireless cellular telephone network). For example,
client devices 150 and 180 may be smart phones or cellular-enabled personal digital
assistants that can communicate over cellular radiotelephone networks as well as data
networks. These devices may be able to utilize the streaming mechanisms described
herein over either type of network or even switch between networks as necessary.

[0042] Server 120 may operate as a HTTP server in any manner known in the art.
That is server 120 includes a HTTP server agent 145 that provides content using HTTP
protocols. While the example of Figure 1 is described in terms of HTTP, other protocols
can be utilized in a similar manner. Segmenter 130 and indexer 135 are agents that reside
on server 120 (or multiple servers) to provide content in media files with a playlist file as
described herein. These media files and playlist files may be provided over network 110
via HTTP server agent 145 (or via other servers) using HTTP protocols. Agents as
discussed herein can be implemented as hardware, software, firmware or a combination
thereof.

[0043] Segmenter 130 may function to divide the stream of media data into multiple
media files that may be transmitted via HTTP protocols. Indexer 135 may function to
create a playlist file corresponding to the segmented media files so that client devices can
reassemble the media files to provide real-time, or near real-time, transmission of the
content provided by server 120. In response to one or more requests from a client device,
HTTP server agent 145 (or other servers) may transmit one or more playlist files as
generated by indexer 135 and media files of content as generated by segmenter 130.
Server 120 may further include optional security agent 140 that provides one or more of
the security functions (e.g. encryption) discussed herein. Server 120 may also include
additional components not illustrated in Figure 1.

[0044] Client devices 150 and 180 may receive the playlist files and media files from
server 120 over network 110. Client devices may be any type of electronic device that is

capable of receiving data transmitted over a network and generate output utilizing the

-

WO 2012/166816 PCT/US2012/040031

data received via the network, for example, wireless mobile devices, PDAs, entertainment
devices, consumer electronic devices, etc. The output may be any media type of
combination of media types, including, for example, audio, video or any combination
thereof.

[0045] Client device 150 can include assembler agent 160 and output generator agent
165. Similarly, client device 180 can include assembler agent 190 and output generator
agent 195. Assembler agents 160 and 180 receive the playlist files from server 120 and
use the playlist files to access and download media files from server 120. Output
generator agents 165 and 195 use the downloaded media files to generate output from
client devices 150 and 160, respectively. The output may be provided by one or more
speakers, one or more display screens, a combination of speakers and display screens or
any other input or output device. The client devices can also include memory (e.g. flash
memory or DRAM, etc.) to act as a buffer to store the media files (e.g. compressed media
files or decompressed media files) as they are received; the buffer can provide many
seconds worth of presentable content beyond the time of content currently being
presented so that the buffered content can later be displayed while new content is being
downloaded. This buffer can provide presentable content while the client device is
attempting to retrieve content through an intermittently slow network connection and
hence the buffer can hide network latency or connection problems.

[0046] Client devices 150 and 180 may further include optional security agents 170
and 185, respectively that provide one or more of the security functions discussed herein.
Client devices 150 and 180 may also include additional components not illustrated in
Figure 1.

[0047] In one embodiment, the techniques that are described in this application may
be used to transmit an unbounded stream of multimedia data over a non-streaming
protocol (e.g., HTTP). Embodiments can also include encryption of media data and/or
provision of alternate versions of a stream (e.g., to provide alternate bit rates). Because
media data can be transmitted soon after creation, the data can be received in near real-
time. Example data formats for files as well as actions to be taken by a server (sender)
and a client (receiver) of the stream of multimedia data are provided; however, other
formats can also be supported.

[0048] A media presentation that can be transmitted as a simulated real-time stream
(or near real-time stream) is specified by a Universal Resource Indicator (URI) that

indicates a playlist file. In one embodiment, the playlist file is an ordered list of

-8-

WO 2012/166816 PCT/US2012/040031

additional URIs. Each URI in the playlist file refers to a media file that is a segment of a
stream, which may be a single contiguous stream of media data for a particular program.
[0049] In order to play the stream of media data, the client device obtains the playlist
file from the server. The client also obtains and plays each media data file indicated by
the playlist file. In one embodiment, the client can dynamically or repeatedly reload the
playlist file to discover additional and/or different media segments.
[0050] The playlist files may be, for example, Extended M3U Playlist files. In one
embodiment, additional tags that effectively extend the M3U format are used. M3U refers
to Moving Picture Experts Group Audio Layer 3 Uniform Resource Locator (MP3 URL)
and is a format used to store multimedia playlists. A M3U file is a text file that contains
the locations of one or more media files for a media player to play.
[0051] The playlist file, in one embodiment, is an Extended M3U-formatted text file
that consists of individual lines. The lines can be terminated by either a single LF
character or a CR character followed by a LF character. Each line can be a URI, a blank
line, or start with a comment character (e.g. ‘#’). URIs identify media files to be played.
Blank lines can be ignored.
[0052] Lines that start with the comment character can be either comments or tags.
Tags can begin with #EXT, while comment lines can begin with #. Comment lines are
normally ignored by the server and client. In one embodiment, playlist files are encoded
in UTF-8 format. UTF-8 (8-bit Unicode Transformation Format) is a variable-length
character encoding format. In alternate embodiments, other character encoding formats
can be used.
[0053] In the examples that follow, an Extended M3U format is utilized that includes
two tags: EXTM3U and EXTINF. An Extended M3U file may be distinguished from a
basic M3U file by a first line that includes “#EXTM3U”.
[0054] EXTINF is a record marker that describes the media file identified by the URI
that follows the tag. In one embodiment, each media file URI is preceded by an EXTINF
tag, for example:

#EXTINF: <duration>,<title>
where “duration” specifies the duration of the media file and “title” is the title of the
target media file.
[0055] In one embodiment, the following tags may be used to manage the transfer and
playback of media files:

EXT-X-TARGETDURATION

9.

WO 2012/166816 PCT/US2012/040031

EXT-X-MEDIA-SEQUENCE

EXT-X-KEY

EXT-X-PROGRAM-DATE-TIME

EXT-X-ALLOW-CACHE

EXT-X-STREAM-INF

EXT-X-ENDLIST
These tags will each be described in greater detail below. While specific formats and
attributes are described with respect to each new tag, alternative embodiments can also be
supported with different attributes, names, formats, etc.
[0056] The EXT-X-TARGETDURATION tag can indicate the approximate duration
of the next media file that will be added to the presentation. It can be included in the
playback file and the format can be:

#EXT-X-TARGETDURATION:<seconds>
where “seconds” indicates the duration of the media file. In one embodiment, the actual
duration may differ slightly from the target duration indicated by the tag. In one
embodiment, every URI indicating a segment will be associated with an approximate
duration of the segment; for example, the URI for a segment may be prefixed with a tag
indicating the approximate duration of that segment.
[0057] Each media file URI in a playlist file can have a unique sequence number.
The sequence number, if present, of a URI is equal to the sequence number of the URI
that preceded it, plus one in one embodiment. The EXT-X-MEDIA-SEQUENCE tag can
indicate the sequence number of the first URI that appears in a playlist file and the format
can be:

#EXT-X-MEDIA-SEQUENCE:<number>
where “number” is the sequence number of the URI. If the playlist file does not include a
#EXT-X-MEDIA-SEQUENCE tag, the sequence number of the first URI in the playlist
can be considered 1. In one embodiment, the sequence numbering can be non-sequential;
for example, non-sequential sequence numbering such as 1, 5, 7, 17, etc. can make it
difficult to predict the next number in a sequence and this can help to protect the content
from pirating. Another option to help protect the content is to reveal only parts of a
playlist at any given time.
[0058] Some media files may be encrypted. The EXT-X-KEY tag provides
information that can be used to decrypt media files that follow it and the format can be:

#EXT-X-KEY:METHOD=<method>[,URI="<URI>"]

-10-

WO 2012/166816 PCT/US2012/040031

The METHOD parameter specifies the encryption method and the URI parameter, if
present, specifies how to obtain the key.
[0059] An encryption method of NONE indicates no encryption. Various encryption
methods may be used, for example AES-128, which indicates encryption using the
Advance Encryption Standard encryption with a 128-bit key and PKCS7 padding [see
RFC3852]. A new EXT-X-KEY tag supersedes any prior EXT-X-KEY tags.
[0060] An EXT-X-KEY tag with a URI parameter identifies the key file. A key file
may contain the cipher key that is to be used to decrypt subsequent media files listed in
the playlist file. For example, the AES-128 encryption method uses 16-octet keys. The
format of the key file can be a packed array of 16 octets in binary format.
[0061] Use of AES-128 normally requires that the same 16-octet initialization vector
(IV) be supplied when encrypting and decrypting. Varying the IV can be used to increase
the strength of the cipher. When using AES-128 encryption, the sequence number of the
media file can be used as the IV when encrypting or decrypting media files.
[0062] The EXT-X-PROGRAM-DATE-TIME tag can associate the beginning of the
next media file with an absolute date and/or time and can include or indicate a time zone.
In one embodiment, the date/time representation is ISO/IEC 8601:2004. The tag format
can be:
EXT-X-PROGRAM-DATE-TIME:<YYYY-MM-DDThh:mm:ssZ>
[0063] The EXT-X-ALLOW-CACHE tag can be used to indicate whether the client
may cache the downloaded media files for later playback. The tag format can be:
EXT-X-ALLOW-CACHE:<YESINO>
[0064] The EXT-X-ENDLIST tag indicates in one embodiment that no more media
files will be added to the playlist file. The tag format can be:
EXT-X-ENDLIST
In one embodiment, if a playlist contains the final segment or media file then the playlist
will have the EXT-X-ENDLIST tag.
[0065] The EXT-X-STREAM-INF tag can be used to indicate that the next URI in
the playlist file identifies another playlist file. The tag format can be, in one embodiment:
EXT-X-STREAM-INF:[attribute=value][,attribute=value] *<URI>
where the following attributes may be used. The attribute BANDWIDTH=<n> is an
approximate upper bound of the stream bit rate expressed as a number of bits per second.
The attribute PROGRAM-ID=<i> is a number that uniquely identifies a particular

presentation within the scope of the playlist file. A playlist file may include multiple

-11-

WO 2012/166816 PCT/US2012/040031

EXT-X-STREAM-INF URIs with the same PROGRAM-ID to describe variant streams of
the same presentation. Variant streams and variant playlists are described further in this
disclosure (e.g. see Figures 9A-9D).

[0066] The foregoing tags and attributes can be used by the server device to organize,
transmit and process the media files that represent the original media content. The client
devices use this information to reassemble and present the media files in a manner to
provide a real-time, or near real-time, streaming experience (e.g. viewing of a live
broadcast such as a music or sporting event) to a user of the client device.

[0067] Each media file URI in a playlist file identifies a media file that is a segment
of the original presentation (i.e., original media content). In one embodiment, each media
file is formatted as a MPEG-2 transport stream, a MPEG-2 program stream, or a MPEG-2
audio elementary stream. The format can be specified by specifying a CODEC, and the
playlist can specify a format by specifying a CODEC. In one embodiment, all media files
in a presentation have the same format; however, multiple formats may be supported in
other embodiments. A transport stream file should, in one embodiment, contain a single
MPEG-2 program, and there should be a Program Association Table and a Program Map
Table at the start of each file. A file that contains video SHOULD have at least one key
frame and enough information to completely initialize a video decoder. Clients
SHOULD be prepared to handle multiple tracks of a particular type (e.g. audio or video)
by choosing a reasonable subset. Clients should, in one embodiment, ignore private
streams inside Transport Streams that they do not recognize. The encoding parameters
for samples within a stream inside a media file and between corresponding streams across
multiple media files SHOULD remain consistent. However clients SHOULD deal with
encoding changes as they are encountered, for example by scaling video content to
accommodate a resolution change.

[0068] Figure 2A is a flow diagram of one embodiment of a technique for one or
more server devices to support media content using non-streaming protocols. The
example of Figure 2A is provided in terms of HTTP; however, other non-streaming
protocols can be utilized in a similar manner. The example of Figure 2A is provided in
terms of a single server performing certain tasks. However, any number of servers may
be utilized. For example, the server that provides media files to client devices may be a
different device than a server that segments the content into multiple media files.

[0069] The server device receives content to be provided in operation 200. The

content may represent live audio and/or video (e.g., a sporting event, live news, a Web

-12-

WO 2012/166816 PCT/US2012/040031

camera feed). The content may also represent pre-recorded content (e.g., a concert that
has been recorded, a training seminar, etc.). The content may be received by the server
according to any format and protocol known in the art, whether streamed or not. In one
embodiment, the content is received by the server in the form of a MPEG-2 stream;
however, other formats can also be supported.

[0070] The server may then store temporarily at least portions of the content in
operation 210. The content or at least portions of the content may be stored temporarily,
for example, on a storage device (e.g., hard disk in a Storage Area Network, etc.) or in
memory. Alternatively, the content may be received as via a storage medium (e.g.,
compact disc, flash drive) from which the content may be transferred to a storage device
or memory. In one embodiment, the server has an encoder that converts, if necessary, the
content to one or more streams (e.g., MPEG-2). This conversion can occur without
storing permanently the received content, and in some embodiments, the storage
operation 210 may be omitted or it may be a longer term storage (e.g. an archival storage)
in other embodiments.

[0071] The content to be provided is segmented into multiple media files in operation
220. In one embodiment, the server converts a stream into separate and distinct media
files (i.e., segments) that can be distributed using a standard web server. In one
embodiment, the server segments the media stream at points that support effective decode
of the individual media files (e.g., on packet and key frame boundaries such as PES packet
boundaries and i-frame boundaries). The media files can be portions of the original stream
with approximately equal duration. The server also creates a URI for each media file.
These URIs allow client devices to access the media files.

[0072] Because the segments are served using HTTP servers, which inherently
deliver whole files, the server should have a complete segmented media file available
before it can be served to the clients. Thus, the client may lag (in time) the broadcast by
at least one media file length. In one embodiment, media file size is based on a balance
between lag time and having too many files.

[0073] In one embodiment, two session types (live session and event session) are
supported. For a live session, only a fixed size portion of the stream is preserved. In one
embodiment, content media files that are out of date are removed from the program
playlist file, and can be removed from the server. The second type of session is an event
session, where the client can tune into any point of the broadcast (e.g., start from the

beginning, start from a mid-point). This type of session can be used for rebroadcast, for

13-

WO 2012/166816 PCT/US2012/040031

example.

[0074] The media files are stored in the server memory in operation 230. The media
files can be protected by a security feature, such as encryption, before storing the files in
operation 230. The media files are stored as files that are ready to transmit using the
network protocol (e.g., HTTP or HTTPS) supported by the Web server application on the
server device (or supported by another device which does the transmission).

[0075] One or more playlist files are generated to indicate the order in which the
media files should be assembled to recreate the original content in operation 240. The
playlist file(s) can utilize Extended M3U tags and the tags described herein to provide
information for a client device to access and reassemble the media files to provide a
streaming experience on the client device. A URI for each media file is included in the
playlist file(s) in the order in which the media files are to be played. The server can also
create one or more URIs for the playlist file(s) to allow the client devices to access the
playlist file(s).

[0076] The playlist file(s) can be stored on the server in operation 250. While the
creation and storing of media files and playlist file(s) are presented in a particular order in
Figure 2A, a different order may also be used. For example, the playlist file(s) may be
created before the media files are created or stored. As another example, the playlist file(s)
and media files may be created before either are stored.

[0077] If media files are to be encrypted the playlist file(s) can define a URI that
allows authorized client devices to obtain a key file containing an encryption key to
decrypt the media files. An encryption key can be transmitted using a secure connection
(e.g., HTTPS). As another example, the playlist file(s) may be transmitted using HTTPS.
As a further example, media files may be arranged in an unpredictable order so that the
client cannot recreate the stream without the playlist file(s).

[0078] If the encryption method is AES-128, AES-128 CBC encryption, for example,
may be applied to individual media files. In one embodiment, the entire file is encrypted.
Cipher block chaining is normally not applied across media files in one embodiment. The
sequence of the media files is use as the IV as described above. In one embodiment, the
server adds an EXT-X-KEY tag with the key URI to the end of the playlist file. The
server then encrypts all subsequent media files with that key until a change in encryption
configuration is made.

[0079] To switch to a new encryption key, the server can make the new key available

via a new URI that is distinct from all previous key URIs used in the presentation. The

-14-

WO 2012/166816 PCT/US2012/040031

server also adds an EXT-X-KEY tag with the new key URI to the end of a playlist file and
encrypts all subsequent media files with the new key.

[0080] To end encryption, the server can add an EXT-X-KEY tag with the encryption
method NONE at the end of the playlist file. The tag (with “NONE” as the method) does
not include a URI parameter in one embodiment. All subsequent media files are not
encrypted until a change in encryption configuration is made as described above. The
server does not remove an EXT-X-KEY tag from a playlist file if the playlist file contains
a URI to a media file encrypted with that key. The server can transmit the playlist file(s)
and the media files over the network in response to client requests in operation 270, as
described in more detail with respect to Figure 3A.

[0081] In one embodiment, a server transmits the playlist file to a client device in
response to receiving a request from a client device for a playlist file. The client device
may access/request the playlist file using a URI that has been provided to the client device.
The URI indicates the location of the playlist file on the server. In response, the server
may provide the playlist file to the client device. The client device may the utilize tags and
URIs (or other identifiers) in the playlist file to access the multiple media files.

[0082] In one embodiment, the server may limit the availability of media files to those
that have been most recently added to the playlist file(s). To do this, each playlist file can
include only one EXT-X-MEDIA-SEQUENCE tag and the value can be incremented by
one for every media file URI that is removed from the playlist file. Media file URIs can
be removed from the playlist file(s) in the order in which they were added. In one
embodiment, when the server removes a media file URI from the playlist file(s) the media
file remains available to clients for a period of time equal to the duration of the media file
plus the duration of the longest playlist file in which the media file has appeared.

[0083] The duration of a playlist file is the sum of the durations of the media files
within that playlist file. Other durations can also be used. In one embodiment, the server
can maintain at least three main presentation media files in the playlist at all times unless
the EXT-X-ENDLIST tag is present.

[0084] Figure 2B is a flow diagram of one embodiment of a technique for one or
more server devices to provide dynamically updated playlists to one or more client
devices. The playlists can be updated using either of the cumulative mode or the rolling
mode described herein. The example of Figure 2B is provided in terms of HTTP;
however, other non-streaming protocols (e.g. HTTPS, etc.) can be utilized in a similar

manner. The example of Figure 2B is provided in terms of a server performing certain

-15-

WO 2012/166816 PCT/US2012/040031

tasks. However, any number of servers may be utilized. For example, the server that
provides media files to client devices may be a different device than the server that
segments the content into multiple media files.

[0085] The server device receives content to be provided in operation 205. The server
may then temporarily store at least portions of the content in operation 215. Operation
215 can be similar to operation 210 in Figure 2A. The content to be provided is
segmented into multiple media files in operation 225. The media files can be stored in the
server memory in operation 235. The media files can be protected by a security feature,
such as encryption, before storing the files in operation 235.

[0086] One or more playlist files are generated to indicate the order in which the
media files should be assembled to recreate the original content in operation 245. The
playlist file(s) can be stored on the server in operation 255. While the creation and storing
of media files and playlist file(s) are presented in a particular order in Figure 2B, a
different order may also be used.

[0087] The server (or another server) can transmit the playlist file(s) and the media
files over the network in response to client requests in operation 275, as described in more
detail with respect to Figures 3A-3B.

[0088] The playlist file(s) may be updated by a server for various reasons. The server
may receive additional data to be provided to the client devices in operation 285. The
additional data can be received after the playlist file(s) are stored in operation 255. The
additional data may be, for example, additional portions of a live presentation, or
additional information for an existing presentation. Additional data may include
advertisements or statistics (e.g. scores or data relating to a sporting event). The additional
data could be overlaid (through translucency) on the presentation or be presented in a
sidebar user interface. The additional data can be segmented in the same manner as the
originally received data. If the additional data constitutes advertisements, or other content
to be inserted into the program represented by the playlist, the additional data can be stored
(at least temporarily) in operation 215, segmented in operation 225 and stored in operation
235; prior to storage of the segmented additional data, the segments of the additional data
can be encrypted. Then in operation 245 an updated playlist, containing the program and
the additional data, would be generated. The playlist is updated based on the additional
data and stored again in operation 255. Changes to the playlist file(s) should be made
atomically from the perspective of the client device. The updated playlist replaces, in one

embodiment, the previous playlist. As discussed below in greater detail, client devices can

-16-

WO 2012/166816 PCT/US2012/040031

request the playlist multiple times. These requests enable the client devices to utilize the
most recent playlist. In one embodiment, the additional data may be metadata; in this case,
the playlist does not need to be updated, but the segments can be updated to include
metadata. For example, the metadata may contain timestamps which can be matched with
timestamps in the segments, and the metadata can be added to segments having matching
timestamps.

[0089] The updated playlist may also result in the removal of media files. In one
embodiment, a server should remove URIs, for the media files, from the playlist in the
order in which they were added to the playlist. In one embodiment, if the server removes
an entire presentation, it makes the playlist file(s) unavailable to client devices. In one
embodiment, the server maintains the media files and the playlist file(s) for the duration
of the longest playlist file(s) containing a media file to be removed to allow current client
devices to finish accessing the presentation. Accordingly, every media file URI in the
playlist file can be prefixed with an EXT-X-STREAM-INF tag to indicate the
approximate cumulative duration of the media files indicated by the playlist file. In
alternate embodiments, the media files and the playlist file(s) may be removed
immediately.

[0090] Subsequent requests for the playlist from client devices result in the server
providing the updated playlist in operation 275. In one embodiment, playlists are updated
on a regular basis, for example, a period of time related to the target duration. Periodic
updates of the playlist file allow the server to provide access to servers to a dynamically
changing presentation.

[0091] Figure 2C is a flow diagram of one embodiment of a technique for one or
more server devices to provide media content to client devices using multiple bit rates,
which is one form of the use of alternative streams. The example of Figure 2C is
provided in terms of HTTP; however, other non-streaming protocols can be utilized in a
similar manner. The example of Figure 2C is provided in terms of a server performing
certain tasks. However, any number of servers may be utilized. For example, the server
that provides media files to client devices may be a different device than a server that
segments the content into multiple media files.

[0092] In one embodiment, the server can offer multiple playlist files or a single
playlist file with multiple media file lists in the single playlist file to provide different
encodings of the same presentation. If different encodings are provided, playlist file(s)

may include each variant stream providing different bit rates to allow client devices to

-17-

WO 2012/166816 PCT/US2012/040031

switch between encodings dynamically (this is described further in connection with
Figures 9A-9D). Playlist files having variant streams can include an EXT-X-STREAM-
INF tag for each variant stream. Each EXT-X-STREAM-INF tag for the same
presentation can have the same PROGRAM-ID attribute value. The PROGRAM-ID value
for each presentation is unique within the variant streams.

[0093] In one embodiment, the server meets the following constraints when producing
variant streams. Each variant stream can consist of the same content including optional
content that is not part of the main presentation. The server can make the same period of
content available for all variant streams within an accuracy of the smallest target duration
of the streams. The media files of the variant streams are, in one embodiment, either
MPEG-2 Transport Streams or MPEG-2 Program Streams with sample timestamps that
match for corresponding content in all variant streams. Also, all variant streams should, in
one embodiment, contain the same audio encoding. This allows client devices to switch
between variant streams without losing content.

[0094] Referring to Figure 2C, the server device receives content to be provided in
operation 202. The server may then at least temporarily store the content in operation
212. The content to be provided is segmented into multiple media files in operation 222.
Each media file is encoded for a selected bit rate (or a selected value of other encoding
parameters) and stored on the server in operation 232. For example, the media files may
be targeted for high-, medium- and low-bandwidth connections. The media files can be
encrypted prior to storage. The encoding of the media files targeted for the various types
of connections may be selected to provide a streaming experience at the target bandwidth
level.

[0095] In one embodiment, a variant playlist is generated in operation 242 with tags
as described herein that indicate various encoding levels. The tags may include, for
example, an EXT-X-STREAM-INF tag for each encoding level with a URI to a
corresponding media playlist file.

[0096] This variant playlist can include URIs to media playlist files for the various
encoding levels. Thus, a client device can select a target bit rate from the alternatives
provided in the variant playlist indicating the encoding levels and retrieve the
corresponding playlist file. In one embodiment, a client device may change between bit
rates during playback (e.g. as described with respect to Figures 9A-9D). The variant
playlist indicating the various encoding levels is stored on the server in operation 252. In

operation 242, each of the playlists referred to in the variant playlist can also be generated

-18-

WO 2012/166816 PCT/US2012/040031

and then stored in operation 252.

[0097] In response to a request from a client device, the server may transmit the
variant playlist that indicates the various encoding levels in operation 272. The server
may receive a request for one of the media playlists specified in the variant playlist
corresponding to a selected bit rate in operation 282. In response to the request, the server
transmits the media playlist file corresponding to the request from the client device in
operation 292. The client device may then use the media playlist to request media files
from the server. The server provides the media files to the client device in response to
requests in operation 297.

[0098] Figure 3A is a flow diagram of one embodiment of a technique for a client
device to support streaming of content using non-streaming protocols. The example of
Figure 3A is provided in terms of HTTP; however, other non-streaming protocols can be
utilized in a similar manner. The methods shown in Figures 3A-3B can be performed by
one client device or by several separate client devices. For example, in the case of any
one of these methods, a single client device may perform all of the operations (e.g.
request a playlist file, request media files using URISs in the playlist file, assemble the
media files to generate and provide a presentation/output) or several distinct client
devices can perform some but not all of the operations (e.g. a first client device can
request a playlist file and request media files using URISs in the playlist file and can store
those media files for use by a second client device which can process the media files to
generate and provide a presentation/output).

[0099] The client device may request a playlist file from a server in operation 300. In
one embodiment, the request is made according to an HTTP-compliant protocol. The
request utilizes a URI to an initial playlist file stored on the server. In alternate
embodiments, other non-streaming protocols can be supported. In response to the
request, the server will transmit the corresponding playlist file to the client over a
network. As discussed above, the network can be wired or wireless and can be any
combination of wired or wireless networks. Further, the network may be a data network
(e.g., IEEE 802.11, IEEE 802.16) or a cellular telephone network (e.g., 3G).

[00100] The client device can receive the playlist file in operation 310. The playlist
file can be stored in a memory of the client device in operation 320. The memory can be,
for example, a hard disk, a flash memory, a random-access memory. In one embodiment,
each time a playlist file is loaded or reloaded from the playlist URI, the client checks to
determine that the playlist file begins with a #EXTM3U tag and does not continue if the

-19-

WO 2012/166816 PCT/US2012/040031

tag is absent. As discussed above, the playlist file includes one or more tags as well as
one or more URIs to media files.

[00101] The client device can include an assembler agent that uses the playlist file to
reassemble the original content by requesting media files indicated by the URIs in the
playlist file in operation 330. In one embodiment, the assembler agent is a plug-in
module that is part of a standard Web browser application. In another embodiment, the
assembler agent may be a stand-alone application that interacts with a Web browser to
receive and assemble the media files using the playlist file(s). As a further example, the
assembler agent may be a special-purpose hardware or firmware component that is
embedded in the client device.

[00102] The assembler causes media files from the playlist file to be downloaded from
the server indicated by the URIs. If the playlist file contains the EXT-X-ENDLIST tag,
any media file indicated by the playlist file may be played first. If the EXT-X-ENDLIST
tag is not present, any media file except for the last and second-to-last media files may be
played first. Once the first media file to play has been chosen, subsequent media files in
the playlist file are loaded, in one embodiment, in the order that they appear in the playlist
file (otherwise the content is presented out of order). In one embodiment, the client
device attempts to load media files in advance of when they are required (and stores them
in a buffer) to provide uninterrupted playback and to compensate for temporary variations
in network latency and throughput.

[00103] The downloaded media file(s) can be stored in a memory on the client device
in operation 340. The memory in which the content can be stored may be any type of
memory on the client device, for example, random-access memory, a hard disk, or a video
buffer. The storage may be temporary to allow playback or may be permanent. If the
playlist file contains the EXT-X-ALLOW-CACHE tag and its value is NO, the client
does not store the downloaded media files after they have been played. If the playlist
contains the EXT-X-ALLOW-CACHE tag and its value is YES, the client device may
store the media files indefinitely for later replay. The client device may use the value of
the EXT-X-PROGRAM-DATE-TIME tag to display the program origination time to the
user. In one embodiment, the client can buffer multiple media files so that it is less
susceptible to network jitter, in order to provide a better user experience.

[00104] In one embodiment, if the decryption method is AES-128, then AES-128 CBC

decryption is applied to the individual media files. The entire file is decrypted. In one

220-

WO 2012/166816 PCT/US2012/040031

embodiment, cipher block chaining is not applied across media files. The sequence
number of the media file can be used as the initialization vector as described above.
[00105] From the memory, the content can be output from the client device in
operation 350. The output or presentation may be, for example, audio output via built-in
speakers or head phones. The output may include video that is output via a screen or
projected from the client device. Any type of output known in the art may be utilized. In
operation 351, the client device determines whether there are any more media files in the
stored, current playlist which have not been played or otherwise presented. If such media
files exist (and if they have not been requested) then processing returns to operation 330
in which one or more media files are requested and the process repeats. If there are no
such media files (i.e., all media files in the current playlist have been played), then
processing proceeds to operation 352, which determines whether the playlist file includes
an end tag.

[00106] If the playlist includes an end tag (e.g., EXT-X-ENDLIST) in operation 352,
playback ceases when the media files indicated by the playlist file have been played. If
the end tag is not in the playlist, then the client device requests a playlist again from the
server and reverts back to operation 300 to obtain a further or updated playlist for the
program.

[00107] As discussed in greater detail with respect to Figure 2B, a server may update a
playlist file to introduce supplementary content (e.g., additional media file identifiers
corresponding to additional media content in a live broadcast) or additional content (e.g.
content further down the stream). To access the supplementary content or additional
content, a client can reload the updated playlist from the server. This can provide a
mechanism by which playlist files can be dynamically updated, even during playback of
the media content associated with a playlist file. A client can request a reload of the
playlist file based on a number of triggers. The lack of an end tag is one such trigger.
[00108] In one embodiment, the client device periodically reloads the playlist file(s)
unless the playlist file contains the EXT-X-ENDLIST tag. When the client device loads a
playlist file for the first time or reloads a playlist file and finds that the playlist file has
changed since the last time it was loaded, the client can wait for a period of time before
attempting to reload the playlist file again. This period is called the initial minimum
reload delay. It is measured from the time that the client began loading the playlist file.
[00109] In one embodiment, the initial minimum reload delay is the duration of the last

media file in the playlist file or three times the target duration, whichever is less. The

21-

WO 2012/166816 PCT/US2012/040031

media file duration is specified by the EXTINF tag. If the client reloads a playlist file and
finds that it has not changed then the client can wait for a period of time before retrying.
The minimum delay in one embodiment is three times the target duration or a multiple of
the initial minimum reload delay, whichever is less. In one embodiment, this multiple is
0.5 for a first attempt, 1.5 for a second attempt and 3.0 for subsequent attempts; however,
other multiples may be used.

[00110] Each time a playlist file is loaded or reloaded, the client device examines the
playlist file to determine the next media file to load. The first file to load is the media file
selected to play first as described above. If the first media file to be played has been
loaded and the playlist file does not contain the EXT-X-MEDIA-SEQUENCE tag then
the client can verify that the current playlist file contains the URI of the last loaded media
file at the offset where it was originally found, halting playback if the file is not found.
The next media file to load can be the first media file URI following the last-loaded URI
in the playlist file.

[00111] If the first file to be played has been loaded and the playlist file contains the
EXT-X-MEDIA-SEQUENCE tag, then the next media file to load can be the one with the
lowest sequence number that is greater than the sequence number of the last media file
loaded. If the playlist file contains an EXT-X-KEY tag that specifies a key file URI, the
client device obtains the key file and uses the key inside the key file to decrypt the media
files following the EXT-X-KEY tag until another EXT-X-KEY tag is encountered.
[00112] In one embodiment, the client device utilizes the same URI as previously used
to download the playlist file. Thus, if changes have been made to the playlist file, the
client device may use the updated playlist file to retrieve media files and provide output
based on the media files.

[00113] Changes to the playlist file may include, for example, deletion of a URI to a
media file, addition of a URI to a new media file, replacement of a URI to a replacement
media file. When changes are made to the playlist file, one or more tags may be updated
to reflect the change(s). For example, the duration tag may be updated if changes to the
media files result in a change to the duration of the playback of the media files indicated
by the playlist file.

[00114] Figure 3B is a flow diagram of one embodiment of a technique for a client
device to support streaming of content using multiple bit rates which is one form of
alternative streams. The example of Figure 3B is provided in terms of HTTP; however,

other non-streaming protocols can be utilized in a similar manner.

22

WO 2012/166816 PCT/US2012/040031

[00115] The client device can request a playlist file in operation 370. As discussed
above, the playlist file may be retrieved utilizing a URI provided to the client device. In
one embodiment, the playlist file includes listings of variant streams of media files to
provide the same content at different bit rates; in other words, a single playlist file
includes URIs for the media files of each of the variant streams. The example shown in
Figure 3B uses this embodiment. In another embodiment, the variant streams may be
represented by multiple distinct playlist files separately provided to the client that each
provide the same content at different bit rates, and a variant playlist can provide a URI for
each of the distinct playlist files. This allows the client device to select the bit rate based
on client conditions.

[00116] The playlist file(s) can be retrieved by the client device in operation 375. The
playlist file(s) can be stored in the client device memory in operation 380. The client
device may select the bit rate to be used in operation 385 based upon current network
connection speeds. Media files are requested from the server utilizing URIs included in
the playlist file corresponding to the selected bit rate in operation 390. The retrieved
media files can be stored in the client device memory. Output is provided by the client
device utilizing the media files in operation 394 and the client device determines whether
to change the bit rate.

[00117] In one embodiment, a client device selects the lowest available bit rate
initially. While playing the media, the client device can monitor available bandwidth
(e.g. current network connection bit rates) to determine whether the available bandwidth
can support use of a higher bit rate for playback. If so, the client device can select a
higher bit rate and access the media files indicated by the higher bit rate media playlist
file. The reverse can also be supported. If the playback consumes too much bandwidth,
the client device can select a lower bit rate and access the media files indicated by the
lower bit rate media playlist file.

[00118] If the client device changes the bit rate in operation 394, for example, in
response to a change in available bandwidth or in response to user input, the client device
may select a different bit rate in operation 385. In one embodiment, to select a different
bit rate the client device may utilize a different list of URIs included in the playlist file
that corresponds to the new selected bit rate. In one embodiment, the client device may
change bit rates during access of media files within a playlist.

[00119] If the bit rate does not change in operation 394, then the client device

determines whether there are any more unplayed media files in the current playlist which

23-

WO 2012/166816 PCT/US2012/040031

have not been retrieved and presented. If such media files exist, then processing returns
to operation 390 and one or more media files are retrieved using the URISs for those files
in the playlist. If there are no such media files (i.e. all media files in the current playlist
haven been played), then processing proceeds to operation 396 in which it is determined
whether the playlist includes an end tag. If it does, the playback of the program has
ended and the process has completed; if it does not, then processing reverts to operation
370, and the client device requests to reload the playlist for the program, and the process
repeats through the method shown in Figure 3B.

[00120] Figure 4 is a block diagram of one embodiment of a server stream agent. It
will be understood that the elements of server stream agent 400 can be distributed across
several server devices. For example, a first server device can include the segmenter 430,
the indexer 440 and security 450 but not the file server 460 and a second server device
can include the file server 450 but not the segmenter 430, the indexer 440 and security
450. In this example, the first server device would prepare the playlists and media files
but would not transmit them to client devices while one or more second server devices
would receive and optionally store the playlists and media files and would transmit the
playlists and media files to the client devices. Server stream agent 400 includes control
logic 410, which implements logical functional control to direct operation of server
stream agent 400, and hardware associated with directing operation of server stream agent
400. Logic may be hardware logic circuits or software routines or firmware. In one
embodiment, server stream agent 400 includes one or more applications 412, which
represent code sequence and/or programs that provide instructions to control logic 410.
[00121] Server stream agent 400 includes memory 414, which represents a memory
device or access to a memory resource for storing data or instructions. Memory 414 may
include memory local to server stream agent 400, as well as, or alternatively, including
memory of the host system on which server stream agent 400 resides. Server stream agent
400 also includes one or more interfaces 416, which represent access interfaces to/from (an
input/output interface) server stream agent 400 with regard to entities (electronic or
human) external to server stream agent 400.

[00122] Server stream agent 400 also can include server stream engine 420, which
represents one or more functions that enable server stream agent 400 to provide the real-
time, or near real-time, streaming as described herein. The example of Figure 4 provides
several components that may be included in server stream engine 420; however, different

or additional components may also be included. Example components that may be

24-

WO 2012/166816 PCT/US2012/040031

involved in providing the streaming environment include segmenter 430, indexer 440,
security 450 and file server 460. Each of these components may further include other
components to provide other functions. As used herein, a component refers to routine, a
subsystem, etc., whether implemented in hardware, software, firmware or some
combination thereof.

[00123] Segmenter 430 divides the content to be provided into media files that can be
transmitted as files using a Web server protocol (e.g., HTTP). For example, segmenter
430 may divide the content into predetermined, fixed-size blocks of data in a pre-
determined file format.

[00124] Indexer 440 may provide one or more playlist files that provide an address or
URI to the media files created by segmenter 430. Indexer 440 may, for example, create
one or more files with a listing of an order for identifiers corresponding to each file
created by segmenter 430. The identifiers may be created or assigned by either segmenter
430 or indexer 440. Indexer 440 can also include one or more tags in the playlist files to
support access and/or utilization of the media files.

[00125] Security 450 may provide security features (e.g. encryption) such as those
discussed above. Web server 460 may provide Web server functionality related to
providing files stored on a host system to a remote client device. Web server 460 may
support, for example, HTTP-compliant protocols.

[00126] Figure S is a block diagram of one embodiment of a client stream agent. It
will be understood that the elements of a client stream agent can be distributed across
several client devices. For example, a first client device can include an assembler 530
and security 550 and can provide a decrypted stream of media files to a second client
device that includes an output generator 540 (but does not include an assembler 530 and
security 550). In another example, a primary client device can retrieve playlists and
provide them to a secondary client device which retrieves media files specified in the
playlist and generates an output to present these media files. Client stream agent 500
includes control logic 510, which implements logical functional control to direct
operation of client stream agent 500, and hardware associated with directing operation of
client stream agent 500. Logic may be hardware logic circuits or software routines or
firmware. In one embodiment, client stream agent 500 includes one or more applications

512, which represent code sequence or programs that provide instructions to control logic

510.

05-

WO 2012/166816 PCT/US2012/040031

[00127] Client stream agent 500 includes memory 514, which represents a memory
device or access to a memory resource for storing data and/or instructions. Memory 514
may include memory local to client stream agent 500, as well as, or alternatively,
including memory of the host system on which client stream agent 500 resides. Client
stream agent 500 also includes one or more interfaces 516, which represent access
interfaces to/from (an input/output interface) client stream agent 500 with regard to
entities (electronic or human) external to client stream agent 500.

[00128] Client stream agent 500 also can include client stream engine 520, which
represents one or more functions that enable client stream agent 500 to provide the real-
time, or near real-time, streaming as described herein. The example of Figure 5 provides
several components that may be included in client stream engine 520; however, different
or additional components may also be included. Example components that may be
involved in providing the streaming environment include assembler 530, output generator
540 and security 550. Each of these components may further include other components
to provide other functions. As used herein, a component refers to routine, a subsystem,
etc., whether implemented in hardware, software, firmware or some combination thereof.
[00129] Assembler 530 can utilize a playlist file received from a server to access the
media files via Web server protocol (e.g., HTTP) from the server. In one embodiment,
assembler 530 may cause to be downloaded media files as indicated by URIs in the
playlist file. Assembler 530 may respond to tags included in the playlist file.

[00130] Output generator 540 may provide the received media files as audio or visual
output (or both audio and visual) on the host system. Output generator 540 may, for
example, cause audio to be output to one or more speakers and video to be output to a
display device. Security 550 may provide security features such as those discussed
above.

[00131] Figure 6 illustrates one embodiment of a playlist file with multiple tags. The
example playlist of Figure 6 includes a specific number and ordering of tags. This is
provided for description purposes only. Some playlist files may include more, fewer or
different combinations of tags and the tags can be arranged in a different order than
shown in Figure 6.

[00132] Begintag 610 can indicate the beginning of a playlist file. In one
embodiment, begin tag 610 is a #EXTM3U tag. Duration tag 620 can indicate the
duration of the playback list. That is, the duration of the playback of the media files

26-

WO 2012/166816 PCT/US2012/040031

indicated by playback list 600. In one embodiment, duration tag 620 is an EXT-X-
TARGETDURATION tag; however, other tags can also be used.

[00133] Date/Time tag 625 can provide information related to the date and time of the
content provided by the media files indicated by playback list 600. In one embodiment,
Date/Time tag 625 is an EXT-X-PROGRAM-DATE-TIME tag; however, other tags can
also be used. Sequence tag 630 can indicate the sequence of playlist file 600 in a
sequence of playlists. In one embodiment, sequence tag 630 is an EXT-X-MEDIA-
SEQUENCE tag; however, other tags can also be used.

[00134] Security tag 640 can provide information related to security and/or encryption
applied to media files indicated by playlist file 600. For example, the security tag 640 can
specify a decryption key to decrypt files specified by the media file indicators. In one
embodiment, security tag 640 is an EXT-X-KEY tag; however, other tags can also be
used. Variant list tag 645 can indicate whether variant streams are provided by playlist
600 as well as information related to the variant streams (e.g., how many, bit rate). In one
embodiment, variant list tag 645 is an EXT-X-STREAM-INF tag.

[00135] Media file indicators 650 can provide information related to media files to be
played. In one embodiment, media file indicators 650 include URIs to multiple media
files to be played. In one embodiment, the order of the URISs in playlist 600 corresponds
to the order in which the media files should be accessed and/or played. Subsequent
playlist indictors 660 can provide information related to one or more playback files to be
used after playback file 600. In one embodiment, subsequent playlist indicators 660 can
include URISs to one or more playlist files to be used after the media files of playlist 600
have been played.

[00136] Memory tag 670 can indicate whether and/or how long a client device may
store media files after playback of the media file content. In one embodiment, memory
tag 670 is an EXT-X-ALLOW-CACHE tag. End tag 680 indicates whether playlist file
600 is the last playlist file for a presentation. In one embodiment, end tag 680 is an EXT-
X-ENDLIST tag.

[00137] The following section contains several example playlist files according to one

embodiment.

Simple Playlist file

#EXTM3U
#EXT-X-TARGETDURATION:10

27-

WO 2012/166816 PCT/US2012/040031

#EXTINF:5220,
http://media.example. con/entire. ts

#EXT-X-ENDLIST

Sliding Window Playlist, using HTTPS

#EXTM3U
#EXT-X-TARGETDURATION: 8
#EXT-X-MEDIA-SEQUENCE:2680

#EXTINF: 8,
https://oriv.example,.con/fileSequenceZo80.ts

#EXTINF: 8,

]

D

.com/fileSequence?268l.ts

https://oriv.exano]
#EXTINF: 8,

hitps://oriv,.example. . con/fileSequences2682.ts

6]

p

Playlist file with encrypted media files

#EXTM3U
#EXT-X-MEDIA-SEQUENCE: 7794
#EXT-X-TARGETDURATION:15

#EXT-X-KEY :METHOD=AES-128, URI="
hittps://oriv.examole. con/kev.phplr=52"

#EXTINF:15,

http://media.example.com/fileSequence7784.ts
#EXTINF:15,

http://media.example.com/fileSaeguence

#EXTINF:15,

http://media. example,.con/fileSequence’7796.ts

#EXT-X-KEY:METHOD=AES-128, URI="

https://oriv.example.com/kev.php?r=53"

#EXTINF:15,

http://media.example.con/fileSequence7797. L

%]

8-

WO 2012/166816 PCT/US2012/040031

Variant Playlist file

#EXTM3U
#EXT-X-STREAM—-INF : PROGRAM—-ID=1, BANDWIDTH=1280000
http://example.com/low.m3ud

#EXT-X-STREAM-INF : PROGRAM-ID=1, BANDWIDTH=2560000

http://example.com/mid.m3ub
#EXT-X-STREAM—-INF : PROGRAM—-ID=1, BANDWIDTH=7680000

hittp://example.con/hi.m3ud
#EXT-X-STREAM—INF : PROGRAM—
ID=1,BANDWIDTH=65000, CODECS="mp4a.40.5"

http://example.com/audio-only.m3ul

[00138] Figure 7 is a flow diagram of one embodiment of a playback technique for
assembled streams as described herein. In one embodiment, playback of the received
media files can be controlled by the user to start, stop, rewind, etc. The playlist file is
received by the client device in operation 700. The media files indicated by the playlist
file are retrieved in operation 710. Output is generated based on the received media files
in operation 720. Receiving and generating output based on media files can be
accomplished as described above.

[00139] If control input is detected in operation 730, the client device can determine if
the input indicates a stop in operation 740. If the input is a stop, the process concludes
and playback stops. If the input indicates a rewind or forward request in operation 750,
the client device can generate output based on previously played media files still stored in
memory in operation 760. If these files are no longer in a cache, then processing reverts
to operation 710 to retrieve the media files and repeats the process. In an alternate
embodiment, playback can support a pause feature that halts playback without concluding
playback as with a stop input.

[00140] Methods for transitioning from one stream to another stream are further
described with reference to Figures 9A-9D. One client device can perform each of these
methods or the operations of each of these methods can be distributed across multiple
client devices as described herein; for example, in the distributed case, one client device

can retrieve the variant playlist and the two media playlists and provide those to another

29

WO 2012/166816 PCT/US2012/040031

client device which retrieves media files specified by the two media playlists and
switches between the two streams provided by the retrieved media files. It will also be
understood that, in alternative embodiments, the order of the operations shown may be
modified or there can be more or fewer operations than shown in these figures. The
methods can use a variant playlist to select different streams. A variant playlist can be
retrieved and processed in operation 901 to determine available streams for a program
(e.g. a sporting event). Operation 901 can be done by a client device. A first stream can
be selected from the variant playlist in operation 903, and a client device can then retrieve
a media playlist for the first stream. The client device can process the media playlist for
the first stream in operation 905 and also measure or otherwise determine a bit rate of the
network connection for the first stream in operation 907. It will be appreciated that the
sequence of operations may be performed in an order which is different than what is
shown in Figure 9A; for example, operation 907 may be performed during operation 903,
etc. In operation 911 the client device selects an alternative media playlist from the
variant playlist based on the measured bit rate from operation 907; this alternative media
playlist may be at a second bit rate that is higher than the existing bit rate of the first
stream. This typically means that alternative stream will have a higher resolution than the
first stream. The alternative media playlist can be selected if it is a better match than the
current playlist for the first stream based on current conditions (e.g. the bit rate measured
in operation 907). In operation 913, the alternative media playlist for an alternate stream
is retrieved and processed. This typically means that the client device can be receiving
and processing both the first stream and the alternative stream so both are available for
presentation; one is presented while the other is ready to be presented. The client device
then selects a transition point to switch between the versions of the streams in operation
915 and stops presenting the first stream and begins presenting the alternative stream.
Examples of how this switch is accomplished are provided in conjunction with Figures
9B-9D. In some embodiments, the client device can stop receiving the first stream before
making the switch.

[00141] Figure 9B shows that the client device retrieves, stores and presents content
specified by the first media playlist (e.g. the first stream) in operations 921 and 923, and
while the content specified by the first playlist is being presented the client device in
operation 925 also retrieves and stores content specified by the second media playlist (e.g.
the second stream). The retrieval and storage (e.g. in a temporary buffer) of the content

specified by the second media playlist while presenting the content obtained from the first

-30-

WO 2012/166816 PCT/US2012/040031

media playlist creates an overlap 955 in time of the program’s content (shown in Figure
9D) that allows the client device to switch between the versions of the program without a
substantial interruption of the program. In this way, the switch between the versions of
the program can be achieved in many cases without the user noticing that a switch has
occurred (although the user may notice a higher resolution image after the switch in some
cases) or without a substantial interruption in the presentation of the program. In
operation 927, the client device determines a transition point at which to switch from
content specified by the first media playlist to content specified by the second media
playlist; an example of a transition point (transition point 959) is shown in Figure 9D.
The content specified by the second media playlist is then presented in operation 931 after
the switch.

[00142] The method shown in Figures 9C and 9D represents one embodiment for
determining the transition point; this embodiment relies upon a pattern matching on audio
samples from the two streams 951 and 953 to determine the transition point. It will be
appreciated that alternative embodiments can use pattern matching on video samples or
can use the timestamps in the two streams, etc. to determine the transition point. The
method can include, in operation 941, storing content (e.g. stream 951) specified by the
first media playlist in a buffer; the buffer can be used for the presentation of the content
and also for the pattern matching operation. The stream 951 includes both audio samples
951A and video samples 951B. The video samples can use a compression technique
which relies on i-frames or key frames which have all necessary content to display a
single video frame. The content in stream 951 can include timestamps specifying a time
(e.g. time elapsed since the beginning of the program), and these timestamps can mark the
beginning of each of the samples (e.g. the beginning of each of the audio samples 951A
and the beginning of each of the video samples 951B). In some cases, a comparison of
the timestamps between the two streams may not be useful in determining a transition
point because they may not be precise enough or because of the difference in the
boundaries of the samples in the two streams; however, a comparison of the timestamps
ranges can be used to verify there is an overlap 955 in time between the two streams. In
operation 943, the client device stores in a buffer content specified by the second media
playlist; this content is for the same program as the content obtained from the first media
playlist and it can include timestamps also. In one embodiment, timestamps, if not
present in a stream, can be added to a playlist for a stream; for example, in one

embodiment an ID3 tag which includes one or more timestamps can be added to an entry

31-

WO 2012/166816 PCT/US2012/040031

in a playlist, such as a variant playlist or a media playlist. The entry may, for example, be
in a URI for a first sample of an audio stream. Figure 9D shows an example of content
953 obtained from the second media playlist, and this includes audio samples 953A and
video samples 953B. In operation 945, the client device can perform a pattern matching
on the audio samples in the two streams 951 and 953 to select from the overlap 955 the
transition point 959 which can be, in one embodiment, the next self contained video
frame (e.g. i-frame 961) after the matched audio segments (e.g. segments 957).
Beginning with i-frame 961 (and its associated audio sample), presentation of the
program uses the second stream obtained from the second media playlist. The foregoing
method can be used in one embodiment for both a change from a slower to a faster bit
rate and for a change from a faster to a slower bit rate, but in another embodiment the
method can be used only for a change from a slower to a faster bit rate and another
method (e.g. do not attempt to locate a transition point but attempt to store and present
content from the slower bit rate stream as soon as possible) can be used for a change from
a faster to a slower bit.

[00143] An aspect of the invention relating to variant audio playlists and their use in
conjunction with an HTTP live streaming system will now be described in conjunction
with Figures 10 through 15. A variant playlist 1001 is shown in Figure 10, and it can
include a plurality of URLSs for a corresponding plurality of different audio content for the
same program, such as the same live sports event or video on demand or movie, etc.
Moreover, the variant playlist 1001 can also include a plurality of URLSs for the video
content, where each of these playlists is for the same program but for different bandwidth
or quality levels. The URLSs for the video content can also include audio content, and if a
client device selects an alternative audio content from the variant audio playlist, then that
selected alternative content will override the presentation of any audio retrieved or
retrievable from the video playlist. The use of a variant playlist or a variant audio playlist
allows the content provider to give options for a client device to choose from a variety of
different audio content which can override the main presentation. In one embodiment,
the client device can play only the audio from a selected audio playlist which was
selected from the variant audio playlist and will suppress any audio from other playlists,
such as a video playlist which could be used to retrieve audio from a file containing both
audio and video which has been multiplexed together in the file of the content. This
allows the presentation to offer multiple versions of audio without requiring that the

content provider store duplicate video which contains the alternative audio content or

-32-

WO 2012/166816 PCT/US2012/040031

requiring that the client download all audio variants when it only needs one. This also
allows additional audio to be offered subsequently without remastering the original
content.
[00144] It can be seen that the variant playlist 1001 in Figure 10 includes both URLs
for video playlists, such as the URLs 1003 and 1005 and also includes three URLSs for
three different audio versions (1007, 1009 and 1011) for the audio content of the program
provided by the video playlists 1003 and 1005. In the example shown in Figure 10, the
variant playlist 1001 includes URLSs for the video content as well as URLs for the
alternative audio content; it will also be appreciated that in other embodiments, two
separate variant playlists can be provided to a client device, one containing the URLSs for
the video content and another separate variant playlist containing variant audio playlist
URLSs rather than having a single variant playlist which includes both as shown in Figure
10. In one embodiment, each audio only playlist is a self contained playlist that meets all
of the constraints of section 6.2.4 of the specification in the attached appendix.
[00145] In another embodiment, a new tag is defined for a variant playlist that can
provide either alternative audio (such as different languages for the same program) or
alternative video (such as different camera angles or positions for the same program) or a
combination of both alternative audio and alternative video. In this embodiment, the new
tag can have the following syntax:

#EXT-X-MEDIA: TYPE=<type>, GROUP-ID=<group-id>, NAME=<name>[,

LANGUAGE=<language-tag>], [, AUTOSELECT=<yes or no>] [,

DEFAULT=<yes or no>], URI=<url>

where type is AUDIO or VIDEO, GROUP-ID is a string that defines the "group", and
where name is a descriptive string, language-tag is an rfc 4646 language tag,
AUTOSELECT indicates to the client if the stream is to be autoselected, DEFAULT is
used to choose the initial entry in a group (e.g., the initial entry in an alternative audio
group or the initial entry in an alternative video group), and URI is the URI of the
playlist, such as an alternative audio playlist or an alternative video playlist. An example
of a variant playlist using this type of new tag is:

#EXTM3U

-33-

WO 2012/166816 PCT/US2012/040031

#EXT-X-MEDIA: TYPE=AUDIO, GROUP-ID="aac", LANGUAGE="eng",
NAME="English", AUTOSELECT=YES, DEFAULT=YES,
URI="OCEANS11_20min_English_Stereo/prog_index.m3u8"
#EXT-X-MEDIA: TYPE=AUDIO, GROUP-ID="aac", LANGUAGE="eng",
NAME="Commentaryl", AUTOSELECT=NO, DEFAULT=NO,
URI="OCEANS11_20min_Commentaryl_Stereo/prog_index.m3u8"
#EXT-X-MEDIA: TYPE=AUDIO, GROUP-ID="aac", LANGUAGE="eng",
NAME="Commentary2", AUTOSELECT=NO, DEFAULT=NO,
URI="OCEANS11_20min_Commentary2_Stereo/prog_index.m3u8"
#EXT-X-MEDIA: TYPE=AUDIO, GROUP-ID="aac", LANGUAGE="fre",
NAME="French", = AUTOSELECT=YES, DEFAULT=NO,
URI="OCEANS11_20min_French_Stereo/prog_index.m3u8"

#EXT-X-STREAM-INF:PROGRAM-
ID=1,BANDWIDTH=1233110,CODECS="mp4a.40.2, avc1.4d401e",AUDIO="aac"
OCEANS11_20min_Audio_Video_500Kbs/prog_index.m3u8

#EXT-X-STREAM-INF:PROGRAM-
ID=1,BANDWIDTH=2027440,CODECS="mp4a.40.2, avc1.4d4014",AUDIO="aac"
OCEANS11_20min_Audio_Video_1Mbs/prog_index.m3u8

#EXT-X-STREAM-INF:PROGRAM-
ID=1,BANDWIDTH=5334235,CODECS="mp4a.40.2, avc1.4d401e",AUDIO="aac"
OCEANS11_20min_Audio_Video_3Mbs/prog_index.m3u8

#EXT-X-STREAM-INF:PROGRAM-
ID=1,BANDWIDTH=9451601,CODECS="mp4a.40.2, avc1.4d401e",AUDIO="aac"
OCEANS11_20min_Audio_Video_6Mbs/prog_index.m3u8

#EXT-X-STREAM-INF:PROGRAM-

ID=1,BANDWIDTH=16090967,CODECS="mp4a.40.2, avc1.64001e",AUDIO="aac"
OCEANS11_20min_Audio_Video_12Mbs/prog_index.m3u8

-34-

WO 2012/166816 PCT/US2012/040031

[00146] The new attributes of EXT-X-STREAMINF are the <type> values of either
AUDIO=<group-id> or VIDEO=<group-id>; it will be appreciated that other media types
could be specified (such as subtitles). In this embodiment, the type and name values form
a tuple. If desired, there could be multiple groups to allow changes in codecs or bit rates,
and in this embodiment, the group-id is changed to provide the multiple groups; an
example of a variant playlist with different group-IDs (to allow for multiple groups) is:
#EXT-X-MEDIA: TYPE=AUDIO, GROUP-ID="aac", LANGUAGE="eng",
NAME="English", AUTOSELECT=YES, DEFAULT=YES,
URI="OCEANS11_20min_English_Stereo/prog_index.m3u8"

#EXT-X-MEDIA: TYPE=AUDIO, GROUP-ID="aac", LANGUAGE="eng",
NAME="Commentaryl", AUTOSELECT=NO, DEFAULT=NO,
URI="OCEANS11_20min_Commentaryl_Stereo/prog_index.m3u8"

#EXT-X-MEDIA: TYPE=AUDIO, GROUP-ID="aac", LANGUAGE="eng",
NAME="Commentary2", AUTOSELECT=NO, DEFAULT=NO,
URI="OCEANS11_20min_Commentary2_Stereo/prog_index.m3u8"

#EXT-X-MEDIA: TYPE=AUDIO, GROUP-ID="aac", LANGUAGE="{re",
NAME="French", = AUTOSELECT=YES, DEFAULT=NO,
URI="OCEANS11_20min_French_Stereo/prog_index.m3u8"

#EXT-X-MEDIA: TYPE=AUDIO, GROUP-ID="AC3", LANGUAGE="eng",
NAME="English", AUTOSELECT=YES, DEFAULT=YES,
URI="OCEANS11_20min_English_ AC3/prog_index.m3u8"
#EXT-X-MEDIA: TYPE=AUDIO, GROUP-ID="AC3", LANGUAGE="eng",
NAME="Commentaryl", AUTOSELECT=NO, DEFAULT=NO,
URI="OCEANS11_20min_Commentaryl_AC3/prog_index.m3u8"
#EXT-X-MEDIA: TYPE=AUDIO, GROUP-ID="AC3", LANGUAGE="eng",
NAME="Commentary2", AUTOSELECT=NO, DEFAULT=NO,
URI="OCEANS11_20min_Commentary2_AC3/prog_index.m3u8"
#EXT-X-MEDIA: TYPE=AUDIO, GROUP-ID="AC3", LANGUAGE="{re",
NAME="French", = AUTOSELECT=YES, DEFAULT=NO,
URI="OCEANS11_20min_French_AC3/prog_index.m3u8"

[00147] Here is an example of a variant video playlist (with different camera angles for

the same program which is a Rolling Stones video):

-35-

WO 2012/166816 PCT/US2012/040031

#EXT-X-MEDIA: TYPE=VIDEO, GROUP-ID="4Mbs", NAME="Angle1-Mick",
AUTOSELECT=YES, DEFAULT=NO, URI="Mick-4Mbs/prog_index.m3ug"
#EXT-X-MEDIA: TYPE=VIDEO, GROUP-ID="4Mbs", NAME="Angle2-Keith",
AUTOSELECT=YES, DEFAULT=NO, URI="Keith-4Mbs/prog_index.m3ug"
#EXT-X-MEDIA: TYPE=VIDEO, GROUP-ID="4Mbs", NAME="Angle3-Ronnie",
AUTOSELECT=YES, DEFAULT=NO, URI="Ronnie-4Mbs/prog_index.m3u8"
#EXT-X-MEDIA: TYPE=VIDEO, GROUP-ID="4Mbs", NAME="Angle4-Charlie",
AUTOSELECT=YES, DEFAULT=NO, URI="Charlie-4Mbs/prog_index.m3u8"
#EXT-X-MEDIA: TYPE=VIDEO, GROUP-ID="4Mbs", NAME="Angle5-All",
AUTOSELECT=YES, DEFAULT=YES

#EXT-X-MEDIA: TYPE=AUDIO, GROUP-ID="aac", LANGUAGE="eng",
NAME="English AAC", AUTOSELECT=YES, DEFAULT=YES,
URI="Stones_Angie_Audio_ AAC_140kbs/prog_index.m3u8"
#EXT-X-MEDIA: TYPE=AUDIO, GROUP-ID="AC3", LANGUAGE="eng",
NAME="English AC3", AUTOSELECT=YES, DEFAULT=YES,
URI="Stones_Angie_Audio_AC3_640kbs/prog_index.m3u8"

#EXT-X-STREAM-INF:PROGRAM-
ID=1,BANDWIDTH=4742970,CODECS="mp4a.40.2,
avcl.4d401e",VIDEO="4Mbs",AUDIO="aac"
All-4Mbs/prog_index.m3u8

#EXT-X-STREAM-INF:PROGRAM-ID=1,BANDWIDTH=5215970,CODECS="ac-3,
avcl.4d401e",VIDEO="4Mbs",AUDIO="AC3"
All-4Mbs/prog_index.m3u8

[00148] While this variant video playlist has only one bit rate, more variants with more
bit rates could be added to this playlist.

[00149] Figure 11 shows an example of a method which can be performed by client
device which processes a variant audio playlist, such as the variant playlist 1001 in
Figure 10 or the variant playlists described above. In one embodiment, the client device
which performs the method of Figure 11 can be a hardware device such as that shown in

Figure 8 and can include a software architecture such as that shown in Figure 12. In

-36-

WO 2012/166816 PCT/US2012/040031

operation 1101, the client device can request a program, such as a video on demand
program or a live sports event, or a recorded sports event or a movie, or other content
having audio content. The request of a particular program can come through a user
application, such as user application 1203 which, in one embodiment, could be an app
from Netflix or an app from Major League Baseball or other apps designed to allow a
user to browse through a catalogue of content and select one of the programs from the
catalogue of content. In response to the request in operation 1101, the client device can
receive in operation 1103 a variant playlist which includes one or more URLs for variants
of audio content and optionally also includes one or more URLs for variants of video
content. A variant playlist received in operation 1103 can be the variant playlist 1205
(stored in memory in device 1201) which can be processed by the user application 1203
in order to present a user interface to the user to allow the user to select a particular audio
program from the variants of audio programs that are available. In another embodiment,
a user preference set by a user can set a default language, such as English as a default or
Chinese as a default or Spanish as a default, etc. and that selection can be used
automatically when the user application processes the variant playlist to select the
particular audio playlist. Then in operation 1105, the client system can select a particular
audio playlist from the variant audio playlist and optionally also select a particular video
playlist (from that same playlist or another variant playlist); these selections may occur
through user interaction with a user interface of the client device or through the operation
of the client device without user input through default settings or user preferences
previously set by the user, etc. Then in operation 1107, the client device can transmit the
selected audio playlist’s URL and the selected video playlist’s URL if one was selected in
operation 1105. In response to these transmitted URLS, the client device in operation
1109 receives and processes the selected audio playlist; the processing of the audio
playlist can be performed in a manner which is similar to processing of other audio
playlists under the existing HTTP live streaming protocol. If a selected video playlist’s
URL was also selected in operation 1107 then, the client device will, in operation 1111
receive and process the selected video playlist. In one embodiment, the processing of the
audio playlist is separate and distinct from the processing of the video playlist, but they
are performed concurrently. In one embodiment, a software download module for the
audio playlist can be separate from a video download module for the video playlist as
shown in the architecture of Figure 12. In one embodiment, the video playlist will refer

to amedia file which also includes audio, and that audio may be the default or main

-37-

WO 2012/166816 PCT/US2012/040031

presentation audio for the program, in which case the client device will suppress playback
of that default audio. The suppression of the playback of that default audio referred to by
the video playlist can be performed by not downloading the audio if it is a separate
portion of the file or by not processing the downloaded audio if the downloading of the
audio cannot be avoided in one embodiment.

[00150] Figure 12 shows an example of an architecture for a client device which can
implement the method shown in Figure 11 or other methods described in conjunction
with variant audio playlists. The components shown in client device 1201 can be
software components (running on a data processing system such as the system shown in
Figure 8) or hardware components or a combination of software and hardware
components. In one embodiment, the user application 1203 is a software application run
by the user to display a movie or a baseball game or to listen to a radio show, etc. For
example, in one embodiment, the user application can be an app provided by Netflix to
view movies or an app provided by major league baseball to view live baseball games or
recorded baseball games. The user application 1203 can process the variant playlist 1205
to present the user with a user interface to allow the user to select from the various
different audio content specified by the variant audio playlist; alternatively, the user
application 1203 can automatically without user interaction select a particular audio
content based upon a previously established user preference by searching through the
variant audio playlist, such as variant playlist 1205, to select and define the appropriate
audio content. User application 1203 can interact with audio player 1207 and video
player 1209 in order to receive and present the content from each of these players. Audio
player 1207 can process audio playlist 1211 independently from the processing of video
player 1209 which processes the video playlist 1213. Video playlist 1213 can be a
conventional video playlist as described herein while the audio playlist 1211 is a playlist
providing audio only content. If the video playlist 1213 includes URLs that contain audio
data, then the video player 1209 should suppress the audio from the video playlist by
either not downloading the audio data or by discarding the audio data which is
downloaded. Audio player 1207 and video player 1209 each have their own data buffers
in one embodiment and each have their own download modules in one embodiment. In
particular, audio player 1207 is coupled to audio data buffer 1215 which in turn is
coupled to audio download module 1219. The audio download module 1219 can be a
software module which, through an API, causes the downloading of audio data through

one or more network interfaces 1223 (e.g. a cellular telephone modem or a WiFi radio,

-38-

WO 2012/166816 PCT/US2012/040031

etc.) in the client device. The one or more network interfaces 1223 are in turn coupled to
one or more networks 1225, such as the Internet which is also coupled to one or more
servers 1227 which store and provide the playlists and content. The audio data
downloaded through the network 1225 is stored in the audio data buffer 1215 and then
provided as output through a speaker or other transducer to the user. Video download
module 1221 causes the download of video data from one or more servers 1227 through
the network or networks 1225 and through the network interface 1223. The downloaded
video data can be stored in the video data buffer 1217 where it can be decoded and
processed for display on a display device by the video player or other components of the
client device. The audio player 1207 and the video player 1209 can operate concurrently
and independently such that the audio content can be switched between different audio
content for the same program by switching between different URLs in the variant audio
playlist; this switching can be performed independently of playback of the video playlist
in one embodiment. Audio player 1207 and video player 1209 can process each of their
respective playlists and synchronize playback by the use of timestamps either in the
content itself or in the playlists. In one embodiment, the timestamps referred to in the
audio content or in the playlists for the audio content can occupy the same period of time
as timestamps in the video content or video playlists such the playback of audio and video
is synchronized. It will be appreciative that the audio player 1207 and the video player
1209 keep track of movie time or real time or both in one embodiment to allow for the
synchronization of audio and video during playback of both.

[00151] A method for operating a server according to one embodiment of the present
invention will now be described in conjunction with Figure 13. It will be appreciated
that one or more servers may perform each of the operations shown in Figure 13; for
example, one server can perform all the operations in Figure 13 or one server can
perform one operation while another server performs other operations. For example, one
server could provide the variant playlists while another server could provide and transmit
the audio or video playlists that are used during playback after a particular playlist was
selected from the variant playlist. In operation 1301, a server can transmit, in response to
a request for a program, a variant playlist which can contain URLs for different audio
playlists and optionally also contain URLSs for one or more video playlists. In operation
1303, the same server device or another server device receives a request for a selected

audio and video playlist and transmits, in operation 1305, the audio and/or video playlists.

-30-

WO 2012/166816 PCT/US2012/040031

Further, the same server or a different server(s) can respond to requests from those

playlists transmitted in operation 1305 to provide actual content.

[00152] Figure 8 is a block diagram of one embodiment of an electronic system. The
electronic system illustrated in Figure 8 is intended to represent a range of electronic
systems (either wired or wireless) including, for example, desktop computer systems,
laptop computer systems, cellular telephones, personal digital assistants (PDAs) including
cellular-enabled PDAs, set top boxes, entertainment systems or other consumer electronic
devices. Alternative electronic systems may include more, fewer and/or different
components. The electronic system of Figure 8§ may be used to provide the client device
and/or the server device.

[00153] Electronic system 800 includes bus 805 or other communication device to
communicate information, and processor 8§10 coupled to bus 805 that may process
information. While electronic system 800 is illustrated with a single processor, electronic
system 800 may include multiple processors and/or co-processors. Electronic system 800
further may include random access memory (RAM) or other dynamic storage device 820
(referred to as main memory), coupled to bus 805 and may store information and
instructions that may be executed by processor §10. Main memory 820 may also be used to
store temporary variables or other intermediate information during execution of instructions
by processor 810.

[00154] Electronic system 800 may also include read only memory (ROM) and/or other
static storage device 830 coupled to bus 805 that may store static information and
instructions for processor §10. Data storage device 840 may be coupled to bus 805 to store
information and instructions. Data storage device 840 such as flash memory or a magnetic
disk or optical disc and corresponding drive may be coupled to electronic system 800.
[00155] Electronic system 800 may also be coupled via bus 805 to display device 850,
such as a cathode ray tube (CRT) or liquid crystal display (LCD), to display information to
a user. Electronic system 800 can also include an alphanumeric input device 860, including
alphanumeric and other keys, which may be coupled to bus 805 to communicate
information and command selections to processor 810. Another type of user input device is
cursor control 870, such as a touchpad, a mouse, a trackball, or cursor direction keys to
communicate direction information and command selections to processor 8§10 and to
control cursor movement on display 850.

[00156] Electronic system 800 further may include one or more network interface(s) 880

to provide access to a network, such as a local area network. Network interface(s) 880 may

-40-

WO 2012/166816 PCT/US2012/040031

include, for example, a wireless network interface having antenna 885, which may
represent one or more antenna(e). Electronic system 800 can include multiple wireless
network interfaces such as a combination of WiFi, Bluetooth and cellular telephony
interfaces. Network interface(s) 880 may also include, for example, a wired network
interface to communicate with remote devices via network cable 887, which may be, for
example, an Ethernet cable, a coaxial cable, a fiber optic cable, a serial cable, or a parallel
cable.

[00157] In one embodiment, network interface(s) 880 may provide access to a local area
network, for example, by conforming to IEEE 802.11b and/or IEEE 802.11g¢ standards,
and/or the wireless network interface may provide access to a personal area network, for
example, by conforming to Bluetooth standards. Other wireless network interfaces and/or
protocols can also be supported.

[00158] In addition to, or instead of, communication via wireless LAN standards,
network interface(s) 880 may provide wireless communications using, for example, Time
Division, Multiple Access (TDMA) protocols, Global System for Mobile
Communications (GSM) protocols, Code Division, Multiple Access (CDMA) protocols,
and/or any other type of wireless communications protocol.

[00159] One or more Application Programming Interfaces (APIs) may be used in some
embodiments. An APl is an interface implemented by a program code component or
hardware component (hereinafter “API-implementing component”) that allows a different
program code component or hardware component (hereinafter “API-calling component”)
to access and use one or more functions, methods, procedures, data structures, classes,
and/or other services provided by the API-implementing component. An API can define
one or more parameters that are passed between the API-calling component and the API-
implementing component.

[00160] An API allows a developer of an API-calling component (which may be a
third party developer) to leverage specified features provided by an API-implementing
component. There may be one API-calling component or there may be more than one
such component. An API can be a source code interface that a computer system or
program library provides in order to support requests for services from an application. An
operating system (OS) can have multiple APIs to allow applications running on the OS to
call one or more of those APIs, and a service (such as a program library) can have

multiple APIs to allow an application that uses the service to call one or more of those

41-

WO 2012/166816 PCT/US2012/040031

APIs. An API can be specified in terms of a programming language that can be
interpreted or compiled when an application is built.

[00161] In some embodiments the API-implementing component may provide more
than one API, each providing a different view of or with different aspects that access
different aspects of the functionality implemented by the API-implementing component.
For example, one API of an API-implementing component can provide a first set of
functions and can be exposed to third party developers, and another API of the API-
implementing component can be hidden (not exposed) and provide a subset of the first set
of functions and also provide another set of functions, such as testing or debugging
functions which are not in the first set of functions. In other embodiments the API-
implementing component may itself call one or more other components via an underlying
API and thus be both an API-calling component and an API-implementing component.
[00162] An API defines the language and parameters that API-calling components use
when accessing and using specified features of the API-implementing component. For
example, an API-calling component accesses the specified features of the API-
implementing component through one or more API calls or invocations (embodied for
example by function or method calls) exposed by the API and passes data and control
information using parameters via the API calls or invocations. The API-implementing
component may return a value through the API in response to an API call from an API-
calling component. While the API defines the syntax and result of an API call (e.g., how
to invoke the API call and what the API call does), the API may not reveal how the API
call accomplishes the function specified by the API call. Various API calls are
transferred via the one or more application programming interfaces between the calling
(API-calling component) and an API-implementing component. Transferring the API
calls may include issuing, initiating, invoking, calling, receiving, returning, or responding
to the function calls or messages; in other words, transferring can describe actions by
either of the API-calling component or the API-implementing component. The function
calls or other invocations of the API may send or receive one or more parameters through
a parameter list or other structure. A parameter can be a constant, key, data structure,
object, object class, variable, data type, pointer, array, list or a pointer to a function or
method or another way to reference a data or other item to be passed via the APIL

[00163] Furthermore, data types or classes may be provided by the API and

implemented by the API-implementing component. Thus, the API-calling component

42-

WO 2012/166816 PCT/US2012/040031

may declare variables, use pointers to, use or instantiate constant values of such types or
classes by using definitions provided in the APIL.

[00164] Generally, an API can be used to access a service or data provided by the API-
implementing component or to initiate performance of an operation or computation
provided by the API-implementing component. By way of example, the API-
implementing component and the API-calling component may each be any one of an
operating system, a library, a device driver, an AP, an application program, or other
module (it should be understood that the API-implementing component and the API-
calling component may be the same or different type of module from each other). API-
implementing components may in some cases be embodied at least in part in firmware,
microcode, or other hardware logic. In some embodiments, an API may allow a client
program to use the services provided by a Software Development Kit (SDK) library. In
other embodiments an application or other client program may use an API provided by an
Application Framework. In these embodiments the application or client program may
incorporate calls to functions or methods provided by the SDK and provided by the API
or use data types or objects defined in the SDK and provided by the API. An Application
Framework may in these embodiments provide a main event loop for a program that
responds to various events defined by the Framework. The API allows the application to
specify the events and the responses to the events using the Application Framework. In
some implementations, an API call can report to an application the capabilities or state of
a hardware device, including those related to aspects such as input capabilities and state,
output capabilities and state, processing capability, power state, storage capacity and
state, communications capability, etc., and the API may be implemented in part by
firmware, microcode, or other low level logic that executes in part on the hardware
component.

[00165] The API-calling component may be a local component (i.e., on the same data
processing system as the API-implementing component) or a remote component (i.€., on
a different data processing system from the API-implementing component) that
communicates with the API-implementing component through the API over a network. It
should be understood that an API-implementing component may also act as an API-
calling component (i.e., it may make API calls to an API exposed by a different API-
implementing component) and an API-calling component may also act as an API-
implementing component by implementing an API that is exposed to a different API-

calling component.

43-

WO 2012/166816 PCT/US2012/040031

[00166] The API may allow multiple API-calling components written in different
programming languages to communicate with the API-implementing component (thus the
API may include features for translating calls and returns between the API-implementing
component and the API-calling component); however the API may be implemented in
terms of a specific programming language. An API-calling component can, in one
embedment, call APIs from different providers such as a set of APIs from an OS provider
and another set of APIs from a plug-in provider and another set of APIs from another
provider (e.g. the provider of a software library) or creator of the another set of APIs.
[00167] Figure 14 is a block diagram illustrating an exemplary API architecture,
which may be used in some embodiments of the invention. As shown in Figure 14, the
API architecture 1800 includes the API-implementing component 1810 (e.g., an operating
system, a library, a device driver, an API, an application program, software or other
module) that implements the API 1820. The API 1820 specifies one or more functions,
methods, classes, objects, protocols, data structures, formats and/or other features of the
API-implementing component that may be used by the API-calling component 1830. The
API 1820 can specify at least one calling convention that specifies how a function in the
API-implementing component receives parameters from the API-calling component and
how the function returns a result to the API-calling component. The API-calling
component 1830 (e.g., an operating system, a library, a device driver, an API, an
application program, software or other module), makes API calls through the API 1820 to
access and use the features of the API-implementing component 1810 that are specified
by the API 1820. The API-implementing component 1810 may return a value through
the API 1820 to the API-calling component 1830 in response to an API call.

[00168] It will be appreciated that the API-implementing component 1810 may include
additional functions, methods, classes, data structures, and/or other features that are not
specified through the API 1820 and are not available to the API-calling component 1830.
It should be understood that the API-calling component 1830 may be on the same system
as the API-implementing component 1810 or may be located remotely and accesses the
APIL-implementing component 1810 using the API 1820 over a network. While Figure
14 illustrates a single API-calling component 1830 interacting with the API 1820, it
should be understood that other API-calling components, which may be written in
different languages (or the same language) than the API-calling component 1830, may

use the API 1820.

-44-

WO 2012/166816 PCT/US2012/040031

[00169] The API-implementing component 1810, the API 1820, and the API-calling
component 1830 may be stored in a machine-readable non-transitory storage medium,
which includes any mechanism for storing information in a form readable by a machine
(e.g., a computer or other data processing system). For example, a machine-readable
medium includes magnetic disks, optical disks, random access memory; read only
memory, flash memory devices, etc.

[00170] In Figure 15 (“Software Stack™), an exemplary embodiment, applications can
make calls to Services 1 or 2 using several Service APIs and to Operating System (OS)
using several OS APIs. Services 1 and 2 can make calls to OS using several OS APIs.
[00171] Note that the Service 2 has two APIs, one of which (Service 2 API 1) receives
calls from and returns values to Application 1 and the other (Service 2 API 2) receives
calls from and returns values to Application 2. Service 1 (which can be, for example, a
software library) makes calls to and receives returned values from OS API 1, and Service
2 (which can be, for example, a software library) makes calls to and receives returned
values from both OS API 1 and OS API 2. Application 2 makes calls to and receives
returned values from OS API 2.

[00172] Reference in the specification to “one embodiment” or “an embodiment”
means that a particular feature, structure, or characteristic described in connection with
the embodiment is included in at least one embodiment of the invention. The
appearances of the phrase “in one embodiment” in various places in the specification are
not necessarily all referring to the same embodiment.

[00173] In the foregoing specification, the invention has been described with reference
to specific embodiments thereof. It will, however, be evident that various modifications
and changes can be made thereto without departing from the broader spirit and scope of
the invention. The specification and drawings are, accordingly, to be regarded in an

illustrative rather than a restrictive sense.

-45-

WO 2012/166816 PCT/US2012/040031

APPENDIX

The following Appendix is a draft specification of a protocol according to a particular
embodiment of the invention. It will be understood that the use of certain key words (e.g.
MUST, MUST NOT, SHALL, SHALL NOT, etc.) in this Appendix apply to this
particular embodiment and do not apply to other embodiments described in this

disclosure.

HTTP Live Streaming

draft-pantos-http-live-streaming-06

Abstract

This document describes a protocol for transferring unbounded streams of multimedia

data. It specifies the data format of the files and the actions to be taken by the server

(sender) and the clients (receivers) of the streams. It describes version 3 of this protocol.

-46-

WO 2012/166816

PCT/US2012/040031

Table of Contents

1.
2.
3.

9.

10.

Introduction
Summary
The Playlist file
3.1. Introduction
3.2. Attribute Lists
3.3. New Tags
3.3.1. EXT-X-TARGETDURATION
3.3.2. EXT-X-MEDIA-SEQUENCE
3.3.3. EXT-X-KEY
3.3.4. EXT-X-PROGRAM-DATE-TIME
3.3.5. EXT-X-ALLOW-CACHE
3.3.6. EXT-X-PLAYLIST-TYPE
3.3.7. EXT-X-ENDLIST
3.3.8. EXT-X-STREAM-INF
3.3.9. EXT-X-DISCONTINUITY
3.3.10. EXT-X-VERSION
Media files
Key files
5.1. Introduction
5.2. IV for AES-128
Client/Server Actions
6.1. Introduction
6.2. Server Process
6.2.1. Introduction
6.2.2. Sliding Window Playlists
6.2.3. Encrypting media files
6.2.4. Providing variant streams
6.3. Client Process
6.3.1. Introduction
6.3.2. Loading the Playlist file
6.3.3. Playing the Playlist file
6.3.4. Reloading the Playlist file
6.3.5. Determining the next file to load
6.3.6. Decrypting encrypted media files
Protocol version compatibility
Examples
8.1 Introduction
8.2 Simple Playlist file
8.3 Sliding Window Playlist, using HTTPS
8.4. Playlist file with encrypted media files
8.5. Variant Playlist file
Security Considerations
References
10.1. Normative References
10.2. Informative References

47-

1.

3.

WO 2012/166816 PCT/US2012/040031

Introduction

This document describes a protocol for transferring unbounded streams
of multimedia data. The protocol supports the encryption of media
data and the provision of alternate versions (e.g. bitrates) of a
stream. Media data can be transferred soon after it is created,
allowing it to be played in near real-time. Data is usually carried
over HTTP [RFC2616].

External references that describe related standards such as HTITP are

listed in Section 11.

sSummary

A multimedia presentation is specified by a URI [RFC3986] to a
Playlist file, which is an ordered list of media URIs and
informational tags. Each media URI refers to a media file which is a

segment of a single contiguous stream.

To play the stream, the client first obtains the Playlist file and
then obtains and plays each media file in the Playlist. It reloads
the Playlist file as described in this document to discover

additional segments.
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119 [RFC2119].

The Playlist file

1. Introduction

Playlists MUST be Extended M3U Playlist files [M3U]. This document
extends the M3U file format by defining additional tags.

An M3U Playlist is a text file that consists of individual lines.
Lines are terminated by either a single LF character or a CR
character followed by an LF character. Each line is a URI, a blank,
or starts with the comment character '#'. BRlank lines are ignored.
White space MUST NOT be present, except for elements in which it is

explicitly specified.

A URI line identifies a media file or a variant Playlist file (see

48-

WO 2012/166816 PCT/US2012/040031

Section 3.3.8).

URIs MAY be relative. A relative URI MUST be resolved against the
URI of the Playlist file that contains it.

Lines that start with the comment character '#' are either comments
or tags. Tags begin with #EXT. All other lines that begin with '#'

are comments and SHOULD be ignored.

The duration of a Playlist file is the sum of the durations of the

media files within it.

M3U Playlist files whose names end in .m3u8 and/or have the HTTP
Content-Type "application/vnd.apple.mpegurl" are encoded in UTF-8
[REFC3629]. Files whose names end with .m3u and/or have the HTTP
Content-Type [RFC2616] "audio/mpegurl" are encoded in US-ASCII
[US_ASCITI].

Playlist files MUST have names that end in .m3u8 and/or have the
Content-Type "application/vnd.apple.mpegurl" (if transferred over
HTTP), or have names that end in .m3u and/or have the HTTP Content-
Type type "audio/mpegurl" (for compatibility).

The Extended M3U file format defines two tags: EXTM3U and EXTINF. An
Extended M3U file is distinguished from a basic M3U file by its first
line, which MUST be #EXTM3U.

EXTINF is a record marker that describes the media file identified by
the URI that follows it. Each media file URI MUST be preceded by an
EXTINF tag. Its format is:

#EXTINF :<duration>, <title>

"duration” is an integer or floating-point number that specifies the
duration of the media file in seconds. Integer durations SHOULD be
rounded to the nearest integer. Durations MUST be integers if the
protocol version of the Playlist file is less than 3. The remainder
of the line following the comma is the title of the media file, which

is an optional human-readable informative title of the media segment.
This document defines the following new tags: EXT-X-TARGETDURATION,
EXT-X-MEDIA-SEQUENCE, EXT-X-KEY, EXT-X-PROGRAM-DATE-TIME, EXT-X-
ALLOW-CACHE, EXT-X-PLAYLIST-TYPE, EXT-X-STREAM-INF, EXT-X-ENDLIST,

EXT-X-DISCONTINUITY, and EXT-X-VERSION.

3.2. Attribute Lists

-49-

WO 2012/166816 PCT/US2012/040031

Certain extended M3U tags have values which are Attribute Lists. An
Attribute List is a comma-separated list of attribute/value pairs

with no whitespace.

An attribute/value pair has the following syntax:
AttributeName=AttributeValue

An AttributeName is an unquoted string containing characters from the
set [A-Z].

An AttributeValue is one of the following:

o decimal-integer: an unquoted string of characters from the set
[0-9] expressing an integer in base-10 arithmetic.

o0 hexadecimal-integer: an unquoted string of characters from the set
[0-9] and [A-F] that is prefixed with 0x or 0X and which expresses
an integer in base-16 arithmetic.

o decimal-floating-point: an unquoted string of characters from the
set [0-9] and '.' which expresses a floating-point number in
base-10 arithmetic.

o quoted-string: a string of characters within a pair of double-
quotes ("). The set of characters allowed in the string and any
rules for escaping special characters are specified by the
Attribute definition, but any double-quote (") character and any
carriage-return or linefeed will always be replaced by an escape
sequence.

o enumerated-string: an unquoted character string from a set which
is explicitly defined by the Attribute. An enumerated-string will

never contain double-quotes ("), commas (,), or whitespace.

o decimal-resolution: two decimal-integers separated by the "x"
character, indicating horizontal and vertical pixel dimensions.

The type of the AttributevValue for a given AttributeName is specified
by the Attribute definition.

A given AttributeName MUST NOT appear more than once in a given
Attribute List.

An Attribute/value pair with an unrecognized AttributeName MUST be
ignored by the client.

Attribute/value pairs of type enumerated-string that contain
unrecognized values SHOULD be ignored by the client.

.3. New Tags

.3.1. EXT-X-TARGETDURATION
The EXT-X-TARGETDURATION tag specifies the maximum media file
duration. The EXTINF duration of each media file in the Playlist

file MUST be less than or equal to the target duration. This tag
MUST appear once in the Playlist file. Its format is:

-50-

WO 2012/166816 PCT/US2012/040031

#EXT-X-TARGETDURATION:<s>
where s is an integer indicating the target duration in seconds.
.3.2. EXT-X-MEDIA-SEQUENCE

Each media file URI in a Playlist has a unique integer sequence
number. The sequence number of a URI is equal to the sequence number
of the URI that preceded it plus one. The EXT-X-MEDIA-SEQUENCE tag
indicates the sequence number of the first URI that appears in a
Playlist file. Its format is:

#EXT-X-MEDIA-SEQUENCE: <number>

A Playlist file MUST NOT contain more than one EXT-X-MEDIA-SEQUENCE
tag. If the Playlist file does not contain an EXT-X-MEDIA-SEQUENCE
tag then the sequence number of the first URI in the playlist SHALL
be considered to be 0.

A media file's sequence number is not required to appear in its URI.

See Section 6.3.2 and Section 6.3.5 for information on handling the
EXT-X-MEDIA-SEQUENCE tag.

.3.3. EXT-X-KEY

Media files MAY be encrypted. The EXT-X-KEY tag provides information
necessary to decrypt media files that follow it. Its format is:

#EXT-X-KEY:<attribute-list>
The following attributes are defined:

The METHOD attribute specifies the encryption method. It is of type
enumerated-string. Two methods are defined: NONE and AES-128.

An encryption method of NONE means that media files are not
encrypted. If the encryption method is NONE, the URI and the IV
attributes MUST NOT be present.

An encryption method of AES-128 means that media files are encrypted
using the Advanced Encryption Standard [AES_128] with a 128-bit key
and PKCS7 padding [RFC5652]. TIf the encryption method is AES-128,
the URI attribute MUST be present. The IV attribute MAY be present;
see Section 5.2.

The URI attribute specifies how to obtain the key. Its value is a
quoted-string that contains a URI [RFC3986] for the key.

The IV attribute, if present, specifies the Initialization Vector to
be used with the key. Its value is a hexadecimal-integer. The IV
attribute appeared in protocol version 2.

A new EXT-X-KEY supersedes any prior EXT-X-KEY.

If the Playlist file does not contain an EXT-X-KEY tag then media
files are not encrypted.

See Section 5 for the format of the key file, and Section 5.2,

-51-

WO 2012/166816 PCT/US2012/040031

Section 6.2.3 and Section 6.3.6 for additional information on media
file encryption.

3.3.4. EXT-X-PROGRAM-DATE-TIME

The EXT-X-PROGRAM-DATE-TIME tag associates the beginning of the next

media file with an absolute date and/or time. The date/time
representation is ISO/IEC 8601:2004 [ISO_8601] and SHOULD indicate a
time zone. For example:

#EXT-X-PROGRAM-DATE-TIME:<YYYY-MM-DDThh:mm: ssZ>

See Section 6.2.1 and Section 6.3.3 for more information on the EXT-
X-PROGRAM-DATE-TIME tag.

3.3.5. EXT-X-ALLOW-CACHE
The EXT-X-ALLOW-CACHE tag indicates whether the client MAY or MUST
NOT cache downloaded media files for later replay. It MAY occur
anywhere in the Playlist file; it MUST NOT occur more than once. The
EXT-X-ALLOW-CACHE tag applies to all segments in the playlist. Its
format is:

#EXT-X-ALLOW-CACHE : <YES | NO>

See Section 6.3.3 for more information on the EXT-X-ALLOW-CACHE tag.

3.3.6. EXT-X-PLAYLIST-TYPE

The EXT-X-PLAYLIST-TYPE tag provides mutability information about the
Playlist file. It is optional. TIts format is:

#EXT-X-PLAYLIST-TYPE:<EVENT | VOD>

Section 6.2.1 defines the implications of the EXT-X-PLAYLIST-TYPE
tag.

3.3.7. EXT-X-ENDLIST
The EXT-X-ENDLIST tag indicates that no more media files will be
added to the Playlist file. It MAY occur anywhere in the Playlist
file; it MUST NOT occur more than once. Its format is:
#EXT-X-ENDLIST

3.3.8. EXT-X-STREAM-INF

The EXT-X-STREAM-INF tag indicates that the next URI in the Playlist
file identifies another Playlist file. Its format is:

#EXT-X-STREAM-INF:<attribute-list>
<URI>

The following attributes are defined:
BANDWIDTH

The value is a decimal-integer of bits per second. It MUST be an
upper bound of the overall bitrate of each media file, calculated to

-32-

WO 2012/166816 PCT/US2012/040031

include container overhead, that appears or will appear in the
Playlist.

Every EXT-X-STREAM-INF tag MUST include the BANDWIDTH attribute.
PROGRAM-ID

The value is a decimal-integer that uniquely identifies a particular
presentation within the scope of the Playlist file.

A Playlist file MAY contain multiple EXT-X-STREAM-INF tags with the
same PROGRAM-ID to identify different encodings of the same
presentation. These variant playlists MAY contain additional EXT-X-
STREAM-INF tags.
CODECS
The value is a quoted-string containing a comma-separated list of
formats, where each format specifies a media sample type that is
present in a media file in the Playlist file. Valid format
identifiers are those in the ISO File Format Name Space defined by
REC 4281 [RFC4281].
Every EXT-X-STREAM-INF tag SHOULD include a CODECS attribute.
RESOLUTION

The value is a decimal-resolution describing the approximate encoded
horizontal and vertical resolution of video within the stream.

3.3.9. EXT-X-DISCONTINUITY
The EXT-X-DISCONTINUITY tag indicates an encoding discontinuity
between the media file that follows it and the one that preceded it.
The set of characteristics that MAY change is:
o file format
o number and type of tracks
o encoding parameters
o encoding sequence
o0 timestamp sequence
Its format is:

#EXT-X-DISCONTINUITY

See Section 4, Section 6.2.1, and Section 6.3.3 for more information
about the EXT-X-DISCONTINUITY tag.

3.3.10. EXT-X-VERSION

The EXT-X-VERSION tag indicates the compatibility wversion of the
Playlist file. The Playlist file, its associated media, and its
server MUST comply with all provisions of the most-recent version of
this document describing the protocol version indicated by the tag
value.

-53-

WO 2012/166816 PCT/US2012/040031

Its format is:
#EXT-X-VERSION:<n>
where n is an integer indicating the protocol version.

A Playlist file MUST NOT contain more than one EXT-X-VERSION tag. A
Playlist file that does not contain an EXT-X-VERSION tag MUST comply
with version 1 of this protocol.

4., Media files

Each media file URI in a Playlist file MUST identify a media file
which is a segment of the overall presentation. Each media file MUST
be formatted as an MPEG-2 Transport Stream or an MPEG-2 audio
elementary stream [IS0O_13818].

Transport Stream files MUST contain a single MPEG-2 Program. There
SHOULD be a Program Association Table and a Program Map Table at the
start of each file. A file that contains video SHOULD have at least
one key frame and enough information to completely initialize a video
decoder.

A media file in a Playlist MUST be the continuation of the encoded
stream at the end of the media file with the previous sequence number
unless it was the first media file ever to appear in the Playlist
file or it is prefixed by an EXT-X-DISCONTINUITY tag.

Clients SHOULD be prepared to handle multiple tracks of a particular
type (e.g. audio or video). A client with no other preference SHOULD
choose the one with the lowest numerical PID that it can play.

Clients MUST ignore private streams inside Transport Streams that
they do not recognize.

The encoding parameters for samples within a stream inside a media
file and between corresponding streams across multiple media files
SHOULD remain consistent. However clients SHOULD deal with encoding
changes as they are encountered, for example by scaling video content
to accommodate a resolution change.

5. Key files

5.1. Introduction
An EXT-X-KEY tag with the URI attribute identifies a Key file. A Key
file contains the cipher key that MUST be used to decrypt subsequent
media files in the Playlist.
The AES-128 encryption method uses l6-octet keys. The format of the
Key file is simply a packed array of these 16 octets in binary
format.

5.2. IV for AES-128

128-bit AES requires the same l6-octet Initialization Vector (IV) to
be supplied when encrypting and decrypting. Varying this IV

-534-

WO 2012/166816 PCT/US2012/040031

increases the strength of the cipher.

If the EXT-X-KEY tag has the IV attribute, implementations MUST use
the attribute value as the IV when encrypting or decrypting with that
key. The value MUST be interpreted as a 128-bit hexadecimal number
and MUST be prefixed with 0x or 0X.

If the EXT-X-KEY tag does not have the IV attribute, implementations
MUST use the sequence number of the media file as the IV when
encrypting or decrypting that media file. The big-endian binary
representation of the sequence number SHALL be placed in a l6-octet
buffer and padded (on the left) with zeros.

Client/Server Actions
1. Introduction

This section describes how the server generates the Playlist and
media files and how the client should download and play them.

.2. Server Process
2.1, Introduction

The production of the MPEG-2 stream is outside the scope of this
document, which simply presumes a source of a continuous stream
containing the presentation.

The server MUST divide the stream into individual media files whose
duration is less than or equal to a constant target duration. The
server SHOULD attempt to divide the stream at points that support
effective decode of individual media files, e.g. on packet and key
frame boundaries.

The server MUST create a URI for each media file that will allow its
clients to obtain the file.

The server MUST create a Playlist file. The Playlist file MUST
conform to the format described in Section 3. A URI for each media
file that the server wishes to make available MUST appear in the
Playlist in the order in which it is to be played. The entire media
file MUST be available to clients if its URI is in the Playlist file.

The Playlist file MUST contain an EXT-X-TARGETDURATION tag. Its
value MUST be equal to or greater than the EXTINF value of any media
file that appears or will appear in the Playlist file. Its value
MUST NOT change. A typical target duration is 10 seconds.

The Playlist file SHOULD contain one EXT-X-VERSION tag which
indicates the compatibility version of the stream. Its wvalue MUST be
the lowest protocol version with which the server, Playlist file, and
associated media files all comply.

The server MUST create a URI for the Playlist file that will allow
its clients to obtain the file.

If the Playlist file is distributed by HTTP, the server SHOULD
support client requests to use the "gzip" Content-Encoding.

-55-

WO 2012/166816 PCT/US2012/040031

Changes to the Playlist file MUST be made atomically from the point
of view of the clients.

The server MUST NOT change the Playlist file, except to:
Append lines to it (Section 6.2.1).

Remove media file URIs from the Playlist in the order that they
appear, along with any tags that apply only to those media files
(Section 6.2.2).

Change the value of the EXT-X-MEDIA-SEQUENCE tag (Section 6.2.2).

Add or remove EXT-X-STREAM-INF tags (Section 6.2.4). Note that
clients are not required to reload variant Playlist files, so
changing them may not have immediate effect.

Add an EXT-X-ENDLIST tag to the Playlist (Section 6.2.1).

Furthermore, the Playlist file MAY contain an EXT-X-PLAYLIST-TYPE tag
with a value of either EVENT or VOD. If the tag is present and has a
value of EVENT, the server MUST NOT change or delete any part of the
Playlist file (although it MAY append lines to it). If the tag is
present and has a value of VOD, the Playlist file MUST NOT change.

Every media file URI in a Playlist MUST be prefixed with an EXTINF
tag indicating the duration of the media file.

The server MAY associate an absolute date and time with a media file
by prefixing its URI with an EXT-X-PROGRAM-DATE-TIME tag. The value
of the date and time provides an informative mapping of the timeline
of the media to an appropriate wall-clock time, which may be used as
a basis for seeking, for display, or for other purposes. If a server
provides this mapping, it SHOULD place an EXT-X-PROGRAM-DATE-TIME tag
after every EXT-X-DISCONTINUITY tag in the Playlist file.

If the Playlist contains the final media file of the presentation
then the Playlist file MUST contain the EXT-X-ENDLIST tag.

If the Playlist does not contain the EXT-X-ENDLIST tag, the server
MUST make a new version of the Playlist file available that contains
at least one new media file URI. It MUST be made available relative
to the time that the previous version of the Playlist file was made
available: no earlier than one-half the target duration after that
time, and no later than 1.5 times the target duration after that
time.

If the server wishes to remove an entire presentation, it MUST make
the Playlist file unavailable to clients. It SHOULD ensure that all
media files in the Playlist file remain available to clients for at
least the duration of the Playlist file at the time of removal.

.2.2. Sliding Window Playlists

The server MAY limit the availability of media files to those which
have been most recently added to the Playlist. To do so the Playlist
file MUST ALWAYS contain exactly one EXT-X-MEDIA-SEQUENCE tag. Its
value MUST be incremented by 1 for every media file URI that is
removed from the Playlist file.

-36-

WO 2012/166816 PCT/US2012/040031

Media file URIs MUST be removed from the Playlist file in the order
in which they were added.

The server MUST NOT remove a media file URI from the Playlist file if
the duration of the Playlist file minus the duration of the media
file is less than three times the target duration.

When the server removes a media file URI from the Playlist, the media
file SHOULD remain available to clients for a period of time equal to
the duration of the media file plus the duration of the longest
Playlist file in which the media file has appeared.

If a server plans to remove a media file after it is delivered to
clients over HTTP, it SHOULD ensure that the HTTP response contains
an Expires header that reflects the planned time-to-live.

6.2.3. Encrypting media files

If media files are to be encrypted the server MUST define a URI which
will allow authorized clients to obtain a Key file containing a
decryption key. The Key file MUST conform to the format described in
Section 5.

The server MAY set the HTTP Expires header in the key response to
indicate that the key may be cached.

If the encryption METHOD is AES-128, AES-128 CBC encryption SHALL be
applied to individual media files. The entire file MUST be
encrypted. Cipher Block Chaining MUST NOT be applied across media
files. The IV used for encryption MUST be either the sequence number
of the media file or the wvalue of the IV attribute of the EXT-X-KEY
tag, as described in Section 5.2.

The server MUST encrypt every media file in a Playlist using the
method and other attributes specified by the EXT-X-KEY tag that most
immediately precedes its URI in the Playlist file. Media files
preceded by an EXT-X-KEY tag whose METHOD is NONE, or not preceded by
any EXT-X-KEY tag, MUST NOT be encrypted.

The server MUST NOT remove an EXT-X-KEY tag from the Playlist file if
the Playlist file contains a URI to a media file encrypted with that
key.

6.2.4. Providing variant streams

A server MAY offer multiple Playlist files to provide different
encodings of the same presentation. If it does so it SHOULD provide
a variant Playlist file that lists each variant stream to allow
clients to switch between encodings dynamically.

Variant Playlists MUST contain an EXT-X-STREAM-INF tag for each
variant stream. Each EXT-X-STREAM-INF tag for the same presentation
MUST have the same PROGRAM-ID attribute value. The PROGRAM-ID value
for each presentation MUST be unique within the variant Playlist.

If an EXT-X-STREAM-INF tag contains the CODECS attribute, the
attribute value MUST include every format defined by [RFC4281] that
is present in any media file that appears or will appear in the
Playlist file.

-37-

WO 2012/166816 PCT/US2012/040031

The server MUST meet the following constraints when producing variant
Streams:

Each variant stream MUST present the same content, including
stream discontinuities.

Each variant Playlist file MUST have the same target duration.

Content that appears in one variant Playlist file but not in
another MUST appear either at the beginning or at the end of the
Playlist file and MUST NOT be longer than the target duration.

Matching content in variant streams MUST have matching timestamps.
This allows clients to synchronize the streams.

Elementary Audio Stream files MUST signal the timestamp of the
first sample in the file by prepending an ID3 PRIV tag [ID3] with
an owner identifier of
"com.apple.streaming.transportStreamTimestamp". The binary data
MUST be a 33-bit MPEG-2 Program Elementary Stream timestamp
expressed as a big-endian eight-octet number, with the upper 31
bits set to zero.

In addition, all variant streams SHOULD contain the same encoded
audio bitstream. This allows clients to switch between streams
without audible glitching.

6.3. Client Process
6.3.1. Introduction

How the client obtains the URI to the Playlist file is outside the
scope of this document; it is presumed to have done so.

The client MUST obtain the Playlist file from the URI. If the
Playlist file so obtained is a variant Playlist, the client MUST
obtain the Playlist file from the wvariant Playlist.

This document does not specify the treatment of variant streams by
clients.

6.3.2. Loading the Playlist file

Every time a Playlist file is loaded or reloaded from the Playlist
URI:

The client MUST ensure that the Playlist file begins with the
EXTM3U tag and that the EXT-X-VERSION tag, 1f present, specifies a
protocol version supported by the client; if not, the client MUST
NOT attempt to use the Playlist.

The client SHOULD ignore any tags and attributes it does not
recognize.

The client MUST determine the next media file to load as described
in Section 6.3.5.

If the Playlist contains the EXT-X-MEDIA-SEQUENCE tag, the client

SHOULD assume that each media file in it will become unavailable at
the time that the Playlist file was loaded plus the duration of the

-38-

WO 2012/166816 PCT/US2012/040031

Playlist file. The duration of a Playlist file is the sum of the
durations of the media files within it.

.3.3. Playing the Playlist file

The client SHALL choose which media file to play first from the
Playlist when playback starts. If the EXT-X-ENDLIST tag is not
present and the client intends to play the media regularly (i.e. in
playlist order at the nominal playback rate), the client SHOULD NOT
choose a file which starts less than three target durations from the
end of the Playlist file. Doing so can trigger playback stalls.

To achieve regular playback, media files MUST be played in the order
that they appear in the Playlist file. The client MAY present the
available media in any way it wishes, including regular playback,
random access, and trick modes.

The client MUST be prepared to reset its parser(s) and decoder(s)
before playing a media file that is preceded by an EXT-X-
DISCONTINUITY tag.

The client SHOULD attempt to load media files in advance of when they
will be required for uninterrupted playback to compensate for
temporary variations in latency and throughput.

If the Playlist file contains the EXT-X-ALLOW-CACHE tag and its value
is NO, the client MUST NOT cache downloaded media files after they
have been played. Otherwise the client MAY cache downloaded media
files indefinitely for later replay.

The client MAY use the value of the EXT-X-PROGRAM-DATE-TIME tag to
display the program origination time to the user. If the wvalue
includes time zone information the client SHALL take it into account,
but if it does not the client MUST NOT infer an originating time
zone.

The client MUST NOT depend upon the correctness or the consistency of
the value of the EXT-X-PROGRAM-DATE-TIME tag.

.3.4. Reloading the Playlist file

The client MUST periodically reload the Playlist file unless it
contains the EXT-X-ENDLIST tag.

However the client MUST NOT attempt to reload the Playlist file more
frequently than specified by this section.

When a client loads a Playlist file for the first time or reloads a
Playlist file and finds that it has changed since the last time it
was loaded, the client MUST wait for a period of time before
attempting to reload the Playlist file again. This period is called
the initial minimum reload delay. It is measured from the time that
the client began loading the Playlist file.

The initial minimum reload delay is the duration of the last media
file in the Playlist. Media file duration is specified by the EXTINF
tag.

If the client reloads a Playlist file and finds that it has not
changed then it MUST wait for a period of time before retrying. The

-50-

WO 2012/166816 PCT/US2012/040031

minimum delay is a multiple of the target duration. This multiple is
0.5 for the first attempt, 1.5 for the second, and 3.0 thereafter.

In order to reduce server load, the client SHOULD NOT reload the
Playlist files of variant streams that are not currently being played.
If it decides to switch playback to a different wvariant, it SHOULD
stop reloading the Playlist of the old variant and begin loading the
Playlist of the new variant. It can use the EXTINF durations and the
constraints in Section 6.2.4 to determine the approximate location of
corresponding media. Once media from the new variant has been

loaded, the timestamps in the media files can be used to sychronize
the old and new timelines precisely.

6.3.5. Determining the next file to load

The client MUST examine the Playlist file every time it is loaded or
reloaded to determine the next media file to load.

The first file to load MUST be the file that the client has chosen to
play first, as described in Section 6.3.3.

If the first file to be played has been loaded and the Playlist file
does not contain the EXT-X-MEDIA-SEQUENCE tag then the client MUST
verify that the current Playlist file contains the URI of the last
loaded media file at the offset it was originally found at, halting
playback if it does not. The next media file to load MUST be the
first media file URI following the last-loaded URI in the Playlist.

If the first file to be played has been loaded and the Playlist file
contains the EXT-X-MEDIA-SEQUENCE tag then the next media file to
load SHALL be the one with the lowest sequence number that is greater
than the sequence number of the last media file loaded.

6.3.6. Decrypting encrypted media files

If a Playlist file contains an EXT-X-KEY tag that specifies a Key
file URI, the client MUST obtain that key file and use the key inside
it to decrypt all media files following the EXT-X-KEY tag until
another EXT-X-KEY tag is encountered.

If the encryption METHOD is AES-128, AES-128 CBC decryption SHALL be
applied to individual media files. The entire file MUST be
decrypted. Cipher Block Chaining MUST NOT be applied across media
files. The IV used for decryption MUST be either the sequence number
of the media file or the value of the IV attribute of the EXT-X-KEY
tag, as described in Section 5.2.

If the encryption METHOD is NONE, the client MUST treat all media
files following the EXT-X-KEY tag as cleartext (not encrypted) until
another EXT-X-KEY tag is encountered.

7. Protocol version compatibility

Clients and servers MUST implement protocol version 2 or higher to
use:

o The IV attribute of the EXT-X-KEY tag.

Clients and servers MUST implement protocol version 3 or higher to

-60-

WO 2012/166816 PCT/US2012/040031

use:

o Floating-point EXTINF duration values.

8. Examples
8.1. Introduction

This section contains several example Playlist files.
8.2. Simple Playlist file

#EXTM3U

#EXT-X-TARGETDURATION:5220

#EXTINF:5220,

http://media.example.com/entire.ts
#EXT-X-ENDLIST

8.3. Sliding Window Playlist, using HTTPS

#EXTM3U
#EXT-X-TARGETDURATION: 8
#EXT-X-MEDIA-SEQUENCE:2680

#EXTINF:8,
https://priv.example.com/fileSequence?2680.ts
#EXTINF:8,
https://priv.example.com/fileSequence268l.ts
#EXTINF:8,
https://priv.example.com/fileSequence2682.ts

8.4. Playlist file with encrypted media files
#EXTM3U
#EXT-X-MEDIA-SEQUENCE: 7794
#EXT-X-TARGETDURATION:15

#EXT-X-KEY:METHOD=AES-128,URI="https://priv.example.com/key.php?r=52"

#EXTINF:15,
http://media.example.com/fileSequenceb52-1.ts
#EXTINF:15,
http://media.example.com/fileSequenceb52-2.ts
#EXTINF:15,
http://media.example.com/fileSequence52-3.ts

#EXT-X-KEY:METHOD=AES-128,URI="https://priv.example.com/key.php?r=53"

#EXTINF:15,
http://media.example.com/fileSequenceb3-1.ts

8.5. Variant Playlist file

#EXTM3U
#EXT-X-STREAM-INF : PROGRAM—-ID=1, BANDWIDTH=1280000
http://example.com/low.m3u8
#EXT-X-STREAM-INF : PROGRAM-ID=1, BANDWIDTH=2560000
http://example.com/mid.m3u8
#EXT-X-STREAM-INF : PROGRAM-ID=1, BANDWIDTH=7680000

61-

WO 2012/166816 PCT/US2012/040031

http://example.com/hi .m3u8
#EXT-X-STREAM-INF : PROGRAM-ID=1, BANDWIDTH=65000, CODECS="mp4a.40.5"
http://example.com/audio—only.m3u8

9. Security Considerations

Since the protocol generally uses HTITP to transfer data, most of the
same security considerations apply. See section 15 of RFC 2616
[REFC2616] .

Media file parsers are typically subject to "fuzzing" attacks.
Clients SHOULD take care when parsing files received from a server so
that non-compliant files are rejected.

Playlist files contain URIs, which clients will use to make network
requests of arbitrary entities. Clients SHOULD range-check responses
to prevent buffer overflows. See also the Security Considerations
section of RFC 3986 [RFC3986].

Clients SHOULD load resources identified by URI lazily to avoid
contributing to denial-of-service attacks.

HTTP requests often include session state ("cookies"), which may
contain private user data. Implementations MUST follow cookie
restriction and expiry rules specified by RFC 2965 [RFC2965]. See
also the Security Considerations section of REFC 2965, and REFC 2964
[REC2964] .

Encryption keys are specified by URI. The delivery of these keys
SHOULD be secured by a mechanism such as HTITP over TLS [RFC5246]
(formerly SSL) in conjunction with a secure realm or a session
cookie.

10. References
10.1. Normative References

[AES_128] U.S. Department of Commerce/National Institute of
Standards and Technology, "Advanced Encryption Standard
(AES), FIPS PUB 197", November 2001, <http://
csrc.nist.gov/publications/fips/fipsl97/fips—-197.pdf
<http://csrc.nist.gov/publications/fips/fipsl97/fips—197.pdf> >.

[ISO_13818]
International Organization for Standardization, "ISO/IEC
International Standard 13818; Generic coding of moving
pictures and associated audio information", October 2007,
<http://www.iso.org/iso/catalogue detail?csnumber=44169>.
[ISO_8601]

International Organization for Standardization, "ISO/IEC
International Standard 8601:2004; Data elements and
interchange formats —-- Information interchange —-
Representation of dates and times", December 2004,
<http://www.iso.org/iso/catalogue detail?csnumber=40874>.

[RFC2046] Freed, N. and N. Borenstein, "Multipurpose Internet Mail
Extensions (MIME) Part Two: Media Types", RFC 2046,

-62-

10.

WO 2012/166816 PCT/US2012/040031

[REFC2119]

[REFC2616]

[REFC2964]

[RFC2965]

[RFC3629]

[RFC3986]

[RFC4281]

[RFC5246]

[REFC5652]

[US_ASCII]

November 1996.

Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, March 1997.

Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
Transfer Protocol —-- HTTP/1.1", RFC 2616, June 1999.

Moore, K. and N. Freed, "Use of HTTP State Management",
BCP 44, RFC 2964, October 2000.

Kristol, D. and L. Montulli, "HTTP State Management
Mechanism", RFC 2965, October 2000.

Yergeau, F., "UTF-8, a transformation format of ISO
10646", STD 63, RFC 3629, November 2003.

Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
Resource Identifier (URI): Generic Syntax", STID 66,
REC 3986, January 2005.

Gellens, R., Singer, D., and P. Frojdh, "The Codecs
Parameter for "Bucket" Media Types", RFC 4281,
November 2005.

Dierks, T. and E. Rescorla, "The Transport Layer Security
(TLS) Protocol Version 1.2", RFC 5246, August 2008.

Housley, R., "Cryptographic Message Syntax (CMS)", STID 70,
REC 5652, September 2009.

American National Standards Institute, "ANSI X3.4-1986,
Information Systems —-- Coded Character Sets 7-Bit American
National Standard Code for Information Interchange (7-Bit
ASCII)", December 1986.

2. Informative References

[ID3]

[M3U]

ID3.org <http://ID3.org/> , "The ID3 audio file data
tagging format",<http://www.id3.org/Developer Information>.

Nullsoft, Inc., "The M3U Playlist format, originally
invented for the Winamp media player”,
<http://wikipedia.org/wiki/M3U>.

-63-

WO 2012/166816 PCT/US2012/040031

CLAIMS

What is claimed is:

1. A machine readable non-transitory storage medium storing executable program
instructions which when executed by a data processing system cause the data processing
system to perform a method comprising:

receiving a variant audio playlist for a program, the variant audio playlist
containing a set of URLSs for different audio content for the program, each of the URLSs in
the set of URLs referring to an audio playlist corresponding to one of the different audio
content for the program;

selecting a first URL of the set of URLSs for one of the different audio content, the
first URL referring to a first playlist;

transmitting the first URL which refers to the first playlist;

receiving the first playlist; and

processing the first playlist to retrieve audio content for the program.

2. The medium as in claim 1, wherein the method further comprises:
determining an audio preference; and
wherein the selecting of the first URL is based on the audio preference which is

set by a user preference.

3. The medium as in claim 2, wherein the method further comprises:
receiving a video playlist for the program, the video playlist containing URLs for
video content for the program, each of the URLSs for the video content referring to a

portion in time of the video content.

4. The medium as in claim 3, wherein the method further comprises:
switching between URLs, for audio content, in the variant audio playlist, wherein

the switching is performed independently of playback of the video playlist.

5. The medium as in claim 4, wherein the first playlist and the video playlist are
processed concurrently by a first software component and by a second software
component respectively, wherein the first software component retrieves audio content

referred to by URLSs in the first playlist and wherein the second software component

-64-

WO 2012/166816 PCT/US2012/040031

retrieves video content referred to by URLs in the video playlist, and wherein the first
software component and the second software component operate independently to

retrieve their respective content.

6. The medium as in claim 4, wherein timestamps in the audio content retrieved
through the first playlist and timestamps in the video content retrieved through the video

playlist specify the same period of time.

7. The medium as in claim 4, wherein each of the URLs in the set of URLSs refer to
different audio content, and wherein each of the different audio content comprise
timestamps which specify the same time period, and wherein the variant audio playlist

and the video playlist are received in response to a single request for the program.

8. A machine implemented method comprising:

receiving a variant audio playlist for a program, the variant audio playlist
containing a set of URLSs for different audio content for the program, each of the URLSs in
the set of URLs referring to an audio playlist corresponding to one of the different audio
content for the program;

selecting a first URL of the set of URLSs for one of the different audio content, the
first URL referring to a first playlist;

transmitting the first URL which refers to the first playlist;

receiving the first playlist; and

processing the first playlist to retrieve audio content for the program.

0. The method as in claim 8, wherein the method further comprises:
determining an audio preference; and
wherein the selecting of the first URL is based on the audio preference which is

set by a user preference.

10. The method as in claim 9, wherein the method further comprises:
receiving a video playlist for the program, the video playlist containing URLs for
video content for the program, each of the URLSs for the video content referring to a

portion in time of the video content.

-65-

WO 2012/166816 PCT/US2012/040031

11. The method as in claim 10, wherein the method further comprises:
switching between URLs, for audio content, in the variant audio playlist, wherein

the switching is performed independently of playback of the video playlist.

12. The method as in claim 11, wherein the first playlist and the video playlist are
processed concurrently by a first software component and by a second software
component respectively, wherein the first software component retrieves audio content
referred to by URLSs in the first playlist and wherein the second software component
retrieves video content referred to by URLs in the video playlist, and wherein the first
software component and the second software component operate independently to

retrieve their respective content.

13. The method as in claim 11, wherein timestamps in the audio content retrieved
through the first playlist and timestamps in the video content retrieved through the video

playlist specify the same period of time.

14. The method as in claim 11, wherein each of the URLSs in the set of URLs refer to
different audio content, and wherein each of the different audio content comprise
timestamps which specify the same time period, and wherein the variant audio playlist

and the video playlist are received in response to a single request for the program.

15. A data processing system comprising:

means for receiving a variant audio playlist for a program, the variant audio
playlist containing a set of URLs for different audio content for the program, each of the
URLs in the set of URLs referring to an audio playlist corresponding to one of the
different audio content for the program;

means for selecting a first URL of the set of URLs for one of the different audio
content, the first URL referring to a first playlist;

means for transmitting the first URL which refers to the first playlist;

means for receiving the first playlist; and

means for processing the first playlist to retrieve audio content for the program.

-66-

WO 2012/166816 PCT/US2012/040031

16. A machine readable non-transitory storage medium storing executable program
instructions which when executed by a data processing system cause the data processing
system to perform a method comprising:

transmitting, in response to a request, from a device, for a program, a variant
audio playlist containing a set of URLs for different audio content for the program, each
of the URLs in the set of URLs referring to an audio playlist corresponding to one of the
different audio content for the program;

receiving from the device a first URL in the set of URLs and transmitting, in
response to receiving the first URL, a first audio playlist to the device, the first URL

referring to the first audio playlist.

17. The medium as in claim 16, wherein the method further comprises:
transmitting, in response to the request from the device, a video playlist for the
program, the video playlist containing URLs for video content for the program, each of

the URLs for the video content referring to a portion in time of the video content.

18. The medium as in claim 17, wherein the method further comprises:

receiving, from the device, a second URL in the set of URLs for different audio
content;

transmitting, in response to receiving the second URL, a second audio playlist,
wherein the second URL refers to the second audio playlist and wherein the second audio

playlist provides alternative audio content for the program.

19. The medium as in claim 18, wherein timestamps in the audio content retrieved
through the first audio playlist and timestamps in the alternative audio content specify the

same period of time.

20. A machine implemented method comprising:

transmitting, in response to a request, from a device, for a program, a variant
audio playlist containing a set of URLs for different audio content for the program, each
of the URLs in the set of URLs referring to an audio playlist corresponding to one of the

different audio content for the program;

-67-

WO 2012/166816 PCT/US2012/040031

receiving from the device a first URL in the set of URLs and transmitting, in
response to receiving the first URL, a first audio playlist to the device, the first URL

referring to the first audio playlist.

21. The method as in claim 20, wherein the method further comprises:
transmitting, in response to the request from the device, a video playlist for the
program, the video playlist containing URLs for video content for the program, each of

the URLs for the video content referring to a portion in time of the video content.

22. The method as in claim 21, wherein the method further comprises:

receiving, from the device, a second URL in the set of URLs for different audio
content;

transmitting, in response to receiving the second URL, a second audio playlist,
wherein the second URL refers to the second audio playlist and wherein the second audio

playlist provides alternative audio content for the program.

23. The method as in claim 22, wherein timestamps in the audio content retrieved
through the first audio playlist and timestamps in the alternative audio content specify the

same period of time.

24. A data processing system comprising:

means for transmitting, in response to a request, from a device, for a program, a
variant audio playlist containing a set of URLs for different audio content for the
program, each of the URLSs in the set of URLs referring to an audio playlist corresponding
to one of the different audio content for the program;

means for receiving from the device a first URL in the set of URLs and
transmitting, in response to receiving the first URL, a first audio playlist to the device, the

first URL referring to the first audio playlist.

-68-

WO 2012/166816

PCT/US2012/040031

1/21
SEGMENTER [| INDEXER | [SECURITY
130 135 AGENT
140
HTTP SERVER
145
SERVER 120

ASSEMBLER

160

OUTPUT

GENERATOR

169

SECURITY

AGENT
170

CLIENT

NETWORK(S)
110

ASSEMBLER
190

OUTPUT
GENERATOR
195

SECURITY
AGENT
185

CLIENT 18

FIG. 1

WO 2012/166816

PCT/US2012/040031

2/21
(stART)
Y 200
RECEIVE DATA TO BE PROVIDED N/
] 210
—~_/
STORE DATA TO BE PROVIDED ON SERVER
\ 4
220
SEGMENT DATA %
Y 230
STORE IN MEDIA FILES IN SERVER MEMORY |
N
240
GENERATE PLAYLIST FILE(S) WITH TAGS AND | ~_/
MEDIA FILE INDICATORS

\ 4

250
STORE PLAYLIST FILE(S) IN SERVER MEMORY ™~

v
270
IN RESPONSE TO REQUEST, TRANSMIT MEDIA y~_/
FILES AND/OR PLAYLIST FILE(S) TO CLIENT

v
END

FIG. 2A

WO 2012/166816

PCT/US2012/040031

3/21

START

205
RECEIVE DATA TO BE PROVIDED N/
] 215
—~_/
STORE DATA TO BE PROVIDED ON SERVER
A 4
225
SEGMENT DATA S
! 235
STORE IN MEDIA FILES IN SERVER MEMORY |
245
GENERATE PLAYLIST FILE(S) WITH TAGSAND | ~_/
285 MEDIA FILE INDICATORS
/_) \ 4
RECEIVE ADDITIONAL DATA 235
—~_/
16 BE PROVIDED STORE PLAYLIST FILE(S) IN SERVER MEMORY

3

A 4

275

IN RESPONSE TO REQUEST, TRANSMIT MEDIA ~ f—~_/

FILES AND/OR PLAYLIST FILE(S) TO CLIENT

END

FIG. 2B

WO 2012/166816 PCT/US2012/040031

4/21

' START '

A4 202

RECEIVE DATA TO BE PROVIDED N/
‘ 212
STORE AT LEAST TEMPORARILY N
DATA TO BE PROVIDED ON SERVER
v
222
SEGMENT DATA S
y Y 232
RECEIVE REQUEST FOR STORE MULTIPLE SETS OF MEDIAFILES | °
PLAYLIST CORRESPONDING IN SERVER MEMORY IN MULTIPLE
TO A SELECTED BITRATE BITRATE ENCODINGS
U o ,
242
TRANSMIT SELECTED GENERATE PLAYLIST FILES WITHTAGS |~/
BITRATE PLAYLIST FILE
AND PLAYLIST FILE INDICATORS
TO CLIENT
! r297 v 5
TRANSMIT MEDIA FILES TO 52
R S ONSE 10 STORE PLAYHEIA (F)|FL{\E(S INSERVER |~
REQUESTS
¥ \4
END IN RESPONSE TO REQUEST, TRANSMIT -
PLAYLIST FILE TO CLIENT, THE PLAYLIST

FILE SPECIFYING THE AVAILABLE B
PLAYLISTS AT THE DIFFERENT BITRATE
ENCODINGS

FIG. 2C

WO 2012/166816 PCT/US2012/040031

5/21

' START '

v
> REQUEST PLAYLIST FILE FROM SERVER

l 310

300

RECEIVE PLAYLIST FILE(S) HAVING ONEOR [
MORE TAGS
! 320

STORE PLAYLIST FILE(S) IN CLIENT MEMORY a4

A

330

> REQUEST MEDIA FILE(S) FROM SERVER

\ 4

340
STORE MEDIA FILE(S) IN CLIENT MEMORY ™~

Y

350
PROVIDE OUTPUT UTILIZING MEDIA FILE(S) ./

YES ARE THERE MORE

UNPLAYED MEDIA FILES IN
THE PLAYLIST?

NO

END TAG

FIG. 3A

WO 2012/166816

6/21

‘ START '

4

PCT/US2012/040031

REQUEST PLAYLIST FILE FROM SERVER

370

A 4

375

RECEIVE PLAYLIST FILE(S) HAVING ONE OR
MORE TAGS

A

STORE PLAYLIST FILE(S) IN CLIENT MEMORY

380

h 4

SELECT BITRATE

385

{

4

390

YES
CHANGE
BITRATE

RETRIEVE PLAYLIST AND MEDIA FILES BASED
ON SELECTED BITRATE

K

A

|

PROVIDE OUTPUT USING MEDIA FILES;
DETERMINE WHETHER TO CHANGE BITRATE

394

NO

NO BITRATE CHANGE

MORE UNPLAYED MEDIA
FILES IN THE PLAYLIST?

END TAG IN THE

PLAYLIST?

FIG. 3B

WO 2012/166816 PCT/US2012/040031

7121
SERVER STREAM AGENT
400
SERVER STREAM ENGINE 420
SEGMENTER
430
CONTROL LOGIC
410
INDEXER
440
APPLICATION(S)
412
MEMORY SECURITY
414 450
INTERFACE(S)
416
FILE SERVER
460

FIG. 4

WO 2012/166816 PCT/US2012/040031

8/21
CLIENT STREAM AGENT
500
CLIENT STREAMENGINE 520
ASSEMBLER
530
CONTROL LOGIC
510
OUTPUT GENERATOR
540
APPLICATION(S)
512
MEMORY SECURITY
514 550
INTERFACE(S)
516

FIG. 5

WO 2012/166816

9/21

PCT/US2012/040031

Begin Tag
Duration Tag
Date/Time Tag
Sequence Tag

Security Tag 645

Variant List Tag
650

Media File Indicators
660
Subsequent Playlist
Indicators
670

Memory Tag

680
End Tag/\/

Playlist File
600

FIG. 6

WO 2012/166816 PCT/US2012/040031

10/21
START
y 700
RECEIVE PLAYLISTFILE [
I 710
RETRIEVE MEDIAFILESAS [
INDICATED BY PLAYLIST |¢—
FILE
v 720
GENERATE OUTPUT SIGNALS ~_/
™ BASED ON MEDIA FILES

CONTROL
INPUT?

750

REWIND OR
FORWARD

GENERATE OUTPUT SIGNALS BASED

ON PREVIOUSLY DISPLAYED MEDIA

FILE IF CACHED; IF NOT, RETURN TO 760
710 TO RETRIEVE MEDIA FILES Y

FIG. 7

PCT/US2012/040031

WO 2012/166816

11/21

/88

8 'Old

G88

088 08 098 058
JOVAYILNI TOYLINOD 301A3d LNdNI 301A30
MYOMLAN ¥0S¥Nd OIYINNNYHA TV AV1dSia
01
snd
078 .
301A30 0¢8 028 018
JOVHOLS WOY AHOWIW (S)408$3004d

AN

008

WO 2012/166816 PCT/US2012/040031

12/21

901

RETRIEVE AND PROCESS VARIANT PLAYLIST |~/
TO DETERMINE AVAILABLE STREAMS

A
903
SELECT FIRST STREAM FROM VARIANT PLAYLIST |~/
(E.G. STREAM AT FIRST BIT RATE) AND RETRIEVE
MEDIA PLAYLIST FOR FIRST STREAM

! 905
PROCESS PLAYLIST FOR FIRST STREAM

y

907
MEASURE OR OTHERWISE DETERMINE BIT L~/
- RATE OF CONNECTION FOR FIRST STREAM

SELECT ALTERNATIVE MEDIA PLAYLIST (E.G. 911
STREAM AT SECOND BIT RATE THAT ISHIGHER |~/
THAN FIRST BIT RATE) BASED ON MEASURED BIT
RATE AND BASED ON AVAILABLE STREAMS IN THE
VARIANT PLAYLIST (IF ALTERNATIVE IS BETTER)

3 913

RETRIEVE ALTERNATIVE PLAYLIST AND PROCESS —/
ALTERNATIVE PLAYLIST (E.G. RETRIEVE SEGMENTS
INDICATED BY ALTERNATIVE PLAYLIST)

4 915
SWITCH BETWEEN VERSIONS OF STREAM —~/

FIG. 9A

WO 2012/166816 PCT/US2012/040031

13/21
921
RETRIEVE AND STORE (E.G. STORE IN L/
TEMPORARY BUFFER) CONTENT SPECIFIED
BY FIRST MEDIA PLAYLIST
923
PRESENT CONTENT SPECIFIED BY FIRST MEDIA |~/
PLAYLIST
925

WHILE PRESENTING CONTENT SPECIFIED BY oy
FIRST PLAYLIST, RETRIEVE AND STORE (E.G.
IN TEMPORARY BUFFER) CONTENT SPECIFIED
BY SECOND MEDIA PLAYLIST

v
927

DETERMINE TRANSITION POINT AT WHICH TO .y
TRANSITION FROM CONTENT SPECIFIED BY
FIRST MEDIA PLAYLIST TO CONTENT SPECIFIED

BY SECOND MEDIA PLAYLIST
¢ 931
L~/
PRESENT CONTENT SPECIFIED BY SECOND
MEDIA PLAYLIST

FIG. 9B

WO 2012/166816

14/21

PCT/US2012/040031

STORE IN BUFFER CONTENT SPECIFIED BY
FIRST MEDIA PLAYLIST, THE CONTENT HAVING
A FIRST RANGE OF TIMESTAMPS

941
—/

4

STORE IN BUFFER CONTENT SPECIFIED BY
SECOND MEDIA PLAYLIST, THIS CONTENT
HAVING A SECOND RANGE OF TIMESTAMPS
WHICH OVERLAPS AT LEAST PARTIALLY WITH
THE FIRST RANGE OF TIMESTAMPS

943

A

PERFORM PATTERN MATCHING ON AUDIO IN
BOTH CONTENTS TO DETERMINE A MATCHING
POINT IN THE TWO STREAMS AND SELECT NEXT
SELF CONTAINED VIDEO FRAME (E.G., AN I-FRAME),
IN THE CONTENT SPECIFIED BY THE SECOND
PLAYLIST, AFTER THE MATCHING POINT AS THE
TRANSITION POINT

945

FIG. 9C

PCT/US2012/040031

WO 2012/166816

15/21

196

656

SININWO3S s
0laNy A3IHOLVYIN N43LLVd < _
d31dvy ANV LXAN
acs6
O O
VES6
1] O C4Jd =] _|m N

SININO3S
olany d3aHOL1vIN

Zm_m_._.._.<n_//
166
O g O O O g
| O [] C3J [[
" v }
536 V156
dvT43N0

4196

O3dIA

olanv

> £56

1SITAV1d
aNZ N0
WV3IHLS

1SITAVYd
1S1 WO¥4
WY3HLS

WO 2012/166816 PCT/US2012/040031

16/21

1001

—~/

Variant Playlist

URL - 1x playlist, bandwidth X ————~__ | 1003
URL - 1x playlist, bandwidth Y — | —1005

URL - English audio only playlist —— —~.__| 1007
URL - Spanish audio only playlist ————~__ | 1009

URL - Chinese audio only playlist ——~_|__— 1011

FIG. 10

WO 2012/166816 PCT/US2012/040031

17/21

1101
REQUEST PROGRAM (E.G. VIDEO ON DEMAND) O

¢ 1103
RECEIVE VARIANT PLAYLIST WHICH INCLUDE URLS ~ f~~/

FOR VARIANTS OF AUDIO AND OPTIONALLY VARIANTS
OF VIDEO CONTENT

4 1105
SELECT AUDIO PLAYLIST AND OPTIONALLY RECEIVE [
SELECTION OF VIDEO PLAYLIST

¢ 1107
TRANSMIT SELECTED AUDIO PLAYLIST'S URL AND ~_/

SELECTED VIDEO PLAYLIST'S URL (IF SELECTED)

y
1109
RECEIVE AND PROCESS SELECTED AUDIO ~
PLAYLIST
v 111
RECEIVE AND PROCESS VIDEO PLAYLIST ~_
(IF SELECTED)

FIG. 11

WO 2012/166816

18/21

PCT/US2012/040031

1201
/

1225

FIG. 12

VARIANT
USER APPLICATION PLAYL'ET
C 1205
1203 \
VIDEO VIDEQ
AUD AUDI
pLAL\JYLl%T | PLAYEOR PLAYER PLAYUST
/'y
1211 \ 1007 \ 1200 1213
A
AUDIO VIDEO
DATA BUFFER DATA BUFFER
T \ 1215 1217
Y A
AUDIO 1219 VIDEO 1221
DOWNLOAD |/ DOWNLOAD |)
MODULE MODULE
7 v 1223
NETWORK INTERFACES |/
SERVER(S)
K1227

WO 2012/166816

19/21

PCT/US2012/040031

TRANSMIT, IN RESPONSE TO A REQUEST FOR A
PROGRAM, A VARIANT PLAYLIST (CONTAINING
URLS FOR VARIANT AUDIO PLAYLISTS AND
OPTIONALLY CONTAINING URLS FOR VARIANT
VIDEO PLAYLIST(S)

1301

1303

RECEIVE REQUEST FOR SELECTED AUDIO AND
VIDEO PLAYLISTS

A

TRANSMIT AUDIO AND VIDEO PLAYLISTS

1305

FIG. 13

WO 2012/166816 PCT/US2012/040031

20/21

1800

API-CALLING COMPONENT(S)

1830
API CALLS, RETURN VALUES,
PARAMETERS PARAMETERS
APPLICATION PROGRAMMING
INTERFACE
1820

API-IMPLEMENTING COMPONENT(S)
1810

FIG. 14

WO 2012/166816 PCT/US2012/040031

21/21
APPLICATION 1 APPLICATION 2
ﬂk A
A 4
SERVICE 1 API SERVICE 2API 1| |SERVICE 2 API 2
SERVICE 1 SERVICE 2
A A
\ 4 y l
0SAPI 1 0S API2
OPERATING SYSTEM (0S)

FIG. 15

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2012/040031

A. CLASSIFICATION OF SUBJECT MATTER

INV. HO4N21/81 HO4N21/4722 HO4N21/482 HO4N21/485
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

HO4N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

X US 2004/250293 Al (RYAL KIM ANNON [US] ET 1-24
AL) 9 December 2004 (2004-12-09)
the whole document

X US 2005/105894 Al (JUNG KIL-SOO [KR] ET 1-24
AL) 19 May 2005 (2005-05-19)
the whole document

X EP 1 158 799 Al (THOMSON BRANDT GMBH [DE]) 1-24
28 November 2001 (2001-11-28)
the whole document

_/__

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents : L
"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand

"A" document defining the general state of the art which is not considered the principle or theory underlying the invention

to be of particular relevance

"E" earlier application or patent but published on or after the international "X" document of particular relevance; the claimed invention cannot be

filing date considered novel or cannot be considered to involve an inventive
"L" document which may throw doubts on priority claim(s) or which is step when the document is taken alone
cited to establish the publication date of another citation or other

. e "Y" document of particular relevance; the claimed invention cannot be
special reason (as specified)

considered to involve an inventive step when the document is

"O" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such combination
means being obvious to a person skilled in the art

"P" document published prior to the international filing date but later than
the priority date claimed "&" document member of the same patent family

Date of the actual completion of the international search Date of mailing of the international search report

29 August 2012 05/09/2012

Name and mailing address of the ISA/ Authorized officer

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016 Weber-Kluz, Florence

Form PCT/ISA/210 (second sheet) (April 2005)

page 1 of 2

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2012/040031

C(Continuation).

DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ | Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

X

BLU-RAY DISC: "White paper Blu-ray Disc
Format. 2.B Audio Visual Application
Format Specifications for BD-ROM",
INTERNET CITATION,

March 2005 (2005-03), XP007903517,
Retrieved from the Internet:
URL:http://www.blu-raydisc.com/assets/down
loadablefile/2b_bdrom audiovisualapplicati
on_0305-12955-13403.pdf

[retrieved on 2007-11-16]

the whole document

US 2010/281178 Al (SULLIVAN TERENCE SEAN
[US]) 4 November 2010 (2010-11-04)

the whole document

1-3,
8-10,
15-17,
20,21,24

1,2,4-9,
11-16,
18-20,
22-24

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2012/040031
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2004250293 Al 09-12-2004 NONE
US 2005105894 Al 19-05-2005 CN 1774758 A 17-05-2006
KR 20050015937 A 21-02-2005
US 2005105894 Al 19-05-2005
EP 1158799 Al 28-11-2001 CN 1325189 A 05-12-2001
EP 1158799 Al 28-11-2001
JP 2002027429 A 25-01-2002
JP 2012050107 A 08-03-2012
US 2001044726 Al 22-11-2001
US 2010281178 Al 04-11-2010 NONE

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - description
	Page 56 - description
	Page 57 - description
	Page 58 - description
	Page 59 - description
	Page 60 - description
	Page 61 - description
	Page 62 - description
	Page 63 - description
	Page 64 - description
	Page 65 - description
	Page 66 - claims
	Page 67 - claims
	Page 68 - claims
	Page 69 - claims
	Page 70 - claims
	Page 71 - drawings
	Page 72 - drawings
	Page 73 - drawings
	Page 74 - drawings
	Page 75 - drawings
	Page 76 - drawings
	Page 77 - drawings
	Page 78 - drawings
	Page 79 - drawings
	Page 80 - drawings
	Page 81 - drawings
	Page 82 - drawings
	Page 83 - drawings
	Page 84 - drawings
	Page 85 - drawings
	Page 86 - drawings
	Page 87 - drawings
	Page 88 - drawings
	Page 89 - drawings
	Page 90 - drawings
	Page 91 - drawings
	Page 92 - wo-search-report
	Page 93 - wo-search-report
	Page 94 - wo-search-report

