(19)
Bundesrepublik Deutschland
Deutsches Patent- und Markenamt

(19 DE 696 35 403 T2 2006.07.27

(12) Ubersetzung der europiischen Patentschrift

(97)EP 0 783 154 B1
(21) Deutsches Aktenzeichen: 696 35 403.9
(96) Europaisches Aktenzeichen: 96 119 990.8
(96) Europaischer Anmeldetag: 12.12.1996
(97) Erstveroffentlichung durch das EPA: 09.07.1997
(97) Veroffentlichungstag
der Patenterteilung beim EPA: 09.11.2005
(47) Veroffentlichungstag im Patentblatt: 27.07.2006

s intcle: GO6F 13/10 (2006.01)
GOG6F 12/08 (2006.01)
GOG6F 11/00 (2006.01)
GO6T 15/00(2006.01)

(30) Unionsprioritat:
576872 21.12.1995 us

(73) Patentinhaber:
Trepton Research Group, Inc., Santa Clara, Calif.,
us

(74) Vertreter:
Schwan Schwan Schorer, 80796 Miinchen

(84) Benannte Vertragsstaaten:
BE, DE, ES, FR, GB, IE, IT, NL, PT

(72) Erfinder:
Devic, Goran, Austin, Texas 78753, US

(54) Bezeichnung: Grafikbibliothek auf geteilten Ebenen

Anmerkung: Innerhalb von neun Monaten nach der Bekanntmachung des Hinweises auf die Erteilung des europa-
ischen Patents kann jedermann beim Europaischen Patentamt gegen das erteilte europédische Patent Einspruch
einlegen. Der Einspruch ist schriftlich einzureichen und zu begriinden. Er gilt erst als eingelegt, wenn die Ein-
spruchsgebihr entrichtet worden ist (Art. 99 (1) Europaisches Patentliibereinkommen).

Die Ubersetzung ist gemaR Artikel Il § 3 Abs. 1 IntPatUG 1991 vom Patentinhaber eingereicht worden. Sie wurde
vom Deutschen Patent- und Markenamt inhaltlich nicht gepruft.

DE 696 35403 T2 2006.07.27

Beschreibung
Gebiet der Erfindung

[0001] Die vorliegende Erfindung bezieht sich auf das Gebiet computergesteuerter grafischer Anzeigesyste-
me. Im Einzelnen bezieht sich die vorliegende Erfindung auf Softwareprogramme, die eine Schnittstelle zu
Hardware-Grafikbeschleunigern bilden.

Hintergrund der Erfindung

[0002] Computergesteuerte Hochleistungs-Grafikdarstellungssysteme hoher Qualitat beruhen in groRem
Umfang auf spezialisierten elektronischen Leiterplatten fiir die Verarbeitung von grafischen Informationen mit
hohen Geschwindigkeiten. Diese spezialisierten elektronischen Leiterplatten werden auch als "Grafikbe-
schleuniger" oder "Grafikhardwareeinheiten" bezeichnet. Grafikbeschleuniger sind wie beim Stand der Technik
bekannt speziell dazu entworfen, Grafikdaten zu verarbeiten, die mit Darstellungsgrundelementen (z.B. Linien,
Polygonen, Dreiecken, schattierten oder Alpha-Blending-Dreiecken usw.) verbunden sind, um auf einer Com-
puteranzeigeeinheit ein Bild darzustellen. Die den Grafikbeschleunigern zugefihrten Grafikdaten werden in ei-
nem hardwareabhangigen Format ("hardwareabhangige Grafikdaten") bereitgestellt, das von dem Grafikbe-
schleuniger erkannt wird. Diese hardwareabhangigen Grafikdaten werden typischerweise in der Form einer
Anzeigeliste im Computerspeicher generiert.

[0003] Ineinemin mehreren Ebenen arbeitenden Grafiksystem, arbeitet der Grafikbeschleuniger auf der Ebe-
ne des untersten Levels, um Pixel zu manipulieren, damit auf der Computeranzeige ein Bild dargestellt wird.
Der Grafikbeschleuniger fuhrt Low-Level-Grafikoperationen aus, die Mikrobefehle innerhalb einer Anzeigeliste
in das Bild auf einer Computeranzeige umsetzen. In Ebenen hdherer Level generieren innerhalb des Grafik-
systems ausgefiuhrte Softwareprogramme ("Anwendungen") Anfragen fiir die Darstellung bestimmter Bilder.
Diese Anfragen beinhalten typischerweise eine Liste hardwareunabhangiger Darstellungsgrundelemente (z.B.
solche, die das Bild darstellen), die zu Zwischen-High-Level-Grafikbibliotheken und anschliefend zu dem Gra-
fikbeschleuniger gefuhrt werden, um dargestellt zu werden. Die High-Level-Grafikbibliotheken unterstitzen
eine grol’e Anzahl an Grafikbefehlen und Merkmalen und beinhalten typischerweise Prozeduren zur direkten
Transformierung der Anfragen der Anwendung zu hardwareabhangigen Anzeigelisten.

[0004] Da die Grafikbeschleuniger Hardwarevorrichtungen sind, sind sie sehr entwurfs- und herstellerspezi-
fisch. Mit anderen Worten arbeiten unterschiedliche Grafikbeschleuniger unter Verwendung unterschiedlicher
Grafikdatenformate (z.B. unterschiedliche Datenstrukturen, verschiedene Grafikdarstellungscodes, unter-
schiedliche Speicherpartitionen und -stellen usw.) und unter Verwendung unterschiedlicher Cachezuweisun-
gen.

[0005] Fig. 1A stellt ein beim Stand der Technik bestehendes grafisches Anzeigesystem 5 gemaf der obigen
Ausfuhrung dar. Das System 5 beinhaltet ein High-Level-Anwendungsprogramm 10, das in einem digitalen
Computersystem ausfihrbar ist. Das Anwendungsprogramm 10 ist mit High-Level-Grafikbibliotheken 12 und
14 verbunden, um Grafikanzeigeanfragen von der Anwendung 10 in hardwareabhangige Anzeigelisten zu
Ubersetzen. Zwei wohlbekannte Grafikbibliotheken sind die Bibliothek 12 der dreidimensionalen "Dynamic De-
vice Driver"-Schnittstelle ("3D DDI") und die "Offene Grafikbibliothek" 14 ("Open Graphics Library bzw. "Open
GL"). Diese Bibliotheken 12 und 14 enthalten eine Anzahl an hardwarespezifischen Darstellungsroutinen
("Prozeduren"), die Uber eine Schnittstelle 16 direkt mit der Grafikhardwareeinheit 18 (z.B. einer Beschleuni-
gerplatine) verbunden sind. Die Schnittstelle 16 Iasst die Hardwareeinheit 18 nicht transparent werden, son-
dern dient lediglich dazu, das Kommunikationsprotokoll zwischen den Bibliotheken 12 und 14 und der Hard-
wareeinheit 18 zu vereinfachen. Die Prozeduren der Bibliotheken 12 und 14 stellen Grafikdarstellungsanfragen
von dem Anwendungsprogramm 10 als Eingang bereit. Die Grafikhardwareeinheit 18 ist mit einem Computer-
bildschirm 20 verkoppelt, um auf ihm Bilder darzustellen. Obgleich als wahrend der Kompilierung und des Ver-
linkens abgetrennt dargestellt, sind die erforderlichen Prozeduren der Bibliotheken 12 und 14 aus Fig. 1A ty-
pischerweise mit eingeschlossen, um die Befehle der High-Level-Anwendung 10 auszubilden. Ebenfalls kann
die Anwendung 10 Befehle beinhalten, die von einer Anzahl an anderen Bibliotheken neben der Grafikbiblio-
thek 12 und der Grafikbibliothek 14 resultieren.

[0006] Die Prozeduren der Grafikbibliotheken 12 und 14 ermdglichen eine Kommunikation der High-Le-
vel-Anwendung 10 (unter Verwendung von hardwareunabhangigen Datenstrukturen) mit der Grafikhardware-
einheit 18, indem sehr strukturierte und hardwareabhangige Kommunikationsprotokolle und Datenstrukturen
generiert werden. Die Grafikbibliotheken 12 und 14 beinhalten Satze von hardwareabhangigen und auf sehr

2/36

DE 696 35403 T2 2006.07.27

hohen Levels arbeitenden Softwareroutinen, die zwar hardwareabhéangig sind, aber fir die Anwendung 10 eine
hardwaretransparente Schnittstelle bereitstellen. Da die Bibliotheken 12 und 14 High-Level-Bibliotheken sind,
unterstutzen sie eine groRRe Vielzahl von komplexen Grafikmerkmalen und Anzeigeoptionen. Um sowohl die
Bibliothek 12 wie die Bibliothek 14 so zu implementieren, dass sie irgendeine bestimmte Hardwareeinheit 18
unterstitzen, missen samtliche Bibliothekfunktionen und -merkmale in dem jeweiligen Format der gewahlten
Hardwareeinheit 18 implementiert werden. Daher mussen diese High-Level-Grafikbibliotheken 12 und 14 um-
fangreich umgestaltet und fir jede unterschiedliche Hardwareeinheit 18, die sie unterstiitzen, umgeschrieben
werden. Fur den Gestalter von Grafiksystemen ist dies unerwiinscht, da ein groRes Ausmaf} an Softwareum-
gestaltung und Umschreiben notwendig ist, damit jede Bibliothek 12 und 14 unterschiedliche Hardwareeinhei-
ten 18 unterstitzt. Die Bereitstellung eines Grafiksystems ware erwiinscht, das einfacher an Veranderungen
und Variationen in der Grafikhardwareeinheit 18 angepasst werden kann. Im Einzelnen ware die Bereitstellung
eines Softwaresystems erwilinscht, das keine Umgestaltung und kein Umschreiben der High-Level-Grafikbibli-
otheken 12 und 14 bei einer Anwendung von unterschiedlichen Grafikhardwareeinheiten 18 bendtigt.

[0007] AufFig. 1A und Fig. 1B Bezug nehmend ist in Fig. 1B ein Ablaufdiagramm eines computerimplemen-
tierten Verfahrens 30 vom Stand der Technik fur die Verarbeitung von Darstellungsgrundelementen illustriert.
Dieses Verfahren 30 ist innerhalb eines beim Stand der Technik bestehenden computergesteuerten grafischen
Anzeigesystems 5 (Fig. 1A) implementiert. Das Verfahren 30 beginnt mit einem Block 32, an dem das High-Le-
vel-Anwendungsprogramm 10 die Darstellung einer Datenstruktur abfragt, die ein individuelles Darstellungs-
grundelement (z.B. Linie, Polygon, Dreieck usw.) an der Anzeige 20 reprasentiert. Bei einem Block 34 Uber-
mittelt die Anwendung 10 die das Darstellungsgrundelement reprasentierende hardwareunabhangige Daten-
struktur zu einer Prozedur der Grafikbibliothek 12 oder 14. An einem Block 36 setzt die Grafikbibliothek 12 oder
14 die Datenstruktur des Darstellungsgrundelements in einen Satz von Low-Level-Mikrobefehlen um, die fir
die Hardwareeinheit 18 spezifisch sind. Diese Mikrobefehle sind haufig Teil einer "Anzeigeliste", die von der
Hardwareeinheit 18 ausgelesen werden kann. Bei einem Block 38 greift die Hardwareeinheit 18 auf die Anzei-
geliste zu, um das Darstellungsgrundelement an dem Bildschirm 20 darzustellen. Anschlielend werden nach-
folgende von dem Anwendungsprogramm 10 stammende Grundelemente auf eine ahnliche Weise verarbeitet,
da fir die Darstellung eines vollstandigen Bilds typischerweise eine Mehrzahl von Darstellungsgrundelemen-
ten erforderlich ist.

[0008] Das Verfahren 30 von Fig. 1B verwendet die Speicherressourcen innerhalb des Grafiksystems 5 nicht
auf effiziente Weise, da jedes Grundelement von dem Block 32 zwischen der High-Level-Anwendung 10 und
der Hardwareeinheit 18 (z.B. zwischen den Blécken 32 und 38) seriell verarbeitet wird. Im Einzelnen werden
bei dem Darstellungsverfahren eines einzelnen Darstellungsgrundelements zuerst Prozeduren innerhalb der
Anwendung 10 und anschlielend Prozeduren der Grafikbibliothek (12 oder 14) ausgefiihrt, wobei dieses Ver-
fahren fir nachfolgende Grundelemente wiederholt wird. Dieser Umstand bewirkt das Auftreten einer Disjunk-
tion in den Code- und Datencaches, da unterschiedliche Informationen und Befehle durch diese Cacheeinhei-
ten geleitet werden, wahrend zugleich die Prozeduren von (1) der High-Level-Anwendung 10 und anschlie-
Rend (2) Prozeduren der Grafikbibliothek 12 oder 14 ausgefiihrt werden. Dies fuhrt zu dem Auftreten von vielen
Datencachefehlgriffen und Codecachefehlgriffen wahrend der Darstellung eines Satzes von Darstellungsgrun-
delementen. Somit ware die Bereitstellung eines Grafikdarstellungsverfahrens vorteilhaft, das bei der Darstel-
lung eines Bildes, das aus einem Satz von aus dem Anwendungsprogramm 10 resultierenden Darstellungs-
grundelementen besteht, auf effizientere Weise arbeitet.

[0009] Dementsprechend stellt die vorliegende Erfindung ein Grafiksystem bereit, das auf einfache Weise an
unterschiedliche Hardwareeinheiten angepasst werden kann, indem keine Umgestaltung oder kein Umschrei-
ben der High-Level-Grafikbibliothek notwendig ist. Weiterhin stellt die vorliegende Erfindung ein Grafiksystem
bereit, das die Speicherressourcen auf effiziente Weise benutzt, um ein Bild aus einer Mehrzahl von Darstel-
lungsgrundelementen darzustellen, die von einem Anwendungsprogramm stammen. Bei der nachfolgenden
Erlauterung werden diese und weitere Vorteile der vorliegenden Erfindung deutlich werden.

Zusammenfassung der Erfindung

[0010] Gemal der vorliegenden Erfindung stellt eine hardwareabhangige Low-Level-Grafikbibliothek eine
Schnittstelle zwischen einer High-Level-Grafikbibliothek (die vorzugsweise hardwareunabhangig ist) und einer
Grafikbeschleuniger-Hardwareeinheit bereit. Die hardwareunabhangige Low-Level-Bibliothek stellt eine auf re-
lativ niedrigem Level arbeitende Schnittstelle bereit, die direkt mit dem Grafikbeschleuniger kommuniziert und
nur eine relativ kleine Menge an Umschreiben bendtigt, um sich an unterschiedliche Grafikhardwareeinheiten
anzupassen, wahrend eine nur kleine oder gar keine Veranderung der hardwareunabhangigen High-Le-
vel-Grafikbibliotheken notwendig ist. Die hardwareabhangigen Low-Level-Bibliothekprozeduren stellen eine

3/36

DE 696 35403 T2 2006.07.27

Qualitatszuweisung bereit, die zwischen einer Verarbeitung mit geringer Geschwindigkeit und einer hochqua-
litativen Bilddarstellung sowie einer mit hdherer Geschwindigkeit erfolgender Bilddarstellung in geringer Qua-
litat einstellbar ist. Die hardwareabhangigen Low-Level-Bibliothekprozeduren fiihren eine Stapelverarbeitung
aus, indem ein Feld von Stapelverarbeitungszellen empfangen wird, wobei jede Stapelverarbeitungszelle ein
getrenntes Grundelement aufweist. Das Feld kann bei einer Einstellung den hardwareabhangigen Low-Le-
vel-Bibliothekprozeduren Uberreicht und anschlielend sequenziell verarbeitet werden. Diese Konfiguration
stellt sicher, dass wahrend der Parametrisierung des Feldes (z.B. einer in einen Standardcodecache von z.B.
8 K passenden Parametrisierungsroutine) keine Befehlscache-Fehlgriffe und nur wenige Datencachefehlgriffe
auftreten. Weiterhin ermdéglichen die hardwareabhangigen Low-Level-Bibliothekprozeduren eine automatische
Umsetzung zwischen unterschiedlichen Texture-Mapping-Datenformaten, sodass entweder ein RGB-AI-
pha-Format oder ein Format benutzt werden kann, das einen Index in die Farbpalette verwendet. Durch die
Bereitstellung einer Low-Level-Schnittstelle ermdglicht die vorliegende Erfindung ein System, das an unter-
schiedliche Hardware-Grafikbeschleuniger einfach angepasst werden kann, ohne dass Modifizierungen der
Grafikbibliotheken notwendig werden.

[0011] Im Einzelnen beinhalten die Ausfihrungsformen der vorliegenden Erfindung ein computergesteuertes
grafisches Anzeigesystem mit folgenden Komponenten: einem mit einem Bus gekoppelten Prozessor; einer
mit dem Prozessor zusammenarbeitenden Speichereinheit zum Speichern von Informationen; einer Hard-
ware-Grafikeinheit zur Aufnahme von hardwareabhangigen Mikrobefehlen von einer in der Speichereinheit ge-
speicherten Anzeigeliste zum Erzeugen eines Bilds auf einem Bildschirm; einer High-Level-Grafikbibliothek,
die von dem Prozessor ausgeflihrte hardwareunabhangige Grafikdarstellungsprozeduren aufweist, wobei die
hardwareunabhangigen Grafikdarstellungsprozeduren zur Verarbeitung von Grafikdarstellungsanfragen von
einer High-Level-Anwendung zur Generierung von hardwareunabhangigen Ausgangsdatenstrukturen Grafik-
operanden beinhalten; und einer hardwareabhangigen Low-Level-Grafikbibliothek, die von dem Prozessor zur
Verarbeitung der hardwareunabhangigen Ausgangsdatenstrukturen ausgefihrt wird, um daraus die Mikrobe-
fehle fur die Hardware-Grafikeinheit zu erzeugen, wobei die High-Level-Grafikbibliothek zu einer Vielzahl von
unterschiedlichen Hardware-Grafikeinheiten ohne eine Umgestaltung kompatibel ist und wobei die hard-
wareunabhangigen Ausgangsdatenstrukturen von der High-Level-Grafikbibliothek ein Feld von Stapelverar-
beitungszellen aufweisen, wobei jede Stapelverarbeitungszelle eine getrennte auszufiihrende Grafikoperation
darstellt, und wobei das Feld von Stapelverarbeitungszellen zu der hardwareabhangigen Low-Level-Grafikbi-
bliothek geflihrt wird, um dort zur Generierung der Mikrobefehle nacheinander verarbeitet zu werden.

[0012] Weitere Ausfiihrungsformen beinhalten weiterhin das oben Gesagte, wobei die hardwareabhangige
Low-Level-Grafikbibliothek Parametrisierungsprozeduren zur Verarbeitung von Polygon-Grundelementen,
Satze von Grafiklinien und Satze von Grafikpunkten aufweist und wobei die Parametrisierungsprozeduren wei-
terhin fur eine Verarbeitung von Bitleveltransfers, Fullungen, und Umsetzungen zwischen Texture-Map-Forma-
ten vorgesehen sind.

[0013] Weitere Ausfiihrungsformen beinhalten weiterhin das oben Gesagte, wobei die hardwareabhangige
Low-Level-Grafikbibliothek zusatzlich eine von dem Prozessor ausgefiihrte Leistungs-/Qualitats-Einstellproze-
dur aufweist, um die Darstellungsleistungsrate und entsprechend die Darstellungsqualitat des auf dem Bild-
schirm angezeigten Bildes einzustellen. Weitere Ausflihrungsformen beinhalten zusatzlich ein Verfahren zum
Erzeugen einer Anzeigeliste gemal der obigen Ausfiihrung.

Kurze Beschreibung der Zeichnungen

[0014] Fig. 1A illustriert ein beim Stand der Technik vorliegendes grafisches Anzeigesystem mit hardwareab-
hangigen Versionen von Grafikbibliotheken (z.B. 3D-DDI und OPEN GL).

[0015] Fig. 1B stellt ein Ablaufdiagramm eines Verfahrens vom Stand der Technik fiir die Darstellung von Dar-
stellungsgrundelementen dar.

[0016] Fig. 2 ist ein Blockdiagramm eines Computersystems flir ein computergesteuertes grafisches Anzei-
gesystem der vorliegenden Erfindung.

[0017] Eig. 3 illustriert die Ebenen eines computergesteuerten grafischen Anzeigesystems der vorliegenden
Erfindung mit hardwareunabhangigen Versionen von High-Level-Grafikbibliotheken (z.B. 3D-DDI und OPEN
GL).

[0018] Fig. 4 ist ein Datenablaufdiagramm und illustriert die Komponenten des computergesteuerten grafi-

4/36

DE 696 35403 T2 2006.07.27

schen Anzeigesystems der vorliegenden Erfindung einschlieflich verschiedener Ebenen und dem Grafikda-
ten/Informationsfluss zwischen den Ebenen.

[0019] Fig. 5 stellt Komponenten der hardwareabhangigen Low-Level-Grafikbibliothek (HDGL oder "Verbin-
dungs"-Bibliothek) der vorliegenden Erfindung dar.

[0020] Fig. 6 ist eine Logikdarstellung eines Stapelverarbeitungsfeldes gemaf der vorliegenden Erfindung.

[0021] Fig. 7 ist ein Verfahrensablaufdiagramm eines Verfahrens der vorliegenden Erfindung fiir eine effizi-
ente Darstellung von Darstellungsgrundelementen auf einem Bildschirm unter Verwendung eines Feldes von
Stapelverarbeitungszelden.

[0022] Fig. 8A illustriert die Inhalte eines Datencache-Speichers und Inhalte eines Code- oder Befehlsca-
che-Speichers wahrend einer ersten Verarbeitungsphase eines Stapelverarbeitungsfeldes geman der vorlie-
genden Erfindung.

[0023] Fig. 8B ist eine lllustration der Inhalte eines Datencache-Speichers und der Inhalte eines Code- oder
Befehlscache-Speichers wahrend einer zweiten Verarbeitungsphase eines Stapelverarbeitungsfeldes gemaf
der vorliegenden Erfindung.

[0024] Fig. 8C illustriert die Inhalte eines Datencache-Speichers und Inhalte eines Code- oder Befehlsca-
che-Speichers wahrend einer dritten Verarbeitungsphase eines Stapelverarbeitungsfeldes geman der vorlie-
genden Erfindung.

[0025] Fig. 9A stellt ein Qualitats-/Leistungs-Steuerfeld gemaf der vorliegenden Erfindung dar.

[0026] Fiq. 9B ist ein Ablaufdiagramm eines Verfahrens der vorliegenden Erfindung zum Einstellen der Dar-
stellungsqualitat gegeniiber der Darstellungsleistung auf der Basis der Einstellungen des Qualitats-/Leis-
tungs-Steuerfeldes.

[0027] Fig. 10A ist eine grafische Darstellung eines Grafikelements, das unter Verwendung einer linearen
Unterteilung unterteilt ist.

[0028] Fig. 10B ist eine grafische Darstellung eines Grafikelements, das unter Verwendung einer perspekti-
vischen Unterteilung unterteilt ist.

[0029] Fig. 10C illustriert einen Uberlappungsbereich zwischen zwei dreieckigen Polygonen.

[0030] Fig. 11 ist ein Ablaufdiagramm eines Verfahrens der vorliegenden Erfindung zum Ubersetzen zwi-
schen Farbmodi fiir Texture-Maps.

[0031] Eig. 12 ist ein Ablaufdiagramm eines hardwareabhangigen Verfahrens der vorliegenden Erfindung
zum Aufbau einer Anzeigeliste auf der Basis von Grafikdateninformationen, die in einer Stapelverarbeitungs-
zelle eines Stapelverarbeitungsfeldes gespeichert sind.

Beschreibung der bevorzugten Ausfihrungsformen

[0032] In der folgenden ausfihrlichen Beschreibung der vorliegenden Erfindung werden zahlreiche spezifi-
sche Einzelheiten aufgefiihrt, um ein besseres Verstandnis der vorliegenden Erfindung zu erméglichen. Aller-
dings versteht sich fur den Fachmann, dass die vorliegende Erfindung auch ohne diese spezifischen Einzel-
heiten oder unter Verwendung alternativer Elemente oder Verfahren angewendet werden kann. In anderen Fal-
len sind wohlbekannte Verfahren, Prozeduren, Komponenten und Schaltungen nicht ausfiihrlich beschrieben
worden, um die Aspekte der vorliegenden Erfindung nicht unnétig unverstandlich ausfallen zu lassen.

Notation und Terminologie
[0033] Gewisse Bereiche der nachfolgenden ausfuhrlichen Beschreibungen erfolgen unter Bezugnahme auf
Begriffe wie Prozeduren, Logikblocke, Verarbeitung und weitere symbolische Reprasentationen von Operatio-

nen an Datenbits innerhalb eines Computerspeichers. Diese Beschreibungen und Reprasentationen sind die-
jenigen Mittel, die fir den Fachmann auf dem Gebiet der Datenverarbeitung verwendet werden, um ihr Fach-

5/36

DE 696 35403 T2 2006.07.27

gebiet anderen Fachleuten am effektivsten erlautern zu kénnen. Eine Prozedur, ein Logikblock, ein Verfahren
usw. wird hier und im allgemeinen als eine in sich widerspruchsfreie Sequenz von Schritten oder Befehlen be-
trachtet, die zu einem erwiinschten Ergebnis fihrt. Die Schritte sind solche, die physikalische Manipulationen
physikalischer GréRen erfordern. Ublicherweise, jedoch nicht notwendigerweise nehmen diese physikalischen
Manipulationen die Form von elektrischen oder magnetischen Signalen an, die in einem Computersystem ge-
speichert, Ubertragen, kombiniert, verglichen und anderweitig manipuliert werden kénnen. Aus Griinden der
Einfachheit und mit Bezug auf die allgemeine Sprachverwendung werden diese Signale mit Bezug auf die vor-
liegende Erfindung als Bits, Werte, Elemente, Symbole, Buchstaben, Begriffe, Zahlen, oder 8hnliches bezeich-
net.

[0034] Es sollte jedoch beriicksichtigt werden, dass alle diese Begriffe als auf physikalische Manipulationen
und Grofien referierende Begriffe zu interpretieren sind und lediglich den gebrauchlichen Jargon darstellen.
Daher sind diese Begriffe angesichts der allgemein beim Stand der Technik verwendeten Terminologie tief ge-
hender zu interpretieren. So lange dies in den folgenden Erdrterungen nicht spezifisch anders angegeben ist,
versteht sich, dass die in den Erlauterungen der vorliegenden Erfindung verwendeten Begriffe wie z.B. "Verar-
beitung”, "Rechnung", "Berechnung", "Bestimmung", "Darstellung" oder ahnliches sich auf den Vorgang und
die Verarbeitungen eines Computersystems oder einer ahnlichen elektronischen Berechnungsvorrichtung be-
ziehen, das/die Daten manipuliert und Gbertragt. Die Daten werden als physikalische (elektronische) GréRen
in den Registern und Speichereinheiten des Computersystems reprasentiert und zu anderen Daten transfor-
miert, die ahnlich dazu als physikalische GréRen innerhalb der Speichereinheiten oder Register des Compu-
tersystems oder in anderen derartigen Informationsspeicherungs-, Informationsiibertragungs- oder -anzeige-
vorrichtungen reprasentiert sind.

Abschnitt |
Computersystem

[0035] Ein Anwendungsprogramm (210 von FEig. 3), High-Level-Grafikbibliotheken 220 und 230 und eine
hardwareabhangige Low-Level-Grafikbibliothek ("HDGL") 240 der vorliegenden Erfindung bestehen aus aus-
fuhrbaren Computerbefehlen, die in einem computergesteuerten grafischen Anzeigesystem der vorliegenden
Erfindung gespeichert sind. Diese Elemente werden nachstehend beschrieben werden. Eig. 2 illustriert ein ex-
emplarisches Computersystem 112, das als ein Teil eines computergesteuerten grafischen Anzeigesystems
gemal der vorliegenden Erfindung verwendet wird. Das Computersystem 112 von Eig. 2 versteht sich lediglich
als exemplarisch und die vorliegende Erfindung kann in einer Anzahl an unterschiedlichen Computersystemen
einschliellich Allzweck-Computersystemen, integrierten Computersystemen und speziell fur die Grafikdarstel-
lung ausgelegten Computersystemen angewendet werden, wobei diese Systeme die gleichen Elemente auf-
weisen kdnnen, die wie in Fig. 2 illustriert auf die gleiche Weise untereinander verbunden sind.

[0036] Das Computersystem 112 von Fig. 2 beinhaltet einen Adressen-/Daten-Bus 100 zur Ubertragung von
Informationen; eine mit dem Bus 100 gekoppelte Zentralprozessoreinheit 101 zur Verarbeitung von Informati-
onen und Befehlen; einen Lese/Schreib-Speicher 102 (z.B. Direktzugriffsspeicher oder ein anderer Le-
se/Schreib-Speicher wie z.B. FLASH-Speicher usw.), der mit dem Bus 100 zum Speichern von Informationen
und Befehlen fiir den Zentralprozessor 101 gekoppelt ist; sowie einen Nurlese-Speicher 103, der mit dem Bus
100 zum Speichern von statischen Informationen und Befehlen flir den Prozessor 101 gekoppelt ist. Das Sys-
tem 112 beinhaltet eine Datenspeichervorrichtung 104 (z.B. eine magnetische oder optische Platte und Plat-
tenantrieb), die mit dem Bus 100 zum Speichern von Informationen und Befehlen gekoppelt ist. Ebenfalls be-
inhaltet das System 112 eine Anzeigevorrichtung 105, die mit dem Bus 100 verkoppelt ist (oder die wahlweise
Uber den Bus 100a direkt an die Hardwareeinheit 250 gekoppelt sein kann), um einem Computeranwender In-
formationen (z.B. Darstellungsgrundelemente) darzustellen. Wahlweise kann das System 112 eine alphanu-
merische Eingabevorrichtung 106 (z.B. eine Vorrichtung einschlief3lich alphanumerischer und Funktionstas-
ten) aufweisen, die an den Bus 100 gekoppelt ist, um Informationen und Befehlsauswahlen zu dem Zentral-
prozessor 101 zu ubertragen. Wahlweise kann das System 112 eine Cursor-Steuervorrichtung 107 aufweisen,
die mit dem Bus 100 verkoppelt ist, um Anwendereingangsinformationen und Befehlsauswahlen zu dem Pro-
zessor 101 zu Ubertragen. Optional kann das System 112 eine an den Bus 100 gekoppelte Signalerzeugungs-
vorrichtung 108 fiir die Ubertragung von Befehlsauswahlen zu dem Prozessor 101 beinhalten. Der Prozessor
101 enthalt einen Befehls- oder Codecache 102a und einen Datencache 102b (z.B. speziell angeordnetes
RAM).

[0037] Die in dem Computersystem 112 der vorliegenden Erfindung verwendete Anzeigevorrichtung 105 von
Fig. 2 kann eine Flussigkristall-, eine Kathodenstrahlrbhren- oder eine andere Anzeigevorrichtung sein, die ge-

6/36

DE 696 35403 T2 2006.07.27

eignet ist, fur den Anwender erkennbare Grafikbilder und alphanumerische Zeichen zu generieren.

[0038] Die optionale Cursor-Steuervorrichtung 107 ermdglicht es, dass dem Computeranwender die zweidi-
mensionale Bewegung eines sichtbaren Symbols (Zeiger) auf einem Bildschirm oder einer Anzeigevorrichtung
105 dynamisch signalisiert wird. Beim Stand der Technik sind viele Implementierungen der Cursor-Steuervor-
richtung bekannt und schlieRen einen Trackball, eine Maus, ein Touchpad, Joystick oder spezielle Tasten an
der alphanumerischen Eingabevorrichtung 105 ein, die eine Bewegung in einer gegebenen Richtung oder eine
Verlagerungsweise signalisieren kdnnen. Es versteht sich, dass die Cursor-Anordnung 107 auch tber den Ein-
gang der Tastatur unter Verwendung spezieller Tasten- und Tastenfolgenbefehlen geflihrt und/oder aktiviert
werden kann. Alternativ dazu kann der Cursor Uiber den Eingang von einer Anzahl an speziell dazu ausgeleg-
ten Cursorlenkvorrichtungen wie oben beschrieben gefiihrt und/oder aktiviert werden. Ebenfalls an den Bus
100 oder wahlweise (Uber den Bus 100a) direkt an die Anzeigevorrichtung 105 gekoppelt ist eine Grafikhard-
ware-(z.B. Grafikbeschleuniger)-Einheit 250 fiur eine Hochgeschwindigkeitsgrafikdarstellung vorgesehen. Die
Grafikhardwareeinheit 250 kann ebenfalls Video- und anderen Speicher 102" aufweisen (z.B. RAM zum Spei-
chern von Anzeigelisten und/oder registrierten Texture-Maps).

[0039] Fig. 2 illustriert, dass die hardwareabhangige Low-Level-Grafikbibliothek (HDGL) 240 der vorliegen-
den Erfindung in dem RAM 102, dem ROM 103 und dem Speicher 104 gespeichert werden. Im Betrieb kann
ein Teil der HDGL 240 auch in einem Codecache 102a gespeichert werden.

[0040] Fig. 3 ist eine Logikdarstellung der funktionalen Ebenen eines computergesteuerten grafischen Anzei-
gesystems 200 gemal der vorliegenden Erfindung. Abgesehen von der Hardwareeinheit 250 und der Anzei-
geeinheit 105 sind die restlichen Elemente von Fig. 3 als ausfiihrbare Befehle innerhalb des Computersystems
112 (Eig. 2) implementiert und kdnnen in dem RAM 102, ROM 103 oder in dem Speicher 104 gespeichert wer-
den und im Betrieb kann ein Teil der HDGL 240 auch in dem Codecache 102a abgespeichert werden. Die
High-Level-Anwendung 210 (z.B. ein Simulator, ein Entwurfswerkzeug, eine Multimedia-Anwendung, eine me-
dizinische Bilddarstellungsanwendung, ein Spiel usw.) beinhaltet Routinen, die eine Erzeugung von Bildern auf
dem Bildschirm 105 erfordern. Die Bilder sind aus Darstellungsgrundelementen zusammengesetzt (Punkte, Li-
nien, Polygone, schattierte Polygone, Uberlagerte Polygone usw.). Die Routinen der Anwendung 210 greifen
auf Grafikdarstellungsprozeduren der High-Level-Grafikbibliotheken 220 (3D-DDI) und/oder 230 (OPEN GL)
zu, indem angefordert wird, dass bestimmte Darstellungsgrundelemente dargestellt werden, und liefern hard-
wareunabhangige Grafikstrukturen, die die Darstellungsgrundelemente reprasentieren. Obgleich in der Ver-
gangenheit diese Grafikbibliotheken 220 und 230 hardwareunabhangige Eingange benutzt haben, waren ihre
Ausgange hardwareabhangig und erforderten spezialisierte Implementierungen fir jede unterstitzte Hard-
wareeinheit 250. Die Benutzung von hardwareabhangigen Prozeduren der Grafikbibliotheken 220 und 230 ist
beim Stand der Technik wohlbekannt. Die 3D-DDI 220 und OPEN GL 230 sind exemplarisch und arbeiten mit
einer Anzahl an Computersystemen einschlie3lich PC-kompatiblen und UNIX-Computern zusammen.

[0041] Gemal der vorliegenden Erfindung sind die Grafikdarstellungsprozeduren der Grafikbibliotheken 220
und 230 sowie ihre Eingangs- und Ausgangsdatenstrukturen hardwareunabhangig. Diese High-Level-Biblio-
theken 220 und 230 sind mit der hardwareabhangigen Low-Level-Grafikbibliothek (HDGL) 240 verbunden, die
fur die Grafikhardwareeinheit 250 spezifisch ist. Die Grafikhardwareeinheit 250 kann eine Grafikbeschleuniger-
platine, eine eingebettete integrierte Schaltung, ein Schaltungsuntersystem innerhalb eines Computersystems
fur spezielle Zwecke oder ahnliches sein. Eine hardwareunabhangige Kommunikationsschnittstelle 240a wird
zur Bereitstellung der erforderlichen Kommunikationsverknlpfung zwischen den High-Level-Grafikbibliothe-
ken 220, 230 und der HDGL 240 verwendet. Jede beliebige Anzahl an wohlbekannten Kommunikationsschnitt-
stellen kann fir die Schnittstelle 240a gemaf der vorliegenden Erfindung verwendet werden.

[0042] Im Rahmen der vorliegenden Erfindung kann eine Vielzahl von unterschiedlichen Grafikhardwareein-
heiten 250 benutzt werden. Gemal der vorliegenden Erfindung, lasst sich die HDGL 240 einfach an diese un-
terschiedliche Hardwareeinheit 250 anpassen, wobei fir die hardwareunabhangigen High-Level-Grafikbiblio-
theken 220 und 230 eine nur geringe oder gar keine Anderung notwendig ist.

[0043] Die HDGL 240 von Fig. 3 beinhaltet einen Satz hardwareabhangiger Low-Level-Prozeduren, die mit
den High-Level-Grafikbibliotheken 220 und 230 verbunden sind, welche einen Satz von hardwareunabhangi-
gen Grafikdarstellungsprozeduren aufweisen. Die Schnittstelle verwendet strukturierte, aber hardwareunab-
hangige Eingangsdatenformate. Das Ausgangsdatenformat der HDGL 240 ist hardwareabhangig und fur die
Hardwareeinheit 250 spezifisch. Die Prozeduren der HDGL 240 sind auf einem sehr niedrigen Level implemen-
tiert (z.B. in der Nahe der Hardwareeinheit 250) und missen somit eine nur begrenzte Anzahl an Operationen
unterstutzen. Da die HDGL 240 eine Low-Level-Bibliothek ist, kann sie zwecks einer Implementierung mit einer

7/36

DE 696 35403 T2 2006.07.27

Vielzahl von unterschiedlichen Hardwareeinheiten 250 oder zwecks einer Implementierung mit einer jeweiligen
Grafikhardwareeinheit auf einfache Weise umgestaltet werden, anstatt dass (wie in der Vergangenheit) die
komplexe Aufgabe einer Umgestaltung der Grafikbibliotheken 220 und 230 mit héherem Level erledigt werden
muss. Da die Grafikbibliotheken 220 und 230 hardwareunabhangige Grafikdarstellungsprozeduren gemafn der
vorliegenden Erfindung enthalten bendtigen diese Bibliotheken kein Umgestalten oder Umschreiben irgendei-
ner verwendbaren Hardwareeinheit 250.

[0044] Unter der vorliegenden Erfindung beruhen die High-Level-Grafikbibliotheken 220 und 230 zur Durch-
fuhrung der fir die Bilddarstellung erforderlichen hardwarespezifischen Funktionalitdt auf der HDGL 240 der
vorliegenden Erfindung. Auf diese Weise kann das computergesteuerte Grafiksystem 200 von Fig. 3 leicht an
eine Vielzahl von unterschiedlichen Hardwareeinheiten 250 angepasst werden, indem die HDGL 240 mit re-
duzierter Komplexitat (Low-Level-Bibliothek) modifiziert wird, weshalb keine Modifizierung der High-Level-Bi-
bliotheken 220 und 230 notwendig ist. Wahlweise kann eine Anzahl an unterschiedlichen HDGLs 240 in dem
System 200 vorgesehen werden, wobei jede unterschiedliche HDGL 240 fir eine bestimmte Hardwareeinheit
250 spezifisch ist. In dieser alternativen Ausfihrungsform ermdglicht die vorliegende Erfindung einem Anwen-
der die Auswahl einer bestimmten zu verwendenden Hardwareeinheit 250, wobei die geeignete HDGL, die der
gewahlten Hardwareeinheit 250 entspricht, automatisch von dem System 200 benutzt wird.

[0045] Bei dem Kompilieren und Verlinken der Anwendung 210 werden die erforderlichen Prozeduren der Bi-
bliotheken 220 und 230 sowie die Prozeduren und andere notwendige Elemente der HDGL 240 miteinander
verknUpft, um die ausfihrbare Form der Anwendung 210 zu generieren.

[0046] Fig. 4 ist ein Datenstromdiagramm und illustriert den relevanten Datenstrom zwischen Ebenen des
computergesteuerten grafischen Anzeigesystems 200 der vorliegenden Erfindung zum Erzeugen eines Bildes
auf dem Bildschirm. Der mit dem Datenstrom assoziierte Verfahrensablauf ist in Fig. 7 illustriert und wird weiter
unten separat beschrieben werden.

[0047] Mit Bezug auf Eig. 4 generiert die High-Level-Anwendung 210 eine hardwareunabhangige Grafikdar-
stellungsanfrage ("Grafikanfrage") einschlief3lich einer Datenstruktur, die reprasentativ fir ein anzuzeigendes
Darstellungsgrundelement oder Bild ist. Diese hardwareunabhangige Datenstruktur 410 kann Daten zur Dar-
stellung eines individuellen Darstellungsgrundelements oder andere Grafikdarstellungsbefehle wie z.B. Bitle-
veltransfers (BLTs) oder Fullungen beinhalten. Die Datenstruktur 410 kann aus einem einzelnen Grundelement
oder aus einer Mehrzahl von Grundelementen und/oder Befehlen bestehen. Eine einzelne hardwareunabhan-
gige Datenstruktur 410 kann zu einem Zeitpunkt zu den High-Level-Grafikbibliotheken 220 oder 230 oder viele
individuelle Anfragen kdnnen gleichzeitig in einem Feldformat zu den Bibliotheken 220 oder 230 Ubermittelt
werden.

[0048] Die High-Level-Grafikbibliothek 220 oder 230 empfangt fir jede Grafikanfrage die hardwareunabhan-
gigen Datenstrukturen 410 und sammelt sie, bis eine Gruppe von Datenstrukturen 410 von der Anwendung
210 empfangen wird. Die GroRRe der Gruppe ist variabel und wird auf der Basis der zulassigen Gréle des Sta-
pelverarbeitungsfeldes 420 bestimmt, das durch die High-Level-Grafikbibliotheken 220 oder 230 in Anspre-
chen auf die Datenstrukturen 410 generiert wird. Ein wie in Fig. 6 dargestelltes Stapelverarbeitungsfeld 420 ist
hardwareunabhangig und beinhaltet eine Sequenz von Stapelverarbeitungszellen, z.B. 420a, 420b, 420c usw.
Jede Stapelverarbeitungszelle reprasentiert mindestens ein zu generierendes Darstellungsgrundelement
und/oder einen auszufuhrenden Grafikdarstellungsbefehl und enthalt einen Operand sowie einen mit dem
Operand assoziierten Datensatz. Die Anzahl an Stapelverarbeitungszellen innerhalb eines Stapelverarbei-
tungsfeldes 420 ist variabel und kann durch den Anwender programmiert werden. Dann wenn eine bestimmte
Anzahl an Stapelverarbeitungszellen, z.B. x, bestimmt ist, baut die High-Level-Grafikbibliothek 220 in dem
Speicher 102 (Fig. 2) ein bestimmtes Stapelverarbeitungsfeld 420 auf, bis sich x Stapelverarbeitungszellen an-
gesammelt haben oder bis irgend ein anderer zeitkritischer Punkt erreicht wird.

[0049] Bezugnehmend auf Fig. 4 wird das Stapelverarbeitungsfeld 420, wenn es in dem Speicher (z.B. 102)
aufgebaut ist, zu der hardwareabhangigen HDGL 240 der vorliegenden Erfindung Ubertragen. Die HDGL 240
verarbeitet die Zellen des Stapelverarbeitungsfeldes 420 sequenziell. Fir jede Zelle werden die hardwareun-
abhangige Datenstruktur und der Operand der Stapelverarbeitungszelle zu hardwareabhangigen Mikrobefeh-
len umgesetzt, die zu einer hardwareabhangigen Anzeigeliste 430 hinzugefligt werden. Ebenfalls wird die An-
zeigeliste 430 ist in einem Speicher (z.B. 102 gespeichert. Die Mikrobefehle in der Anzeigeliste 430 werden
von der Hardwareeinheit 250 zur Darstellung der Darstellungsgrundelemente und/oder Grafikdarstellungsbe-
fehle auf dem Bildschirm 105 verwendet. Durch die Verarbeitung von Grafikbefehlen und Grundelementen, die
von der Anwendung 210 auf der Basis von Stapelverarbeitungsfeldern erzeugt worden sind, verwenden die

8/36

DE 696 35403 T2 2006.07.27

hardwarespezifischen Darstellungsprozeduren der HDGL 240 der vorliegenden Erfindung diejenigen Daten-
und Codecache-Ressourcen, die innerhalb des Systems 200 der vorliegenden Erfindung verfligbar sind, auf
effiziente Weise.

[0050] Fig. 5 ist ein Logikblockdiagramm und illustriert die Hauptkomponenten der HDGL 240 der vorliegen-
den Erfindung. Die HDGL 240 beinhaltet einen Satz von Low-Level-Prozeduren (Blocke 320 und 330), die in
Kombination mit zugeordneten Datenstrukturen (Block 310) verwendet werden, welche wiederum direkt mit
der Hardwareeinheit 250 verbunden sind, indem Mikrobefehle in einer Anzeigeliste im Speicher generiert wer-
den (die in dem System 112 gespeichert oder innerhalb der Hardwareeinheit 250 zugewiesen werden kénnen).
Die HDGL 240 empfangt (hardwareunabhangige) Grafikinformationen von den High-Level-Grafikbibliotheken
220 und 230 Uber einmehrere darzustellende/s graphische/s Bild oder Bilder und generiert aus ihnen eine
hardwareabhangige Anzeigeliste, die zu der Hardwareeinheit 250 gefihrt und zur Darstellung der Bilder auf
der Anzeige 105 verwendet wird. Die von der HDGL 240 empfangenen Grafikinformationen zur Erzeugung des
graphischen Bilds liegen typischerweise in der Form von definierten Darstellungsgrundelementen und Grafik-
befehlen vor. Die von der HDGL 240 generierte Anzeigeliste ist eine Liste mit Mikrobefehlen, die hardwareab-
hangig sind und von der Hardwareeinheit 250 zur Darstellung der Grundelemente verwendet werden, damit
das Grafikbild generiert werden kann.

[0051] Mit Bezug auf Fig. 5 beinhalten die Datenstrukturen 310 der HDGL 240 Eingangsstrukturen zur Auf-
nahme von Daten der Darstellungsgrundelemente in einem bestimmten hardwareunabhangigen Format ge-
malR der vorliegenden Erfindung und zur Aufnahme weiterer Operanden und Texture-Maps. Der Block 320
weist einen Satz von Operationen oder "Parametrisierungen" auf, die von der HDGL 240 zur Transformierung
der hardwareunabhangigen Grafikbefehle und Grundelemente zu hardwareabhangigen Anzeigelistemikrobe-
fehlen durchgefiihrt werden. Wie nachstehend erlautert werden wird werden die Eingangsgrafikbefehle und
Grundelemente in Stapelverarbeitungszellen gespeichert. Ebenfalls weist der Block 320 Prozeduren zum Ein-
stellen der Darstellungsqualitat und Darstellungsleistung des Systems 200 auf. Der Block 330 beinhaltet Tex-
ture-Mapping-Prozeduren zum Registrieren (z.B. Ubersetzen), Laden und Darstellen von Texture-Maps. Re-
gistrierungsprozeduren des Blocks 330 werden zur Umsetzung von Texture-Map-Daten zwischen in eine Farb-
palette indizierenden Formaten und RGB-Alpha-Daten verwendenden Formaten benutzt. Eine exemplarische
Implementierung der HDGL 240 wird im Abschnitt I dargestellt.

[0052] Fig. 7 ist ein Ablaufdiagramm von Logikblocken eines Darstellungsverfahrens 500 gemaf der HDGL
240 der vorliegenden Erfindung. Es versteht sich, dass das Verfahren 500 in einem Computersystem wie z.B.
einem exemplarischen Computersystem 112 implementiert ist.

[0053] Bei einem Logikblock 510 fragt die High-Level-Anwendung 210 ab, ob ein Darstellungsgrundelement
und oder eine Operation oder eine Gruppe von Grundelementen und/oder Grafikdarstellungsoperationen aus-
gefihrt werden soll. Die diese Anfragen reprasentierenden Datenstrukturen 410 werden von der Anwendung
210 zugefuhrt. Die High-Level-Anwendung 210 kann ein Grundelement zu einem Zeitpunkt abfragen oder die
Abfrage kann aus einer Anzahl an individuellen Grundelementen und/oder Grafikdarstellungsoperationen zu-
sammengesetzt sein, die Uber einen bestimmten Zeitraum hinweg abgefragt werden. Das Format der in dem
Block 510 erfolgenden Grafikdarstellungsanfragen ist hardwareunabhangig.

[0054] Bei einem Logikblock 515 empfangen hardwareunabhangige Grafikdarstellungsprozeduren der
High-Level-Grafikbibliotheken 220 oder 230 die Grundelemente und/oder Grafikdarstellungsoperationen und
konstruieren ein Stapelverarbeitungsfeld 420 auf der Basis einer einzelnen Abfrage oder einer Anzahl an von
dem Block 510 sequenziell empfangenen Anfragen. In Abhangigkeit von der zulassigen GréRe des Stapelver-
arbeitungsfeldes 420 kénnen mehrere individuelle Stapelverarbeitungsfelder 420 erforderlich sein, um die von
dem Block 510 empfangenen Anfragen zu verarbeiten. Das Stapelverarbeitungsfeld 420 wird in dem Speicher
102 gespeichert und die letzte Stapelverarbeitungszelle des Stapelverarbeitungsfeldes 420 wird als eine "Sta-
pelend"-Zelle gekennzeichnet. Ein Teil des aufgebauten Stapelverarbeitungsfeldes 420 wird in dem Datenca-
che 102b gespeichert, wie in Fig. 8A dargestellt. Wenn das Stapelverarbeitungsfeld 420 klein genug ist, kann
das gesamte Stapelverarbeitungsfeld 420 in den Datencache-Speicher 102b passen. Obwohl eine Anzahl an
unterschiedlichen Speichergroflen auf effektive Weise mit der vorliegenden Erfindung verarbeitet werden
kann, liegt eine exemplarische GroRe des Datencache-Speichers in der GréRenordnung von 8 oder mehr Ki-
lobyte. Das Stapelformat des Stapelverarbeitungsfeldes 420 ist hardwareunabhangig.

[0055] Bei einem Logikblock 520 von Fig. 7 wird das Stapelverarbeitungsfeld 420 zu der HDGL 240 der vor-

liegenden Erfindung Ubertragen. Es liegt im Rahmen der vorliegenden Erfindung, dass fiir den Schritt 520 kei-
ne tatsachliche Speicherlbertragung erforderlich ist, sondern dass stattdessen ein Zeiger zu der HDGL 240

9/36

DE 696 35403 T2 2006.07.27

Ubertragen werden kann, der die Ausgangspeicherstelle des Stapelverarbeitungsfeldes 420 in dem gemein-
sam genutzten Speicher 102 angibt. Bei einem Logikblock 525 werden die Parametrisierungsroutinen (Block
320 von Fig. 4) der HDGL 240 fir eine individuelle Verarbeitung jeder Stapelverarbeitungszelle des Stapelver-
arbeitungsfeldes 420 verwendet, um hardwarespezifische Mikrobefehle zu erzeugen, die zu einer Anzeigeliste
430 im Computerspeicher (z.B. dem Speicher 102 oder einem anderen Speicher, auf den die Hardwareeinheit
250 direkt zugreifen kann) hinzugefiigt werden. Die Parametrisierungsroutinen arbeiten in einer Programm-
schleife das gesamte Stapelverarbeitungsfeld 420 ununterbrochen ab, bis das "Stapelende" erreicht wird. Die
Parametrisierungsroutinen 320 sind so konfiguriert, dass sie vollstandig in den Codecache-Speicher 102a pas-
sen wie in Fig. 8A dargestellt.

[0056] Da sich eine Anzahl an Stapelverarbeitungszellen in dem Stapelverarbeitungsfeld 420 in dem Daten-
cache 102b befindet und da die Parametrisierungsprozeduren 320 der HDGL 240 in dem Codecache 102a
liegen, stellt in Fig. 8A die vorliegende Erfindung einen effizienten Verarbeitungsmechanismus fur diese Sta-
pelverarbeitungszellen bereit, weil keine Datencache- oder Codecache-Fehlgriffe fur die in Fig. 8A dargestell-
ten Daten auftreten. Mit anderen Worten befinden sich gemaR der vorliegenden Erfindung die meisten Daten
und der gesamte Code, der fir die Durchfliihrung der Parametrisierung erforderlich ist, in dem Cache-Speicher.
Wahrend diese Stapelverarbeitungszellen in dem Cache 102b bearbeitet werden, wird die Anzeigeliste 430
aufgebaut, indem reprasentative Mikrobefehle fir jede Stapelverarbeitungszelle zu der Anzeigeliste 430 mit-
tels der Parametrisierungsprozeduren 320 der HDGL 240 hinzugefigt werden. Wie in Fig. 7 durch den Block
525 illustriert, 1adt die vorliegende Erfindung, wenn die Stapelverarbeitungszellen des Speichercaches 102b
vollstandig von der HDGL 240 verarbeitet worden sind, eine weitere Gruppe von Stapelverarbeitungszellen in
den Datencache 102b, wie in Fig. 8B dargestellt, und diese Gruppe wird wiederum auf effiziente Weise ohne
Daten- oder Codecache-Fehlgriffe von den Parametrisierungsprozeduren 320 verarbeitet. Wie in Fig. 8C ge-
zeigt wird das Verfahren fiir noch eine weitere Gruppe von Stapelverarbeitungszellen des Stapelverarbeitungs-
feldes 420 wiederholt.

[0057] Das Verfahren 525 von Fig. 7 wird solange wiederholt, bis eine Stapelendzelle in dem Stapelverarbei-
tungsfeld 420 auftritt. Zu diesem Zeitpunkt wird die hardwareabhangige Anzeigeliste 430 als vollstandig erach-
tet. An einem Logikblock 530 wird die Anzeigeliste 430 zu der Hardwareeinheit 250 Ubertragen, um dargestellt
zu werden. Es liegt im Rahmen der vorliegenden Erfindung, dass fir den Schritt 530 kein tatsachlicher Spei-
chertransfer erforderlich ist, sondern dass stattdessen ein Zeiger zu der Hardwareeinheit 250 ibertragen wer-
den kann, der die Ausgangspeicherstelle der Anzeigeliste 430 in dem gemeinsam benutzten Speicher 102 an-
gibt. Bei dem Block 530 werden die Mikrobefehle der Anzeigeliste von der Hardwareeinheit 240 verarbeitet und
ein Bitmap-Bild wird auf dem Bildschirm 105 generiert und so lange in einem Bildspeicher oder einem anderen
Videospeicher gehalten, bis es modifiziert oder tiberschrieben wird. Wahrend die Hardwareeinheit 250 die Ver-
arbeitung der Anzeigeliste 430 durchflihrt, kann der Prozessor 101 die Befehle der Anwendung 210 verarbei-
ten.

[0058] Durch die Verarbeitung eines Stapelverarbeitungsfeldes 420 von Darstellungsgrundelementen
und/oder Grafikdarstellungsoperationen durch die HDGL 240 der vorliegenden Erfindung werden die Daten-
und Cache-Speichereinheiten 102b und 102a auf effiziente Weise zum Speichern und Zufiihren der erforder-
lichen Befehle und Daten verwendet, um sequenziell Stapelverarbeitungszellen zu verarbeiten. Unter Verwen-
dung dieses Verfahrens treten wahrend der Parametrisierung (z.B. im Block 525) nur wenige Datenca-
che-Fehlgriffe und keine Codecache-Fehlgriffe auf.

[0059] Darstellungsqualitat/Leistungseinstellung. Die vorliegende Erfindung HDGL 240 ermdglicht dem An-
wender weiterhin wahlbare Einstellungen, die das Leistungsniveau der von der HDGL 240 ausgeflihrten Dar-
stellung (z.B. die Geschwindigkeit) und dementsprechend das Niveau der Bildqualitatsdarstellung verandern.
Im Einzelnen stellt die HDGL 240 ein in Fig. 9A dargestelltes Leistungs-/Qualitats-Steuerfeld dar, in dem der
Anwender Einstellungen vornehmen kann. Das Leistungs-/Qualitats-Steuerfeld 610 oder "Wahlfeld" der vorlie-
genden Erfindung wird auf dem Bildschirm 105 angezeigt. Das Steuerfeld 610 weist einen von einem Anwen-
der einstellbaren Einstellungsanzeiger 615 auf, der durch die Tastatursteuerung tUber die Einheit 106 bzw.
durch einen Cursor 107 oder durch eine ahnliche Bildschirmschnittstelle verandert werden kann. Der Einstel-
lungsanzeiger 615 kann zusammen mit dem Wahlfeld 610 zur Veranderung der Qualitatseinstellung wie von
einem Abschnitt 610a angegeben eingestellt werden, wodurch die Leistungseinstellung entsprechend veran-
dert wird, wie durch einen Abschnitt 610b angegeben. Das Wahlfeld 610 gibt die Minimal- und Maximaleinstel-
lungen fur die Qualitédt und Leistung vor (wobei in einer Ausfihrungsform ein Umfang von 0 bis 255, der die
dezimalen Bereiche einer 8 bittigen Zahl reprasentiert, verwendet wird). Es kdnnen auch andere Wahlfeldfor-
mate benutzt werden (z.B. kreisférmig usw.).

10/36

DE 696 35403 T2 2006.07.27

[0060] Die Minimal- und Maximaleinstellungen der Qualitat und Leistung von Fig. 9A sind in ihrer Reihenfolge
umgekehrt, um die inversen Beziehungen zwischen den beiden Charakteristika darzustellen. GemaR des
Wahlfelds 610 wiinscht der Anwender bei einer Erhéhung der Darstellungsqualitat, dass die Bild- oder Darstel-
lungsqualitat verbessert wird. Dieser Vorgang verringert automatisch den Wert der Darstellungsleistung, da
das Grafiksystem 200 eine héhere Bearbeitungszeit zur Bewerkstelligung der erwilinschten Bildqualitat beno-
tigt. Wenn umgekehrt dazu die Darstellungsleistung erhéht wird, verringert das Grafiksystem 200 das Niveau
der Bildqualitat, um die Grafikinformationen mit hoherer Geschwindigkeit durch die Hardwareeinheit 250 ver-
arbeiten zu lassen. Mit Bezug auf eine exemplarische Ausfiihrungsform illustriert der Abschnitt Il die Prozedur
SetQualityDial, die zur Eingabe des Werts der Einstellung 615 verwendet wird.

[0061] Ein Logikverfahren 620 von Fig. 9B illustriert die Verarbeitung der HDGL 240, die auf die Einstellungen
615 in dem Leistungs-/Qualitats-Steuerfeld 610 von Fig. 9A anspricht. Das Verfahren 620 wird unter Verwen-
dung eines Computersystems der Art implementiert, die in Fig. 2 dargestellt ist. Ein Logikblock 625 stellt das
Niveau der Perspektivendarstellung von Grafikbildern auf der Basis der Stellung des Einstellungsanzeigers
615 ein. Wie in Fig. 10A dargestellt kann ein Grafikelement 650 auf der Basis eines linearen Modells in Unter-
teilungen 650a unterteilt werden. Eine lineare Unterteilung erfordert keine grofe Berechnungszeit und ermég-
licht die Verarbeitung des Systems 200 mit einer hohen Leistungsrate fir eine gute Darstellungsleistung. Je-
doch und wie in Fig. 10B dargestellt kann ein graphisches Element 655 auch auf der Grundlage eines pers-
pektivischen Modells unterteilt werden, das die dreidimensionale Ausrichtung des Elements auf dem Bild-
schirm 105 vergleichsweise besser als das lineare Modell illustriert. Fig. 10B stellt dar, dass die Unterteilungen
655a nicht linear erstellt sind, sondern teilweise auf der dreidimensionalen Ausrichtung des Elements 655 be-
ruhen und auf der Basis der Tiefendimension (z.B. der Z-Achse 657) des Elements 655 abgestuft sind (um die
Perspektive darstellen zu kdnnen). Eine perspektivische Unterteilung stellt ein Grafikbild mit héherer Qualitat
dar, aber sie ist berechnungsintensiv und verringert die Darstellungsleistungsrate.

[0062] Das Verfahren 625 von Fig. 9B reduziert das Ausmalfd an perspektivischer Unterteilung und erhdht das
Ausmal an linearer Unterteilung, wenn der Einstellungsanzeiger 615 zur Steigerung der Darstellungsleis-
tungsrate bewegt wird. Ahnlich dazu erhéht das Verfahren 625 das AusmaR an perspektivischer Unterteilung
und verringert das Ausmalf} an linearer Unterteilung, wenn der Einstellungsanzeiger 615 zur Steigerung der
Darstellungsqualitat bewegt wird. Jede beliebige Funktion kann gemag der vorliegenden Erfindung dazu ver-
wendet werden, um das Ausmal’ an perspektivischer/linearer Unterteilung auf der Basis einer vorgegebenen
Einstellung 615 zu bewerkstelligen. In einer Ausflihrungsform wird eine Grenzwertbestimmung ausgefiihrt, ob
die Einstellung 615 jenseits des Mittelwerts in Richtung Leistung (610b) liegt, woraufhin die gesamte Untertei-
lung linear erfolgt, oder ob die Einstellung 615 jenseits des Mittelwerts in Richtung Qualitat (610a) liegt, wobei
die gesamte Unterteilung dann perspektivisch erfolgt. In anderen Ausfiihrungsformen wird bei einer gesteiger-
ten Leistungsrate das Ausmalf} oder die Anzahl an linearen Unterteilungen auf Kosten des Ausmalies an per-
spektivischen Unterteilungen inkrementell erhdht und bei einer Steigerung der Qualitat findet das Gegenteil
statt.

[0063] Der Logikblock 630 von Fig. 9B passt die Polygon-(z.B. Dreieck)-Fehlerkorrekturfaktoren auf der Ba-
sis der Einstellung 615 an. Wenn sich wie in Eig. 10C dargestellt zwei Dreiecke 660 und 670 in einer Flache
675 Uberlappen, wird eine spezielle Prozedur zum Berechnen von Fehlerkorrekturfaktoren bzw. -termen fir
eine prézise Darstellung der Uberlappungsflache 675 verwendet. Diese Fehlerkorrekturprozedur und die von
der vorliegenden Erfindung verwendeten Fehlerkorrekturfaktoren sind in der US-Patentanmeldung mit der Se-
riennr. 08/299 739, Anwaltsdocketnr. 984128 US, mit dem Titel "Incremental Orthogonal Error Correction for
3D Graphics", eingereicht am 01.09.1994 von Thomas Dye, beschrieben, wobei diese Anmeldung auf den An-
melder der vorliegenden Erfindung Gbertragen ist. Wenn gemaf des Blocks 630 die Einstellung 615 eine ho-
here Leistungsrate angibt, verringert bzw. eliminiert die HDGL 240 der vorliegenden Erfindung das Ausmalf an
Fehlerkorrekturfaktoren, die von dem obigen Verfahren berechnet und benutzt werden. In dieser Situation wer-
den die Dreiecke 660 und 670 mit einer geringeren Bildqualitat, jedoch mit einer guten Darstellungsleistungs-
rate dargestellt. Alternativ dazu kann, wenn die Einstellung 615 eine héhere Bildqualitat angibt, die HDGL 240
der vorliegenden Erfindung das Ausmalf an Fehlerkorrekturfaktoren, die von dem obigen Verfahren berechnet
und verwendet werden, erhdhen bzw. maximieren. In dieser Situation werden die Dreiecke 660 und 670 mit
einer besseren Bildqualitat, aber auch mit einer niedrigeren Leistungsrate dargestellt.

[0064] Ein Logikblock 635 von Fig. 9B steuert die GrenzgréReneinstellung eines zu einer Abschaltung der
Perspektivendarstellung verwendeten Grundelements. Das heil3t, die Bildqualitat von Grundelementen be-
stimmter kleiner GréRen profitiert aufgrund ihrer reduzierten GréRe nicht wesentlich von den Perspektivendar-
stellungstechniken. Eine GrenzgréRe wird von der HDGL 240 aufrechterhalten, die das perspektivische Ren-
dering fur sdmtliche Grundelemente unterhalb der Grenzgrélie abschaltet. Wird die Leistungs-/Qualitats-Ein-

11/36

DE 696 35403 T2 2006.07.27

stellung 615 (Fig. 9A) hinsichtlich einer héheren Bildqualitat eingestellt, wird die von dem Block 635 der vor-
liegenden Erfindung aufrechterhaltene GrenzgréRRe verringert, sodass die meisten Grundelemente unter Ver-
wendung der Perspektivendarstellungstechniken dargestellt werden. Wenn die Leistungs-/Qualitats-Einstel-
lung 615 (Fig. 9A) fur eine héhere Darstellungsleistungsrate eingestellt ist, wird die von dem Block 635 der
vorliegenden Erfindung aufrechterhaltene GrenzgréRe erhdht, sodass flr eine héhere Leistung zunehmend
gréRere Darstellungsgrundelemente oder Bilder nicht unter Verwendung der Perspektivendarstellungstechni-
ken angezeigt werden. Es kdnnen jede beliebigen Funktionen gemaR der vorliegenden Erfindung benutzt wer-
den, um eine Grenzwert-Abschaltgrofie auf der Grundlage einer vorgegebenen Einstellung 615 zu bewerkstel-
ligen.

[0065] Texture-Map-Formatumsetzungen. Die HDGL 240 der vorliegenden Erfindung stellt ebenfalls eine
Umsetzung zwischen Texture-Map-Formaten bereit, um Texture-Informationen (eine "Textur") zu registrieren.
In einer exemplarischen Ausfiihrungsform werden zwei Texture-Formate in der in dem Computersystem imp-
lementierten Umsetzungsprozedur 700 von Fig. 11 der vorliegenden Erfindung verwendet. Ein Format ist das
RGB-Alpha-Format, wobei jedem Pixel eine Rot-, Griin-, Blau- und ein Alpha-Wert zugewiesen wird. Ein zwei-
tes Format ist ein Indexformat, bei dem jedem Pixel ein Indexwert in einer Farbpalette zugewiesen wird. Das
Vorgabeformat hangt von dem Format ab, auf das die Hardwareeinheit 250 angepasst ist. Jedes der obigen
Formate oder auch jedes andere Format kann das Vorgabeformat sein. Die Prozedur 700 illustriert eine exem-
plarische Ausfiihrungsform, bei der das RGB-Alpha-Format das Vorgabeformat ist.

[0066] Gemal des Verfahrens 700 empfangt die HDGL 240 an einem Logikblock 705 urspriingliche Textu-
re-Informationen in einem bestimmten Texture-Format. Diese urspringlichen Texture-Informationen oder -Da-
ten werden in einem Speicher 102 angeordnet. An einem Logikblock 710 tberpriift die vorliegende Erfindung
ein vorbestimmtes Flag, um zu bestimmen, ob die Texture-Informationen in dem Indexformat vorliegen (z.B.
Indizes in einer bestimmten Farbpalette). Wenn ja fahrt die Verarbeitung mit einem Logikblock 715 fort, wo die
Texture-Daten von dem Indexformat in ein RGB-Alpha-Format umgesetzt werden. An dem Block 715 wird fur
jedes Pixel der Texture-Daten der Indexwert zum Erhalt der jeweiligen Farbattribute aus einer Farbpalette fir
dieses Pixel verwendet. Ist das Farbattribut des Pixels ermittelt worden, werden seine Rot-, Griun-, Blau-, und
Alpha-Werte bestimmt und in einem RGB-Alpha-Format aufgezeichnet. AnschlieRend werden die sich erge-
benden Texture-Informationen an einer neuen Stelle oder an der gleichen Stelle in dem Speicher 102 der ur-
springlichen Texture-Informationen abgespeichert (wobei in letzterem Fall die urspriinglichen Texture-Infor-
mationen z.B. Uberschrieben werden). Dann fahrt die Verarbeitung mit einem Block 720 fort.

[0067] Wenn an dem Block 710 das Indexformat nicht im Indexmodus vorliegt, wird davon ausgegangen,
dass das Format RGB-Alpha ist. Zu dem Zeitpunkt, wenn die Verarbeitung mit dem Block 720 fortfahrt, wird
die Textur als registriert betrachtet. Dann geht die Verarbeitung zu dem Logikblock 720 tiber, wo die Texture-In-
formationen tbertragen und fiir eine Verwendung durch die Parametrisierungsprozeduren 320 der HDGL 240
zugewiesen werden. In Abhangigkeit von der Hardwareeinheit 250 beteiligt dies das Laden der Textur von dem
Speicher 102 (Systemspeicher) zu einem Speicher 102', auf den die Hardwareeinheit 250 direkt zugreifen
kann (wobei dieser Speicher typischerweise in der Hardwareeinheit liegt). Dann kénnen die registrierten Tex-
ture-Informationen mittels einer Anzahl an Polygondarstellungsoperationen angezeigt werden, die von der vor-
liegenden Erfindung berlcksichtigt und in den im Abschnitt Il beschriebenen Ausflihrungsformen illustriert sind.

[0068] Es versteht sich, dass die in Fig. 11 dargestellten Umsetzungsverfahren 700 fir jede beliebigen Gra-
fikinformationen neben Texture-Informationen fiir eine Anzeige durchgefihrt werden kénnen. Beispielsweise
kdnnen die den Grundelementen zugeordneten Scheitel in sowohl den Index- wie den RGB-Alpha-Formaten
spezifiziert werden und die vorliegende Erfindung sorgt in Abhangigkeit von der vorgegebenen Voreinstellung
fur eine Umsetzung zwischen den beiden Formaten (siehe den nachstehenden Abschnitt Il fur die jeweiligen
Beschreibungen).

[0069] Parametrisierung. Fig. 12 illustriert ein Ablaufdiagramm einer computerimplementierten Logikproze-
dur 800 der HDGL 240, die zur Abfrage einer Stapelverarbeitungszelle des Stapelverarbeitungsfeldes 420 und
zur Durchfiihrung einer Parametrisierung daran verwendet wird, um Mikrobefehle fur die Anzeigeliste 430 zu
erstellen. Das Verfahren 800 entspricht dem Verfahren 525 von Fig. 7. Auf eine bestimmte Implementierung
der Prozedur 800 wird in dem nachstehenden Abschnitt Il als BuildDisplayList Bezug genommen. Das Verfah-
ren 800 beginnt bei einem Logikblock 805, in dem die vorliegende Erfindung Gberpruft, ob die Grafikprozeduren
initialisiert sind (z.B. wird Uberpruft, ob InitGraph ausgefuhrt wurde), und wenn nicht, wird die Verarbeitung tber
einen Logikblock 855 beendet. Wenn die Grafik initialisiert ist, geht die Verarbeitung zu einem Logikblock 810
Uber, wo eine Stapelverarbeitungszelle des Stapelverarbeitungsfeldes 420 erhalten und die Parameter von der
Stapelverarbeitungszelle abgefragt werden. In eine Ausfihrungsform (die nachstehend in Abschnitt Il darge-

12/36

DE 696 35403 T2 2006.07.27

stellt ist), enthalt jede Stapelverarbeitungszelle ein Operandenfeld, ein Zahlenfeld (das eine mit den Daten in
der Zelle assoziierte Anzahl an Scheiteln angibt), ein Flagfeld sowie Datenstrukturen (oder ein darauf weisen-
der Zeiger) fur jeden Scheitel (z.B. Farbattribute, Koordinaten usw.). Das Operandenfeld definiert ein darzu-
stellendes Grundelement oder eine/n auszufuhrende/n Grafikoperation bzw. -befehl.

[0070] In Abhangigkeit von dem Operand der Zelle wird eine Prozedur von 820-845 von dem Umschaltlogik-
block 815 aufgerufen. Das Verfahren des Auslesens der Parameter der Stapelverarbeitungszelle und der dar-
aus generierten Mikrobefehle zur Anordnung in der Anzeigeliste 430 wird als "Parametrisierung" bezeichnet
und von den Logikbl6cken 820-845 ausgefihrt. Wenn der Operand einen Bitleveltransfer ("BLT") anzeigt, wird
ein BLT durch den Logikblock 820 zwischen einer ersten Bildschirmflache und einer zweiten Bildschirmflache
ausgefuhrt. Die erste Bildschirmflache wird durch zwei Eckenkoordinaten (erster und zweiter Scheitel) und die
zweite Bildschirmflache wird durch eine Koordinate (dritter Scheitel) identifiziert. AnschlieRend werden die Pi-
xel innerhalb der ersten Koordinate durch die BLT-Operation in die zweite Koordinate kopiert. Auf der Basis
des Flagfeldes kdnnen die Texture-Informationen als die Transferquelle verwendet werden. Weiterhin synchro-
nisiert die Einstellung eines zweiten Flags den Transfer mit einer Bildschirmaktualisierung. Auf der Grundlage
der BLT-Operation generiert die HDGL 240 der vorliegenden Erfindung die geeigneten Mikrobefehle innerhalb
der hardwareabhangigen Anzeigeliste 430.

[0071] Wenn der Operand von dem Block 815 ein FILL-Operand ist, wird der Logikblock 825 ausgefiihrt, wo-
bei eine von zwei Ecken (erster und zweiter Scheitel) spezifizierte Bildschirmflache mit einer spezifischen Quel-
le von Informationen aufgefullt wird. Die fur die Fullung ausgewahlte Farbe stammt von dem Farbattribut, das
in der ersten Scheitel-Datenstruktur eingestellt ist. Wenn in dem Stapelflag eine Z-Pufferung eingestellt ist, wird
der Z-Puffer mit einem in dem Zahlenfeld definierten Wert gefiillt. Auf der Grundlage der FILL-Operation gene-
riert die HDGL 240 der vorliegenden Erfindung die geeigneten Mikrobefehle innerhalb der hardwareabhangi-
gen Anzeigeliste 430.

[0072] Wenn der Operand von dem Block 815 von Fig. 12 ein POINT-Operand ist, wird der Logikblock 830
zur Generierung von Mikrobefehlen in der Anzeigeliste 430 ausgefihrt, um eine Anzahl an Punkten anzuzei-
gen, die in den Scheitel-Datenstrukturen definiert sind, wahrend die Anzahl an zu verarbeitenden Punkten in
dem Zahlenfeld angegeben ist. Auf der Grundlage der POINT-Operation generiert die HDGL 240 der vorlie-
genden Erfindung die geeigneten Mikrobefehle innerhalb der hardwareabhangigen Anzeigeliste 430.

[0073] Wenn der Operand von dem Block 815 ein POLYLINE-Operand ist, wird der Logikblock 835 zur Ge-
nerierung von Mikrobefehlen in der Anzeigeliste 430 ausgeflihrt, um die von der Stapelverarbeitungszelle de-
finierte Linie oder Reihe von Linien anzuzeigen. Die Punkte, welche die Linie bzw. Linien bilden, werden durch
die Scheitel-Datenstrukturen festgelegt und die Anzahl an Punkten wird in dem Zahlenfeld definiert. Es werden
drei Liniendarstellungsmodi unterstiitzt, namentlich der Listen-, der Zerlegungs- und der Fachermodus ('list,
strip and fan mode'), wobei der Modus in dem Flagfeld gesetzt wird. In dem Listenmodus wird ein Satz unab-
hangiger Linien dargestellt, wobei jedes Scheitelpaar die Endpunkte jeder Linie reprasentiert. In dem Zerle-
gungsmodus wird die zweite Linie an den Endpunkt der vorhergehenden Linie angehangt. Die erste Linie wird
durch ein Scheitelpaar definiert und jede Linie danach wird durch einen einzelnen Scheitel festgelegt. In dem
Fachermodus definiert der erste Scheitel einen Punkt, der fur alle Linien verwendet wird (ein gemeinsamer
Punkt) und jeder Scheitel danach definiert eine Linie von dem ersten Scheitel zu dem jeweiligen Punkt. In je-
dem der obigen Modi spezifiziert das Zahlenfeld die Anzahl an Scheiteln in der POLYLINE-Operation. Auf der
Grundlage der POLYLINE-Operation generiert die HDGL 240 der vorliegenden Erfindung die geeigneten Mi-
krobefehle innerhalb der hardwareabhangigen Anzeigeliste 430 fir die verarbeitete Stapelverarbeitungszelle.

[0074] Wenn der Operand von dem Block 815 ein POLYGON-Operand ist, wird der Logikblock 840 zur Ge-
nerierung von Mikrobefehlen in der Anzeigeliste 430 ausgefihrt, um die durch die Stapelverarbeitungszelle de-
finierten Polygon-Grundelemente oder Polygonreihen anzuzeigen. Die Anzahl an in der Stapelverarbeitungs-
zelle spezifizierten Scheiteln wird in dem Zahlenfeld angegeben. Es werden drei Polygondarstellungsmodi un-
terstitzt, namentlich der Listen-, der Zerlegungs- und der Fachermodus, wobei der Modus in dem Flagfeld ge-
setzt wird. In dem Listenmodus legen jeweils drei Scheitel ein Polygon fest. In dem Zerlegungsmodus definie-
ren die ersten drei Scheitel ein erstes Polygon und danach definiert jeder Scheitel ein neues Polygon, das sich
mit dem vorhergehenden Polygon zwei Scheitel teilt. In dem Fachermodus wird der erste Scheitel in der Schei-
tel-Datenstruktur von jedem Polygon geteilt und durch jeweils zwei danach auftretende Scheitel wird ein neues
Polygon definiert. Auf der Grundlage der POLYGON-Operation generiert die HDGL 240 der vorliegenden Er-
findung die geeigneten Mikrobefehle innerhalb der hardwareabhangigen Anzeigeliste 430 fur die verarbeitete
Stapelverarbeitungszelle.

13/36

DE 696 35403 T2 2006.07.27

[0075] Wenn der Operand von dem Block 815 ein Steueroperand ist, wird der Logikblock 845 zur Verarbei-
tung des Steueroperanden ausgefiihrt. Zum Beispiel stellt der Steueroperand SaturatetoBounds bestimmte
Farbsteuerregister entsprechend den Werten des ersten und zweiten Bytes in dem Zahlenfeld fiir die Farbmas-
kierung und -sattigung auf hoch und niedrig. Der SetZMask-Operand setzt die Z-Maske fir ie Kollisionserfas-
sung und Objektidentifizierung auf den Wert des Zahlenfelds. Der SetDisplayPage-Steueroperand stellt den
Anfangsversatz des Anzeigebereichs ein. Dies wird fiir eine Doppel- und Dreifach-Pufferung verwendet. Der
Versatzwert wird dem Zahlenfeld zugefihrt. Wie im Abschnitt Il beschrieben sind auch andere Steueroperan-
den zulassig.

[0076] Nach der Vervollstandigung der Logikblocke 820-845 vollzieht sich die Riickkehr zu einem Block 850,
wo das Flagfeld der verarbeiteten Stapelverarbeitung zur Bestimmung Uberprift wird, ob es ein Batch
End-('Stapelende')-Flag enthalt. Wenn ja, ist das Stapelverarbeitungsfeld 420 vollstandig und die Ausfiihrung
wird Uber einen Block 855 verlassen. Wenn das Batch End-Flag nicht gesetzt ist, kehrt die Verarbeitung zu
dem Block 810 zuriick, um die nachste Stapelverarbeitungszelle des Stapelverarbeitungsfeldes 420 zu holen
und zu verarbeiten. Die durch die Verarbeitung von Fig. 12 generierte Anzeigeliste wird an der Anzeigeeinheit
105 dargestellt, wenn das System 200 einen Ldschanzeigeliste-Befehl empfangt (siehe Abschnitt Il fir eine
exemplarische Ausflihrungsform).

[0077] Der fur das Verfahren 800 erforderliche Befehlssatz ist ausreichend kompakt, um in die meisten Co-
decache-Speicher 102a der meisten Computersysteme zu passen. Auf diese Weise fiihrt die Ausfiihrung eines
Stapelverarbeitungsfeldes 420 von Stapelverarbeitungszellen durch das Verfahren 800 nicht zu Codeca-
che-Fehlgriffen und das Parametrisierungsverfahren 800 wird rasch ausgefuhrt. Durch ein sequenzielles Aus-
fuhren der Stapelverarbeitungszellen innerhalb eines Stapelverarbeitungsfeldes 420 ohne Unterbrechung wird
die Verwendung des Datencaches 102b wahrend der Parametrisierung ebenfalls maximiert.

Abschnitt Il

[0078] Ein Zweck der HDGL 240 besteht in der Bereitstellung einer einfach anzupassenden hardwareabhan-
gigen Schnittstelle fir die hardwareunabhangigen Grafikbibliotheken 220 und 230. Es ist zu erwarten, dass
verschiedene Low-Level-Versionen der HDGL 240 entwickelt werden kdnnen, um mit einer Vielzahl unter-
schiedlicher Hardwareeinheiten betrieben zu werden. Wahlweise kann eine Gruppe von HDGLs mit einer An-
zahl an Hardwareeinheiten versehen werden, wobei der Anwender zwischen der Gruppe auswahlen kann.
Eine exemplarische Implementierung der Version einer HDGL 240 ist nachstehend dargestellt. Obgleich eine
Anzahl an alternativen Ausfiihrungsformen innerhalb des Rahmens der HDGL 240 der vorliegenden Erfindung
realisiert werden kann, ist die nachstehend aufgeflhrte exemplarische Implementierung unter der Computer-
sprache C modelliert worden. Im Einzelnen sind exemplarische Implementierungen fir den Datenstrukturblock
310 und den Operationsblock 320 der HDGL 240 von Fia. 4 angegeben. Der Fachmann kann spezifische
Strukturen und Prozeduren mit der HDGL 240 verwenden, die zu dem erwiinschten Ergebnis flhren.

[0079] Exemplarische hardwareabhangige Grafikbibliothek-Datenstruktur 310 Die folgenden grundlegenden
Feldtypen sind folgendermalfien definiert:

int 32 Bit-Ganzzahl mit Vorzeichen

DWORD 32 Bit-Ganzzahl ohne Vorzeichen

WORD 16 Bit-Ganzzahl ohne Vorzeichen

BYTE 8 Bit-Buchstabe ohne Vorzeichen

FIX 32 Bit-Zahl mit fester Kommastelle, wobei 16 Bits die

Ganzzahl und 16 Bits der
Bruchteil sind.
BOOL Ganzzahl, wahr (1)/falsch (0)

[0080] Die HDGL 240 fungiert als eine Parametrisierungslage, wobei die High-Level-Beschreibung 420 der
Darstellungsgrundelemente (Punkte, Linien usw.) verarbeitet und der Hardwarelevel-Code generiert und in ei-
ner Anzeigeliste 430 gespeichert wird. Das als Eingang in die HDGL dienende Stapelverarbeitungsfeld 420 ist
als ein Feld aus Stapelverarbeitungsstrukturen definiert. Jede Stapelverarbeitungszelle enthalt mindestens
eine Stapelverarbeitungsstruktur. Eine exemplarische Stapelverarbeitungsstruktur (z.B. fiir eine Stapelverar-
beitungszelle des Stapelverarbeitungsfeldes 420) ist nachstehend angefihrt.

14/36

DE 696 35403 T2 2006.07.27

Stapel
DWORD dwOp,
DWORD dwFlags,
DWORD dwN,
WORD wTexID,
Vert* pVert;

[0081] Die obige Stapelverarbeitungsstruktur ist ein Prototyp fur eine Stapelverarbeitungszelle. Der Wert
"dwN" definiert die Anzahl an Punkten der Scheitel in dem der Stapelverarbeitungsstruktur zugeordneten
Grundelement. "dwOp" bestimmt die von der Stapelverarbeitungsstruktur ausgefiihrte grundlegende Grafiko-
peration und kann eine der folgenden Operationen sein:
1. 2D-Operationen: Der BLT-Operand kopiert eine durch die ersten zwei Scheitel bestimmte rechteckige
Flache, wobei der erste Scheitel z.B. die obere linke Ecke und der zweite Scheitel die untere rechte Ecke
definiert (einschlieend). Die Bestimmung fiir die Flache wird durch den dritten Scheitel in einer Stapelver-
arbeitungsstruktur eines Stapelverarbeitungsfeldes durch seine obere linke Koordinate definiert. Wenn ein
Flag TIMED_BLT gesetzt ist, wird die ausgefuhrte BLT-Operation durch das Aktualisieren der Videobilder
der in dem dwN-Feld der Zelle gespeicherten Liniennummer ausgeldst. Wenn TEXTURE in den Flags vor-
handen ist, wird die Texture-Zahl dwN zu der Quelle der BLT-Operation. Der Operand FILL stellt die Farb-
oder anderen Attribute einer rechteckigen Flache des Bildschirms ein. Die Flache ist durch die ersten bei-
den Scheitel festgelegt; so definiert z.B. der erste Scheitel die obere linke Ecke und der zweite Scheitel de-
finiert die untere rechte Ecke (einschlieRend). Wenn eine Z-Pufferung in den dwFlags gesetzt ist, wird der
Z-Puffer mit dem Wert von dem dwN-Feld (z.B. die unteren 16 Bits) aufgefillt werden. In einer Implemen-
tierung ist dies normalerweise auf OXFFFF gesetzt. Die Farbwerte, die den Bildpuffer auffullen (z.B. eine
Speichereinheit, die gemeinsam mit der Hardwareeinheit 250 genutzt wird oder auf die Einheit zugreifen
kann) werden den ersten Scheitel-Farbfeldern entnommen. Der FILL-Operand erkennt Fillungen mit einem
Wert von Null und stellt je nach Unterstiitzung von der Hardwareeinheit 250 die Schnell-Lésch-Operation
ein.
2. 3D-Operationen: Der POINT-Operand stellt einen Satz an Punkten dar, auf deren Koordinaten durch ein
Scheitel-Feld gezeigt wird. Die Anzahl an Punkten wird in dem dwN-Feld definiert. Der POLYLINE-Operand
stellt ein mehrliniges Grundelement dar, das aus bis zu (dwN-1) Scheiteln besteht. Der POLYGON-Operand
stellt ein Polygon-Grundelement auf der Grundlage der Anzahl dwN der Scheitel dar. Der genaue Polygon-
typ wird durch ein POLY*-Flag spezifiziert.
3. Grafikdarstellungssteueroperationen: Der SATURATE_TO_BOUNDS-Operand stellt die Farbvergleichs-
register in einer Ausfiuhrungsform entsprechend den Werten des ersten (1sb) und des zweiten Bytes in
'dwN' im Bereich von 0 bis 255 auf hoch oder niedrig: Dies wird bei Farbmarkierungs- und -sattigungspro-
zeduren verwendet. Der SET_Z MASK-Operand setzt die Z-Maske fiir die Kollisionserfassung und Objek-
tidentifikation auf den Wert (z.B. die unteren 16 Bits) von dwN. Das grundlegende Prinzip einer Objektiden-
tifzierung besteht darin, verschiedene obere Bits der Z-Koordinate zum Aufbewahren der Objektidentifika-
tionsnummer verfligbar zu halten. In einer Ausfiihrungsform ist diese Partition hardwaregeschiitzt, indem
ihre Bits auf Null gestellt werden, wahrend der Rest auf 1 gesetzt wird. Spater wird wahrend der Kollisions-
erfassung der kollidierte Z-Wert betreffs dieser Bit-Zeichenkette untersucht, um die Identifikation des kolli-
dierten Objekts darzustellen. Der SET_DISPLAY_PAGE-Operand setzt den Beginn des Versatzes des Ob-
jekts, was fiir eine Doppel- und Dreifach-Pufferung verwendet wird. Der Versatz wird dem dwN-Feld zuge-
fuhrt.

[0082] Hinsichtlich der Stapelverarbeitungsstruktur gibt das 'dwFlags'-Feld zusatzliche Merkmale an: Das
Batch End-Flag wird in der letzten Zelle in einem Stapelverarbeitungsfeld 420 gesetzt, um die Stapelverarbei-
tung zu beenden. Wenn nur eine einzige Stapelverarbeitungszelle vorliegt, wird das Stapelende in den
'dwFlags' der Zelle gesetzt. Das TIMED BLT-Flag wird innerhalb der BLT-Operation gesetzt, um eine getaktete
BLT-Operation auszufiihren, die mit der spezifizierten Bildschirm-Refreshline synchronisiert wird.

[0083] Das 'dwFlags'-Feld gibt ebenfalls das jeweilige mehrlinige Grundelement und den zu verwendenden
Darstellungsmodus der Polygon-Grundelemente an. POLYLINE-Grundelemente kénnen mehrere Linien auf-
weisen und als Listen, Zerlegungen oder Facher definiert sein, wobei (1) LINE_LIST, oder (2) LINE_STRIP,
oder (3) LINE_FAN spezifiziert wird. Die Polygon-Grundelemente kénnen aus mehreren Dreiecken bestehen
und als Listen, Zerlegungen oder Facher definiert werden, wobei (1) POLY_LIST, oder (2)POLY_STRIP, oder
(3) POLY_FAN spezifiziert wird. Die Unterschiede zwischen diesen Darstellungsmodi werden nachstehend be-
schrieben werden. LIST ist ein geordneter Satz von Punkten, der unter Verwendung von drei Punkten Polygo-
ne definiert (z.B. dreieckige Polygone). Das erste dreieckige Polygon wird durch die Punkte; 0, 1, 2 definiert.

15/36

DE 696 35403 T2 2006.07.27

Das zweite dreieckige Polygon wird durch die Punkte 3, 4, 5 definiert. Das dritte Polygon wird durch die Punkte:
6, 7, 8 usw. definiert. Ein STRIP ist ein geordneter Satz von Punkten, der die Punkte 0, 1, 2 als das erste drei-
eckige Polygon benutzt. Das zweite dreieckige Polygon wird durch die Punkte 1, 2, 3 definiert. Das dritte drei-
eckige Polygon wird durch die Punkte 2, 3, 4 usw. definiert. Ein FAN ist ein geordneter Satz an Punkten, der
den Punkt 0 als den Mittelpunkt vieler dreieckiger Polygone verwendet. Das erste dreieckige Polygon wird als
0, 1, 2 definiert. Das zweite dreieckige Polygon wird durch die Punkte 0, 2, 3 definiert. Das dritte dreieckige
Polygon wird durch die Punkte 0, 3, 4 usw. definiert.

[0084] Wenn die Operation Z-gepuffert werden soll, wird eines der folgenden Flags in 'dwFLAGS' einge-
schlossen: (1) ZBUFFER fihrt eine normale Z-Operation aus, oder ZALWAYS schreibt beide Pixel und Z; oder
ZMASK fihrt eine normale Z-Operation aus, aber aktualisiert den Z-Puffer nicht. Zusatzlich wird das GOU-
RAUD-Flag zu den Polyline- und Polygonoperationen hinzugefiigt, wenn eine Schattierung erwiinscht ist. Das
ALPHA-Flag wird in bestimmten Hardwareeinheiten, die dieses Merkmal unterstiitzen, zu Polygonoperationen
fur ein Alpha-Blending hinzugefligt.

[0085] Das TEXTURE-Flag erzeugt Texture-Maps von Polygonen. Solche texturierten Polygone kdnnen
ebenfalls PERSPECTIVE aufweisen, das zur Anschaltung der Perspektivenkorrektur hinzugeflgt ist. Wie
nachstehend erlautert stellt der Wert 'wTexID' die Texture-ldentifikationsnummer der registrierten Textur dar.

[0086] Die folgenden Flags werden bei Texturen verwendet: (1) TEX_MAX_NEAREST, eine allgemeine Vor-
einstellung; oder (2) TEX_MAX_LINEAR; und eines der folgenden Flags: TEX_MIN_NEAREST, oder
TEX_MIN_LINEAR, eine weitere allgemeine Voreinstellung. Das Flag TEX_TRANSP wird fir transparente
Texturen hinzugefugt. Die als transparent behandelte Farbe wird durch die Operation
SATURATE_TO_BOUNDS sowohl beziglich des oberen wie des unteren Werts eingestellt.

[0087] Eine weitere Datenstruktur der HDGL 240 ist die Vert-Struktur, die fur ein Darstellungsgrundelement
einen Scheitel festlegt:

Vert

FIX x,y, z;
union ¢
BYTE index;
BYTE r,gb.a;
FIX u, v, w;

[0088] Die Position im dreidimensionalen Raum des Scheitels wird durch x-, y- und z-Feldkoordinaten fest-
gelegt. Die Farbe kann aus zwei unterschiedlichen Formaten erkannt werden, namentlich dem "Index"-Format
(in einer Ausfiihrungsform fir den indizierten 8 bpp-Farbmodus) oder einer Kombination von r, g, b, wobei das
Alpha-Format als Komponenten spezifiziert ist (in einer Ausfiihrungsform fiir den 16, 24 bpp-Farbmodus). Die
Felder u und v definieren die Koordinate in dem Texture-Raum und das Feld w ist die homogene Koordinate
fur Texture-Berechnungen. Fir jedes Darstellungsgrundelement in einer Stapelverarbeitungszelle wird ein
Feld dieser Vert-Strukturen in dem Speicher 102 generiert und die Adresse des Vert-Feldes wird lber den
'pVert'-Eintritt zu der HDGL 240 in eine Stapelverarbeitungszelle des Stapelverarbeitungsfeldes 420 Gberge-
leitet. Ebenfalls erleichtert die Struktur die Texture-Map-Koordinaten (u, v), die mittels Eins-zu-Eins-Mapping
zu den gegebenen Bildschirmkoordinaten Ubersetzt werden. Diese werden in Texture-Mapping-Operationen
verwendet. Der Parameter "w" ist der perspektivische Faktor dieses Scheitels, dessen Wert auf "1" gesetzt ist,
d.h. dass in einer Ausfiihrungsform dem Scheitel keine Perspektive zugeordnet wird, wobei jeder hohere Wert
bedeutet, dass die Textur zu dem Scheitel hin abgeschragter ist, wodurch eine hdhere perspektivische Verzer-
rung bewirkt wird.

[0089] Eine weitere Datenstruktur der HDGL 240 ist die Texture-Struktur, die fiir Registrierungszwecke ein
Texture-Map definiert.

16/36

DE 696 35403 T2 2006.07.27

Texture
WORD wHeaplD;
WORD wWidth;
WORD wHeight;
BYTE* pbTex
DWORD dwFlags

[0090] Diese Datenstruktur verfiugt iber Texture-Dimensionsfelder (Breite und Héhe) und einen Zeiger (pb-
Tex) zu einer Textur, die in dem Systemspeicher 102 gespeichert ist. Ebenfalls beinhaltet sie das Handle (He-
aplD) zu dem Heap, der unter Verwendung der Funktion TextureHeapAlloc() samtlichen Texturen eines einzel-
nen Anwenders zugewiesen wurde. Das 'dwFlags'-Feld erfasst den Texture-Typ und es kann in Abhangigkeit
von der Hardwareeinheit 250 eine der folgenden Einstellungen aufweisen: (1) TEX 4BBP fiir indizierte 4
bpp-Texturen, oder (2) TEX_ 8BBP fir indizierte 8 bpp-Texturen, oder (3) TEX_16BBP fir 565 True-Color-Tex-
turen, oder (4) TEX_24BBP fir 888 True-Color-Texturen oder jede beliebige andere anwenderspezifische Ein-
stellung.

[0091] Ebenfalls kann das folgende Flag logisch zu den 'dwFlags' hinzugefiigt werden: TEX_PROTECT
schitzt die Anwender-Textur davor, wahrend der Texture-Erfassung mit inrem Hardwareformat tiberschrieben
zu werden. Fir True-Texturen kénnen die Texture-Daten in einer Ausfiihrungsform in einem 3D-gepackten For-
mat [alpha-BGR] geschrieben werden, wobei die Farbe Rot in dem am geringsten signifikanten Byte linear von
links nach rechts und von der obersten zu der untersten Linie gespeichert wird. Fur indiziertes 8 bpp ist nur ein
Byte pro Pixel erforderlich und fiir 4 bpp werden zwei Pixel in jedes Byte gepackt, wobei das Pixel auf der linken
Seite des Paars in dem oberen Nibble gespeichert wird.

[0092] Eine weitere Datenstruktur der HDGL 240 ist die Palettenstruktur, die einen Palettenzellen-Satztyp
festlegt:

Palette (256)

BYTE .
BYTE 9
BYTE b:

[0093] In einer Ausflihrungsform definiert diese Struktur einen Typ fir einen Satz von 256 Palettenzellen mit-
tels ihrer Rot-, Griin- und Blau-Komponenten.

[0094] Eine weitere Datenstruktur der HDGL 240 ist die Rect-Struktur, die eine einschlieRende rechteckige
Flache auf dem Bildschirm definiert:

Rect
WORD x1;
WORD y1;
WORD X2;
WORD y2;

[0095] In einer Ausfihrungsform definiert das Format (x1, y1) die obere linke Ecke und (x2, y2) definiert die
untere rechte Ecke. Eine weitere Datenstruktur der HDGL 240 ist die Init-Struktur:

Init
Word Auflésung
WORD color mode;
WORD texspace;

[0096] Diese Struktur bestimmt die zu initialisierenden Auflésungs- und Farbmodi. Ebenfalls stellt sie die Men-
ge an Texture-(privatem) Speicher ein, der zur Abspeicherung geladener Texturen verwendet wird.

[0097] Eine weitere Datenstruktur der HDGL 240 ist die DisplayContext-Struktur, die den Status der Hard-
wareeinheit 250 zu jedem Zeitpunkt wiedergibt:

17/36

DE 696 35403 T2 2006.07.27

DisplayContext
WORD wHardware;
WORD wVideoMemory;
WORD wTextureHeap;
WORD wTextureAvail;
DWORD fCapAlpha;
DWORD fCapTexture;
DWORD fCapZmask;

[0098] Die Adresse dieser systemweiten Struktur wird durch den Aufruf einer anderen Initialisierungsprozedur
erhalten. Das wHardware-Feld enthalt den Code der darunter liegenden Grafikhardware und gibt die unter-
stlitzte Hardware-Version wieder: (1) HARDWARE_A, HARDWARE_B, HARDWARE_C usw.

[0099] Das wVideoMemory-Feld gibt die Menge an Video-RAM an (einschlieBlich des Z-Puffers), die in dem
Hardware-Board vorhanden ist. Das wTextureHeap-Feld zeigt die gesamte flr Texturen verfigbare Speicher-
menge und das wTextureAvail-Feld gibt die fur die Zuweisung von Texturen verfligbare Speichermenge an.
Dieser Wert ist gleich zu denjenigen von wTextureHeap oder liegt darunter, da unterschiedliche Anwender Gber
bereits zugewiesene Heaps fur ihre Texturen verfligen kénnen.

Exemplarische hardwareabhangige Grafikbibliothek-Operationen 320

[0100] Ein Boolescher Wert wird von einigen Funktionen zurlickgegeben, um zu signalisieren, ob die Funktion
erfolgreich verlaufen (TRUE) oder fehlgeschlagen (FALSE) ist. In dem Fall eines Fehlschlages kann GetErr-
Code() aufgerufen werden, um den Fehlercode des letzten Fehlers wiederzugeben und GetErrMsg() kann
dazu aufgerufen werden, den Zeiger auf eine mit Null abschlieBende Zeichenfolge zuriickzusetzen, die den
letzten Fehler beschreibt.

[0101] Eine HDGL 240-Prozedur InitLib() wird vor jeder anderen Prozedur aufgerufen, um die HDGL 240 zu
initialisieren. Eine weitere Prozedur ist die InitGraph-Prozedur:
BOOL InitGraph (const WORD wResolution, const WORD wColorMode)

[0102] Diese Prozedur initialisiert die Grafikhardwareeinheit 250. Sie wird von dem System 200 abgerufen
und spezifiziert die zu initialisierenden Auflésungs- und Farbmodi. Das Feld 'wResolution' ist eines der folgen-
den Felder: (1) RES GAME setzt die Auflésung auf 640 x 480; (2) RES_STANDARD setzt die Aufldsung auf
1024 x 768. Das 'wColorMode'-Feld stellt den erwiinschten Modus in dem Grafikmodus entweder auf: (1)
COLS fiir 8 bpp palletiert, auf (2) COL 16 fir 16 bpp 5-6-5, oder auf (3) COL_24 flr 24 bpp True-Color-8-8-8.

[0103] In Abhangigkeit von der Hardwareeinheit 250 lauten valide Kombinationen von 'wResolution' und
'wColorMode' wie folgt: (1) 640 x 480 x 8 indiziert, db mit Y-Versatz 640 x 480 x 8 indiziert, db mit Anzeigezei-
gerumschaltung; (2) 640 x 480 x 16 tc, db mit Y-Versatz; (3) 640 x 480 x 24 tc, db mit Y-Versatz; (4)1024 x
768 x 8 indiziert; (5) 1024 x 768 x 46 tc; und (6) 1024 x 768 x 24 tc. Diese Prozedur gibt im Erfolgsfall TRUE
und andernfalls FALSE aus. Mdégliche zuriickgegebene Fehler sind: (1) E_MEMTEST: Speichertest der Hard-
wareeinheit 250 hat versagt; (2) E_ ENGINETEST: Ausflihrungstest der Hardwareeinheit 250 hat versagt; (3)
E_PCI: Entweder ist Hardwareeinheit 250 oder Bus 100 nicht vorhanden; (4) E_ REGTEST: Hardwareeinheit
250 hat bei dem Test der internen Register versagt; (5) E_ NOTSUPPORTED: Modus wird von derzeitiger
Hardware nicht unterstiitzt (z.B. 16 bpp AN fir eine bestimmte Hardwareeinheit 250); und (6) E_ PARAMS: Un-
glltige Parameter fir die Prozedur.

[0104] Eine weitere Prozedur in der HDGL 240 ist die RestoreTextMode-Prozedur:
RestoreTextMode()

[0105] Diese Prozedur setzt den Videomodus wieder auf den VGA-Textmodus (in einer Ausfihrungsform z.B.
auf die Modusnummer 3) zurtick. Diese Prozedur wird als Gegenstiick zu der InitGraph-Prozedur benutzt, al-
lerdings bleibt der Status der Hardwareeinheit 250 nach diesem Aufruf undefiniert.

[0106] Eine weitere Prozedur in der HDGL 240 ist die DisplayContext * QueryGraphicsDevice-Prozedur:
DisplayContext * QueryGraphicsDevice ()

[0107] Durch diese Prozedur wird die Adresse der systemweiten Anzeigekontextstruktur erhalten, welche die

18/36

DE 696 35403 T2 2006.07.27

gegenwartigen Informationen Uber den Status der Hardwareeinheit 250 enthalt. Die SetPalette-Prozedur ist
eine weitere Prozedur in der HDGL 240:
BOOL SetPalette (WORD int_palette [,Palette* palette, WORD start, WORD count])

[0108] Diese Prozedur initialisiert die Palettenregister auf eine der folgenden Einstellungen (Wert der
init_palette ist): (1) PAL_GREY fur eine Graustufenpalette; (2) PAL_RGB fur Simulation der Indexfarbe (3-3-2);
und (3) PAL_CUSTOM fur eine Anwenderpalette — in diesem Fall wird der dritte Parameter eingefugt und ist
ein Zeiger zu einer Anwenderpalette. Die Argumente 'start' und 'count' definieren den Anfangsindex und die
gesamte Anzahl an von der gegebenen Palette einzustellenden Palettenzellen. Fir die gesamte Palette be-
tragt sie in einer Ausfihrungsform 0 bzw. 256. Die Prozedur gibt im Erfolgsfall TRUE und anderenfalls FALSE
aus, wobei mdgliche Fehler E_PARAMS fiir ungultige Parameter sind.

[0109] Die SetQualityDial-Prozedur ist eine weitere Prozedur in der HDGL 240:
SetQualityDial (BYTE bQuality)

[0110] Diese Prozedur setzt in einer Ausfiihrungsform einen Wert des Qualitats-/Leistungs-Steuerfeldes auf
einen Wert in dem Bereich [0,225], um die Darstellungsleistung und Bildqualitat anzupassen. Je niedriger die-
ser Wert ist, umso schneller sind die Parametrisierungen, jedoch sind Letztere auch weniger prazise. Wenn
das derzeitige Bild ein Animationsschritt ist, ist es vorteilhaft, diesen Wert auf eine beliebige kleine Zahl (z.B.
weniger als 100) einzustellen, um eine héhere Geschwindigkeit zu bewerkstelligen. Wenn Genauigkeit not-
wendig ist, wird der Wert auf einen gewissen hohen Wert gestellt (z.B. Gber 200).

[0111] Parametrisierungsroutinen werden typischerweise mit der Geschwindigkeit als dem signifikantesten
Faktor implementiert. Allerdings wird durch diesen Ansatz die Darstellungsqualitat beeintrachtigt. Zu Bewerk-
stelligung eines ausgeglichenen Gleichgewichts ist die Einstell 'Qualitat' hinzugefiigt worden. Wenn sie auf Null
gesetzt ist, verwenden die Darstellungsroutinen den Ansatz mit der hochsten Leistungsrate, der nicht immer
der Ansatz mit der hdchsten grafischen Prazision ist. Durch eine Erhéhung dieses Werts bis zu dem Maximum
wird die Genauigkeit auf die Kosten eines gewissen Verlusts der Leistungsrate erhdht werden. Die Genauigkeit
wird durch die Fehlerferme in Z, die Farbberechnungen sowie die Uberlappungsflachen der Darstellungsgrun-
delemente in Abhangigkeit von der Hardwareeinheit 250 widergespiegelt. Mit einem Texture-Mapping wird die
folgende Heuristik benutzt: wenn die Textur perspektivisch korrigiert und die vertikale Gré3e bzw. die Differenz
in Z 'klein' ist, wird die Textur linear anstatt perspektivisch gezeichnet werden, um den Parametrisierungsschritt
zu beschleunigen.

[0112] Diejenige Prozedur, die die hardwareunabhangigen Stapelverarbeitungszellen des Stapelverarbei-
tungsfeldes 420 ausliest und die entsprechenden hardwareabhangigen Mikrobefehle innerhalb einer Anzeige-
liste 430 im Speicher aufbaut, ist die BuildDisplayList-Prozedur:

BOOL BuildDisplayList (Stapel *p)

[0113] Diese Prozedur setzt einen Zeiger (Stapel *p) auf ein Stapelverarbeitungsfeld 420 vom Stapeltyp, und
baut in dem Systemspeicher 102 oder in dem RAM der Hardwareeinheit 250 eine Anzeige auf. Durch eine Rei-
he dieser Befehle wird eine Anzeigeliste aufgebaut, bis FlushDisplayList fir eine Darstellung der Anzeigeliste
auf dem Bildschirm 105 aufgerufen wird. Diese Prozedur gibt im Erfolgsfall TRUE und andernfalls FALSE aus.

Exemplarische hardwareabhangige Grafikbibliothek-Texture-Mapping-Prozeduren 330

[0114] Die Texture-Mapping-Prozeduren der HDGL 240 sind nachstehend in einer exemplarischen Ausfih-
rungsform illustriert. Die Prozedur

BOOL TextureHeapAlloc(WORD* pwHeapID, WORD wHeapSize)

weist Speicher von einem Texture-Heap zu. Fir einen Host fir mehrere Anwender ist es beabsichtigt, verschie-
dene Verfahren zu unterscheiden und ihre jeweiligen eigenen Texture-Heap-Raume zu verwalten. Das 'wHe-
apSize'-Feld reprasentiert die Anwenderanfrage fur die Heap-GroRe. Diese GroRe muss gleich oder kleiner als
der Wert 'wTextureAvail' sein, der in der DisplayContext-Struktur erhalten wird. Diese Prozeduren geben im Er-
folgsfall TRUE und andernfalls FALSE aus. Bei einem Erfolg enthalt der Zeiger *pwHeapID das Heap-Handle,
das dem neuen Heap-Raum zugewiesen worden ist.

[0115] Die HDGL 240-Prozedur:

BOOL RegisterTexture(WORD *pwTexID, LL_Texture* pTex)

registriert eine Textur. Sdmtliche Texture-Informationen werden aus einer Texture-Daten-Struktur abgelesen,
die zuvor von dem Anwender gebildet worden ist, nach dem Aufruf jedoch nicht mehr benétigt wird. Die Textu-

19/36

DE 696 35403 T2 2006.07.27

re-Daten werden in ein hardwareabhangiges Format umgewandelt. Die neuen Daten werden entweder in dem
gleichen Speicher, indem sich die Texture-Quelldaten befinden, zurlick gespeichert (z.B. werden die Textu-
re-Quelldaten Uberschrieben), oder falls ein TEX_PROTECT-Bit in dem 'dwFlag' gesetzt ist, wird ihnen ein neu-
er Speicherblock zugewiesen, wodurch die urspriinglichen Texture-Quelldaten erhalten werden. Der Zeiger
'pTex' zu der Anwender-Quellen-Texture wird erhalten. Die Identifikationsnummer der registrierten Textur wird
in einem Wort gespeichert, auf das durch pwTexID gezeigt wird. Diese Prozedur gibt bei Erfolg TRUE und an-
dernfalls FALSE aus. Im Erfolgsfall enthalt der Zeiger *pwTexID das Texture-Handle und N_LIB_MEM wird in
'dwFlags' gesetzt, wenn ein hardwareabhangiges Texture-Format in einem Privatbibliothek-Heap anstatt Gber
die Quellen-Texture-Daten gespeichert wird.

[0116] Die HDGL 240-Prozedur:

BOOL FreeTexture (WORD wTexID)

gibt die Texture-Nummer wTexID frei, die von ihrer Registrierung ausgegeben wurde. Diese Textur kann nicht
langer verwendet werden und wird von dem Texture-Bibliothek-Heap freigegeben, wenn IN_LIB_MEM von der
Registrierungsprozedur in 'dwFlags' gesetzt worden ist.

[0117] Die HDGL 240-Prozedur:

BOOL LoadTexture (WORD WTEXid)

|adt eine Textur, dessen Handle wTexID ist, in den Texture-Speicher der Hardwareeinheit 250. Typischerweise
wird eine Textur geladen, bevor ihre wTexID in dem wTexID-Teil einer Stapelverarbeitungsstruktur verwendet
wird. In einer Ausfiihrungsform kann diese Prozedur aufgrund der Speicherfragmentierung, die durch mehrere
Lade- und Entladevorgange von Texturen verursacht worden ist, einen Fehler ausgeben. In diesem Fall wird
die HeapCollect-Prozedur fiir eine Speicherbereinigung mit einem Neuversuch von LoadTexture verwendet.
Allerdings kann das Makro AutoHeapCollect(True) dazu benutzt werden, die Bibliothek in einen Modus zu ver-
setzen, in dem eine Speicherbereinigung im Falle eines nicht erfolgreichen Ladevorgangs automatisch ausge-
fuhrt wird. Diese Prozedur gibt im Erfolgsfall TRUE und im anderen Fall FALSE aus.

[0118] Die HDGL 240-Prozedur:

BOOL UnloadTexture (WORD wTexID)

entladt eine Textur, dessen Handle wTexID von dem privaten Speicher der Hardwareeinheit 250 ist. Diese Pro-
zedur gibt die Textur nicht "frei"; d.h. die Textur istimmer noch registriert und kann spater erneut geladen wer-
den. Die Prozedur gibt im Erfolgsfall TRUE und andernfalls FALSE aus. Die HDGL 240-Prozedur:
HeapCollect (WORD wHeapID)

fuhrt eine Speicherbereinigung der Texture-Daten in dem privaten Speicher der Hardwareeinheit 250 aus. Die-
se Prozedur wird verwendet, wenn LoadTexture aufgrund einer Speicherfragmentierung versagt. Das Argu-
ment 'wHeaplD' ist das Heap-Handle des defragmentierten Heaps. Dieses Handle wird durch ein Anruf der
TextureHeapAllocQ erhalten.

[0119] Ein Heap-Bereinigungsmakro wird durch diese Implementierung der HDGL 240 ebenfalls verwendet:
AutoHeapCollect (WORD wHeapID, BOOL collect)

[0120] Diese Prozedur stellt die automatische Heap-Sammlung auf AN oder AUS, um Texturen in den priva-
ten Texture-Speicher der Hardwareeinheit 250 zu laden. Das Argument 'wHeaplD' ist das Heap-Handle der be-
troffenen Heaps. Dieses Handle wird durch ein Aufruf von TextureHeapAlloc() erhalten.

[0121] In der bevorzugten Ausfuhrungsform der vorliegenden Erfindung stellt eine hardwareabhangige
Low-Level-Grafikbibliothek eine Schnittstelle zwischen einer hardwareunabhangigen High-Level-Grafikbiblio-
thek und einer Grafikhardwareeinheit her, die wie oben erlautert flexible und effiziente Grafikdarstellungspro-
zeduren aufweist. Obgleich die vorliegende Erfindung durch bestimmte Ausfiihrungsformen beschrieben wor-
den ist, sollte sich verstehen, dass die vorliegende Erfindung nicht durch derartige Ausfihrungsformen, son-
dern lediglich durch die beiliegenden Anspriiche begrenzt sein sollte.

Patentanspriiche

1. Computergesteuertes grafisches Anzeigesystem, versehen mit:
einem mit einem Bus gekoppelten Prozessor;
einer Speichereinheit zum Speichern von Informationen;
einer Hardware-Grafikeinheit, die hardwareabhangige Mikrobefehle von einer in der Speichereinheit gespei-
cherten Anzeigeliste erhalt und ein Bild auf einem Bildschirm erzeugt;
einer High-Level-Grafikbibliothek, die hardwareunabhangige Grafikdarstellungsprozeduren, die von dem Pro-

20/36

DE 696 35403 T2 2006.07.27

zessor ausgefuhrt werden, umfasst, wobei die hardwareunabhangigen Grafikdarstellungsprozeduren zum Ver-
arbeiten von Grafikdarstellungsanfragen von einer High-Level-Anwendung dienen, um hardwareunabhangige
Ausgangsdatenstrukturen, die Grafikoperanden umfassen, zu erzeugen; und

einer hardwareabhangigen Low-Level-Grafikbibliothek, die von dem Prozessor ausgefuhrt wird, um die hard-
wareunabhangigen Ausgangsdatenstrukturen zu verarbeiten, um aus diesen die Mikrobefehle fir die Hard-
ware-Grafikeinheit zu erzeugen, wobei die High-Level-Grafikbibliothek ohne Umgestaltung mit einer Vielzahl
von unterschiedlichen Hardware-Grafikeinheiten kompatibel ist.

2. System gemaR Anspruch 1, bei welchem die hardwareunabhangigen Ausgangsdatenstrukturen ein Feld
von Stapelverarbeitungszellen umfassen, wobei jede Stapelverarbeitungszelle eine separate auszufihrende
Grafikoperation darstellt und wobei das Feld von Stapelverarbeitungszellen nacheinander an die zu verarbei-
tende hardwareabhangige Low-Level-Grafikbibliothek geleitet wird, um die Mikrobefehle zu erzeugen.

3. System nach Anspruch 2, bei welchem die Speichereinheit einen Codecache aufweist und bei welchem
die hardwareabhangige Low-Level-Grafikbibliothek Parametrisierungsprozeduren umfasst, die von dem Pro-
zessor ausgefuhrt werden, um die Mikrobefehle zu erzeugen, wobei das Feld von Stapelverarbeitungszellen
ohne Unterbrechung durch die Parametrisierungsprozeduren verarbeitet werden, um Cachefehler zu vermei-
den.

4. System nach Anspruch 2, bei welchem die hardwareabhangige Low-Level-Grafikbibliothek Parametri-
sierungsprozeduren zum Verarbeiten von Polygon-Grundelementen, Satzen von Grafiklinien und Satzen von
Grafikpunkten aufweist.

5. System nach Anspruch 4, bei welchem die Parametrisierungsprozeduren ferner dem Verarbeiten von
Bitleveltransfers, Fullungen und Umsetzungen zwischen Texture-Map-Formaten dient.

6. System nach Anspruch 2, bei welchem die hardwareabhangige Low-Level-Grafikbibliothek ferner eine
Leistungs-/Qualitats-Einstellprozedur aufweist, die von dem Prozessor ausgefuhrt wird, um die Darstellungs-
leistungsrate einzustellen und entsprechend die Darstellungsqualitat des auf dem Bildschirm dargestellten Bil-
des einzustellen.

7. System nach Anspruch 6, bei welchem die Leistungs-/Qualitats-Einstellungsprozedur, die von dem Pro-
zessor ausgefihrt wird, dem Einstellen des Pegels von linearen und perspektivischen Unterteilungen, die zur
Grafikdarstellung ausgefuihrt werden, sowie zum Einstellen des Pegels von fur Polygonuberlappungen benutz-
te Fehlerkorrekturfaktoren sowie zum Einstellen der GrundelementgrenzgréfRe zwecks Abschaltung der Pers-
pektivendarstellung dient.

8. Computergesteuertes grafisches Anzeigesystem, versehen mit:
einem mit einem Adressen-/Daten-Bus gekoppelten Prozessor;
einer Speichereinheit zum Speichern von Grafikinformationen;
einer Grafikhardwareeinheit zum Verarbeiten von in einer Anzeigeliste gespeicherten hardwareabhangigen Mi-
krobefehlen und, in Ansprechen hierauf, zum Erzeugen eines Bildes auf einem Bildschirm;
einer High-Level-Grafikbibliothek mit von dem Prozessor ausgeflihrten hardwareunabhangigen Grafikdarstel-
lungsprozeduren, wobei die hardwareunabhangigen Grafikdarstellungsprozeduren dem Erhalten von Grafik-
darstellungsanfragen von einer High-Level-Anwendung und zum Erzeugen eines hardwareunabhangigen Fel-
des von Stapelverarbeitungszellen von diesen dient, wobei jede Stapelverarbeitungszelle eine individuelle
Grafikdarstellungsoperation darstellt, die ein Darstellungsgrundelement einschlief3t; und
einer von dem Prozessor ausgefiihrten hardwareabhangigen Low-Level-Grafikbibliothek zur Aufnahme des
Feldes von Stapelverarbeitungszellen von den Grafikdarstellungsprozeduren, wobei die hardwareabhangige
Low-Level-Grafikbibliothek dem Parametrisieren von Zellen des Feldes von Stapelverarbeitungszellen dient,
um die Mikrobefehle fur die Hardware-Grafikeinheit zu erzeugen.

9. System nach Anspruch 8, bei welchem die Speichereinheit einen Codecache und einen Datencache
aufweist und wobei die hardwareabhangige Low-Level-Grafikbibliothek Parametrisierungsprozeduren um-
fasst, die in dem Codecache gespeichert sind und an Zellen des Feldes von Stapelverarbeitungszellen, die in
dem Datencache gespeichert sind, ausgefiihrt werden, um die Mikrobefehle zu erzeugen, wobei die Zellen des
Feldes von Stapelverarbeitungszellen ohne Unterbrechung durch die Parametrisierungsprozeduren ausge-
fuhrt werden, um Codecachefehlgriffe zu vermeiden.

10. System gemaf Anspruch 8, bei welchem die hardwareabhangige Low-Level-Grafikbibliothek von dem

21/36

DE 696 35403 T2 2006.07.27

Prozessor ausgefiihrte Parametrisierungsprozeduren umfasst, um Polygon-Grundelemente, Satze von Grafi-
klinien und Satze von Grafikpunkten zu verarbeiten.

11. System gemaR Anspruch 10, bei welchem die Parametrisierungsprozeduren ferner dem Verarbeiten
von Bitleveltransfers, Fullungen und dem Durchfiihren von Texture-Map-Format-Umsetzungen dienen.

12. System gemafR Anspruch 8, bei welchem die hardwareabhangige Low-Level-Grafikbibliothek ferner
eine Leistungs-/Qualitats-Einstellprozedur aufweist, die von dem Prozessor ausgefiihrt wird, um die Darstel-
lungsleistungsrate einzustellen und entsprechend die Darstellungsqualitat des auf dem Bildschirm dargestell-
ten Grafikbildes einzustellen.

13. System nach Anspruch 12, bei welchem die Leistungs-/Qualitats-Einstellungsprozedur, die von dem
Prozessor ausgefuhrt wird, dem Einstellen des Pegels von linearen und perspektivischen Unterteilungen, die
zur Grafikdarstellung ausgefiihrt werden, sowie zum Einstellen des Pegels von fiir Polygoniberlappungen be-
nutzte Fehlerkorrekturfaktoren, sowie zum Einstellen der GrundelementgrenzgréRe zur Abschaltung der Per-
spektivendarstellung dient.

14. Verfahren flr ein computergesteuertes Grafiksystem mit einem mit einem Bus gekoppelten Prozessor,
einer Speichereinheit zum Speichern von Informationen und einer Grafikhardwareeinheit zum Darstellen von
Bildern auf einem Bildschirm basierend auf Mikrobefehlen innerhalb einer Anzeigeliste, wobei das Verfahren
dem Aufbau der Anzeigeliste dient, welches die nachstehenden computerimplementierten Schritte umfasst:
Erzeugen eines Satzes von Grafikdarstellungsanforderungen einschlieRlich Anforderungen zum Darstellen
von Grafikgrundelementen einschlieBlich Polygonen, Linien und Punkten unter Verwendung einer von dem
Prozessor ausgefiihrten High-Level-Anwendung;

Umsetzung des Satzes von Grafikdarstellungsanfragen in ein hardwareunabhangiges Feld von Stapelverar-
beitungszellen unter Verwendung von hardwareabhangigen Prozeduren einer High-Level-Grafikbibliothek, die
von dem Prozessor ausgefiihrt wird, wobei jede Stapelverarbeitungszelle eine individuelle Grafikoperation um-
fasst;

Aufnahme des hardwareunabhangigen Feldes von Stapelverarbeitungszellen und Erzeugen daraus einer
hardwareabhangigen Anzeigelisten von Mikrobefehlen durch sequentielles Verarbeiten von Zellen des Feldes
von Stapelverarbeitungszellen unter Verwendung einer hardwareabhangigen Low-Level-Grafikbibliothek, die
von dem Prozessor ausgefihrt wird; und

Zugreifen auf die Anzeigeliste und Anzeigen eines Bildes auf dem Bildschirm unter Verwendung der Grafik-
hardwareeinheit, wobei die High-Level-Grafikbibliothek ohne Umgestaltung mit einer Vielzahl von unterschied-
lichen Grafikhardwareeinheiten kompatibel ist.

15. Verfahren gemaRl Anspruch 14, bei welchem im Zuge des Schrittes des Aufnehmens des hardwareun-
abhangigen Feldes von Stapelverarbeitungszellen und des Erzeugens daraus einer hardwareabhangigen An-
zeigeliste von Mikrobefehlen:
innerhalb der Stapelverarbeitungszellen Polygon-Grundelemente verarbeitet werden, um daraus Anzeigelis-
ten-Mikrobefehle zu erzeugen;

Satze von Linien innerhalb der Stapelverarbeitungszellen verarbeitet werden, um daraus Anzeigenlistenmik-
robefehle zu erzeugen; und

Satze von Punkten innerhalb der Stapelverarbeitungszellen verarbeitet werden, um daraus Anzeigenlistenmik-
robefehle zu erzeugen.

16. Verfahren gemaR Anspruch 15, bei welchem im Zuge des Schrittes des Aufnehmens des hardwareun-
abhangigen Feldes von Stapelverarbeitungszellen und des Erzeugens daraus einer hardwareabhangigen An-
zeigeliste von Mikrobefehlen ferner:

Bitleveltransfers verarbeitet werden, um daraus Anzeigelistenmikrobefehle zu erzeugen;

Fulloperationen verarbeitet werden, um daraus Anzeigelistenmikrobefehle zu erzeugen und
Texture-Map-Umsetzungen verarbeitet werden, um ein Texture-Map von einem Anzeigeformat in ein anders
umzusetzen.

17. Verfahren gemaRl Anspruch 14, bei welchem im Zuge des Schrittes des Aufnehmens des hardwareun-
abhangigen Feldes von Stapelverarbeitungszellen und des Erzeugens daraus einer hardwareabhangigen An-
zeigeliste von Mikrobefehlen:

Parametrisierungsprozeduren der hardwareabhangigen Grafikbibliothek in eine Cachespeichereinheit geladen
werden; und
Cachefehlgriffe wahrend der Verarbeitung des Feldes von Stapelverarbeitungszellen verhindert werden, indem

22/36

DE 696 35403 T2 2006.07.27

die Parametrisierungsprozeduren sequentiell von der Cacheeinheit an den Zellen des Feldes von Stapelver-
arbeitungszellen ohne Unterbrechung ausgefiihrt werden.

18. Verfahren gemaf Anspruch 15, bei welchem ferner:
eine Einstellung eines Leistungs-/Qualitats-Steuerfeldes, welches auf dem Bildschirm angezeigt wird, einge-
stellt wird;
die Leistungsrate der Grafikhardwareeinheit basierend auf dieser Einstellung erhdht und erniedrigt wird; und
entsprechend die Anzeigequalitat der Grafikhardwareeinheit basierend auf der Einstellung erhéht und ernied-
rigt wird.

19. Verfahren gemafR Anspruch 18, bei welchem im Zuge der Schritte des Erhéhens und Erniedrigens der
Anzeigeleistung der Hardwaregrafikeinheit und des entsprechenden Erhéhens und Erniedrigens der Anzeige-
qualitat der Grafikhardwareeinheit basierend auf der besagten Einstellung ferner:
der Pegel von linearen und perspektivischen Unterteilungen, die zur Grafikdarstellung ausgefihrt werden, ein-
gestellt wird;
der Pegel von Fehlerkorrekturfaktoren eingestellt wird, die fiir Polygoniberlappungen verwendet werden; und
die Grundelementgrenzgrélie zur Abschaltung der Perspektivendarstellung eingestellt wird.

20. Verfahren gemaf Anspruch 15, bei welchem die Grafikdarstellungsanfragen ferner Anzeigeoperatio-
nen von Texture-Maps umfassen.

Es folgen 13 Blatt Zeichnungen

23/36

DE 696 35403 T2 2006.07.27

Anhangende Zeichnungen

= HIGH-LEVEL- | *°
ANWENDUNG
/ \
P g 12 P o 14
3D-DDI OPEN GL
SCHNITTSTELLE 4 16
T

D < GRAFIKHARDWARE 4 18
20

FIG. 1A
(Stand der Technik)

24/36

DE 696 35403 T2 2006.07.27

C START) 30
4

ANWENDUNG BAUT|
DATENSTRUKTUR
DER GRUNDELE- 1
MENTE AUF

4

ANWENDUNG

SENDET GRUND-
ELEMENTE ZU A34
GRAFIKBIBLIOTHEK

J

BIBLIOTHEK

BAUT ANZEIGE-
LISTE AUS GRUND-
ELEMENTEN AUF

!

MECHANISMUS
RENDERT GRUND-
ELEMENTE IN 138
ANZEIGELISTE FUR
DARSTELLUNG

—~ 32

l

~36

FIG. 1B
(Stand der Technik)

25/36

DE 696 35403 T2 2006.07.27

¢ O

om~ 2001
llllllll LIFHNIT (
! -MI4VyO
| VM ,
801 L04 ~QyYH 301 504
. | 2ol
WINOX {
-ONVOSNY _ ONNYINILS 38vONI3 ONALHOINNOA
/ONVONIZ | -40SAND JHOSIHIW -39IFZNY
| .
|
001)
|
ezoT |
=
ONNLHOINHOA qz0T-Hnsival Fa000 |
FSONNYIHOITIS WYY WOy |
-N3Lva |
201 £01 ¢ (0} |
./ e.\ HOSS3aZOo¥d |
p— ——— —— — — —— — — —— — .- Cv— WD A e, — — — — S— A— Rnd S — S — —— — ey — .ll L
W3HL0NgIg , ﬁwﬁ
ovT-r -qidvyo
IDIONVHEY
-JUVMAYVH

26/36

DE 696 35403 T2 2006.07.27

¢ "OIAd

0se v FAYMAAYHIIHYHD

{

FJHYMAUVH-1IATT-MOT S0T
¥n4d ¥3Hlonalg
ove v -MidVd9 IHOSIHIZadS
MIHLOIT8Ig-.SONNANIGHIA.,
ROtz L 371131S1LINHOS]
J- M3Hlonaig <+~ OiFHlongig
0ce D EL 1) 0z “MidvyO
=19 N3dO -laa ag
NIovy4iay NIovy4ay
SONINIANIY .N/ X_WJ -SONMIANTY
M4vHO M4V
JUVYMLL0S
0TC— -sonnanamny
-13AIT-HOIH

27/36

DE 696 35403 T2 2006.07.27

b "OIAd

A1SITIADITZNY
3IDIONYHEY
“AVMAYVYH ‘
/F (ogz 19po 022) 01¢
. m p
7 7
MIHioMgalg - «d13413dV1S. AIHLONGIg -\ _
<[-SONNANIgYIA-D - - < _
215IONYHEY NIUNIMNYILS) x_.n_<mmu IoVy49V ONNAN3IMNY
-IYVYMANYH "N3l1lvd T3AIT"HOIH o UEL22[)
7 IOIONYHAVNN
cme/f (1] 74 -TUVMAUYH ﬂ

oTvy
ozy)

28/36

DE 696 35403 T2 2006.07.27

0€E

\

NIHNAIZ0¥Ud
“ONIddVIN
-FANLX3L

0

v

0CE 1

S OIA

(ONNYIISIHNLINYHYI)
NINOILYHIAdO

AY

0TE -

NIANIMNYLISNILYA

29/36

DE 696 35403 T2 2006.07.27

f\.,.
[8)
& A
q-\\
a
<
< =
Q
1]
S N
~
<
N
o
™~
q
TN

30/36

FIG. 6

DE 696 35403 T2 2006.07.27

(EINGANG) 00

ANWENDUNG FRAGT STAPEL
VON DARZUSTELLENDEN
GRUNDELEMENTEN AB L 510

!

HIGH-LEVEL-GRAFIKBLIO-
THEK BAUT STAPELFELD AUF
UND SPEICHERT ES IM
SPEICHER DES
COMPUTERSYSTEMS

!

STAPELFELD WIRD ZU
HARDWARESPEZIFISCHER | -52¢0
LOW-LEVEL-GRAFIKBLIOTHEK |
UBERTRAGEN

— 515

X

PARAMETRISIERUNGSROU-
TINEN IM CODECACHE VER-
ARBEITEN STAPELFELDER

. MIT BEGRENZTEN
DATENCACHE-FEHLGRIFFEN
UND BAUEN HARDWAREAB-
HANGIGE ANZEIGELISTE AUF

}- 525
ANZEIGELISTE WIRD VON
GRAFIKHARDWARE 530

A
VERARBEITET
2

@CKSPRUNG)

31/36

DE 696 35403 T2 2006.07.27

102b
— —/~ (420
i ! 4
{ i
i
i i
! }
FIG. 8A
r“‘*‘“‘;rlOZb 420
i { 7
' e
’ |
{ {
Vo
FI1G. 8B
- -~ —-102b
‘ [
| (
. ¢
L | /
- 420

FIG. 8C

32/36

DE 696 35403 T2 2006.07.27

610

J

615
128

255

QUALITAT

|
4 610a

610b —>

(
&

LEISTUNG

255

b}

128

FIG. 9A

C EINGANG)

-

620

STELLE NIVEAU DES
PERSPEKTIVEN-RENDER-
INGS AUF BASIS DER QUA-
LITATSEINSTELLUNG EIN

L— 625

J

STELLE DREIECKSFEHLER-
KORREKTURNIVEAU
AUF BASIS DER QUA-

LITATSEINSTELLUNG EIN

J

STELLE GRENZDREIECKS-
GROSSE FUR ABSCHALTUNG
DES PERSPEKTIVEN-
RENDERINGS EIN

A 635

J
C AUSGANG)
FIG. 9B

33/36

DE 696 35403 T2 2006.07.27

/
// 650

] /

-
650a — |
//",6503
- ._
\\

FIG. 10A

655a X
P __‘_‘MM

\\

FIG. 10

FIG. 10C

34/36

650

DE 696 35403 T2 2006.07.27

(:n ENGAN&:)
700
<

FRAGE
TEXTURE-
FORMATAB -~ 705

4

FORMAT
IM INDEX-
MODUS ?

NEIN 710

JA

UBERSETZE
TEXTURE-FORMAT-{~ 715
ZU RGB-FORMAT

N,
P

¥

VERARBEITE
TEXTURE-MAP- |
DATEN FUR 720
HARDWARE-
EINHEIT

4

FIG. 11

35/36

DE 696 35403 T2 2006.07.27

800

ST
GRAFIK
INITIALISIERT

JA

"{ RUCKSPRUNG [

IST
STAPEL-
ENDE GE-
SETZT ?

~ 850

HOLE DIE
PARAMETER VON DER <
STAPELZELLE

815 BERECHNE AUF BASIS DER
SCHALTE BLT BLT-PARAMETER UND

SPEICHERE BLT-MIKROCODE
OPERAND ?l IN ANZEIGELISTE AB
EIN 820 —

FILL BERECHNE AUF BASIS DER

FILL-PARAMETER UND
SPEICHERE FILL-MIKROCODE
825 —~| |N ANZEIGELISTE AB

POINT BERECHNE AUF BASIS DER
POINT-PARAMETER UND

SPEICHERE POINT-MIKROCODE
830 ~~| IN ANZEIGELISTE AB

BERECHNE AUF BASIS DER
POLYLINE | pOLYLINE-PARAMETER UND

SPEICHERE POLYLINE-MIKRO-
835 —| CODEIN ANZEIGELISTE AB

BERECHNE AUF BASIS DER

POLYGON! poLYGON-PARAMETER UND
. SPEICHERE POLYGON-MIKRO-

CODE IN ANZEIGELISTE AB

840 —

STEUER- VERARBEITE PROGRAMM-
oP RELEVANTE HARDWARE-
REGISTER

845

36/36

	Titelseite
	Beschreibung
	Patentansprüche
	Anhängende Zeichnungen

