

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ : E21D 9/00		A1	(11) International Publication Number: WO 99/19603
			(43) International Publication Date: 22 April 1999 (22.04.99)
(21) International Application Number:	PCT/GB98/03007		
(22) International Filing Date:	7 October 1998 (07.10.98)		
(30) Priority Data:	9721400.1 9 October 1997 (09.10.97)	GB	
(71)(72) Applicant and Inventor:	THOMSON, James, Crawford [GB/CH]; International Centre Cointrin, Case postale 1829, CH-1215 Geneva 15 (CH).		(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, HR, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).
(74) Agent:	BAILEY WALSH & CO.; 5 York Place, Leeds LS1 2SD (GB).		Published <i>With international search report.</i>

(54) Title: ARCHED SUPPORT STRUCTURE

(57) Abstract

The invention provides an advantageous support structure and method for forming same for use in excavations such as underpasses, tunnels and the like for roads, rail or rivers. The support structure allows the utilisation of the strength provided by using arch shaped sections and also minimises the disruption caused to the soil surrounding the excavation thereby allowing existing road, rail or river services to continue to be used during excavation.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakhstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		
EE	Estonia						

Arched Support Structure

This application relates to the construction of underground structures in tunnel excavations without causing surface disruption. This type of excavation technique has been developed in the last 30 years and there is a growing need to install structures such as, for example, traffic underpasses, below an existing rail track or highway without stopping the use and operation of the same. Another example is the creation of a metro station below a busy street or property.

The problem with traditional tunnelling techniques is that for safety reasons there is required to be a depth of soil of approximately 2 to 3 times the diameter of the tunnel which is to be excavated, above the said tunnel. This renders the traditional techniques impractical and so a number of conventional methods have been developed and are now used which reduce the requirement for such a great depth of soil to be provided above the tunnel. These methods are based on the principle of jacking pre-cast structure units into the excavated area, as the same is excavated to form a structure as the tunnel is formed. The formation of the structure allows the support of the tunnel as it is formed without the need to cause disruption to services or property on the surface.

A known approach is to prepare the structure to be installed at the side of the excavation and then jack it horizontally into position in the excavation. This has the disadvantage of requiring large constructions to be formed at the side and an extended area to be

prepared for carrying out the work, usually of at least the same dimensions as the installation. It is also a process that is time consuming as a great deal of preparatory work has to be done in forming the working areas and casting the structure units.

A second known approach is a modular approach where a series of pre-cast units are jacked, one on top of another, to form piers and abutments. This is a system which has found extensive use but has the disadvantage of not providing a complete solution to the problem as, although the majority of the excavation work can be completed without disruption it is necessary at some stage to complete the work by taking possession of the excavation so as to allow installation of the spanning beams.

A third known approach is to create a structure of arch shaped cross section which is formed by a series of relatively small section tubes which run along the length of the structure. This provides a canopy which allows excavation to take place safely underneath. The disadvantages with this is that it is difficult and expensive to place all the tubes in position and, normally it is necessary to provide props for the arch across the base of the same and put in temporary support beams to support the tube arch and these procedures are required to be undertaken as work progresses.

The aim of the present invention is to provide an improved process of supporting material excavations by utilising a modular pre-cast unit based on the principle of using units formed of an arch shape such that a series of said units allow an arch structure to be formed,

said arch being an efficient form of carrying live and dead loads and therefore well suited to creating an underground structure. The approach is to pre-cast arch panels, erect them in the excavated area and jack the assembled elements forward to form the structure.

In a first aspect of the invention there is provided a support structure which can be used to support excavated areas during and/or following excavation, said support structure including a series of upstanding arch shaped sections, positioned along the length of the excavated area, one after the other, said arch sections introduced as the area is excavated.

In a preferred embodiment the support structure is formed with arch section ends being located in and along a series of supporting units. In one preferred embodiment the units have recessed sections, which, when the units are laid end to end, form a track along which the arch sections can slide when jacked. Typically, two linear tracks are formed, said tracks spaced apart by a distance determined by the space between the ends of said arch sections.

Typically, the arch sections and/or supporting units are pre-cast. Yet further, each of the arch sections are formed from a series of panels, constructed on site and prior to insertion into the tunnel.

In a further aspect of the invention, there is provided a method for forming a support structure for an excavated area during and/or after excavation of the same, said method comprising, as the tunnel is excavated, pushing or jacking a series of arch sections in an

upstanding position one after another into said excavated area, so that an arch shaped support structure is formed.

Typically the excavated area is a tunnel and the method comprises the steps of jacking a series of arch sections at intervals to increase the length of the support structure into the tunnel as the tunnel is excavated. The activity of the tunnel excavation takes place to the front of the first of the arch sections introduced.

In one embodiment, supporting units are first positioned in the excavation to act as bases and guides along which the arch structures are introduced.

In one embodiment, the supporting units extend upwardly to form the side walls of the arch shaped structure and it is the curved arch sections which are introduced to form the arch shaped structure. Alternatively the arch sections include both the roof and side walls when jacked into the excavation.

The method of the invention has a number of technical and economic advantages. Arch sections can be formed from a number of panels by factory fabrication, delivered to site and connected together to form the arch.

In one embodiment a temporary shield can be fitted at the leading face, i.e. in front of the first arch section, which allows excavation work to be undertaken safely. This shield is recovered at the end of the excavation and can be re-used for excavations thereafter.

Similarly, a shield can be provided at the front of each supporting unit to allow excavation to proceed safely.

The use of arch panels reduces the temporary working areas required at the excavation site and requires less heavy handling equipment, than with conventional techniques.

Typically, the ends of the panel sections are located in tracks formed by a series of supporting units which are jacked into the tunnel and the method further includes the step of jacking said supporting units into the tunnel to provide tracks of a sufficient length to receive the arch sections to form the support structure and therefore may be advanced to a further position into the excavation than the arch sections. Typically, the units are required to be manipulated after jacking to expose recessed portions to allow the formation of the tracks.

To further improve the structure, hydrophilic gaskets or groutable injection hoses can be introduced between panels as they are installed in the working pit which serve to waterproof the joints and it should be appreciated that there are many possible variations of details in the design of the foundations and the arch configuration and span.

In one embodiment double, side by side arched structures can be created, for example, for a tunnel for the two carriageways of a divided highway. In one embodiment three or four sets of in line supporting units are provided, said supporting units comprising two

lines of outer supporting units and a centre line of double units and/or single units having two guide tracks formed therein, thus allowing the introduction of two sets of side by side sections along said supporting units.

As an alternative embodiment to the use of supporting units in block form there is provided the method of forming tunnels, typically of circular cross section, along the line of the support structure to be formed and said tunnels spaced apart by the spacing required for the arch sections. The tunnels are driven by jacking or by segment construction. In each tunnel there is formed a track for the reception of the ends of the arch sections which again pass along the length of the tracks as with the supporting units and therefore act in a similar manner to support the arch sections.

Specific embodiments of the invention will now be described with reference to the accompanying drawings, wherein:-

Figure 1 illustrates a perspective view of the working area and the installation of the supporting units prior to main tunnel excavation;

Figures 2A-2C illustrate cross sections of the supporting unit before and after jacking into the excavation;

Figure 3A illustrates a side elevation of an excavation with a support structure according to the invention;

Figure 3B illustrates a sectional elevation of the apparatus of Figure 3B showing the structure of one of the arch sections;

Figure 3C illustrates a perspective view of a partially completed structure of the type shown in Figures 3A and 3B;

Figure 4 illustrates the use of the embodiment of using tunnel supports for the arch sections; and

Figure 5 illustrates a perspective view of a support structure formed according to Figure 4 on the right hand side of the tunnel and an alternative method on the left hand side for the purpose of illustration.

After preparing the working area 2 adjacent to where the structure is to be installed, a series of supporting or foundation units 4 are driven into the excavation material to form the base 6,6' and base reaction (horizontal and vertical load components) for the arch sections. These supporting units are designed to be of the correct dimensions for the loads and are installed by driving them into the tunnel excavation by pipe jacking methods. For convenience and economy the units can be pre-cast off site in suitable handlable lengths and then brought to site as required. The units are designed so that after being installed they can be modified by undertaking work from inside the units by workers to provide a finished foundation structure for the structure and form tracks 10, 10', at the correct level as shown in Figures 2A-2C whereby the supporting units 4 are shown in Figure 2A in the form in which they

are jacked. Figure 2B shows the supporting units after manipulation when positioned in the excavation and Figure 2C shows the track 10 with an end of an arch section 12 located therein. The units 4 have removable covers 14 which are removed progressively during the excavation of the soil from within the shield 16 to expose the guide tracks 10,10'. The units form a track guide and seating during installation of the arch sections and the permanent foundation, thereafter.

With the supporting units installed to a sufficient length the guide channels on the same are levelled so that the tracks formed on the same are level and the units are then pumped with concrete to form a solid foundation. The next stage in the method is to erect the temporary cutting shield 20 of Figure 3A which is fabricated in steel with the same outside dimensions, plus a small overcut, as the outside dimension of the arch sections. Some overcut in the excavation allows a reduction in soil friction and allows the introduction of measures to improve jacking of the sections such as lubrication or drag sheets. The shield, depending on the geotechnical conditions, can be fitted with shelves, compartments, doors, advance spiles and other devices used in tunnelling excavation as required. These devices assist in controlling the face stability and allow excavation machinery to be operated and excavation to proceed at the various levels of the tunnel.

In practise, the shield is introduced into the soil through the head wall and along the tracks 10, 10' of the supporting units and excavation at the face commences, typically by face miners with the

aid of mechanical equipment. As the shield advances, arch sections 12, are jacked into the excavation behind the shield and along the tracks 10, 10' as shown in Figures 3A and 3B. A steel jacking ring 28 can be used to distribute the jacking loads uniformly onto the arch sections and in one embodiment shown in Figure 3A spacers 30 are used to allow the jacking reaction from the jacking rig 31 to be transferred onto the reaction wall 32. Alternatively, it is possible to have telescopic jacks mounted on the reaction wall with a stroke equivalent to the width of the section which would eliminate the need for the spacers to be used. Individual arch sections can be of any suitable dimension, but typically 2 to 3 metres in length. The ends of the sections 12 are located at the end foots in the tracks 10, 10' of the supporting units 4 so they cannot spread apart during the jacking operation or thereafter. Typically, the staggering of the joints of the supporting units 4 is possible to allow use of the previously placed arch section to provide support for the next one.

It is preferred to have the supporting units extending outwith the excavated area into the working or reception area so as to allow the shield 20 and arch sections 12 to be provided in the correct configuration prior to jacking and, as they are then held in the tracks 10, 10' they can not deviate from line or level.

It is possible to jack both two pinned arch sections and three pinned arch sections into the excavation. The latter being preferable in that the two panels 36, 38 of a three pinned arch as shown in Figure 3B are envisaged to be more easily handleable than the single unit of a two pinned arch. Furthermore a three pinned

arch is more structurally efficient and can be provided with a suitably designed crown connection 34.

The arch sections are introduced and hence pushed forward as excavation advances by jacks mounted in a suitable frame and having a reaction against a suitable structure. Such arrangements are well known and widely used. When the end of the excavation is reached and the reception shaft of the excavation is reached, the shield is removed.

Figure 3C illustrates a partially formed support structure 31 formed of a series of arch structures 12 and supporting units 4 with part of the arch sections 12', 12" removed in the drawing for ease of reference only. In this case the support structure is being formed under a railway line embankment 33 as shown.

As an alternative embodiment to the use of supporting units in block form, there is provided the method of forming tunnels as shown in Figure 4 which illustrates a cross section of one tunnel, said tunnel 40 typically of circular cross section, and provided along the line of the support structure to be formed. Typically two or three tunnels, as required, are formed, said tunnels spaced apart by the spacing required for the location of the ends 36, 38 of the arch sections. The tunnels are driven by jacking or by segment construction. In each tunnel there is formed a track 42 which can be exposed for the reception of the end 44 of the arch sections 12 which again pass along the length of the tracks as with the supporting units and therefore are introduced and act in a similar

manner. The tunnels are typically filled with concrete so as to act as foundations for the structure when formed. The advantage of this embodiment is particularly for use in unstable soil conditions, perhaps below the water table level. The circular tunnels can use conventional pressure balance shields to undertake the work remotely under pressure and without inflow or loss of soil. There is also a further advantage in that they can be used as access tunnels from where it is possible to undertake, for example, a program of drilling and injection to stabilise the soil in the area where the arched support structure is to be installed.

Figure 5 illustrates on the right hand side of the tunnel a support structure formed using the tunnels 40 as shown in figure 4. Prior to installing the guide track along the tunnels, the tunnels remains enclosed and allows access to construct. This construction could be by methods such as diaphragm walling, contiguous piling to form a piling wall 52, for example.

On the left hand side of the tunnel an alternative arrangement is shown whereby the arch structure is formed by arch sections 50 which connect, with the tracks of the supporting units 4, acting as side wall panels and it is the end of the side wall which locates with the foundations. In this embodiment therefore the support structure is formed of arch sections, side wall supporting units and foundation units, introduced in the same manner as previously described.

The operation according to the invention comprises excavating, jacking and adding new arch sections until the structure is in its final position and excavation is completed.

Furthermore, as the arch sections are moved into place it is possible to structurally link all the sections to provide additional strength such as by using Macalloy HT bars placed in ducts provided in the concrete sections and stressed.

It should be noted that any of the embodiments shown can be used to advantage in conditions and requirements to which one, or a combination of the embodiments, is or are suited.

Thus it will be appreciated that there is provided a method for forming a structure in an excavation without the need to disturb the surface above the excavation and also provides for the utilisation of the relevant strength of arch shaped sections. Furthermore, the provision of the tracks, and use of supporting units which can be set to the required line and level before the jacking of the sections, ensures that once set, the line and level no longer needs to be checked and the arched sections can be relatively easily jacked into position along the tracks.

Claims

1. A support structure which can be used to support excavated areas during and/or following excavation, said support structure including a series of upstanding arch shaped sections, positioned along the length of the excavated area, one after the other, said arch sections introduced as the area is excavated.
2. A support structure according to claim 1 wherein the structure is formed with the arch section ends being located in and along a series of supporting units.
3. A support structure according to claim 2 wherein the units have recessed sections, which, when the units are laid end to end, form a track along which the arch sections can slide.
4. A support structure according to claim 3 wherein at least two linear tracks are formed, said tracks spaced apart by a distance determined by the space between the ends of said arch sections.
5. A support structure according to claim 1 wherein the arch sections and/or supporting units are pre-cast.
6. A support structure according to claim 1 wherein each of the arch sections is formed from a series of panels, which can be constructed on site.

7. A method for forming a support structure for an excavated area during and/or after excavation of the same, said method comprising, as the tunnel is excavated, pushing or jacking a series of arch sections in an upstanding position one after another into said excavated area, so that an arch shaped support structure is formed.
8. A method according to claim 7 wherein the excavated area is a tunnel and the method comprises the steps of jacking a series of arch sections into the excavation at intervals and introducing new sections from the open end of the tunnel to increase the length of the support structure as the tunnel is excavated.
9. A method according to claim 8 wherein the tunnel excavation takes place to the front of the first of the arch sections introduced.
10. A method according to any preceding claim wherein the supporting units are first positioned in the excavation to act as guides along which the arch structures are introduced.
11. A method according to claim 10 wherein the supporting units act as side wall portions which extend upwardly to form the side walls of the arch shaped structure and the arch sections are introduced to act as roof panels and form the arch shaped structure.
12. A method according to claim 10 wherein the arch sections comprise roof and side walls when jacked into the excavation.

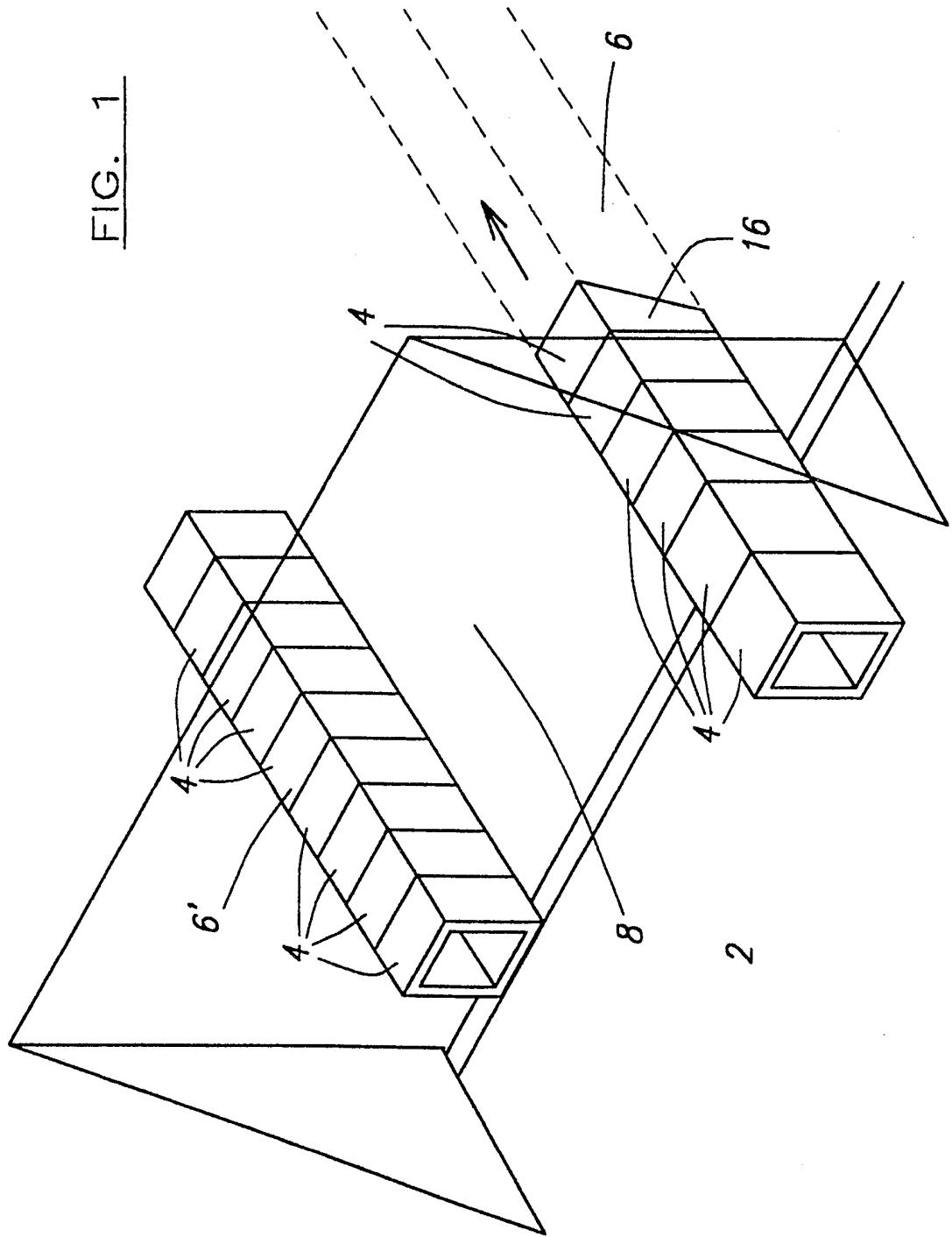
13. A support structure according to any of the preceding claims wherein a temporary shield is fitted at the leading face of the structure which allows excavation work to be undertaken safely.
14. A support structure according to any preceding claims wherein there is provided at the front of each supporting unit a shield to allow excavation to proceed safely.
15. A method according to any of the preceding claims wherein the ends of the panel sections are located in tracks formed by a series of units which are jacked into the tunnel and the method further includes a step of jacking said supporting units into the tunnel to provide tracks of a sufficient length to receive the arch sections to form the support structure.
16. A method according to claim 15 wherein the units are required to be manipulated after jacking to expose recess portions to allow the formation of the tracks.
17. A method according to any of the preceding claims wherein hydrophilic gaskets or groutable injection hoses can be introduced between panels as they are installed in the working area which waterproof the joints between the said panels.
18. A support structure according to any preceding claims wherein a plurality of side-by-side support structures are created by the use of at least three sets of in-line supporting units, said support units configured so as to comprise two lines of outer supporting units and

a centre line of double units and/or single units having two guide tracks formed therein, thus allowing introduction of two sets of side-by-side arches along said supporting units.

19. A support structure according to of the preceding claims, wherein the supporting units are formed by tunnel structures which are first formed and then filled with a suitable material and then have tracks formed therein.

20. A method for forming a support structure for an excavated area during and/or after excavation of the same, said method comprising, as the tunnel is excavated, pushing or jacking a series of supporting units in at least two spaced sets, forming lower tracks in the same along which a series of arch sections can be introduced to form the support structure.

21. A method according to claim 20 wherein the supporting units are a series of blocks.


22. A method according to claim 20 wherein the supporting units are provided by forming tunnels.

23. A method according to claim 18 wherein in each tunnel there is formed a track for the reception of the ends of the arch sections which again pass along the length of the tracks as with the supporting units and therefore act in a similar manner to support the arch sections.

24. A method according to claim 23 wherein, the tunnels can be used for access and further workings.

1/6

FIG. 1

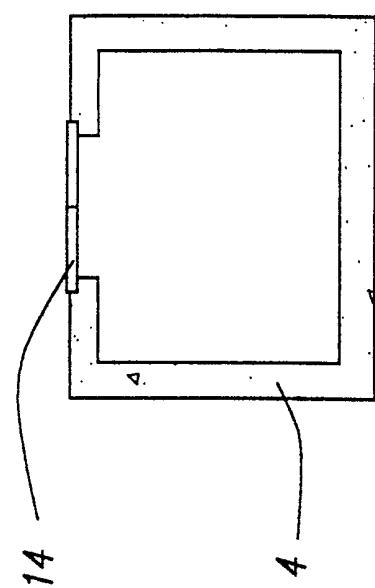
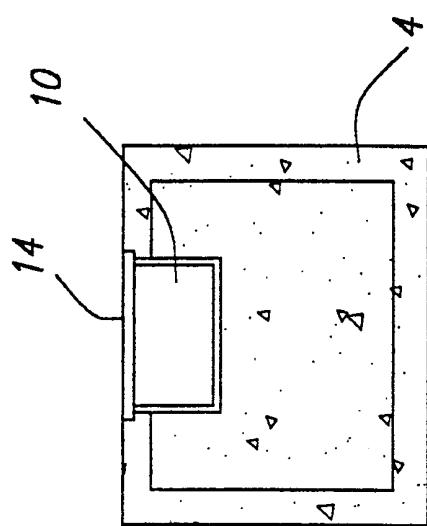



FIG. 2B

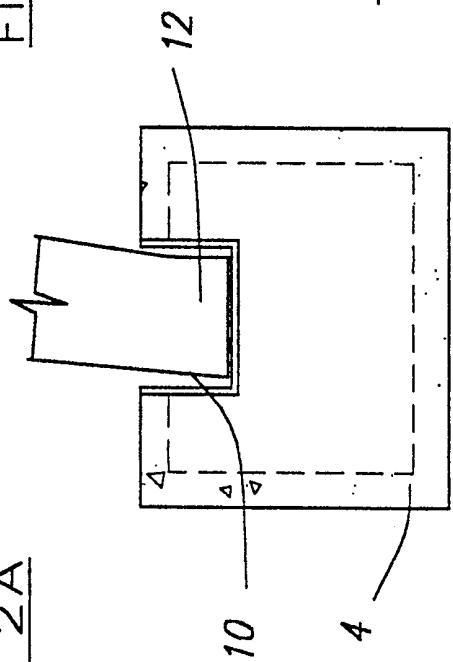
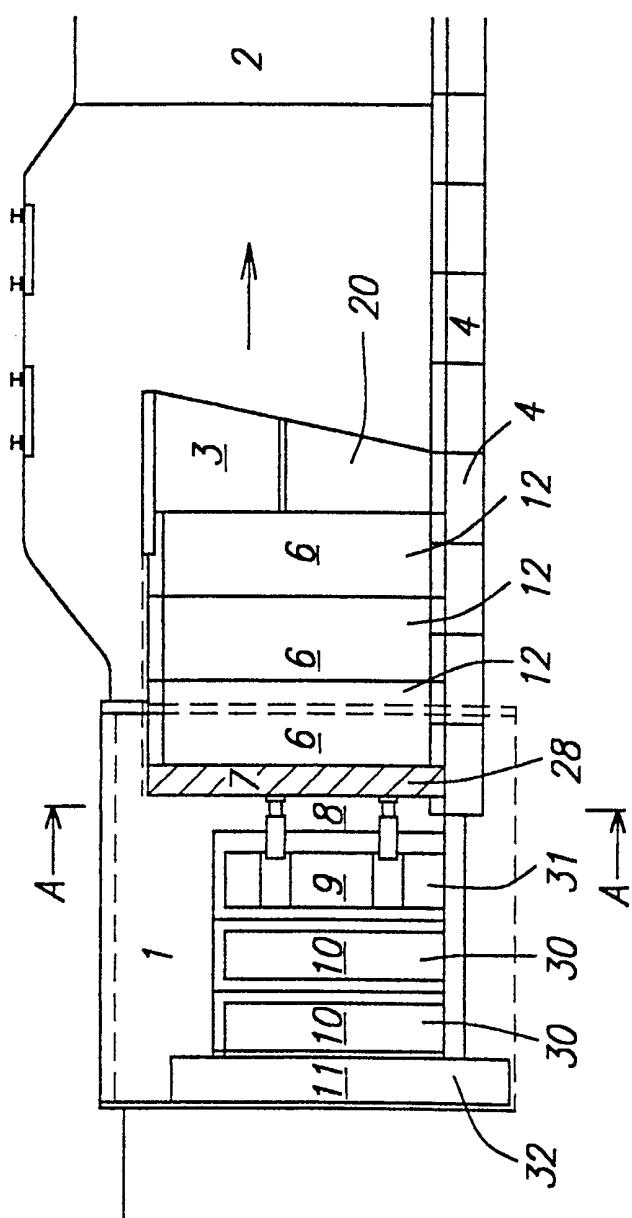
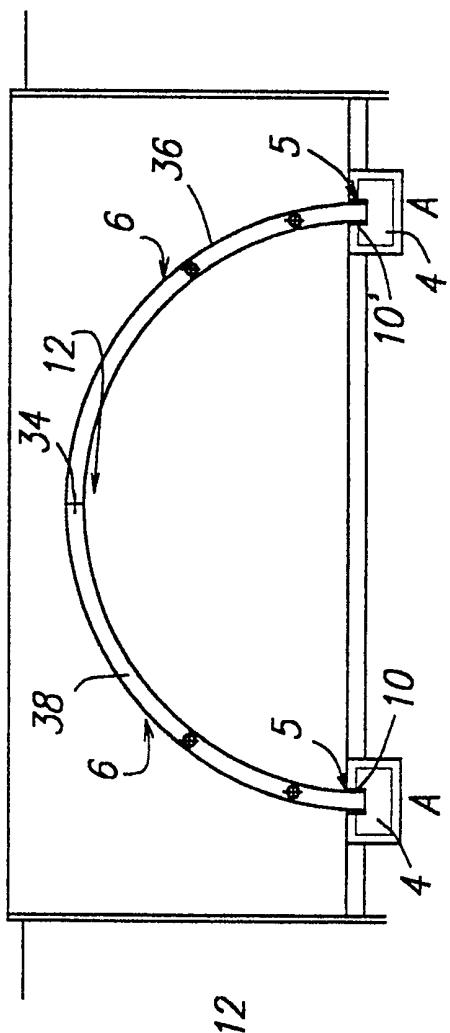
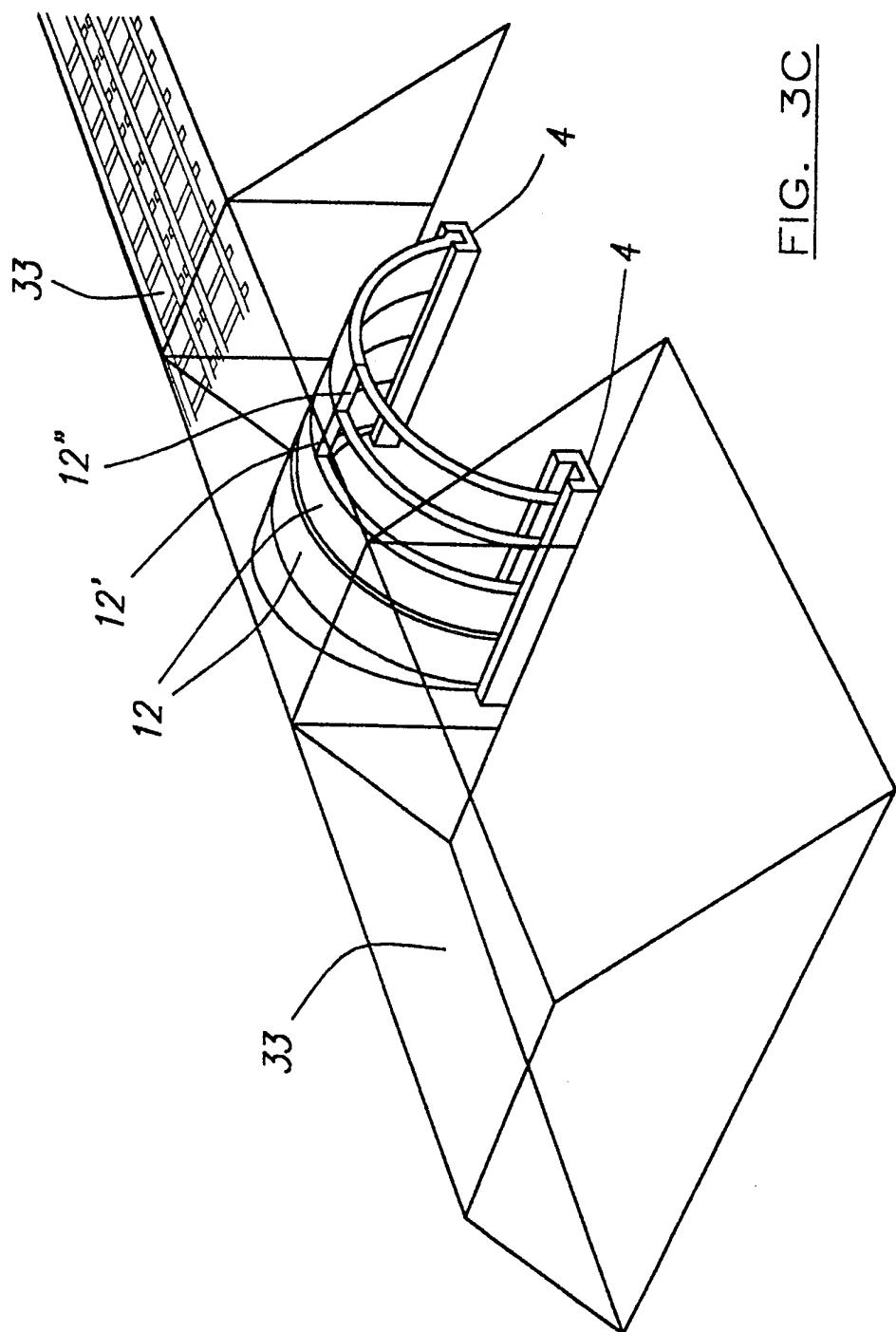
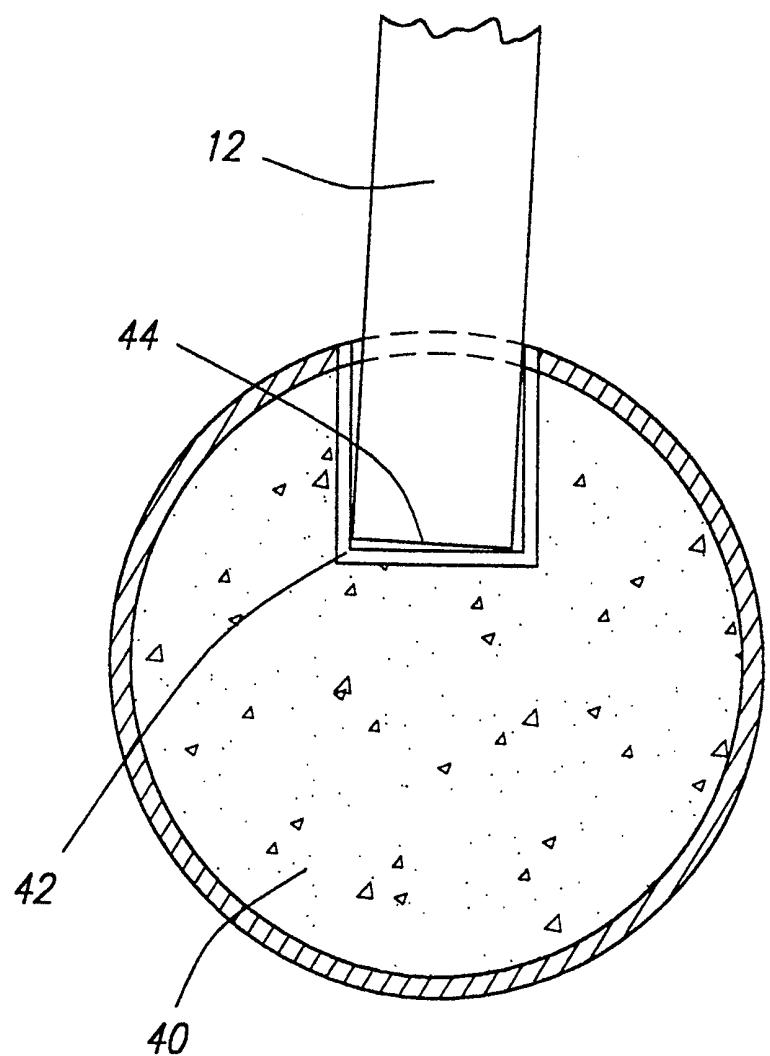


FIG. 2C

3/6

FIG. 3A


FIG. 3B

4/6

5/6

FIG. 4

6/6

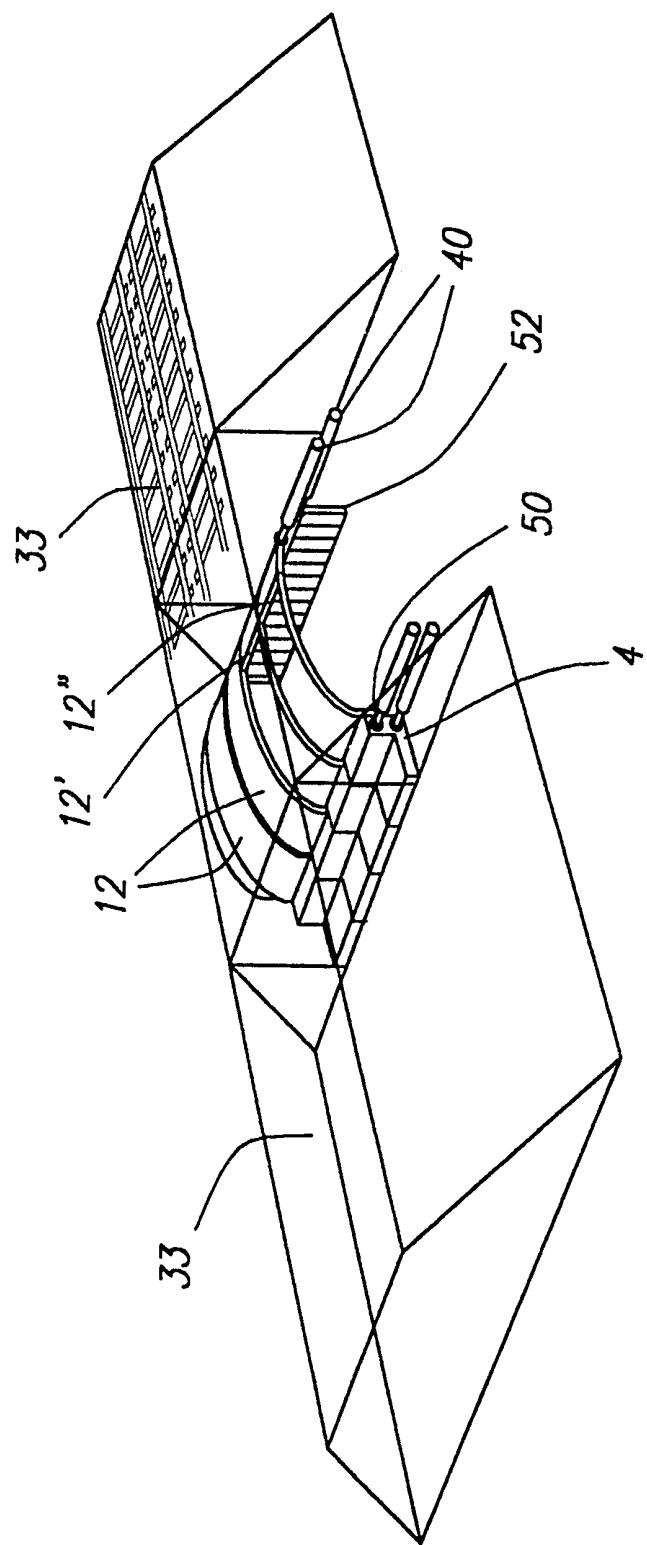


FIG. 5

INTERNATIONAL SEARCH REPORT

Int. Application No

PCT/GB 98/03007

A. CLASSIFICATION OF SUBJECT MATTER
IPC 6 E21D9/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 6 E21D

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	DE 25 43 997 A (POLENSKY & ZOELLNER) 7 April 1977 see the whole document ---	1-24
A	DE 36 09 791 A (DYCKERHOFF & WIDMANN AG) 1 October 1987 see the whole document ---	1,7,20
A	BE 787 800 A (EMKA INGENIEUR G M B H FA) 18 December 1972 see figures ---	1,7,20
A	EP 0 332 799 A (ROCKSOIL SRL) 20 September 1989 see figures ---	1,7,20
A	DE 195 11 675 C (BILFINGER BERGER BAU) 25 April 1996 -----	

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Special categories of cited documents :

"A" document defining the general state of the art which is not considered to be of particular relevance
"E" earlier document but published on or after the international filing date
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
"O" document referring to an oral disclosure, use, exhibition or other means
"P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
"&" document member of the same patent family

Date of the actual completion of the international search	Date of mailing of the international search report
19 November 1998	27/11/1998
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Authorized officer Fonseca Fernandez, H

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/GB 98/03007

Patent document cited in search report	Publication date	Patent family member(s)			Publication date
DE 2543997	A 07-04-1977	NONE			
DE 3609791	A 01-10-1987	NONE			
BE 787800	A 18-12-1972	NONE			
EP 0332799	A 20-09-1989	CA 1334340 A 14-02-1995	DE 3871372 A 25-06-1992	US 4929123 A 29-05-1990	
DE 19511675	C 25-04-1996	EP 0740050 A 30-10-1996			