(54) 发明名称

振动设备、使用该振动设备的光学扫描设备、图像显示装置、和该振动设备的控制方法

(57) 摘要

提供一种振动设备，其可通过简单的构成轻易地调节可移动板振动角和相位。用作振动设备的光扫描设备 (10) 包括：镜子元件 (1)，用于震动具有镜膜 (2a) 的可移动板；控制电路 (14)，具有占空比调节单元 (17) 和改变脉冲电压的占空比的功能，从而施加脉冲电压以驱动镜子元件 (1) 的垂直板；以及根据检测单元 (19) 输出检测可移动板的振动。基于由振动检测单元 (19) 检测的可移动板振动，控制电路 (14) 控制占空比调节单元 (17)，以改变脉冲电压的占空比。当对镜子元件 (1) 施加具有改变的占空比的脉冲电压时，在可移动板的振动时改变垂直板施加电压的周期，从而可改变移动板的振动的相位和振动角度。通过根据可移动板的振动对占空比的反馈控制，可控制可移动板以在适当的相位和适当的振动角度振动。
1. 一种振动设备，包括：

可移动结构，其包括：可移动板；扭转弹簧；以转轴地支撑所述可移动板；框架，用以支撑所述扭转弹簧；以及垂直梳，其具有多个梳齿，所述多个梳齿设置在所述可移动板和所述框架的一部分上且彼此啮合，所述框架与所述可移动板相互面对；以及

电压施加部，将脉冲电压施加给所述可移动板上的垂直梳的梳状电极和所述框架上的垂直梳的梳状电极；其中

所述电压施加部包括：占空比调节部，其调节对所述垂直梳施加的脉冲电压的占空比。

2. 根据权利要求1所述的振动设备，还包括：振动检测部，其检测所述可移动板的振动；其中

根据由所述振动检测部检测的所述可移动板的振动，对所述占空比调节部执行反馈控制。

3. 根据权利要求2所述的振动设备，其中

所述电压施加部还包括：控制部，其控制所述脉冲电压的电压和频率。

4. 一种光学扫描设备，其包括在权利要求2至3之一中描述的振动设备，其中

在所述振动设备中的可移动板具有镜子，以反射进入所述镜子的光。

5. 一种图像显示装置，其包括光源单元和在权利要求4中描述的光学扫描设备，其中

所述光源单元根据与所述脉冲电压同步的图像信号将光输入所述光学扫描设备，以及所述图像显示装置通过使所述光学扫描设备反射从所述光源单元进入的光来显示图像；其中

根据所述脉冲电压的相位和所述可移动板的相位来控制所述占空比调节部，以便调节所述脉冲电压的占空比。

6. 一种振动设备的控制方法，其中所述振动设备具有可移动结构，其中所述可移动结构包括：可移动板；扭转弹簧；转轴地支撑所述可移动板；框架，用以支撑所述扭转弹簧；以及垂直梳，其具有多个梳齿，所述多个梳齿设置在所述可移动板和所述框架的一部分上且彼此啮合，所述框架与所述可移动板相互面对，所述振动设备通过将脉冲电压施加给所述可移动板上的垂直梳的梳状电极和所述框架上的垂直梳的梳状电极来摆动地驱动所述可移动板，其中

通过调节所述脉冲电压的占空比，当所述可移动板被振动时，施加给所述垂直梳的电压的周期就发生改变，所述可移动板的振动相位也发生改变。
振动设备、使用该振动设备的光学扫描设备、图像显示装置、和该振动设备的控制方法

技术领域
[0001] 本发明涉及使用可移动结构（其中对垂直梳施加脉冲电压，以使可移动板围绕旋转轴振动）的振动设备、使用该振动设备的光学扫描设备、使用该光学扫描设备的图像显示装置、以及该振动设备的控制方法。

背景技术
[0002] 通常，一些可选设备（例如条形码读取器和图像显示装置）例如装有光学扫描设备，用于振动配备有镜子的可移动板，以扫描进入镜子的光束。例如日本专利特开No.2005-202321所示，例如，存在一种已知的光学扫描设备，其具有通过微机械加工技术形成的小型可移动结构。在可移动结构中，通过由周边框架支撑的柱状弹簧保持可移动板。在框架和可移动板之间配置垂直梳，所述垂直梳由多个梳状电极构成，所述多个梳状电极形成在框架和可移动板上且彼此啮合。可移动板例如使用静电力作为驱动力以扭转弹簧，并围绕作为旋转轴的弹簧振动，所述静电力是通过施加具有与可移动板的谐振频率相应的频率的脉冲电压而在垂直梳中产生的。此时，当可移动板的旋转使梳状电极彼此接近时，电压被施加到静电梳；当可移动板的旋转使梳状电极彼此远离时，电压不会被施加。将脉冲电压的占空比调节为约50％，以便按照如上方式将与可移动板的振动角度同步的脉冲电压施加到静电梳。

[0003] 当可移动板在上述光学扫描设备中实际振动时，在脉冲电压的相位和可移动板的振动相位之间常常产生相移。例如，当与脉冲电压同步的光进入显示图像的光学扫描设备中时，所述相移常常引起由图像显示装置显示的图像的投射位置的失准，并且还引起投射图像的质量的下降。此外，当发生相移时，在可移动板的旋转使梳状电极彼此远离的周期中电压被施加到垂直梳，并产生作用于控制可移动板的旋转的方向上的静电力。当产生这种静电力时，可移动板的振动角相比脉冲电压的幅值变小。因此，不能够有效地显示满足所述加电压的幅值的图像，而且，由于为控制横向作用于垂直梳上的静电力而限制施加到垂直梳的脉冲电压的最大值，可移动板的振动角也变小了。存在一些可能方案，诸如调节脉冲电压的相位、改变输入光的时间控制（timing）等，以解决上述问题。然而，当与脉冲电压同步的光进入光学扫描设备中时，需要进行控制，以改变输入光的时间控制和改变脉冲电压的相位，使得控制过程变得复杂。

[0004] 在日本专利特开No.2005-202321中，公开了一种光学扫描设备，其中提供两种电极，以转动可移动板，使得即使在谐振频率改变时可移动板也可以按预定频率转动。然而，当采用这种配置的光学扫描设备解决上述问题时，需要对两种电极施加单独的脉冲电压以驱动光学扫描设备，使得可移动板的结构变得复杂，而且，光学扫描设备的配置和控制过程变得复杂，并且产品成本增加。

发明内容
为了解决上述现有技术的问题，本发明的目的在于提供一种振动设备，其可通过简单的结构轻易地调节可移动板的振动角和相位，同时提供使用该振动设备的光学扫描设备、使用该光学扫描设备的图像显示装置，以及该振动设备的控制方法。

根据本发明一方面的振动设备（device）包括：可移动结构，其包括：可移动板；扭转弹簧，以旋转地支撑所述可移动板；框架，用以支撑所述扭转弹簧；以及垂直梳，其具有多个梳齿，所述多个梳齿设置在所述可移动板和所述框架的一部上，且彼此啮合，所述框架与所述可移动板相对（faces）；以及电压施加部（means），将脉冲电压施加给所述可移动板上的垂直梳的梳状电极和所述框架上的垂直梳的梳状电极，其中所述电压施加部包括：占空比调节部，其调节对所述垂直梳施加的脉冲电压的占空比。

根据本发明一方面的光学扫描设备，其包括上述振动设备，以及在所述振动设备中的可移动板具有镜子，以扫描进入所述镜子的光。

根据本发明一方面的图像显示装置，其包括上述光学扫描设备和光源单元，其根据图像信号将光输入所述光学扫描设备，以及所述图像显示装置通过使用所述光学扫描设备反射从所述光源单元进入的光来显示图像；其中根据所述图像信号的时间控制来控制所述占空比调节部，以便调节脉冲电压的占空比。

根据这种设置，当驱动可移动板时，可通过占空比调节部调节脉冲电压的占空比，使得当驱动可移动板时，能够改变施加电压的周期（period）。因此，能够调节在振动设备中的可移动板的振动角和相位，并因此能够例如在光学扫描设备中轻易地改变光的扫描范围。而且，能够根据从图像显示装置中的光源单元输出的光改变所述可移动板的相位，并且能够自动振动可移动板以合适地显示图像。此外，即使当可移动结构不具有特殊结构而具有简单配置时，可通过改变脉冲电压的占空比来调节可移动板的振动角和相位。

相反，根据本发明一方面的一种振动设备的控制方法，所述振动设备具有：可移动结构，其包括：可移动板；扭转弹簧，以旋转地支撑所述可移动板；框架，用以支撑所述扭转弹簧；以及垂直梳，其具有多个梳齿，所述多个梳齿设置在所述可移动板和所述框架的一部分上，且彼此啮合，所述框架与所述可移动板相对；以及所述振动设备通过将脉冲电压施加给所述可移动板上的垂直梳的梳状电极和所述框架上的垂直梳的梳状电极来摆动地（swingably）驱动所述可移动板，其中通过调节所述脉冲电压的占空比，当所述可移动板被振动时，施加给所述垂直梳的电压的周期就发生改变，所述可移动板的振动相位也发生改变。

根据这种振动设备的控制方法，通过调节对垂直梳施加的脉冲电压的占空比来驱动可移动结构的可移动板，使得当驱动可移动板时改变施加电压的周期，并且因此改变可移动板的相位。因此，即使当可移动结构不具有特殊结构而具有简单配置时，能够通过改变脉冲电压的占空比来调节可移动板的振动角和相位。

附图说明
图 1 是示出根据本发明优选实施例的图像显示装置的配置的框图。
图 2 是示出在图 1 中的图像显示装置的光学扫描设备中使用的镜子元件的透视图。
图 3A 是图 1 中的镜子元件的平面图，并且图 3B 是图 3A 的沿着线 A-A 的截面图。
具体实施方式

参见附图描述将根据本发明优选实施例的振动设备用动光学扫描设备的图显示装置。图 1 示出根据本发明优选实施例的图显示装置的配置示例。图显示装置 100 包括：镜子元件 1，其用作可移动结构；光学扫描设备 10，其用作具有控制电路（电压施加部）14 的振动设备，所述控制电路 14 施加电压以驱动镜子元件 1；电源单元 30，其向镜子元件 1 输入光；光源驱动单元 40，其驱动光源单元 30；电源单元，其对电源并驱动图显示装置（未示出）中的各个单元，以及其中。例如，图显示装置 100 具有如下功能：在控制电路 14 的控制下根据从外部输入的图像数据从光源单元 30 向镜子元件 1 输出光 L；通过使镜子元件 1 将光 L 反射到外部投射平面上来扫描光 L；以及将图 S 投射到外部投射平面上。

光学扫描设备 10 包括：镜子元件 1、控制电路 14、以及振动检测单元（振动检测部）19。控制电路 14 具有：频率调节单元（控制部）15、电压调节单元（电压控制部）16、以及占空比调节单元（占空比调节部）17。在该优选实施例中，将可二维地扫描光 L 的镜子元件（即，双轴元件）用作镜子元件 1；然而，在如下描述中，将单轴镜子元件 1 用作举例，以便更加简述地描述其结构和控制。

图 2.3A 和 3B 示出镜子元件 1。例如，镜子元件 1 包括：用微机械加工技术由通过形成 SOI 衬底 11 而构成的可移动结构，所述 SOI 衬底 11 包括例如导电结构 11a 和 11b 以及绝缘氧化膜层 11c。氧化膜层 11c 连接在硅层 11a 和硅层 11b 之间，使得硅层 11a 和硅层 11b 彼此绝缘。镜子元件 1 大致上呈矩形并具有可移动板 2，该可移动板 2 大致上呈矩形且位于镜子元件 1 的中心部分。类似柱状的扭转弹簧 3 分别位于可移动板 2 的两端的相同轴上。框架 4 形成在可移动板 2 的周围，以围绕可移动板 2。扭转弹簧 3 由框架 4 支撑。也就是说，框架 4 由扭转弹簧 3 可摆动地支撑可移动板 2。垂直梳 5 形成在可移动板 2 的空闲（free）边缘上和一部分与空闲边缘对的框架 4 上，所述空闲边缘位于可移动板 2 的没有形成扭转弹簧 3 的端上，并因此在可移动板振动时是空闲的。垂直梳 5 呈类似梳状以彼此吻合，并且驱动可移动板 2。如图 3B 所示，在硅层 11a 中形成可移动板 2、扭转弹簧 3，以及垂直梳 5。框架 4 包括硅层 11a、氧化膜层 11c，以及硅层 11b。当可移动板 2 未被驱动而静止时，可移动板 2、扭转弹簧 3 和垂直梳 5 大致是水平位置的。

可移动板 2 的重心位于其上设置有两个扭转弹簧 3（其设置在可移动板 2 的两端）的轴附近，并且当按照以下方式驱动垂直梳 5 时，可移动板 2 围绕其上设置有扭转弹簧 3 的轴振动。例如，镜膜（镜子）2a 形成在可移动板 2 的上表面上，以反射从外部进入的光等。例如，镜膜 2a 是金属膜，由根据从光源单元 30 输出的光 L 的类型选择的铝、金等制成。

框架 4 包括：支撑单元 4a，其支撑扭转弹簧 3；两个固定电极 4b，其上形成有垂直梳，以及检测电极 4c，其通过分隔一部分包含一部分垂直梳 5 的固定电极 4b 而构成。固定电极 4b 分别围绕当可移动板 2 振动时在该可移动板 2 中空闲的两端边缘。通过隔离槽 9 来电绝缘支撑单元 4a、固定电极 4b、以及检测电极 4c，所述隔离槽 9 通过除去在支撑单元 4a 和固定电极 4b 之间以及在固定电极 4b 和检测电极 4c 之间的一部分硅层 11a 而构成。电极垫 7a 和 7b 分别形成在支撑单元 4a 和固定电极 4b 上，使得可单独地改变支撑单元 4a 和
固定电极 4b 的电势。例如，电极垫 7a 和 7b 通过与镜膜 2a 相同的金属膜制成。

[0021] 垂直梳 5 包括；多个梳状电极 2b，其形成在可移动板 2 的端部边缘；以及多个梳状电极 4d，其形成在面对可移动板 2 的端部边缘的一部分固定电极 4b 和一部分检测电极 4c 上。在垂直梳 5 中，例如，梳状电极 2b 和 4d 被设置为使它们保持与数微米的间隙而彼此啮合。例如，当可移动板 2 上的梳状电极 2b 经由框架 4 上的电极垫 7a 连接至地电势时，在固定电极 4b 上的梳状电极 4d 的电势改变并随后对梳状电极 2b 和 4d 施加脉冲电压时，垂直梳 5 被驱动。由控制电路 14 通过电极垫 7b 改变梳状电极 4d 的电势。当对垂直梳 5 中的梳状电极 2b 和 4d 施加电压时，梳状电极 2b 和 4d 之间产生静电力，使得梳状电极 2b 和 4d 彼此相吸。当通过驱动垂直梳 5 产生的力与可移动板 2 大致成直角地作用在可移动板 2 的端部边缘时，静电扭矩被加给可移动板 2，并可摆动地驱动可移动板 2。

[0022] 例如，按如下方式形成镜子元件 1。首先，通过所谓的体微机械加工技术（bulk micromachining technique）对 SOI 衬底 11 进行加工时，在 SOI 衬底 11 中形成可移动板 2、扭转向弹簧 3、框架 4、垂直梳 5，以及其他，并由此形成多个可移动结构。随后，通过使用溅射方法等在 SOI 衬底 11 中的硅层 11a 的上表面上形成金属膜。当在金属膜上执行图案化（patternning）时，镜膜 2a 形成在可移动板 2 的上表面上，并且电极垫 7a 和 7b 形成在框架 4 的上表面上。当镜膜 2a 和电极垫 7a 和 7b 形成之后，例如通过阳极接合（anodic bonding）将 SOI 表面 11 与支持该 SOI 衬底 11 的玻璃等的支持衬底彼此连接。随后，剪切并分离在 SOI 衬底 11 上形成的多个镜子元件 1。通过上述的一系列处理，可一次制造多个镜子元件 1，因此能够减少制造镜子元件 1 的成本。然而，镜子元件 1 的制造工艺并不限于此，例如可通过激光工艺或超声工艺形成镜子元件 1，或者也可通过一个地形成。

[0023] 控制电路 14 对垂直梳 5 施加脉冲电压，并且通过周期性改变镜子元件 1 的电极垫 7b 的电势来驱动镜子元件 1。频率调节单元 15、电压调节单元 16、以及占空比调节单元 17 分别具有如下功能：改变对镜子元件 1 施加的脉冲电压的频率，改变电压值（即脉冲电压的振幅），以及改变脉冲电压的占空比。在本优选实施例中，振动检测单元 19 通过例如布线接合技术与检测电极 4c 连接。当可移动板 2 振动时，振动检测单元 19 检测在检测电极 4c 的梳状电极 4d 和可移动板 2 的梳状电极 2b 之间的静电电容，并将该静电电容输入控制电路 14。控制电路 14 通过使用振动检测单元 19 检测可移动板 2 的振动相位。也就是说，例如，控制电路 14 适宜于确定由振动检测单元 19 检测的静电电容何时达到其峰值，当可移动板 2 大致呈水平状态并且检测可移动板 2 的相位时，在梳状电极 2b 和 4d 之间的“重叠部分”变成最大。

[0024] 光源单元 30 由例如激光二极管元件、透镜、以及其他构成，并且被设置为向光学扫描设备 10 的镜膜 2a 输出光 L。当光源驱动单元 40 从控制电路 14 接收图像信号（其基于来自外部的图像数据）时，光源驱动单元 40 根据该图像信号对光源单元 30 施加电压，并从该光源单元 30 向镜子元件 1 输出光 L。也就是说，光源单元 30 根据控制电路 14 的控制从光源驱动单元 40 接收电压，并输出光 L。在该优选实施例中，控制电路 14 根据来自外部的图像数据产生与施加给镜子元件 1 的脉冲电压同步的图像信号，并控制从光源单元 30 输出的光 L。的输出。因此，根据镜子元件 1 的可移动板 2 的振动而从光源单元 30 输出光 L，通过镜子元件 1 将光 L 扫射（scanned）在外部投射平面上，从而在外部投射平面上投射图像 S（参照图 1）。
[0025] 随后，参见图4描述具有上述配置的图像显示装置100的性能。图4示出当镜子元件1被稳定驱动时，随着时间推进，相对水平表面的可移动板2的振动角、脉冲电压、由振动检测单元19检测的静电电容、以及当光源驱动单元40驱动光源单元30时的图像信号之间的关系。在图4的顶部示出在各个时间点的梳状电极2b和4d的姿态变化（pose variations）。

[0026] 当从控制电路14对垂直梳5施加矩形脉冲电压时，垂直梳5按预定驱动频率产生驱动力，并且镜子元件1的可移动板2被驱动。此时，脉冲电压被设置为预定基准驱动电压（例如，几十伏特），同时垂直梳5中的两个梳状电极4d的电势变为基准驱动电压。通过上述过程产生的静电力使得在可移动板2的端部边缘设置的两个梳状电极2b被拉向与各个梳状电极2b相对的梳状电极4d。

[0027] 在许多情况下，上述可移动板2通常（甚至在静态条件下）并不处于水平姿态（horizontal attitude），而是具有非常微小地倾斜，这是因为在形成可移动板2时存在尺寸误差等造成的。因此，一旦垂直梳5被驱动，甚至从静态状态，与可移动板2大致垂直的驱动力被加给可移动板2，可移动板2围绕在其上设置有扭转弹簧3的轴振动。随后，当可移动板2处于梳状电极2b和4d彼此重叠，停止对垂直梳5施加电压以取消驱动力时，可移动板2的扭转弹力继续振动。然后，当可移动板2在振动方向的惯性力变成等于扭转弹簧3的恢复力时，可移动板2停止在上述振动方向的振动（参见图4中的t1，t3的时刻）。此时，再次驱动垂直梳5，并且可移动板2通过扭转弹簧3的恢复力和垂直梳5的驱动力开始与从前方向相反的方向振动。随后，当可移动板2再次处于梳状电极2b和4d彼此重叠时，取消垂直梳5的驱动力（参见图4的t0，t2，t4时刻），并且可移动板2通过惯性力继续振动。可移动板2重复通过上述垂直梳5的驱动力和扭转弹簧3的恢复力产生的振动。对垂直梳5施加具有特定频率的电压，该特定频率的大小大致上是由可移动板2和扭转弹簧3构成的谐振系统的谐振频率的两倍，因此驱动垂直梳5。根据上述设置，通过谐振现象驱动可移动板2，使得可移动板2的振动角变大。

[0028] 在该优选实施例中，图像信号适于（be adapted to）与脉冲信号同步，并且使光与脉冲信号同步地从光源单元30输出。也就是说，例如，控制电路14在可移动板2的振动的角加速度的变化变小时向光源驱动单元40发出图像信号，并控制从光源单元30输出的光L的输出。在开始对垂直梳5施加电压之后，向光源驱动单元40发送预定时间量（即，在图4中的t1，t3...时刻之后的预定时间量）的图像信号。根据上述设置，图像显示装置100适于能够将图像S投射在外部投射平面上的适当位置中。

[0029] 此时，该优选实施例中，控制电路14根据由振动检测单元19检测的可移动板2的振动控制频率调节单元15、电压调节单元16，以及占空比调节单元17，以调节对镜子元件1施加的脉冲电压的频率、电压和占空比。以下描述在驱动镜子元件1时由控制电路14执行的控制的实例。

[0030] 如图4中的t0，t2，t4时刻所示，当可移动板2的振动角为0并且梳状电极2b和4d大致上彼此重叠时，控制电路14通过振动检测单元19检测静电电容的峰值。以此方式，控制电路14能够检测到振动可移动板2的相位。当确定可移动板2的相位偏移使得图像能够被适当投射的预定相位差（作为与脉冲电压的相位相比较的结果）时，控制电路14控制占空比调节单元17。如图4所示，例如，通过增加和减少脉冲电压的占空比来执行控
制，以将可移动板 2 和脉冲电压之间的相位差校正为预定相位差。换句话说，控制电路 14 根据脉冲电压的相位（即图像信号的时间控制）和可移动板 2 的相位来控制占空比调节单元 17，并且还调节脉冲电压的占空比。此外，控制电路 14 根据占空比的变化来控制电压调节单元 16，例如脉冲电压的电压值增加和减少预定量的校正。除了相位差之外，当可移动板 2 的振动频率也从预定频率改变时，控制电路 14 还控制频率调节单元 15，以改变除了占空比和电压之外的脉冲电压的频率，从而控制可移动板 2 的振动使其具有预定频率。

[0031] 作为改变占空比等的结果，对垂直梳 5 施加电压的时间控制，对垂直梳 5 施加的电压、以及其他的改变，使得可移动板 2 的振动相位改变。在该优选实施例中，检测振动可移动板 2 的相位，并基于此，执行反馈控制，以改变脉冲电压的占空比和电压，使得上述相位差等于预定相位差。通过以此方式执行反馈控制，图像信号的相位和可移动板 2 的振动相位可以彼此再次同步，使得可适当地显示图像。

[0032] 如果此时增加占空比，同样地，在可移动板 2 的振动角为 0 之后（参见在 t2 和 t4 时刻之后的周期，图 4 中的阴影周期），也在可移动板 2 在梳状电极 2b 和 4d 彼此相交的方向上振动的周期中对垂直梳 5 施加电压。在这种情况下，垂直梳 5 的驱动力作用在阻止可移动板 2 的方向上，并且能够造成可移动板 2 的振动角减小。相反，如果减小占空比，在可移动板 2 在梳状电极 2b 和 4d 彼此相交的方向上振动的周期（参见在 t2 和 t4 时刻之前的周期），取消对垂直梳 5 施加电压。因此，作用在加速可移动板 2 的振动的方向上的驱动力减小，并且能够造成可移动板 2 的振动角减小。在该优选实施例中，即使当要校正的相位差较大，由此占空比需要改变很多时，只要控制电路 14 也能够以上述方式改变脉冲电压的电压，那么便能够持可移动板 2 的振动角。例如，可试验性地评估与控制电路 14 改变占空比等同时改变的脉冲电压的数值，并且可预先设置，而且，还不可适用通过用户等指定控制的程度。

[0033] 如上所述，在本发明中描述了单轴镜片元件 1，然而，还可基本上和大致上按上述方式，通过控制电路 14 控制在图像显示装置 100 中实际使用的双轴镜片元件。也就是说，控制电路 14 适于能够改变每个脉冲电压的占空比、电压等，以使可移动板 2 以上述方式围绕旋转轴振动。因此，能够对可移动板 2 围绕每个旋转轴的振动调节相位和振动角，从而能够适当地显示图像。

[0034] 如上所述，在该优选实施例中，控制电路 14 能够根据可移动板 2 的实际振动调节脉冲电压的占空比、电压等，并且能够根据可移动板 2 的振动改变施加电压的时间控制和电压本身。能够以期望的相位振动可移动板 2，使得能够适当地反射从光源单元 30 输出的光，从而能够适当地显示图像。而且，镜片元件 1 不需要特殊结构，然而，控制电路 14 具有简单的结构，仅通过简单的控制以改变脉冲电压的占空比和电压，就能够调节可移动板 2 的振动角和相位。因此，能够减少图像显示装置 100 的成本。

[0035] 本发明不限于上述优选实施例的配置，然而，在本发明的范围内可运用各种修改。例如，控制电路可适当根据来自用户的与图像大小设置等相关的指令来控制占空比调节单元、电压调节单元、以及频率调节单元，并且还通过改变脉冲电压的占空比、电压等振动可移动板 2 以实现 (reflect) 上述指令。而且，例如，占空比调节单元、电压调节单元、及频率调节单元不限于具有在控制电路的控制下改变脉冲电压的占空比等的配置，然而，当从外部任意改变电路的阻抗值等时，它们能够具有改变或占空比、电压等的配置。在这种情况下
下，尽管检测器实际显示图像，但是例如可调节脉冲信号的占空比等，以在组装图像显示设备的过程期间适当地显示图像。因此，可通过该配置提高图像显示装置的质量，该配置能够相当大地降低制造图像显示装置的成本。

【0036】此外，光学扫描设备的可移动板不仅可以是矩形，而且还可以是例如圆形等的其他形状。除了检测上述静电电容的振动检测单元之外，例如使用光电传感器等检测可移动板的振动角或在扭曲扭转弹簧时检测可移动板的振动的单元也可适用。当以上述方式检测可移动板的振动角时，控制电路能够更加准确地控制可移动板，以通过改变脉冲电压的占空比和电压使该可移动板按预定振动角振动。此外，本发明不仅适用于光学扫描设备（其包括配备有镜膜的可移动板）和适用光学扫描设备的图像显示装置，而且，本发明还可广泛地适用于使用可移动结构（其包括通过垂直梳可摆动地驱动的可移动板）的振动设备、安装振动设备的装置等。

【0037】本发明基于日本专利申请 No. 2007-137195，结果，参见上述专利申请的说明书和附图，主题可与本发明组合。

【0038】尽管参见附图通过优选实施例完整地描述本发明，但是对本领域普通技术人员清楚地，各种改变和修改是适用的。因此，这些改变和修改不脱离本发明的范围，而是可包含在本发明的范围内。
图 4