Intellectuelle
du Canada

Un organisme
d'Industrie Canada

Office de la Proprieté

Canadian
Intellectual Property
Office

An agency of
Industry Canada

CA 2630594 C 2012/04/17

(11)(21) 2 630 594

(12 BREVET CANADIEN
CANADIAN PATENT

13) C

(86) Date de depot PCT/PCT Filing Date: 2006/11/13

(87) Date publication PCT/PCT Publication Date: 200//05/24

(45) Date de délivrance/lssue Date: 2012/04/17
(85) Entree phase nationale/National Entry: 2008/05/21

(86) N° demande PCT/PCT Application No.: US 2006/060849

(87) N° publication PCT/PCT Publication No.: 200/7/059475
(30) Priorité/Priority: 2005/11/10 (US11/271,545)

GO6F 9/38 (2006.01)

(73) Proprietaire/Owner:
QUALCOMM INCOR

51) Cl.Int./Int.Cl. GO6F 9/30(2006.01),

(72) Inventeurs/Inventors:
BABBAR, UPPINDER SING
KAPOOR, ROHIT, US

, US;

PORATED, US

(74) Agent: SMART & BIGGAR

(54) Titre : EXPANSION D'UN FICHIER D'UN REGISTRE EN PILE EN UTILISANT DES REGISTRES SHADOW

(54) Title: EXPANSION OF A STACKED REGISTER FILE USING SHADOW REGISTERS

(57) Abrégée/Abstract:

One or more Shadow Register Files (SRF) are interposed between a Physical Register File (PRF) and a Backing Store (BS) In
shadow register file system. The SRFs comprise dual-port registers connected serially in a chain of arbitrary depth from the

RECEIVEREQUEST TO
ALLCCATE ONE OR MORE
MULTI-PORT REGISTERS TO A
NEW PROCEDURE

50

54

N
SPACE IN CHAIN
OF DUAL-PORT SRF
REGISTERS ASSOCIATED
WITH THE MULTI-
PORT FRF
REGISTERS?

NO

30
SELECTIVELY SAVE ONE OR
MORE ENTRIES FROM THE
DUAL-PORT REGISTERS TN
THE LASTSRF TO BS

i‘_ 38

SELECTIVELY SAVE DATA
FROM ONEOR MORE
MULTI-PORT REGISTERS
ALLOCATED TO A NOW-
INACTIVE PROCEDURE TO A
CORRESPONDING DUAL-PORT
REGISTER IN A SRF, SHIFTING
DATA.TO A SUBSEQUENT SRF
IF NECESSARY, AND
DEALLCQCATE THE REGISTERS

~60
LOCATE ONE ORMORE
MULTI-PORT REGISTERS IV
- THE PRF TO THENEW
PROCEDURE

CONTROLRETURNED |
TOINACTIVE PROCEDURE,

RECEIVE REQUEST TO
REACTIVE THE PROCEDURE

62

64

MULTEPORT REGISTERS
PREVIOUSLY ALLOCATED
TO THE INACTIVE PROCEDURE
CURRENTLY ALLOCATED TO THE
PROCEDTURE (CONTAIN DATA
ASSOCIA WITH THE

NO

e
RESTOREDATA ASSOCIATED
WITH THE INACTIVE PROCEDURE
FROM ONE OR MORE
CORRESPONDING DUAL-MORT
REGISTERS IN THE SRF TO MULTI-
PORT REGISTERS IN THE PRE,
SHIFTING DATA FROM
SUBSEQUENT SRFs TF NECESSARY

f68
REACTIVATE THE PROCEDURE

C an adg http:vopic.ge.ca - Ottawa-Hull K1A 0C9 - atp.//cipo.ge.ca

OPIC - C]

PO 191

YES

,
L
X
e
e . ViNENEE
L S S \
ity K
.' : - h.l‘s_‘.}:{\: .&. - A L~
.
A

OPIC

A7 /7]
o~

CA 2630594 C 2012/04/17

anen 2 630 594
13) C

(57) Abrege(suite)/Abstract(continued):

Register Save Engine has random access to one port of the registers in the final SRF In the chain, and saves/restores data
between the final SRF and the BS, e.g., RAM. As PRF registers are deallocated from calling procedures for use by called
procedures, data are serially shifted from multi-port registers in the PRF through successive corresponding dual-port registers In
SRFs, and are serially shifted back toward the multi-port registers as the PRF registers are reallocated to calling procedures. Since

no procedure can access more than the number of registers in the PRF, the effective size of the PRF Is Increased, using less costly
dual-port registers.

woO 2007/059475 A3 I D00 DA 0 00D 0 AR 0 10

CA 02630594 2008-05-21

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization f%

International Burcau

(43) International Publication Date
24 May 2007 (24.05.2007)

(51) International Patent Classification:
GO6F 9/30 (2006.01) GO6F 9/38 (2006.01)

(21) International Application Number:
PCT/US2006/060849

(22) International Filing Date:
13 November 2006 (13.11.2006)

English
English

(25) Filing Language:
(26) Publication Language:

(30) Priority Data:
11/271,545 10 November 2005 (10.11.2005) US

(71) Applicant (for all designated States except US): QUAL-
COMM INCORPORATED [US/US]; 5775 Morehouse
Drive, San Diego, California 92121 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): BABBAR, Up-
pinder Singh [IN/US]J; 9454 Capricorn Way, San Diego,
California 92126 (US). KAPOOR, Rohit [IN/US]; 10335
Caminito Alvarez, San Diego, California 92126 (US).

(10) International Publication Number

WO 2007/059475 A3

(74) Agents: WADSWORTH, Philip, R. et al.; 5775 More-
house Drive, San Diego, Califonia 92121 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ,BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS,
JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS,
LT, LU, LV, LY, MA, MD, MG, MK, MN, MW, MX, MY,
MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS,
RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
/W), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, ELE, ES, Il,
FR, GB, GR, HU, ILE, IS, IT, LT, LU, LV, MC, NL, PL, PT,
RO, SE, SI, SK, TR), OAPI (BE, BJ, CF, CG, CI, CM, GA,

GN, GQ, GW, ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: EXPANSION OF A STACKED REGISTER FILE USING SHADOW REGISTERS

(57) Abstract: One or more Shadow Register
Files (SRF) are interposed between a Physical

- '

RECFIVE REQUESTTO | CONTROL RETURNED
ALLOCATE ONE OR MORE TO INACTIVE PROCEDURE,

MULTL-PORT REGISTERS TO A RECEIVE REQUEST TO
NEW PROCEDURE REACTIVE THE PROCEDURE

SUFFICTENT
UNALLOCATED
MULTI-POR’Y
REGISTERS

MULTI-PORT REGISTERS
PREVIOUSLY ALLOCATED
TO THE INACTIVE PROCEDURE
CURRENTLY ALLOCATED TO THE
PROCEDURE (CONTAIN DATA.
ASSOCIATED WITH THE
PROCEDURE)?

SUFFICTENT

YES

SPACE IN CHATN
OF DUAL-PORT SRF
REGISTERS ASSOCIATED
' WITH THE MULTI- 66
PORE PRE
REGISTERS? 1 RESTORE DATA ASSOCIATED
, WITH THR INACTIVE PROCEDURE
FROM ONE OR MORE
CORRESPONDING DUAL-PORT
- 56 w REGISTERS IN THE SRF TO MULTI-
| A PORT REGISTERS IN THE PRF,
SELECTIVELY SAVE ONE OR. SHIFTING DATA FROM
MORE ENTRIES FROM THE SUBSEQUENT SRFs TF NECESSARY
DUAL-PORTREGISTERS TN '
I THE LAST SRF TO BS *
;‘ 58 | 68
; SELECTIVELY SAVE DATA. l ' |
FROM ONE OR MORE REACTIVATE THE PROCEDURE
MULTI-PORT REGISTERS .
T T AT LOCATED TO ANOW- 1] o R |
INACTIVE PROCEDURE TO A

Register File (PRF) and a Backing Store (BS)
in a shadow register file system. The SRFs
comprise dual-port registers connected serially
in a chain of arbitrary depth from the PRE. A
Register Save Engine has random access to one
port of the registers in the final SRF in the chain,
and saves/restores data between the final SRF
and the BS, e.g., RAM. As PRF registers are
deallocated from calling procedures for use by
called procedures, data are serially shifted from
multi-port registers in the PRF through successive
corresponding dual-port registers in SRFs, and
are serially shifted back toward the multi-port
registers as the PRF registers are reallocated to
calling procedures. Since no procedure can access
more than the number of registers in the PRF, the
effective size of the PRF is increased, using less
costly dual-port registers.

CORRESPONDING DUAL-PORT
REGISTER IN A SRF, SHIFTING ,
DATA TO A SUBSEQUENT SRE
' IF NECESSARY, AND

DEALLOCATE THE REGISTERS

$
| i< /"60

ALLOCATE ONE OR MORE ’

MULTE-PORT REGISTERS IN
THE PRE TO THE NEW
| PROCEDURE

CA 02630594 2008-05-21

WO 2007/059475 A3

Declarations under Rule 4.17:

as to applicant’s entitlement to apply for and be granted a
patent (Rule 4.17(ii))

as to the applicant’s entitlement to claim the priority of the
earlier application (Rule 4.17(iii))

Published:

with international search report

before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments

(88) Date of publication of the international search report:
23 August 2007

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

CA 02630594 2008-05-21
WO 2007/059475 PCT/US2006/060849

EXPANSION OF A STACKED REGISTER FILE USING SHADOW

REGISTERS

BACKGROUND

[0001] The present invention relates generally to the field of processors and in
particular to expanding the effective size of a stacked register file using shadow
registers.

10002] RISC processors are characterized by relatively small instruction sets,
wherein each instruction performs a single instruction, such as an arithmetic, logical, or
load/store operation. Arithmetic and logical instructions obtain their operands from,
and write their results to, one or more General Purpose Registers (GPR). GPRs are
architected registers. That is, they comprise discrete memory locations explicitly
identified in the instruction set architecture, and are directly addressed by instructions.
[0003] GPRs are often implemented in hardware as an array of high-speed, muiti-
ported registers, each having a word width defined by the instruction set (e.g., 32 or 64
bits). This array of physical registers is referred to as a Physical Register File. In a
direct-mapped register implementation, the number of registers in the Physical Register
File exactly matches the number of architected GPRs, and each logical GPR identifier
maps to a specific hardware register. For higher performance, and to support
superscalar pipelines, many modern processors decouple logical GPR identifiers from
physical registers in.the Physscal Rééiéter I"-'ile'.‘.“\ F'Qegxist'efrenamiﬁg,. re.bvrd:ewr trju.ﬁer.é, "a”nd
the like are techniques known in the art for decoupling logical GPR identifiers from
physical registers. Whether directly mapped or renamed, management of the Physical
Register File across numerous software procedures is a design challenge, and is often
a performance bottleneck.

[0004] Most modern software is modular in nature. That is, one procedure may

“call,” or transfer control to, another procedure (variously referred to as a function,

CA 02630594 2008-05-21
WO 2007/059475 PCT/US2006/060849

2

subroutine, sub-moduie, or the like). The called procedure may in turn call another
procedure, and so on, resulting in procedure nesting, often to a considerable depth.
During execution by a processor, each procedure (also referred to during execution as
a context) is allocated certain processor resources, including a number of GPRs. The
number of GPRs allocated to a procedure may be predetermined by a compiler's
analysis of instructions in the procedure, and may range from a few GPRs to the full
architected set of GPRs. When a first procedure calls a second procedure (also known
as a context switch), the first, or calling, procedure goes inactive while the second, or
called, procedure is allocated separate resources, including its own set of GPRs, and
begins execution. When the second procedure completes execution, its resources are
deallocated, resources are re-allocated to the calling procedure (if necessary), and the
calling procedure resumes execution. A portion of the resources allocated by the
calling procedure may optionally remain available to the called procedure, such as
registers used to communicate call parameters and return values between the
procedures.
[0005] In some prior art processors, such as for example the Intel i-960, a context
switch, or new procedure, prompis the processor to store the entire contents of the
Physical Register File to memory, making the entire Physical Register File available to
the new procedure. When a called procedure completes execution and returns control
to its calling procedure, the previously saved register values are restored to the

- Physical Register File, and execution of the calling procedure continues. The Physical
Register File contents are saved to a “Backing Store,” such as system memory (RAM).
To mitigate the performance impact of multiple off-chip memory accesses for every
context switch when the Backing Store comprises off-chip RAM, a processor may
provide one or more “cache” register files — which may comprise actual registers or
alternatively may comprise an on-chip cache memory — for storing the contents of the

Physical Register File. However, the entire Physical Register File must be

CA 02630594 2008-05-21
WO 2007/059475 PCT/US2006/060849

3

stored/refrieved at one fime, imposing a performance hit, even in the case of cached
register storage.

[0006] A technique employed by many modern processors such as the Intel
ltanium, that obviates the need to store and retrieve the entire Physical Register File at
one time, is known as a stacked register file architecture. In a stacked register file
architecture, the high-level processor controller considers the Physical Register File to
be a logical stack of infinite depth. This logically infinite stack is implemented in the
Physical Register File by incrementally allocating registers to procedures as they are
called, and saving the contents of previously allocated registers as necessary.

10007} Figure 1 depicts a functional block diagram of a representative stacked
register file architecture implementation. The Physical Register File 1 comprises an
array of high speed, multi-ported physical registers, the array including at least as many
registers as there are GPRs in the instruction set architecture. For example, the
Physical Register File 1 may comprise 128 registers, ranging from physical register 0
(PRO) at the bottom to physical register 127 (PR127) at the top. Two logical pointers
implement stack management: a Top of Stack pointer and a Save/Restore pointer.
[0008] Initially, both pointers are set to PRO. As procedures are called and
registers are allocated thereto, the Top of Stack pointer moves up. When all or nearly
all available physical registers have been allocated, and a newly called procedure
requires more registers than the number of unallocated registers remaining in the
Physical Register File 1, the Top of Stack pointer will “wrap,” and begin allocating
registers from the bottom of the Physical Register File 1, beginning with PR0O. Before
this occurs, however, a sufficient number of registers at the bottom of the Physical
Register File 1 must have their contents saved to a Backing Store 3, such as system
memory (RAM).

10009] A Register Save Engine 2 interrupts the processor, and executes the
instructions necessary {o perform register read and memory store operations to save

the contents of the least-recently allocated registers at the bottom of the Physical

CA 02630594 2008-05-21
WO 2007/059475 PCT/US2006/060849

4

Register File 1 to the Backing Store 3. The Register Save Engine 2 increments the
Save/Restore pointer, indicating that registers below the pointer are available for
allocation to newly called procedures. When the Register Save Engine 2 completes
the register save operation and relinquishes control of the processor, the processor
controller allocates registers to the next procedure, and increments the Top of Stack
pointer, wrapping it and incrementing it past the registers whose contents were saved
to the Backing Store 3, as those registers are re-allocated and utilized by the called

procedure.

[0010] Similarly, as a called procedure completes execution and returns control to
a calling procedure, the stack is popped, and the registers allocated to the called
procedure are de-allocated, or made available for allocation to other procedures. If all
data associated with the calling procedure is not still in the Physical Register File 1 —
that is, if one or more of the calling procedure’s registers were re-allocated — the
Register Save Engine 2 again interrupts the processor, retrieves the contents of the
most recently saved registers from the Backing Store 3, restores the data to the
Physical Register File 1, allocates the registers to the calling procedure, and
increments the Save/Restore pointer to indicate that the registers are allocated and
contain valid data.
10011] The stacked register file system provides optimal performance with a large
Physical Register File 1, with a relatively narrow depth of procedure nesting, and/or
“with relatively few registers allocated to each procedure. Under these conditions, the
Top of Stack pointer simply moves up and down through the Physical Register File 1,
allocating and de-allocating registers to procedures as needed, with no delay.
However, as the depth of procedure nesting increases, and/or one or more procedures
requires a large number of registers, the processor experiences numerous interruptions
by the Register Save Engine 2, to save data from and restore it {0 registers in the
Physical Register File 1, as physical registers are de-allocated from, and re-allocated

to, calling procedures.

CA 02630594 2008-05-21
WO 2007/059475 PCT/US2006/060849

S

[0012] One way {o increases performance of a stacked register file system is
simply to increase the size of the Physical Register File 1. While this does provide
higher performance, the registers in the Physical Register File 1 are usually high-
speed, multi-ported random-access registers. Each register may include, e.qg., three fo
five read and write ports. Furthermore, for flexibility in operation scheduling and
register allocation, a read port of each physical register must be routed to each
execution pipe stage in each pipeline, and the write-back pipe stage in each pipeline
must be connected to a write port of each register in the Physical Register File. Thus,
increasing the size of the Physical Register File 1 is costly in terms of both gate count
and wiring complexity, with concomitant increases in testing and verification complexity
and power consumption. At any given time, only one procedure is executing, usually
accessing only a small subset of the registers in the Physical Register File 1. Thus,
Increasing the size of the Physical Register File 1 incurs significant costs, with fow

utilization of the costly hardware.

SUMMARY

10013] In one or more embodiments, one or more Shadow Register Files are
Interposed between a Physical Register File comprising a plurality of multi-port
registers and the Backing Store in a stacked register file architecture. The Shadow
Register Files each comprise two-port registers, and are serially connected, forming a
chain extending from each multi-port register in the Physical Register File. Data in
mulii-port registers allocated to inactive procedures are saved to corresponding dual-
port registers in the first Shadow Register File. The data may subsequently be shifted
lo a second dual-port register in a second Shadow Register File, as newer data,
associated with another inactive procedure, is saved from the multi--port register to the
dual-port register in the first Shadow Register File. The chain of Shadow Register Files
may be or arbitrary depth. A Register Save Engine saves and restores data to and

from a Backing Store (such as off-chip RAM) from the last Shadow Register File in the

CA 02630594 2008-05-21
WO 2007/059475 PCT/US2006/060849

6

chain, as necessary. As procedures are reactivated, data are shifted through the chain
of Shadow Register Files, toward the multi-port registers of the Physical Register File.
(0014} One embodiment relates to a method of managing a shadow register file
system having one or more Shadow Register Files. One or more multi-port registers
from a Physical Register File are allocated to a first procedure, and data associated
with the first procedure is stored in the allocated multi-port registers. Data associated
with the first procedure are selectively saved from one or more multi-port registers to
one or more first dual-port registers, and the corresponding allocated multi-port
registers are released for allocation to a second procedure. Prior to continued
execution of the first procedure, data associated with the first procedure are restored
from the dual-port registers to the multi-port registers and the registers are re-allocated
to the first procedure.

100135] Another embodiment relates to a processor implementing an instruction set
architecture defining a plurality of General Purpose Registers. The processor includes
a Physical Register File comprising at least as many multi-port registers as the number
of General Purpose Registers defined in the processor instruction set architeciure, the
registers dynamically allocated to software procedures. The processor also includes a
Register Save Engine operative to selectively save data from mulii-port registers
allocated to inactive procedures and to restore data to the multi-port registers prior 1o
the procedures becoming active. The processor further includes a first Shadow

in the Physical Register File. A first port of each dual-port register is directly connected
to a corresponding multi-port register, and is operative to store data saved from the
multi-port registers allocated to inactive procedures, under the control of the Register

Save Engine.

10

15

20

29

CA 02630594 2011-05-11

74769-2072

6a

According to one aspect of the present invention, there is provided a
method of managing a shadow register file system having one or more shadow
register files, comprising: during execution of a first procedure, allocating to the first
procedure one or more multi-port registers from a physical register file to which a
portion of a logical register stack is mapped that is being used by the first procedure,
and storing data associated with the first procedure in the allocated multi-port
registers, the first procedure going inactive when a second procedure is called: while
the first procedure is inactive, selectively saving the data associated with the first
procedure from the one or more multi-port registers to one or more registers of a first
shadow register file of a shadow register file system, the one or more registers having
Independent data read/write ports, and releasing the corresponding allocated
multi-port registers for allocation to the second procedure; saving the data associated
with the first procedure from the first shadow register file to a second shadow register
file of the shadow register file system; storing at least a portion of the data associated
with the first procedure from a particular register of the second shadow register file to
a backing store, and subsequently retrieving the portion of the data associated with
the first procedure from the backing store to the particular register of the second
shadow register file; retrieving the data from the second shadow register file to the
one or more registers of the first shadow register file; and prior to continued execution
of the first procedure, restoring data associated with the first procedure from the one

or more registers to the one or more multi-port registers and re-allocating the one or
more multi-port registers to the first procedure.

According to another aspect of the present invention, there is provided
an apparatus for managing a shadow register file system having one or more register
files, comprising: means for, during execution of a first procedure, allocating to the
first procedure one or more multi-port registers from a physical register file to which a
portion of a logical register stack is mapped that is being used by the first procedure,
and storing data associated with the first procedure in the allocated multi-port

registers, the first procedure going inactive when a second procedure is called;

10

15

CA 02630594 2011-05-11

74769-2072

6b

means for selectively saving the data associated with the first procedure from one or
more multi-port registers to one or more dual-port registers of a first shadow register

file having independent data read/write ports when a predetermined number of the
multi-port registers become inactive, and releasing the corresponding allocated
multi-port registers for allocation to a second procedure, wherein the predetermined
number is determined by a writable value at a configuration register: means for
saving the data from the one or more dual-port registers of the first shadow register
file to corresponding of a second shadow register file; means for selecﬁvely saving
the data from the corresponding registers of the second shadow register file to a
backing store and for retrieving the data from the backing store to the second shadow
register file; and means for prior to continued execution of the first procedure,
restoring data associated with the first procedure from the corresponding registers of
the second shadow register file to the one or more dual-port registers of the first
shadow register file and for restoring the data from the one or more dual-port

registers to the multi-port registers and re-allocating the multi-port registers to the first

procedure.

.- CA 02630594 2011-05-11

74769-2072

7
BRIEF DESCRIPTION OF DRAWINGS

[0016] Figure 1 is a block diagram of a prior art stacked register file.
[0017] Figure 2 is a functional block diagram of a processor.

10018} Figure 3 is a functional block diagram of a stacked register file including a

plurality of Shadow Register Files.

[0019] Figure 4 is a logical view of a stacked register file system.

[0020] Figure 5 is a flow diagram of a method of managing a stacked register file

architecture.

DETAILED DESCRIPTION

10021] Figure 2 depicts a functiona) block diagram of a processor 10. The
processor 10 executes instructions in an instruction execution pipeline 12 aocording to
control logic 14. The pipeline 12 may be a superscalar design, with multiple parallei
pipelines such as 12a and 12b. Each pipeline 12a, 12b includes various registers or
latches 16, organized in pipe stages, and one or more Arithmetic Logic Units (ALU) 18.
The pipelines 12a, 12b fetch instructions from an Instruction Cache (I-Cache or 1$) 20,
with memory addressing and permissions managed by an Instruction-side Translation
Lookaside Buffer (ITLB) 22. . ‘

[0022] Data is accessed from a Data Cache (D-Cache or D$) 24, with memaory
addressing and permissions managed by a main Translation Lookaside Buffer (TLB)
26. In variols embodiments, the ITLB 22 may comprise a copy of part of the TLB 286.
Alternatively, the ITLB 22 and TLB 26 may be Integrated. Similarly, in various
embodiments of the processor 10, the I-cache 20 and D-cache 24 may be integrated,
or unified. Misses in the I-cache 20 and/or the D-cache 24 cause an access to main
(off-chip) memory 36, under the control of a memory interface 34.

[0023] Pipe stage registers or latches 16 and ALUs 18 may read operands f.rom

and/or write results to registers in a Physical Register File 28. The Physical Register

File 28 Is managed by a Register Save Engine 30, which also manages one or more

- CA 02630594 2011-05-11

74769-2072

8

Shadow Register Files 32. Data are transferred between one Shadow Register File 32

and main memory 36 via memory interface 34. The operation of the Physical Register
File 28, Register Save Engine 30, and Shadow Register Files 32 are described in
greater detail below.

[0024] The processor 10 may Include an Input/Output (1/O) interface 38; controlling
access to various peripheral devices 40, 42. Those of skill in the art will recognize that

numerous variations of the processor 10 are possible. For example, the processor 10

may include a second-level (L2) cache for either or both the | and D caches. In

addition, one or more of the functional blocks depicted in the processor 10 may be
omitted from a particular embodlmént.

[0025] Figure 3 depicts a functional block diagram of the stacked reglster file
architecture of the processor 10. A logically infinite register stack Is implemented in a
Physical Register File 28, which includes at least as many multi-port physical registers

as the processor’s instruction set architecture defines GPRs; one or more Shadow

Register Files 32, each of which contains the same number of dual-port registers as the

Physical Register File 28 contains multi-port registers; and a Backing Store 36 of very
large size. As used herein, a multi-port register Is a storage location having three or
more independent data read/write ports. A dual-port register is a storage location
having two independent data read/write ports. Registers in the Physical Register File
28 are multi-ported, as data are written to and read from the registers by multiple
pipeline stages, ALUs, and the like. Indeed, it is the complexity, silicon area, and
wiring congestion of a large number of random-access multi-port registers that makes
simple expansion of the Physical Register File 28 a costly approach to reducing
latencies associated with saving its contents to a Backing Store 36.

[0026] Each multi-port register in the Physical Register File 28 is directly connected
to a first port of a corresponding dual-port register in the Shadow 1 Register File 32-1.
As depicted in Fig. 3, the second port of each dual-port register in the Shadow 1

Register File 32-1 is directly connected to a first port of a corresponding dual-port

CA 02630594 2008-05-21
WO 2007/059475 PCT/US2006/060849

9

register in the Shadow 2 Register File 32-2. The second port of the dual-port registers
in the Shadow 2 Register File 32-2 is randomly accessed by the Register Save Engine
30. Although Fig. 3 depicts two Shadow Register Files 32-1, 32-2, those of skill in the
art will readily recognize that the number of serially connected Shadow Register Files
32-1, 32-2 may range from one to as many as desired. The set of registers including
the Physical Register File 28 and all serially-connected Shadow Register Files 32 is
referred to herein as the shadow register file system.

[0027] A Top of Stack pointer and Save/Restore pointer manage the availability of
multi-port registers in the Physical Register File 28, as well as, in some embodiments,
saving data to and restoring data from the last Shadow Register File 32-2. Both
pointers are maintained by the Register Save Engine 30. In one embodiment, both
pointers are initialized to the top of the register files. As multi-port registers in the
Physical Register File 28 are allocated to newly called procedures, the Top of Stack
pointer is incremented by the number of multi-port registers allocated. Registers at or
below the Top of Stack pointer (and above the position of the Save/Restore pointer)
are allocated to procedures and may contain program data, and registers above the
Top of Stack pointer (and at or below the position of the Save/Restore pointer) are free
for allocation to new procedures. This relationship holds even as the pointers “wrap”
around the register files. When the Top of Stack and Save/Restore registers point to
the same position with the register files, the Physical Register File 28 is full.

[0028] As a procedure completes execution and returns control to its calling
procedure, the Top of Stack pointer is decremented by the number of registers that
were allocated to the completed procedure. Registers below the Top of Stack pointer
(and above the position of the Save/Restore pointer) hold data associated with the
currently active procedure, and possibly data associated one or more procedures that
are inactive, having called other procedures, but will be reactivated when the called

procedure complete execution.

CA 02630594 2008-05-21
WO 2007/059475 PCT/US2006/060849

10

10029] When a procedure is called and requests the allocation of more multi-port
registers than the number of unallocated multi-port registers remaining in the Physical
Register File 28, the Register Save Engine 30 saves data associated with inactive
procedures — that is, data stored in multi-port registers that are allocated to inactive
procedures (possibly including the calling procedure) —from the Physical Register File
28 to corresponding dual-port registers in the Shadow 1 Register File 32-1. This
operation is referred to herein as “spilling” data. Since each multi-port register in the
Physical Register File 28 is directly connected to a corresponding dual-port register in
the Shadow 1 Register File 32-1, data associated with all inactive procedures may be
saved from the Physical Register File 28 to the Shadow 1 Register File 32-1 in a single
cycle, according to one embodiment.

[0030] However, reading a large number of multi-port registers and writing the
same large number of dual-port registers in a single cycle may result in an undesirable
power "spike." Consequently, in another embodiment, a more incremental approach to
saving multi-port registers to dual-port registers may be employed. For example,
whenever a predetermined number of multi-port registers storing data become inactive
(i.e., their associated procedure(s) go inactive by calling another procedure), the data
may be transferred to dual-port registers. The predetermined number of registers to be
saved at a time — that is, the "granularity" of the multi-port register data save operations
— may be tailored as required for specific implementations, and/or may be variable,
such as by writing a value to a configuration register.

[10031] As called procedures complete execution, and their calling procedure is
reactivated, the Top of Stack pointer moves down, freeing up mulii-port registers
associated with the completed, called procedure. As the Top of Stack pointer
approaches the position of the Save/Restore pointer, data are restored to previously
freed multi-port registers in the Physical Register File 28 from the Shadow 1 Register
File 32-1. This operation is referred to herein as “filling” data. Again, the direct

connection between the each multi-port and dual-port register allows a plurality of

CA 02630594 2008-05-21
WO 2007/059475 PCT/US2006/060849

11

multi-port registers to be restored in a single cycle. The number of registers restored at
a time may be a predetermined value, and in some embodiments may be variable. As
data are restored, the Save/Restore pointer moves down accordingly.

[0032] As depicted in Fig. 3, the shadow register file system may include more than
one Shadow Register File 32-1, 32-2. As data are spilled from the Physical Register
File 28 to the Shadow 1 Register File 32-1. corresponding registers in the Shadow 1
Register File 32-1 may hold saved data. In this case, every time data are spilled from a
multi-port register in the Physical Register File 28 to a dual-port register in the Shadow
1 Register File 32-1, saved data in the dual-port register is shifted into a corresponding
dual-port register in the Shadow 2 Register File 32-2. Because the multi-port registers,
Shadow 1 dual-port registers, and Shadow 2 dual-port registers are directly connected
to dedicated read/write ports, a plurality of register spill operations may occur in a
single cycle.

[0033] When data are filled, or restored, to one or more Physical Register File 28
multi-port registers from corresponding Shadow Register File 32-1 dual-port reqisters,
If saved data resides in corresponding Shadow 2 Register File 32-2 dual-port registers,
they are restored to the Shadow 1 dual-port registers as part of the fill operation.

Those of skill in the art will readily appreciate that Shadow Register Files 32 may be
nested to any required or desired depth for a given implementation, e.g., from 1 to n,
where n is any positive integer.

Shadow Register File (e.g., Shadow 2 Register File 32-2 in the shadow register file
system depicted in Fig. 3) to the Backing Store 36, such as off-chip RAM. Unlike
intermediate Shadow Register Files, whose two read/write ports per register are
directly connected to other registers, the Register Save Engine 30 has random
read/write access to the second port of the registers in the n-th Shadow Register File.
In one embodiment, the Register Save Engine 30 saves data from registers in the n-th

Shadow Register File 32-n as they are spilled out of the shadow register file system —

- CA 02630594 2011-05-11

74769-2072

12
that is, as data are “pushed” out of the register by data in the (n-1)-th Shadow Register

File, as data are spilled from one or more multi-port registers in the Physical Register
File 28.

[0035] The basic operation of the shadow register file system is depicted in an
example below. Consider the shadow register file system of Fig. 3, but for brevity,
each register file comprises only four registers. Initially, a first procedure (P1) requests
and is allocated two muiti-port registers in the Physical Register File (PRF) 28. The
Top of Stack polnter (initialized to the top of the PRF 28) is incremented twice, and sits
at the top of the “valid data” region of the PRF 28, which is the PRF 28 region at or
below the Top of Stack pointer and above the Save/Restore pointer. Since no data

have been spilled from the PRF 28, the Save/Restore pointer is unchanged from its

initlal position at the top of the reglster files. P1 writes data A and B to the two

allocated multi-port registers:

[0036] Procedure P1 calls a second procedure (P2), which requests three multi-
port physical registers. Before three multi-port registers can be allocated to P2, at ieast
some data associated with the now-inactive procedure P1 must be spilled to Shadow 1
Register File (S1RF) 32-1 dual-port registers. The Save/Restore pointer is
incremented, to indicate a save (spill) operation from the PRF 28. P2 then saves data

C-E, and the Top of Stack pointer wraps. Since there are no registers above the Top-

of Stack pointer but below the Save/Restore pointer, there is no free space in the PRF:

O — S i i e,

CA 02630594 2008-05-21
WO 2007/059475 PCT/US2006/060849

13

l P2-D l

ToS = < S/R

Table 2
10037] Procedure P2 calls a third procedure (P3), which requests two physical

registers. Data is spilled from two multi-port registers in the PRF 28 to S1RF 32-1 , and
the Save/Restore pointer is incremented twice. P3 is allocated two multi~port registers,

the Top of Stack pointer is incremented twice, and P3 saves data F and G-

Table 3
[0038] Procedure P3 calls a fourth procedure (P4), which requests three physical

registers. Data are spilled from two PRF 28 multi-port registers into three
corresponding S1RF 32-1 dual-port registers. This causes data from one S1RF 32-1
dual-port register to spill into a corresponding Shadow 2 Register File (S2RF) 32-2

- dual-port register. The Save/Restore pointer is incremented three times. (and wraps).

P4 saves data H-J, and the Top of Stack is incremented three times (and wraps):

CA 02630594 2008-05-21
WO 2007/059475 PCT/US2006/060849

14

P4-| 9‘ P2-E | > | P1-A l

Table 4
[0039] Procedure P4 calls a fifth procedure (P5), which requests three physical

registers. Because more multi-port registers were requested than there are free

registers in the S2RF 32-2, the Register Save Engine 30 must spill data from at least
one dual-port register in the S2RF 32-2 to the Backing Store 36. Following this save

operation, data are spilled from three PRF 28 registers, with the following results:

SZRF
*1
P5-K P2-C
ToS > | P _I\j PZ-I;J &S/R BS

P1-A

Table 5
[0040] A sixth procedure (P6) requests two registers, causing two more spills from

the stacked register file to the Backing Store 36:

CA 02630594 2008-05-21
WO 2007/059475 PCT/US2006/060849

15

[0041]

ToS =

Table 6
[0042] In the embodiment depicted, data spilled from the S2RF 32-2 to the BS 36

are stored in a logical stack, or LIFO data structure. However, the present invention is
not limited to such a structure. In general, the Register Save Engine 30 may store
spilled data in the BS 36 in any form or structure, so long as it tracks the data, and is
able to fill the shadow register file system with a saved data in the reverse order from
which it was spilled.

1004 3] Next, procedure P6 completes execution, and returns control to its calling
procedure P5. The PRF 28 multi-port registers containing data O and N associated
with P6 are deallocated by decrementing the Top of Stack pointer twice. This causes
data stored in the corresponding positions of S1RF 32-1 and S2RF 32-2 to fill. This, in
turn causes the Reglster Save Englne 30 to fill the correspondlng posutlons of S2RF
32-2 with data from the BS 36, beginning at the position of the Save/Restore pointer
and decrementing for each register filled. Following this register fill operation, the Top
of Stack pointer and Save/Restore pointer again address the same entry in the shadow

register file system, indicating that the PRF 28 is full:

. CA 02630594 2011-05-11

74769-2072

16
[0044]

Table 6
[0045] As procedures complete and returmn control to their calling procedures, multi-

port registers in the PRF 28 are deallocated, énd data fills from the S1RF 32-1 to the
PRF 28, from the 82RF 32-2 to the S1RF 32-1, and from the BS 36 to the S2RF 32-2.
Following the return of each called procedure, the state of the shadow register file
‘system will be In the reverse order as depicted above (e.qg., Tables 4, 3, 2, and 1).

1004 6] For efficlent operation, the Register Save En gine 30 tracks the contents of
the shadow register file system. For example, in the spill operations depicted in Tables
2, 3, and 4, the Register Save Engine 30 should not splll data from the n-th Shadow
Register File 32 to the Backing Store 36. However, in the spill operations depicted in

Tables § and 6, it must. In one embodiment, the Register Save Engine 30 maintains a

global Bottom of Stack pointer by counting the number of data spills from the

Physical Register File 28, and deoreménting for data flils. By dividing this count
modulo the register file size, the Register Save Engine 30 can readily ascertain the
"end” of the chain of data being spilled from the Physical Register File 28.

[0047] In another embodiment, the Register Save Engine 30 may determine the

necessary operations from the number of registers being allocated, the position of the

Save/Restore pointer, and whether or not the preceding register file in the chain is full.

In this embodiment, a FULL status bit is associated with each register file (e.g., PRF

28, S1RF 32-1, S2RF 32-2, ... SnRF 32-n). The bit is set whenever the respective

register file is full, and is reset when the register file has free registers available to store

CA 02630594 2008-05-21
WO 2007/059475 PCT/US2006/060849

17

new data. For example, in Table 2, the Shadow 1 Register File 32-1 is not full. Thus,
the Register Save Engine 30 knows that no spill to Backing Store 36 will be necessary
for the next register allocation, since no procedure can be allocated more than the
number of registers in the Physical Register File 28.
1004 8] In the embodiment of the above example, data are spilled from the Physical
Register File 28 only on an "as needed" basis. That is, when a called procedure
requests three registers, and the Physical Register File 28 is full, only three registers
are spilled to the Shadow 1 Register File 32-1 (and further through the shadow register
file system, as required). When the shadow register file system is full (i.e., the Physical
Register File 28 and all Shadow Register Files 32 are full), a spill to the Backing Store
36 is required for each new register allocation. This Imposes the delay associated with
an off-chip RAM access on each procedure call and return, once the on-chip stacked
register file system is full. While this method of shadow register file system
management is fully functional and provides correct results, it may be sub-optimal.
[0049] In another embodiment, whenever insufficient unallocated multi-port
registers exist in the Physical Register File 28 to satisfy a called procedure register
allocation request, all data associated with inactive procedures may be spilled en mass
to the Shadow 1 Register File 32-1 (and subsequently as required down the Shadow
Register File 32 chain). If the n-th Shadow Register File contains valid data, the
Register Save Engine 30 may have to spill data to the Backing Store 36, imposing a
 memory access delay on the procedure call. However, significant émpty space would
remain in the Physical Register File 28, and subsequently called procedures may be
allocated muiti-port registers immediately.
[0050] In another embodiment, where an en mass spilling may induce an
undesired power spike, data may be spilled from the Physical Register File 28
whenever a predetermined number of multi-port registers in the Physical Register File
28 contain data associated with inaotivé procedures. This predetermined number may

be fixed, or it may be user-specified, such as by writing a value to a configuration

- CA 02630594 2011-05-11

714769-2072

18

register. In this embodiment, while the allocation of multi-port registers in the Physical
Register File 28 to a newly called procedure, and the concomitant inactivation of the
calling proceduré, is the trigger that initiates the spill operation (by causing the
predetermined number of the registers associated with inactive procedures to be met
or exceeded), the splll need not be completed to proceed with the allocation of multi-
port registers to the newly called procedure. That is, the spill operation (incrementing
the Save/Restore pointer) Is decoupled from the multi-port register allocation

(incrementing the Top of Stack pointer). This allows the spill operation to proceed as a

"background" task, such as by a low-priority request to the memory interface 34 that is
only serviced when sufficient memory access bandwidth Is available. In this case,
space in the shadow register file system is made available for the allocation of multi-
port physical registers {0 newly called procedures, while Imposing minimal impact on
system performance.
[0051] According to another embodiment, to further minimize the impact of
accesses to the Backing Store 36, the Register Save Engine 30 may spill and fill the n-
th Shadow Register File 32 without regard to the contents of the Physical Register File
28. If the Register Save Engine 30 anticipates a large number of procedure calls, or
calls to procedures that require a largé number of physical registers, it may
aggressively spill the n-th Shadow Register File 32, to ensure ample space in the on-
chip shadow register flle system such that no procedure will incur the memory access

~ latency associated with spill operations to the Backing Store 36. Alternatively, if the
Register Save Engine 30 anticipates a large number of procedure returns, or returns to
calling procedures that have been allocated a large number of physical registers, it may
aggressively fill the n-th Shadow Register File 32, to ensure ample data in the shadow
register file system such that no procedure will incur the memory access latency

associated with fill operations from the Backing Store 36.

[0052] In this embodiment, the Register Save Engine 30 may separately track the

spill/fill point of the n-th Shadow Register File 32 using the global Bottom of Stack

CA 02630594 2008-05-21
WO 2007/059475 PCT/US2006/060849

19

pointer described above. Aliernatively, the Botiom of Stack pointer may track only the
spill/fill point within the n-th Shadow Register File 32, and rely on the FULL indicator
associated with the (n-1)-th Shadow Register File 32 to identify data spills into the n-th
Shadow Register File 32. In either case, due to random access of the second port of
the dual-port registers of the n-th Shadow Register File 32, the Register Save Engine
30 may spill and fill data between the n-th Shadow Register File 32 and the Backing
Store 36 independently of the allocation of multi-port registers in the Physical Register
File 28.

[0053] Figure 4 depicts a logical view of the stacked register file system and its
physical implementation (in the embodiment depicted in Fig. 3). The stacked register
file system operates as a logical stack of multi-port registers of infinite depth. Since
each procedure may access only as many registers as there are GPRs defined in the
instruction set architecture, and the Physical Register File 28 is at least that size, the
registers directly accessed by procedures are multi-port regi»sters. Below the Physical
Register File in the logical register stack are dual-port registers in the Shadow Register
Files 32. The shadow register file system comprises the Physical Register File 28 and
all of the Shadow Register Files 32. These are on-chip registers, from which data may
be accessed with minimal delay. At the bottom of the logical register stack are data
saved to the Backing Store 36, such as off-chip RAM.

[0054] Note that the depth of the logical register stack implemented in on-chip

" registers is an integral multiple of the size of the Physical Register File 28 (3x in the
embodiment depicted). At least half of these registers (2/3 of them in the embodiment
depicted) are simple, direct-connected, dual-port registers. However, the shadow
register file system provides performance very nearly that achievable by the more
costly option of multiplying the size of the Physical Register File 28 using multi-port
registers.

[0055] The one-to-one correspondence and directly coupled linking of each multi-

port register in the Physical Register File 28 to one or more dual-port registers in

CA 02630594 2008-05-21
WO 2007/059475 PCT/US2006/060849

20

Shadow Register Files 32 allows the shadow register file system to be divided into
banks, with each Physical Register File 28 bank having an expanded effective depth by
operation of the spill and fill operations as described above. For example, in certain
applications, such as battery-powered portable electronic devices, where power
consumption is critical, it is known to "power-down" one or more banks of the Physical
Register File 28. The shadow register file system, using Shadow Register Files 32,
fully supports such a power-saving strategy. Each Shadow Register File 32 may be
divided into banks corresponding to those of the Physical Register File 28, and one or
more Shadow Register File 32 banks may be powered-down along with any
corresponding Physical Register File 28 banks. in the operational banks, the Top of
Stack, Save/Restore, and (if present) Bottom of Stack pointers operate as described
above, within the confines of a bank. Data are saved from one or more multi-port
registers to corresponding dual-port registers, to increase the effective depth of the
operational bank of the Physical Register File 28, without implementing additional,
expensive multi-port registers.

[0056] A method of operating a stacked register file system according 1o one
embodiment is depicted in flow diagram form in Figure 5. The Register Save Engine
30 receives a request to allooatec one or more multi-port registers in the Physical
Register File 28 for exclusive use by a newly called procedure to write and read data,
such as operands for, or results of, arithmetic or logical instructions (block 50). The
Register Save Engine 30 determines whether there are sufficient unallocated registers
remaining in the Physical Register File 28 (block 52). Initially, there are, and the
requested number of Physical Register File 28 multi-port registers is allocated to the
new procedure (block 60). This process may repeat several times, as each procedure
calls a successive procedure (block 50).

[0057] At some point, a procedure is called and multi-port register allocation
requested (block 50), but insufficient unallocated multi-port registers remain in the

Physical Register File 28 to satisfy the request (block 52). The Register Save Engine

CA 02630594 2008-05-21
WO 2007/059475 PCT/US2006/060849

21

30 then determines which registers in the Physical Register File 28 must be freed up 1o
satisfy the request, and whether the corresponding dual-port registers at the end of the
chain of Shadow Register Files 32 are free (block 54). If so, at least a sufficient
number of multi-port registers that are allocated to one or more currently inactive
procedures are de-allocated by saving their contents to corresponding, directly-
connected dual-port registers in a Shadow Register File 32 (block 58). Any data in the
dual-port registers are spilled to the dual-port registers in a subsequent Shadow
Register File 32, and so on down the chain. The Register Save Engine 30 then
allocates these de-allocated registers, along with existing de-allocated registers in the
Physical Register File 28, to the requesting new procedure (block 60), which may
proceed with execution and store data in its allocated Physical Register File 28 multi-
port registers.

[0058] If sufficient new procedures are called, and/or if the new procedures require
large allocations of registers, data may be spilled out to the last, or n-th Shadow
Register File 32. In this case, upon a request by a new procedure (block 50), if the
dual-port registers in the n-th Shadow Register File 32 that correspond to the multi-port
registers in the Physical Register File 28 to be allocated contain valid data (block 54),
the Register Save Engine 30 will spill the data to the Backing Store 36, such as off-chip
RAM (block 56). Data may then be saved from multi-port registers in the Physical
Register File 28 to corresponding dual-port registers in the Shadow Register Files 32
(block 58), and the freed Physical Register File 28 multi-port registers allocated to the
new procedure (block 80). This process may repeat as new procedures are called
(block 50).

10059] At some point, rather than calling a new procedure (block 50), an active
procedure will terminate, and return control to its calling procedure, which will request
reactivation (block 62). The Register Save Engine 30 will check to determine if all
registers originally allocated to the inactive procedure remain allocated to it in the

Physical Register File 28 (block 64). If so, all the data written by the procedure, before

CA 02630594 2008-05-21
WO 2007/059475 PCT/US2006/060849

22

it called another procedure and became inactive, remains in the Physical Register File
64 and the procedure may reactivate and resume execution (block 63).
10060] If the Register Save Engine 30 spilled data from one or more muiii-port
registers originally allocated to the inactive procedure into corresponding dual-port
registers, and allocated the multi-port registers to another procedure, the Register Save
Engine 30 fills the Physical Register File 28 by shifting the data stored in corresponding
Shadow Register File 32 two-port registers (block 64). The inactive procedure is then
reactivated (block 68). Data may be filled to the n-th Shadow Register File 32 from the
Backing Store 306.
[0061] The shadow register file system, utilizing Shadow Register Files 32,
increases processor performance by reducing the number of times that ithe processor
must be interrupted for save/restore operations to the Backing Store 36 for the Physical
Register File 28. This results in faster register allocation/deallocation on software
procedure calls/returns, as well as reducing the required number of relatively slow off-
chip memory accesses.
[0062] The shadow register file system, utilizing Shadow Register Files 32, also
saves power by reducing off-chip memory accesses, and by driving shorter wires
through the use of simple, dual-port registers, as compared with the mulii-port registers
of the Physical Register File 28.
[0063] In one embodiment, to maximize the speed of register spill/fill operations
and minimize power consumption, the dual-port registers in the Shadow 1 Register
Files 32-1 are physically placed directly adjacent to corresponding multi-port registers
in the Physical Register File 28, and directly connected. Similarly, the dual-port
registers in the Shadow 2 Register File 32-2 are physically placed directly adjacent to
corresponding dual-port registers in the Shadow 1 Register File 32-1, and directly
connected. In fact, in one embodiment, each “row” of corresponding multi-port and
dual-port registers is designed as a unit to be placed and routed on the chip. This

ensures a direct connection, with minimum wire length, between each corresponding

CA 02630594 2008-05-21
WO 2007/059475 PCT/US2006/060849

23
register (as opposed to designing the Physical Register File 28 and Shadow Register
Files 32 as separate units, in which case the connections between them may be routed
using longer wire lengths over greater silicon area).
[0064] Although the present invention has been described herein with respect to
particular features, aspects and embodiments thereof, it will be apparent that numerous
variations, modifications, and other embodiments are possible within the broad scope
of the present invention, and accordingly, all variations, modifications and
embodiments are to be regarded as being within the scope of the invention. The
present embodiments are therefore to be construed in all aspects as illustrative and not
restrictive and all changes coming within the meaning and equivalency range of the

appended claims are intended to be embraced therein.

10

15

20

29

CA 02630594 2011-05-11

74769-2072
24
CLAIMS:
1. A method of managing a shadow register file system having one or

more shadow register files, comprising:

during execution of a first procedure, allocating to the first procedure
one or more multi-port registers from a physical register file to which a portion of a
logical register stack is mapped that is being used by the first procedure, and storing
data associated with the first procedure in the allocated multi-port registers, the first

procedure going inactive when a second procedure is called:

while the first procedure is inactive, selectively saving the data
associated with the first procedure from the one or more multi-port registers to one or
more registers of a first shadow register file of a shadow register file system, the one
or more registers having independent data read/write ports, and releasing the

corresponding allocated multi-port registers for allocation to the second procedure:

saving the data associated with the first procedure from the first shadow

register file to a second shadow register file of the shadow register file system;

storing at least a portion of the data associated with the first procedure
from a particular register of the second shadow register file to a backing store, and
subsequently retrieving the portion of the data associated with the first procedure

from the backing store to the particular register of the second shadow register file;

retrieving the data from the second shadow register file to the one or

more registers of the first shadow register file; and

prior to continued execution of the first procedure, restoring data
associated with the first procedure from the one or more registers to the one or more
muilti-port registers and re-allocating the one or more multi-port registers to the first

procedure.

10

15

20

29

CA 02630594 2011-05-11

74769-2072

25

2. The method of claim 1 wherein each multi-port register is directly
connected to a first port of a corresponding dual-port register of the shadow register

file system.

3. The method of claim 1 wherein the portion of the data is saved to the
particular register via a first port of the particular register, and wherein saving the
portion of the data associated with the first procedure from the particular register to

the backing store comprises reading from a second port of the particular register.

4. The method of claim 1 wherein retrieving the data associated with the
first procedure from the backing store to the particular register is performed by a
register save engine having random read/write access to the one or more registers of

the shadow resiter file.

5. The method of claim 1 wherein a second port of each of the one or
more registers is directly connected to a first port of a corresponding register of the

second shadow register file.

6. The method of claim 1 wherein saving data from and retrieving data to
registers of the second register file is performed independently of multi-port register

allocation.

7. The method of claim 1 wherein saving data associated with the first
procedure from registers of the second shadow register file to a backing store

comprises reading data associated with the first procedure from a second port of each

register of the second shadow register file, and writing the data to the backing store.

8. The method of claim 1 wherein retrieving the data associated with the
first procedure from the backing store to registers of the second shadow register file
comprises reading data associated with the first procedure from the backing store,
and writing the data to a second port of the same register of the second shadow

register file from which the data was read.

CA 02630594 2011-05-11

74769-2072

26

9. The method of claim 1 wherein selectively saving data associated with
the first procedure from one or more multi-port registers to one or more registers

comprises saving data associated with the first procedure to the one or more

registers only when insufficient un-allocated registers remain among the multi-port
O registers to allocate to the second procedure.

10. The method of claim 1 wherein selectively saving data associated with the
first procedure from one or more multi-port registers to one or more registers comprises

saving only data associated with the first procedure to the one or more registers.

11. The method of claim 1 wherein selectively saving data associated with the
10 first procedure from one or more multi-port registers to one or more registers comprises
saving data associated with the first procedure and additionally data with one or more

procedures executed prior to the first procedure, to the one or more registers.

12. The method of claim 11 wherein selectively saving data associated with
the first procedure and one or more prior procedures comprises saving the data when

15 a predetermined number of multi-port registers contain data associated with inactive
procedures.

13. The method of claim 11 wherein selectively saving data associated with

the first procedure and one or more prior procedures comprises saving all data in
multi-port registers associated with inactive procedures.

20 14 The method of claim 1 further comprising:

dividing the physical register file and corresponding dual-port registers
iInto two or more banks;

powering-down at least one bank: and

allocating operative multi-port registers, storing data in the operative
25 multi-port registers, selectively saving data to operative dual-port registers, releasing

the operative multi-port registers for allocation, restoring the data from the operative

10

15

20

29

CA 02630594 2011-05-11

74769-2072
27

dual-port registers to the multi-port registers, and re-allocating the operative multi-port

registers in one or more operative banks.

15. An apparatus for managing a shadow register file system having one or

more register files, comprising:

means for, during execution of a first procedure, allocating to the first
procedure one or more multi-port registers from a physical register file to which a
portion of a logical register stack is mapped that is being used by the first procedure,
and storing data associated with the first procedure in the allocated multi-port

registers, the first procedure going inactive when a second procedure is calied,

means for selectively saving the data associated with the first procedure
from one or more multi-port registers to one or more dual-port registers of a first
shadow register file having independent data read/write ports when a predetermined
number of the multi-port registers become inactive, and releasing the corresponding
allocated multi-port registers for allocation to a second procedure, wherein the

predetermined number is determined by a writable value at a configuration register;

means for saving the data from the one or more dual-port registers of

the first shadow register file to corresponding of a second shadow register file;

means for selectively saving the data from the corresponding registers
of the second shadow register file to a backing store and for retrieving the data from

the backing store to the second shadow register file; and

means for prior to continued execution of the first procedure, restoring

data associated with the first procedure from the corresponding registers of the
second shadow register file to the one or more dual-port registers of the first shadow
register file and for restoring the data from the one or more dual-port registers to the

multi-port registers and re-allocating the multi-port registers to the first procedure.

CA 02630594 2008-05-21

PCT/US2006/060849

WO 2007/059475

1/5

dAVD
SdHLSIDHY

(IgV ¥0nId)
[' DIH

i
s
s, a
s,

I b MOVIS 40 dOL
I I HLVOOTIV

HTI dd.LSIDH Y
TVIISAHd

b TIOLSTI/AAVS

TAVS

51 NI
SUYHLSIDHY

CA 02630594 2008-05-21
WO 2007/059475 PCT/US2006/060849

2/5

10

PROCESSOR ~22

PIPELINE 23

14
12a
/
CONTROL 16 PRE
26

16

24

~34
MEMORY I/F

10 UF 38

30

MEMORY - 40 - 42

FIG. 2

CA 02630594 2008-05-21

PCT/US2006/060849

WO 2007/059475

3/5

Ot
NOLLOY

dAVS

!

SULLSIDHY

0¢€
B e
Sy
(V)

TIOLS MOVIS +
ONDIOVE J0 WOLLOg~ HAVS

ATNO H5d Ad
SSHOOV WOUNVY

¢ DI

[arAd

AN

SMOUVHDS

dd.LSIDHA

LTI-CAS

EQIE]
HHLSIDHY
¢ MOAVHS

)

1=C
0-1dS

SMOUVHS
HHLSIDHY

LCL-TAS

114
YHLSIDAE
[MOAVHS

HLYO0TIVad

B
«Mudrwm 10 dOL

9SS NI ALVOOTIV

*m\E
MALSIOT
TVDISAHA

S.LIN{) 1dD
JTdILTION

WO 2007/059475

TOP

BOTTOM —p

CA 02630594 2008-05-21

LOGICAL
REGISTER
STACK

)
Y

4/3

STACK REGION

IN PHYSICAL
REGISTER FILE

STACK REGION
IN SHADOW 1
REGISTER FILE

STACK REGION
IN SHADOW 2
REGISTER FILE

FIG. 4

PCT/US2006/060849

STACK REGION
IN SHADOW
REGISTER
FILE SYSTEM

" STACK REGION IN

BACKING STORE
(RAM)

CA 02630594 2008-05-21

WO 2007/059475

RECEIVE REQUEST TO

ALTLOCATE ONE OR MORE
MULTI-PORT REGISTERS TO A
NEW PROCEDURE

50

~52

SUFFICIENT
UNALLOCATED
MULTI-PORT
REGISTERS
IN PRE?

NO

YES

54

/SUFFICIENT
/" SPACE IN CHAIN
”~ OF DUAL-PORT SRF
REGISTERS ASSOCIATED
PORT PRF

REGISTERS? /

SELECTIVELY SAVE ONE OR
MORE ENTRIES FROM THE
DUAL-PORT REGISTERS IN

THE LAST SRF TO BS

—~38

SELECTIVELY SAVE DATA
FROM ONE OR MORE
MULTI-PORT REGISTERS
" ALLOCATED TO ANOW-
INACTIVE PROCEDURE TO A
CORRESPONDING DUAL-PORT
REGISTER IN A SRF, SHIFTING
DATA TO A SUBSEQUENT SRF
IF NECESSARY, AND
DEALLOCATE THE REGISTERS

60

ALLOCATE ONE OR MORE
MULTI-PORT REGISTERS IN
THE PRF TO THE NEW
PROCEDURE

Y ES

5/5

FI1G. 5

PCT/US2006/060849

CONTROL RETURNED
TO INACTIVE PROCEDURE,

RECEIVE REQUEST TO
REACTIVE THE PROCEDURE

" MULTI-PORT REGISTERS

PREVIOUSLY ALLOCATED
TO THE INACTIVE PROCEDURE
CURRENTLY ALLOCATED TO THE
PROCEDURE (CONTAIN DATA.
ASSOCIATED WITH THE
PROCEDURE)?

NO
~ 66

RESTORE DATA ASSOCIATED
WITH THE INACTIVE PROCEDURE
FROM ONE OR MORE
CORRESPONDING DUAL-PORT
REGISTERS IN THE SRF TO MULTI-
PORT REGISTERS IN THE PREF,
SHIFTING DATA FROM
SUBSEQUENT SRFs TF NECESSARY

03

REACTIVATE THE PROCEDURE

YES

RECEIVE REQUEST TO
ALLOCATE ONE OR MORE
MULTIE-PORT RECISTERS TO A
NEW PROCEDURE

OF DUAL-PORT SRF
REGISTERS ASSOCIATED
WITH THE MULTT-

SELECTIVELY SAVE ONE OR
MORE ENTRIES FROM THE
DUAL-PORT REGISTERS TN

THE LAST SRF TO BS

i' 798

SELECTIVELY SAVE DATA
FROM ONE OR MORE
MULTI-PORT REGISTERS
ALLOCATED TO A NOW-
INACTIVE PROCEDURE TO A
SRE

CORRESPONDING DUAL-PORT
REGISTER IN A SRF, SHIFTING
DATA TO A SUBSEQUENT

IF NECESSARY, AND
DEALLOQCATE THE REGISTERS

t‘ N

ALLOCATE ONE OR MORE
MULTHPORT REGISTERS IN

CONTROL RETURNED
TO INACTIVE PROCEDURE,
RECEIVE REQUEST TO
REACTIVE THE PROCEDURE

MULTI-PORT REGISTERS
PREVIOUSLY ALLOCATED
TO THE INACTIVE PROCEDURE
CURRENTLY ALLOCATED TO THE
PROCEDURE (CONTAIN DATA
ASSOCIATED WITH THE
PROCEDURE)?

YES

RESTORE DATA ASSOCIATED
WITE THE INACTIVE PROCEDURE
FROM ONE OR MORE
CORRESPONDING DUAL-PORT
REGISTERS IN THE SEF TO MULTI-
PORT REGISTERS IN THE PRF,
SHIFTING DATA FROM
SUBSEQUENT SRFs TF NECESSARY

REACTIVATE THE PRI “

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - abstract
	Page 4 - abstract
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - claims
	Page 31 - claims
	Page 32 - claims
	Page 33 - claims
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - abstract drawing

