(12) STANDARD PATENT
(19) AUSTRALIAN PATENT OFFICE
(54) Title

Peptides and related molecules that bind to TALL-1
(51) International Patent Classification(s)

C12N 15/09 (2006.01)
C07K 7/08 (2006.01)
A61K 38/00 (2006.01) C07K 14/00 (2006.01)
A61P 17/02 (2006.01) C07K 14/47 (2006.01)
A61P 35/00 (2006.01) C07K 16/44 (2006.01)
A61P 35/02 (2006.01) CO7K 19/00 (2006.01)
A61P 37/02 (2006.01) C12N 1/21 (2006.01)
A61P 37/06 (2006.01) C12N 15/10 (2006.01)
C07K 1/04 (2006.01) C12N 15/28 (2006.01)
C07K 5/113 (2006.01) C40B 40/02 (2006.01)
C07K 7/06 (2006.01)
(21) Application No: 2002342669
(22) Date of Filing: 2002.05 .13
(87) WIPO No: WO02/092620
(30) Priority Data
(31) Number

60/290,196
(32) Date
2001.05.11
(33) Country

US
(43) Publication Date: 2002.11 .25
(43) Publication Journal Date: 2003.05.01
(44) Accepted Journal Date: 2005.09 .22
(44) Amended Journal Date: 2010.10 .07
(71) Applicant(s)

Amgen, Inc.
(72) Inventor(s)

Min, Hosung;Xiong, Fei;Hsu, Hailing
(74) Agent / Attorney

Shelston IP, Level 2160 Margaret Street, Sydney, NSW, 2000
(56) Related Art

Proc. NatI. Acad. Sci. USA, 28 March 2000, Vol.97, No.7, pp.3370-3375
Proc. Natl. Acad. Sci. USA, 01 August 2000, Vol. 97 No.16, pp.9156-9161
(19) World Intellectual Property Organization International Bureau
(43) International Publication Date 21 November 2002 (21.11.2002)

PCT
(10) International Publication Number WO 02/092620 A3
(51) International Patent Classification ${ }^{7}$: $14 / 525$, A $61 \mathrm{~K} 38 / 19$, C12N 5/10, 15/28
(21) International Application Number: PCT/US02/15273
(22) International Filing Date: 13 May 2002 (13.05.2002)
(25) Filing Language:

English
(26) Publication Language:

English
(30) Priority Data:

60/290,196 11 May 2001 (11.05.2001) US
(71) Applicant: AMGEN, INC. [US/US]; One Amgen Center Drive, Thousand Oaks, CA 91320-1799 (US).
(72) Inventors: MIN, Hosung; 3875 Conner Court, Newbury Park, CA 91320 (US). HSU, Hailing; 11623 Blossomwood, Moorpark, CA 93021 (US). XIONG, Fei; 2757 Autumn Ridge Drive, Thousand Oaks, CA 91362 (US).
(74) Agents: ODRE, Steven et al.; Amgen, Inc., One Amgen Center Drive, M/S 27-4-A, Thousand Oaks, CA 913201799 (US).
(81) Designated States (national): AE, AG, AL, AM, AT, AU, $\mathrm{AZ}, \mathrm{BA}, \mathrm{BB}, \mathrm{BG}, \mathrm{BR}, \mathrm{BY}, \mathrm{BZ}, \mathrm{CA}, \mathrm{CH}, \mathrm{CN}, \mathrm{CO}, \mathrm{CR}, \mathrm{CU}$, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.
(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

$$
\begin{aligned}
& a^{1} a^{2} a^{3} C^{3} a^{6} \mathrm{La}^{8} a^{9} a^{10} \mathrm{Ca}^{12} a^{13} a^{14} \\
& \text { (SEQ.ID. NO: 100), } \\
& b^{4} b^{2} b^{3} \mathrm{Cb}^{5} b^{6} \mathrm{Db}^{8} \mathrm{Lb}^{10} b^{11} b^{12} b^{13} b^{14} \mathrm{Cb}^{16} b^{17} b^{18} \\
& \text { (SEQ. ID. NO: 104) } \\
& c^{1} c^{2} c^{3} C c^{5} D c^{7} \operatorname{Lc}^{9} c^{10} c^{11} c^{12} c^{13} c^{14} C c^{16} c^{17} c^{18} \\
& \text { (SEQ. ID. NO: 105) } \\
& d^{1} d^{2} d^{3} C d^{5} d^{6} d^{7} W D d^{10} \mathrm{Ld}^{13} \mathrm{~d}^{14} \mathrm{~d}^{15} \mathrm{Cd}^{16} \mathrm{~d}^{17} \mathrm{~d}^{18} \\
& \text { (SEQ. ID. NO: 106) } \\
& e^{1} e^{2} e^{3} C^{5} e^{6} e^{7} \mathrm{De}^{9} L e^{11} K e^{13} C e^{15} e^{16} e^{17} e^{18} \\
& \text { (SEQ. ID. NO: 107) } \\
& \mathrm{f}^{1} \mathrm{f}^{2} \mathrm{f}^{3} \mathrm{Kf} \mathrm{f}^{5} \mathrm{f}^{7} \mathrm{Lf} \mathrm{f}^{10} \mathrm{Qf}^{12} \mathrm{f}^{13} \mathrm{f}^{14} \\
& \text { (SEQ. ID NO: 109) }
\end{aligned}
$$

(57) Abstract: The present invention concerns therapeutic agents that modulate the activity of TALL-1. In accordance with the present invention, modulators of TALL-1 may comprise an amino acid sequence $D z^{2} L z^{4}$ wherein z^{2} is an amino acid residue and z^{4} is threonyl or isoleucyl. Exemplary molecules comprise a sequence of the formulae $a^{1} a^{2} a^{3} \mathrm{CDa}^{6} \mathrm{La}^{8} a^{9} a^{10} \mathrm{Ca}^{12} a^{13} a^{14}$ (SEQ.ID.NO:100), $b^{1} b^{2} b^{3} \mathrm{Cb}^{5} b^{6} \mathrm{Db}^{8} \mathrm{Lb}^{10} b^{11} b^{12} b^{13} b^{14} \mathrm{Cb}^{16} b^{17} b^{18} \quad$ (SEQ.ID.NO:104) $\mathrm{c}^{1} \mathrm{c}^{2} \mathrm{c}^{3} \mathrm{Cc}^{5} \mathrm{Dc}^{7} \mathrm{Lc}^{9} \mathrm{c}^{10} \mathrm{c}^{11} \mathrm{c}^{12} \mathrm{c}^{13} \mathrm{c}^{14} \mathrm{Cc}^{16} \mathrm{c}^{17} \mathrm{c}^{18} \quad$ (SEQ.ID.NO:105) $\mathrm{d}^{1} \mathrm{~d}^{2} \mathrm{~d}^{3} \mathrm{Cd}^{5} \mathrm{~d}^{6} \mathrm{~d}^{7} \mathrm{WDd}^{10} \mathrm{Ld}^{13} \mathrm{~d}^{14} \mathrm{~d}^{15} \mathrm{Cd}^{16} \mathrm{~d}^{17} \mathrm{~d}^{18} \quad$ (SEQ.ID.NO:106) $e^{1} e^{2} e^{3} \mathrm{Ce}^{5} \mathrm{e}^{6} \mathrm{e}^{7} \mathrm{De}^{9} \mathrm{Le}^{11} \mathrm{Ke}^{13} \mathrm{Ce}^{15} \mathrm{e}^{16} \mathrm{e}^{17} \mathrm{e}^{18} \quad$ (SEQ.ID.NO:107) $\mathbf{f}^{1} \mathrm{f}^{2} \mathrm{f}^{3} \mathrm{Kf}^{5} \mathrm{Df}^{7} \mathrm{Lf}^{9} \mathrm{f}^{10} \mathrm{Qf}^{12} \mathrm{f}^{13} \mathrm{f}^{14} \quad$ (SEQ.ID NO:109) wherein the substituents are as defined in the specification. The invention further comprises compositions of matter of the formula $\left(\mathrm{X}^{1}\right)_{a}-\mathrm{V}^{1}-\left(\mathrm{X}^{2}\right)_{b}$ wherein V^{1} is a vehicle that is covalently attached to one or more of the above TALL-1 modulating compositions of matter. The vehicle and the TALL-1 modulating composition of matter may be linked through the N - or C-terminus of the TALL-1 modulating portion. The preferred vehicle is an Fc domain, and the preferred Fc domain is an IgG Fc domain.

$$
\begin{equation*}
\left(X^{1}\right)_{3}-V^{1}-\left(X^{2}\right)_{0} \tag{1}
\end{equation*}
$$

WO 02/092620 A3 ||l|

Published:

with international search report
(88) Date of publication of the international search report:

21 August 2003

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

PEPTIDES AND RELATED MOLECULES THAT BIND TO TALL-1

This application is related to U.S. provisional application no. 60/290,196, filed May 11, 2001, which is hereby incorporated by reference.

Background of the Invention

Any discussion of the prior art throughout the specification should in no way be considered as an admission that such prior art is widely known or forms part of common general knowledge in the field.

After years of study in necrosis of tumors, tumor necrosis factors (TNFs) α and β were finally cloned in 1984. The ensuing years witnessed the emergence of a superfamily of TNF cytokines, including fas ligand (FasL), CD27 ligand (CD27L), CD30 ligand (CD30L), CD40 ligand (CD40L), TNF-related apoptosisinducing ligand (TRAIL, also designated AGP-1), osteoprotegerin binding protein (OPG-BP or OPG ligand), 4-1BB ligand, LIGHT, APRIL, and TALL-1. Smith et al. (1994), Cell 76: 959-962; Lacey et al. (1998), Cell 93: 165-176; Chichepotiche et al. (1997), I. Biol. Chem. 272: 32401-32410; Mauri et al. (1998), Immunity 8: 21-30; Hahne et al. (1998), I. Exp. Med. 188: 1185-90; Shu et al. (1999), I. Leukocyte Biology 65: 680-3. This family is unified by its structure, particularly at the C-terminus. In addition, most members known to date are expressed in immune compartments, although some members are also expressed in other tissues or organs, as well. Smith et al. (1994), Cell 76: 959-62. All ligand members, with the exception of LT- α, are type II transmembrane proteins, characterized by a conserved 150 amino acid region within the C-terminal extracellular domain. Though restricted to only 20-25\% identity, the conserved 150 amino acid domain folds into a characteristic β-pleated sheet sandwich and trimerizes. This conserved region can be proteolytically released, thus generating a soluble functional form. Banner et al. (1993), Cell 73: 431-445.

Many members within this ligand family are expressed in lymphoid enriched tissues and play important roles in the immune system development and modulation. Smith et al. (1994). For example, TNF α is mainly synthesized by macrophages and is an important mediator for inflammatory responses and immune defenses. Tracey \& Cerami (1994), Ann. Rev. Med. 45: 491-503. Fas-L, predominantly expressed in activated T cell, modulates TCR-mediated apoptosis of thymocytes. Nagata, S. \& Suda, T. (1995) Immunology Today 16: 39-43; Castrim et al. (1996), Immunity 5: 617-27. CD40L, also expressed by activated T cells, provides an essential signal for B cell survival, proliferation and immunoglobulin isotype switching. Noelle (1996), Immunity 4: 415-9.

The cognate receptors for most of the TNF ligand family members have been identified. These receptors share characteristic multiple cysteine-rich repeats within their extracellular domains, and do not possess catalytic motifs within cytoplasmic regions. Smith et al. (1994). The receptors signal through direct interactions with death domain proteins (e.g. TRADD, FADD, and RIP) or with the TRAF proteins (e.g. TRAF2, TRAF3, TRAF5, and TRAF6), triggering divergent and overlapping signaling pathways, e.g. apoptosis, NF-кB activation, or JNK activation. Wallach et al. (1999), Annual Review of Immunology 17: 33167. These signaling events lead to cell death, proliferation, activation or differentiation. The expression profile of each receptor member varies. For example, TNFR1 is expressed on a broad spectrum of tissues and cells, whereas the cell surface receptor of OPGL is mainly restricted to the osteoclasts. Hsu et al. (1999) Proc. Natl. Acad. Sci. USA 96: 3540-5.

A number of research groups have recently identified TNF family ligands with the same or substantially similar sequence. The ligand has been variously named neutrokine α (WO 98/18921, published May 7, 1998), 63954 (WO 98/27114, published June 25, 1998), TL5 (EP 869 180, published October 7, 1998), NTN-2 (WO 98/55620 and WO 98/55621,
published December 10, 1998), TNRL1-alpha (WO 9911791, published March 11, 1999), kay ligand (W099/12964, published March 18, 1999); and TALL-1 (WO $00 / 68378$, published Nov. 16, 2000). Each of these references is hereby incorporated by reference. Hereinafter, the ligands reported therein are collectively referred to as TALL-1.

TALL-1 is a member of the TNF ligand superfamily that is functionally involved in B cell survival and proliferation. Transgenic mice overexpressing TALL-1 had severe B cell hyperplasia and lupus-like autoimmune disease. Khare et al. (2000) PNAS 97 (7): 3370-3375). Both TACI and BCMA serve as cell surface receptors for TALL-1. Gross et al. (2000), Nature 404:995-999; Ware (2000), I. Exp. Med. 192(11):F35-F37; Ware (2000), Nature 404:949-950; Xia et al. (2000), I. Exp. Med. 192(1):137-143; Yu et al. (2000), Nature Immunology 1 (3):252-256; Marsters et al. (2000), Current Biology 10:785-788; Hatzoglou et al. (2000) I. of Immunology 165:1322-1330; Shu et al. (2000) PNAS 97(16):9156-9161;

Thompson et al. (2000) I. Exp. Med. 192(1):129-135; Mukhopadhyay et al. (1999) I. Biol. Chem. 274(23):15978-81 ; Shu et al. (1999) I. Leukocyte Biol. 65:680-683; Gruss et al. (1995) Blood 85(12):3378-3404; Smith et al. (1994), Cell 76:959-962; U. S. Pat. No. 5,969,102, issued October 19,1999; WO 00/67034, published November 9, 2000; WO 00/40716, published July 13, 2000; WO 99/35170, published July 15, 1999. Both receptors are expressed on B cells and signal through interaction with TRAF proteins. In addition, both TACI and BCMA also bind to another TNF ligand family member, APRIL. Yu et al. (2000), Nature Immunology 1(3):252-256. APRIL has also been demonstrated to induce B cell proliferation.

To date, no recombinant or modified proteins employing peptide modulators of TALL-1 have been disclosed. Recombinant and modified
proteins are an emerging class of therapeutic agents. Useful modifications of protein therapeutic agents include combination with the " $\mathrm{Fc}^{\prime \prime}$ domain of an antibody and linkage to polymers such as polyethylene glycol (PEG) and dextran. Such modifications are discussed in detail in a patent application entitled, "Modified Peptides as Therapeutic Agents," publicshed WO 00/24782, which is hereby incorporated by reference in its entirety.

A much different approach to development of therapeutic agents is peptide library screening. The interaction of a protein ligand with its receptor often takes place at a relatively large interface. However, as demonstrated for human growth hormone and its receptor, only a few key residues at the interface contribute to most of the binding energy. Clackson et al. (1995), Science 267: 383-6. The bulk of the protein ligand merely displays the binding epitopes in the right topology or serves functions unrelated to binding. Thus, molecules of only "peptide" length (2 to 40 amino acids) can bind to the receptor protein of a given large protein ligand. Such peptides may mimic the bioactivity of the large protein ligand ("peptide agonists") or, through competitive binding, inhibit the bioactivity of the large protein ligand ("peptide antagonists").

Phage display peptide libraries have emerged as a powerful method in identifying such peptide agonists and antagonists. See, for example, Scott et al. (1990), Science 249: 386; Devlin et al. (1990), Science 249: 404; U.S. Pat. No. 5,223,409, issued June 29, 1993; U.S. Pat. No. 5,733,731, issued March 31, 1998; U.S. Pat. No. 5,498,530, issued March 12, 1996; U.S. Pat. No. 5,432,018, issued July 11, 1995; U.S. Pat. No. 5,338,665, issued August 16, 1994; U.S. Pat. No. 5,922,545, issued July 13, 1999; WO 96/40987, published December 19, 1996; and WO 98/15833, published April 16, 1998 (each of which is incorporated by reference in its entirety). In such libraries, random peptide sequences are displayed by fusion with
coat proteins of filamentous phage. Typically, the displayed peptides are affinity-eluted against an immobilized target protein. The retained phages may be enriched by successive rounds of affinity purification and repropagation. The best binding peptides may be sequenced to identify key residues within one or more structurally related families of peptides. See, e.g., Cwirla et al. (1997), Science 276: 1696-9, in which two distinct families were identified. The peptide sequences may also suggest which residues may be safely replaced by alanine scanning or by mutagenesis at the DNA level. Mutagenesis libraries may be created and screened to further optimize the sequence of the best binders. Lowman (1997), Ann. Rev. Biophys. Biomol. Struct. 26: 401-24.

Structural analysis of protein-protein interaction may also be used to suggest peptides that mimic the binding activity of large protein ligands. In such an analysis, the crystal structure may suggest the identity and relative orientation of critical residues of the large protein ligand, from which a peptide may be designed. See, e.g., Takasaki et al. (1997), Nature Biotech. 15: 1266-70. These analytical methods may also be used to investigate the interaction between a receptor protein and peptides selected by phage display, which may suggest further modification of the peptides to increase binding affinity.

Other methods compete with phage display in peptide research. A peptide library can be fused to the carboxyl terminus of the lac repressor and expressed in E. coli. Another E. coli-based method allows display on the cell's outer membrane by fusion with a peptidoglycan-associated lipoprotein (PAL). Hereinafter, these and related methods are collectively referred to as "E. coli display." In another method, translation of random RNA is halted prior to ribosome release, resulting in a library of polypeptides with their associated RNA still attached. Hereinafter, this and related methods are collectively referred to as "ribosome display."

Other methods employ peptides linked to RNA; for example, PROfusion technology, Phylos, Inc. See, for example, Roberts \& Szostak (1997), Proc. Natl. Acad. Sci. USA, 94: 12297-303. Hereinafter, this and related methods are collectively referred to as "RNA-peptide screening." Chemically derived peptide libraries have been developed in which peptides are immobilized on stable, nonbiological materials, such as polyethylene rods or solvent-permeable resins. Another chemically derived peptide library uses photolithography to scan peptides immobilized on glass slides. Hereinafter, these and related methods are collectively referred to as "chemical-peptide screening." Chemical-peptide screening may be advantageous in that it allows use of D-amino acids and other unnatural analogues, as well as non-peptide elements. Both biological and chemical methods are reviewed in Wells \& Lowman (1992), Curr. Opin. Biotechnol. 3: 355-62. Conceptually, one may discover peptide mimetics of any protein using phage display, RNA-peptide screening, and the other methods mentioned above.

Summary of the Invention

The present invention concerns therapeutic agents that modulate the activity of TALL-1. In accordance with the present invention, modulators of TALL-1 may comprise an amino acid sequence $\mathrm{Dz}^{2} \mathrm{Lz}^{4}$ (SEQ ID NO: 108) wherein z^{2} is an amino acid residue and z^{4} is threonyl or isoleucyl. Such modulators of TALL-1 comprise molecules of the following formulae:

I(a)

$$
a^{1} a^{2} a^{3} \mathrm{CDa}^{6} \mathrm{La}^{8} a^{9} a^{10} \mathrm{Ca}^{12} a^{13} a^{14}
$$

(SEQ. ID. NO: 100)
wherein:
a^{1}, a^{2}, a^{3} are each independently absent or amino acid residues;
a^{6} is an amino acid residue;
a^{9} is a basic or hydrophobic residue;
a^{8} is threonyl or isoleucyl;
a^{10} is an amino acid residue;
a^{12} is a neutral hydrophobic residue; and
a^{13} and a^{14} are each independently absent or amino acid residues.

$b^{11} b^{2} b^{3} C^{5} b^{6} \mathrm{Db}^{8} \mathrm{Lb}^{10} b^{11} b^{12} b^{13} b^{14} \mathrm{Cb}^{16} b^{17} b^{18}$

(SEQ.ID. NO: 104)
wherein:
b^{1} and b^{2} are each independently absent or amino acid residues;
b^{3} is an acidic or amide residue;
b^{5} is an amino acid residue;
b^{6} is an aromatic residue;
b^{8} is an amino acid residue;
b^{10} is T or I ;
b^{11} is a basic residue;
b^{12} and b^{13} are each independently amino acid residues;
b^{14} is a neutral hydrophobic residue; and
$\mathrm{b}^{16}, \mathrm{~b}^{17}$, and b^{18} are each independently absent or amino acid residues.
I(c) $c^{1} \mathrm{c}^{2} \mathrm{c}^{3} \mathrm{Cc}^{5} \mathrm{Dc}^{7} \mathrm{Lc}^{9} \mathrm{c}^{10} \mathrm{c}^{11} \mathrm{c}^{12} \mathrm{c}^{13} \mathrm{c}^{14} \mathrm{Cc}^{16} \mathrm{c}^{17} \mathrm{c}^{18}$
(SEQ. ID. NO:105)
wherein:
c^{1}, c^{2}, and c^{3} are each independently absent or amino acid residues;
c^{5} is an amino acid residue;
c^{7} is an amino acid residue;
c^{9} is T or I ;
c^{10} is a basic residue;
c^{11} and c^{12} are each independently amino acid residues;
c^{13} is a neutral hydrophobic residue;
c^{14} is an amino acid residue;
c^{16} is an amino acid residue;
c^{17} is a neutral hydrophobic residue; and
c^{18} is an amino acid residue or is absent.
I(d)

$d^{1} d^{2} d^{3} C d^{5} d^{6} d^{7} W D d^{10} L d^{12} d^{13} d^{14} C^{16} d^{17} d^{18}$

(SEQ. ID. NO: 106)
wherein:
d^{1}, d^{2}, and d^{3} are each independently absent or amino acid residues;
$\mathrm{d}^{5}, \mathrm{~d}^{6}$, and d^{7} are each independently amino acid residues;
d^{10} is an amino acid residue;
d^{12} is T or I;
d^{13} is an amino acid residue;
d^{14} is an amino acid residue; and
$\mathrm{d}^{16}, \mathrm{~d}^{17}$, and d^{18} are each independently absent or amino acid residues.
I(e)
$e^{1} e^{2} e^{3} C e^{5} e^{6} e^{7 D e} e^{9} e^{11} K e^{13} C e^{15} e^{16} e^{17} e^{18}$
(SEQ. ID. NO: 107)
wherein:
e^{1}, e^{2}, and e^{3} are each independently absent or amino acid residues;
$e^{5}, e^{6}, e^{7}, e^{9}$, and e^{13} are each independently amino acid residues;
e^{11} is T or I ; and
e^{15}, e^{16}, e^{17}, and e^{18} are each independently absent or amino acid residues.
I(f)
$f^{1} f^{2} f^{3} \mathrm{Kf}^{5} \mathrm{Df} f^{7} \mathrm{ff}^{9} \mathrm{f}^{10} \mathrm{Qf}^{12} \mathrm{f}^{13} \mathrm{f}^{14}$
(SEQ. ID NO: 109)
wherein:
f^{1}, f^{2}, and f^{3} are absent or are amino acid residues (with one of f^{1}, f^{2}, and f^{3} preferred to be C when one of f^{12}, f^{13}, and f^{14} is C);
f^{5} is W, Y, or F (W preferred);
f^{7} is an amino acid residue (L preferred);
f^{9} is T or I (T preferred);
f^{10} is K, R, or H (K preferred);
f^{12} is C, a neutral hydrophobic residue, or a basic residue (W, C, or R preferred);
f^{13} is C, a neutral hydrophobic residue or is absent (V preferred); and f^{14} is any amino acid residue or is absent; provided that only one of f^{1}, f^{2}, and f^{3} may be C, and only one of f^{12}, f^{13}, and f^{14} may be C.

Compounds of formulae $I($ a $)$ through $I(f)$ above incorporate $\mathrm{Dz}^{2} \mathrm{Lz}^{4}$, as well as SEQ ID NO: 63 hereinafter. The sequence of $I(f)$ was derived as a consensus sequence as described in Example 1 hereinbelow. Of compounds within formula $I(f)$, those within the formula
(SEQ ID NO: 125)
are preferred. Compounds falling within formula $I\left(f^{\prime}\right)$ include SEQ ID NOS: 32, $58,60,62,63,66,67,69,70,114,115,122,123,124,147-150,152-177,179,180,187$.

In one aspect the present invention provides a TALL-1-binding composition of matter comprising an amino acid sequence $\mathrm{Dz}^{2} \mathrm{Lz}^{4}$, wherein z^{2} is an amino acid residue and z^{4} is T or I, and wherein the composition of matter does not comprise the sequence FRKYDLLIHQRV or a fragment of TACI, BCMA, or BAFFR (SEQ ID NOS: 195, 196, and 197).

Further, the present invention provides a composition of matter of the invention, wherein z^{4} is T.

Also in accordance with the present invention are compounds having the consensus motif:

PFPWE
which also bind TALL-1.
Further, in accordance with the present invention are compounds of the formulae:

I(g)

$$
\mathrm{g}^{1} \mathrm{~g}^{2} \mathrm{~g}^{3} \mathrm{Cg}^{5 P F g} g^{8} \mathrm{Wg} g^{10} \mathrm{Cg}^{12} \mathrm{~g}^{13} \mathrm{~g}^{14}
$$

(SEQ. ID. NO. 101)
wherein:
$\mathrm{g}^{1}, \mathrm{~g}^{2}$ and g^{3} are each independently absent or amino acid residues;
g^{5} is a neutral polar residue;
g^{8} is a neutral polar residue;
g^{10} is an acidic residue;
g^{12} and g^{13} are each independently amino acid residues; and g^{14} is absent or is an amino acid residue.

I(h)
$h^{1} h^{2} h^{3} C W h^{6} h^{7} W G h^{10} \mathrm{Ch}^{12} h^{13} h^{14}$ (SEQ. ID. NO: 102)
wherein:
h^{1}, h^{2}, and h^{3} are each independently absent or amino acid residues;
h^{6} is a hydrophobic residue;
h^{7} is a hydrophobic residue;
h^{10} is an acidic or polar hydrophobic residue; and
h^{12}, h^{13}, and h^{14} are each independently absent or amino acid residues.
I(i)
$i^{1} i^{2} i^{3} \mathrm{Ci}^{5} i^{6} i^{7} \mathrm{i}^{8} \mathrm{i}^{9} \mathrm{i}^{10} \mathrm{Ci}^{12} \mathrm{i}^{13} \mathrm{i}^{14}$
(SEQ. ID. NO: 103)
wherein:
i^{1} is absent or is an amino acid residue;
i^{2} is a neutral hydrophobic residue;
i^{3} is an amino acid residue;
i^{5}, i^{6}, i^{7}, and i^{8} are each independently amino acid residues;
i^{9} is an acidic residue;
i^{10} is an amino acid residue;
i^{12} and i^{13} are each independently amino acid residues; and i^{14} is a neutral hydrophobic residue.

The compounds defined by formulae $\mathrm{I}(\mathrm{g})$ through $\mathrm{I}(\mathrm{i})$ also bind TALL-1.

Further, in accordance with the present invention, modulators of TALL-1 comprise:
a) a TALL-1 modulating domain (e.g., an amino acid sequence of Formulae I(a) through I(i)), preferably the amino acid sequence $\mathrm{Dz}^{2} \mathrm{Lz}^{4}$, or sequences derived therefrom by phage display, RNApeptide screening, or the other techniques mentioned above; and
b) a vehicle, such as a polymer (e.g., PEG or dextran) or an Fc domain, which is preferred;
wherein the vehicle is covalently attached to the TALL-1 modulating domain. The vehicle and the TALL-1 modulating domain may be linked through the N or C-terminus of the TALL-1 modulating domain, as described further below. The preferred vehicle is an Fc domain, and the preferred Fc domain is an IgG Fc domain. Such Fc-linked peptides are referred to herein as "peptibodies." Preferred TALL-1 modulating domains comprise the amino acid sequences described hereinafter in Tables 1 and 2. Other TALL-1 modulating domains can be generated by phage display, RNA-peptide screening and the other techniques mentioned herein.

Further, in accordance with the present invention is a process for making TALL-1 modulators, which comprises:
a. selecting at least one peptide that binds to TALL-1 ; and
b. covalently linking said peptide to a vehicle.

The preferred vehicle is an Fc domain. Step (a) is preferably carried out by selection from the peptide sequences in Table 2 hereinafter or from phage display, RNA-peptide screening, or the other techniques mentioned herein.

Further, the present invention provides a TALL-1 binding composition of matter comprising an amino acid sequence of the formula PFPWE (SEQ ID NO: 110).

Further, the present invention also provides a composition of matter having the formula

$$
\left(X^{1}\right)_{a}-V^{1}-\left(X^{2}\right)_{b}
$$

and multimers thereof, wherein:
V^{1} is a vehicle;
X^{1} and X^{2} are each independently selected from $-\left(\mathrm{L}^{1}\right)_{c}-\mathrm{P}^{1}$, $-\left(\mathrm{L}^{1}\right)_{c}-\mathrm{P}^{1}-\left(\mathrm{L}^{2}\right)_{d}-\mathrm{P}^{2},-\left(\mathrm{L}^{1}\right)_{c}-\mathrm{P}^{1}-\left(\mathrm{L}^{2}\right)_{d}-\mathrm{P}^{2}-\left(\mathrm{L}^{3}\right)_{e}-\mathrm{P}^{3}$, and $-\left(\mathrm{L}^{1}\right)_{c}-\mathrm{P}^{1}-\left(\mathrm{L}^{2}\right)_{d}-\mathrm{P}^{2}-\left(\mathrm{L}^{3}\right)_{e}-\mathrm{P}^{3}-\left(\mathrm{L}^{4}\right) \mathrm{r}-\mathrm{P}^{4}$;
L^{1}, L^{2}, L^{3}, and L^{4} are each independently linkers; and
a, b, c, d, e, and f are each independently 0 or 1 , provided that at lease one of a and b is 1
one or more of $\mathrm{P}^{1}, \mathrm{P}^{2}, \mathrm{P}^{3}$, and P^{4} each independently comprises a sequence selected from:
$a^{1} a^{2} a^{3} \mathrm{CDa}^{6} \mathrm{La}^{8} a^{9} a^{10} \mathrm{Ca}^{12} a^{13} a^{14}$ (SEQ. ID. NO: 100)
$b^{1} b^{2} b^{3} \mathrm{Cb}^{5} b^{6} \mathrm{Db}^{8} \mathrm{Lb}^{10} b^{1} b^{12} b^{13} b^{14} \mathrm{Cb}^{16} b^{17} b^{18}$ (SEQ. ID. NO: 104)
$c^{1} c^{2} c^{3} \mathrm{Cc}^{5} \mathrm{Dc}^{7} \mathrm{Lc}^{9} \mathrm{c}^{10} \mathrm{c}^{11} \mathrm{c}^{12} \mathrm{c}^{13} \mathrm{c}^{1^{4}} \mathrm{Cc}^{16} \mathrm{c}^{17} \mathrm{c}^{18}$ (SEQ. ID. NO: 105)
$d^{1} d^{2} d^{3} C d^{5} d^{6} d^{7} W D d^{10} L^{12} d^{13} d^{14} C^{16} d^{17} d^{18}$ (SEQ. ID. NO: 106)
$\mathrm{e}^{1} \mathrm{e}^{2} \mathrm{e}^{3} \mathrm{Ce}^{5} \mathrm{e}^{6} \mathrm{e}^{7} \mathrm{De}^{9} \mathrm{Le}^{11} \mathrm{Ke}^{13} \mathrm{Ce}^{15} \mathrm{e}^{16} \mathrm{e}^{17} \mathrm{e}^{18}$ (SEQ. ID. NO: 107)
$\mathrm{f}^{1} \mathrm{f}^{2} \mathrm{f}^{3} \mathrm{~K} f^{5} \mathrm{D} \mathrm{f}^{\prime} \mathrm{Lf}^{9} \mathrm{f}^{10} \mathrm{Qf}^{12 \mathrm{f}^{13} \mathrm{f}^{14}}$ (SEQ. ID. NO: 109)
$g^{1} g^{2} g^{3} \mathrm{Cg}^{5} \mathrm{PFg}^{8} \mathrm{Wg}^{10} \mathrm{Cg}^{12} \mathrm{~g}^{13} \mathrm{~g}^{14}$ (SEQ. ID. NO: 101),
$h^{1} h^{2} h^{3} C^{3} h^{6} h^{7} W G h^{10} \mathrm{Ch}^{12} h^{13} h^{14}$ (SEQ. ID. NO: 102), and
$\mathrm{i}^{1} \mathrm{i}^{2} \mathrm{i}^{3} \mathrm{Ci}^{5} \mathrm{i}^{6} \mathrm{i}^{7} \mathrm{i}^{8} \mathrm{i}^{9} \mathrm{i}^{10} \mathrm{Ci}^{12} \mathrm{i}^{13} \mathrm{i}^{14}$ (SEQ. ID. NO: 103)
wherein:
a^{1}, a^{2}, a^{3} are each independently absent or amino acid residues;
a^{6} is an amino acid residue;
a^{9} is a basic or hydrophobic residue;
a^{8} is threonyl or isoleucyl;
a^{10} is an amino acid residue;
a^{12} is a neutral hydrophobic residue;
a^{13} and a^{14} are each independently absent or amino acid residues;
b^{1} and b^{2} are each independently absent or amino acid residues;
b^{3} is an acidic or amide residue;
b^{5} is an amino acid residue;
b^{6} is an aromatic residue;
b^{8} is an amino acid residue;
b^{10} is T or I ;
b^{11} is a basic residue;
b^{12} and b^{13} are each independently amino acid residues;
b^{14} is a neutral hydrophobic residue;
b^{16}, b^{17}, and b^{18} are each independently absent or amino acid residues;
c^{1}, c^{2}, and c^{3} are each independently absent or amino acid residues;
c^{5} is an amino acid residue;
c^{7} is an amino acid residue;
c^{9} is T or I ;
c^{10} is a basic residue;
c^{11} and c^{12} are each independently amino acid residues;
c^{13} is a neutral hydrophobic residue;
c^{14} is an amino acid residue;
c^{16} is an amino acid residue;
c^{17} is a neutral hydrophobic residue; and
c^{18} is an amino acid residue or is absent;
$\mathrm{d}^{1}, \mathrm{~d}^{2}$, and d^{3} are each independently absent or amino acid residues;
$\mathrm{d}^{5}, \mathrm{~d}^{6}$, and d^{7} are each independently amino acid residues;
d^{10} is an amino acid residue;
d^{12} is T or I ;
d^{13} is an amino acid residue;
d^{14} is an amino acid residue; and
d^{15}, d^{16}, and d^{17} are each independently absent or amino acid residues;
e^{1}, e^{2}, and e^{3} are each independently absent or amino acid residues;
$e^{5}, e^{6}, e^{7}, e^{9}$, and e^{13} are each independently amino acid residues;
e^{11} is T or I ; and
e^{15}, e^{16}, e^{17}, and e^{18} are each independently absent or amino acid residues;
f^{1}, f^{2}, and f^{3} are absent or are amino acid residues;
f^{5} is W or F;
f^{7} is an amino acid residue;
f^{9} is T or I ;
f^{10} is K, R, or H;
f^{12} is C, a neutral hydrophobic residue, or a basic residue;
f^{13} is C , a neutral hydrophobic residue or is absent; and
f^{14} is any amino acid residue or is absent;
provided that only one of f^{1}, f^{2}, and f^{3} may be C, and only one of f^{12}, f^{13}, and f^{14} may be C ;
g^{1}, g^{2} and g^{3} are each independently absent or amino acid residues;
g^{5} is a neutral hydrophobic residue;
g^{8} is a neutral hydrophobic residue;
g^{10} is an acidic residue;
g^{12} and g^{13} are each independently amino acid residues; and g^{14} is absent or is an amino acid residue;
h^{1}, h^{2}, and h^{3} are each independently absent or amino acid residues;
h^{6} is a hydrophobic residue;
h^{7} is a hydrophobic residue;
h^{10} is an acidic or polar hydrophobic residue; and
h^{12}, h^{13}, and h^{14} are each independently absent or amino acid residues; i^{1} is absent or is an amino acid residue;
i^{2} is a neutral hydrophobic residue;
i^{3} is an amino acid residue;
i^{5}, i^{6}, i^{7}, and i^{8} are each independently amino acid residues;
i^{9} is an acidic residue;
i^{10} is an amino acid residue;
i^{12} and i^{13} are each independently amino acid residues; and
i^{14} is a neutral hydrophobic residue.
Further, the present invention also provides DNA encoding a composition of matter of the invention.

Further, the present invention provides an expression vector comprising the DNA of the invention.

Further, the present invention provides a host cell comprising the expression vector of the invention.

Further, the present invention provides a method of treating a B-cell mediated autoimmune disease, which comprises administering a composition of matter of the invention.

Further, the present invention provides a method of treating lupus, which comprises administering a composition of matter of the invention.

Further, the present invention provides a method of treating a B-cell mediated cancer, which comprises administering a composition of matter of the invention.

Further, the present invention provides a method of treating B-cell lymphoma, which comprises administering a composition of matter of the invention.

Further, the present invention provides use of a composition of matter to
the invention for the manufacture of a medicament for the treatment of B-cell mediated autoimmune disease.

Further, the present invention provides use of a composition of matter of the invention in the manufacture of a medicament for the treatment of B-cell mediated autoimmune disease.

Further, the present invention provides use of a composition of matter of the invention in the manufacture of a medicament for the treatment of lupus.

Further, the present invention provides use of a composition of matter of the invention in the manufacture of a medicament for the treatment of lupus.

Further, the present invention provides use of a composition of matter of the invention in the manufacture of a medicament for the treatment of a B-cell mediated cancer.

Further, the present invention provides use of a composition of a matter of the invention in the manufacture of a medicament for the treatment of B-cell lymphoma.

The compounds of this invention may be prepared by standard synthetic methods, recombinant DNA techniques, or any other methods of preparing peptides and fusion proteins. Compounds of this invention that encompass non-peptide portions may be synthesized by standard organic chemistry reactions, in addition to standard peptide chemistry reactions when applicable.

The primary use contemplated for the compounds of this invention is as therapeutic or prophylactic agents. The vehicle-linked peptide may have activity comparable to-or even greater than-the natural ligand mimicked by the peptide.

The compounds of this invention may be used for therapeutic or prophylactic purposes by formulating them with appropriate pharmaceutical carrier materials and administering an effective amount to a patient, such as a
human (or other mammal) in need thereof. Other related aspects are also included in the instant invention.

Unless the context clearly requires otherwise, throughout the description and the claims, the words 'comprise', 'comprising', and the like are to be construed in an inclusive sense as opposed to an exclusive or exhaustive sense; that is to say, in the sense of "including, but not limited to".

Numerous additional aspects and advantages of the present invention will become apparent upon consideration of the figures and detailed description of the invention.

Brief Description of the Figures

Figure 1 shows exemplary Fc dimers that may be derived from an IgG1 antibody. " Fc " in the figure represents any of the Fc variants within the meaning of "Fc domain" herein. " $\mathrm{X}^{1 "}$ and " X "" represent peptides or linker-peptide combinations as defined hereinafter. The specific dimers are as follows:

A, D: Single disulfide-bonded dimers. IgG1 antibodies typically have two disulfide bonds at the hinge region of the antibody. The Fc domain in Figures 1A and 1 D may be formed by truncation between the two disulfide bond sites or by substitution of a cysteinyl residue with an unreactive residue (e.g., alanyl). In Figure 1A, the Fc domain is linked at the amino terminus of the peptides; in 1D, at the carboxyl terminus.

B, E: Doubly disulfide-bonded dimers. This Fc domain may be formed by truncation of the parent antibody to retain both cysteinyl residues in the Fc domain chains or by expression from a construct including a sequence encoding such an Fc domain. In Figure 1B, the Fc domain is linked at the amino terminus of the peptides; in 1E, at the carboxyl terminus.

C, F: Noncovalent dimers. This Fc domain may be formed by elimination of the cysteinyl residues by either truncation or substitution. One may desire to eliminate the cysteinyl residues to avoid impurities formed by reaction of the cysteinyl residue with cysteinyl residues of other proteins present in the host cell. The noncovalent bonding of the Fc domains is sufficient to hold together the dimer.
Other dimers may be formed by using Fc domains derived from different types of antibodies (e.g., IgG2, IgM).

Figure 2 shows the structure of preferred compounds of the invention that feature tandem repeats of the pharmacologically active peptide. Figure 2A shows a single chain molecule and may also represent the DNA construct for the molecule. Figure 2B shows a dimer in which the linker-peptide portion is present on only one chain of the dimer. Figure 2C shows a dimer having the peptide portion on both chains. The dimer of Figure 2C will form spontaneously in certain host cells upon expression of a DNA construct encoding the single chain shown in Figure 3A. In other host cells, the cells could be placed in conditions favoring formation of dimers or the dimers can be formed in vitro.

Figure 3 shows exemplary nucleic acid and amino acid sequences (SEQ ID NOS: 1 and 2, respectively) of human IgG1 Fc that may be used in this invention.

Figures 4A through 4F show the nucleotide and amino acid sequences (SEQ ID NOS: 3-27) S of NdeI to Sall fragments encoding peptide and linker.

Figures 5A through 5M show the nucleotide sequence (SEQ ID NO: 28) of pAMG21-RANK-Fc vector, which was used to construct Fc-linked molecules of the present invention. These figures identify a number of features of the nucleic acid, including:

- promoter regions PcopB, PrepA, RNAI, APHII, luxPR, and luxPL;
- mRNA for APHII, luxR;
- coding sequences and amino acid sequences for the proteins copB protein, copT, repAI, repA4, APHII, luxR, RANK, and Fc;
- binding sites for the proteins copB, CRP;
- hairpins T1, T2, T7, and toop;
- operator site for lux protein;
- enzyme restriction sites for Pflll08I, BgIII, ScaI, BmnI, DrdII, DraIII, BstBI, AceIII, AflII, PflMI, BgII, SfiI, BstEII, BspLullI, NspV, BplI, EagI, BcgI, NsiI, BsaI, Pspl406I, AatII, BsmI, NruI, NdeI, ApaLI, Acc65I, KpnI, SalI, AccI, BspEI, AhdI, BspHI, EconI, BsrGI, BmaI, SmaI, SexAI, BamHI, and BlpI.

Figures 6A and 6B show the DNA sequence (SEQ ID NO: 97) inserted into pCFM1656 between the unique AatII (position \#4364 in pCFM1656) and SacII (position \#4585 in pCFM1656) restriction sites to form expression plasmid pAMG21 (ATCC accession no. 98113).

Figure 7 shows that the TALL-1 peptibody (SEQ ID NO: 70) inhibits
TALL-1-mediated B cell proliferation. Purified B cells $\left(10^{5}\right)$ from B6 mice were cultured in triplicates in 96-well plated with the indicated amounts of TALL-1 consensus peptibody in the presence of $10 \mathrm{ng} / \mathrm{ml}$ TALL- 1 plus $2 \mu \mathrm{~g} / \mathrm{ml}$ anti-IgM antibody. Proliferation was measured by radioactive $\left[{ }^{3} \mathrm{H}\right]$ thymidine uptake in the last 18 h of pulse. Data shown represent mean \pm SD triplicate wells.

Figure 8 shows that a TALL-1 N-terminal tandem dimer peptibodies (SEQ ID NO: 123, 124 in Table 5B hereinafter) are preferable for inhibition of TALL-1mediated B cell proliferation. Purified B cells (10^{5}) from B6 mice were cultured in triplicates in 96 -well plated with the indicated amounts of TALL-1 12-3 peptibody and TALL-1 consensus peptibody (SEQ ID NOS: 115 and 122 of Table 5B)or the related dimer peptibodies (SEQ ID NOS: 123, 124) in the presence of $10 \mathrm{ng} / \mathrm{ml}$

TALL-1 plus $2 \mu \mathrm{~g} / \mathrm{ml}$ anti-IgM antibody. Proliferation was measured by radioactive $\left[{ }^{3} \mathrm{H}\right]$ thymidine uptake in the last 18 h of pulse. Data shown represent mean \pm SD triplicate wells.

Figure 9. AGP3 peptibody binds to AGP3 with high affinity. Dissociation equilibrium constant $\left(\mathrm{K}_{\mathrm{D}}\right)$ was obtained from nonlinear regression
of the competition curves using a dual-curve one-site homogeneous binding model (KinEx ${ }^{\mathrm{TM}}$ software). K_{D} is about 4 pM for AGP3 peptibody binding with human AGP3 (SEQ D NO: 123).

Figures 10A and 10B. AGP3 peptibody blocks both human and murine AGP3 in the Biacore competition assay. Soluble human TACI protein was immobilized to B1 chip. 1 nM of recombinant human AGP3 protein (upper panel) or 5 nM of recombinant murine AGP3 protein (lower panel) was incubated with indicated amount of AGP3 peptibody before injected over the surface of receptor. Relative human AGP3 and murine AGP3 (binding response was shown (SEQ ID NO: 123).

Figures 11A and 11B. AGP3 peptibody blocked AGP3 binding to all three receptors TACI, BCMA and BAFFR in Biacore competition assay. Recombinant soluble receptor TACI, BCMA and BAFFR proteins were immobilized to CM5 chip. 1 nM of recombinant human AGP3 (upper panel) were incubated with indicated amount of AGP3 peptibody before injected over each receptor surface. Relative binding of AGP3 was measured. Similarly, 1 nM of recombinant APRIL protein was incubated with indicated amount of AGP3 peptibody before injected over each receptor surface. AGP3 peptibody didn't inhibit APRIL binding to all three receptors (SEQ ID NO: 123).

Figures 12A and 12B. AGP3 peptibody inhibits mouse serum immunoglobulin level increase induced by human AGP3 challenge. Balb/c mice received 7 daily intraperitoneal injections of $1 \mathrm{mg} / \mathrm{Kg}$ human AGP3 protein along with saline, human Fc , or AGP3 peptibody at indicated doses, and were bled on day 8. Serum total IgM and IgA level were measured by ELISA (SEQ ID NO: 123).

Figure 13. AGP3 peptibody treatment reduced arthritis severity in the mouse CIA model. Eight to 12 weeks old DBA/1 male mice were immunized with bovine collagen type II (bCII) emulsified in complete freunds adjuvant intradermally at the base of tail, and were boosted 3 weeks after the initial immunization with bCII emulsified in incomplete freunds adjuvant. Treatment with indicated dosage of AGP3 peptibody was begun from the day of booster
immunization for 4 weeks. As described before (Khare et al., J. Immunol.. 155: 3653-9, 1995), all four paws were individually scored from 0-3 for arthritis severity (SEQ ID NO: 123).

Figure 14. AGP3 peptibody treatment inhibited anti-collagen antibody generation in the mouse CIA model. Serum samples were taken one week after final treatment (day 35) as described above. Serum anti-collagen II antibody level was determined by ELISA analysis (SEQ ID NO: 123).

Figures 15A and 15B. AGP3 peptibody treatment delayed proteinuria onset and improved survival in NZB/NZW lupus mice. Five-month-old lupus prone NZBx NZBWF1 mice were treated i.p. 3X/week for 8 weeks with PBS or indicated doses of AGP3 peptibody (SEQ ID NO: 123) or human Fc proteins. Protein in the urine was evaluated monthly throughout the life of the experiment with Albustix reagent strips (Bayer AG).

Figures 16A and 16B show the nucleic acid and amino acid sequences of a preferred TALL-1-binding peptibody (SEQ ID NOS: 189 and 123)

Detailed Description of the Invention

Definition of Terms

The terms used throughout this specification are defined as follows, unless otherwise limited in specific instances.

General definitions

The term "comprising" means that a compound may include additional amino acids on either or both of the N - or C - termini of the given sequence. Of course, these additional amino acids should not significantly interfere with the activity of the compound.

Additionally, physiologically acceptable salts of the compounds of this invention are also encompassed herein. The term "physiologically acceptable salts" refers to any salts that are known or later discovered to be pharmaceutically acceptable. Some specific examples are: acetate;
trifluoroacetate; hydrohalides, such as hydrochloride and hydrobromide; sulfate; citrate; tartrate; glycolate; and oxalate.

Amino acids

The term "acidic residue" refers to amino acid residues in D - or L-form having sidechains comprising acidic groups. Exemplary acidic residues include D and E.

The term "amide residue" refers to amino acids in D- or L-form having sidechains comprising amide derivatives of acidic groups. Exemplary residues include N and Q .

The term "aromatic residue" refers to amino acid residues in D- or L-form having sidechains comprising aromatic groups. Exemplary aromatic residues include F, Y, and W.

The term "basic residue" refers to amino acid residues in D- or L-form having sidechains comprising basic groups. Exemplary basic residues include H, K, and R.

The term "hydrophilic residue" refers to amino acid residues in D- or Lform having sidechains comprising polar groups. Exemplary hydrophilic residues include $\mathrm{C}, \mathrm{S}, \mathrm{T}, \mathrm{N}$, and Q .

The term "nonfunctional residue" refers to amino acid residues in D- or Lform having sidechains that lack acidic, basic, or aromatic groups. Exemplary nonfunctional amino acid residues include $\mathrm{M}, \mathrm{G}, \mathrm{A}, \mathrm{V}, \mathrm{I}, \mathrm{L}$ and norleucine (Nle).

The term "neutral hydrophobic residue" refers to amino acid residues in D- or L-form having sidechains that lack basic, acidic, or polar groups. Exemplary neutral hydrophobic amino acid residues include A, V, L, I, P, W, M, and F .

The term "polar hydrophobic residue" refers to amino acid residues in D or L-form having sidechains comprising polar groups. Exemplary polar hydrophobic amino acid residues include T, G, S, Y, C, Q and N.

The term "hydrophobic residue" refers to amino acid residues in Dor L-form having sidechains that lack basic or acidic groups. Exemplary hydrophobic amino acid residues include A, V, L, I, P, W, M, F, T, G, S, Y, C, Q, and N .

Peptides
The term "peptide" refers to molecules of 1 to 40 amino acids, with molecules of 5 to 20amino acids preferred. Exemplary peptides may comprise the TALL-1 modulating domain of a naturally occurring molecule or comprise randomized sequences.

The term "randomized" as used to refer to peptide sequences refers to fully random sequences (e.g., selected by phage display methods or RNA-peptide screening) and sequences in which one or more residues of a naturally occurring molecule is replaced by an amino acid residue not appearing in that position in the naturally occurring molecule. Exemplary methods for identifying peptide sequences include phage display, E. coli display, ribosome display, RNA-peptide screening, chemical screening, and the like.

The term "TALL-1 modulating domain" refers to any amino acid sequence that binds to the TALL-1 and comprises naturally occurring sequences or randomized sequences. Exemplary TALL-1 modulating domains can be identified or derived by phage display or other methods mentioned herein.

The term " TALL-1 antagonist" refers to a molecule that binds to the TALL-1 and increases or decreases one or more assay parameters opposite from the effect on those parameters by full length native TALL-1. Such activity can be determined, for example, by such assays as described in the subsection entitled "Biological activity of AGP-3" in the Materials \& Methods section of the patent application entitled, "TNF-RELATED PROTEINS", WO 00/47740, published August 17, 2000.

Vehicles and peptibodies

The term "vehicle" refers to a molecule that prevents degradation and/or increases half-life, reduces toxicity, reduces immunogenicity, or increases biological activity of a therapeutic protein. Exemplary vehicles include an Fc domain (which is preferred) as well as a linear polymer (e.g., polyethylene glycol (PEG), polylysine, dextran, etc.); a branched-chain polymer (see, for example, U.S. Patent No. 4,289,872 to Denkenwalter et al., issued September 15, 1981; 5,229,490 to Tam, issued July 20, 1993; WO 93/21259 by Frechet et al., published 28 October 1993); a lipid; a cholesterol group (such as a steroid); a carbohydrate or oligosaccharide (e.g., dextran); any natural or synthetic protein, polypeptide or peptide that binds to a salvage receptor; albumin, including human serum albumin (HSA), leucine zipper domain, and other such proteins and protein fragments. Vehicles are further described hereinafter.

The term "native $\mathrm{Fc}^{\prime \prime}$ refers to molecule or sequence comprising the sequence of a non-antigen-binding fragment resulting from digestion of whole antibody, whether in monomeric or multimeric form. The original immunoglobulin source of the native Fc is preferably of human origin and may be any of the immunoglobulins, although IgG1 and IgG2 are preferred. Native Fc's are made up of monomeric polypeptides that may be linked into dimeric or multimeric forms by covalent (i.e., disulfide bonds) and non-covalent association. The number of intermolecular disulfide bonds between monomeric subunits of native Fc molecules ranges from 1 to 4 depending on class (e.g., $\operatorname{IgG}, \operatorname{IgA}, \operatorname{IgE}$) or subclass (e.g., $\operatorname{IgG1}, \mathrm{IgG} 2, \mathrm{IgG} 3, \mathrm{IgA1}, \mathrm{IgGA} 2)$. One example of a native Fc is a disulfidebonded dimer resulting from papain digestion of an IgG (see Ellison et al.
(1982), Nucleic Acids Res. 10: 4071-9). The term "native Fc" as used herein is generic to the monomeric, dimeric, and multimeric forms.

The term " Fc variant" refers to a molecule or sequence that is modified from a native Fc but still comprises a binding site for the salvage receptor, FcRn. International applications WO 97/34631 (published 25 September 1997) and WO 96/32478 describe exemplary Fc variants, as well as interaction with the salvage receptor, and are hereby incorporated by reference in their entirety. Thus, the term "Fc variant" comprises a molecule or sequence that is humanized from a non-human native Fc. Furthermore, a native Fc comprises sites that may be removed because they provide structural features or biological activity that are not required for the fusion molecules of the present invention. Thus, the term " Fc variant" comprises a molecule or sequence that lacks one or more native Fc sites or residues that affect or are involved in (1) disulfide bond formation, (2) incompatibility with a selected host cell (3) N-terminal heterogeneity upon expression in a selected host cell, (4) glycosylation, (5) interaction with complement, (6) binding to an Fc receptor other than a salvage receptor, or (7) antibody-dependent cellular cytotoxicity (ADCC). Fc variants are described in further detail hereinafter.

The term " Fc domain" encompasses native Fc and Fc variant molecules and sequences as defined above. As with Fc variants and native Fc's, the term "Fc domain" includes molecules in monomeric or multimeric form, whether digested from whole antibody or produced by other means.

The term "multimer" as applied to Fc domains or molecules comprising Fc domains refers to molecules having two or more polypeptide chains associated covalently, noncovalently, or by both covalent and non-covalent interactions. IgG molecules typically form dimers; IgM, pentamers; IgD, dimers; and IgA, monomers, dimers,
trimers, or tetramers. Multimers may be formed by exploiting the sequence and resulting activity of the native Ig source of the Fc or by derivatizing (as defined below) such a native Fc.

The term "dimer" as applied to Fc domains or molecules comprising Fc domains refers to molecules having two polypeptide chains associated covalently or non-covalently. Thus, exemplary dimers within the scope of this invention are as shown in Figure 1.

The terms "derivatizing" and "derivative" or "derivatized" comprise processes and resulting compounds respectively in which (1) the compound has a cyclic portion; for example, cross-linking between cysteinyl residues within the compound; (2) the compound is cross-linked or has a cross-linking site; for example, the compound has a cysteinyl residue and thus forms cross-linked dimers in culture or in vivo; (3) one or more peptidyl linkage is replaced by a non-peptidyl linkage; (4) the N terminus is replaced by $-\mathrm{NRR}^{1}, \mathrm{NRC}(\mathrm{O}) \mathrm{R}^{1},-\mathrm{NRC}(\mathrm{O}) \mathrm{OR}^{1},-\mathrm{NRS}(\mathrm{O})_{2} \mathrm{R}^{1},-$ NHC(O)NHR, a succinimide group, or substituted or unsubstituted benzyloxycarbonyl-NH-, wherein R and R^{1} and the ring substituents are as defined hereinafter; (5) the C-terminus is replaced by $-\mathrm{C}(\mathrm{O}) \mathrm{R}^{2}$ or $-\mathrm{NR}^{3} \mathrm{R}^{4}$ wherein R^{2}, R^{3} and R^{4} are as defined hereinafter; and (6) compounds in which individual amino acid moieties are modified through treatment with agents capable of reacting with selected side chains or terminal residues. Derivatives are further described hereinafter.

The terms "peptibody" and "peptibodies" refer to molecules comprising an Fc domain and at least one peptide. Such peptibodies may be multimers or dimers or fragments thereof, and they may be derivatized. In the present invention, the molecules of formulae II through VI hereinafter are peptibodies when V^{1} is an Fc domain.

Structure of compounds

In General. The present inventors identified sequences capable of binding to and modulating the biological activity of TALL-1. These sequences can be modified through the techniques mentioned above by which one or more amino acids may be changed while maintaining or even improving the binding affinity of the peptide.

In the compositions of matter prepared in accordance with this invention, the peptide(s) may be attached to the vehicle through the peptide's N-terminus or C-terminus. Any of these peptides may be linked in tandem (i.e., sequentially), with or without linkers. Thus, the vehiclepeptide molecules of this invention may be described by the following formula:

II

$$
\left(X^{1}\right)_{a}-V^{1}-\left(X^{2}\right)_{b}
$$

wherein:
V^{1} is a vehicle (preferably an Fc domain);
X^{1} and X^{2} are each independently selected from $-\left(\mathrm{L}^{1}\right)_{c}-\mathrm{P}^{1},-\left(\mathrm{L}^{1}\right)_{c}-\mathrm{P}^{1}-$ $\left(L^{2}\right)_{d}-P^{2},-\left(L^{1}\right)_{c}-P^{1}-\left(L^{2}\right)_{d}-P^{2}-\left(L^{3}\right)_{e}-P^{3}$, and $-\left(L^{1}\right)_{c}-P^{1}-\left(L^{2}\right)_{d}-P^{2}-\left(L^{3}\right)_{e}-P^{3}-\left(L^{4}\right)_{f}-P^{4}$
$\mathrm{P}^{1}, \mathrm{P}^{2}, \mathrm{P}^{3}$, and P^{4} are each independently sequences of TALL-1 modulating domains, such as those of Formulae I(a) through I(i);
L^{1}, L^{2}, L^{3}, and L^{4} are each independently linkers; and
$\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}$, and f are each independently 0 or 1 , provided that at least one of a and b is 1 .

Thus, compound II comprises preferred compounds of the formulae

III

$$
X^{1}-V^{1}
$$

and multimers thereof wherein V^{1} is an Fc domain and is attached at the C-terminus of A^{1};

IV

$$
\mathrm{V}^{1}-\mathrm{X}^{2}
$$

and multimers thereof wherein V^{1} is an Fc domain and is attached at the N -terminus of A^{2};

$$
\mathrm{V}^{1}-\left(\mathrm{L}^{1}\right)_{c}-\mathrm{P}^{1}-\left(\mathrm{L}^{2}\right)_{d}-\mathrm{P}^{2}
$$

and multimers thereof wherein V^{1} is an Fc domain and is attached at the N -terminus of $-\mathrm{L}^{1}-\mathrm{P}^{1}-\mathrm{L}^{2}-\mathrm{P}^{2}$.

Peptides. The peptides of this invention are useful as TALL-1 modulating peptides or as TALL-1 modulating domains in the molecules of formulae II through VI. Molecules of this invention comprising these peptide sequences may be prepared by methods known in the art.

Preferred peptide sequences are those of the foregoing formulae $I(a)$ having the substituents identified below.

Table 1--Preferred peptide substituents

Formula I(a)	a^{8} is T ; a^{9} is a basic residue (K most preferred); and a^{12} is a neutral hydrophibic residue (F most preferred).
Formula I(b)	b^{3} is D, Q or E; b^{6} is W or Y; b^{10} is T ; b^{11} is K or R ; and b^{14} is V or L .
Formula I(c)	c^{9} is T ; c^{10} is K or R ; c^{13} is a I, L, or V ; and c^{17} is A or L .
Formula I(d)	d^{12} is T .
Formula I(e)	e^{11} is T .
Formula I(f)	f^{9} is T ; f^{10} is K ; and f^{13} is V.
Formula I(g)	$\begin{aligned} & \mathrm{g}^{5} \text { is } \mathrm{W} ; \\ & \mathrm{g}^{8} \text { is } \mathrm{P} ; \\ & \mathrm{g}^{10} \text { is } \mathrm{E} \text {; and } \\ & \mathrm{g}^{13} \text { is a basic residue. } \end{aligned}$
Formula I(h)	h^{1} is G; h^{6} is A; h^{7} is a neutral hydrophobic residue; and h^{10} is an acidic residue.
Formula I(i)	i^{2} is W ; and i^{14} is W .

Preferred peptide sequences appear in Table 2 below.

Table 2-Preferred TALL-1 modulating domains

Sequence	$\begin{gathered} \text { SEQ } \\ \text { ID NO: } \end{gathered}$
PGTCFPFPWECTHA	29
WGACWPFPWECFKE	30
VPFCDLLTKHCFEA	31
GSRCKYKWDVLTKQCFHH	32
LPGCKWDLLIKQWVCDPL	33
SADCYFDILTKSDVCTSS	34
SDDCMYDQLTRMFICSNL	35
DLNCKYDELTYKEWCQFN	36
FHDCKYDLLTRQMVCHGL	37
RNHCFWDHLLKQDICPSP	38
ANQCWWDSLTKKNVCEFF	39
YKGRQMWDILTRSWVVSL	126
QDVGLWWDILTRAWMPNI	127
QNAQRVWDLLIRTWVYPQ	128
GWNEAWWDELTKIWVLEQ	129
RITCDIWDSLIKKCVPQS	130
GAIMQFWDSLTKTWLRQS	131
WLHSGWWDPLTKHWLQKV	132
SEWFFWFDPLTRAQLKFR	133
GVWFWWFDPLTKQWTQAG	134
MQCKGYYDILTKWCVTNG	135
LWSKEVWDILTKSWVSQA	136
KAAGWWFDWLTKVWVPAP	137
AYQTWFWDSLTRLWLSTT	138
SGQHFWWDLITRSWTPST	139
LGVGQKWDPLTKQWVSRG	140
VGKMCQWDPLIKRTVVCVG	141
CRQGAKFDLLTKQCLLGR	142
GQAIRHWDVITKQWVDSQ	143
RGPCGSWDLLTKHCLDSQ	144
WQWKQQWDLLTKQMVWVG	145
PITICRKDLLTKQVVCLD	146
KTCNGKWDLLTKQCLQQA	147
KCLKGKWDLLTKQCVTEV	148
RCWNGKWDLLTKQCIHPW	149
NRDMRKWDPLIKQWIVRP	150
QAAAATWDLLTKQWLVPP	151
PEGGPKWDPLTKQFLPPV	152
QTPQKKWDLLTKQWFTRN	153
IGSPCKWDLLTKQMICQT	154
CTAAGKWDLLTKQCIQEK	155
VSQCMKWDLLTKQCLQGW	156
VWGTWKWDLLTKQYLPPQ	157
GWWEMKWDLITKQWYRPQ	158
TAQVSKWDLITKQWLPLA	159
QLWGTKWDLLTKQYIQIM	160
WATSQKWDLLTKQWVQNM	161
QRQCAKWDLITKQCVLFY	162

KTTDCKWDLLTKQRICQV	163
LLCQGKWDLLTKQCLKLR	164
LMWFWKWDLLTKQLVPTF	165
QTWAWKWDLLTKQWIGPM	166
NKELLKWDLLTKQCRGRS	167
GQKDIKWDLLTKQYVRQS	168
PKPCQKWDLLTKQCLGSV	169
GQIGWKWDLLTKQWIQTR	170
VWLDWKWDLLTKQWIHPQ	171
QEWEYKWDLLTKQWGWLR	172
HWDSWKWDLLTKQWVVQA	173
TRPLQKWDLLTKQWLLRVG	174
SDQWQKWDLLTKQWFWDV	175
QQTFMKWDLLTKQWIRRH	176
QGECRKWDLLTKQCFPGQ	177
GQMGWRWDPLIKMCLGPS	178
QLDGCKWDLLTKQKVCIP	179
HGYWQKWDLLTKQWVSSE	180
HQGQCGWDLLTRIYLPCH	181
LHKACKWDLLTKQCWPMQ	182
GPPGSVWDLLTKIWIQTG	183
ITQDWRFDTLTRLWLPLR	184
QGGFAAWDVLTKMWITVP	185
GHGTPWWDALTRIWILGV	186
VWPWQKWDLLTKQFVFQD	187
WQWSWKWDLLTRQYISSS	188
NQTLWKWDLLTKQFITYM	60
PVYQGWWDTLTKLYIWDG	61
WLDGGWRDPLIKRSVQLG	62
GHQQFKWDLLTKQWVQSN	63
QRVGQFWDVLTKMFITGS	64
QAQGWSYDALIKTWIRWP	65
GWMHWKWDPLTKQALPWM	66
GHPTYKWDLLTKQWILQM	67
WNNWSLWDPLTKLWLQQN	68
WQWGWKWDLLTKQWVQQQ	69
GQMGWRWDPLTKMWLGTS	70

It is noted that the known receptors for TALL-1 bear some sequence homology with preferred peptides:

12-3
 LPGCKWDLLIKQWVCDPL

MRRGPRSLRGRDAPVPTPCVPTECYDLLVRKCVDCRLL
TACI TICNHQSQRTCAAFCRSLSCRKEQGKFYDHLLRDCISCASI
BCMA FVSPSQEIRGRFRRMLQMAGQCSQNEYFDSLLHACIPCQLRC
(SEQ ID NOS: 33, 195, 196, and 197, respectively).
Any peptide containing a cysteinyl residue may be cross-linked with
another Cys-containing peptide, either or both of which may be linked to a
vehicle. Any peptide having more than one Cys residue may form an intrapeptide disulfide bond, as well. Any of these peptides may be derivatized as described hereinafter.

Additional useful peptide sequences may result from conservative and/or non-conservative modifications of the amino acid sequences of the sequences in Table 2.

Conservative modifications will produce peptides having functional and chemical characteristics similar to those of the peptide from which such modifications are made. In contrast, substantial modifications in the functional and/or chemical characteristics of the peptides may be accomplished by selecting substitutions in the amino acid sequence that differ significantly in their effect on maintaining (a) the structure of the molecular backbone in the area of the substitution, for example, as a sheet or helical conformation, (b) the charge or hydrophobicity of the molecule at the target site, or (c) the size of the molecule.

For example, a "conservative amino acid substitution" may involve a substitution of a native amino acid residue with a nonnative residue such that there is little or no effect on the polarity or charge of the amino acid residue at that position. Furthermore, any native residue in the polypeptide may also be substituted with alanine, as has been previously described for "alanine scanning mutagenesis" (see, for example, MacLennan et al., 1998, Acta Physiol. Scand. Suppl. 643:55-67; Sasaki et al., 1998, Adv. Biophys. 35:1-24, which discuss alanine scanning mutagenesis).

Desired amino acid substitutions (whether conservative or nonconservative) can be determined by those skilled in the art at the time such substitutions are desired. For example, amino acid substitutions can be used to identify important residues of the peptide sequence, or to increase or decrease the affinity of the peptide or vehicle-peptide molecules (see preceding formulae) described herein. Exemplary amino acid substitutions are set forth in Table 3.

Table 3-Amino Acid Substitutions

Original Residues	Exemplary Substitutions	Preferred Substitutions
Ala (A)	Val, Leu, lle	Val
Arg (R)	Lys, Gln, Asn	Lys
Asn (N)	Gln	Gln
Asp (D)	Glu	Glu
Cys (C)	Ser, Ala	Ser
$\mathrm{Gln}(\mathrm{Q})$	Asn	Asn
Glu (E)	Asp	Asp
Gly (G)	Pro, Ala	Ala
His (H)	Asn, Gln, Lys, Arg	Arg
lle (I)	Leu, Val, Met, Ala, Phe, Norleucine	Leu
Leu (L)	Norleucine, lle, Val, Met, Ala, Phe	Ile
Lys (K)	Arg, 1,4 Diaminobutyric Acid, Gln, Asn	Arg
Met (M)	Leu, Phe, Ile	Leu
Phe (F)	Leu, Val, Ile, Ala, Tyr	Leu
Pro (P)	Ala	Gly
Ser (S)	Thr, Ala, Cys	Thr
Thr (T)	Ser	Ser
Trp (W)	Tyr, Phe	Tyr
Tyr (Y)	Trp, Phe, Thr, Ser	Phe
Val (V)	Ile, Met, Leu, Phe, Ala, Norleucine	Leu

In certain embodiments, conservative amino acid substitutions also encompass non-naturally occurring amino acid residues which are
typically incorporated by chemical peptide synthesis rather than by synthesis in biological systems.

As noted in the foregoing section "Definition of Terms," naturally occurring residues may be divided into classes based on common sidechain properties that may be useful for modifications of sequence. For example, non-conservative substitutions may involve the exchange of a member of one of these classes for a member from another class. Such substituted residues may be introduced into regions of the peptide that are homologous with non-human orthologs, or into the non-homologous regions of the molecule. In addition, one may also make modifications using P or G for the purpose of influencing chain orientation.

In making such modifications, the hydropathic index of amino acids may be considered. Each amino acid has been assigned a hydropathic index on the basis of their hydrophobicity and charge characteristics, these are: isoleucine (+4.5); valine (+4.2); leucine (+3.8); phenylalanine (+2.8); cysteine/cystine (+2.5); methionine (+1.9); alanine $(+1.8)$; glycine (-0.4); threonine (-0.7); serine (-0.8); tryptophan (-0.9); tyrosine (-1.3); proline (-1.6); histidine (-3.2); glutamate (-3.5); glutamine (3.5); aspartate (-3.5); asparagine (-3.5); lysine (-3.9); and arginine (-4.5).

The importance of the hydropathic amino acid index in conferring interactive biological function on a protein is understood in the art. Kyte et al., I. Mol. Biol., 157: 105-131 (1982). It is known that certain amino acids may be substituted for other amino acids having a similar hydropathic index or score and still retain a similar biological activity. In making changes based upon the hydropathic index, the substitution of amino acids whose hydropathic indices are within ± 2 is preferred, those which are within ± 1 are particularly preferred, and those within ± 0.5 are even more particularly preferred.

It is also understood in the art that the substitution of like amino acids can be made effectively on the basis of hydrophilicity. The greatest local average hydrophilicity of a protein, as governed by the hydrophilicity of its adjacent amino acids, correlates with its immunogenicity and antigenicity, i.e.. with a biological property of the protein.

The following hydrophilicity values have been assigned to amino acid residues: arginine (+3.0); lysine (+3.0); aspartate $(+3.0 \pm 1$); glutamate $(+3.0 \pm 1)$; serine (+0.3); asparagine (+0.2); glutamine (+0.2); glycine (0); threonine (-0.4); proline (-0.5 ± 1); alanine (-0.5); histidine (-0.5); cysteine $(-$ $1.0)$; methionine (-1.3); valine (-1.5); leucine (-1.8); isoleucine (-1.8); tyrosine (-2.3); phenylalanine (-2.5); tryptophan (-3.4). In making changes based upon similar hydrophilicity values, the substitution of amino acids whose hydrophilicity values are within ± 2 is preferred, those which are within ± 1 are particularly preferred, and those within ± 0.5 are even more particularly preferred. One may also identify epitopes from primary amino acid sequences on the basis of hydrophilicity. These regions are also referred to as "epitopic core regions."

A skilled artisan will be able to determine suitable variants of the polypeptide as set forth in the foregoing sequences using well known techniques. For identifying suitable areas of the molecule that may be changed without destroying activity, one skilled in the art may target areas not believed to be important for activity. For example, when similar polypeptides with similar activities from the same species or from other species are known, one skilled in the art may compare the amino acid sequence of a peptide to similar peptides. With such a comparison, one can identify residues and portions of the molecules that are conserved among similar polypeptides. It will be appreciated that changes in areas of a peptide that are not conserved relative to such similar peptides would
be less likely to adversely affect the biological activity and/or structure of the peptide. One skilled in the art would also know that, even in relatively conserved regions, one may substitute chemically similar amino acids for the naturally occurring residues while retaining activity (conservative amino acid residue substitutions). Therefore, even areas that may be important for biological activity or for structure may be subject to conservative amino acid substitutions without destroying the biological activity or without adversely affecting the peptide structure.

Additionally, one skilled in the art can review structure-function studies identifying residues in similar peptides that are important for activity or structure. In view of such a comparison, one can predict the importance of amino acid residues in a peptide that correspond to amino acid residues that are important for activity or structure in similar peptides. One skilled in the art may opt for chemically similar amino acid substitutions for such predicted important amino acid residues of the peptides.

One skilled in the art can also analyze the three-dimensional structure and amino acid sequence in relation to that structure in similar polypeptides. In view of that information, one skilled in the art may predict the alignment of amino acid residues of a peptide with respect to its three dimensional structure. One skilled in the art may choose not to make radical changes to amino acid residues predicted to be on the surface of the protein, since such residues may be involved in important interactions with other molecules. Moreover, one skilled in the art may generate test variants containing a single amino acid substitution at each desired amino acid residue. The variants can then be screened using activity assays know to those skilled in the art. Such data could be used to gather information about suitable variants. For example, if one discovered that a change to a particular amino acid residue resulted in destroyed,
undesirably reduced, or unsuitable activity, variants with such a change would be avoided. In other words, based on information gathered from such routine experiments, one skilled in the art can readily determine the amino acids where further substitutions should be avoided either alone or in combination with other mutations.

A number of scientific publications have been devoted to the prediction of secondary structure. See Moult J., Curr. Op. in Biotech., 7(4): 422-427 (1996), Chou et al., Biochemistry, 13(2): 222-245 (1974); Chou et al., Biochemistry, 113(2): 211-222 (1974); Chou et al., Adv. Enzymol. Relat. Areas Mol. Biol., 47: 45-148 (1978); Chou et al., Ann. Rev. Biochem., 47: 251-276 and Chou et al., Biophys. I., 26: 367-384 (1979). Moreover, computer programs are currently available to assist with predicting secondary structure. One method of predicting secondary structure is based upon homology modeling. For example, two polypeptides or proteins which have a sequence identity of greater than 30%, or similarity greater than 40% often have similar structural topologies. The recent growth of the protein structural data base (PDB) has provided enhanced predictability of secondary structure, including the potential number of folds within a polypeptide's or protein's structure. See Holm et al., Nucl. Acid. Res., 27(1): 244-247 (1999). It has been suggested (Brenner et al., Curr. Op. Struct. Biol., 7(3): 369-376 (1997)) that there are a limited number of folds in a given polypeptide or protein and that once a critical number of structures have been resolved, structural prediction will gain dramatically in accuracy.

Additional methods of predicting secondary structure include "threading" (Jones, D., Curr. Opin. Struct. Biol., 7(3): 377-87 (1997); Sipp1 et al., Structure, 4(1): 15-9 (1996)), "profile analysis" (Bowie et al., Science, 253: 164-170 (1991); Gribskov et al., Meth. Enzym., 183: 146-159 (1990);

Gribskov et al., Proc. Nat. Acad. Sci., 84(13): 4355-8 (1987)), and "evolutionary linkage" (See Home, supra, and Brenner ${ }_{\varepsilon}$ supra).

Vehicles. This invention requires the presence of at least one vehicle $\left(\mathrm{V}^{1}\right)$ attached to a peptide through the N -terminus, C -terminus or a sidechain of one of the amino acid residues. Multiple vehicles may also be used; e.g., Fc's at each terminus or an Fc at a terminus and a PEG group at the other terminus or a sidechain. Exemplary vehicles include:

- an Fc domain;
- other proteins, polypeptides, or peptides capable of binding to a salvage receptor;
- human serum albumin (HSA);
- a leucine zipper (LZ) domain;
- polyethylene glycol (PEG), including $5 \mathrm{kD}, 20 \mathrm{kD}$, and 30 kD PEG, as well as other polymers;
- dextran;
and other molecules known in the art to provide extended half-life and/or protection from proteolytic degradation or clearance.

An Fc domain is the preferred vehicle. The Fc domain may be fused to the N or C termini of the peptides or at both the N and C termini. Fusion to the N terminus is preferred.

As noted above, Fc variants are suitable vehicles within the scope of this invention. A native Fc may be extensively modified to form an Fc variant in accordance with this invention, provided binding to the salvage receptor is maintained; see, for example WO 97/34631 and WO 96/32478. In such Fc variants, one may remove one or more sites of a native Fc that provide structural features or functional activity not required by the fusion molecules of this invention. One may remove these sites by, for example, substituting or deleting residues, inserting residues into the site, or truncating portions containing the site. The inserted or substituted
residues may also be altered amino acids, such as peptidomimetics or Damino acids. FC variants may be desirable for a number of reasons, several of which are described below. Exemplary Fc variants include molecules and sequences in which:

1. Sites involved in disulfide bond formation are removed. Such removal may avoid reaction with other cysteine-containing proteins present in the host cell used to produce the molecules of the invention. For this purpose, the cysteine-containing segment at the N-terminus may be truncated or cysteine residues may be deleted or substituted with other amino acids (e.g., alanyl, seryl). In particular, one may truncate the Nterminal 20-amino acid segment of SEQ ID NO: 2 or delete or substitute the cysteine residues at positions 7 and 10 of SEQ ID NO: 2. Even when cysteine residues are removed, the single chain Fc domains can still form a dimeric Fc domain that is held together non-covalently.
2. A native Fc is modified to make it more compatible with a selected host cell. For example, one may remove the PA sequence near the N terminus of a typical native Fc , which may be recognized by a digestive enzyme in E. coli such as proline iminopeptidase. One may also add an N-terminal methionine residue, especially when the molecule is expressed recombinantly in a bacterial cell such as E. coli. The Fc domain of SEQ ID NO: 2 is one such Fc variant.
3. A portion of the N -terminus of a native Fc is removed to prevent N terminal heterogeneity when expressed in a selected host cell. For this purpose, one may delete any of the first 20 amino acid residues at the N-terminus, particularly those at positions 1,2,3,4 and 5.
4. One or more glycosylation sites are removed. Residues that are typically glycosylated (e.g., asparagine) may confer cytolytic response. Such residues may be deleted or substituted with unglycosylated residues (e.g., alanine).
5. Sites involved in interaction with complement, such as the C1q binding site, are removed. For example, one may delete or substitute the EKK sequence of human IgG1. Complement recruitment may not be advantageous for the molecules of this invention and so may be avoided with such an Fc variant.
6. Sites are removed that affect binding to Fc receptors other than a salvage receptor. A native Fc may have sites for interaction with certain white blood cells that are not required for the fusion molecules of the present invention and so may be removed.
7. The ADCC site is removed. ADCC sites are known in the art; see, for example, Molec. Immunol. 29 (5): 633-9 (1992) with regard to ADCC sites in IgG1. These sites, as well, are not required for the fusion molecules of the present invention and so may be removed.
8. When the native Fc is derived from a non-human antibody, the native Fc may be humanized. Typically, to humanize a native Fc, one will substitute selected residues in the non-human native Fc with residues that are normally found in human native Fc. Techniques for antibody humanization are well known in the art.

Preferred Fc variants include the following. In SEQ ID NO: 2
(Figure 3), the leucine at position 15 may be substituted with glutamate; the glutamate at position 99, with alanine; and the lysines at positions 101 and 103, with alanines. In addition, one or more tyrosine residues can be replaced by phenyalanine residues.

An alternative vehicle would be a protein, polypeptide, peptide, antibody, antibody fragment, or small molecule (e.g., a peptidomimetic compound) capable of binding to a salvage receptor. For example, one could use as a vehicle a polypeptide as described in U.S. Pat. No. 5,739,277, issued April 14, 1998 to Presta et al. Peptides could also be selected by phage display or RNA-peptide screening for binding to the

FcRn salvage receptor. Such salvage receptor-binding compounds are also included within the meaning of "vehicle" and are within the scope of this invention. Such vehicles should be selected for increased half-life (e.g., by avoiding sequences recognized by proteases) and decreased immunogenicity (e.g., by favoring non-immunogenic sequences, as discovered in antibody humanization).

As noted above, polymer vehicles may also be used for V^{1}. Various means for attaching chemical moieties useful as vehicles are currently available, see, e.g., Patent Cooperation Treaty ("PCT") International Publication No. WO 96/11953, entitled "N-Terminally Chemically Modified Protein Compositions and Methods," herein incorporated by reference in its entirety. This PCT publication discloses, among other things, the selective attachment of water soluble polymers to the N terminus of proteins.

A preferred polymer vehicle is polyethylene glycol (PEG). The PEG group may be of any convenient molecular weight and may be linear or branched. The average molecular weight of the PEG will preferably range from about 2 kiloDalton (" $\mathrm{kD}^{\prime \prime}$) to about 100 kD , more preferably from about 5 kD to about 50 kD , most preferably from about 5 kD to about 10 kD . The PEG groups will generally be attached to the compounds of the invention via acylation or reductive alkylation through a reactive group on the PEG moiety (e.g., an aldehyde, amino, thiol, or ester group) to a reactive group on the inventive compound (e.g., an aldehyde, amino, or ester group).

A useful strategy for the PEGylation of synthetic peptides consists of combining, through forming a conjugate linkage in solution, a peptide and a PEG moiety, each bearing a special functionality that is mutually reactive toward the other. The peptides can be easily prepared with conventional solid phase synthesis. The peptides are "preactivated" with
an appropriate functional group at a specific site. The precursors are purified and fully characterized prior to reacting with the PEG moiety. Ligation of the peptide with PEG usually takes place in aqueous phase and can be easily monitored by reverse phase analytical HPLC. The PEGylated peptides can be easily purified by preparative HPLC and characterized by analytical HPLC, amino acid analysis and laser desorption mass spectrometry.

Polysaccharide polymers are another type of water soluble polymer which may be used for protein modification. Dextrans are polysaccharide polymers comprised of individual subunits of glucose predominantly linked by $\alpha 1-6$ linkages. The dextran itself is available in many molecular weight ranges, and is readily available in molecular weights from about 1 kD to about 70 kD . Dextran is a suitable water soluble polymer for use in the present invention as a vehicle by itself or in combination with another vehicle (e.g., Fc). See, for example, WO 96/11953 and WO 96/05309. The use of dextran conjugated to therapeutic or diagnostic immunoglobulins has been reported; see, for example, European Patent Publication No. 0 315 456, which is hereby incorporated by reference in its entirety. Dextran of about 1 kD to about 20 kD is preferred when dextran is used as a vehicle in accordance with the present invention.

Linkers. Any "linker" group is optional. When present, its chemical structure is not critical, since it serves primarily as a spacer. The linker is preferably made up of amino acids linked together by peptide bonds. Thus, in preferred embodiments, the linker is made up of from 1 to 30 amino acids linked by peptide bonds, wherein the amino acids are selected from the 20 naturally occurring amino acids. Some of these amino acids may be glycosylated, as is well understood by those in the art. In a more preferred embodiment, the 1 to 20 amino acids are selected from glycine, alanine, proline, asparagine, glutamine, and lysine. Even more preferably,
a linker is made up of a majority of amino acids that are sterically unhindered, such as glycine and alanine. Thus, preferred linkers are polyglycines (particularly $\left(\mathrm{Gly}_{4^{\prime}}(\mathrm{Gly})_{5}\right)$, poly(Gly-Ala), and polyalanines. Other specific examples of linkers are:
$(\mathrm{Gly})_{3} \mathrm{Lys}(\mathrm{Gly})_{4}$ (SEQ ID NO: 40);
(Gly) ${ }_{3}$ AsnGlySer(Gly) ${ }_{2}$ (SEQ ID NO: 41);
(Gly) ${ }_{3} \mathrm{Cys}(\mathrm{Gly})_{4}$ (SEQ ID NO: 42); and
GlyProAsnGlyGly (SEQ ID NO: 43).
To explain the above nomenclature, for example, $(\mathrm{Gly})_{3} \mathrm{Lys}(\mathrm{Gly})_{4}$ means Gly-Gly-Gly-Lys-Gly-Gly-Gly-Gly (SEQ ID NO: 40). Combinations of Gly and Ala are also preferred. The linkers shown here are exemplary; linkers within the scope of this invention may be much longer and may include other residues.

Preferred linkers are amino acid linkers comprising greater than 5 amino acids, with suitable linkers having up to about 500 amino acids selected from glycine, alanine, proline, asparagine, glutamine, lysine, threonine, serine or aspartate. Linkers of about 20 to 50 amino acids are most preferred. One group of preferred linkers are those of the formulae GSGSATGGSGSTASSGSGSATx $x^{1} x^{2}$
(SEQ ID NO: 193)
and
GSGSATGGSGSTASSGSGSATx $x^{1} x^{2}$ GSGSATGGSGSTASSGSGSATx ${ }^{3} x^{4}$ (SEQ ID NO: 194)
wherein x^{1} and x^{3} are each independently basic or hydrophobic residues and x^{2} and x^{4} are each independently hydrophobic residues. Specific preferred linkers are:

GSGSATGGSGSTASSGSGSATHM
(SEQ ID NO: 59)

GSGSATGGSGSTASSGSGSATGM

(SEQ ID NO: 190)

GSGSATGGSGSTASSGSGSATGS

(SEQ ID NO: 191), and

GSGSATGGSGSTASSGSGSATHMGSGSATGGSGSTASSGSGSATHM

 (SEQ ID NO: 192).Non-peptide linkers are also possible. For example, alkyl linkers such as $-\mathrm{NH}-\left(\mathrm{CH}_{2}\right)_{\mathrm{s}} \mathrm{C}(\mathrm{O})$-, wherein $\mathrm{s}=2-20$ could be used. These alkyl linkers may further be substituted by any non-sterically hindering group such as lower alkyl (e.g., $\mathrm{C}_{1}-\mathrm{C}_{6}$) lower acyl, halogen (e.g., Cl, Br), $\mathrm{CN}, \mathrm{NH}_{2}$, phenyl, etc. An exemplary non-peptide linker is a PEG linker, VII

wherein n is such that the linker has a molecular weight of 100 to 5000 kD , preferably 100 to 500 kD . The peptide linkers may be altered to form derivatives in the same manner as described above.

Derivatives. The inventors also contemplate derivatizing the peptide and/or vehicle portion of the compounds. Such derivatives may improve the solubility, absorption, biological half life, and the like of the compounds. The moieties may alternatively eliminate or attenuate any undesirable side-effect of the compounds and the like. Exemplary derivatives include compounds in which:

1. The compound or some portion thereof is cyclic. For example, the peptide portion may be modified to contain two or more Cys residues (e.g., in the linker), which could cyclize by disulfide bond formation.
2. The compound is cross-linked or is rendered capable of cross-linking between molecules. For example, the peptide portion may be modified to contain one Cys residue and thereby be able to form an intermolecular disulfide bond with a like molecule. The compound may also be cross-linked through its C-terminus, as in the molecule shown below.

VIII

In Formula VIII, each " $V^{1 /}$ may represent typically one strand of the Fc domain.
3. One or more peptidyl $[-C(O) N R-]$ linkages (bonds) is replaced by a non-peptidyl linkage. Exemplary non-peptidyl linkages are $-\mathrm{CH}_{2}-$ carbamate $\left[-\mathrm{CH}_{2}-\mathrm{OC}(\mathrm{O}) \mathrm{NR}-\right]$, phosphonate , $-\mathrm{CH}_{2}$-sulfonamide $\left[-\mathrm{CH}_{2}-\right.$ $\left.\mathrm{S}(\mathrm{O})_{2} \mathrm{NR}-\right]$, urea [-NHC(O)NH-], $-\mathrm{CH}_{2}$-secondary amine, and alkylated peptide $\left[-C(O) N R^{6}\right.$ - wherein R^{6} is lower alkyll].
4. The N-terminus is derivatized. Typically, the N-terminus may be acylated or modified to a substituted amine. Exemplary N-terminal derivative groups include $-\mathrm{NRR}^{1}$ (other than $-\mathrm{NH}_{2}$), $-\mathrm{NRC}(\mathrm{O}) \mathrm{R}^{1}$, $-\mathrm{NRC}(\mathrm{O}) \mathrm{OR}^{1},-\mathrm{NRS}(\mathrm{O})_{2} \mathrm{R}^{1},-\mathrm{NHC}(\mathrm{O}) \mathrm{NHR}^{1}$, succinimide, or benzyloxycarbonyl-NH- (CBZ-NH-), wherein R and R^{1} are each independently hydrogen or lower alkyl and wherein the phenyl ring may be substituted with 1 to 3 substituents selected from the group consisting of $\mathrm{C}_{1}-\mathrm{C}_{4}$ alkyl, $\mathrm{C}_{1}-\mathrm{C}_{4}$ alkoxy, chloro, and bromo.
5. The free C-terminus is derivatized. Typically, the C-terminus is esterified or amidated. Exemplary C-terminal derivative groups include, for example, $-\mathrm{C}(\mathrm{O}) \mathrm{R}^{2}$ wherein R^{2} is lower alkoxy or $-\mathrm{NR}^{3} \mathrm{R}^{4}$
wherein R^{3} and R^{4} are independently hydrogen or $C_{1}-C_{8}$ alkyl (preferably $\mathrm{C}_{1}-\mathrm{C}_{4}$ alkyl).
6. A disulfide bond is replaced with another, preferably more stable, cross-linking moiety (e.g., an alkylene). See, e.g., Bhatnagar et al. (1996), I. Med. Chem. 39: 3814-9; Alberts et al. (1993) Thirteenth Am. Pep. Symp., 357-9.
7. One or more individual amino acid residues is modified. Various derivatizing agents are known to react specifically with selected sidechains or terminal residues, as described in detail below.

Lysinyl residues and amino terminal residues may be reacted with succinic or other carboxylic acid anhydrides, which reverse the charge of the lysinyl residues. Other suitable reagents for derivatizing alpha-aminocontaining residues include imidoesters such as methyl picolinimidate; pyridoxal phosphate; pyridoxal; chloroborohydride; trinitrobenzenesulfonic acid; O-methylisourea; 2,4 pentanedione; and transaminase-catalyzed reaction with glyoxylate.

Arginyl residues may be modified by reaction with any one or combination of several conventional reagents, including phenylglyoxal, 2,3butanedione, 1,2-cyclohexanedione, and ninhydrin. Derivatization of arginyl residues requires that the reaction be performed in alkaline conditions because of the high pKa of the guanidine functional group. Furthermore, these reagents may react with the groups of lysine as well as the arginine epsilon-amino group.

Specific modification of tyrosyl residues has been studied extensively, with particular interest in introducing spectral labels into tyrosyl residues by reaction with aromatic diazonium compounds or tetranitromethane. Most commonly, N -acetylimidizole and tetranitromethane are used to form O-acetyl tyrosyl species and 3-nitro derivatives, respectively.

Carboxyl sidechain groups (aspartyl or glutamyl) may be selectively modified by reaction with carbodiimides ($\mathrm{R}^{\prime}-\mathrm{N}=\mathrm{C}=\mathrm{N}-\mathrm{R}^{\prime}$) such as 1-cyclohexyl-3-(2-morpholinyl-(4-ethyl) carbodiimide or 1-ethyl-3-(4-azonia-4,4dimethylpentyl) carbodiimide. Furthermore, aspartyl and glutamyl residues may be converted to asparaginyl and glutaminyl residues by reaction with ammonium ions.

Glutaminyl and asparaginyl residues may be deamidated to the corresponding glutamyl and aspartyl residues. Alternatively, these residues are deamidated under mildly acidic conditions. Either form of these residues falls within the scope of this invention.

Cysteinyl residues can be replaced by amino acid residues or other moieties either to eliminate disulfide bonding or, conversely, to stabilize crosslinking. See, e.g., Bhatnagar et al. (1996), I. Med. Chem. 39: 3814-9.

Derivatization with bifunctional agents is useful for cross-linking the peptides or their functional derivatives to a water-insoluble support matrix or to other macromolecular vehicles. Commonly used cross-linking agents include, e.g., 1,1-bis(diazoacetyl)-2-phenylethane, glutaraldehyde, Nhydroxysuccinimide esters, for example, esters with 4-azidosalicylic acid, homobifunctional imidoesters, including disuccinimidyl esters such as $3,3^{\prime}-$ dithiobis(succinimidylpropionate), and bifunctional maleimides such as bis-N-maleimido-1,8-octane. Derivatizing agents such as methyl-3-[(pazidophenyl)dithio]propioimidate yield photoactivatable intermediates that are capable of forming cross-links in the presence of light. Alternatively, reactive water-insoluble matrices such as cyanogen bromide-activated carbohydrates and the reactive substrates described in U.S. Pat. Nos. 3,969,287; 3,691,016; 4,195,128; 4,247,642; 4,229,537; and 4,330,440 are employed for protein immobilization.

Carbohydrate (oligosaccharide) groups may conveniently be attached to sites that are known to be glycosylation sites in proteins.

Generally, O-linked oligosaccharides are attached to serine (Ser) or threonine (Thr) residues while N -linked oligosaccharides are attached to asparagine (Asn) residues when they are part of the sequence Asn-XSer/Thr, where X can be any amino acid except proline. X is preferably one of the 19 naturally occurring amino acids other than proline. The structures of N -linked and O -linked oligosaccharides and the sugar residues found in each type are different. One type of sugar that is commonly found on both is N -acetylneuraminic acid (referred to as sialic acid). Sialic acid is usually the terminal residue of both N -linked and O linked oligosaccharides and, by virtue of its negative charge, may confer acidic properties to the glycosylated compound. Such site(s) may be incorporated in the linker of the compounds of this invention and are preferably glycosylated by a cell during recombinant production of the polypeptide compounds (e.g., in mammalian cells such as $\mathrm{CHO}, \mathrm{BHK}$, COS). However, such sites may further be glycosylated by synthetic or semi-synthetic procedures known in the art.

Other possible modifications include hydroxylation of proline and lysine, phosphorylation of hydroxyl groups of seryl or threonyl residues, oxidation of the sulfur atom in Cys, methylation of the alpha-amino groups of lysine, arginine, and histidine side chains. Creighton, Proteins: Structure and Molecule Properties (W. H. Freeman \& Co., San Francisco), pp. 79-86 (1983).

Compounds of the present invention may be changed at the DNA level, as well. The DNA sequence of any portion of the compound may be changed to codons more compatible with the chosen host cell. For E. coli, which is the preferred host cell, optimized codons are known in the art. Codons may be substituted to eliminate restriction sites or to include silent restriction sites, which may aid in processing of the DNA in the selected
host cell. The vehicle, linker and peptide DNA sequences may be modified to include any of the foregoing sequence changes.

Methods of Making

The compounds of this invention largely may be made in transformed host cells using recombinant DNA techniques. To do so, a recombinant DNA molecule coding for the peptide is prepared. Methods of preparing such DNA molecules are well known in the art. For instance, sequences coding for the peptides could be excised from DNA using suitable restriction enzymes. Alternatively, the DNA molecule could be synthesized using chemical synthesis techniques, such as the phosphoramidate method. Also, a combination of these techniques could be used.

The invention also includes a vector capable of expressing the peptides in an appropriate host. The vector comprises the DNA molecule that codes for the peptides operatively linked to appropriate expression control sequences. Methods of effecting this operative linking, either before or after the DNA molecule is inserted into the vector, are well known. Expression control sequences include promoters, activators, enhancers, operators, ribosomal binding sites, start signals, stop signals, cap signals, polyadenylation signals, and other signals involved with the control of transcription or translation.

The resulting vector having the DNA molecule thereon is used to transform an appropriate host. This transformation may be performed using methods well known in the art.

Any of a large number of available and well-known host cells may be used in the practice of this invention. The selection of a particular host is dependent upon a number of factors recognized by the art. These include, for example, compatibility with the chosen expression vector, toxicity of the peptides encoded by the DNA molecule, rate of
transformation, ease of recovery of the peptides, expression characteristics, bio-safety and costs. A balance of these factors must be struck with the understanding that not all hosts may be equally effective for the expression of a particular DNA sequence. Within these general guidelines, useful microbial hosts include bacteria (such as E. coli sp.), yeast (such as Saccharomyces sp.) and other fungi, insects, plants, mammalian (including human) cells in culture, or other hosts known in the art.

Next, the transformed host is cultured and purified. Host cells may be cultured under conventional fermentation conditions so that the desired compounds are expressed. Such fermentation conditions are well known in the art. Finally, the peptides are purified from culture by methods well known in the art.

The compounds may also be made by synthetic methods. For example, solid phase synthesis techniques may be used. Suitable techniques are well known in the art, and include those described in Merrifield (1973), Chem. Polypeptides, pp. 335-61 (Katsoyannis and Panayotis eds.); Merrifield (1963), I. Am. Chem. Soc. 85: 2149; Davis et al. (1985), Biochem. Intl. 10: 394-414; Stewart and Young (1969), Solid Phase Peptide Synthesis; U.S. Pat. No. 3,941,763; Finn et al. (1976), The Proteins (3rd ed.) 2: 105-253; and Erickson et al. (1976), The Proteins (3rd ed.) 2: 257-527. Solid phase synthesis is the preferred technique of making individual peptides since it is the most cost-effective method of making small peptides.

Compounds that contain derivatized peptides or which contain non-peptide groups may be synthesized by well-known organic chemistry techniques.

Uses of the Compounds

Compounds of this invention may be particularly useful in treatment of B-cell mediated autoimmune diseases. In particular, the
compounds of this invention may be useful in treating, preventing, ameliorating, diagnosing or prognosing lupus, including systemic lupus erythematosus (SLE), and lupus-associated diseases and conditions. Other preferred indications include B-cell mediated cancers, including B-cell lymphoma.

The compounds of this invention can also be used to treat inflammatory conditions of the joints. Inflammatory conditions of a joint are chronic joint diseases that afflict and disable, to varying degrees, millions of people worldwide. Rheumatoid arthritis is a disease of articular joints in which the cartilage and bone are slowly eroded away by a proliferative, invasive connective tissue called pannus, which is derived from the synovial membrane. The disease may involve peri-articular structures such as bursae, tendon sheaths and tendons as well as extraarticular tissues such as the subcutis, cardiovascular system, lungs, spleen, lymph nodes, skeletal muscles, nervous system (central and peripheral) and eyes (Silberberg (1985), Anderson's Pathology, Kissane (ed.), II:1828). Osteoarthritis is a common joint disease characterized by degenerative changes in articular cartilage and reactive proliferation of bone and cartilage around the joint. Osteoarthritis is a cell-mediated active process that may result from the inappropriate response of chondrocytes to catabolic and anabolic stimuli. Changes in some matrix molecules of articular cartilage reportedly occur in early osteoarthritis (Thonar et al. (1993), Rheumatic disease clinics of North America, Moskowitz (ed.), 19:635-657 and Shinmei et al. (1992), Arthritis Rheum., 35:1304-1308). TALL-1, TALL-1R and modulators thereof are believed to be useful in the treatment of these and related conditions.

Compounds of this invention may also be useful in treatment of a number of additional diseases and disorders, including:

- acute pancreatitis;
- ALS;
- Alzheimer's disease;
- asthma;
- atherosclerosis;
- autoimmune hemolytic anemia;
- cancer, particularly cancers related to B cells;
- cachexia/anorexia;
- chronic fatigue syndrome;
- cirrhosis (e.g., primary biliary cirrhosis);
- diabetes (e.g., insulin diabetes);
- fever;
- glomerulonephritis, including IgA glomerulonephritis and primary glomerulonephritis;
- Goodpasture's syndrome;
- Guillain-Barre syndrome;
- graft versus host disease;
- Hashimoto's thyroiditis;
- hemorrhagic shock;
- hyperalgesia;
- inflammatory bowel disease;
- inflammatory conditions of a joint, including osteoarthritis, psoriatic arthritis and rheumatoid arthritis;
- inflammatory conditions resulting from strain, sprain, cartilage damage, trauma, orthopedic surgery, infection or other disease processes;
- insulin-dependent diabetes mellitus;
- ischemic injury, including cerebral ischemia (e.g., brain injury as a result of trauma, epilepsy, hemorrhage or stroke, each of which may lead to neurodegeneration);
- learning impairment;
- lung diseases (e.g., ARDS);
- multiple myeloma;
- multiple sclerosis;
- Myasthenia gravis;
- myelogenous (e.g., AML and CML) and other leukemias;
- myopathies (e.g., muscle protein metabolism, esp. in sepsis);
- neurotoxicity (e.g., as induced by HIV);
- osteoporosis;
- pain;
- Parkinson's disease;
- Pemphigus;
- polymyositis/dermatomyositis;
- pulmonary inflammation, including autoimmune pulmonary inflammation;
- pre-term labor;
- psoriasis;
- Reiter's disease;
- reperfusion injury;
- septic shock;
- side effects from radiation therapy;
- Sjogren's syndrome;
- sleep disturbance;
- temporal mandibular joint disease;
- thrombocytopenia, including idiopathic thrombocytopenia and autoimmune neonatal thrombocytopenia;
- tumor metastasis;
- uveitis; and
- vasculitis.

Compounds of this invention may be administered alone or in combination with a therapeutically effective amount of other drugs, including analgesic agents, disease-modifying anti-rheumatic drugs (DMARDs), non-steroidal anti-inflammatory drugs (NSAIDs), and any immune and/or inflammatory modulators. Thus, compounds of this invention may be administered with:

- Modulators of other members of the TNF/TNF receptor family, including TNF antagonists, such as etanercept (Enbrel $\left.{ }^{\mathrm{TM}}\right)$, sTNFRI, onercept, D2E7, and Remicade ${ }^{\mathrm{TM}}$.
- Nerve growth factor (NGF) modulators.
- IL-1 inhibitors, including IL-1ra molecules such as anakinra and more recently discovered IL-1ra-like molecules such as IL-1Hy1 and IL-1Hy2; IL-1 "trap" molecules as described in U.S. Pat. No. 5,844,099, issued December 1, 1998; IL-1 antibodies; solubilized IL-1 receptor, and the like.
- IL-6 inhibitors (e.g., antibodies to IL-6).
- IL-8 inhibitors (e.g., antibodies to IL-8).
- IL-18 inhibitors (e.g., IL-18 binding protein, solubilized IL-18 receptor, or IL-18 antibodies).
- Interleukin-1 converting enzyme (ICE) modulators.
- insulin-like growth factors (IGF-1, IGF-2) and modulators thereof.
- Transforming growth factor- β (TGF- β), TGF- β family members, and TGF- β modulators.
- Fibroblast growth factors FGF-1 to FGF-10, and FGF modulators.
- Osteoprotegerin (OPG), OPG analogues, osteoprotective agents, and antibodies to OPG-ligand (OPG-L).
- bone anabolic agents, such as parathyroid hormone (PTH), PTH fragments, and molecules incorporating PTH fragments (e.g., PTH (1-34)-Fc).
- PAF antagonists.
- Keratinocyte growth factor (KGF), KGF-related molecules (e.g., KGF-2), and KGF modulators.
- COX-2 inhibitors, such as Celebrex ${ }^{\mathrm{TM}}$ and Vioxx ${ }^{\mathrm{TM}}$.
- Prostaglandin analogs (e.g., E series prostaglandins).
- Matrix metalloproteinase (MMP) modulators.
- Nitric oxide synthase (NOS) modulators, including modulators of inducible NOS.
- Modulators of glucocorticoid receptor.
- Modulators of glutamate receptor.
- Modulators of lipopolysaccharide (LPS) levels.
- Anti-cancer agents, including inhibitors of oncogenes (e.g., fos, jun) and interferons.
- Noradrenaline and modulators and mimetics thereof.

Pharmaceutical Compositions

In General. The present invention also provides methods of using pharmaceutical compositions of the inventive compounds. Such pharmaceutical compositions may be for administration for injection, or for oral, pulmonary, nasal, transdermal or other forms of administration. In general, the invention encompasses pharmaceutical compositions comprising effective amounts of a compound of the invention together with pharmaceutically acceptable diluents, preservatives, solubilizers, emulsifiers, adjuvants and/or carriers. Such compositions include diluents of various buffer content (e.g., Tris- HCl , acetate, phosphate), pH and ionic strength; additives such as detergents and solubilizing agents (e.g., Tween 80, Polysorbate 80), anti-oxidants (e.g., ascorbic acid, sodium metabisulfite), preservatives (e.g., Thimersol, benzyl alcohol) and bulking substances (e.g., lactose, mannitol); incorporation of the material into particulate preparations of polymeric compounds such as polylactic acid, polyglycolic acid, etc. or into liposomes. Hyaluronic acid may also be used, and this may have the effect of promoting sustained duration in the circulation. Such compositions may influence the physical state, stability, rate of in vivo release, and rate of in vivo clearance of the present proteins and derivatives. See, e.g., Remington's Pharmaceutical Sciences, 18th Ed. (1990, Mack Publishing Co., Easton, PA 18042) pages 1435-1712 which are herein incorporated by reference in their entirety. The compositions may be prepared in liquid form, or may be in dried powder, such as lyophilized form. Implantable sustained release formulations are also contemplated, as are transdermal formulations.

Oral dosage forms. Contemplated for use herein are oral solid dosage forms, which are described generally in Chapter 89 of Remington's Pharmaceutical Sciences (1990), 18th Ed., Mack Publishing Co. Easton PA 18042, which is herein incorporated by reference in its entirety. Solid dosage forms include tablets, capsules, pills, troches or lozenges, cachets
or pellets. Also, liposomal or proteinoid encapsulation may be used to formulate the present compositions (as, for example, proteinoid microspheres reported in U.S. Patent No. 4,925,673). Liposomal encapsulation may be used and the liposomes may be derivatized with various polymers (e.g., U.S. Patent No. 5,013,556). A description of possible solid dosage forms for the therapeutic is given in Chapter 10 of Marshall, K., Modern Pharmaceutics (1979), edited by G. S. Banker and C. T. Rhodes, herein incorporated by reference in its entirety. In general, the formulation will include the inventive compound, and inert ingredients which allow for protection against the stomach environment, and release of the biologically active material in the intestine.

Also specifically contemplated are oral dosage forms of the above inventive compounds. If necessary, the compounds may be chemically modified so that oral delivery is efficacious. Generally, the chemical modification contemplated is the attachment of at least one moiety to the compound molecule itself, where said moiety permits (a) inhibition of proteolysis; and (b) uptake into the blood stream from the stomach or intestine. Also desired is the increase in overall stability of the compound and increase in circulation time in the body. Moieties useful as covalently attached vehicles in this invention may also be used for this purpose. Examples of such moieties include: PEG, copolymers of ethylene glycol and propylene glycol, carboxymethyl cellulose, dextran, polyvinyl alcohol, polyvinyl pyrrolidone and polyproline. See, for example, Abuchowski and Davis, Soluble Polymer-Enzyme Adducts, Enzymes as Drugs (1981), Hocenberg and Roberts, eds., Wiley-Interscience, New York, NY, , pp. 36783; Newmark, et al. (1982), I. Appl. Biochem. 4:185-9. Other polymers that could be used are poly-1,3-dioxolane and poly-1,3,6-tioxocane. Preferred for pharmaceutical usage, as indicated above, are PEG moieties.

For oral delivery dosage forms, it is also possible to use a salt of a modified aliphatic amino acid, such as sodium N-(8-[2-hydroxybenzoyl] amino) caprylate (SNAC), as a carrier to enhance absorption of the therapeutic compounds of this invention. The clinical efficacy of a heparin formulation using SNAC has been demonstrated in a Phase II trial conducted by Emisphere Technologies. See US Patent No. 5,792,451, "Oral drug delivery composition and methods".

The compounds of this invention can be included in the formulation as fine multiparticulates in the form of granules or pellets of particle size about 1 mm . The formulation of the material for capsule administration could also be as a powder, lightly compressed plugs or even as tablets. The therapeutic could be prepared by compression.

Colorants and flavoring agents may all be included. For example, the protein (or derivative) may be formulated (such as by liposome or microsphere encapsulation) and then further contained within an edible product, such as a refrigerated beverage containing colorants and flavoring agents.

One may dilute or increase the volume of the compound of the invention with an inert material. These diluents could include carbohydrates, especially mannitol, α-lactose, anhydrous lactose, cellulose, sucrose, modified dextrans and starch. Certain inorganic salts may also be used as fillers including calcium triphosphate, magnesium carbonate and sodium chloride. Some commercially available diluents are Fast-Flo, Emdex, STA-Rx 1500, Emcompress and Avicell.

Disintegrants may be included in the formulation of the therapeutic into a solid dosage form. Materials used as disintegrants include but are not limited to starch including the commercial disintegrant based on starch, Explotab. Sodium starch glycolate, Amberlite, sodium carboxymethylcellulose, ultramylopectin, sodium alginate, gelatin, orange
peel, acid carboxymethyl cellulose, natural sponge and bentonite may all be used. Another form of the disintegrants are the insoluble cationic exchange resins. Powdered gums may be used as disintegrants and as binders and these can include powdered gums such as agar, Karaya or tragacanth. Alginic acid and its sodium salt are also useful as disintegrants.

Binders may be used to hold the therapeutic agent together to form a hard tablet and include materials from natural products such as acacia, tragacanth, starch and gelatin. Others include methyl cellulose (MC), ethyl cellulose (EC) and carboxymethyl cellulose (CMC). Polyvinyl pyrrolidone (PVP) and hydroxypropylmethyl cellulose (HPMC) could both be used in alcoholic solutions to granulate the therapeutic.

An antifrictional agent may be included in the formulation of the therapeutic to prevent sticking during the formulation process. Lubricants may be used as a layer between the therapeutic and the die wall, and these can include but are not limited to; stearic acid including its magnesium and calcium salts, polytetrafluoroethylene (PTFE), liquid paraffin, vegetable oils and waxes. Soluble lubricants may also be used such as sodium lauryl sulfate, magnesium lauryl sulfate, polyethylene glycol of various molecular weights, Carbowax 4000 and 6000 .

Glidants that might improve the flow properties of the drug during formulation and to aid rearrangement during compression might be added. The glidants may include starch, talc, pyrogenic silica and hydrated silicoaluminate.

To aid dissolution of the compound of this invention into the aqueous environment a surfactant might be added as a wetting agent. Surfactants may include anionic detergents such as sodium lauryl sulfate, dioctyl sodium sulfosuccinate and dioctyl sodium sulfonate. Cationic detergents might be used and could include benzalkonium chloride or
benzethonium chloride. The list of potential nonionic detergents that could be included in the formulation as surfactants are lauromacrogol 400, polyoxyl 40 stearate, polyoxyethylene hydrogenated castor oil 10, 50 and 60 , glycerol monostearate, polysorbate $40,60,65$ and 80 , sucrose fatty acid ester, methyl cellulose and carboxymethyl cellulose. These surfactants could be present in the formulation of the protein or derivative either alone or as a mixture in different ratios.

Additives may also be included in the formulation to enhance uptake of the compound. Additives potentially having this property are for instance the fatty acids oleic acid, linoleic acid and linolenic acid.

Controlled release formulation may be desirable. The compound of this invention could be incorporated into an inert matrix which permits release by either diffusion or leaching mechanisms; e.g., gums. Slowly degenerating matrices may also be incorporated into the formulation, e.g., alginates, polysaccharides. Another form of a controlled release of the compounds of this invention is by a method based on the Oros therapeutic system (Alza Corp.), i.e., the drug is enclosed in a semipermeable membrane which allows water to enter and push drug out through a single small opening due to osmotic effects. Some enteric coatings also have a delayed release effect.

Other coatings may be used for the formulation. These include a variety of sugars which could be applied in a coating pan. The therapeutic agent could also be given in a film coated tablet and the materials used in this instance are divided into 2 groups. The first are the nonenteric materials and include methyl cellulose, ethyl cellulose, hydroxyethyl cellulose, methylhydroxy-ethyl cellulose, hydroxypropyl cellulose, hydroxypropyl-methyl cellulose, sodium carboxy-methyl cellulose, providone and the polyethylene glycols. The second group consists of the enteric materials that are commonly esters of phthalic acid.

A mix of materials might be used to provide the optimum film coating. Film coating may be carried out in a pan coater or in a fluidized bed or by compression coating.

Pulmonary delivery forms. Also contemplated herein is pulmonary delivery of the present protein (or derivatives thereof). The protein (or derivative) is delivered to the lungs of a mammal while inhaling and traverses across the lung epithelial lining to the blood stream. (Other reports of this include Adjei et al., Pharma. Res. (1990) 7: 565-9; Adjei et al. (1990), Internatl. I. Pharmaceutics 63: 135-44 (leuprolide acetate); Braquet et al. (1989), I. Cardiovasc. Pharmacol. 13 (supp1.5): s.143-146 (endothelin1); Hubbard et al. (1989), Annals Int. Med. 3: 206-12 ($\alpha 1$-antitrypsin); Smith et al. (1989), I. Clin. Invest. 84: 1145-6 ($\alpha 1$-proteinase); Oswein et al. (March 1990), "Aerosolization of Proteins", Proc. Symp. Resp. Drug Delivery II, Keystone, Colorado (recombinant human growth hormone); Debs et al. (1988), I. Immunol. 140: 3482-8 (interferon- γ and tumor necrosis factor α) and Platz et al., U.S. Patent No. 5,284,656 (granulocyte colony stimulating factor).

Contemplated for use in the practice of this invention are a wide range of mechanical devices designed for pulmonary delivery of therapeutic products, including but not limited to nebulizers, metered dose inhalers, and powder inhalers, all of which are familiar to those skilled in the art. Some specific examples of commercially available devices suitable for the practice of this invention are the Ultravent nebulizer, manufactured by Mallinckrodt, Inc., St. Louis, Missouri; the Acorn II nebulizer, manufactured by Marquest Medical Products, Englewood, Colorado; the Ventolin metered dose inhaler, manufactured by Glaxo Inc., Research Triangle Park, North Carolina; and the Spinhaler powder inhaler, manufactured by Fisons Corp., Bedford, Massachusetts.

All such devices require the use of formulations suitable for the dispensing of the inventive compound. Typically, each formulation is specific to the type of device employed and may involve the use of an appropriate propellant material, in addition to diluents, adjuvants and/or carriers useful in therapy.

The inventive compound should most advantageously be prepared in particulate form with an average particle size of less than 10 $\mu \mathrm{m}$ (or microns), most preferably 0.5 to $5 \mu \mathrm{~m}$, for most effective delivery to the distal lung.

Pharmaceutically acceptable carriers include carbohydrates such as trehalose, mannitol, xylitol, sucrose, lactose, and sorbitol. Other ingredients for use in formulations may include DPPC, DOPE, DSPC and DOPC. Natural or synthetic surfactants may be used. PEG may be used (even apart from its use in derivatizing the protein or analog). Dextrans, such as cyclodextran, may be used. Bile salts and other related enhancers may be used. Cellulose and cellulose derivatives may be used. Amino acids may be used, such as use in a buffer formulation.

Also, the use of liposomes, microcapsules or microspheres, inclusion complexes, or other types of carriers is contemplated.

Formulations suitable for use with a nebulizer, either jet or ultrasonic, will typically comprise the inventive compound dissolved in water at a concentration of about 0.1 to 25 mg of biologically active protein per mL of solution. The formulation may also include a buffer and a simple sugar (e.g., for protein stabilization and regulation of osmotic pressure). The nebulizer formulation may also contain a surfactant, to reduce or prevent surface induced aggregation of the protein caused by atomization of the solution in forming the aerosol.

Formulations for use with a metered-dose inhaler device will generally comprise a finely divided powder containing the inventive
compound suspended in a propellant with the aid of a surfactant. The propellant may be any conventional material employed for this purpose, such as a chlorofluorocarbon, a hydrochlorofluorocarbon, a hydrofluorocarbon, or a hydrocarbon, including trichlorofluoromethane, dichlorodifluoromethane, dichlorotetrafluoroethanol, and 1,1,1,2tetrafluoroethane, or combinations thereof. Suitable surfactants include sorbitan trioleate and soya lecithin. Oleic acid may also be useful as a surfactant.

Formulations for dispensing from a powder inhaler device will comprise a finely divided dry powder containing the inventive compound and may also include a bulking agent, such as lactose, sorbitol, sucrose, mannitol, trehalose, or xylitol in amounts which facilitate dispersal of the powder from the device, e.g., 50 to 90% by weight of the formulation.

Nasal delivery forms. Nasal delivery of the inventive compound is also contemplated. Nasal delivery allows the passage of the protein to the blood stream directly after administering the therapeutic product to the nose, without the necessity for deposition of the product in the lung. Formulations for nasal delivery include those with dextran or cyclodextran. Delivery via transport across other mucous membranes is also contemplated.

Dosages. The dosage regimen involved in a method for treating the above-described conditions will be determined by the attending physician, considering various factors which modify the action of drugs, e.g. the age, condition, body weight, sex and diet of the patient, the severity of any infection, time of administration and other clinical factors. Generally, the daily regimen should be in the range of 0.1-1000 micrograms of the inventive compound per kilogram of body weight, preferably 0.1-150 micrograms per kilogram.

Specific preferred embodiments

The inventors have determined preferred structures for the preferred peptides listed in Table 4 below. The symbol " Λ " may be any of the linkers described herein or may simply represent a normal peptide bond (i.e., so that no linker is present). Tandem repeats and linkers are shown separated by dashes for clarity.

Table 4-Preferred embodiments

Sequence/structure	$\begin{aligned} & \hline \text { SEQ ID } \\ & \text { NO: } \end{aligned}$
LPGCKWDLLIKQWVCDPL- - - ${ }^{1}$	44
$\mathrm{V}^{\dagger}-\Lambda$-LPGCKWDLLIKQWVCDPL	45
LPGCKWDLLIKQWVCDPL-ALPGCKWDLLIKQWVCDPL $-\Lambda-V^{1}$	46
V^{\top} - Λ-LPGCKWDLLIKQWVCDPL- $-\Lambda^{-}$ LPGCKWDLLIKQWVCDPL	47
SADCYFDILTKSDVCTSS- Λ - ${ }^{1}$	48
$\mathrm{V}^{1}-\Lambda$-SADCYFDILTKSDVCTSS	49
SADCYFDILTKSDVTSS- Λ - SADCYFDILTKSDVTSS $-\Lambda-V^{1}$	50
V^{1} - Λ - SADCYFDILTKSDVTSS $-\Lambda^{-}$ SADCYFDILTKSDVTSS	51
FHDCKWDLLTKQWVCHGL- Λ - ${ }^{1}$	52
$\mathrm{V}^{1}-\Lambda$ - FHDCKWDLLTKQWVCHGL	53
FHDCKWDLLTKQWVCHGL - Λ FHDCKWDLLTKQWVCHGL $-\Lambda-V^{1}$	54
$\mathrm{V}^{1}-\Lambda$ - FHDCKWDLLTKQWVCHGL $-\Lambda$ FHDCKWDLLTKQWVCHGL	55

" $\mathrm{V}^{1 "}$ is an Fc domain as defined previously herein. In addition to those listed in Table 4, the inventors further contemplate heterodimers in which each strand of an Fc dimer is linked to a different peptide sequence; for example, wherein each Fc is linked to a different sequence selected from Table 2.

All of the compounds of this invention can be prepared by methods described in PCT appl. no. WO 99/25044.

The invention will now be further described by the following working examples, which are illustrative rather than limiting.

EXAMPLE 1

Peptides

Peptide Phage Display

1. Magnetic bead preparation
A. Fc-TALL-1 immobilization on magnetic beads

The recombinant Fc-TALL-1 protein was immobilized on the Protein A Dynabeads (Dynal) at a concentration of $8 \mu \mathrm{~g}$ of Fc-TALL-1 per $100 \mu \mathrm{l}$ of the bead stock from the manufacturer. By drawing the beads to one side of a tube using a magnet and pipetting away the liquid, the beads were washed twice with the phosphate buffer saline (PBS) and resuspended in PBS. The Fc-TALL-1 protein was added to the washed beads at the above concentration and incubated with rotation for 1 hour at room temperature. The Fc -TALL- 1 coated beads were then blocked by adding bovine serum albumin (BSA) to 1% final concentration and incubating overnight at $4^{\circ} \mathrm{C}$ with rotation. The resulting Fc-TALL- 1 coated beads were then washed twice with PBST (PBS with 0.05% Tween-20) before being subjected to the selection procedures.

B. Negative selection bead preparation

Additional beads were also prepared for negative selections. For each panning condition, $250 \mu \mathrm{l}$ of the bead stock from the manufacturer was subjected to the above procedure (section 1A) except that the incubation step with Fc -TALL-1 was omitted. In the last washing step, the beads were divided into five $50 \mu \mathrm{l}$ aliquots.
2. Selection of TALL-1 binding phage
A. Overall strategy

Two filamentous phage libraries, TN8-IX (5×10^{9} independent transformants) and TN12-I (1.4X10 ${ }^{9}$ independent transformants) (Dyax Corp.), were used to select for TALL-1 binding phage. Each library was subjected to either pH 2 elution or 'bead elution' (section 2E). Therefore, four different panning conditions were carried out for the TALL-1 project (TN8-IX using the
pH 2 elution method, TN8-IX using the bead elution method, TN12-I the using pH 2 elution method, and TN12-I using the bead elution method). Three rounds of selection were performed for each condition.
B. Negative selection

For each panning condition, about 100 random library equivalent (5X10 ${ }^{11}$ pfu for TN8-IX and 1.4×10^{11} pfu for TN12-I) was aliquoted from the library stock and diluted to $300 \mu \mathrm{l}$ with PBST. After the last washing liquid was drawn out from the first $50 \mu \mathrm{l}$ aliquot of the beads prepared for negative selections (section 1B), the 300μ l diluted library stock was added to the beads. The resulting mixture was incubated for 10 minutes at room temperature with rotation. The phage supernatant was drawn out using the magnet and added to the second $50 \mu \mathrm{l}$ aliquot for another negative selection step. In this way, five negative selection steps were performed.
C. Selection using the Fc-TALL-1 protein coated beads

The phage supernatant after the last negative selection step (section 1B) was added to the Fc-TALL-1 coated beads after the last washing step (section 1A). This mixture was incubated with rotation for two hours at room temperature, allowing specific phage to bind to the target protein. After the supernatant is discarded, the beads were washed seven times with PBST.
D. pH 2 elution of bound phage

After the last washing step (section 2C), the bound phages were eluted from the magnetic beads by adding $200 \mu \mathrm{l}$ of CBST (50 mM sodium citrate, 150 mM sodium chloride, 0.05% Tween $-20, \mathrm{pH} 2$). After 5 minute incubation at room temperature, the liquid containing the eluted phage were drawn out and transferred to another tube. The elution step was repeated again by adding $200 \mu 1$ of CBST and incubating for 5 minutes. The liquids from two elution steps were added together, and $100 \mu \mathrm{l}$ of 2 M Tris solution (pH 8) was added to neutralize the pH . $500 \mu \mathrm{l}$ of Min A Salts solution $\left(60 \mathrm{mM} \mathrm{K}_{2} \mathrm{HPO}_{4}, 33 \mathrm{mM} \mathrm{KH}_{2} \mathrm{PO}_{4}, 7.6 \mathrm{mM}\right.$ $\left(\mathrm{NH}_{4}\right) \mathrm{SO}_{4}$, and 1.7 mM sodium citrate) was added to make the final volume to 1 ml .
E. 'bead elution'

After the final washing liquid was drawn out (section 2C), 1 ml of $\operatorname{Min} \mathrm{A}$ salts solution was added to the beads. This bead mixture was added directly to a concentrated bacteria sample for infection (section 3A and 3B).
3. Amplification
A. Preparation of plating cells

Fresh E. Coli. (XL-1 Blue MRF') culture was grown to $\mathrm{OD}_{600}=0.5$ in LB media containing $12.5 \mu \mathrm{~g} / \mathrm{ml}$ tetracycline. For each panning condition, 20 ml of this culture was chilled on ice and centrifuged. The bacteria pellet was resuspended in 1 ml of the Min A Salts solution.
B. Transduction

Each mixture from different elution methods (section 2D and 2E) was added to a concentrated bacteria sample (section 3A) and incubated at $37^{\circ} \mathrm{C}$ for 15 minutes. 2 ml of NZCYM media (2XNZCYM, $50 \mu \mathrm{~g} / \mathrm{ml}$ ampicillin) was added to each mixture and incubated at room temperature for 15 minutes. The resulting 4 ml solution was plated on a large NZCYM agar plate containing 50 $\mu \mathrm{g} / \mathrm{ml}$ ampicillin and incubated overnight at $37^{\circ} \mathrm{C}$.
C. Phage Harvesting

Each of the bacteria/phage mixture that was grown overnight on a large NZCYM agar plate (section 3B) was scraped off in 35 ml of LB media, and the agar plate was further rinsed with additional 35 ml of LB media. The resulting bacteria/phage mixture in LB media was centrifuged to pellet the bacteria away. 50 ml the of the phage supernatant was transferred to a fresh tube, and 12.5 ml of PEG solution (20\% PEG8000, 3.5M ammonium acetate) was added and incubated on ice for 2 hours to precipitate phages. Precipitated phages were centrifuged down and resuspended in 6 ml of the phage resuspension buffer (250 mM NaCl , 100 mM Tris $\mathrm{pH} 8,1 \mathrm{mM}$ EDTA). This phage solution was further purified by centrifuging away the remaining bacteria and precipitating the phage for the second time by adding 1.5 ml of the PEG solution. After a centrifugation step, the phage pellet was resuspended in $400 \mu 1$ of PBS. This solution was subjected to a final centrifugation to rid of remaining bacteria debris. The resulting phage
preparation was titered by a standard plaque formation assay (Molecular Cloning, Maniatis et al $3^{\text {rd }}$ Edition).
4. Two more rounds of selection and amplification.

In the second round, the amplified phage ($10^{10} \mathrm{pfu}$) from the first round (section 3C) was used as the input phage to perform the selection and amplification steps (sections 2 and 3). The amplified phage ($10^{10} \mathrm{pfu}$) from the $2^{\text {nd }}$ round in turn was used as the input phage to perform $3^{\text {rd }}$ round of selection and amplification (sections 2 and 3). After the elution steps (sections 2D and 2E) of the $3^{\text {rd }}$ round, a small fraction of the eluted phage was plated out as in the plaque formation assay (section 3C). Individual plaques were picked and placed into 96 well microtiter plates containing $100 \mu \mathrm{l}$ of TE buffer in each well. These master plates were incubated in a $37^{\circ} \mathrm{C}$ incubator for 1 hour to allow phages to elute into the TE buffer.

5. Clonal analysis (Phage ELISA and sequencing)

The phage clones were analyzed by phage ELISA and sequencing methods. The sequences were ranked based on the combined results from these two assays.

A. Phage ELISA

An XL-1 Blue MRF' culture was grown until OD_{600} reaches 0.5 . $30 \mu \mathrm{l}$ of this culture was aliquoted into each well of a 96 well microtiter plate. $10 \mu \mathrm{l}$ of eluted phage (section 4) was added to each well and allowed to infect bacteria for 15 min at room temperature. $130 \mu \mathrm{l}$ of LB media containing $12.5 \mu \mathrm{~g} / \mathrm{ml}$ of tetracycline and $50 \mu \mathrm{~g} / \mathrm{ml}$ of ampicillin was added to each well. The microtiter plate was then incubated overnight at $37^{\circ} \mathrm{C}$. The recombinant TALL-1 protein (1 $\mu \mathrm{g} / \mathrm{ml}$ in PBS) was allowed to coat onto the 96 -well Maxisorp plates (NUNC) overnight and $4^{\circ} \mathrm{C}$. As a control, the recombinant Fc -Trail protein was coated onto a separate Maxisorp plate at the same molar concentration as the TALL-1 protein.

On the following day, liquids in the protein coated Maxisorp plates were discarded, and each well was blocked with $300 \mu \mathrm{l}$ of 2% BSA solution at $37^{\circ} \mathrm{C}$
for one hour. The BSA solution was discarded, and the wells were washed three times with the PBST solution. After the last washing step, $50 \mu \mathrm{l}$ of PBST was added to each well of the protein coated Maxisorp plates. Each of the $50 \mu \mathrm{l}$ overnight cultures in the 96 well microtiter plate was transferred to the corresponding wells of the TALL-1 coated plates as well as the control Fc-Trail coated plates. The $100 \mu \mathrm{l}$ mixtures in the two kinds of plates were incubated for 1 hour at room temperature. The liquid was discarded from the Maxisorp plates, and the wells were washed five times with PBST. The HRP-conjugated anti-M13 antibody (Pharmacia) was diluted to $1: 7,500$, and $100 \mu \mathrm{l}$ of the diluted solution was added to each well of the Maxisorp plates for 1 hour incubation at room temperature. The liquid was again discarded and the wells were washed seven times with PBST. $100 \mu \mathrm{l}$ of tetramethylbenzidine (TMB) substrate (Sigma) was added to each well for the color reaction to develop, and the reaction was stopped with $50 \mu \mathrm{l}$ of the $5 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution. The OD_{450} was read on a plate reader (Molecular Devices).
B. Sequencing of the phage clones.

For each phage clone, the sequencing template was prepared by a PCR method. The following oligonucleotide pair was used to amplify about 500 nucleotide fragment:
primer \#1 (5'-CGGCGCAACTATCGGTATCAAGCTG-3') (SEQ ID NO: 56) and primer \#2 (5'-CATGTACCGTAACACTGAGTTTCGTC-3'). (SEQ ID NO: 57) The following mixture was prepared for each clone.

Reagents	volume $(\mu \mathrm{L}) /$ tube
$\mathrm{dH}_{2} \mathrm{O}$	26.25
50% glycerol	10
$\left.10 \mathrm{~B} \mathrm{PCR} \mathrm{Buffer} \mathrm{(w/o} \mathrm{MgCl}_{2}\right)$	5
$25 \mathrm{mM} \mathrm{MgCl}_{2}$	4
10 mM MNTP mix	1
$100 \mu \underline{\mathrm{M}}$ primer 1	0.25
$100 \mu \mathrm{M}$ primer 2	0.25
Taq polymerase	0.25
Phage in TE (section 4)	3
Final reaction volume	$\mathbf{5 0}$

The thermocycler (GeneAmp PCR System 9700, Applied Biosystems) was used to run the following program: $94^{\circ} \mathrm{C}$ for $5 \mathrm{~min} ;\left[94^{\circ} \mathrm{C}\right.$ for $30 \mathrm{sec}, 55^{\circ} \mathrm{C}$ for 30 sec, $72^{\circ} \mathrm{C}$ for 45 sec.$\left.\right] \times 30$ cycles; $72^{\circ} \mathrm{C}$ for 7 min ; cool to $4^{\circ} \mathrm{C}$. The PCR product was checked by running $5 \mu \mathrm{l}$ of each PCR reaction on a 1% agarose gel. The PCR product in the remaining $45 \mu \mathrm{l}$ from each reaction was cleaned up using the QIAquick Multiwell PCR Purification kit (Qiagen), following the manufacturer's protocol. The resulting product was then sequenced using the ABI 377 Sequencer (Perkin-Elmer) following the manufacturer recommended protocol.
6. Sequence ranking and consensus sequence determination
A. Sequence ranking

The peptide sequences that were translated from variable nucleotide sequences (section 5B) were correlated to ELISA data. The clones that showed high OD_{450} in the TALL-1 coated wells and low OD_{450} in the Fc-Trail coated wells were considered more important. The sequences that occur multiple times were also considered important. Candidate sequences were chosen based on these criteria for further analysis as peptides or peptibodies. Five and nine candidate peptide sequences were selected from the TN8-IX and TN12-I libraries, respectively.
B. Consensus sequence determination

The majority of sequences selected from the TN12-I library contained a very conserved DBL motif. This motif was also observed in sequences selected from the TN8-IB library as well. Another motif, PFPWE (SEQ ID NO: 110) was also observed in sequences obtained from the TN8-IB library.

A consensus peptide, FHDCKWDLLTKQWVCHGL (SEQ ID NO: 58), was designed based on the DBL motif. Since peptides derived from the TN12-I library were the most active ones, the top 26 peptide sequences based on the above ranking criteria (section 5A) were aligned by the DBL motif. The underlined "core amino acid sequence" was obtained by determining the amino acid that occur the most in each position. The two cysteines adjacent to the core
sequences were fixed amino acids in the TN12-I library. The rest of the amino acid sequence in the consensus peptide is taken from one of the candidate peptides, TALL-1-12-10 (Table 2, SEQ D NO: 37). The peptide and peptibody that was derived from this consensus sequence were most active in the B cell proliferation assay.

EXAMPLE 2

Peptibodies

A set of 12 TALL-1 inhibitory peptibodies (Table 5) was constructed in which a monomer of each peptide was fused in-frame to the Fc region of human IgG1. Each TALL-1 inhibitory peptibody was constructed by annealing the pairs of oligonucleotides shown in Table 6 to generate a duplex encoding the peptide and a linker comprised of 5 glycine residues and one valine residue as an NdeI to Sall fragment. These duplex molecules were ligated into a vector (pAMG21-RANK- Fc , described herein) containing the human Fc gene, also digested with NdeI and SalI. The resulting ligation mixtures were transformed by electroporation into E. coli strain 2596 cells (GM221, described herein). Clones were screened for the ability to produce the recombinant protein product and to possess the gene fusion having the correct nucleotide sequence. A single such clone was selected for each of the peptibodies. The nucleotide and amino acid sequences of the fusion proteins are shown in Figure 4A through 4F.

Table 5. Peptide sequences and oligonucleotides used to generate
TALL-1 inhibitory peptibodies.

Peptibody	Peptibody SEQ ID NO	Peptide Sequence	Sense oligo- nucleotide	Antisense oligo- nucleotide
TALL-1-8-1-a	29	PGTCFPFPWECTHA	$2517-24$	$2517-25$
TALL-1-8-2-a	30	WGACWPFPWECFKE	$2517-26$	$2517-27$
TALL-1-8-4-a	31	VPFCDLLTKHCFEA	$2517-28$	$2517-29$
TALL-1-12-4-a	32	GSRCKYKWDVLTKQCFHH	$2517-30$	$2517-31$
TALL-1-12-3-a	33	LPGCKWDLLIKQWVCDPL	$2517-32$	$2517-33$
TALL-1-12-5-a	34	SADCYFDILTKSDVCTSS	$2517-34$	$2517-35$
TALL-1-12-8-a	35	SDDCMYDQLTRMFICSNL	$2517-36$	$2517-37$
TALL-1-12-9-a	36	DLNCKYDELTYKEWCQFN	$2521-92$	$2521-93$

TALL-1-12-10-a	37	FHDCKYDLLTRQMVCHGL	$2521-94$	$2521-95$
TALL-1-12-11-a	38	RNHCFWDHLLKQDICPSP	$2521-96$	$2521-97$
TALL-1-12-14-a	39	ANQCWWDSLTKKNVCEFF	$2521-98$	$2521-99$
TALL-1- Consensus	58	FHDCKWDLLTKQWVCHGL	$2551-48$	$2551-49$

Table 5B TALL-1 inhibitory peptibodies.

Peptibody	Peptibody SEQ ID NO	Peptide Sequence
$\begin{aligned} & \text { TALL-1-8- } \\ & 1-\mathrm{a} \end{aligned}$	111	MPGTCFPFPW ECTHAGGGGG VDKTHTCPPC PAPELLGGPS VFLFPPRKPD TLMISRTPEV TCVVVDVSHE DPEVKFNWYV DGVEVHNAKT KPREEQYNST YRVVSVLTVL HQDWLNGKEY KCKVSNKALP APIEKTISKA KGQPREPQVY TLPPSRDELT KNQVSLTCLV KGFYPSDIAV EWESNGQPEN NYKTTPPVLD SDGSFFLYSK LTVDKSRWQQ GNVFSCSVMF EALHNHYTQK SLSLSPGK
$\begin{aligned} & \text { TALL-1-8- } \\ & 2-\mathrm{a} \end{aligned}$	112	MWGACWPFPW ECFKEGGGGG VDKTHTCPPC PAPELLLGGPS VFLFPPKPKD TLMISRTPEV TCVVVDVSHE DPEVKFNWYV DGVEVHNAKT KPREEQYNST YRVVSVLTVL HQDWLNGKEY KCKVSNKALP APIEKTISKA KGQPREPQVY TLPPSRDELT KNQVSLTCLV KGFYPSDIAV EWESNGQPEN NYKTTPPVLD SDGSFFLYSK LTVDKSRWQQ GNVFSCSVMH EALHNHYTQK SLSLSPGK
$\begin{aligned} & \text { TALL-1-8- } \\ & \text { 4-a } \end{aligned}$	113	MVPFCDLLTK HCFEAGGGGG VDKTHTCPPC PAPELLGGPS VFLFPPKPKD TLMISRTPEV TCVVVDVSHE DPEVKFNWYV DGVEVHNAKT KPREEQYNST YRVVSVLTVL HQDWLNGKEY KCKVSNKALP APIEKTISKA KGQPREPQVY TLPPSRDELT KNQVSLTCLV KGFYPSDIAV EWESNGQPEN NYKTTPPVLD SDGSFFLYSK LTVDKSRWQQ GNVFSCSVMH EALHNHYTQK SLSLSPGK
$\begin{aligned} & \text { TALL-1-12- } \\ & 4-\mathrm{a} \end{aligned}$	114	MGSRCKYKWD VLTKQCFHHG GGGGVDKTHT CPPCPAPELL GGPSVFLFPP KPKDTLMISR TPEVTCVVVD VSHEDPEVKF NWYVDGVEVH NAKTKPREEQ YNSTYRVVSV LTVLHQDWLN GKEYKCKVSN KALPAPIEKT ISKAKGQPRE PQVYTLPPSR DELTKNQVSL TCLVKGFYPS DIAVEWESNG QPENNYKTTP PVLDSDGSFF LYSKLTVDKS RWQQGNVFSC SVMHEALHNH YTQKSLSLSP GK
$\begin{aligned} & \text { TALL-1-12- } \\ & 3-\mathrm{a} \end{aligned}$	115	MLPGCKWDLL IKQWVCDPIG GGGGVDKTHT CPPCPAPELL GGPSVFLFPP KPKDTLMISR TPEVTCVVVD VSHEDPEVKF NWYVDGVEVH NAKTKPREEQ YNSTYRVVSV LTVLHQDWLN GKEYKCKVSN KALPAPIEKT ISKAKGQPRE PQVYTLPPSR DELTKNQVSL TCLVKGFYPS DIAVEWESNG QPENNYKTTP PVLDSDGSFF LYSKLTVDKS RWQQGNVFSC SVMHEALHNH YTQKSLSLSP GK
$\begin{aligned} & \text { TALL-1-12- } \\ & 5-\mathrm{a} \end{aligned}$	116	MSADCYFDIL TKSDVCTSSG GGGG VDKTHT CPPCPAPELL GGPSVFLFPP KPKDTLMISR TPEVTCVVVD VSHEDPEVKF NWYVDGVEVH NAKTKPREEQ YNSTYRVVSV LTVLHQDWLN GKEYKCKVSN KALPAPIEKT ISKAKGQPRE PQVYTLPPSR DELTKNQVSL TCLVKGFYPS DIAVEWESNG QPENNYKTTP PVLDSDGSFF LYSKLTVDKS RWQQGNVFSC SVMHEALHNH YTQKSLSLSP GK
$\begin{aligned} & \text { TALL-1-12- } \\ & 8-\mathrm{a} \end{aligned}$	117	MSDDCMYDQL TRMFICSNLG GGGGVDKTHT CPPCPAPELL GGPSVFLFPP KPKDTLMISR TPEVTCVVVD VSHEDPEVKF NWYVDGVEVH NAKTKPREEQ YNSTYRVVSV LTVLHQDWLN GKEYKCKVSN KALPAPIEKT ISKAKGQPRE PQVYTLPPPSR DELTKNQVSL TCLVKGFYPS DIAVEWESNG QPENNYKTTP

		PVLDSDGSFF LYSKLTVDKS RWQQGNVFSC SVMHEALHNH
$\begin{aligned} & \text { TALL-1-12- } \\ & 9-\mathrm{a} \end{aligned}$	118	MDLNCKYDEL TYKEWCQFNG GGGGVDKTHT CPPCPAPELIL GGPSVFLFPP KPKDTLMISR TPEVTCVVVD VSHEDPEVKF NWYVDGVEVH NAKTKPREEQ YNSTYRVVSV LTVLHQDWLN GKEYKCKVSN KALPAPIEKT ISKAKGQPRE PQVYTLPPSR DELTKNQVSL TCLVKGFYPS DIAVEWESNG QPENNYKTTP PVLDSDGSFF LYSKLTVDKS RWQQGNVFSC SVMHEALHNH YTQKSLSLSP GK
$\begin{aligned} & \text { TALL-1-12- } \\ & 10-a \end{aligned}$	119	MFHDCKYDLL TRQMVCHGLG GGGGVDKTHT CPPCPAPELL GGPSVFLFPP KPKDTLMISR TPEVTCVVVD VSHEDPEVKF NWYVDGVEVH NAKTKPREEQ YNSTYRVVSV LTVLHQDWLN GKEYKCKVSN KALPAPIEKT ISKAKGQPRE PQVYTLPPSR DELTKNOVSL TCLVKGFYPS DIAVENESNG OPENNYKTTP PVLDSDGSFF LYSKLTVDKS RWQQGNVFSC SVMHEALHNH YTQKSLSLSP GK
$\begin{aligned} & \text { TALL-1-12- } \\ & 11-\mathrm{a} \end{aligned}$	120	MRNHCFWDHL LKODICPSPG GGGGVDKTHT CPPCPAPELIL GGPSVFLFPP KPKDTLMISR TPEVTCVVVD VSHEDPEVKF NWYVDGVEVH NAKTKPREEQ YNSTYRVVSV LTVLHODWLN GKEYKCKVSN KALPAPIEKT ISKAKGQPRE PQVYTLPPSR DELTKNQVSL TCLVKGFYPS DIAVEWESNG QPENNYKTTP PVLDSDGSFF LYSKLTVDKS RWQQGNVFSC SVMHEALHNH YTOKSLSLSP GK
$\begin{aligned} & \text { TALL-1-12- } \\ & 14-a \end{aligned}$	121	MANQCWWDSL TKKNVCEFFG GGGGVDKTHT CPPCPAPELL GGPSVFLFPP KPKDTLMISR TPEVTCVVVD VSHEDPEVKF NWYVDGVEVH NAKTKPREEQ YNSTYRVVSV LTVLHQDWLN GKEYKCKVSN KALPAPIEKT ISKAKGQPRE PQVYTLPPSR DELTKNQVSL TCLVKGFYPS DIAVEWESNG QPENNYKTTP PVLDSDGSFF LYSKLTVDKS RWQQGNVFSC SVMHEALHNH YTQKSLSLSP GK
TALL-1consensus	122	MFHDCKWDLL TKQWVCHGLG GGGGVDKTHT CPPCPAPELL GGPSVFLFPP KPKDTLMISR TPEVTCVVVD VSHEDPEVKF NWYVDGVEVH NAKTKPREEQ YNSTYRVVSV LTVLHQDWLN GKEYKCKVSN KALPAPIEKT ISKAKGQPRE PQVYTLPPSR DELTKNQVSL TCLVKGFYPS DIAVEWESNG QPENNYKTTP PVLDSDGSFF LYSKLTVDKS RWQQGNVFSC SVMHEALHNH YTQKSLSLSP GK
TALL-1 123 tandem dimer	123	MLPGCKWDLL IKQWVCDPLG SGSATGGSGS TASSGSGSAT HMLPGCKWDL LIKQWVCDPL GGGGGVDKTH TCPPCPAPEL LGGPSVFIFP PKPKDTLMIS RTPEVTCVVV DVSHEDPEVK FNWYVDGVEV HNAKTKPREE QYNSTYRVVS VLTVLHQDWL NGKEYKCKVS NKALPAPIEK TISKAKGQPR EPQVYTLPPS RDELTKNQVS LTCLVKGFYP SDIAVEWESN GQPENNYKTT PPVLDSDGSF FLYSKLTVDK SRWQQGNVFS CSVMHEALHN HYTQKSLSLS PGK
TALL-1 consensus tandem dimer	124	MFHDCKWDLL TKQWVCHGLG SGSATGGSGS TASSGSGSAT HMFHDCKWDL LTKQWVCHGL GGGGGVDKTH TCPPCPAPEL LGGPSVFLFP PKPKDTLMIS RTPEVTCVVV DVSHEDPEVK FNWYVDGVEV HNAKTKPREE QYNSTYRVVS VLTVLHQDWL NGKEYKCKVS NKALPAPIEK TISKAKGQPR EPQVYTLPPS RDELTKNQVS LTCLVKGFYP SDIAVEWESN GQPENNYKTT PPVLDSDGSF FLYSKLTVDK SRWQQGNVFS CSVMHEALHN HYTQKSLSLS PGK

Table 6. Sequences of oligonucleotides used in peptibody construction.

Oligonucleotide ID number	$\begin{gathered} \text { SEQ } \\ \text { ID NO } \end{gathered}$	Sequence
2517-24	71	TAT GCC GGG TAC TTG TTT CCC GTT CCC GTG GGA ATG CAC TCA CGC TGG TGG AGG CGG TGG GG
2517-25	72	TCG ACC CCA CCG CCT CCT GGA GCG TGA GTG CAT TCC CAC GgG Aag CCG AAA CAA GTA CCC GGC A
2517-26	73	TAT GTG GGG TGC TTG TTG GCC GTT CCC GTG GGA ATG TTT CAA AGA AGG TGG AGG CGG TGG GG
2517-27	74	TCG ACC CCA CCG CCT CCA CCT TCT TTG AAA CAT TCC CACGGG AAC GGC CAA CAAGCA CCC CAC A
2517-28	75	TAT GGT TCC GTT CTG TGA CCT GCT GAC TAA ACA CTG TTTT CGA AGC tGg tGg AgG CGG tGg gG
2517-29	76	TCG ACC CCA CCG CCT CCA CCA GCT TCG AAA CAG TGT TTA GTC AGC AGG TCA CAGAAC GGA ACC A
2517-30	77	TAT GGG TTC TCG TTG TAA ATA CAA ATG GGA CGT TCT GAC taA ACA GTG tTT CCA CCA CGG tgg Agg CGg tgg gg
2517-31	78	TCG ACC CCA CCG CCT CCA CCG TGG TGG AAA CAC TGT TTPA GTC AGA ACG tCC CAT tTG TAT TTA CAA CGA GAA CCC A
2517-32	79	TAT GCT GCC GGG TTG TAA ATG GGA CCT GCT GAT CAA ACA GTG GGT TTG TGA CCC GCT GGG TGG AGG CGG TGG GG
2517-33	80	TCG ACC CCA CCG CCT CCA CCC AGC GGG TCA CAA ACC CAC tGT ttg atc agc agg tcc Cat tta can CCC GgC AgC a
2517-34	81	TAT GTC TGC TGA CTG THA CTT CGA CAT CCT GAC TAA ATC TGA CGT TTG tac tTC trC tgg tgg agg CGg tgg gg
2517-35	82	TCG ACC CCA CCG CCT CCA CCA GAA GAA GTA CAA ACG TCA GAT TTA GTC AGG ATG TCG AAG TAA CAG TCA GCA GAC A
2517-36	83	TAT GTC TGA CGA CTG TAT GTA CGA CCA GCT GAC TCG TAT GIT CAT CTG TTC TAA CCT GGG TGG AGG CGG TGG GG
2517-37	84	TCG ACC CCA CCG CCT CCA CCC AGG TTA GAA CAG ATG AAC ATA CGA GTC AGC TGG TCG TAC ATA CAG TCG TCA GAC A
2521-92	85	TAT GGA CCT GAA CTG TAA ATA CGA CGA ACT GAC TTA CAA AgA ATG GTg tca gut CAA CGg tgg agg cgg tgg gg
25221-93	86	TCG ACC CCA CCG CCT CCA CCG TTG AAC TGA CAC CAT TCT tTG taA gTC AgTtcg tcg tat tra cag ttc age tcc a
2521-94	87	tat git cca cga ctg tan ata cga cct gct gac tcg tca GAT GGT TTG TCA CGG TCT GGG TGG AGG CGG TGG GG
2521-95	88	TCG ACC CCA CCG CCT CCA CCC AGA CCG TGA CAA ACC ATC tGA CGA gTC AGC Agg tcg tat tta cag tcg tgg anc a
2521-96	89	

pAMG21-RANK-Fc vector
pAMG21. The expression plasmid pAMG21 (ATCC accession no. 98113) can be derived from the Amgen expression vector pCFM1656 (ATCC \#69576) which in turn be derived from the Amgen expression vector system described in US Patent No. 4,710,473. The pCFM1656 plasmid can be derived from the described pCFM836 plasmid (U.S. Patent No. $4,710,473$) by:

- destroying the two endogenous NdeI restriction sites by end filling with T4 polymerase enzyme followed by blunt end ligation;
- replacing the DNA sequence between the unique AatII and ClaI restriction sites containing the synthetic P_{L} promoter with a similar fragment obtained from pCFM636 (patent No. 4,710,473) containing the P_{L} promoter (see SEQ ID NO: 95 below); and
- substituting the small DNA sequence between the unique ClaI and KpnI restriction sites with the oligonucleotide having the sequence of SEQ ID NO: 96.

SEQ ID NO: 95:
AatII
5^{\prime} CTAATTCCGCTCTCACCTACCAAACAATGCCCCCCTGCAAAAAATAAATTCATAT-
3' TGCAGATTAAGGCGAGAGTGGATGGTTTGTTACGGGGGGACGTTTTTTATTTAAGTATA-
-AAAAAACATACAGATAACCATCTGCGGTGATAAATTATCTCTGGCGGTGTTGACATAAA--TTTTTTGTATGTCTATTGGTAGACGCCACTATTTAATAGAGACCGCCACAACTGTATTT-
-TACCACTGGCGGTGATACTGAGCACAT 3' -ATGGTGACCGCCACTATGACTCGTGTAGC 5' ClaI

SEQ ID NO: 96:
5' CGATTTGATTCTAGAAGGAGGAATAACATATGGTTAACGCGTTGGAATTCGGTAC 3'
3' TAAACTAAGATCTTCCTCCTTATTGTATACCAATTGCGCAACCTTAAGC 5, Clal $\quad \mathrm{KpnI}$

The expression plasmid pAMG21 can then be derived from pCFM1656 by making a series of site-directed base changes by PCR overlapping oligonucleotide mutagenesis and DNA sequence substitutions. Starting with the BgIII site (plasmid bp \#180) immediately 5'to the plasmid replication promoter $\mathrm{P}_{\text {copB }}$ and proceeding toward the plasmid replication genes, the base pair changes are as shown in Table 7 below.

Table 7-Base pair changes resulting in pAMG21
pAMG21 bp \# bp in pCFM1656 bp changed to in pAMG21

\# 204	T/A	C/G
\# 428	A/T	G/C
\# 509	G/C	A/T
\# 617	--	insert two G/C bp
\# 679	G/C	T/A
\# 980	T/A	C/G
\# 994	G/C	A/T
\# 1004	A/T	C/G
\# 1007	C/G	T/A
\# 1028	A/T	T/A
\# 1047	C/G	T/A
\# 1178	G/C	T/A
\# 1466	G/C	T/A
\# 2028	G/C	bp deletion
\# 2187	C/G	T/A
\# 2480	A/T	T/A
\# 2499-2502	AGTG	GTCA
	TCAC	CAGT
\# 2642	TCCGAGC	7 bp deletion
	AGGCTCG	
\# 3435	G/C	A/T
\# 3446	G/C	A/T
\# 3643	A/T	T/A

The DNA sequence between the unique AatII (position \#4364 in pCFM1656) and SacII (position \#4585 in pCFM1656) restriction sites is substituted with the DNA sequence below (SEQ ID NO: 97):-

[AatII sticky end]	$5^{\prime} \quad$ GCGTAACGTATGCATGGTCTCC-
(position $\# 4358$ in pAMG21)	3^{\prime} TGCACGCATTGCATACGTACCAGAGG-

-CCATGCGAGAGTAGGGAACTGCCAGGCATCAAATAAAACGAAAGGCTCAGTCGAAAGACT--GGTACGCTCTCATCCCTTGACGGTCCGTAGTTTATTTTGCTTTCCGAGTCAGCTTTCTGA-
-GGGCCTTTCGTTTTATCTGTTGTTTGTCGGTGAACGCTCTCCTGAGTAGGACAAATCCGC--CCCGGAAAGCAAAATAGACAACAAACAGCCACTTGCGAGAGGACTCATCCTGTTTAGGCG-
-CGGGAGCGGATTTGAACGTTGCGAAGCAACGGCCCGGAGGGTGGCGGGCAGGACGCCCGC--GCCCTCGCCTAAACTTGCAACGCTTCGTTGCCGGGCCTCCCACCGCCCGTCCTGCGGGCG-
-CATAAACTGCCAGGCATCAAATTAAGCAGAAGGCCATCCTGACGGATGGCCTTTTTGCGT--GTATTTGACGGTCCGTAGTTTAATTCGTCTTCCGGTAGGACTGCCTACCGGAAAAACGCA-

AatII
-TTCTACAAACTCTTTTGTTTATTTTTCTAAATACATTCAAATATGGACGTCGTACTTAAC--AAGATGTTTGAGAAAACAAATAAAAAGATTTATGTAAGTTTATACCTGCAGCATGAATTG-
-TTTTAAAGTATGGGCAATCAATTGCTCCTGTTAAAATTGCTTTAGAAATACTTTGGCAGC-- AAAATTTCATACCCGTTAGTTAACGAGGACAATTTTAACGAAATCTTTATGAAACCGTCG-
-GGTTTGTTGTATTGAGTTTCATTTGCGCATTGGTTAAATGGAAAGTGACCGTGCGCTTAC--ССАААСААСАТААСТСАAAGTAAACGCGTAACCAATTTACCTTTCACTGGCACGCGAATG-
-TACAGCCTAATATTTTTGAAATATCCCAAGAGCTTTTTCCTTCGCATGCCCACGCTAAAC--ATGTCGGATTATAAAAACTTTATAGGGTTCTCGAAAAAGGAAGCGTACGGGTGCGATTTG-
-ATTCTTTTTCTCTTTTGGTTAAATCGTTGTTTGATTTATTATTTGCTATATTTATTTTTC--TAAGAAAAAGAGAAACCAATTTAGCAACAAACTAAATAATAAACGATATAAATAAAAG-
-GATAATTATCAACTAGAGAAGGAACAATTAATGGTATGTTCATACACGCATGTAAAAATA--СТАTTAATAGTTGATCTCTTCCTTGTTAATTACCATACAAGTATGTGCGTACATTTTTAT-

- AACTATCTATATAGTTGTCTTTCTCTGAATGTGCAAAACTAAGCATTCCGAAGCCATTAT--TTGATAGATATATCAACAGAAAGAGACTTACACGTTTTGATTCGTAAGGCTTCGGTAATA-
-TAGCAGTATGAATAGGGAAACTAAACCCAGTGATAAGACCTGATGATTTCGCTTCTTTAA-- ATCGTCATACTTATCCCTTTGATTTGGGTCACTATTCTGGACTACTAAAGCGAAGAAATT--TTACATTTGGAGATTTTTTATTTACAGCATTGTTTTCAAATATATTCCAATTAATCGGTG--AATGTAAACCTCTAAAAAATAAATGTCGTAACAAAAGTTTATATAAGGTTAATTAGCCAC-
-AATGATTGGAGTTAGAATAATCTACTATAGGATCATATTTTATTAAATTAGCGTCATCAT---TTACTAACCTCAATCTTATTAGATGATATCCTAGTATAAAATAATTTAATCGCAGTAGTA-
- AATATTGCCTCCATTTTTTAGGGTAATTATCCAGAATTGAAATATCAGATTTAACCATAG--TTATAACGGAGGTAAAAAATCCCATTAATAGGTCTTAACTTTATAGTCTAAATTGGTATC-
- AATGAGGATAAATGATCGCGAGTAAATAATATTCACAATGTACCATTTTAGTCATATCAG--TTACTCCTATTTACTAGCGCTCATTTATTATAAGTGTTACATGGTAAAATCAGTATAGTC-
- ATAAGCATTGATTAATATCATTATTGCTTCTACAGGCTTTAATTTTATTAATTATTCTGT--TATTCGTAACTAATTATAGTAATAACGAAGATGTCCGAAATTAAAATAATTAATAAGACA-
-AAGTGTCGTCGGCATTTATGTCTTTCATACCCATCTCTTTATCCTTACCTATTGTTTGTC--TTCACAGCAGCCGTAAATACAGAAAGTATGGGTAGAGAAATAGGAATGGATAACAAACAG-
-GCAAGTTTTGCGTGTTATATATCATTAAAACGGTAATAGATTGACATTTGATTCTAATAA--CGTTCAAAACGCACAATATATAGTAATTTTGCCATTATCTAACTGTAAACTAAGATTATT-
-ATTGGATTTTTGTCACACTATTATATCGCTTGAAATACAATTGTTTAACATAAGTACCTG--TAACCTAAAAACAGTGTGATAATATAGCGAACTTTATGTTAACAAATTGTATTCATGGAC-

```
-TAGGATCGTACAGGTTTACGCAAGAAAATGGTTTGTTATAGTCGATTAATCGATTTGATT-
-ATCCTAGCATGTCCAAATGCGTTCTTTTACCAAACAATATCAGCTAATTAGCTAAACTAA-
-CTAGATTTGTTTTAACTAATTAAAGGAGGAATAACATATGGTTAACGCGTTGGAATTCGA-
-GATCTAAACAAAATTGATTAATTTCCTCCTTATTGTATACCAATTGCGCAACCTTAAGCT-
                                    SacII
-GCTCACTAGTGTCGACCTGCAGGGTACCATGGAAGCTTACTCGAGGATCCGCGGAAAGAA-
--CGAGTGATCACAGCTGGACGTCCCATGGTACCTTCGAATGAGCTCCTAGGCGCCTTTCTT-
-GAAGAAGAAGAAGAAAGCCCGAAAGGAAGCTGAGTTGGCTGCTGCCACCGCTGAGCAATA-
-СTTCTTCTTCTTCTTTCGGGCTTTCCTTCGACTCAACCGACGACGGTGGCGACTCGTTAT-
-ACTAGCATAACCCCTTGGGGCCTCTAAACGGGTCTTGAGGGGTTTTTTGCTGAAAGGAGG-
-TGATCGTATTGGGGAACCCCGGAGATTTGCCCAGAACTCCCCAAAAAACGACTTTCCTCC-
-AACCGCTCTTCACGCTCTTCACGC 3' [SacII sticky end]
-TTGGCGAGAAGTGCGAGAAGTG 5' (position #5904 in pAMG21)
```

During the ligation of the sticky ends of this substitution DNA sequence, the outside AatII and SacII sites are destroyed. There are unique AatII and SacII sites in the substituted DNA.

A gene encoding human RANK fused to the N-terminus of Fc was ligated into pAMG21 as an NdeI to BamHI fragment to generate Amgen Strain \#4125. This construct was modified to insert a valine codon at the junction of RANK and Fc. The adjacent valine and aspartate codons create a unique SalI site. This allows for the fusion of peptides at the N-terminus of Fc 3 between the unique $\underline{\text { NdeI }}$ and SalI sites. The RANK sequence is deleted upon insertion of a new NdeI-SalI fragment. The sequence of the vector is given in Figure 5A through 5M.

GM221 (Amgen \#2596). The Amgen host strain \#2596 is an E. coli K-12 strain derived from Amgen strain \#393, which is a derivative of E. coli W1485, obtained from the E. coli Genetic Stock Center, Yale University, New Haven, Connecticut (CGSC strain 6159). It has been modified to contain both the temperature sensitive lambda repressor cI857s7 in the early ebg region and the lacI ${ }^{\mathrm{Q}}$ repressor in the late ebg region (68 minutes). The presence of these two repressor genes allows the use of this host with a variety of expression systems, however both of these repressors are irrelevant to the expression from $\operatorname{lux} \mathrm{P}_{\mathrm{R}}$. The untransformed host has no antibiotic resistances.

The ribosome binding site of the cI857s7 gene has been modified to include an enhanced RBS. It has been inserted into the ebg operon between
nucleotide position 1170 and 1411 as numbered in Genbank accession number
M64441Gb_Ba with deletion of the intervening ebg sequence. The sequence of the insert is shown below with lower case letters representing the ebg sequences flanking the insert shown below (SEQ ID NO: 98):
ttattttcgtGCGGCCGCACCATTATCACCGCCAGAGGTAAACTAGTCAACACGCACGGTGTTAGATAT TTATCCCTTGCGGTGATAGATTGAGCACATCGATTTGATTCTAGAAGGAGGGATAATATATGAG CACAAAAAAGAAACCATTAACACAAGAGCAGCTTGAGGACGCACGTCGCCTTAAAGCAATTTA TGAAAAAAAGAAAAATGAACTTGGCTTATCCCAGGAATCTGTCGCAGACAAGATGGGGATGGG GCAGTCAGGCGTTGGTGCTTTATTTAATGGCATCAATGCATTAAATGCTTATAACGCCGCATTGC TTACAAAAATTCTCAAAGTTAGCGTTGAAGAATTTAGCCCTTCAATCGCCAGAGAATCTACGAG ATGTATGAAGCGGTTAGTATGCAGCCGTCACTTAGAAGTGAGTATGAGTACCCTGTTTTTTCTCA TGTTCAGGCAGGGATGTTCTCACCTAAGCTTAGAACCTTTACCAAAGGTGATGCGGAGAGATGG GTAAGCACAACCAAAAAAGCCAGTGATTCTGCATTCTGGCTTGAGGTTGAAGGTAATTCCATGA CCGCACCAACAGGCTCCAAGCCAAGCTTTCCTGACGGAATGTTAATTCTCGTTGACCCTGAGCA GGCTGTTGAGCCAGGTGATTTCTGCATAGCCAGACTTGGGGGTGATGAGTTTACCTTCAAGAAA CTGATCAGGGATAGCGGTCAGGTGTTTTTACAACCACTAAACCCACAGTACCCAATGATCCCAT GCAATGAGAGTTGTTCCGTTGTGGGGAAAGTTATCGCTAGTCAGTGGCCTGAAGAGACGTTTGG CTGATAGACTAGTGGATCCACTAGTgtttetgcce

The construct was delivered to the chromosome using a recombinant
phage called MMebg-cI857s7enhanced RBS \#4 into F'tet/393. After
recombination and resolution only the chromosomal insert described above remains in the cell. It was renamed F'tet/GM101. F'tet/GM101 was then modified by the delivery of a lacI ${ }^{\mathrm{Q}}$ construct into the ebg operon between nucleotide position 2493 and 2937 as numbered in the Genbank accession number M64441Gb_Ba with the deletion of the intervening ebg sequence. The sequence of the insert is shown below with the lower case letters representing the ebg sequences flanking the insert (SEQ D NO: 99) shown below:
ggcggaaccGACGTCCATCGAATGGTGCAAAACCTTTCGCGGTATGGCATGATAGCGCCCGGAAGA GAGTCAATTCAGGGTGGTGAATGTGAAACCAGTAACGTTATACGATGTCGCAGAGTATGCCGGT GTCTCTTATCAGACCGTTTCCCGCGTGGTGAACCAGGCCAGCCACGTTTCTGCGAAAACGCGGG AAAAAGTCGAAGCGGCGATGGCGGAGCTGAATTACATTCCCAACCGCGTGGCACAACAACTGG CGGGCAAACAGTCGCTCCTGATTGGCGTTGCCACCTCCAGTCTGGCCCTGCACGCGCCGTCGCA AATTGTCGCGGCGATTAAATCTCGCGCCGATCAACTGGGTGCCAGCGTGGTGGTGTCGATGGTA GAACGAAGCGGCGTCGAAGCCTGTAAAGCGGCGGTGCACAATCTTCTCGCGCAACGCGTCAGTG GGCTGATCATTAACTATCCGCTGGATGACCAGGATGCCATTGCTGTGGAAGCTGCCTGCACTAA TGTTCCGGCGTTATTTCTTGATGTCTCTGACCAGACACCCATCAACAGTATTATTTTCTCCCATGA AGACGGTACGCGACTGGGCGTGGAGCATCTGGTCGCATTGGGTCACCAGCAAATCGCGCTGTTA GCGGGCCCATTAAGTTCTGTCTCGGCGCGTCTGCGTCTGGCTGGCTGGCATAAATATCTCACTCG CAATCAAATTCAGCCGATAGCGGAACGGGAAGGCGACTGGAGTGCCATGTCCGGTTTTCAACAA ACCATGCAAATGCTGAATGAGGGCATCGTTCCCACTGCGATGCTGGTTGCCAACGATCAGATGG CGCTGGGCGCAATGCGCGCCATTACCGAGTCCGGGCTGCGCGTTGGTGCGGATATCTCGGTAGT gGGATACGACGATACCGAAGACAGCTCATGTTATATCCCGCCGTTAACCACCATCAAACAGGAT TTTCGCCTGCTGGGGCAAACCAGCGTGGACCGCTTGCTGCAACTCTCTCAGGGCCAGGCGGTGA

AGGGCAATCAGCTGTTGCCCGTCTCACTGGTGAAAAGAAAAACCACCCTGGCGCCCAATACGCA AACCGCCTCTCCCCGCGCGTTGGCCGATTCATTAATGCAGCTGGCACGACAGGTTTCCCGACTGG AAAGCGGACAGTAAGGTACCATAGGATCCaggcacagga

The construct was delivered to the chromosome using a recombinant phage called AGebg-LacIQ\#5 into F'tet/GM101. After recombination and resolution only the chromosomal insert described above remains in the cell. It was renamed F^{\prime} tet/GM221. The F'tet episome was cured from the strain using acridine orange at a concentration of $25 \mu \mathrm{~g} / \mathrm{ml}$ in LB. The cured strain was identified as tetracyline sensitive and was stored as GM221.

Expression in E. coli. Cultures of each of the pAMG21-Fc-fusion constructs in E. coli GM221 were grown at $37^{\circ} \mathrm{C}$ in Luria Broth medium. Induction of gene product expression from the luxPR promoter was achieved following the addition of the synthetic autoinducer N -(3-oxohexanoyl)-DLhomoserine lactone to the culture media to a final concentration of $20 \mathrm{ng} / \mathrm{ml}$. Cultures were incubated at $37^{\circ} \mathrm{C}$ for a further 3 hours. After 3 hours, the bacterial cultures were examined by microscopy for the presence of inclusion bodies and were then collected by centrifugation. Refractile inclusion bodies were observed in induced cultures indicating that the Fc-fusions were most likely produced in the insoluble fraction in E. coli. Cell pellets were lysed directly by resuspension in Laemmli sample buffer containing $10 \% \beta$-mercaptoethanol and were analyzed by SDS-PAGE. In each case, an intense Coomassie-stained band of the appropriate molecular weight was observed on an SDS-PAGE gel.

EXAMPLE 3

TALL-1 peptibody inhibits TALL-1 mediated B cell proliferation

Mouse B lymphocytes were isolated from C57BL/6 spleens by negative selection. (MACS CD43 (Ly-48) Microbeads, Miltenyi Biotech, Auburn, CA). Purified (10^{5}) B cells were cultured in MEM, 10% heat inactivated FCS, $5 \times 10^{-5} \mathrm{M}$ 2-mercaptoethanol, $100 \mathrm{U} / \mathrm{ml}$ penicillin, $100 \mu \mathrm{~g} / \mathrm{ml}$ streptomycin) in triplicate in 96 -well flat bottom tissue culture plates with $10 \mathrm{ng} / \mathrm{ml}$ TALL- 1 protein and 2 $\mu \mathrm{g} / \mathrm{ml}$ of Goat $\mathrm{F}\left(\mathrm{ab}^{\prime}\right)_{2}$ anti-mouse IgM (Jackson ImmunoResearch Laboratory,

West Grove, Pennsylvania) with the indicated amount of recombinant TALL-1 peptibody for a period of 4 days at $37^{\circ} \mathrm{C}, 5 \% \mathrm{CO}_{2}$. Proliferation was measured by the uptake of radioactive ${ }^{3}[\mathrm{H}]$ thymidine after an 18 -hour incubation period.

EXAMPLE 4
TALL-1 peptibody blocks TALL-1 binding to its receptors

Reacti-Gel 6x (Pierce) were pre-coated with human AGP3 (also known as TALL-1, Khare et al., Proc. Natl. Acad. Sci. 97:3370-3375, 2000) and blocked with BSA. 100 pM and 40 pM of AGP3 peptibody samples were incubated with indicated various concentrations of human AGP3 at room temperature for 8 hours before run through the human AGP3-coated beads. The amount of the bead-bound peptibody was quantified by fluorescent (Cy5) labeled goat anti-human-Fc antibody (Jackson Immuno Research). The binding signal is proportional to the concentration of free peptibody at binding equilibrium. Dissociation equilibrium constant (K_{D}) was obtained from nonlinear regression of the competition curves using a dual-curve one-site homogeneous binding model (KinEx ${ }^{\text {TM }}$ software). KD is about 4 pM for AGP3 peptibody (SEQ ID NO: 123) binding with human AGP3 (Figure 9).

To determine if this AGP3 peptibody can neutralize murine AGP3 binding as well as human AGP3, a BIAcore neutralizing assay was utilized. All experiments were performed on a BIAcore 3000 at room temperature. Human TACI-Fc protein (Xia et al, I. Exp. Med. 192: 137-144, 2000) was immobilized to a B1 chip using 10 mM Acetate pH 4.0 to a level of 2900RU. A blank flow cell was used as a background control. Using a running buffer of PBS (without calcium or magnesium) containing 0.005% P20, 1 nM recombinant human AGP3 (in running buffer plus, $0.1 \mathrm{mg} / \mathrm{ml} \mathrm{BSA}$) was incubated without and with indicated various amount of AGP3 peptibody (x axis) before injected over the surface of
the receptor. Regeneration was performed using 8 mM glycine pH 1.5 for 1 minute, 25 mM 3-[cyclohexylamino]-1-propanesulfonic acid (CAPS) pH 10.5, 1 M NaCl for 1 minute. For determination of murine AGP3 binding, human histagged TACI was immobilized to 1000 RU in the above buffer. 5 nM recombinant murine AGP3 (in running buffer plus, $0.1 \mathrm{mg} / \mathrm{ml} \mathrm{BSA}$) was incubated without and with the various amounts indicated in Figure 11 of AGP3 peptibody (x axis) before injection over the surface of the receptor. Regeneration was performed with 10 mM HCl pH 2 , twice for 30 seconds. Relative binding of both human and murine AGP3 at presence vs absence of AGP3 peptibody (SEQ ID NO: 123) was measured (y axis). Relative binding response was determined as (RU-RU blank/ RUo-RU blank). The AGP3 peptibody (SEQ ID NO: 123) inhibited both human and murine AGP3 binding to its receptor TACI (Figures 10A and 10B).

To examine if this AGP3 peptibody blocks AGP3 binding to all three receptors (TACI, BCMA and BAFFR), recombinant soluble receptor TACI, BCMA and BAFFR proteins were immobilized to CM5 chip. Using 10 mM acetate, pH 4 , human TACI-Fc was immobilized to 6300 RU , human BCMA-Fc to 5000 RU, and BAFFR-Fc to 6000 RU. 1 nM of recombinant human AGP3 (in running buffer containing $0.1 \mathrm{mg} / \mathrm{ml}$ BSA and $0.1 \mathrm{mg} / \mathrm{ml}$ Heparin) or 1 nM recombinant APRIL protein (Yu, et al., Nat. Immunol., 1:252-256, 2000) were incubated with indicated amount of AGP3 peptibody before injection over each receptor surface. Regeneration for the AGP3 experiment was done with 8 mM glycine, pH 1.5 , for 1 minute, followed by 25 mM CAPS, $\mathrm{pH} 10.5,1 \mathrm{M} \mathrm{NaCl}$ for 1 minute. Regeneration for the APRIL experiment was performed with 8 mM glycine, pH 2 , for one minute, followed by $25 \mathrm{mMCAPS}, \mathrm{pH} 10.5,1 \mathrm{M} \mathrm{NaCl}$ for one minute. Relative binding of AGP3 or APRIL was measured. AGP3 peptibody (SEQ ID NO: 123) blocked AGP3 binding to all three receptors
(Figure 11A). AGP3 peptibody didn't affect APRIL binding to the receptors (Figure 11B).

EXAMPLE 5

AGP3 peptibody blocks AGP3 mediated B cell proliferation

Mouse B lymphocytes were isolated from C57BL/6 spleens by negative selection. (MACS CD43 (Ly-48) Microbeads, Miltenyi Biotech, Auburn, CA). Purified (10^{5}) B cells were cultured in minimal essential medium (MEM), 10\% heat inactivated fetal calf serum (FCS), $5 \times 10^{-5} \mathrm{M} 2$-mercaptoethanol, $100 \mathrm{U} / \mathrm{ml}$ penicillin, $100 \mu \mathrm{~g} / \mathrm{ml}$ streptomycin) in triplicate in 96 -well flat bottom tissue culture plates with $10 \mathrm{ng} / \mathrm{ml}$ AGP3 (TALL-1) protein and $2 \mu \mathrm{~g} / \mathrm{ml}$ of Goat $\mathrm{F}\left(\mathrm{ab}^{\prime}\right)_{2}$ anti-mouse IgM (Jackson ImmunoResearch Laboratory, West Grove, Pennsylvania) with the indicated amount of recombinant AGP3 peptibody (SEQ ID NO: 123) for a period of 4 days at $37^{\circ} \mathrm{C}, 5 \% \mathrm{CO}_{2}$. Proliferation was measured by the uptake of radioactive ${ }^{3}[\mathrm{H}]$ thymidine after an 18 -hour incubation period.

EXAMPLE 6

AGP3 peptibody on AGP3-stimulated Ig production in mice

Mice (Balb/c females of 9-14 weeks of age and 19-21 g of weight) were purchased from Charles River Laboratories, Wilmington, MA. Mice ($n=10$) were treated i.p. with $1 \mathrm{mg} / \mathrm{Kg}$ of human AGP3 once a day for five consecutive days followed by $5 \mathrm{mg} / \mathrm{Kg}$ or $0.5 \mathrm{mg} / \mathrm{Kg}$ of AGP3 peptibody (SEQ ID NO: 123) or by saline or by $5 \mathrm{mg} / \mathrm{Kg}$ of human Fc. Other mice were left untreated. Mice were sacrificed on the sixth day to measure serum IgM and $\operatorname{Ig} A$, which were measured by ELISA. Briefly, plates were coated with capture antibodies specific for IgM or IgA (Southern Biotechnology Associates, Birmingham, AL), blocked,
and added with dilutions of standard (IgM from Calbiochem, San Diego, CA and IgA from Southern Biotechnology Associates) or test samples. Captured Ig were revealed using biotinylated antibodies specific for IgM or IgA (Southern Biotechnology Associates), neutravidin-conjugated peroxidase (Pierce, (KPL, Gaithersburg, MD). Optical densities were quantitated in a Thermomax ELISA reader (Molecular Devices, Menlo Park, CA).

Human AGP3-stimulated increase in serum levels of IgM and IgA was blocked by $5 \mathrm{mg} / \mathrm{Kg}$ of the anti-AGP3 peptibody (SEQ ID NO: 123) and not by

Mice (as above, $n=7$) were treated i.p. for seven consecutive days with 5 $\mathrm{mg} / \mathrm{Kg}$ or $1.5 \mathrm{mg} / \mathrm{Kg}$ or $0.5 \mathrm{mg} / \mathrm{Kg}$ of AGP3 peptibody (SEQ ID NO: 123) or with saline or with $5 \mathrm{mg} / \mathrm{Kg}$ of human Fc . Mice were sacrificed on the eighth day to count spleen B cell number. Spleens were collected in saline and gently disrupted by manual homogenization to yield a cell suspension. The total cell number was obtained with a H1E counter (Technicon, Tarrytown, NY). Percentages of B cells were derived by immunofluorescence double staining and flow cytometry using fluorescein isothiocyanate (FITC)-conjugated and phycoerythrin (PE)-conjugated Ab against CD3 and B220, respectively (PharMingen, San Diego, CA) and a FACScan analyser (Becton and Dickinson, Mountain View, CA). B cells were identified for being CD3-B220+. At all doses, the AGP3 peptibody (SEQ ID NO: 123) decreased spleen B cell number in a dose-response fashion (Figure 12A and 12B) (SEQ ID NO: 123).

Table 8

AGP3 Pb Reduces B Cell Number in Normal Mice

$\mathrm{n}=7$	dose $(1 /$ day 77$)$	spleen B cell $(1 \times 10 \mathrm{e})$	SD	t test
saline		51.3	9.6	
Fc	$5 \mathrm{mg} / \mathrm{Kg}$	45.5	7.1	
Peptibody	$5 \mathrm{mg} / \mathrm{Kg}$	20.1	3.8	$1.37856 \mathrm{E}-05$
	$1.5 \mathrm{mg} / \mathrm{Kg}$	22.6	6.9	$5.10194 \mathrm{E}-05$
	$0.5 \mathrm{mg} / \mathrm{Kg}$	25.8	3.6	0.000111409

AGP3 peptibody reduced arthritis severity in mouse CIA model

Eight to 12 week old DBA/1 mice (obtained from Jackson Laboratories, Bar Harbor, ME) were immunized with bovine collagen type II (bCII) (purchased from University of Utah), emulsified in complete Freunds adjuvant (Difco) intradermally at the base of tail. Each injection was $100 \mu l$ containing $100 \mu \mathrm{~g}$ of bCII . Mice were boosted 3 weeks after the initial immunization with bCII emulsified in incomplete Freunds adjuvant. Treatment was begun from the day of booster immunization for 4 weeks. Mice were examined for the development of arthritis. As described before (Khare et al.,J. Immunol. 155: 3653-9, 1995), all four paws were individually scored from 0-3. Therefore arthritis severity could vary from 0 to 12 for each animal. AGP3 (SEQ ID NO: 123) peptibody treatment significantly reduced the severity of arthritic scores (Figure 13).

Serum samples were taken one week after final treatment (day 35) for the analysis of anti-collagen antibody level. High binding ELISA plates (Immulon, Nunc) were coated with $50 \mu \mathrm{l}$ of $4 \mu \mathrm{~g} / \mathrm{ml}$ solution of bovine CII in carbonate buffer and plated were kept in cold overnight in the refrigerator. Plates were
washed three times with cold water. $75 \mu \mathrm{l}$ of blocking solution made up of PBS/.05\% tween 20/1\% BSA was used to block non-specific binding for an hour. Samples were diluted (in blocking buffer) in dilution plates at 1:25, 1:100, 1:400, and 1:1600 and $25 \mu \mathrm{l}$ of these samples were added to each well of the ELISA plate for a final dilution of $100,400,1600$, and 6400 with a final volume of 100 $\mu \mathrm{l} /$ well. After incubation at room temperature for 3 hours, plates were washed three times again. $100 \mu \mathrm{l}$ of secondary antibody diluted in blocking buffer (rat anti-mouse IgM, IgG2a, IgG2b, IgG1, IgG3-HRP) was added to each well and plates were incubated for at least 2 hours. Plates were washed four times. $100 \mu \mathrm{l}$ of TMB solution (Sigma) was added to each well and the reaction was stopped using $50 \mu \mathrm{l}$ of 25% sulfuric acid. Plates were read using an ELISA plate reader at 450 nm . OD was compared with a standard pool representing units/ml. AGP3 peptibody (SEQ ID NO: 123) treatment reduced serum anti-collagen II IgG1, IgG3, IgG2a, and IgG2b levels compared to PBS or Fc control treatment groups (Figure 14).

EXAMPLE 9

Treatment of AGP3 peptibody in NZB/NZW lupus mice

Five month old lupus prone NZBx NZBWF1 mice were treated i.p. 3X/week for 8 weeks with PBS or indicated doses of AGP3 peptibody or human Fc proteins. Prior to the treatment, animals were pre-screened for protein in the urine with Albustix reagents strips (Bayer AG). Mice having greater than 100 $\mathrm{mg} / \mathrm{dl}$ of protein in the urine were not included in the study. Protein in the urine was evaluated monthly throughout the life of the experiment. AGP3 peptibody (SEQ ID NO: 123) treatment led to delay of proteinuria onset and improved survival (Figure 15A and 15B).

AGP3 peptibody treatment reduced B cell number in mice. Balb/c mice received 7 daily intraperitoneal injections of indicated amount of AGP3 peptibody (SEQ ID NO: 123) or human Fc protein. On day 8, spleens were collected, and subject to FACS analysis for B220+ B cells as set forth in Table 8.

The invention now being fully described, it will be apparent to one of ordinary skill in the art that many changes and modifications can be made thereto, without departing from the spirit and scope of the invention as set forth herein.

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:-

1. A TALL-1-binding composition of matter comprising an amino acid sequence $\mathrm{Dz}^{2} \mathrm{Lz}^{4}$, wherein z^{2} is an amino acid residue and z^{4} is T or I , and wherein the composition of matter does not comprise FRKYDLLIHQRV or a fragment of TACI, BCMA, or BAFFR (SEQ ID NOS: 195, 196, and 197).
2. The composition of matter of Claim 1 , wherein z^{4} is T.
3. A TALL-1-binding composition of matter comprising an amino acid sequence Dz^{2} LI, wherein z^{2} is an amino acid residue.
4. The composition of matter of Claim 1 comprising an amino acid sequence of the formula

$$
\begin{gathered}
a^{1} a^{2} a^{3} C D a^{6} \mathrm{La}^{8} a^{9} a^{10} C^{12} a^{13} a^{14} \\
(\text { SEQ. ID. NO: 100) }
\end{gathered}
$$

wherein:
a^{1}, a^{2} and a^{3} are each independently absent or amino acid residues;
a^{6} is an amino acid residue;
a^{8} is T or I ;
a^{9} is a basic or hydrophobic residue;
a^{10} is an amino acid residue;
a^{12} is a neutral hydrophobic residue; and
a^{13} and a^{14} are each independently absent or amino acid residues.
5. The composition of matter of Claim 4 wherein a^{8} is T and a^{9} is a basic residue.
6. The composition of matter of Claim 4 wherein a^{9} is K and a^{12} is F.
7. The composition of matter of Claim 1 comprising an amino acid sequence of the formula
$b^{1} b^{2} b^{3} C b^{5} b^{6} \mathrm{Db}^{8} \mathrm{Lb}^{10} b^{11} b^{12} b^{13} b^{14} \mathrm{Cb}^{16} b^{17} b^{18}$
(SEQ. ID. NO: 104)
wherein:
b^{1} and b^{2} are each independently absent or amino acid residues;
b^{3} is an acidic or amide residue;
b^{5} is an amino acid residue;
b^{6} is an aromatic residue;
b^{8} is an amino acid residue;
b^{10} is T or I ;
b^{11} is a basic residue;
b^{12} and b^{13} are each independently amino acid residues;
b^{14} is a neutral hydrophobic residue; and
b^{16}, b^{17}, and b^{18} are each independently absent or amino acid residues.
8. The composition of matter of Claim 7 wherein:
b^{3} is D, Q or $E ;$
b^{6} is W or $Y ;$
b^{10} is $T ;$
b^{11} is K or $R ;$ and
b^{14} is V or L.
9. The composition of matter of Claim 1 comprising an amino acid sequence of the formula
$\mathrm{c}^{1} \mathrm{c}^{2} \mathrm{c}^{3} \mathrm{Cc}^{5} \mathrm{Dc}^{7} \mathrm{~L} \mathrm{c}^{9} \mathrm{c}^{10} \mathrm{c}^{11} \mathrm{c}^{12} \mathrm{c}^{13} \mathrm{c}^{14} \mathrm{Cc}^{16} \mathrm{c}^{17} \mathrm{c}^{18}$
(SEQ. ID. NO: 105)
wherein:
c^{1}, c^{2}, and c^{3} are each independently absent or amino acid residues;
c^{5} is an amino acid residue;
c^{7} is an amino acid residue;
c^{9} is T or I ;
c^{10} is a basic residue;
c^{11} and c^{12} are each independently amino acid residues;

$$
\begin{aligned}
& \mathrm{c}^{13} \text { is a neutral hydrophobic residue; } \\
& \mathrm{c}^{14} \text { is an amino acid residue; } \\
& \mathrm{C}^{16} \text { is an amino acid residue; } \\
& \mathrm{c}^{17} \text { is a neutral hydrophobic residue; and } \\
& \mathrm{c}^{18} \text { is an amino acid residue or is absent. }
\end{aligned}
$$

10. The composition of matter of Claim 9 wherein:
```
c}\mp@subsup{}{}{9}\mathrm{ is T;
c}\mp@subsup{}{}{10}\mathrm{ is K or R;
c}\mp@subsup{}{}{13}\mathrm{ is a I, L, or V; and
c}\mp@subsup{}{}{17}\mathrm{ is A or L.
```

11. The composition of matter of Claim 1 comprising an amino acid sequence of the formula

$$
\begin{gathered}
d^{1} d^{2} d^{3} C d^{5} d^{6} d^{7} W D d^{10} L d^{12} d^{13} d^{14} C d^{16} d^{17} d^{18} \\
\text { (SEQ. ID. NO: 106) }
\end{gathered}
$$

wherein:
d^{1}, d^{2}, and d^{3} are each independently absent or amino acid residues;
d^{5}, d^{6}, and d^{7} are each independently amino acid residues;
d^{10} is an amino acid residue;
d^{12} is T or I ;
d^{13} is an amino acid residue;
d^{14} is an amino acid residue; and
d^{16}, d^{17} and d^{18} are each independently absent or amino acid residues.
12. The composition of matter of Claim 1 comprising an amino acid sequence of the formula

$$
\begin{gathered}
e^{1} e^{2} e^{3} C e^{5} e^{6} e^{7} e^{9} L e^{11} K e^{13} C e^{15} e^{16} e^{17} e^{18} \\
\text { (SEQ. ID. NO: 107) }
\end{gathered}
$$

wherein:
e^{1}, e^{2}, and e^{3} are each independently absent or amino acid residues;
$e^{5}, e^{6}, e^{7}, e^{9}$, and e^{13} are each independently amino acid residues; e^{11} is T or I ; and e^{15}, e^{16}, e^{17} and e^{18} are each independently absent or amino acid residues.
13. The composition of matter of Claim 1 comprising an amino acid sequence of the formula

(SEQ ID NO: 109)
wherein:
f^{1}, f^{2}, and f^{3} are absent or are amino acid residues;
f^{5} is W or F;
f^{7} is an amino acid residue;
f^{9} is T or I ;
f^{10} is K, R, or H ;
f^{12} is C, a neutral hydrophobic residue, or a basic residue;
f^{13} is C , a neutral hydrophobic residue or is absent; and
f^{14} is any amino acid residue or is absent;
provided that only one of f^{1}, f^{2}, and f^{3} may be C, and only one of f^{12}, f^{13}, and f^{14} may be C .
14. The composition of matter of Claim 13, wherein f^{5} is W .
15. The composition of matter of Claim 13 , wherein f^{7} is L.
16. The composition of matter of Claim 13 , wherein f^{9} is T.
17. The composition of matter of Claim 13 , wherein f^{10} is K.
18. The composition of matter of Claim 13, wherein f^{12} is C and one of f^{1}, f^{2}, and f^{3} is C.
19. The composition of matter of Claim 13 , wherein f^{13} is V.
20. The composition of matter of Claim 13 comprising an amino acid sequence of the formula

 (SEQ ID NO: 125).

21. The composition of matter of Claim 20 comprising an amino acid sequence selected from the group consisting of SEQ ID NOS: $32,33,58,60,63,66,67$, $69,114,115,122,123,124,147-150,152-177,179,180$, and 187.
22. The composition of matter of Claim 20 comprising an amino acid sequence of the formula

LPGCKWDLLIKQWVCDPL (SEQ ID NO: 33).
23. A composition of matter comprising an amino acid sequence of the formula

$$
g^{1} g^{2} g^{3} \mathrm{Cg}^{5} \mathrm{PFg}^{8} W g^{10} \mathrm{Cg}^{12} \mathrm{~g}^{13} g^{14}
$$

(SEQ. ID. NO: 101)
wherein:
g^{1}, g^{2} and g^{3} are each independently absent or amino acid residues;
g^{5} is a neutral hydrophobic residue;
g^{8} is a neutral hydrophobic residue;
g^{10} is an acidic residue;
g^{12} and g^{13} are each independently amino acid residues; and
g^{14} is absent or is an amino acid residue.
24. The composition of matter of Claim 23 wherein:
g^{2} is G ;
g^{5} is W;
g^{8} is P ;
g^{10} is E; and
g^{13} is a basic residue.
25. A composition of matter comprising an amino acid sequence of the formula

$h^{1} h^{2} h^{3} C^{3} h^{6} h^{7} W G h^{10} \mathrm{Ch}^{12} h^{13} h^{14}$

(SEQ. ID. NO: 102)
wherein:
h^{1}, h^{2}, and h^{3} are each independently absent or amino acid residues;
h^{6} is a hydrophobic residue;
h^{7} is a hydrophobic residue;
h^{10} is an acidic or polar hydrophobic residue; and
h^{12}, h^{13}, and h^{14} are each independently absent or amino acid residues.
26. The composition of matter of Claim 25 wherein:
h^{1} is G;
h^{6} is A;
h^{7} is a neutral hydrophobic residue; and
h^{10} is an acidic residue.
27. A composition of matter comprising an amino acid sequence of the formula $\mathrm{i}^{1}{ }^{2}{ }^{2}{ }^{3} \mathrm{Ci}^{5}{ }^{5} \mathrm{i}^{6} \mathrm{i}^{7} \mathrm{i}^{88}{ }^{89} \mathrm{i}^{10} \mathrm{Ci}^{12 \mathrm{i}^{13} \mathrm{i}^{14}}$
(SEQ. ID. NO: 103)
wherein:
i^{1} is absent or is an amino acid residue;
i^{2} is a neutral hydrophobic residue;
i^{3} is an amino acid residue;
$\mathrm{i}^{5}, \mathrm{i}^{6}, \mathrm{i}^{7}$, and i^{8} are each independently amino acid residues;
i^{9} is an acidic residue;
i^{10} is an amino acid residue;
i^{12} and i^{13} are each independently amino acid residues; and
i^{14} is a neutral hydrophobic residue.
28. The composition of matter of Claim 27 wherein:
i^{2} is W ; and
i^{14} is W .
29. A TALL-1 binding composition of matter comprising an amino acid sequence of the formula PFPWE (SEQ ID NO: 110). :
30. The composition of matter of Claim 1 having the formula
$\left(\mathrm{X}^{1}\right)_{\mathrm{a}}-\mathrm{V}^{1}-\left(\mathrm{X}^{2}\right)_{\mathrm{b}}$
and multimers thereof, wherein:
V^{1} is a vehicle;
X^{1} and X^{2} are each independently selected from $-\left(\mathrm{L}^{1}\right)_{c}-\mathrm{P}^{1}$, $-\left(\mathrm{L}^{1}\right)_{c}-\mathrm{P}^{1}-\left(\mathrm{L}^{2}\right)_{\mathrm{d}}-\mathrm{P}^{2},-\left(\mathrm{L}^{1}\right)_{c}-\mathrm{P}^{1}-\left(\mathrm{L}^{2}\right)_{d}-\mathrm{P}^{2}-\left(\mathrm{L}^{3}\right)_{\mathrm{e}}-\mathrm{P}^{3}$, and $-\left(\mathrm{L}^{1}\right) c-\mathrm{P}^{1}-\left(\mathrm{L}^{2}\right) d-\mathrm{P}^{2}-\left(\mathrm{L}^{3}\right)_{e}-\mathrm{P}^{3}-\left(\mathrm{L}^{4}\right) \leftarrow \mathrm{P}^{4}$
one or more of $\mathrm{P}^{1}, \mathrm{P}^{2}, \mathrm{P}^{3}$, and P^{4} each independently comprise
$\mathrm{Dz}^{2} \mathrm{Lz}^{4}$;
$\mathrm{L}^{1}, \mathrm{~L}^{2}, \mathrm{~L}^{3}$, and L^{4} are each independently linkers; and
$\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}$, and f are each independently 0 or 1 , provided that at least one of a and b is 1 ;
and wherein the composition of matter does not comprise the sequence
FRKYDLLIHQRV when one of X^{1} and X^{2} is $-\left(\mathrm{L}^{1}\right)_{c}-\mathrm{P}^{1}$ and the other is absent.
31. The composition of matter of Claim 30 of the formula

$$
\mathrm{P}^{1}-\left(\mathrm{L}^{1}\right)_{c}-\mathrm{P}^{2}-\left(\mathrm{L}^{2}\right) \mathrm{d} .-\mathrm{V}^{1} .
$$

32. The composition of matter of Claim 30 of the formula

$$
\mathrm{V}^{1}-\left(\mathrm{L}^{1}\right)_{c}-\mathrm{P}^{1}-\left(\mathrm{L}^{2}\right)_{\mathrm{d}} \mathrm{~d}-\mathrm{P}^{2} .
$$

33. The composition of matter of Claim 30, wherein V^{1} is an Fc domain.
34. The composition of matter of Claim 30 wherein V^{1} is an IgG Fc domain.
35. The composition of matter of Claim 30 wherein V^{1} is an $\mathrm{IgG1}$ Fc domain.
36. The composition of matter of Claim 30 wherein V^{1} comprises the sequence of SEQ ID NO: 2.
37. A composition of matter having the formula $\left(X^{1}\right)_{a}-V^{1}-\left(X^{2}\right)_{b}$
and multimers thereof, wherein:
V^{1} is a vehicle;
X^{1} and X^{2} are each independently selected from $-\left(L^{1}\right)_{c}-P^{1}$,
$-\left(\mathrm{L}^{1}\right)_{c}-\mathrm{P}^{1}-\left(\mathrm{L}^{2}\right)_{d}-\mathrm{P}^{2},-\left(\mathrm{L}^{1}\right)_{c}-\mathrm{P}^{1}-\left(\mathrm{L}^{2}\right)_{\mathrm{d}}-\mathrm{P}^{2}-\left(\mathrm{L}^{3}\right)_{e}-\mathrm{P}^{3}$, and
$-\left(\mathrm{L}^{1}\right)_{c}-\mathrm{P}^{1}-\left(\mathrm{L}^{2}\right)_{d}-\mathrm{P}^{2}-\left(\mathrm{L}^{3}\right)_{e}-\mathrm{P}^{3}-\left(\mathrm{L}^{4}\right)_{\mathrm{f}}-\mathrm{P}^{4}$;
L^{1}, L^{2}, L^{3}, and L^{4} are each independently linkers; and
a, b, c, d, e, and f are each independently 0 or 1, provided that at least one of a and b is 1
one or more of $\mathrm{P}^{1}, \mathrm{P}^{2}, \mathrm{P}^{3}$, and P^{4} each independently comprises a sequence selected from:

$$
\begin{aligned}
& a^{1} a^{2} a^{3} \mathrm{CDa}^{6} \mathrm{La}^{8} a^{9} a^{10} \mathrm{Ca}^{12} a^{13} a^{14} \text { (SEQ. ID. NO: 100) } \\
& b^{1} b^{2} b^{3} \mathrm{Cb}^{5} b^{6} \mathrm{Db}^{8} \mathrm{Lb}^{10} b^{11} b^{12} b^{33} b^{14} \mathrm{Cb}^{16} b^{17} b^{18} \text { (SEQ. ID. NO: 104) } \\
& c^{1} \mathrm{c}^{2} \mathrm{c}^{3} \mathrm{C}^{5} \mathrm{Dc}^{7} \mathrm{Lc}^{9} \mathrm{c}^{10} \mathrm{c}^{11} \mathrm{c}^{12} \mathrm{c}^{13} \mathrm{c}^{14} \mathrm{Cc}^{16} \mathrm{c}^{17} \mathrm{c}^{18} \text { (SEQ. ID. NO: 105) } \\
& d^{1} d^{2} d^{3} C d^{5} d^{6} d^{7} W D d^{10} \mathrm{Ld}^{12} \mathrm{~d}^{13} \mathrm{~d}^{14} \mathrm{Cd}^{16} \mathrm{~d}^{17} \mathrm{~d}^{18} \text { (SEQ. ID. NO: 106) } \\
& e^{1} e^{2} e^{3} \mathrm{Ce}^{5} e^{6} e^{7} \mathrm{De}^{9} \mathrm{Le}^{11} \mathrm{Ke}^{13} \mathrm{Ce}^{15} \mathrm{e}^{16} \mathrm{e}^{17} e^{18} \text { (SEQ. ID. NO: 107) } \\
& \mathrm{f}^{1} \mathrm{f}^{2} \mathrm{~F}^{3} \mathrm{Kf}^{5} \mathrm{D} \mathrm{f}^{\mathrm{L}} \mathrm{f}^{9} \mathrm{f}^{10} \mathrm{Pf}^{12 \mathrm{f}^{13} \mathrm{f}^{14}} \text { (SEQ. ID. NO: 109) } \\
& g^{1} g^{2} g^{3} \mathrm{Cg}^{5 P F g} g^{8} \mathrm{Wg}{ }^{10} \mathrm{Cg}^{12} \mathrm{~g}^{13} \mathrm{~g}^{14} \text { (SEQ ID NO: 101), } \\
& h^{1} h^{2} h^{3} C^{2} h^{6} h^{7}{ }^{7} W^{10} h^{10} \mathrm{Ch}^{12} h^{13} h^{14} \text { (SEQ ID NO: 102), and }
\end{aligned}
$$

wherein:
a^{1}, a^{2}, a^{3} are each independently absent or amino acid residues;
a^{6} is an amino acid residue;
a^{9} is a basic or hydrophobic residue;
a^{8} is threonyl or isoleucyl;
a^{10} is an amino acid residue;
a^{12} is a neutral hydrophobic residue;
a^{13} and a^{14} are each independently absent or amino acid residues; b^{1} and b^{2} are each independently absent or amino acid residues;
b^{3} is an acidic or amide residue;
b^{5} is an amino acid residue;
b^{6} is an aromatic residue;
b^{8} is an amino acid residue;
b^{10} is T or I ;
b^{11} is a basic residue;
b^{12} and b^{13} are each independently amino acid residues;
b^{14} is a neutral hydrophobic residue;
b^{16}, b^{17}, and b^{18} are each independently absent or amino acid residues;
c^{1}, c^{2}, and c^{3} are each independently absent or amino acid residues;
c^{5} is an amino acid residue;
c^{7} is an amino acid residue;
c^{9} is T or I ;
c^{10} is a basic residue;
c^{11} and c^{12} are each independently amino acid residues;
${ }^{13}$ is a neutral hydrophobic residue;
c^{14} is an amino acid residue;
c^{16} is an amino acid residue;
${ }^{17}$ is a neutral hydrophobic residue; and
c^{18} is an amino acid residue or is absent;
$\mathrm{d}^{1}, \mathrm{~d}^{2}$, and d^{3} are each independently absent or amino acid residues;
$\mathrm{d}^{5}, \mathrm{~d}^{6}$, and d^{7} are each independently amino acid residues;
d^{10} is an amino acid residue;
d^{12} is T or I ;
d^{13} is an amino acid residue;
d^{14} is an amino acid residue; and
d^{16}, d^{17}, and d^{18} are each independently absent or amino acid residues;
e^{1}, e^{2}, and e^{3} are each independently absent or amino acid residues;
$e^{5}, e^{6}, e^{7}, e^{9}$, and e^{13} are each independently amino acid residues;
e^{11} is T or I ; and
e^{15}, e^{16}, e^{17} and e^{18} are each independently absent or amino acid residues;
f^{1}, f^{2}, and f^{3} are absent or are amino acid residues;
f^{5} is W or F;
f^{7} is an amino acid residue;
f^{9} is T or I ;
f^{10} is K, R, or H ;
f^{12} is C , a neutral hydrophobic residue, or a basic residue;
f^{13} is C, a neutral hydrophobic residue or is absent; and
f^{14} is any amino acid residue or is absent;
provided that only one of f^{1}, f^{2}, and f^{3} may be C, and only one of f^{12}, f^{13}, and f^{14} may be C;
$\mathrm{g}^{1}, \mathrm{~g}^{2}$ and g^{3} are each independently absent or amino acid residues;
g^{5} is a neutral hydrophobic residue;
g^{8} is a neutral hydrophobic residue;
g^{10} is an acidic residue;
g^{12} and g^{13} are each independently amino acid residues; and
g^{14} is absent or is an amino acid residue;
h^{1}, h^{2}, and h^{3} are each independently absent or amino acid residues;
h^{6} is a hydrophobic residue;
h^{7} is a hydrophobic residue;
h^{10} is an acidic or polar hydrophobic residue; and
h^{12}, h^{13}, and h^{14} are each independently absent or amino acid residues; i^{1} is absent or is an amino acid residue;
i^{2} is a neutral hydrophobic residue;
i^{3} is an amino acid residue;
i^{5}, i^{6}, i^{7}, and i^{8} are each independently amino acid residues;
i^{9} is an acidic residue;
i^{10} is an amino acid residue;
i^{12} and i^{13} are each independently amino acid residues; and
i^{14} is a neutral hydrophobic residue.
38. The composition of matter of claim 37, wherein:
a^{9} is a basic residue;
b^{3} is D, Q or E;
b^{6} is W or Y;
b^{11} is K or R;
b^{14} is V or L ;
c^{10} is K or R ;
c^{13} is a I, L, or V ;
c^{17} is A or L ;
f^{5} is W ;
f^{7} is L;
f^{10} is K; and
f^{13} is V.
39. The composition of matter of Claim 37 , wherein one or more of $\mathrm{P}^{1}, \mathrm{P}^{2}, \mathrm{P}^{3}$, and P^{4} each independently comprises $\mathrm{f}^{1} \mathrm{f}^{2} \mathrm{f}^{3} \mathrm{~K} W D \mathrm{f}^{7} \mathrm{ff}^{9} K Q \mathrm{f}^{12 f^{13} \mathbf{f}^{14}}$
(SEQ ID NO: 125).
40. The composition of matter of Claim 39 of the formula

$$
\mathrm{P}^{1}-\left(\mathrm{L}^{1}\right) c-\mathrm{P}^{2}-\left(\mathrm{L}^{2}\right)^{2}-\mathrm{V}^{1} .
$$

41. The composition of matter of Claim 39 of the formula

$$
V^{1}-\left(\mathrm{L}^{1}\right)_{c}-P^{1}-\left(\mathrm{L}^{2}\right)_{\mathrm{d}}-\mathrm{P}^{2} .
$$

42. The composition of matter of Claim 39 having an amino acid sequence selected from SEQ ID NOS: 122, 123, and 124.
43. The composition of matter of Claim 40 wherein L^{2} is greater than 5 amino acids.
44. The composition of matter of Claim 43 wherein L^{2} is selected from

GSGSATGGSGSTASSGSGSATx ${ }^{1} x^{2}$
(SEQ ID NO: 193)
and
GSGSATGGSGSTASSGSGSATx $x^{1} x^{2} G S G S A T G G S G S T A S S G S G S A T x^{3} x^{4}$
(SEQ ID NO: 194)
wherein x^{1} and x^{3} are each independently basic or hydrophobic residues and x^{2} and x^{4} are each independently hydrophobic residues.
45. The composition of matter of Claim 41 wherein L^{2} is selected from

GSGSATGGSGSTASSGSGSATH
(SEQ ID NO: 59),
GSGSATGGSGSTASSGSGSATGM
(SEQ ID NO: 190)
GSGSATGGSGSTASSGSGSATGS
(SEQ ID NO: 191), and
GSGSATGGSGSTASSGSGSATHMGSGSATGGSGSTASSGSGSATHM
(SEQ ID NO: 192).
46. The composition of matter of Claim 30 comprising a sequence selected from Table 2 (SEQ ID NOS: 29-39, 60-70, and 126-188).
47. The composition of matter of Claim 30 comprising a sequence selected from Table 4 (SEQ ID NOS: 44-55).
48. The composition of matter of Claim 46, wherein V^{1} is an Fc domain.
49. The composition of matter of Claim 46, wherein V^{1} is an $\operatorname{IgG~Fc~domain.~}$
50. The composition of matter of Claim 46, wherein V^{1} is an $\operatorname{IgG1~Fc~domain.~}$
51. A DNA encoding a composition of matter of Claim 33.
52. An expression vector comprising the DNA of Claim 51.
54. The cell of Claim 53, wherein the cell is an E. coli cell.
55. A method of treating a B-cell mediated autoimmune disease, which comprises administering a composition of matter of Claim 1.
56. A method of treating a B-cell mediated autoimmune disease, which comprises administering a composition of matter of Claim 13.
57. A method of treating lupus, which comprises administering a composition of matter of Claim 1.
58. A method of treating lupus, which comprises administering a composition of matter of Claim 13.
59. A method of treating a B-cell mediated cancer, which comprises administering a composition of matter of Claim 1.
60. A method of treating a B-cell mediated cancer, which comprises administering a composition of matter of Claim 13.
61. A method of treating B-cell lymphoma, which comprises administering a composition of matter of Claim 1.
62. A method of treating B-cell lymphoma, which comprises administering a composition of matter of Claim 13.
63. Use of a composition of matter according to Claim 1 for the manufacture of a medicament for the treatment of B-cell mediated autoimmune disease.
64. Use of a composition of matter of Claim 13 in the manufacture of a medicament for the treatment of B-cell mediated autoimmune disease.
65. Use of a composition of matter of Claim 1 in the manufacture of a medicament for the treatment of lupus.
66. Use of a composition of matter of Claim 13 in the manufacture of a medicament for the treatment of lupus.
67. Use of a composition of matter of Claim 1 in the manufacture of a medicament for the treatment of a B-cell mediated cancer.
68. Use of a composition of matter according to Claim 13 in the manufacture of a medicament for the treatment of B-cell mediated cancer.
69. Use of a composition of a matter of Claim 1 in the manufacture of a medicament for the treatment of B-cell lymphoma.
70. Use of a composition of a matter of Claim 13 in the manufacture of a medicament for the treatment of B-cell lymphoma.
71. A TALL-1 binding composition of matter, substantially as herein described with reference to any one or more of the examples but excluding comparative examples.
72. A composition of matter comprising an amino acid sequence of the formula

(SEQ. ID. NO: 103)
substantially as herein described with reference to any one or more of the examples but excluding comparative examples.
73. A DNA encoding a composition of matter according to Claim 34, substantially as herein described with reference to any one or more of the examples but excluding comparative examples.
74. An expression vector comprising the DNA of Claim 51, substantially as herein described with reference to any one or more of the examples but excluding comparative examples.
75. A host cell comprising the expression vector of Claim 52, substantially as herein described with reference to any one or more of the examples but excluding comparative examples.
76. A method of treating a B-cell mediated autoimmune disease, substantially as herein described with reference to any one or more of the examples but excluding comparative examples.
77. A method of treating lupus, substantially as herein described with reference to any one or more of the examples but excluding comparative examples.
78. A method of treating a B-cell mediated cancer, substantially as herein described with reference to any one or more of the examples but excluding comparative examples.
79. A method of treating B-cell lymphoma, substantially as herein described with reference to any one or more of the examples but excluding comparative examples.
80. Use of a composition of matter of claim 1, substantially as herein described with reference to any one or more of the examples but excluding comparative examples.
81. Use of a composition of matter of claim 13, substantially as herein described with reference to any one or more of the examples but excluding comparative examples.

DATED this $31^{\text {st }}$ day of August 2005
Shelston IP
Attorneys for: AMGEN INC.

FIG. 1

D

E

F

FIG. 3

ATGGACAAAACTCACACATGTCCACCTTGTCCAGCTCCGGAACTCCTGGGGGGACCGTCA
 TACCTGTITTGAGTGTGTACAGGTGGAACAGGTCGAGGCCTTGAGGACCCCCCTGGCAGT
 GTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTC
 CAGAAGGAGAAGGGGGGTTTTGGGTTCCTGTGGGAGTACTAGAGGGCCTGGGGACTCCAG
 ACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTG
 TGTACGCACCACCACCTGCACTCGGTGCTTCTGGGACTCCAGTTCAAGTTGACCATGCAC
 GACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACG CTGCCGCACCTCCACGTATTACGGTTCTGTTTCGGCGCCCTCCTCGTCATGTTGTCGTGC

TACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTAC
 ATGGCACACCAGTCGCAGGAGTGGCAGGACGTGGTCCTGACCGACTTACCGTTCCTCATG
 AAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCC
 TTCACGTTCCAGAGGTTGTTTCGGGAGGGTCGGGGGTAGCTCTTTTGGTAGAGGTTTCGG

AAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATCCCGGGATGAGCTGACC
 TTTCCCGTCGGGGCTCTTGGTGTCCACATGTGGGACGGGGGTAGGGCCCTACTCGACTGG

AAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTG
 TTCTTGGTCCAGTCGGACTGGACGGACCAGTT"CCGAAGATAGGGTCGCTGTAGCGGCAC

GAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGAC
 CTCACCCTCTCGTTACCCGTCGGCCTCTTGTTGATGTTCTGGTGCGGAGGGCACGACCTG

TCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAG
 AGGCTGCCGAGGAAGAAGGAGATGTCGTTCGAGTGGCACCTGTTCTCGTCCACCGTCGTC
$\begin{array}{llllllllllllllllllllll}S & D & G & S & F & F & L & Y & S & K & L & T & V & D & K & S & R & W & Q & Q & -\end{array}$
GGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAG
 CCCTTGCAGAAGAGTACGAGGCACTACGTACTCCGAGACGTGTTGGTGATGrGCGTCTTC
 AGCCTCTCCCTGTCTCCGGGTAAA
661 ----------+----------+---- 684 TCGGAGAGGGACAGAGGCCCATTT
$S \quad I \quad S \quad L \quad S \quad P \quad G \quad K$

FIG. 4A

1) AGP3-8-1-a

TATGCCGGGTACTTGTTTCCCGTTCCCGTGGGAATGCACTCACGCTGGTGGAGGCGGT

GGCCCATGAACAAAGGGCAAGGGCACCCTTACGTGAGTGCGACCACCTCCGCCA
a

a
G V D
2) AGP3-8-2-a NdeI
| TATGTGGGGTGCTTGTTGGCCGTTCCCGTGGGAATGTTTCAAAGAAGGTGGAGGCGGT

AСACCCCACGAACAACCGGCAAGGGCACCCTTACAAAGTTTCTTCCACCTCCGCCA
a
$\begin{array}{llllllllllllllllllll}M & W & G & A & C & W & P & F & P & W & E & C & F & K & E & G & G & G & G & -\end{array}$

SalI

GGGG
61 --------- 69
CCCCAGCT
a
G V D -

FIG. 4B
3)

AGP3-8-4-a

NdeI
1
TATGGTTCCGTTCTGTGACCTGCTGACTAAACACTGTTTCGAAGCTGGTGGAGGCGGT

ACCAAGGCAAGACACTGGACGACTGATTTGTGACAAAGCTTCGACCACCTCCGCCA
a $\begin{array}{lllllllllllllllllll}M & V & P & F & C & D & L & L & T & K & H & C & F & E & A & G & G & G & G\end{array}$ SalI GGGG
 CCCCAGCT
a G V D -
4) AGP3-12-4-a

$$
\text { November 6, } 2000 \quad 12: 53 \quad \ldots
$$

```
NdeI
            |
            TATGGGTTCTCGTTGTAAATACAAATGGGACGTTCTGACTAAACAGTGTTTCCACCAC
1 ---------+----------+--------+----------+-------------------------}6
                ACCCAAGAGCAACATTTATGTTTACCCTGCAAGACTGATTTGTCACAAAGGTGGTG
```

a
M G $S \quad R$ R C $\begin{array}{llll}K & Y & K\end{array}$ D SalI

61 ----------+------------- 81 CCACCTCCGCCACCCCAGCT
a

```
        G G G G G V D
```

FIG. 4C
5) AGP3-12-3-a

NdeI
1.

TATGCTGCCGGGTTGTAAATGGGACCTGCTGATCAAACAGTGGGTTTGTGACCCGCTG
 ACGACGGCCCAACATTTACCCTGGACGACTAGTTTGTCACCCAAACACTGGGCGAC
a
$\begin{array}{llllllllllllllllllll}\mathrm{M} & \mathrm{L} & \mathrm{P} & \mathrm{G} & \mathrm{C} & \mathrm{K} & \mathrm{W} & \mathrm{D} & \mathrm{L} & \mathrm{L} & \mathrm{I} & \mathrm{K} & \mathrm{Q} & \mathrm{W} & \mathrm{V} & \mathrm{C} & \mathrm{D} & \mathrm{P} & \mathrm{L} & -\end{array}$

SalI

GGTGGAGGCGGTGGGG
61 ----------+------------- 81 CCACCTCCGCCACCCCAGCT
a
$\begin{array}{lllllll}G & G & G & G & G & V & D\end{array}$
6) AGP3-12-5-a

NdeI
|
TATGTCTGCTGACTGTTACTTCGACATCCTGACTAAATCTGACGTTTGTACTTCTTCT

ACAGACGACTGACAATGAAGCTGTAGGACTGATTTAGACTGCAAACATGAAGAAGA
a

SalI

GGTGGAGGCGGTGGGG
61 ----------+----------+- 81 CCACCTCCGCCACCCCAGCT
a

```
7) AGP3-12-8-a
                        NdeI
                |
                TATGTCTGACGACTGTATGTACGACCAGCTGACTCGTATGTTCATCTGTTCTAACCTG
            1 ---------+---------+---------+----------+-----------------------------}6
                ACAGACTGCTGACATACATGCTGGTCGACTGAGCATACAAGTAGACAAGATTGGAC
a
\begin{tabular}{lllllllllllllllllll}
\(M\) & \(S\) & \(D\) & \(D\) & \(C\) & \(M\) & \(Y\) & \(D\) & \(Q\) & \(L\) & \(T\) & \(R\) & \(M\) & \(F\) & \(I\) & \(C\) & \(S\) & \(N\) & \(L\)
\end{tabular}
SalI
        GGTGGAGGCGGTGGGG
    61 ----------+----------+---- }8
        CCACCTCCGCCACCCCAGCT
    a F
    8) AGP3-12-9-a
        NdeI
        |
        TATGGACCTGAACTGTAAATACGACGAACTGACTTACAAAGAATGGTGTCAGTTCAAC
    1 ----------+---------+---------+---------+-----------------------+ 60
                ACCTGGACTTGACATTTATGCTGCTTGACTGAATGTTTCTTACCACAGTCAAGTTG
```

a $\begin{array}{lllllllllllllllllll}\mathrm{M} & \mathrm{D} & \mathrm{L} & \mathrm{N} & \mathrm{C} & \mathrm{K} & \mathrm{Y} & \mathrm{D} & \mathrm{E} & \mathrm{L} & \mathrm{T} & \mathrm{Y} & \mathrm{K} & \mathrm{E} & \mathrm{W} & \mathrm{C} & \mathrm{Q} & \mathrm{F} & \mathrm{N}\end{array}$ SalI GGTGGAGGCGGTGGGG
61. ----------+----------+- 81 CCACCTCCGCCACCCCAGCT
a $\begin{array}{llllllll}G & G & G & G & G & V & D & -\end{array}$

FIG. 4E

```
9) AGP3-12-10-a
            NdeI
            |.
            TATGTTCCACGACTGTAAATACGACCTGCTGACTCGTCAGATGGTTTGTCACGGTCTG
        1 ---------+----------+----------+--------------------------------------
            ACAAGGTGCTGACATTTATGCTGGACGACTGAGCAGTCTACCAAACAGTGCCAGAC
a
\(\begin{array}{lllllllllllllllllll}M & F & H & D & C & K & Y & D & L & L & T & R & Q & M & V & C & H & G & L\end{array}\)
SalI
        GGTGGAGGCGGTGGGG
    61 ----------+---------+---
        CCACCTCCGCCACCCCAGCT
a
G \(\quad\) G \(\quad\) G \(\quad\) G \(\quad G \quad V \quad D\)
10)
```

```
    AGP3-12-11-a
```

 AGP3-12-11-a
 NdeI
 NdeI
 |
 |
 TATGCGTAACCACTGTTTCTGGGACCACCTGCTGAAACAGGACATCTGTCCGTCTCCG
 TATGCGTAACCACTGTTTCTGGGACCACCTGCTGAAACAGGACATCTGTCCGTCTCCG
 1
 1 ----------+---------+---------+----------+-----------------------
 ACGCATTGGTGACAAAGACCCTGGTGGACGACTTTGTCCTGTAGACAGGCAGAGGC
    ```
a
\begin{tabular}{llllllllllllllllllll}
\(M\) & \(R\) & \(N\) & \(H\) & \(C\) & \(F\) & \(W\) & \(D\) & \(H\) & \(L\) & \(L\) & \(K\) & \(Q\) & \(D\) & \(I\) & \(C\) & \(P\) & \(S\) & \(P\) & -
\end{tabular} SalI

GGTGGAGGCGGTGGGG
61
---------+---------+- 81 CCACCTCCGCCACCCCAGCT
a
```

 G G G G G V D -
    ```

FIG．4F

11
a
12）
a
a
    1
a
a
12)
    AGP3-12-14-a
        NdeI
            TATGGCTAACCAGTGTTGGTGGGACTCTCTGCTGAAAAAAAACGTTTGTGAATTCTTC

        ACCGATTGGTCACAACCACCCTGAGAGACGACTTTTTTTTGCAAACACTTAAGAAG
            \(\begin{array}{lllllllllllllllllllll}M & A & N & Q & C & W & W & D & S & L & L & K & K & N & V & C & E & F & F & -\end{array}\)
                        SalI
        GGTGGAGGCGGTGGGG
    61 ---------+ー--------+--1 81
        CCACCTCCGCCACCCCAGCT
        \(\begin{array}{llllllll}G & G & G & G & G & V & D & -\end{array}\)
    AGP3 Consensus
            NdeI
            NdeI
            TATGTTCCACGACTGCAAATGGGACCTGCTGACCAAACAGTGGGTTTGCCACGGTCTG

        gtATACAAGGTGCTGACGTTTACCCTGGACGACTGGTTTTGTCACCCAAACGGTGCCAGAC

61
        --------+ー-ー--------- 81 CCACCTCCGCCACCCCAGCT

FIG. 5A
\(P\)
f
1
1
1
0
8
\(I\) GATCAGCAGTCCCCGGAACATCGTAGCTGACGCCTTCGCGTTGCTCAGTTGTCCAACCCC

1 CTAGTCGTCAGGGGCCTTGTAGCATCGACTGCGGAAGCGCAACGAGTCAACAGGTTGGGG GGAAACGGGAAAAAGCAAGTTTTCCCCGCTCCCGGCGTTTCAATAACTGAAAACCATACT
 ССTTTGCCCTTTTTCGTTCAAAAGGGGCGAGGGCCGCAAAGTTATTGACTTTTGGTATGA

B
\(g\)
1
I
\(I\)
ATTTCACAGTTTAAATCACATTAAACGACAGTAATCCCCGTTGATTTGTGCGCCAACACA
121 -2-1.-+-1 180 TAAAGTGTCAAATTTAGTGTAATTTGCTGTCATTAGGGGCAACTAAACACGCGGTTGTGT
-35 -10
 GATCTTCGTCACAATTCTCAAGTCGCTGATTTCAAAAAACTGTAGTATCCTCTGCGAAAC
 CTAGAAGCAGTGTTAAGAGTTCAGCGACTAAAGTTTTTTGACATCATAGGAGACGCTTTG
|--> mRNA start

GATCCCTGTTTGAGTATTGAGGAGGCGAGATGTCGCAGACAGAAAATGCAGTGACTTCCT
 CTAGGGACAAACTCATAACTCCTCCGCTCTACAGCGTCTGTCTTTTACGTCACTGAAGGA \(\begin{array}{llllllllllll}M & S & Q & T & E & N & A & V & T & S & S & -\end{array}\) --- copB protein --->
CATTGAGTCAAAAGCGGTTTGTGCGCAGAGGTAAGCCTATGACTGACTCTGAGAAACAAA
 GTAACTCAGTTTTCGCCAAACACGCGTCTCCATTCGGATACTGACTGAGACTCTTTGTTT
 TGGCCGTTGTTGCAAGAAAACGTCTTACACACAAAGAGATAAAAGTTTTTGTCAAAAATC
361 - 420 ACCGGCAACAACGTTCTTTTGCAGAATGTGTGTTTCTCTATTTTCAAAAACAGTTTTTAG
 S c a CTCTGAAGGATCTCATGGTTGAGTACTGCGAGAGAGAGGGGATAACACAGGCTCAGTTCG
 GAGACTTCCTAGAGTACCAACTCATGACGCTCTCTCTCCCCTATTGTGTCCGAGTCAAGC


FIG. 5B


FIG. 5C

TGCGTCGTCGGGCTATTGATGCGCTCTTGCAGGGGCTGTGTTTCCACTATGACCCGCTGG
 ACGCAGCAGCCCGATAACTACGCGAGAACGTCCCCGACACAAAGGTGATACTGGGCGACC
 CCAACCGCGTCCAGTGCTCCATCACCACGCTGGCCATTGAGTGCGGACTGGCGACGGAGT
1081 GGTTGGCGCAGGTCACGAGGTAGTGGTGCGACCGGTAACTCACGCCTGACCGCTGCCTCA \(\begin{array}{llllllllllllllllllll}N & R & V & Q & C & S & I & T & T & L & A & I & E & C & G & I & A & T & E & S\end{array}\)
\(\qquad\)

TCGCCATTCATGTGGCGCACGCCCGTTCGCGTGATCTGCGTCGCCGTATGCCACCAGTGC
 AGCGGTAAGTACACCGCGTGCGGGCAAGCGCACTAGACGCAGCGGCATACGGTGGTCACG1020

```

1080

``` 1140 CTGCTGCCGGAAAACTCTCCATCACCCGTGCCACCCGTGCCCTGACGTTCCTGTCAGAGC
1141
 1200 GACGACGGCCTTTTGAGAGGTAGTGGGCACGGTGGGCACGGGACTGCAAGGACAGTCTCG
 TGGGACTGATTACCTACCAGACGGAATATGACCCGCTTATCGGGTGCTACATTCCGACCG
    ACCCTGACTAATGGATGGTCTGCCTTATACTGGGCGAATAGCCCACGATGTAAGGCTGGC
    \(\begin{array}{lllllllllllllllll}G & I & I & T & Y & Q & T & E & Y & D & P & L & I & G & C & Y & I \\ P & T & D & -\end{array}\) ATATCACGTTCACATCTGCACTGTTTGCTGCCCTCGATGTATCAGAGGAGGCAGTGGCCG
 TATAGTGCAAGTGTAGACGTGACAAACGACGGGAGCTACATAGTCTCCTCCGTCACCGGC
 CCGCGCGCCGCAGCCGTGTGGTATGGGAAAACAAACAACGCAAAAAGCAGGGGCTGGATA
1321

    GGCGCGCGGCGTCGGCACACCATACCCTTTTGTTTGTTGCGTTTTTCGTCCCCGACCTAT
 CCCTGGGCATGGATGAACTGATAGCGAAAGCCTGGCGTTTTGTTCGTGAGCGTTTTCGCA
 GGGACCCGTACCTACTTGACTATCGCTTTCGGACCGCAAAACAAGCACTCGCAAAAGCGT
\(\begin{array}{lllllllllllllllllllll}I & G & M & D & E & I & I & A & K & A & W & R & F & V & R & E & R & F & R & S & -\end{array}\)
A f
I
I
I
GTTATCAGACAGAGCTTAAGTCCCGTGGAATAAAGCGTGCCCGTGCGCGTCGTGATGCGG
1441 -


FIG. 5D
ACAGGGAACGTCAGGATATTGTCACCCTGGTGAAACGGCAGCTGACGCGCGAAATCGCGG

TGTCCCTTGCAGTCCTATAACAGTGGGACCACTTTGCCGTCGACTGCGCGCTTTAGCGCC

AAGGGCGCTTCACTGCCAATCGTGAGGCGGTAAAACGCGAAGTTGAGCGTCGTGTGAAGG
1561
TTCCCGCGAAGTGACGGTTAGCACTCCGCCATTTTGCGCTTCAACTCGCAGCACACTTCC
\(\begin{array}{llllllllllllllllllll}G & R & F & T & A & N & R & E & A & V & K & R & E & V & E & R & R & V & K & E\end{array}\)
AGCGCATGATTCTGTCACGTAACCGTAATTACAGCCGGCTGGCCACAGCTTCCCCCTGAA
1621
TCGCGTACTAAGACAGTGCATTGGCATTAATGTCGGCCGACCGGTGTCGAAGGGGGACTT
\(\begin{array}{lllllllllllllllllll}R & M & I & L & S & R & N & R & N & Y & S & R & L & A & T & A & S & P & \text { * }\end{array}\)
AGTGACCTCCTCTGAATAATCCGGCCTGCGCCGGAGGCTTCCGCACGTCTGAAGCCCGAC
1681 TCACTGGAGGAGACTTATTAGGCCGGACGCGGCCTCCGAAGGCGTGCAGACTTCGGGCTG
\begin{tabular}{l}
P \\
f \\
I \\
M \\
\hline
\end{tabular}
AGCGCACAAAAAATCAGCACCACATACAAAAAACAACCTCATCATCCAGCTTCTGGTGCA
1741 TCGCGTGTTTTTTAGTCGTGGTGTATGTTTTTTGTTGGAGTAGTAGGTCGAAGACCACGT

TCCGGCCCCCCCTGTTTTCGATACAAAACACGCCTCACAGACGGGGAATTTTGCTTATCC
1801
AGGCCGGGGGGGACAAAAGCTATGTTTTGTGCGGAGTGTCTGCCCCTTAAAACGAATAGG

1861
TGTAATTTGACGTTCCCTGAAGGGGTATTCCAATGTTGGCAAGTACAGTATTTCGCGGTA
 CCGCCAGCGTTACAGGGTGCAATGTATCTTTTAAACACCTGTTTATATCTCCTTTTAAACT GGCGGTCGCAATGTCCCACGTTACATAGAAAATTTGTGGACAAATATAGAGGAAATTTGA
-------------------------------------1
ACTTAATTACATTCATTTAAAAAGAAAACCTATTCACTGCCTGTCCTTGGACAGACAGAT

ATGCACCTCCCACCGCAAGCGGCGGGCCCCTACCGGAGCCGCTTTAGTTACAACACTCAG
 TACGTGGAGGGTGGCGTTCGCCGCCCGGGGATGGCCTCGGCGAAATCAATGTTGTGAGTC
\(\begin{array}{lllllllllllllllllll}M & H & I & P & P & Q & A & A & G & P & Y & R & S & R & F & S & Y & N & T\end{array}\) --- repA4 protein ---> |-------->

ACACAACCACCAGAAAAACCCCGGTCCAGCGCAGAACTGAAACCACAAAGCCCCTCCCTC
 2160
TGTGTTGGTGGTCTTTTTGGGGCCAGGTCGCGTCTTGACTTTGGTGTTTCGGGGAGGGAG ATAACTGAAAAGCGGCCCCGCCCCGGTCCGAAGGGCCGGAACAGAGTCGCTTTTAATTAT
 TATTGACTTMTCGCCGGGGCGGGGCCAGGCTTCCCGGCCTTGTCTCAGCGAAAATTAATA
I
T E

FIG. 5E

GAATGTTGTAACTACTTCATCATCGCTGTCAGTCTTCTCGCTGGAAGTTCTCAGTACACG
 CTTACAACATTGATGAAGTAGTAGCGACAGTCAGAAGAGCGACCTTCAAGAGTCATGTGC
 BS gf li / CTCGTAAGCGGCCCTGACGGCCCGCTAACGCGGAGATACGCCCCGACTTCGGGTAAACCC
 GAGCATTCGCCGGGACTGCCGGGCGATTGCGCCTCTATGCGGGGCTGAAGCCCATTTGGG
 TCGTCGGGACCACTCCGACCGCGCACAGAAGCTCTCTCATGGCTGAAAGCGGGTATGGTC
 AGCAGCCCTGGTGAGGCTGGCGCGTGTCTTCGAGAGAGTACCGACTTTCGCCCATACCAG
 TGGCAGGGCTGGGGATGGGTAAGGTGAAATCTATCAATCAGTACCGGCTTACGCCGGGCT
 ACCGTCCCGACCCCTACCCATTCCACTTTAGATAGTTAGTCATGGCCGAATGCGGCCCGA W \(\quad \mathrm{Q} \quad \mathrm{G} \quad \mathrm{W} \quad \mathrm{G} \quad \mathrm{W} \quad \mathrm{V} \quad \mathrm{R}\) *

B
S
t
E
I
I
TCGGCGGTTTTACTCCTGTTTCATATATGAAACAACAGGTCACCGCCTTCCATGCCGCTG
 AGCCGCCAAAATGAGGACAAAGTATATACTTTGTTGTCCAGTGGCGGAAGGTACGGCGAC

B
S
p
\(L\)
\(U\)
\(U\)
1
\(I\)
\(I\)
ATGCGGCATATCCTGGTAACGATATCTGAATTGTTATACATGTGTATATACGTGGTAATG
2521 TACGCCGTATAGGACCATTGCTATAGACTTAACAATATGTACACATATATGCACCATTAC ACAAAAATAGGACAAGTTAAAAATTTACAGGCGATGCAATGATTCAAACACGTAATCAAT
2581 TGTTTTTATCCTGTTCAATTTTTAAATGTCCGCTACGTTACTAAGTTTGTGCATTAGTTA ATCGGGGGTGGGCGAAGAACTCCAGCATGAGATCCCCGCGCTGGAGGATCATCCAGCCGG
2641 TAGCCCCCACCCGCTTCTTGAGGTCGTACTCTAGGGGCGCGACCTCCTAGTAGGTCGGCC

CGTCCCGGAAAACGATTCCGAAGCCCAACCTTTCATAGAAGGCGGCGGTGGAATCGAAAT
2701 GCAGGGCCTTTTGCTAAGGCTTCGGGTTGGAAAGTATCTTCCGCCGCCACCTTAGCTTTA
```

N	B
s	p
p	I

CTCGTGATGGCAGGTTGGGCGTCGCTTGGTCGGTCATTTCGAACCCCAGAGTCCCGCTCA
2761 GAGCACTACCGTCCAACCCGCAGCGAACCAGCCAGTAAAGCTTGGGGTCTCAGEGCGAGT GAAGAACTCGTCAAGAAGGCGATAGAAGGCGATGCGCTGCGAATCGGGAGCGGCGATACC

```

CTTCTTGAGCAGTTCTTCCGCTATCTTCCGCTACGCGACGCTTAGCCCICGCCGCTATGG

``` <--- APHII protein [kanamycin resistance gene] ---
GTAAAGCACGAGGAAGCGGTCAGCCCATTCGCCGCCAAGCTCTTCAGCAATATCACGGGT
2881 CATTTCGTGCTCCTTCGCCAGTCGGGTAAGCGGCGGTTCGAGAAGTCGTTATAGTGCCCA

```

    TCGGTTGCGATACAGGACTATCGCCAGGCGGTGTGGGTCGGCCGGTGTCAGCTACTTAGG
    ```

```

    AGAAAAGCGGCCATTTTCCACCATGATATTCGGCAAGCAGGCATCGCCATGAGTCACGAC
    3001
        ---------+---------+--------+-----------------------------------
        3060
    TCTTTTCGCCGGTAAAAGGTGGTACTATAAGCCGTTCGTCCGTAGCGGTACTCAGTGCTG
        S F
        GAGATCCTCGCCGTCGGGCATGCGCGCCTTGAGCCTGGCGAACAGTTCGGCTGGCGCGAG
    3061 ---------+---------+---------+------------------------------------
    CTCTAGGAGCGGCAGCCCGTACGCGCGGAACTCGGACCGCTTGTCAAGCCGACCGCGCTC
        L D E E G D D P M M R A A K L L R R A F
        CCCCTGATGCTCTTCGTCCAGATCATCCTGATCGACAAGACCGGCTTCCATCCGAGTACG
    ```

```

        GGGGACTACGAGAAGCAGGTCTAGTAGGACTAGCTGTTTCTGGCCGAAGGTAGGCTCATGC 
        TGCTCGCTCGATGCGATGTTTCGCTTGGTGGTCGAATGGGCAGGTAGCCGGATCAAGCGT
            3181 ---------+---------+---------+------------------------------------
        3240
    ACGAGCGAGCTACGCTACAAAGCGAACCACCAGCTTACCCGTCCATCGGCCTAGTTCGCA
        A R R E I I R F F K A Q Q H D D F F P
        ATGCAGCCGCCGCATTGCATCAGCCATGATGGATACTTTTCTCGGCAGGAGCAAGGTGAGA
    3241 ---------+--------+---------+------------------------------------
        TACGTCGGCGGCGTAACGTAGTCGGTACTACCTATGAAAGAGCCGTCCTCGTTCCACTCT
        H
        TGACAGGAGATCCTGCCCCGGCACTTCGCCCAATAGCAGCCAGTCCCTTCCCGCTTCAGT
            3301.
        ------------------------------------------------------------
    ```

```

        GACAACGTCGAGCACAGCTGCGCAAGGAACGCCCGTCGTGGCCAGCCACGATAGCCGCGC
            3 3 6 1
        -------+---------+---------+---------+--------------------------
        CTGTTGCAGCTCGTGTCGACGCGTTCCTTGCGGGCAGCACCGGTCGGTGCTATCGGCGCG
            V V V D I F V A A A Clllllllllll
        TGCCTCGTCCTGCAATTCATTCAGGACACCGGACAGGTCGGTCTTGACAAAAAGAACCGG
            3421
        ---------+---------+---------+---------+--------------------------
    ```

FIG. 5G
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{} \\
\hline
\end{tabular} GCGCCCCTGCGCTGACAGCCGGAACACGGCGGCATCAGAGCAGCCGATTGTCTGTTGTGC
3481 CGCGGGGACGCGACTGTCGGCCTTGTGCCGCCGTAGTCTCGTCGGCTAACAGACAACACG

CCAGTCATAGCCGAATAGCCTCTCCACCCAAGCGGCCGGAGAACCTGCGTGCAATCCATC
GGTCAGTATCGGCTTATCGGAGAGGTGGGTTCGCCGGCCTCTTGGACGCACGTTAGGTAG

TTGTTCAATCATGCGAAACGATCCTCATCCTGTCTCTTGATCTGATCTTGATCCCCTGCG
3601 AACAAGTTAGTACGCTTTGCTAGGAGTAGGACAGAGAACTAGACTAGAACTAGGGGACGC

<--- mRNA APHII --- -10
CCATCAGATCCTTGGCGGCAAGAAAGCCATCCAGTTTACTTTGCAGGGCTTCCCAACCTT
3661 GGTAGTCTAGGAACCGCCGTTCTTTCGGTAGGTCAAATGAAACGTCCCGAAGGGTTGGAA

 TGGTCTCCCGCGGGGTCGACCGTTAAGGCCAAGCGAACGACAGGTATTTTGGCGGGTCAG TAGCTATCGCCATGTAAGCCCACTGCAAGCTACCTGCTTTCTCTTTGCGCTTGCGTTTTC
 ATCGATAGCGGTACATTCGGGTGACGTTCGATGGACGAAAGAGAAACGCGAACGCAAAAG CCTTGTCCAGATAGCCCAGTAGCTGACATTCATCCGGGGTCAGCACCGTTTCTGCGGACT
3841 GGAACAGGTCTATCGGGTCATCGACTGTAAGTAGGCCCCAGTCGTGGCAAAGACGCCTGA GGCTTTCTACGTGTTCCGCTTCCTTTAGCAGCCCTTGCGCCCTGAGTGCTTGCGGCAGCG
 CCGAAAGATGCACAAGGCGAAGGAAATCGTCGGGAACGCGGGACTCACGAACGCCGTCGC
|------ par locus
TGAAGCTACATATATGTGATCCGGGCAAATCGCTGAATATTCCTTTTGTCTCCGACCATC
 4020 ACTTCGATGTATATACACTAGGCCCGTTTAGCGACTTATAAGGAAAACAGAGGCTGGTAG

 TCCGTGGACTCAGCGACAGAAAAAGCACTGTAAGTCAAGCGACGCGAGTGCCGAGACCGT
------------------------- par locus

FIG. 5H
GTGAATGGGGGTAAATGGCACTACAGGCGCCTTTTATGGATTCATGCAAGGAAACTACCC
 CACTTACCCCCATTTACCGTGATGTCCGCGGAAAATACCTAAGTACGTTCCTTTTGATGGG
------------------------- par locus
ATAATACAAGAAAAGCCCGTCACGGGCTTCTCAGGGCGTTTTATGGCGGGTCTGCTATGT
 TATTATGTTCTTTTCGGGCAGTGCCCGAAGAGTCCCGCAAAATACCGCCCAGACGATACA
------------------------ par locus
GGTGCTATCTGACTTTTTGCTGTTCAGCAGTTCCTGCCCTCTGATTTTCCAGTCTGACCA
4201 CCACGATAGACTGAAAAACGACAAGTCGTCAAGGACGGGAGACTAAAAGGTCAGACTGGT
------------------------ par locus CTTCGGATTATCCCGTGACAGGTCATTCAGACTGGCTAATGCACCCAGTAAGGCACCCC
 GAAGCCTAATAGGGCACTGTCCAGTAAGTCTGACCGATTACGTGGGTCATTCCGTCGCCA

ATCATCAACAGGCTTACCCGTCTTACTGTCGAAGACGTGCGTAACGTATGCATGGTCTCC
4321
TAGTAGTTGTCCGAATGGGCAGAATGACAGCTTCTGCACGCATTGCATACGTACCAGAGG

T1 hairpin
CCATGCGAGAGTAGGGAACTGCCAGGCATCAAATAAAACGAAAGGCTCAGTCGAAAGACT
 GGTACGCTCTCATCCCTTGACGGTCCGTAGTTTATTTTGCTTTCCGAGTCAGCTTTCTGA

GGGCCTTTCGTTTTATCTGTTGTTTGTCGGTGAACGCTCTCCTGAGTAGGACAAATCCGC
 CCCGGAAAGCAAAATAGACAACAAACAGCCACTTGCGAGAGGACTCATCCTGTTTAGGCG -- T1 stop -->|
\(P\)
\(S\)
\(p\)
\(p\)
1
4
0
6
\(I\)
CGGGAGCGGATTTGAACGTTGCGAAGCAACGGCCCGGAGGGTGGCGGGCAGGACGCCCGC
4501 GCCCTCGCCTAAACTTGCAACGCTTCGTTGCCGGGCCTCCCACCGCCCGTCCTGCGGGCG

T2 hairpin
CATAAACTGCCAGGCATCAAATTAAGCAGAAGGCCATCCTGACGGATGGCCTTTTTGCGT
 GTATTTGACGGTCCGTAGTTTAATTCGTCTTCCGGTAGGACTGCCTACCGGAAAAACGCA ---- T2 stop ---->|

FIG. 5I
```

                                    A
                                    a
                                    t
                                    I
        TTCTACAAACTCTTTTGTTTATTTTTCTAAATACATTCAAATATGGACGTCGTACTTAAC
    4621 ---------+--------+--------+----------------------------------
        AAGATGTTTGAGAAAACAAATAAAAAGATTTATGTAAGTTTATACCTGCAGCATGAATTG
        TTTTAAAGTATGGGCAATCAATTGCTCCTGTTAAAATTGCTTTAGAAATACTTTGGCAGC
    ```

```

    * S. S K F Y F P
    |<--- luxR protein ---
    GGTTTGTTTGTATTGAGTTTCATTTGCGCATTGGTTAAATGGAAAGTGACCGTGCGCTTAC
    4741 ---------+---------+---------+------------------------------------4}480
    CCAAACAACATAACTCAAAGTAAACGCGTAACCAATTTACCTTTCACTGGCACGCGAATG
    R
    TACAGCCTAATATTTTTGAAATÄTCCCAAGAGCTTTTTTCCTTCGCATGCCCACGCTAAAC
    4801 --------+-------------+--------------------------------}486
        ATGTCGGATTATAAAAACTTTATAGGGTTCTCGAAAAAGGAAGCGTACGGGTGCGATTTG
    S Cllllllllllllllllllllllllll
    ATTCTTTMTTCTCTTTTGGTTAAATCGTTGITTGATTTATTATTTGCTATATTTATTTTTC
    4861 ---------+----------+---------+---------+-------------------------
        4920
    TAAGAAAAAGAGAAAACCAATTTAGCAACAAACTAAATAATAAACGATATAAATAAAAAG
    GATAATTATCAACTAGAGAAGGAACAATTAATGGTATGTTCATACACGCATGTAAAAATA
    4 9 2 1
    ```

```

    R
                                    B
                                    s
                                    m
    AACTATCTATATAGTTGTCTTTCTCTGAATGTGCAAAACTAAGCATTCCGAAGCCATTAT
    ```

```

    TTGATAGATATATCAACAGAAAGAGACTTACACGTTTTGGATTCGTAAGGCTTCGGTAATA
    L
    TAGCAGTATGAATAGGGAAACTAAACCCAGTGATAAGACCTGATGATTTCGCTTCTTTAA
    ```


```

    TTACATTTGGAGATTTTTTATTTACAGCATTGTTTTCAAATATATTCCAATTAATCGGTG
    5101 ---------+---------+-----------------------------------------------}516
    AATGTAAACCTCTAAAAAATAAATGTCGTAACAAAAGTTTATATAAGGTTAATTTAGCCAC
    I V N N Plllllllllllllllllllllllll
    AATGATTGGAGTTAGAATAATCTACTATAGGATCATATTTTATTAAATTAGCGTCATCAT
    5161
        ---------+---------+---------+----------+---------------------------
    TTACTAACCTCAATCTTATTAGATGATATCCTAGTATAAAATAATTTAATCGCAGTAGTA
    S H N N S N S I Y D V V INClllllllllllllll
    ```

\section*{FIG. 5J}

AATATTGCCTCCATTTTTTAGGGTAATTATCCAGAATTGAAATATCAGATTTAACCATAG

TTATAACGGAGGTAAAAAATCCCATTAATAGGTCTTAACTTTATAGTCTAAATTGGTATC

N
\(r\)
I
AATGAGGATAAATGATCGCGAGTAAATAATATTCACAATGTACCATTTTAGTCATATCAG

ATAAGCATTGATTAATATCATTATTGCTTCTACAGGCTTTAATITTATTAATTATTCTGT
 TATTCGTAACTAATTATAGTAATAACGAAGATGTCCGAAATTAAAATAATTAATAAGACA

AAGTGTCGTCGGCATTTATGTCTTTCATACCCATCTCTTTATCCTTACCTATTGTTTGTC
 TTCACAGCAGCCGTAAATACAGAAAGTATGGGTAGAGAAATAGGAATGGATAACAAACAG \(\begin{array}{llllllllll} & Y & \mathrm{~T} & \mathrm{D} & \mathrm{A} & \mathrm{N} & \mathrm{I} & \mathrm{D} & \mathrm{K} & \mathrm{M}\end{array}\) <---- luxR protein ---|

GCAAGTTTTGCGTGTTATATATCATTAAAACGGTAATAGATTGACATTTGATTCTAATAA
5461
CGTTCAAAACGCACAATATATAGTAATTTTGCCATTATCTAACTGTAAACTAAGATTATT

luxR mRNA start sites
CRP Binding Site

 TAACCTAAAACAGTGTGATAATATAGCGAACTTTATGTTAACAAATTGTATTCATGGAC
 TAGGATCGTACAGGTTTACGCAAGAAAATGGTTTGTTATAGTCGATTAATCGATTTGATT
 ATCCTAGCATGTCCAAATGCGTTCTTTTACCAAACAATATCAGCTAATTAGCTAAACTAA \(\mid-\ldots\) 1209-85 -....---> \(\mid--\) mRNA start --> CTAGATTTGTTTTAACTAATTAAAGGAGGAATAACATATGATCGCTCCACCATGCACCAG
 GATCTAAACAAAATTGATTAATTTCCTCCTTATTGTATACTAGCGAGGTGGTACGTGGTC
b
b

TGAGAAGCATTATGAGCATCTGGGACGGTGCTGTAACAAATGTGAACCAGGAAAGTACAT
5701
 ACTCTTCGTAATACTCGTAGACCCTGCCACGACATTGTTTACACTTGGTCCTTTCATGTA
\[
\begin{array}{lllllllllllllllllllll}
\mathrm{E} & \mathrm{~K} & \mathrm{H} & \mathrm{Y} & \mathrm{E} & \mathrm{H} & \mathrm{~L} & \mathrm{G} & \mathrm{R} & \mathrm{C} & \mathrm{C} & \mathrm{~N} & \mathrm{~K} & \mathrm{C} & \mathrm{E} & \mathrm{P} & \mathrm{G} & \mathrm{~K} & \mathrm{Y} & \mathrm{M} & -
\end{array}
\]

FIG. 5K

GTCTTCTAAATGCACTACTACCTCTGACAGTGTATGTCTGCCCTGTGGCCCGGATGAATA
 CAGAAGATTTACGTGATGATGGAGACTGTCACATACAGACGGGACACCGGGCCTACTTAT
 CTTGGATAGCTGGAATGAAGAAGATAAATGCTTGCTGCATAAAGTTTTGTGATACAGGCAA
 GAACCTATCGACCTTACTTCTTCTATTTACGAACGACGTATTTCAAACACTATGTCCGTT
\[
\begin{array}{lllllllllllllllllllll}
I & D & S & W & N & E & E & D & K & C & I & I & H & K & V & C & D & T & G & K & -
\end{array}
\]

 CCGGGACCACCGGCACCAGCGGCCGTTGTCATGCTGGGGGGCCGCGACGCGCACGTGCCG
\(\begin{array}{llllllllllllllllllllll}A & L & V & A & V & V & A & G & N & S & T & T & P & R & R & C & A & C & T & A & -\end{array}\) KpnI
Acc65I
TGGGTACCACTGGAGCCAGGACTGCGAGTGCTGCCGCCGCAACACCGAGTGCGCGCCGGG
 ACCCATGGTGACCTCGGTCCTGACGCTCACGACGGCGGCGTTGTGGCTCACGCGCGGCCC
\(\begin{array}{lllllllllllllllllllll}G & Y & H & W & S & Q & D & C & E & C & C & R & R & N & T & E & C & A & P & G & -\end{array}\) CCTGGGCGCCCAGCACCCGTTGCAGCTCAACAAGGACACAGTGTGCAAACCTTGCCTTGC
 6060
 AGGCTACTTCTCTGATGCCTTTTCCTCCACGGACAAATGCAGACCCTGGACCAACTGTAC
6061 AGGCTACT TCCGATGAAGAGACTACGGAAAAGGAGGTGCCTGTTTACGTCTGGGACCTGGTTGACATG
\(\begin{array}{llllllllllllllllllll}G & Y & F & S & D & A & F & S & S & T & D & K & C & R & P & W & T & N & C & T\end{array}\) CTTCCTTGGAAAGAGAGTAGAACATCATGGGACAGAGAAATCCGATGTGGTTTTGCAGTTC
 GAAGGAACCTTTCTCTCATCTTGTAGTACCCTGTCTCTTTAGGCTACACCAAACGTCAAG
\(\begin{array}{lllllllllllllllllllll} & F & L & G & K & R & V & E & H & H & G & T & E & K & S & D & V & V & C & S & S\end{array}\) AccI
SalI
\(\mid\) TTCTCTGCCAGCTAGAAAACCACCAAATGAACCCCATGTTTACGTCGACAAAACTCACAC
 AAGAGACGGTCGATCTTTTGGTGGTTTACTTGGGGTACAAATGCAGCTGTTTTGAGTGTG
<-- end RANK --||--start Fc--->

FIG. 5L

\begin{tabular}{llllllllllllllllllll}
C & \(P\) & \(P\) & \(C\) & \(P\) & \(A\) & \(P\) & \(E\) & \(L\) & \(L\) & \(G\) & \(G\) & \(P\) & \(S\) & \(V\) & \(F\) & \(L\) & \(F\) & \(P\) & \(P\)
\end{tabular}
BsphI
AAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGA TTTTGGGTTCCTGTGGGAGTACTAGAGGGCCTGGGGACTCCAGTGTACGCACCACCACCTCGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCA6420GCACTCGGTGCTTCTGGGACTCCAGTTCAAGTTGACCATGCACCTGCCGCACCTCCACGT

 ATTACGGTTCTGITTCGGCGCCCTCCTCGTCATGTTGTCGTGCATGGCACACCAGTCGCA

6481
 GGAGTGGCAGGACGTGGTCCTGACCGACTTACCGTTCCTCATGTTCACGTTCCAGAGGTT

CAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGA
6541
 GTTTCGGGAGGGTCGGGGGTAGCTCTTTTGGTAGAGGTTTCGGTTTCCCGTCGGGGCTCT
\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{K} \\
\hline \\
\hline
\end{tabular}

 6660 TGGTGTCCACATGTGGGACGGGGGTAGGGCCCTACTCGACTGGTTCTTGGTCCAGTCGGA GACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGG
6661 CTGGACGGACCAGTTTCCGAAGATAGGGTCGCTGTAGCGGCACCTCACCCTCTCGTTACC \(\begin{array}{lllllllllllllllllllll}T & C & L & V & K & G & F & Y & P & S & D & I & A & V & E & W & E & S & N & G & -\end{array}\) GCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTT
 CGTCGGCCTCTTGTTGATGTTCTGGTGCGGAGGGCACGACCTGAGGCTGCCGAGGAAGAA

FIG．5M
b

B1pI

GTTGGCTGCTGCCACCGCTGAGCAATAACTAGCATAACCCCTTGGGGCCTCTAAACGGGT
 CAACCGACGACGGTGGCGACTCGTTATTGATCGTATTGGGGAACCCCGGAGATTTTGCCCA
くーーーーーー 。 ，－－－＞
CTTGAGGGGTTTTTTGCTGAAAGGAGGAACCGCTCTTCACGCTCTTCACGCGGATAAATA
7021
GAACTCCCCAAAAAACGACTTTCCTCCTTGGCGAGAAGTGCGAGAAGTGCGCCTATTTAT －T7 stop－－－－＞｜
toop hairpin
－－－－－－－－－＞
AGTAACGATCCGGTCCAGTAATGACCTCAGAACTCCATCTGGATTTGTTCAGAACGCTCG
7081
TCATTGCTAGGCCAGGTCATTACTGGAGTCTTGAGGTAGACCTAAACAAGTCTTGCGAGC
toop hairpin
＜－－－－－－－－－－－－－－－－－－
GTTGCCGCCGGGCGTTTTTTATTGGTGAGAATCGCAGCAACTTGTCGCGCCAATCGAGCC
7141 － CAACGGCGGCCCGCAAAAAATACCACTCTTAGCGTCGTTGAACAGCGCGGTTAGCTCGG －－toop stop \(-->\mid\)

ATGTCGTCGTCAACGACCCCCCATTCAAGAACAGCAAGCAGCATTGAGAACTTTGGAATC
7201 TACAGCAGCAGTTGCTGGGGGGTAAGTTCTTGTCGTTCGTCGTAACTCTTGAAACCTTAG

CAGTCCCTCTTCCACCTGCTGACCG
7261 －－－－－－－－－－＋－－－－－－－－－－＋－－－－－－ 7285 GTCAGGGAGAAGGTGGACGACTGGC
 -- toop stop -->|
 TACAGCAGCAGTTGCTGGGGGGAAGTTCTTGTCGTTCGTCGTAACTCTTGAACCTTAG 7260

\section*{FIG. 6A}
\begin{tabular}{|c|c|}
\hline & \\
\hline & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
-CCATGCGAGAGTAGGGAACTGCCAGGCATCAAATAAAACGAAAGGCTCAGTCGAAAGACT- \\
-GGTACGCTCTCATCCCTTGACGGTCCGTAGTTTATTTTGCTTTCCGAGTCAGCTTTCTGA-
\end{tabular}}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{GGCCTTTCGT'TTTATC} \\
\hline & \\
\hline \multicolumn{2}{|l|}{-CGGGAGCGGATTTGAAC} \\
\hline \multicolumn{2}{|l|}{-GCCCTCGCCTAAACTTGCAACGCTTCGTTTGCCGGGCCTCCCACCGCCCGTCCTGCGGGCG-} \\
\hline \multicolumn{2}{|l|}{tadactgccagcca} \\
\hline \multicolumn{2}{|l|}{TATTTGACGGTCCGTAGTTPAATTCGTCTTCCGGTAGGACTGCCTACCGGAAAAACGCA-} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{3}{*}{\begin{tabular}{l}
AatII \\
-TTCTACAAACTCTTTTGTTTATTTTTCTAAATACATTCAAATATGGACGTCGTACTTAAC- \\
-AAGATGTTTGAGAAAACAAATAAAAAGATTTATGTAAGTTTATACCTGCAGCATGAATTG-
\end{tabular}}} \\
\hline & \\
\hline & \\
\hline \multicolumn{2}{|l|}{-TTTTAAAGTATGGGCAATCAATTGCTECTGTTAAAATTGCTTTAGAAATACTTTGGCAGC-} \\
\hline \multicolumn{2}{|l|}{-AAAATTTCATACCCGTTAGTTAACGAGGACAATTTTAACGAAATCTTTTATGAAACCGTCG-} \\
\hline \multicolumn{2}{|l|}{-} \\
\hline \multicolumn{2}{|l|}{-C} \\
\hline \multicolumn{2}{|l|}{-TACAGCCTAATATTTTTGAAATATCCCAAGAGCTTTTTCCTTCGCATGCCCACGCTAAAC-} \\
\hline \multicolumn{2}{|l|}{-ATGTCGGATTATAAAAACTTTATAGGGTTCTCGAAAAAGGAAGCGTACGGGTGCGATTTG-} \\
\hline \multicolumn{2}{|l|}{-} \\
\hline \multicolumn{2}{|l|}{-T} \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{-GATAATTATCAACTAGAGAAGGAACAATTAATGGTATGTTCATACACGCATGTAAAAATA-} \\
\hline \multicolumn{2}{|l|}{- AACTATCTATATAGTTGTCTTTCTCTGAATGTGCAAAACTAAGCATTCCGAAGCCATTAT-} \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{-} \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{-AATGTAAACCTCTAAAAAATAAATGTCGTAACAAAAGTTTATATAAGGTTAATTAGCCAC-}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{-AATAM} \\
\hline \multicolumn{2}{|l|}{- mactancctcantcteamtale} \\
\hline \multicolumn{2}{|l|}{-AATATTGCCTCCATTTTTTAGGGTAATTATCCAGAATTGAAATATCAGATTTAACCATAG-} \\
\hline \multicolumn{2}{|l|}{-TTATAACGGAGGTAAAAAATCCCATTAATAGGTCTTAACTTTATAGTCTAAATTGGTATC-} \\
\hline \multicolumn{2}{|l|}{-AATGAGGATAAATGATCGCGAGTAAATAATATTCACAATGTACCATTTTAGTCATATCAG-} \\
\hline \multicolumn{2}{|l|}{-TTACTCCTATTTACTAGCGCTCATTTATTATAAGTGTTACATGGTAAAATCAGTATAGTC-} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
- ATAAGCATTGATTAATATCATTATTGCTTCTACAGGCTTTAATTTTATTAATTATTCTGT- \\
-TATTCGTAACTAATTATAGTAATAACGAAGATGTCCGAAATTAAAATAATTAATAAGACA-
\end{tabular}}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
-AAGTGTCGTCGGCATTTATGTCTTTCATACCCATCTCTTTATCCTTACCTATTGTTTGTC- \\
-TTCACAGCAGCCGTAAATACAGAAAGTATGGGTAGAGAAATAGGAATGGATAACAAACAG-
\end{tabular}}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
-GCAAGTTTTGCGTGTTATATATCATTAAAACGGTAATAGATTGACATTTGATTCTAATAA- \\
-CGTTCAAAACGCACAATATATAGTAATTTTGCCATTATCTAACTGTAAACTAAGATTATT-
\end{tabular}}} \\
\hline & \\
\hline
\end{tabular}

\section*{FIG. 6B}
```

-ATTGGATTTTTTGTCACACTATTATATCGCTTGAAATACAATTGTTTTAACATAAGTACCTG-
-TAACCTAAAAACAGTGTGATAATATAGCGAACTTTATGTTAACAAATTGTATTCATGGAC-
-TAGGATCGTACAGGTTTACGCAAGAAAATGGTTTGTTATAGTCGATTAATCGATTTGATT-
-ATCCTAGCATGTCCAAATGCGTTCTTTTACCAAACAATATCAGCTAATTAGCTAAACTAA-
-CTAGATTTGTTTTAACTAATTAAAGGAGGAATAACATATGGTTAACGCGTTGGAATTCGA-
-GATCTAAACAAAATTGATTAATTTCCTCCTTATTGTATACCAATTGCGCAACCTTAAGCT-
SacII
-GCTCACTAGTGTCGACCTGCAGGGTACCATGGAAGCTTACTCGAGGATCCGCGGAAAGAA-
-CGAGTGATCACAGCTGGACGTCCCATGGTACCTTCGAATGAGCTCCTAGGCGCCTTTCTT-
-GAAGAAGAAGAAGAAAGCCCGAAAGGAAGCTGAGTTGGCTGCTGCCACCGCTGAGCAATA-
-СTTCTTCTTCTTCTTTCGGGCTTTCCTTCGACTCAACCGACGACGGTGGCGACTCGTTAT-
-ACTAGCATAACCCCTTGGGGCCTCTAAACGGGTCTTGAGGGGTTTTTTGCTGAAAGGAGG-
-TGATCGTATTGGGGAACCCCGGAGATITTGCCCAGAACTCCCCAAAAAACGACTTTCCTCC-
-AACCGCTCTTCACGCTCTTCACGC 3', [SacII sticky end]
-TTGGCGAGAAGTGCGAGAAGTG 5' (position \#5904 in pAMG21)

```

\section*{FIG. 7}

\(\longrightarrow-\quad 40 \mathrm{pM}\) AGP3 peptibody
\(\longrightarrow-100 \mathrm{pM}\) AGP3 peptibody

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{AGP3 peptibody does not block April binding to the receptors} \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{}} & peptibody (nM) \\
\hline & & & & & \begin{tabular}{l}
回 0 \\
\(\mathbf{l}\) \\
\hline 01 \\
\(\square 10\)
\end{tabular} \\
\hline \multicolumn{6}{|l|}{TACl surface BCMA surface BAFFR surface} \\
\hline
\end{tabular}

FIG. 12B

FIG. 12A

FIG. 13

Note: p-value based on log-rank test
FIG. 14
Reduced anti-collagen IgG2b upon
treatment with AGP3 peptibody

The graph above is representative of the igG1, IgG3, and IgGaz isotypes as well.

\section*{FIG. 16A}
```

        ATGCTTCCAGGCTGCAAGTGGGATCTTCTTATTAAGCAATGGGTATGCGATCCACTTGGA
        M L. P G Clllllllllllllllllllllll
    TCCGGTTCTGCTACTGGTGGTTCCGGCTCCACCGCAAGCTCTGGTTCAGGCAGTGCGACT
    61 ---------+---------+---------+---------+---------------------------
AGGCCAAGACGATGACCACCAAGGCCGAGGTGGCGTTCGAGACCAAGTCCGTCACGCTGA
S G Sllllllllllllllllllllllll
NdeI
|
CATATGCTGCCGGGTTGTAAATGGGACCTGCTGATCAAACAGTGGGTTTGTGACCCGCTG
121 ---------+---------+---------+---------+------------------------}18
GTATACGACGGCCCAACATTTÄCCCTGGACGACTAGTTTGTCACCCAAACACTGGGCGAC
H
SalI
|
GGTGGAGGCGGTGGGGTCGACAAAACTCACACATGTCCACCTTGTCCAGCTCCGGAACTC
181 ---------+---------+---------+-------------------------------------}24
CCACCTCCGCCACCCCAGCTGTTTTGAGTGTGTACAGGTGGAACAGGTCGAGGCCTTGAG
G G G G G G V V D Klllllllllllllllllll
CTGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCC
241 ---------+---------+---------+---------+--------------------------}30
GACCCCCCTGGCAGTCAGAAGGAGAAGGGGGGTTTTGGGTTCCTGTGGGAGTACTAGAGG
L Glllllllllllllllllllllll
CGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAG
3 0 1
GCCTGGGGACTCCAGTGTACGCACCACCACCTGCACTCGGTGCTTCTGGGACTCCAGTTC
R T T P E F V Tlllllllllllllllllllllll
TTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAG
361 ---------+---------+---------+---------+--------------------------
AAGTTGACCATGCACCTGCCGCACCTCCACGTATTACGGTTCTGTTTCGGCGCCCTCCTC
F
CAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTG
421 ---------+---------+----------+--------+--------------------------}48
GTCATGTTGTCGTGCATGGCACACCAGTCGCAGGAGTGGCAGGACGTGGTCCTGACCGAC

```


\section*{FIG. 16B}

AATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAA
 TTACCGTTCCTCATGTTCACGTTCCAGAGGTTGTTTCGGGAGGGTCGGGGGTAGCTCTTT
 ACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATCC
 TGGTAGAGGTTTCGGTTTCCCGTCGGGGCTCTTGGTGTCCACATGTGGGACGGGGGTAGG \(\begin{array}{llllllllllllllllllll}T & I & S & K & A & K & G & Q & P & R & E & P & Q & V & Y & T & L & P & P & S\end{array}\) CGGGATGAGCTGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTATCCC
 GCCCTACTCGACTGGTTCTTGGTCCAGTCGGACTGGACGGACCAGTTTTCCGAAGATAGGG

AGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACG
 TCGCTGTAGCGGCACCTCACCCTCTCGTTACCCGTCGGCCTCTTGTTGATGTTCTGGTGC
\(\begin{array}{llllllllllllllllllll}S & D & I & A & V & E & W & E & S & N & G & Q & P & E & N & N & Y & K & T & T\end{array}\) CCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAG
 GGAGGGCACGACCTGAGGCTGCCGAGGAAGAAGGAGATGTCGTTCGAGTGGCACCTGTTC

AGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAAC
 TCGTCCACCGTCGTCCCCTTGCAGAAGAGTACGAGGCACTACGTACTCCGAGACGTGTTG

CACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAATAA
841 ---------+----------+---------+--------------18 882
GTGATGTGCGTCTTCTCGGAGAGGGACAGAGGCCCATTTATT
\(\begin{array}{lllllllllllllll}H & Y & T & Q & K & S & L & S & L & S & P & G & K & * & -\end{array}\)

\section*{Corrected sequence listing- final.txt} SEQUENCE LISTING
```

<110> Amgen Inc
Min, Hosung
Hsu, Hailing
<120> Peptides and related molecules that bind TALL-1
<130> 59385.8091.WO00
<140> PCT/US02/15273
<141> 2002-05-13
<150> US 60/290,196
<151> 2001-05-11
<160> }19
<170> PatentIn version 3.4
<210> 1
<211> 684
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> (1)..(684)
<400> 1
atg gac aaa act cac aca tgt cca cct tgt cca gct ccg gaa ctc ctg
Met Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu
1 S 5 10 cro Ala pro Glu Leu
ggg gga ccg tca gtc ttc ctc ttc ccc cca aaa ccc aag gac acc ctc
ggg gga ccg tca gtc ttc ctc ttc ccc cca aaa ccc aag gac acc ctc

```

```

cac gaa gac cct gag gtc aag ttc aac tgg tac gtg gac ggc gtg gag
His Glu Asp Pro Glu val lys phe Asn trp Tyr val asp Gly val Glu
gtg cat aat gcc aag aca aag ccg cgg gag gag cag tac aac agc acg
val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr
vâ His Asn Ala Lys Thr Lys pro Arg Glu Glu Gln Tyr Asn Ser Thr
tac cgt gtg gtc agc gtc ctc acc gtc ctg cac cag gac tgg ctg aat
Tyr Arg val val Ser val Leu Thr val leu His Gln Asp Trp Leu Asn
85 90 95
ggc aag gag tac aag tgc aag gtc tcc aac aaa gcc ctc cca gcc ccc
Gly Lys Glu Tyr Lys Cys Lys val Ser Asn Lys Ala Leu pro Ala pro
atc gag aaa acc atc tcc aaa gcc aaa ggg cag ccc cga gaa cca cag
384
Met Ile ser arg Thr pro Glu val Thr cys val val val Asp val ser
24048$\underset{1}{\text { Met }}$ Asp Lys Thr $\underset{5}{\mathrm{His}}$ Thr Cys Pro Pro cys Pro Ala Pro Glu Leu Leu

```
```

                                    Corrected sequence listing- final.txt
    gtg tac acc ctg ccc cca tcc cgg gat gag ctg acc aag aac cag gtc
val Tyr Thr Leu pro pro Ser Arg Asp Glu Leu Thr Lys Asn Gln val
130 135 140
agc ctg acc tgc ctg gtc aaa ggc ttc tat ccc agc gac atc gcc gtg
Ser Leu Thr Cys Leu val Lys Gly Phe Tyr Pro Ser Asp Ile Ala val
145 150 155 160
gag tgg gag agc aat ggg cag ccg gag aac aac tac aag acc acg cct
Glu Trp Glu Ser Asn Gly Gln pro Glu Asn Asn Tyr Lys Thr Thr pro
165 170 175
ccc gtg ctg gac tcc gac ggc tcc ttc ttc ctc tac agc aag ctc acc
Pro Val Leu Asp Ser Asp Gly Ser phe Phe Leu Tyr Ser Lys Leu Thr
gtg gac aag agc agg tgg cag cag ggg aac gtc ttc tca tgc tcc gtg
val Asp lys ser Arg Trp Gln Gln Gly Asn val Phe ser cys Ser val
atg cat gag gct ctg cac aac cac tac acg cag aag agc ctc tcc ctg
Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys ser Leu ser Leu
210 215 220
tct ccg ggt aaa
6 8 4
225
<210> 2
<211> 228
<212> PRT
<213> Homo sapiens
<400> 2
Met Asp Lys Thr \underset{ Nis Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu}{10}
Gly Gly Pro Ser val Phe Leu Phe pro Pro Lys Pro Lys
Met Ile Ser Arg Thr Pro Glu val Thr Cys val val val Asp val Ser
His Glu Asp Pro Glu val tys Phe Asn Trp Tyr val Asp Gly val Glu
Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Th Thr
Tyr Arg val val Ser val Leu Thr val Leu His Gln Asp Trp leu formen
Gly Lys Glu Tyr Lys Cys Lys val Ser Asn Lys Ala Leu Pro Ala Pro

```
 Corrected sequence listing- final.txt
Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln
Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln val
Ser Leu Thr Cys Leu val Lys Gly Phe Tyr pro Ser Asp Ile Ala Val
145
 150
 155
 160
Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro
 165 170
 175
Pro val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr
val Asp Lys Ser Arg Trp Gln Gln Gly Asn val Phe Ser Cys Ser val
Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu
 210 215
Ser Pro Gly Lys
225
<210> 3
<211> 62
<212> DNA
<213> Artificial Sequence
<220>
<223> NdeI to SalI fragment
<220>
<221> CDS
<222> (2)..(61)
<400> 3
t atg ccg ggt act tgt ttc ccg ttc ccg tgg gaa tgc act cac gct ggt
 Met Pro Gly Thr cys phe Pro Phe Pro Trp Glu Cys Thr His Ala Gly
Nga ggc gat gag g
<210> 4
<211> 20
<212> PRT
<213> Artificial Sequence
<220>
<223> NdeI to SalI fragment
<400> 4
\(\underset{1}{\text { Met }}\) Pro Gly \(\operatorname{Thr} \underset{5}{\text { Cys }}\) Phe Pro Phe Pro \(\underset{10}{\operatorname{Trp}}\) Glu Cys Thr His Ala Gly

Gly Gly Gly \(\underset{20}{\text { Gly }}\)
<210> 5
<211> 62
<212> DNA
<213> Artificial Sequence
\(<220>\)
\(<223>\) NdeI to Sali fragment
<220>
<221> CDS
<222> (2)..(61)
<400> 5
\(t\) atg tgg ggt gct tgt tgg ccg ttc ccg tgg gaa tgt ttc aaa gaa ggt

<210> 6
<211> 20
<212> PRT
<213> Artificial Sequence
<220>
<223> NdeI to Sall fragment
<400> 6
\(\underset{1}{\text { Met }} \operatorname{Trp}\) Gly Ala \(\underset{5}{\text { Cys }}\) Trp Pro Phe Pro \(\underset{10}{\operatorname{Trp}}\) Glu Cys Phe Lys \(\underset{15}{\text { Glu Gly }}\)

Gly Gly Gly Gly
<210> 7
<211> 62
<212> DNA
<213> Artificial sequence
<220>
<223> NdeI to Sall fragment
<220>
<221> CDS
```

<222> (2)..(61)
<400> 7
t atg gtt ccg ttc tgt gac ctg ctg act aaa cac tgt ttc gaa gct ggt
4 9
1 5 10 10 His Cys Phe Glu Alv
gga ggc ggt ggg g
l<210>
<213> Artificial Sequence
<220>
<223> NdeI to SalI fragment
<400> 8
M Met val Pro Phe cys Asp Leu Leu Thr Lys His Cys Phe Glu Ala Gly
Gly Gly Gly Gly
<210> 9
<211> 74
<212> DNA
<213> Artificial Sequence
<220>
<223> NdeI to SalI fragment

```
<220>
<221> CDS
<222> (2)..(73)
<400> 9
t atg ggt tct cgt tgt aaa tac aaa tgg gac gtt ctg act aaa cag tgt
 met Gly ser arg cys Lys Tyr Lys Trp Asp val Leu Thr Lys Gin cys
ttc cac cac ggt gga ggc ggt ggg g
Phe His His Gly Gly Gly Gly GTy
```

<210> 10
<211> 24
<212> PRT
<213> Artificial Sequence
<220>
<223> NdeI to SalI fragment
<400> 10

```

Corrected sequence listing- final.txt

Phe His His \(\underset{20}{ }\) Gly Gly Gly Gly Gly
\(\begin{array}{ll}<210> & 11 \\ <211> & 74\end{array}\)
\(<211>\)
\(<212>\)
DNA
<213> Artificial Sequence
<220>
<223> NdeI to SalI fragment
<220>
<221> CDS
<222> (2)..(73)
<400> 11
\(t\) atg ctg ccg ggt tgt aaa tgg gac ctg ctg atc aaa cag tgg gtt tgt Met Leu pro Gly cys Lys Trp Asp Leu Leu Ile Lys Gln trp val cys
gac ccg ctg ggt gga ggc git ggg g
Asp pro Leu Giy Giy Gly Gly Gly
20
<210> 12
<211> 24
<212> PRT
<213> Artificial Sequence
<220>
<223> NdeI to Sall fragment
<400> 12
\(\underset{1}{\text { Met Leu Pro Gly }} \underset{5}{\text { Cys }}\) Lys \(\underset{10}{\operatorname{Trp}}\) Asp Leu Leu Ile Lys Gln Trp \(\underset{10}{\text { Val }}\) Cys

Asp Pro Leu Gly Gly Gly Gly Gly
```

<210> 13
<211> }7
<212> DNA
<213> Artificial Sequence
<220>
<223> NdeI to salI fragment
<220>
<221> CDS
<222> (2)..(73)
<400> 13

```

Corrected sequence listing- final.txt

\section*{\(t\) atg tct gct gac tgt tac ttc gac atc ctg act aaa tct gac gtt tgt Met Ser Ala Asp Cys Tyr Phe Asp Ile Leu Thr Lys Ser Asp Val Cys 1 10}
```

act tct tct ggt gga ggc ggt ggg g

```
```

                                    20
    ```
```

                                    20
    ```
```

<210> 14
<211> 24
<212> PRT
<213> Artificial Sequence
<220>
<223> NdeI to SalI fragment
<400> 14

```
\(\underset{1}{\text { Met }}\) Ser Ala Asp \(\underset{5}{\text { Cys }}\) Tyr Phe Asp Ile \(\underset{10}{\text { Leu }}\) Thr Lys Ser Asp \(\underset{15}{\text { Val }}\) Cys
Thr Ser Ser Gly Gly Gly Gly Gly
<210> 15
<211> 74
<212> DNA
<213> Artificial Sequence
<220>
<223> NdeI to SalI fragment
<220>
<221> CDS
<222> (2)..(73)
<400> 15
t atg tct gac gac tgt atg tac gac cag ctg act cgt atg ttc atc tgt
 Met Ser Asp Asp cys met Tyr Asp Gln Leu Thr arg Met Phe ile cys
 \(1 \begin{array}{llll}10 & 5 & 10\end{array}\)
tct aac ctg ggt gga ggc ggt ggg g
ser Asn Leu Giy GTy Giy Giy Gly
20
74
<210> 16
<211> 24
<212> PRT
<213> Artificial Sequence
<220>
<223> NdeI to Sall fragment
<400> 16
\(\underset{1}{\text { Met }}\) Ser Asp Asp \(\underset{5}{\text { Cys }}\) Met Tyr Asp Gln Leu \(\underset{10}{ }\) Thr Arg Met Phe Ile Cys
 Page 7
```

Ser Asn Leu Gly Gly Gly Gly Gly

```
<210> 17
<211> 76
<212> DNA
<213> Artificial Sequence
<220>
<223> NdeI to Sall fragment
<220>
<221> CDS
<222> (2)..(73)
<400> 17
\(t\) atg gac ctg aac tgt aaa tac gac gaa ctg act tac aaa gaa tgg tgt

cag ttc aac ggg gtg gag gcg gtg ggg
Gln Phe Asn Gly val Glu Ala val
20
76
<210> 18
<211> 24
<212> PRT
<213> Artificial sequence
<220>
<223> NdeI to Sall fragment
<400> 18
\(\underset{1}{\text { Met }} \begin{array}{r}\text { Asp Leu Asn } \\ \underset{5}{c y s} \text { Lys Tyr Asp Glu Leu } \\ 10\end{array}\) Thr Tyr Lys Glu \(\underset{15}{\operatorname{Trp}}\) Cys
Gln Phe Asn \(\underset{20}{\text { Gly }}\) val Glu Ala val
<210> 19
<211> 74
<212> DNA
<213> Artificial Sequence
<220>
<223> NdeI to SalI fragment
<220>
<221> CDS
<222> (2)..(73)
<400> 19
t atg ttc cac gac tgt aaa tac gac ctg ctg act cgt cag atg gtt tgt
 Met
1
 Page 8
```

cac ggt ctg ggt gga ggc ggt ggg g
<210> 20
<211> 24
<212> PRT
<213> Artificial Sequence
<220>
<223> NdeI to SalI fragment
<400> 20
Met Phe His Asp Cys Lys Tyr Asp Leu Leu Thr Arg Gln Met val Cys
His Gly Leu Gly Gly Gly Gly Gly
<210> 21
<211> 74
<212> DNA
<213> Artificial Sequence
<220>
<223> NdeI to Sali fragment
<220>
<221> CDS
<222> (2)..(73)
<400> 21
$t$ atg cgt aac cac tgt ttc tgg gac cac ctg ctg aaa cag gac atc tgt
Met
1 Arg Asn His cys Phe Trp Asp his leu Leu Lys Gln Asp $\underset{10}{15}$ le cys
ccg tct ccg ggt gga ggc ggt ggg g
Pro Ser Pro Gly Gly GTy Gly Gly
20
74
$\begin{array}{ll}<210> & 22 \\ <211> & 24\end{array}$
<211> 24
<212> PRT
<213> Artificial Sequence
<220>
<223> NdeI to SalI fragment
<400> 22
$\underset{1}{\text { Met }}$ Arg Asn His $\underset{5}{\text { Cys }}$ Phe Trp Asp His $\underset{10}{\text { Leu Leu Lys Gln Asp }} \underset{15}{\text { Ile }}$ Cys
Pro Ser Pro Gly Gly Gly Gly Gly

```
<210> 23
<211> 74
<212> DNA
<213> Artificial Sequence
<220>
<223> NdeI to SalI fragment
<220>
<221> CDS
<222> (2)..(73)
<400> 23
t atg gct aac cag tgt tgg tgg gac tct ctg ctg aaa aaa aac gtt tgt
 Met Ala Asn Gln cys Trp Trp Asp Ser Leu Leu Lys Lys Asn val cys
gaa ttc ttc ggt gga ggc ggt ggg g
Glu Phe Phe Gly Gly Gly Gly Gly
<210> 24
<211> 24
<212> PRT
<213> Artificial Sequence
<220>
<223> NdeI to SalI fragment
<400> 24
Met Ala Asn Gln Cys Trp Trp Asp Ser Leu Leu Lys Lys Asn val Cys
Glu Phe Phe Gly Gly Gly Gly Gly
<210> 25
<211> }7
<212> DNA
<213> Artificial Sequence
<220>
<223> NdeI to SalI fragment
<220>
<221> CDS
<222> (2)..(73)
<400> 25
t atg ttc cac gac tgc aaa tgg gac ctg ctg acc aaa cag tgg gtt tgc49\({ }_{1}^{\text {Met }}\) Phe His Asp \(\underset{5}{\text { Cys Lys Trp Asp Leu Leu Thr Lys Gln Trp val cys }}\)
cac ggt ctg ggt gga ggc ggt ggg g
```

<210> 26
<211> 24
<212> PRT
<213> Artificial sequence
<220>
<223> NdeI to SalI fragment
<400> 26
Met Phe His Asp Cys Lys Trp Asp Leu Leu Thr Lys Gln Trp val Cys
His Gly Leu Gly Gly Gly Gly Gly
<210> 27
<210> 28
<211> 7285
<212> DNA
<213> Artificial Sequence
<220>
<223> pAMG21-RANK-FC vector
<400> 28
gatcagcagt ccccggaaca tcgtagctga cgccttcgcg ttgctcagtt gtccaacccc 60
ggaaacggga aaaagcaagt tttccccgct cccggcgttt caataactga aaaccatact }12
atttcacagt ttaaatcaca ttaaacgaca gtaatccccg ttgatttgtg cgccaacaca 180
gatcttcgtc acaattctca agtcgctgat ttcaaaaac tgtagtatcc tctgcgaaac 240
gatccctgtt tgagtattga ggaggcgaga tgtcgcagac agaaaatgca gtgacttcct 300
cattgagtca aaagcggttt gtgcgcagag gtaagcctat gactgactct gagaaacaaa 360
tggccgttgt tgcaagaaaa cgtcttacac acaaagagat aaaagttttt gtcaaaaatc 420
ctctgaagga tctcatggtt gagtactgcg agagagaggg gataacacag gctcagttcg 480
ttgagaaaat catcaaagat gaactgcaaa gactggatat actaaagtaa agactttact 540
ttgtggcgta gcatgctaga ttactgatcg tttaaggaat tttgtggctg gccacgccgt 600
aaggtggcaa ggaactggtt ctgatgtgga tttacaggag ccagaaaagc aaaaaccccg 660
ataatcttct tcaacttttg cgagtacgaa aagattaccg gggcccactt aaaccgtata }72
gccaacaatt cagctatgcg gggagtatag ttatatgccc ggaaaagttc aagacttctt 780
tctgtgctcg ctccttctgc gcattgtaag tgcaggatgg tgtgactgat cttcaccaaa 840
cgtattaccg ccaggtaaag aacccgaatc cggtgtttac accccgtgaa ggtgcaggaa 900

```
Page 11
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline cgctgaagtt & ctgcgaaaaa & Corrected ctgatggaaa & sequence 1
aggcggtggg & isting- fin cttcacttcc & 1.txt cgttttgatt & 960 \\
\hline tcgccattca & tgtggcgcac & gcccgttcgc & gtgatctgcg & tcgccgtatg & ccaccagtgc & 1020 \\
\hline tgcgtcgtcg & ggctattgat & gegctcttgc & aggggctgtg & tttccactat & gacccgctgg & 1080 \\
\hline ccaaccgcgt & ccagtgctcc & atcaccacgc & tggccattga & gtgcggactg & gcgacggagt & 1140 \\
\hline ctgctgccgg & aaaactctcc & atcaccogtg & ccaccogtgc & cctgacgttc & ctgtcagage & 1200 \\
\hline tgggactgat & tacctaccag & acggaatatg & acccgcttat & cgggtgctac & attccgaccg & 1260 \\
\hline atatcacgtt & cacatctgca & ctgtttgctg & ccctcgatgt & atcagaggag & gcagtggccg & 1320 \\
\hline ccgcgcgccg & cagccgtgtg & gtatgggaaa & acaaacaacg & caaaaagcag & gggetggata & 1380 \\
\hline ccetgggcat & ggatgaactg & atagcgaaag & cctggegttt & tgttcgtgag & cgttttcgca & 1440 \\
\hline gttatcagac & agagcttaag & tcccgtggaa & taaggcgtgc & ccgtgcgcgt & cgtgatgcgg & 1500 \\
\hline acagggaacg & tcaggatatt & gtcaccotgg & tgaaacggca & gctgacgcgc & gaaatcgcgg & 1560 \\
\hline aagggcgctt & cactgccaat & cgtgaggcgg & taaaacgcga & agttgagcgt & cgtgtgaagg & 1620 \\
\hline agcgcatgat & tctgtcacgt & aaccgtaatt & acagccggct & ggccacagct & tcccoctgaa & 1680 \\
\hline agtgacctcc & tctgaataat & ccggcctgcg & ccggaggctt & ccgcacgtct & gaagcccgac & 1740 \\
\hline agcgcacaaa & aaatcagcac & cacatacaaa & aaacaacctc & atcatccagc & ttctggtgca & 1800 \\
\hline tceggccecc & cctgttttcg & atacaaaaca & cgcctcacag & acggggaatt & ttgcttatcc & 1860 \\
\hline acattaaact & gcaagggact & tccocataag & \(g t t a c a a c c g\) & ttcatgtcat & aaagcgccat & 1920 \\
\hline ccgccagcgt & tacagggtgc & aatgtatctt & ttaaacacct & gtttatatct & cctttaaact & 1980 \\
\hline acttaattac & attcatttaa & aaagaaaacc & tattcactgc & ctgtccttgg & acagacagat & 2040 \\
\hline atgcacctcc & caccgcaagc & ggcgggcccc & taccggagcc & gctttagtta & caacactcag & 2100 \\
\hline acacaaccac & cagaaaaacc & ccggtccagc & gcagaactga & aaccacaaag & cccctccotc & 2160 \\
\hline ataactgaaa & agcggccccg & ccccggtccg & aagggccgga & acagagtcgc & ttttaattat & 2220 \\
\hline gaatgttgta & actacttcat & catcgctgtc & agtcttctcg & ctggaagttc & tcagtacacg & 2280 \\
\hline ctcgtaagcg & gccetgacgg & cccgctaacg & cggagatacg & ccecgacttc & gggtaaaccc & 2340 \\
\hline tcgtcgggac & cactecgacc & gcgcacagaa & getctetcat & ggctgaaagc & gggtatggtc & 2400 \\
\hline tggcagggct & ggggatgggt & aaggtgaaat & ctatcaatca & \(g t a c c g g c t t\) & acgccgggct & 2460 \\
\hline tcggcggttt & tactcctgtt & tcatatatga & aacaacaggt & caccgecttc & catgccgctg & 2520 \\
\hline atgcggcata & tcctggtaac & gatatctgaa & ttgttataca & tgtgtatata & cgtggtaatg & 2580 \\
\hline acaaaaatag & gacaagttaa & aaatttacag & gcgatgcaat & gattcaaaca & cgtaatcaat & 2640 \\
\hline atcgggggtg & ggcgaagaac & tccagcatga & gatccccgcg & ctggaggatc & atccagccgg & 2700 \\
\hline cgtcccggaa & aacgattccg & aagcccaacc & tttcatagaa & ggcggcggtg & gaatcgaaat & 2760 \\
\hline ctcgtgatgg & caggttgggc & gtcgcttggt & cggtcatttc Page & gaaccccaga 12 & gtccogctca & 2820 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & & Corrected & sequence 1 & ting- fi & . tx t & \\
\hline gaagaactcg & tcaagaaggc & gatagaaggc & gatgcgctgc & gaatcgggag & cggcgatacc & 2880 \\
\hline gtaaagcacg & aggaagcggt & cagccoattc & gccgccaagc & tcttcagcaa & tatcacgggt & 2940 \\
\hline agccaacgct & atgtcctgat & agcggtccgc & cacacccagc & cggccacagt & cgatgaatcc & 3000 \\
\hline agaaaagcgg & ccattttcca & ccatgatatt & cggcaagcag & gcatcgccat & gagtcacgac & 3060 \\
\hline gagatcctcg & \(c c g t c g g g c a\) & tgcgcgcctt & gagcctggcg & aacagttcgg & ctggcgcgag & 3120 \\
\hline ccectgatgc & tcttcgtcca & gatcatcctg & atcgacaaga & ccggcttcca & tccgagtacg & 3180 \\
\hline tgctcgctcg & atgcgatgtt & tcgcttggtg & gtcgaatggg & caggtagccg & gatcaagcgt & 3240 \\
\hline atgcagccgc & cgcattgcat & cagccatgat & ggatactttc & tcggcaggag & caaggtgaga & 3300 \\
\hline tgacaggaga & tcctgccecg & gcacttcgcc & caatagcagc & cagtcccttc & ccgcttcagt & 3360 \\
\hline gacaacgtcg & agcacagctg & cgcaaggaac & gcecgtcgtg & gccagccacg & atagccgcgc & 3420 \\
\hline tgcctcgtcc & tgcaattcat & tcaggacacc & ggacaggtcg & gtcttgacaa & aaggaaccgg & 3480 \\
\hline gcgccectgc & gctgacagcc & ggaacacggc & ggcatcagag & cagccgattg & tctgttgtgc & 3540 \\
\hline ccagtcatag & ccgatagcc & tctccaccoa & agcggccgga & gaacctgcgt & gcaatccatc & 3600 \\
\hline ttgttcaatc & atgcgaaacg & atcctcatcc & tgtctcttga & tctgatcttg & atccectgcg & 3660 \\
\hline ccatcagatc & cttggcggca & agaaagccat & ccagtttact & ttgcagggct & tcccaacctt & 3720 \\
\hline accagagggc & gccceagctg & gcaattccgg & ttcgcttgct & gtccataaaa & ccgcccagtc & 3780 \\
\hline tagctatcgc & catgtaagcc & cactgcaagc & tacctgcttt & ctctttgcgc & ttgcgttttc & 3840 \\
\hline ccttgtccag & atagcccagt & agctgacatt & catccggggt & cagcaccgtt & tctgcggact & 3900 \\
\hline ggctttctac & gtgttccgct & tcctttagca & gccottgcgc & cctgagtgct & tgcggcagcg & 3960 \\
\hline tgaagctaca & tatatgtgat & ccgggcaaat & cgctgaatat & tcctttgtc & tccgaccatc & 4020 \\
\hline aggcacctga & gtcgetgtct & ttttcgtgac & attcagttcg & ctgcgctcac & ggctetggca & 4080 \\
\hline gtgaatgggg & gtaaatggca & ctacaggcge & cttttatgga & ttcatgcaag & gaaactaccc & 4140 \\
\hline ataatacaag & aaaagcccgt & cacgggcttc & tcagggcgtt & ttatggcggg & tctgctatgt & 4200 \\
\hline ggtgctatct & gactttttgc & tgttcagcag & ttcctgccct & ctgattttcc & agtctgacca & 4260 \\
\hline cttcggatta & tccogtgaca & ggtcattcag & actggctaat & gcacceagta & aggcagcggt & 4320 \\
\hline atcatcaaca & ggcttacccg & tcttactgtc & gaagacgtgc & \(g t a a c g t a t g\) & catggtctcc & 4380 \\
\hline ccatgcgaga & gtagggaact & gccaggcatc & aaataaaacg & aagggctcag & tcgaaagact & 4440 \\
\hline gggcetttcg & ttttatctgt & tgtttgtcgg & tgaacgctct & cctgagtagg & acaaatccgc & 4500 \\
\hline cgggagcgga & tttgaacgtt & gcgaagcaac & ggcccggagg & \(g t g g c g g g c a\) & ggacgccegc & 4560 \\
\hline cataaactgc & caggcatcaa & attaagcaga & aggccatcct & gacggatggc & ctttttgcgt & 4620 \\
\hline ttctacaaac & tcttttgttt & atttttctaa & atacattcaa & atatggacgt & cgtacttaac & 4680 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & & Corrected & sequence 1 & sting- fi & & \\
\hline ttttaaagta & tgggcaatca & attg & ttaaaattgc & aata & ctttggcagc & 4740 \\
\hline ggtttgttgt & attgagtttc & atttgcgcat & tggttaaatg & gaaagtgacc & gtgcgcttac & 4800 \\
\hline tacagcctaa & tatttttgaa & tatcccaag & agctttttcc & ttcgcatgcc & cacgctaaac & 4860 \\
\hline attctttttc & tcttttggt & atcgttg & gatt & tttgctata & tttatttttc & 4920 \\
\hline gataattatc & aactagagaa & ggaacaatta & atggtatgt & catacacgca & tgtaaaaata & 4980 \\
\hline aactatctat & atagttgtct & ttctctgaat & gtgcaaaact & aagcattccg & aagccattat & 5040 \\
\hline tagcagtatg & aatagggaaa & ctaaacccag & tgataagacc & tgatgatttc & gcttctttaa & 5100 \\
\hline ttacatttgg & agatttttta & tracagcat & tgttttcaaa & atattccaa & ttaatcggtg & 5160 \\
\hline aatgattgga & \(g t t a g a a t a a ~\) & tctactatag & gatcatattt & tattaaatta & gcgtcatcat & 5220 \\
\hline aatattgcct & ccatttttta & gggtaattat & ccagaattga & aatatcagat & ttaaccatag & 5280 \\
\hline aatgaggata & aatgatcgcg & agtaaataat & attcacaatg & taccatttta & gtcatatcag & 5340 \\
\hline ataagcattg & attaatatca & tattgcttc & acaggc & aattttatta & attattctgt & 5400 \\
\hline aagtgtcgtc & ggcatttatg & tttcatac & atct & tccttacct & attgtttgtc & 5460 \\
\hline gcaagttttg & cgtgttata & tcattaaaa & cggtaataga & ttgacatttg & attctaataa & 5520 \\
\hline attggatttt & tgtcacacta & ttatatcgct & tgaaatacaa & ttgtttaaca & taggtacctg & 5580 \\
\hline taggatcgta & caggtttacg & caagaaaatg & gtttgttata & gtcgattaat & cgatttgatt & 5640 \\
\hline ctagatttgt & tttaactaat & aaggagg & aacatatg & atcgctccac & catgcaccag & 5700 \\
\hline tgagaagcat & tatgagcatc & tgggacggtg & ctgtaacaaa & tgtgaaccag & gaaagtacat & 5760 \\
\hline gtcttctaaa & tgcactacta & cctctgacag & tgtatgtctg & ccctgtggcc & cggatgaata & 5820 \\
\hline cttggatagc & tggaatgaag & aagataaatg & cttgctgcat & aaggtttgtg & atacaggcaa & 5880 \\
\hline ggccotggtg & gccgtggtcg & ccggcaacag & tacgaccecc & cggcgctgcg & cgtgcacggc & 5940 \\
\hline tgggtaccac & tggagccagg & actgcgagtg & ctgccgccgc & aacaccgagt & gcgcgccggg & 6000 \\
\hline cctgggcgcc & cagcaccegt & tgcagctcaa & caaggacaca & gtgtgcaaac & cttgccttgc & 6060 \\
\hline aggctacttc & tctgatgcet & tcctccac & ggacaaatgc & agaccetgga & ccaactgtac & 6120 \\
\hline cttccttgga & aagagagtag & catcatgg & gacagagaaa & tccgatgtgg & tttgcagttc & 6180 \\
\hline ttctctgcea & gctagaaaac & caccaaatga & acccoatgtt & tacgtcgaca & aaactcacac & 6240 \\
\hline atgtccacct & tgtccagctc & cggaactcct & ggggggaccg & tcagtcttcc & tcttcccccc & 6300 \\
\hline aaaacccaag & gacaccetca & tgatctcccg & gaccectgag & gtcacatgcg & tggtggtgga & 6360 \\
\hline cgtgagccac & gaagaccetg & aggtcaagtt & caactggtac & gtggacggcg & tggaggtgca & 6420 \\
\hline taatgccaag & acaaagccgc & gggaggagca & gtacaacagc & acgtaccgtg & tggtcagcgt & 6480 \\
\hline cctcaccgtc & ctgcaccagg & actggctgaa & tggcaaggag & tacaagtgca & aggtctccaa & 6540 \\
\hline caaagccctc & ccagccccca & tcgagaaaac & catctccaaa
Page & \begin{tabular}{l}
gccaaagggc \\
14
\end{tabular} & agccecgaga & 6600 \\
\hline
\end{tabular}

\section*{Corrected sequence listing- final.txt}
accacaggtg tacaccctgc ccccatcccg ggatgagctg accaagaacc aggtcagcct 6660
gacctgcctg gtcaaaggct tctatcccag cgacatcgcc gtggagtggg agagcaatgg 6720
gcagccggag aacaactaca agaccacgcc tcccgtgctg gactccgacg gctccttctt 6780
cctctacagc aagctcaccg tggacaagag caggtggcag caggggaacg tcttctcatg 6840
ctccgtgatg catgaggctc tgcacaacca ctacacgcag aagagcctct ccctgtctcc 6900
gggtaaataa tggatccgcg gaaagaagaa gaagaagaag aaagcccgaa aggaagctga 6960
gttggctgct gccaccgctg agcaataact agcataaccc cttggggcet ctaaacgggt 7020
cttgaggggt tttttgctga aaggaggaac cgctcttcac gctcttcacg cggataaata 7080
agtaacgatc cggtccagta atgacctcag aactccatct ggatttgttc agaacgctcg 7140
gttgccgccg ggcgtttttt attggtgaga atcgcagcaa cttgtcgcgc caatcgagcc 7200
atgtcgtcgt caacgacccc ccattcaaga acagcaagca gcattgagaa ctttggaatc 7260
cagtccetct tccacctgct gaccg 7285
```

<210> 29
<211> 14
<212> PRT
<213> Artificial Sequence
<220>
<223> Preferred TALL-1 modulating domain
<400> 29

```
Pro Gly Thr Cys \(\underset{5}{ }\) Phe Pro Phe Pro Trp Glu Cys Thr his Ala
<210> 30
<211> 14
<212> PRT
<213> Artificial Sequence
<220>
<223> Preferred TALL-1 modulating domain
<400> 30

Trp Gly Ala Cys \({ }_{5}\) Trp Pro Phe Pro Trp Glu Cys Phe Lys Glu
1 5 10
```

<210> 31
<211> 14
<212> PRT
<213> Artificial Sequence
<220>
<223> Preferred TALL-1 modulating domain
<400> 31

```
```

Val Pro Phe Cys

```
<210> 32
<211> 18
<212> PRT
<213> Artificial Sequence
<220>
<223> Preferred TALL-1 modulating domain
<400> 32

His His
<210> 33
<211> 18
<212> PRT
<213> Artificial sequence
<220>
<223> Preferred TALL-1 modulating domain
<400> 33
\(\underset{1}{\text { Leu Pro Gly Cys }} \underset{5}{\text { Lys }}\) Trp Asp Leu Leu \(\underset{10}{\text { Ile }}\) Lys Gln Trp Val Cys \(\underset{15}{ }\) Asp
Pro Leu
<210> 34
<211> 18
<212> PRT
<213> Artificial Sequence
<220>
<223> Preferred TALL-1 modulating domain
<400> 34
Ser Ala Asp Cys
1 \(\underset{5}{\text { Tyr }}\) Phe Asp Ile Leu Thr Lys Ser Asp Val Cys Thr
Ser Ser
<210> 35
<211> 18
<212> PRT
<213> Artificial Sequence
```

<220>
<223> Preferred TALL-1 modulating domain
<400> 35

```
\(\underset{1}{\text { Ser Asp Asp Cys }} \underset{5}{\text { Met }}\) Tyr Asp Gln Leu \(\underset{10}{\text { Thr }}\) Arg Met Phe Ile Cys ser
Asn Leu
<210> 36
\(<211>\)
<212>
\(<218\)
\(<213>\)
PRT Artificial sequence
\(<220>\)
\(<223>\)
\(<400>\)
\(\underset{1}{\text { Asp Leu Asn Cys Lys Tyr Asp Glu Leu }} \underset{5}{\text { Thr }} \underset{10}{ }\) Tyr Lys Glu Trp Cys Gln
Phe Asn
```

<210> 37
<211> 18
<212> PRT
<213> Artificial Sequence
<220>
<223> Preferred TALL-1 modulating domain
<400> 37

```

Gly Leu
```

<210> 38
<211> 18
<212> PRT
<213> Artificial Sequence
<220>
<223> Preferred TALL-1 modulating domain
<400> 38

```
\(\underset{1}{\text { Arg Asn His Cys }} \underset{5}{\log }\) Trp Asp His Leu Leu Lys Gln Asp Ile Cys Pro
 Page 17
```

Ser Pro

```
```

<210> 39
<211> 18
<212> PRT
<213> Artificial Sequence
<220>
<223> Preferred TALL-1 modulating domain
<400> 39
Ala Asn Gln Cys }\underset{~}{Trp

```
Phe Phe
```

<210> 40
<211> 8
<212> PRT
<213> Artificial Sequence
<220>
<223> Polyglycine linker
<400> 40

```
\(\underset{1}{\text { Gly Gly Gly Lys }} \underset{5}{\text { Gly Gly Gly Gly }}\)
<210> 41
<211> 8
<212> PRT
<213> Artificial Sequence
<220>
<223> Polyglycine linker
<400> 41
\(\underset{1}{\text { Gly Gly Gly Asn }} \underset{5}{\text { Gly }}\) Ser Gly Gly
<210> 42
<211> 8
<212> PRT
<213> Artificial Sequence
<220>
<223> Polyglycine linker
<400> 42
\(\underset{1}{\mathrm{Gly}} \mathrm{Gly}\) Gly Cys \(\underset{5}{\mathrm{Gly}}\) Gly Gly Gly
<212> PRT
<213> Artificial Sequence
<220>
<223> Polyglycine linker
<400> 43
\({\underset{1}{\text { Gly }}}^{\text {Gro Asn Gly }} \underset{5}{\text { Gly }}\)
<210> 44
<211> 19
<212> PRT
<213> Artificial Sequence
<220>
<223> Peptide
<220>
<221> MISC_FEATURE
<222> (19).. (19)
<223> Linker or peptide bond linked to FC domain
<400> 44

Pro Leu Xaa
<210> 45
<211> 19
<212> PRT
<213> Artificial sequence
<220>
<223> Peptide
<220>
<221> MISC_FEATURE
<222> (1)..(1)
<223> Linker or peptide bond linked to FC domain
<400> 45

Asp Pro Leu
```

<210> 46
<211> 38
<212> PRT
<213> Artificial Sequence
<220>
<223> Peptide
<220>
<221> MISC_FEATURE
<222> (19)..(19)
<223> Linker or peptide bond
<220>
<221> MISC_FEATURE
<222> (38)..(38)
<223> Linker or peptide bond linked to FC domain
<400> 46
Leu Pro Gly Cys Lys Trp Asp Leu Leu Ile Lys Gln Trp val Cys Asp

```

```

Val Cys Asp Pro Leu Xaa
35
<210> 47
<211> 38
<212> PRT
<213> Artificial Sequence
<220>
<223> Peptide
<220>
<221> MISC_FEATURE
<222> (1)..(1)
<223> Linker or peptide bond linked to FC domain
<220>
<221> MISC_FEATURE
<222> (20)..(20)
<223> Linker or peptide bond
<400> 47

```

```

Asp Pro Leu Xaa Leu Pro Gly Cys Lys Trp Asp Leu Leu Ile Lys Gln

```
```

Trp val Cys Asp Pro Leu
<210> 48
<211> 19
<212> PRT
<213> Artificial sequence
<220>
<223> Peptide
<220>
<221> MISC_FEATURE
<222> (19)..(19)
<223> Linker or peptide bond linked to FC domain
<400> 48
Ser Ala Asp Cys Tyr Phe Asp Ile Leu Thr Lys Ser Asp Val Cys Thr
Ser Ser xaa
<210> 49
<211> 19
<212> PRT
<213> Artificial Sequence
<220>
<223> Peptide
<220>
<221> MISC_FEATURE
<222> (1)..(1)
<223> Linker or peptide bond linked to Fc domain
<400> 49
Xaa Ser Ala Asp Cys Tyr Phe Asp Ile Leu Thr Lys Ser Asp Val Cys
Thr Ser ser
<210> 50
<211> 36
<212> PRT
<213> Artificial Sequence
<220>
<223> Peptide
<220>
<221> MISC_FEATURE

```
<222> (18)..(18)
<223> Linker or peptide bond
```

<220>
$<221>$
<222> (36)..(36)
MISC_FEATURE
<223> Linker or peptide bond linked to FC domain
<400> 50
Ser Ala
1

Thr Ser $\begin{gathered}\text { Ser Xaa } \\ 35\end{gathered}$
<210> 51
<211> 36
<212> PRT
<213> Artificial Sequence
<220>
<223> Peptide
<220>
<221> MISC_FEATURE
<222> (1)..(1)
<223> Linker or peptide bond linked to FC domain
<220>
<221> MISC_FEATURE
<222> (19)..(19)
<223> Linker or peptide bond
<400> 51
$\underset{1}{\text { Xaa }}$ Ser Ala Asp $\underset{5}{\text { Cys }}$ Tyr Phe Asp Ile Leu Thr Lys Ser Asp val ${ }_{10}$ Thr

Val Thr ${ }_{35} \mathrm{Ser}^{25}$ Ser
<210> 52
<211> 19
<212> PRT
<213> Artificial Sequence
<220>
<223> Peptide
<220>
<221> MISC_FEATURE
<222> (19)..(19)
<223> Linker or peptide bond linked to Fc domain
<400> 52
$\underset{1}{\text { Phe His Asp Cys Lys }} \underset{5}{\operatorname{Trp}}$ Asp Leu Leu $\underset{10}{\text { Thr Lys Gln Trp Val Cys }} \underset{15}{ }$ His
Gly Leu Xaa
<210> 53
<211> 19
<212> PRT
<213> artificial sequence
<220>
<223> Peptide
<220>
<221> MISC_FEATURE
<222> (1)..(1)
<223> Linker or peptide bond linked to FC domain
<400> 53
$\underset{1}{\text { Xaa }}$ Phe His Asp $\underset{5}{\text { Cys }}$ Lys Trp Asp Leu $\underset{10}{\text { Leu }}$ Thr Lys Gln Trp $\underset{15}{\text { val Cys }}$
His Gly Leu

```
<210> 54
<211> 38
<212> PRT
<213> Artificial Sequence
<220>
<223> Peptide
```

<220>
<221> MISC_FEATURE
<222> (19)..(19)
<223> Linker or peptide bond
<220>
<221> MISC_FEATURE
<222> (38)..(38)
<223> Linker or peptide bond linked to FC domain
<400> 54
Phe His Asp Cys Lys
1
Page 23

```
 Corrected sequence listing- final.txt
Gly Leu Xaa Phe His Asp Cys Lys \underset{20}{Trp}
val Cys His Gly Leu Xaa
<210> 55
<211> 38
<212> PRT
<213> Artificial Sequence
<220>
<223> Peptide
<220>
<221> MISC_FEATURE
<222> (1)..(1)
<223> Linker or peptide bond linked to Fc domain
<220>
<221> MISC_FEATURE
<222> (20)..(20)
<223> Linker or peptide bond
<400> 55
```



```
His Gly Leu Xaa Phe His Asp Cys Lys Trp Asp Leu Leu Thr Thr Lys Gln
Trp val Cys His Gly Leu
<210> 56
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> oligonucleotide
<400> 56
cggcgcaact atcggtatca agctg 25
<210> 57
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> oligonucleotide
```

```
 Corrected sequence listing- final.txt
<400> 57
catgtaccgt aacactgagt ttcgtc
<210> 58
<211> 18
<212> PRT
<213> Artificial Sequence
<220>
<223> Consensus peptide
<220>
<221> MISC_FEATURE
<222> (5)..(14)
<223> core amino acid sequence
<400> 58
\ Phe His Asp Cys Lys Trp Asp Leu Leu Thr Lys Gln Trp Val Cys His
G7y Leu
<210> 59
<211> 23
<212> PRT
<213> Artificial Sequence
<220>
<223> Preferred linker sequence
<400> 59
Gly Ser Gly Ser Ala Thr Gly Gly Ser Gly Ser Thr Ala Ser Ser Gly
Ser Gly Ser Ala Thr His Met
<210> 60
<211> 18
<212> PRT
<213> Artificial Sequence
<220>
<223> Preferred TALL-1 modulating domain
<400> 60
Asn Gln Thr Leu Trp Lys Trp Asp Leu Leu Thr Lys Gln Phe Ile The Thr
Tyr Met
```

```
<210> 61
<211> 18
<212> PRT
<213> Artificial Sequence
<220>
<223> preferred TALL-1 modulating domain
<400> 61
```



```
Asp Gly
```

<210> 62
<211> 18
<212> PRT
<213> Artificial Sequence
<220>
<223> Preferred TALL-1 modulating domain
<400> 62

Leu Gly
<210> 63
<211> 18
<212> PRT
<213> Artificial sequence
<220>
<223> preferred TALL-1 modulating domain
<400> 63

Ser Asn

```
<210> 64
<211> 18
<212> PRT
<213> Artificial Sequence
<220>
<223> Preferred TALL-1 modulating domain
```

```
<400> 64
 Corrected sequence listing- final.txt
Gln Arg val Gly Gln Phe Trp Asp val Leu Thr Lys Met Phe Ile Thr
Gly Ser
<210> 65
<211> 18
<212> PRT
<213> Artificial Sequence
<220>
<223> Preferred TALL-1 modulating domain
<400> 65
Gln Ala Gln Gly
Trp Pro
```

<210> 66
<211> 18
<212> PRT
<213> Artificial sequence
<220>
<223> Preferred TALL-1 modulating domain
<400> 66
Gly Trp Met His Trp Lys Trp Asp Pro Leu Thr Lys Gln Ala Leu Pro
Trp Met
<210> 67
<211> 18
<212> PRT
<213> Artificial Sequence
<220>
<223> Preferred TALL-1 modulating domain
<400> 67
$\underset{1}{\text { Gly }}$ His Pro Thr $\underset{5}{\text { Tyr }}$ Lys $\operatorname{Trp}$ Asp Leu Leu Thr Lys Gln Trp $\underset{10}{\text { Ile Leu }}$
Gln Met

```
<210> 68
<211> 18
<212> PRT
<213> Artificial Sequence
<220>
<223> Preferred TALL-1 modulating domain
<400> 68
Trp Asn Asn Trp Ser Leu Trp Asp Pro Leu Thr Lys Leu Trp Leu Gln
Gln Asn
```

<210> 69
<211> 18
<212> PRT
<213> Artificial sequence
<220>
<223> Preferred TALL-1 modulating domain
<400> 69

Gln Gln

```
<210> 70
<211> 18
<212> PRT
<213> Artificial sequence
<220>
<223> Preferred TALL-1 modulating domain
<400> 70
```

$\underset{1}{\text { Gly }}$ Gln Met Gly $\underset{5}{\operatorname{Trp}}$ Arg Trp Asp Pro $\underset{10}{\text { Leu }}$ Thr Lys Met $\operatorname{Trp} \underset{15}{\text { Leu Gly }}$
Thr Ser

```
<210> 71
<211> 62
<212> DNA
<213> Artificial Sequence
<220>
<223> oligonucleotide 2517-24
```

```
 Corrected sequence listing- final.txt
<400> 71
tatgccgggt acttgtttcc cgttcccgtg ggaatgcact cacgctggtg gaggcggtgg
gg
<210> 72
<211> 64
<212> DNA
<213> Artificial Sequence
<220>
<223> oligonucleotide 2517-25
<400> 72
tcgaccccac cgcctcctgg agcgtgagtg cattcccacg ggaagccgaa acaagtaccc 60
ggca 64
<210> }7
<211> 62
<212> DNA
<213> Artificial Sequence
<220>
<223> Oligonucleotide 2517-26
<400> }7
tatgtggggt gcttgttggc cgttcccgtg ggaatgtttc aaagaaggtg gaggcggtgg 60
gg 62
<210> 74
<211> 64
<212> DNA
<213> Artificial Sequence
<220>
<223> Oligonucleotide 2517-27
<400> 74
tcgaccccac cgcctccacc ttctttgaaa cattcccacg ggaacggcca acaagcacce 60
caca 64
<210> 75
<211> 62
<212> DNA
<213> Artificial sequence
<220>
<223> oligonucleotide 2517-28
<400> 75
tatggttccg ttctgtgacc tgctgactaa acactgtttc gaagctggtg gaggcggtgg 60
99 62
<210> 76
```

<211> 64 Corrected sequence listing- final.txt
<212> DNA
<213> Artificial Sequence
<220>
<223> oligonucleotide 2517-29
<400> 76
tcgaccccac cgcctccacc agcttcgaaa cagtgtttag tcagcaggtc acagaacgga
acca 64
<210> }7
<211> 74
<212> DNA
<213> Artificial Sequence
<220>
<223> oligonucleotide 2517-30
<400> 77
tatgggttct cgttgtaaat acaaatggga cgttctgact aaacagtgtt tccaccacgg 60
tggaggcggt gggg 74
<210> 78
<211> 76
<212> DNA
<213> Artificial Sequence
<220>
<223> oligonucleotide 2517-31
<400> 78
tcgaccccac cgcctccacc gtggtggaaa cactgtttag tcagaacgtc ccatttgtat 60
ttacaacgag aaccca }7
<210> 79
<211> }7
<212> DNA
<213> Artificial Sequence
<220>
<223> oligonucleotide 2517-32
<400> 79
tatgctgccg ggttgtaaat gggacctgct gatcaaacag tgggtttgtg acccgctggg 60
tggaggcggt gggg 74

```
```

<210> 80
<211> 76
<212> DNA
<213> Artificial Sequence
<220>
<223> oligonucleotide 2517-33

```
```

                                    Corrected sequence listing- final.txt
    <400> 80
tcgaccccac cgcctccacc cagcgggtca caaacccact gtttgatcag caggtcccat60

```
ttacaacccg gcagca 76
\(\begin{array}{ll}<210> & 81 \\ <211> & 74\end{array}\)

<212> DNA

<213> Artificial Sequence
<220>
<223> oligonucleotide 2517-34
<400> 81
tatgtctgct gactgttact tcgacatcct gactaaatct gacgtttgta cttcttctgg 60
tggaggcggt gggg 74
<210> 82
<211> 76
<212> DNA
<213> Artificial Sequence
<220>
<223> oligonucleotide 2517-35
<400> 82
tcgaccccac cgcctccacc agaagaagta caaacgtcag atttagtcag gatgtcgaag 60
taacagtcag cagaca 76
<210> 83
<211> 74
<212> DNA
<213> Artificial Sequence
<220>
<223> oligonucleotide 2517-36
<400> 83
tatgtctgac gactgtatgt acgaccagct gactcgtatg ttcatctgtt ctaacctggg 60
tggaggcggt gggg 74
<210> 84
<211> 76
<212> DNA
<213> Artificial Sequence
<220>
<223> 0ligonucleotide 2517-37
<400> 84
tcgaccceac cgcctccace caggttagaa cagatgaaca tacgagtcag ctggtcgtac 60
atacagtcgt cagaca 76
<210> 85

\section*{Corrected sequence listing- final.txt}
```

<211> 74
<212> DNA
<213> Artificial Sequence

```
<220>
<223> oligonucleotide 2521-92
<400> 85
tatggacctg aactgtaaat acgacgaact gacttacaaa gaatggtgtc agttcaacgg 60
tggaggcggt gggg 74
<210> 86
<211> 76
<212> DNA
<213> Artificial Sequence
<220>
<223> oligonucleotide 2521-93
<400> 86
tcgaccccac cgcctccacc gttgaactga caccattctt tgtaagtcag ttcgtcgtat 60
ttacagttca ggtcca 76
<210> 87
<211> 74
<212> DNA
<213> Artificial sequence
<220>
<223> oligonucleotide 2521-94
<400> 87
tatgttccac gactgtaaat acgacctgct gactcgtcag atggtttgtc acggtctggg 60
tggaggcggt gggg 74
<210> 88
<211> 76
<212> DNA
<213> Artificial Sequence
<220>
<223> oligonucleotide 2521-95
<400> 88
tcgaccccac cgcctccacc cagaccgtga caaaccatct gacgagtcag caggtcgtat 60
ttacagtcgt ggaaca 76
```

<210> 89
<211> 74
<212> DNA
<213> Artificial Sequence
<220>
<223> oligonucleotide 2521-96

```
```

                                    Corrected sequence listing- final.txt
    <400> 89
tatgcgtaac cactgtttct gggaccacct gctgaaacag gacatctgtc cgtctccggg60

```
tggaggcggt gggg 74
```

<210> 90
<211> 76
<212> DNA
<213> Artificial Sequence

```
<220>
<223> oligonucleotide 2521-97
<400> 90
tcgaccccac cgcctccacc cggagacgga cagatgtcct gtttcagcag gtggtcccag 60
aaacagtggt tacgca 76
<210> 91
<211> 74
<212> DNA
<213> Artificial Sequence
<220>
<223> oligonucleotide 2521-98
<400> 91
tatggctaac cagtgttggt gggactctct gctgaaaaa aacgtttgtg aattcttcgg 60
tggaggcggt gggg 74
<210> 92
<211> 76
<212> ONA
<213> Artificial Sequence
<220>
<223> oligonucleotide 2521-99
<400> 92
tcgaccccac cgcctccacc gaagaattca caaacgtttt ttttcagcag agagtcccac 60
caacactggt tagcca 76
<210> 93
<211> 74
<212> DNA
<213> Artificial Sequence
<220>
<223> oligonucleotide 2551-48
<400> 93
tatgttccac gactgcaaat gggacetget gaccaaacag tgggtttgce acggtctggg 60
tggaggcggt gggg 74
<210> 94
```

<211> }7
<212> DNA
<213> Artificial Sequence

```
<220>
<223> oligonucleotide 2551-49
<400> 94
tcgaccccac cgcctccacc cagaccgtgg caaacccact gtttggtcag caggtcccat 60
ttgcagtcgt ggaaca 76
<210> 95
<211> 141
<212> DNA
<213> Artificial sequence
<220>
<223> pCFM1656 vector fragment containing PL promoter
<400> 95
ctaattccge tctcacctac caaacaatgc ccccctgcaa aaaataaatt catataaaaa 60
acatacagat aaccatctgc ggtgataat tatctctggc ggtgttgaca taaataccac 120
tggcggtgat actgagcaca t 141
<210> 96
<211> 55
<212> DNA
<213> Artificial Sequence
<220>
<223> pCFM1656 vector fragment
<400> 96
cgatttgatt ctagaaggag gaataacata tggttaacge gttggaattc ggtac 55
<210> 97
<211> 1546
<212> DNA
<213> Artificial Sequence
<220>
<223> pAMG21 vector fragment
<400> 97
gcgtaacgta tgcatggtct ccccatgcga gagtagggaa ctgccaggca tcaaataaaa 60
cgaaaggctc agtcgaaaga ctgggccttt cgttttatct gttgtttgtc ggtgaacgct 120
ctcctgagta ggacaaatcc gccgggageg gatttgaacg ttgcgaagca acggcccgga 180
gggtggcggg caggacgecc gccataaact gccaggcatc aaattaagca gaaggceatc 240
ctgacggatg gcctttttgc gtttctacaa actcttttgt ttattttct aaatacattc 300
aatatggac gtcgtactta acttttaaag tatgggcaat caattgctcc tgttaaaatt 360
gctttagaaa tactttggca gcggtttgtt gtattgagtt tcatttgcge attggttaaa 420
 Page 34

\begin{tabular}{|c|c|c|c|c|c|}
\hline & Corrected & sequence & g- fi & . tx & \\
\hline gataatatat & gagcacaaaa aagaaaccat & taacacaaga & gcagcttgag & gacgcacgtc & 180 \\
\hline gecttaaage & aatttatgaa aaaaagaaaa & atgaacttgg & cttatcccag & gaatctgtcg & 240 \\
\hline cagacaagat & ggggatgggg cagtcaggcg & ttggtgcttt & atttaatggc & atcaatgcat & 300 \\
\hline taaatgctta & taacgccgca ttgcttacaa & aaattctcaa & agttagcgtt & gaagaattta & 360 \\
\hline gcecttcaat & cgccagagaa tctacgagat & gtatgaagcg & \(g t t a g t a t g c\) & agcegtcact & 420 \\
\hline tagaagtgag & tatgagtacc ctgttttttc & tcatgttcag & gcagggatgt & tctcacctaa & 480 \\
\hline gcttagaacc & tttaccaaag gtgatgcgga & gagatgggta & agcacaacca & aaaaagccag & 540 \\
\hline tgattctgca & ttctggcttg aggttgaagg & taattccatg & accgcaccaa & caggetceaa & 600 \\
\hline gccaagcttt & cctgacggaa tgttaattct & cgttgaccct & gagcaggetg & ttgagecagg & 660 \\
\hline tgatttctgc & atagccagac ttgggggtga & tgagtttacc & ttcaagaaac & tgatcaggga & 720 \\
\hline tagcggtcag & gtgtttttac aaccactaaa & cccacagtac & ccaatgatcc & catcgaatga & 780 \\
\hline gagttgttcc & \(g t t g t g g g g a ~ a a g t t a t c g c\) & tagtcagtgg & cctgaagaga & cgtttggctg & 840 \\
\hline atagactagt & ggatccacta gtgtttctgc & CC & & & 872 \\
\hline
\end{tabular}
```

<210> 99
<211> 1197
<212> DNA
<213> Artificial Sequence
<220>
<223> GM221 insert

```
<220>
<221> misc_feature
<222> (1)..(10)
<223> Flanking ebg sequence
<220>
<221> misc_feature
<222> (1188)..(1197)
<223> Flanking ebg sequence
<400> 99
ggcggaaacc gacgtccatc gaatggtgca aaacctttcg cggtatggca tgatagcgce 60
cggaagagag tcaattcagg gtggtgaatg tgaaaccagt aacgttatac gatgtcgcag 120
agtatgccgg tgtctcttat cagaccgttt ccegcgtggt gaaccaggcc agccacgttt 180
ctgcgaaaac gcgggaaaaa gtcgaagcgg cgatggcgga getgaattac attcccaacc 240
gcgtggcaca acaactggcg ggcaaacagt cgctcctgat tggcgttgcc acctccagtc 300
tggccctgca cgcgccgtcg caaattgtcg cggcgattaa atctcgcgcc gatcaactgg 360
gtgccagcgt ggtggtgtcg atggtagaac gaagcggcgt cgaagcctgt aaagcggcgg 420
tgcacaatct tctcgcgcaa cgcgtcagtg ggctgatcat taactatccg ctggatgacc 480
 Page 36
\begin{tabular}{lll}
& Corrected sequence listing- final.txt \\
aggatgccat tgctgtggaa gctgcctgca ctaatgttcc ggcgttattt cttgatgtct & 540 \\
ctgaccagac acccatcaac agtattattt tctcccatga agacggtacg cgactgggcg & 600 \\
tggagcatct ggtcgcattg ggtcaccagc aatcgcgct gttagcgggc ccattaagtt & 660 \\
ctgtctcggc gcgtctgcgt ctggctggct ggcataaata tctcactcgc aatcaaattc & 720 \\
agccgatagc ggaacgggaa ggcgactgga gtgccatgtc cggttttcaa caaaccatgc & 780 \\
aaatgctgaa tgagggcatc gttcccactg cgatgctggt tgccaacgat cagatggcgc & 840 \\
tgggcgcaat gcgcgccatt accgagtccg ggctgcgcgt tggtgcggat atctcggtag & 900 \\
tgggatacga cgataccgaa gacagctcat gttatatccc gccgttaacc accatcaaac & 960 \\
aggattttcg cctgctgggg caaaccagcg tggaccgctt gctgcaactc tctcagggcc & 1020 \\
aggcggtgaa gggcaatcag ctgttgcccg tctcactggt gaaaagaaaa accaccctgg & 1080 \\
cgcccaatac gcaaaccgcc tctccccgcg cgttggccga ttcattaatg cagctggcac & 1140 \\
gacaggtttc ccgactggaa agcggacagt aaggtaccat aggatccagg cacagga & 1197
\end{tabular}
```

<210> 100
<211> 14
<212> PRT
<213> Artificial Sequence
<220>
<223> Modulator of TALL-1
<220>
<221> MISC_FEATURE
<222> (1)..(1)
<223> Absent or amino acid residue
<220>
<221> MISC_FEATURE
<222> (2)..(2)
<223> Absent or amino acid residue
<220>
<221> MISC_FEATURE
<222> (3)..(3)
<223> Absent or amino acid residue
<220>
<221> MISC_FEATURE
<222> (6)..(6)
<223> Amino acid residue
<220>
<221> MISC_FEATURE
<222> (8)..(8)
<223> Thr or Ile
<220>
<221> MISC_FEATURE
<222> (9)..(9)

```

Corrected sequence listing- final.txt
<223> Basic or hydrophobic residue
<220>
<221> MISC_FEATURE
<222> (10)..(10)
<223> Amino acid residue
<220>
<221> MISC_FEATURE
<222> (12)..(12)
<223> Neutral hydrophobic residue
<220>
<221> MISC_FEATURE
<222> (13).. (13)
<223> Absent or amino acid residue
<220>
<221> MISC_FEATURE
<222> (14)..(14)
<223> Absent or amino acid residue
<400> 100
Xaa Xaa Xaa Cys Asp Xaa Leu Xaa Xaa Xaa Cys Xaa Xaa Xaa
1
5
10
<210> 101
<211> 14
<212> PRT
<213> Artificial Sequence
<220>
<223> Modulator of TALL-1
<220>
<221> MISC_FEATURE
<222> (1).. (1)
<223> Absent or amino acid residue
<220>
<221> MISC_FEATURE
<222> (2)..(2)
<223> Absent or amino acid residue
<220>
<221> MISC_FEATURE
<222> (3)..(3)
<223> absent or amino acid residue
<220>
<221> MISC_FEATURE
<222> (5)..(5)
<223> Neutral hydrophobic residue
<220>
<221> MISC_FEATURE
<222> (8)..(8)
<223> Neutral hydrophobic residue
<220>
```

<221> misc_feature
<222> (10)..(10)

```
<223> Acidic residue
<220>
<221> MISC_FEATURE
<222> (12)..(12)
<223> Amino acid residue
<220>
\(<221>\) MISC_FEATURE
<222> (13)..(13)
<223> Amino acid residue
<220>
<221> MISC_FEATURE
<222> (14)..(14)
<223> Absent or amino acid residue
<400> 101
xaa xaa xaa Cys xaa pro phe xaa Trp xaa Cys xaa Xaa Xaa
1
<210> 102
<211> 14
<212> PRT
<213> Artificial sequence
<220>
<223> Modulator of TALL-1
<220>
<221> MISC_FEATURE
<222> (1)..(1)
<223> Absent or amino acid residue
<220>
\(<221>\) MISC_FEATURE
<222> (2)..(2)
<223> Absent or amino acid residue
<220>
\(<221>\) MISC_FEATURE
<222> (3)..(3)
<223> absent or amino acid residue
<220>
\(<221>\) MISC_FEATURE
<222> (6)..(6)
<223> Hydrophobic residue
<220>
<221> MISC_FEATURE
<222> (7)..(7)
<223> Hydrophobic residue
<220>
<221> MISC_FEATURE
<222> (10)..(10)
<223> Acidic or polar hydrophobic residue
\(<220\)
<221> MISC_FEATURE
<222> (12)..(12)
<223> Absent or amino acid residue
<220>
<221> MISC FEATURE
<222> (13)..(13)
<223> Absent or amino acid residue
<220>
<221> MISC_FEATURE
<222> (14)..(14)
<223> Absent or amino acid residue
<400> 102
Xaa Xaa Xaa Cys \({ }_{5}\) Trp Xaa Xaa Trp Gly Xaa Cys Xaa Xaa Xaa
<210> 103
<211> 14
<212> PRT
<213> Artificial Sequence
<220>
<223> Modulator of TALL-1
<220>
<221> MISC FEATURE
<222> (1)..(1)
<223> Absent or amino acid residue
<220>
<221> MISC_FEATURE
<222> (2)..(2)
<223> Neutral hydrophobic residue
<220>
<221> MISC_FEATURE
<222> (3)..(3)
<223> amino acid residue
<220>
<221> MISC_FEATURE
<222> (5) .. (5)
<223> Amino acid residue
<220>
<221> MISC_FEATURE
<222> (6)..(6)
<223> Amino acid residue
<220>
<221> MISC_FEATURE
<222> (7).. (7)
<223> Amino acid residue
<220>
<221> MISC_FEATURE
<222> (8).. (8)
<223> Amino acid residue
<220>
<221> MISC_FEATURE
<222> (9)..(9)
<223> Acidic residue
<220>
<221> MISC_FEATURE
<222> (10)..(10)
<223> Amino acid residue
<220>
<221> MISC_FEATURE
<222> (12)..(12)
<223> Amino acid residue
<220>
<221> MISC_FEATURE
<222> (13)..(13)
<223> Amino acid residue
<220>
<221> MISC_FEATURE
<222> (14)..(14)
<223> Neutral hydrophobic residue
<400> 103
Xaa Xaa Xaa Cys Xaa Xaa Xaa Xaa Xaa Xaa Cys Xaa Xaa Xaa
1
<210> 104
<211> 18
<212> PRT
<213> Artificial Sequence
<220>
<223> Modulator of TALL-1
<220>
<221>
<222> MISC_FEATURE
<222> (1)..(1)
<223> Absent or amino acid residue
<220>
<221>
<221> MISC_FEATURE
<222> (2)..(2)
<223> Absent or amino acid residue
<220>
<221> MISC_FEATURE
<222> (3)..(3)
<223> Acidic or amide residue
<220>
<221> MISC_FEATURE
<222> (5)...(5)
<223> Amino acid residue
```

<220>
<221> MISC_FEATURE
<222> (6)..(6)

```
<223> Aromatic residue
<220>
<221> MISC_FEATURE
<222> (8)..(8)
<223> Amino acid residue
<220>
<221> MISC_FEATURE
<222> (10)..(10)
<223> Thr or ile
<220>
<221> MISC_FEATURE
<222> (11)..(11)
<223> Basic residue
<220>
<221> MISC_FEATURE
<222> (12)..(12)
<223> Amino acid residue
<220>
<221> MISC_FEATURE
<222> (13)..(13)
<223> Amino acid residue
<220>
<221> MISC_FEATURE
<222> (14)..(14)
<223> Neutral hydrophobic residue
<220>
<221> MISC_FEATURE
<222> (16)..(16)
<223> Absent or amino acid residue
<220>
<221> MISC_FEATURE
<222> (17)..(17)
<223> Absent or amino acid residue
<220>
<221> MISC_FEATURE
<222> (18)..(18)
<223> Absent or amino acid residue
<400> 104
Xaa Xaa Xaa Cys Xaa Xaa Asp Xaa Leu Xaa Xaa Xaa Xaa Xaa Cys Xaa
1
Xaa Xaa
\(\begin{array}{ll}<210> & 105 \\ <211> & 18 \\ <212> & \text { PRT }\end{array}\)
```

                                    Corrected sequence listing- final.txt
    <213>
Artificial sequence
<220>
<223> Modulator of TALL-1
<220>
<221> MISC_FEATURE
<222> (1)..(1)
<223> Absent or amino acid residue
<220>
<221> MISC_FEATURE
<222> (2)..(2)
<223> Absent or amino acid residue
<220>
<221> MISC_FEATURE
<222> (3)..(3)
<223> Absent or amino acid residue
<220>
<221> MISC_FEATURE
<222> (5)..(5)
<223> Amino acid residue
<220>
<221> MISC_FEATURE
<222> (7)..(7)
<223> Amino acid residue
<220>
<221> MISC_FEATURE
<222> (9)..(9)
<223> Thr or Ile
<220>
<221> MISC_FEATURE
<222> (10)..(10)
<223> Basic residue
<220>
<221> MISC_FEATURE
<222> (11)..(11)
<223> Amino acid residue
<220>
<221> MISC_FEATURE
<222> (12)..(12)
<223> Amino acid residue
<220>
<221> MISC_FEATURE
<222> (13)..(13).
<223> Neutral hydrophobic residue
<220>
<221> MISC_FEATURE
<222> (14)..(14)
<223> Amino acid residue
<220>
<221> MISC_FEATURE

```
```

<222> (16)..(16)

```
<223> Amino acid residue
<220>
<221> MISC_FEATURE
<222> (17)..(17)
<223> Neutral hydrophobic residue
<220>
<221> MISC_FEATURE
<222> (18)..(18)
<223> Absent or amino acid residue
<400> 105

Xaa Xaa
```

<210> }10
<211> 18
<212> PRT
<213> Artificial Sequence
<220>
<223> Modulator of TALL-1
<220>
<221> MISC_FEATURE
<222> (1)..(1)
<223> Absent or amino acid residue
<220>
<221> MISC_FEATURE
<222> (2)..(2)
<223> Absent or amino acid residue
<220>
<221> MISC_FEATURE
<222> (3)..(3)
<223> Absent or amino acid residue
<220>
<221> MISC_FEATURE
<222> (5)..(5)
<223> Amino acid residue
<220>
<221> MISC_FEATURE
<222> (6)..(6)
<223> Amino acid residue
<220>
<221> MISC_FEATURE
<222> (7)..(7)
<223> Amino acid residue
<220>

```
<221> MISC_FEATURE
<222> (10)..(10)
<223> amino acid residue
<220>
<221> MISC_FEATURE
<222> (12)..(12)
<223> Thr or Ile
<220>
<221> MISC_FEATURE
<222> (13)..(13)
<223> Amino acid residue
<220>
<221> MISC_FEATURE
<222> (14)..(14)
<223> Amino acid residue
<220>
<221>
MISC_FEATURE
<222> (16)..(16)
<223> Absent or amino acid residue
<220>
<221> MISC_FEATURE
<222> (17)..(17)
<223> Absent or amino acid residue
<220>
<221> MISC_FEATURE
<222> (18)..(18)
<223> Absent or amino acid residue
<400> 106

Xaa Xaa
```

<210> 107
<211> 18
<212> PRT
<213> Artificial Sequence
<220>
<223> Modulator of TALL-1
<220>
<221> MISC_FEATURE
<222> (1)..(1)
<223> absent or amino acid residue
<220>
<221> MISC_FEATURE
<222> (2)..(2)
<223> Absent or amino acid residue

```
<220>
<221> MISC_FEATURE
<222> (3)..(3)
<223> Absent or amino acid residue
<220>
<221> MISC_FEATURE
<222> (5)..(5)
<223> Amino acid residue
<220>
<221> MISC_FEATURE
<222> (6)..(6)
<223> Amino acid residue
<220>
<221> MISC_FEATURE
<222> (7)..(7)
<223> Amino acid residue
<220>
<221> MISC_FEATURE
<222> (9)..(9)
<223> Amino acid residue
<220>
<221> MISC_FEATURE
<222> (11)..(11)
<223> Thr or Ile
<220>
<221> MISC_FEATURE
<222> (11)..(11)
<223> Thr or Ile
<220>
<221> MISC_FEATURE
<222> (13)..(13)
<223> Amino acid residue
<220>
<221> MISC_FEATURE
<222> (15)..(15)
<223> Absent or amino acid residue
<220>
<221> MISC_FEATURE
<222> (16)..(16)
<223> Absent or amino acid residue
<220>
<221> MISC_FEATURE
<222> (17)..(17)
<223> Absent or amino acid residue
<220>
<221> MISC_FEATURE
<222> (18)..(18)
<223> Absent or amino acid residue
<400> 107
Xaa Xaa Xaa Cys Xaa Xaa Xaa Asp Xaa Leu Xaa Lys Xaa Cys Xaa Xaa
```

1 5 Corrected sequence listing- final.txt

``` Xaa Xaa
```

<210> 108
<211> 4
<212> PRT
<213> Artificial Sequence
<220>
<223> Modulator of TALL-1
<220>
<221> MISC_FEATURE
<222> (2)..(2)
<223> Amino acid residue
<220>
<221> MISC_FEATURE
<222> (4)..(4)
<223> Thr or Ile
<400> 108

```
Asp Xaa Leu Xaa
1
<210> 109
<211> 14
<212> PRT
<213> Artificial Sequence
<220>
\(<223>\) Modulator of TALL-1
<220>
<221> MISC_FEATURE
<222> (1)..(1)
<223> Absent or amino acid residue (one of residues 1, 2, or 3
absent or amino acid residue (one of residues \(1,{ }^{2}\), or 3 , and
only one of residues 1,2 , or 3 may be cys)
<220>
<221>
<222>
<223> Absent or amino acid residue (one of residues 1, 2, or 3
preferably cys when one of residues 12,13 , or 14 is Cys, and
only one of residues 1,2 , or 3 may be cys)
<220>
<221> MISC_FEATURE
<222> (3)..(3)
<223> Absent or amino acid residue (one of residues 1, 2, or 3
preferably cys when one of residues 12,13 , or 14 is Cys, and
only one of residues 1,2 , or 3 may be cys)
<220>
```

<221> MISC_FEATURE
<222> (5)..(5)
<223> Trp, Tyr, or Phe (Trp preferred)
<220>
<221> MISC_FEATURE
<222> (7)..(7)
<223> Amino acid residue (Leu preferred)
<220>
<221> MISC_FEATURE
<222> (9)..(9)
<223> Thr or Ile (Thr preferred)
<220>
<221> MISC_FEATURE
<222> (10)..(10)
<223> Lys, Arg, or His (Lys preferred)
<220>
<221> MISC_FEATURE
<222> (12)..(12)
<223> Cys, neutral hydrophobic residue, or basic residue (Trp, cys, or
Cys, neutral hydrophobic residue, or basic residue (Trp, Cys, or
<220>
<221> MISC_FEATURE
<222> (13)..(13)
<223> cys, neutral hydrophobic residue, or absent (val preferred, and
only one of residues 12, 13, or 14 may be Cys)
<220>
<221> MISC_FEATURE
<222> (14)..(14)
<223> Absent or amino acid residue (only one of residues 12, 13, or 14
may be cys)
<400> }10
Xaa Xaa Xaa Lys Xaa Asp Xaa Leu Xaa Xaa Gln Xaa Xaa Xaa
1
<210> }11
<211> 5
<212> PRT
<213> Artificial Sequence
<220>
<223> Modulator of TALL-1
<400> 110
Pro Phe Pro Trp Glu
<210> }11
<211> 248
<212> PRT
<213> Artificial Sequence
<220>

```
```

                        Corrected sequence listing- final.txt
    <223> TALL-1 inhibitory peptibody TALL-1-8-1-a
<400> 111

```
\(\underset{1}{\text { Met Pro Gly }}\) Thr \(\underset{5}{\text { Cys }}\) Phe Pro Phe Pro \(\underset{10}{\operatorname{Trp}} \mathrm{Glu}\) Cys Thr His Ala Gly
Gly Gly Gly \(\underset{20}{\text { Gly }}\) val Asp Lys Thr \(\underset{25}{\text { His }}\) Thr Cys Pro Pro \(\underset{30}{\text { Cys }}\) Pro Ala
Pro Glu Leu Leu Gly Gly Pro Ser val Phe Leu Phe Pro Pro Lys Pro

Asp \(\quad \begin{aligned} \text { Trp } \\ \\ 115\end{aligned}\)

Lys Asn Gln val \(\begin{aligned} \text { Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr pro } \\ \\ 165 \\ 170\end{aligned}\)

Ser Cys Ser val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys
225230235240
```

            Corrected sequence listing- final.txt
    Ser Leu Ser Leu Ser Pro Gly Lys
<210> 112
<211> 248
<212> PRT
<213> Artificial Sequence
<223> TALL-1 inhibitory peptibody TALL-1-8-2-a
<400> 112
Met Trp Gly Ala Cys Trp Pro Phe Pro Trp Glu Cys Phe Lys Glu Gly

```

```

Pro Glu Leu Leu Gly Gly Pro Ser val Phe Leu Phe Pro Pro Lys Pro
Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu val Thr cys val val
Val Asp Val Ser His Glu Asp Pro Glu val Lys Phe Asn Trp Tyr val
Asp Gly val Glu val His Asn Ala Lys Thr Lys Pro Arg Glu Glu gln
Tyr Asn Ser Thr Tyr Arg val val Ser val Leu Thr val Leu His Gln
Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys val Ser Asn Lys Ala
Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro
Arg Glu Pro Gln val Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr
Lys Asn Gln val Ser Leu Thr Cys Leu val Lys Gly Phe Tyr pro Ser
Asp Ile Ala val Glu Trp Glu Ser Asn Gly Gln Pro glu Asn Asn Tyr

```
```

            Corrected sequence listing- final.txt
    Lys Thr Thr Pro Pro val Leu Asp Ser Asp Gly Ser phe Phe Leu Tyr
Ser Lys Leu Thr val Asp lys Ser Arg Trp Gln Gln Gly Asn val Phe
\ Ser Cys Ser val Met ris fis Glu Ala Leu His Asn His Tyr Thr Gln Lys
Ser Leu Ser Leu Ser Pro Gly Lys
<210> 113
<211> 248
<212> PRT
<213> Artificial Sequence
<220>
<223> TALL-1 inhibitory peptibody TALL-1-8-4-a
<400> 113
\ Met val Pro Phe cys Asp Leu Leu Thr Lys His Cys Phe Glu Ala Gly
Gly Gly Gly \underset{20}{Gly val Asp Lys Thr }\underset{25}{His}\mathrm{ (hr Cys Pro Pro Cys Pro Ala}
Pro Glu Leu Leu Gly Gly Pro Ser val Phe Leu Phe Pro Pro Lys Pro
Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu val Thr Cys val val
Val Asp Val Ser His Glu Asp Pro Glu val Lys Phe Asn Trp Tyr val
Asp Gly val Glu val his Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln
Tyr Asn Ser Thr Tyr Arg val Val Ser val Leu Thr val Leu His Gln
Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys val Ser Asn Lys Ala
Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro
Arg Glu Pro Gln val Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr
Page 51

```
```

145
150 Corrected sequence lis5 listing- final.txt
155
160
Lys Asn Gln val Ser Leu Thr Cys Leu val Lys Gly Phe Tyr Pro Ser
Asp Ile Ala val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr
Lys Thr Thr Pro Pro val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr
Ser Lys Leu Thr val Asp Lys Ser Arg Trp Gln Gln Gly Asn val Phe

```

Ser Leu Ser Leu Ser Pro Gly Lys
<210> 114
<211> 252
<212> PRT
<213> Artificial Sequence
<220>
<223> TALL-1 inhibitory peptibody TALL-1-12-4-a
<400> 114
\(\underset{1}{\text { Met Gly }}\) Ser Arg \(\underset{5}{\text { Cys }}\) Lys Tyr Lys Trp \(\underset{10}{\text { Asp }}\) Val Leu Thr Lys \(\underset{15}{\text { Gln }}\) Cys
Phe His His Gly Gly Gly Gly Gly \(\underset{20}{\operatorname{val}} \underset{25}{ }\) Asp Lys thr His \(\underset{30}{\text { Thr Cys Pro }}\)
Pro Cys \(\begin{gathered}\text { Pro Ala Pro Glu Leu } \\ 35\end{gathered} \underset{40}{\text { Leu Gly Gly }}\) Pro Ser val \(\underset{45}{ }\) Phe Leu Phe

 Page 52
```

            Corrected sequence listing- final.txt
    Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys val
Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala
Lys Gly Gln Pro Arg Glu Pro Gln val Tyr Thr Leu Pro Pro Ser Arg
Asp Glu Leu Thr Lys Asn Gln val Ser Leu Thr Cys Leu val Lys Gly
Phe Tyr Pro Ser Asp Ile Ala val Glu Trp Glu Ser Asn Gly Gln pro
180 185 190

```

```

Phe Phe Leu Tyr Ser Lys Leu Thr val Asp Lys Ser Arg Trp Gln Gln
Gly Asn val Phe Ser Cys Ser val Met His Glu Ala Leu His Asn His
225
Tyr Thr Gln Lys Ser Leu Ser Leu Ser pro Gly Lys
<210> 115
<211> }25
<212> PRT
<213> Artificial Sequence
<220>
<223> TALL-1 inhibitory peptibody TALL-1-12-3-a
<400> 115
Met Leu Pro Gly Cys Lys Trp Asp Leu Leu Ile Lys Gln Trp val Cys
Asp Pro Leu Gly Gly Gly Gly Gly val Asp Lys Thr His Thr Cys Pro
20 25 30

```

```

Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu val
Page 53

```
```

                                    Corrected sequence listing- final.txt
    Thr Cys val val val Asp val Ser His Glu Asp pro Glu val Lys Phe
Asn Trp Tyr val Asp Gly val Glu val His Asn Ala Lys Thr tys proc
Arg Glu Glu Gln Tyr Asn Ser Thr Tyr arg val val ser val Leu Thr

```

```

Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala
Lys Gly Gln Pro Arg Glu Pro Gln val Tyr Thr Leu Pro Pro Ser arg
Asp Glu Leu Thr Lys Asn G7n val Ser Leu Thr cys Leu val Lys Gly
Phe Tyr Pro Ser Asp Ile Ala val Glu Trp Glu Ser Asn Gly Gln Pro
Glu Asn Asn Tyr Lys Thr Thr pro Pro val Leu Asp Ser Asp Gly Ser
Phe Phe Leu Tyr Ser Lys Leu Thr val Asp Lys Ser Arg Trp Gln Gln
Gly Asn val Phe Ser cys Ser val Met His flu flu Ala Leu His Asn His
Tyr Thr Gln Lys Ser Leu Ser Leu Ser pro Gly Lys
<210> 116
<211> 252
<212> PRT
<213> Artificial Sequence
<220>
<223> TALL-1 inhibitory peptibody TALL-1-12-5-a
<400> 116
Met Ser Ala Asp Cys Tyr Phe Asp Ile Leu Thr Lys Ser Asp val lo cys

```
```

Thr Ser ser Gly Gly Gly Gly Gly \arrected sequence listing- final.txt ( Asp Lys Thr His Thr Cys Pro
Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser val Phe Leu Phe
Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu val
Thr Cys val val val Asp val Ser His Glu Asp Pro Glu val Lys Phe
Asn Trp Tyr val }\underset{85}{\mathrm{ Asp Gly val Glu val }
Arg Glu glu Gln Tyr Asn Ser Thr Tyr Arg val val Ser val leu Thr
Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys val
Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala
Lys Gly Gln Pro Arg Glu Pro Gln val Tyr Thr Leu Pro Pro Ser Arg
Asp Glu Leu Thr Lys Asn Gln val ser Leu Thr Cys Leu val Lys Gly
Phe Tyr Pro Ser Asp Ile Ala val Glu Trp Glu Ser Asn Gly Gln Pro
Glu Asn Asn Tyr Lys Thr Thr pro Pro val Leu Asp Ser Asp Gly Ser
Phe Phe Leu Tyr Ser Lys Leu Thr val Asp Lys Ser Arg Trp Gln Gln
Gly Asn val Phe Ser Cys Ser val Met His glu Ala Leu His Asn His
Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys
<210> }11
<211> 252
<212> PRT

```
<213> Artificial sequence
<220>
<223> TALL-1 inhibitory peptibody TALL-1-12-8-a
<400> }11
```


Ser Asn Leu Gly Gly Gly Gly Gly $\underset{20}{\text { Val }} \underset{25}{ }$ Asp Lys Thr His $\underset{30}{\text { Thr Cys Pro }}$







Lys Gly Gln Pro Arg Glu Pro Gln val Tyr
145
150 $\underset{155}{\text { Thr Leu Pro Pro Ser arg }} \begin{array}{r}160\end{array}$

Phe Tyr Pro Ser Asp Ile Ala val Glu trp Glu Ser Asn Gly Gln Pro
180
180
Glu Asn Asn Tyr Lys Thr Thr Pro Pro val Leu Asp Ser Asp Gly Ser
195
200
205
Phe phe Leu Tyr Ser Lys Leu
210
215

```
Gly Asn val Phe Ser Cys Ser Valed sequence listing- final.txt
G2y Asn val Phe Ser Cys Ser val met His Glu Ala Leu His Asn His
Tyr Thr Gln Lys Ser Leu Ser Leu Ser pro Gly Lys
<210> 118
<211> 252
<212> PRT
<213> Artificial Sequence
<220>
<223> TALL-1 inhibitory peptibody TALL-1-12-9-a
<400> 118
Met Asp Leu Asn cys Lys Tyr Asp Glu Leu Thr Tyr Lys Glu Trp Cys
Gln Phe Asn Gly Gly Gly Gly Gly val \
```



```
Pro pro Lys pro lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu val
Thr Cys val val val Asp val Ser His Glu Asp Pro Glu val Lys Phe
Asn Trp Tyr val Asp Gly val Glu val
Arg Glu Glu Gln Tyr Asn Ser Thr Tyr forg val val Ser val Leu Thr
Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys val
Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala
Lys G7y Gln Pro Arg Glu Pro Gln val Tyr Thr Leu Pro Pro Ser Arg
Asp Glu Leu Thr Lys Asn Gln val Ser Leu Thr Cys Leu val Lys gly
Phe Tyr Pro Ser Asp Ile Ala val Glu Trp Glu Ser Asn Gly Gln Pro
 Page 57
```

```
 Corrected sequence listing- final.txt
 180
 185 190
```

```
Glu Asn Asn Tyr Lys Thr Thr Pro Pro val Leu Asp Ser Asp Gly Ser
```

Glu Asn Asn Tyr Lys Thr Thr Pro Pro val Leu Asp Ser Asp Gly Ser
Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln
Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln
Gly Asn Val Phe Ser Cys Ser val met His Glu Ala Leu His Asn His
Gly Asn Val Phe Ser Cys Ser val met His Glu Ala Leu His Asn His
Tyr Thr Gln Lys Ser Leu Ser Leu Ser pro Gly Lys
Tyr Thr Gln Lys Ser Leu Ser Leu Ser pro Gly Lys
<210> 119
<211> 252
<212> PRT
<213> Artificial Sequence
<220>
<223> TALL-1 inhibitory peptibody TALL-1-12-10-a
<400> 119
Met Phe His Asp Cys Lys Tyr Asp Leu Leu Thr Arg Gln Met val Cys
His Gly Leu Gly Gly Gly Gly Gly val \al asp Lys Thr His Thr Cys Pro
Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser val Phe Leu Phe

```

```

Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu val Lys Phe
Asn Trp Tyr val Asp Gly val Glu val tric
Arg Glu Glu Gln Tyr Asn Ser Thr \underset{100}{Tyr Arg val val Ser val Lem Leu Thr}
val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys val
Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala

```
 Corrected sequence listing- final.txt
Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser arg
Asp Glu Leu Thr Lys Asn Gln val Ser Leu Thr Cys Leu Val Lys Gly
 165 170
Phe Tyr Pro Ser Asp Ile Ala val Glu Trp Glu Ser Asn Gly Gln Pro
Glu Asn Asn Tyr Lys Thr Thr Pro Pro val Leu Asp Ser Asp Gly Ser
195
 200
 205
Phe Phe Leu Tyr Ser Lys Leu Thr val Asp Lys Ser Arg in Trp Gln Gln
Gly Asn val Phe Ser Cys Ser val Met His glu Ala Leu His Asn His
Tyr Thr Gln Lys Ser Leu Ser Leu Ser pro Gly Lys
<210> 120
<211> 252
<212> PRT
<213> Artificial Sequence
<220>
<223> TALL-1 inhibitory peptibody TALL-1-12-11-a
<400> 120
\1
Pro Ser Pro Gly Gly Gly Gly Gly val val Asp Lys Thr His Thr Cys Pro
Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser val foc
Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu val
Thr Cys Val Val val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe
Asn Trp Tyr val Asp Gly val Glu val His Asn Ala Lys Thr Lys Pro
 Page 59
```

```
 Corrected sequence listing- final.txt
Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg val val Ser val Leu Thr
Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys val
Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala
Lys Gly Gln Pro Arg Glu Pro Gln val Tyr Thr Leu Pro Pro Ser Arg
Asp Glu Leu Thr Lys Asn Gln val Ser Leu Thr Cys Leu val Lys gly
Phe Tyr Pro Ser Asp Ile Ala val Glu Trp Glu Ser Asn Gly Gln Pro
Glu Asn Asn Tyr Lys Thr Thr pro Pro val Leu Asp Ser Asp Gly Ser
Phe phe Leu Tyr Ser Lys Leu Thr val Asp Lys Ser Arg Trp Gln Gln
Gly Asn val Phe Ser Cys Ser val Met His Glu Ala Leu His Asn His
225 [230
Tyr Thr Gln Lys Ser Leu Ser Leu Ser pro Gly Lys
<210> 121
<211> 252
<212> PRT
<213> Artificial Sequence
<220>
<223> TALL-1 inhibitory peptibody TALL-1-12-14-a
<400> 121
Met Ala Asn Gln Cys Trp Trp Asp Ser Leu Thr Lys Lys Asn val cys
Glu Phe Phe Gly Gly Gly Gly Gly val asp Lys Thr his Thr cys Pro
Pro Cys pro Ala Pro Glu Leu Leu Gly Gly Pro Ser val (ta Phe Leu Phe
```

```
 Corrected sequence listing- final.txt
Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu val
 50
 5 60
Thr Cys Val Val Val Asp Val Ser His Glu Asp pro Glu Val Lys Phe
Asn Trp Tyr val Asp Gly val Glu val His Asm Ala Lys Thr Lys Pro
Arg G7u G7u Gln Tyr Asn Ser Thr Tyr Arg val val Ser val Leu Thr
Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val
Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala
Lys Gly Gln Pro Arg Glu Pro Gln val Tyr Thr Leu Pro Pro Ser Arg
Asp Glu Leu Thr Lys Asn Gln val Ser Leu Thr Cys Leu Val Lys Gly
Phe Tyr Pro Ser Asp Ile Ala val Glu Trp Glu Ser Asn Gly Gln Pro
Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser
 195 200 205
Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln
 210
 215
G7y Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His
Tyr Thr G7n Lys Ser Leu Ser Leu Ser Pro Gly Lys
<210> 122
<211> 252
<212> PRT
<213> Artificial sequence
<220>
<223> TALL-1 inhibitory peptibody consensus sequence
<400> 122
Met Phe His Asp Cys Lys Trp Asp Leu Leu Thr Lys Gln Trp Val Cys
 Page 61
```

```
1 5
 Corrected sequence listing- final.txt
His Gly Leu Gly Gly Gly Gly Gly val viv
Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser val
Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val
Thr Cys val val val Asp val Ser His Glu Asp pro Glu val Lys Phe
Asn Trp Tyr val Asp Gly val Glu val
Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg val val Ser val Leu Thr
 100 105 110
Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys val
Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala
Lys Gly Gln Pro Arg Glu Pro Gln val Tyr Thr Leu Pro Pro Ser Arg
Asp G7u Leu Thr Lys Asn Gln val Ser Leu Thr Cys Leu val Lys gly
Phe Tyr Pro Ser Asp Ile Ala val Glu Trp Glu Ser Asn Gly Gln Pro
Glu Asn Asn Tyr Lys Thr Thr pro Pro val Leu Asp Ser Asp Gly Ser
Phe Phe Leu Tyr Ser Lys Leu Thr val Asp Lys Ser Arg Trp Gln G7n
Gly Asn val Phe Ser Cys Ser val Met His Glu Ala Leu His Asn His
Tyr Thr Gln Lys Ser Leu Ser Leu Ser pro Gly Lys
```

```
<210> }12
<211> 293
<212> PRT
<213> Artificial Sequence
<220>
<223> TALL-1 inhibitory peptibody 12-3 tandem dimer
<400> 123
```



```
Asp Pro Leu Gly Ser Gly Ser Ala Thr Gly Gly Ser Gly Ser for Thr Ala
```

Ser Ser $\underset{35}{\text { Gly }}$ Ser Gly Ser Ala $\underset{40}{\text { Thr }}$ His Met Leu Pro $\underset{45}{\text { Gly }}$ Cys Lys $\operatorname{Trp}$
Asp Leu Leu Ile Lys Gln $\underset{50}{\operatorname{Trp}} \underset{5}{\operatorname{Trp}}$ Val Cys Asp Pro Leu Gly Gly Gly Gly
$\underset{65}{67 y} \begin{aligned} & \text { Val } \\ & 65 \\ & 70\end{aligned}$



Glu Val His Asn Ala Lys $\begin{gathered}\text { Thr } \\ 135\end{gathered}$
Thr Tyr arg val val Ser val Leu Thr val Leu His Gln Asp Trp Leu
145
150
150
Asn Gly Lys Glu Tyr Lys Cys Lys val Ser Asn Lys Ala Leu Pro Ala
Pro Ile Glu Lys thr Ile Ser Lys Ala Lys Gly Gln Pro $\begin{gathered}\text { Arg Glu Pro } \\ 180\end{gathered}$
GIn val $\underset{195}{\operatorname{Tyr}}$ Thr Leu Pro Pro Ser Arg Asp Glu Leu $\underset{200}{\operatorname{Thr}} \underset{205}{ }$ Lys Asn Gln
Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr pro Ser Asp Ile Ala
Page 63

## Corrected sequence listing- final.txt 215220



Pro Pro val Leu Asp Ser Asp Gly Ser phe phe Leu Tyr Ser Lys Leu

Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser


```
Leu Ser Pro Gly Lys
```

<210> 124
<211> 293
<212> PRT
<213> Artificial Sequence
<220>
<223> TALL-1 inhibitory peptibody consensus tandem dimer
<400> 124
Met
1
His Gly Leu Gly $\underset{20}{ }$ Ser Gly Ser Ala $\underset{25}{\operatorname{Th}}$ Gly Gly Ser Gly $\underset{30}{\text { Ser }}$ Thr Ala


Gly val
65

Leu Met Ile Ser Arg Thr pro Glu val Thr Cys val val val Asp val
$100 \begin{array}{ll}105\end{array}$
Ser His Glu Asp Pro Glu val Lys Phe Asn Trp Tyr val Asp Gly val $\begin{aligned} & 125 \\ & 120\end{aligned}$
Page 64

```
 Corrected sequence listing- final.txt
Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser
Thr Tyr Arg Val Val Ser Val Leu Thr val Leu His Gln Asp Trp Leu
145 150 15 Ar 155 His Gin Asp Trp Leu
Asn Gly Lys Glu Tyr Lys Cys Lys val Ser Asn Lys Ala Leu Pro Ala
Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro
Gln val Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln
val Ser Leu Thr Cys Leu val Lys Gly Phe Tyr pro Ser Asp Ile Ala
Val Glu Trp Glu Ser Asn Gly Gln Pro glu Asn Asn Tyr Lys Thr The Thr
Pro Pro val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu
Thr val Asp Lys Ser Arg Trp Gln Gln Gly Asn val fhe Ser for cys ser
Val Met }\underset{275}{His
Leu Ser Pro Gly Lys
<210> 125
<211> 14
<212> PRT
<213> Artificial Sequence
<220>
<223> Modulator of TALL-1
<220>
<221> MISC_FEATURE
<222> (1)..(1)
<223> Absent or amino acid residue (one of residues 1, 2, or 3
 preferably cys when one of residues 12, 13, or 14 is Cys, and
 only one of residues 1, 2, or 3 may be cys)
<220>
```

```
<221> MISC_FEATURE
```

<222> (2)..(2)
<223> Absent or amino acid residue (one of residues 1,2 , or 3
preferably Cys when one of residues 12,13 , or 14 is Cys, and
only one of residues 1,2 , or 3 may be cys)
<220>
<221> MISC_FEATURE
<222> (3)..(3)
<223> Absent or amino acid residue (one of residues 1,2 , or 3
preferably Cys when one of residues 12,13 , or 14 is Cys, and
only one of residues 1,2 , or 3 may be cys)
<220>
<221> MISC_FEATURE
<222> (7).. (7)
<223> Amino acid residue (Leu preferred)
<220>
<221> MISC_FEATURE
<222> (9).. (9)
<223> Thr or Ile (Thr preferred)
<220>
<221> MISC_FEATURE
<222> (12)..(12)
<223> Cys, neutral hydrophobic residue, or basic residue (Trp, cys, or
Arg preferred, and only one of residues 12,13 , or 14 may be cys)
<220>
<221> MISC_FEATURE
<222> (13)..(13)
<223>
Cys, neutral hydrophobic residue, or absent (val preferred, and
only one of residues 12,13 , or 14 may be cys))
<220>
<221> MISC_FEATURE
<222> (14)..(14)
<223> Absent or amino acid residue (only one of residues 12,13 , or 14
may be Cys)
<400> 125
Xaa Xaa Xaa Lys $\operatorname{Tr}_{5}$ Asp Xaa Leu Xaa Lys Gln Xaa Xaa Xaa
<210> 126
<211> 18
<212> PRT
<213> Artificial Sequence
<220>
<223> Preferred TALL-1 modulating domain
<400> 126
$\underset{1}{\text { Tyr Lys Gly }} \underset{\sim}{\text { arg }} \underset{5}{\text { G7n }}$ Met $\operatorname{Trp}$ Asp Ile $\underset{10}{\text { Leu }}$ Thr Arg Ser Trp val val
Ser Leu

```
<210> 127
<211> 18
<212> PRT
<213> Artificial sequence
<220>
<223> Preferred TALL-1 modulating domain
<400> 127
Gln Asp val Gly Leu Trp Trp Asp Ile Leu Thr Arg Ala Trp Met Mr Pro
Asn Ile
```

<210> 128
<211> 18
<212> PRT
<213> Artificial sequence
<220>
<223> Preferred TALL-1 modulating domain
<400> 128
$\underset{1}{\text { Gln Asn Ala Gln }} \underset{5}{\operatorname{Arg}}$ Val Trp Asp Leu Leu Ile Arg Thr Trp val Tyr
Pro Gln
<210> 129
<211> 18
<212> PRT
<213> Artificial sequence
<220>
<223> Preferred TALL-1 modulating domain
<400> 129
${ }_{1} \mathrm{Gly} \operatorname{Trp}$ Asn Glu $\underset{5}{\text { Ala }} \operatorname{Trp} \operatorname{Trp}$ Asp Glu $\underset{10}{\text { Leu }}$ Thr Lys Ile Trp Val Leu
Glu Gln
<210> 130
<211> 18
<212> PRT
<213> Artificial Sequence
<220>
<223> Preferred TALL-1 modulating domain
Page 67

```
<400> 130
```

$\underset{1}{\text { Arg Ile }}$ Thr Cys $\underset{5}{\text { Asp }}$ Thr $\operatorname{Trp}$ Asp Ser Leu Ile Lys Lys Cys $\underset{10}{\text { val }} \underset{15}{ }$ Pro
Gln ser

```
<210> 131
<211> 18
<212> PRT
<213> Artificial Sequence
<220>
<223> Preferred TALL-1 modulating domain
<400> }13
```

Gly Ala Ile Met ${ }_{5}$ Gln Phe Trp Asp Ser Leu Thr Lys Thr Trp Leu Arg
Gln Ser
<210> 132
<211> 18
<212> PRT
<213> Artificial Sequence
<220>
<223> Preferred TALL-1 modulating domain
<400> 132
$\underset{1}{\operatorname{Trp}}$ Leu His Ser $\underset{5}{\text { Gly }} \underset{10}{\operatorname{Trp}} \operatorname{Trp}$ Asp Pro Leu Thr Lys His Trp $\underset{15}{\text { Leu }} \underset{10}{ }$
Lys val
<210> 133
<211> 18
<212> PRT
<213> Artificial Sequence
<220>
<223> Preferred TALL-1 modulating domain
<400> 133
Ser Glu Trp Phe Phe Trp Phe Asp Pro Leu Thr Arg Ala Gln Leu Lys
Phe Arg

```
<210> 134
```

<211> 18
<212> PRT
<213> Artificial Sequence
<220>
<223> Preferred TALL-1 modulating domain
<400> 134
$\underset{1}{\text { Gly val }} \operatorname{Trp}$ Phe $\underset{5}{\operatorname{Trp}} \operatorname{Trp}$ Phe Asp Pro $\underset{10}{\text { Leu }}$ Thr Lys Gln Trp $\underset{15}{\operatorname{Th} r}$ Gln
Ala Gly
<210> 135
<211> 18
<212> PRT
<213> Artificial sequence
<220>
<223> Preferred TALL-1 modulating domain
<400> 135
Met Gln Cys Lys ${ }_{5} 1 \mathrm{l}$ (Tyr Tyr Asp Ile Leu Thr Lys Trp Cys val Thr
Asn Gly
<210> 136
<211> 18
<212> PRT
<213> Artificial Sequence
<220>
<223> Preferred TALL-1 modulating domain
<400> 136
$\underset{1}{\text { Leu }} \operatorname{Trp}$ Ser Lys $\underset{5}{\text { Glu val }} \operatorname{Trp}$ Asp Ile $\underset{10}{\text { Leu }}$ Thr Lys Ser Trp Val $\underset{15}{\text { Ver }}$
Gln Ala
$\begin{array}{ll}<210> & 137 \\ <211> & 18\end{array}$
<211> 18
<213> Artificial Sequence
<220>
<223> Preferred TALL-1 modulating domain

```
 Corrected sequence listing- final.txt
<400> 137
Lys Ala Ala Gly Trp Trp Phe Asp Trp Leu Thr Lys Val Trp Val Pro
Ala Pro
<210> 138
<211> 18
<212> PRT
<213> Artificial Sequence
<220>
<223> Preferred TALL-1 modulating domain
<400> 138
Ala Tyr Gln Thr Trp Phe Trp Asp Ser Leu Thr Arg Leu Trp Leu Ser
Thr Thr
<210> 139
<211> 18
<212> PRT
<213> Artificial Sequence
<220>
<223> Preferred TALL-1 modulating domain
<400> 139
Ser Gly Gln His Phe Trp Trp Asp Leu Leu Thr Arg Ser Trp Thr pro
Ser Thr
<210> 140
<211> 18
<212> PRT
<213> Artificial Sequence
<220>
<223> Preferred TALL-1 modulating domain
<400> 140
Leu Gly val Gly Gln Lys Trp Asp Pro Leu Thr Lys Gln Trp val Ser
Arg Gly
```

```
<210> 141
<211> 18
<212> PRT
<213> Artificial Sequence
<220>
<223> Preferred TALL-1 modulating domain
<400> 141
```



```
val Gly
```

<210> 142
<211> 18
<212> PRT
<213> Artificial Sequence
<220>
<223> Preferred TALL-1 modulating domain
<400> 142
Cys arg Gln Gly Ala Lys Phe Asp Leu Leu Thr Lys Gln Cys Leu Leu
Gly Arg
<210> 143
<211> 18
<212> PRT
<213> Artificial Sequence
<220>
<223> Preferred TALL-1 modulating domain
<400> 143
$\underset{1}{\text { Gly }} \mathrm{Gln}$ Ala Ile $\underset{5}{\text { Arg }} \mathrm{His}$ Trp Asp Val $\underset{10}{\text { Leu }}$ Thr Lys Gln Trp Val $\underset{15}{ }$ Asp
Ser Gln
<210> 144
<211> 18
<212> PRT
<213> Artificial sequence
<220>
<223>
Preferred TALL-1 modulating domain
Page 71

```
<400> 144
```

$\underset{1}{\text { Arg Gly Pro Cys }} \underset{5}{\text { Gly }}$ Ser Trp Asp Leu Leu $\underset{10}{ }$ Thr Lys His Cys Leu Asp
Ser Gln

```
<210> 145
<211> 18
<212> PRT
<213> Artificial Sequence
<220>
<223> Preferred TALL-1 modulating domain
<400> 145
```

$\underset{1}{\text { Trp Gln }} \operatorname{Trp}$ Lys $\underset{5}{\text { Gln Gln }} \operatorname{Trp}$ Asp Leu Leu Thr Lys Gln Met val 10
Val Gly

```
<210> 146
<211> 18
<212> PRT
<213> Artificial Sequence
<220>
<223> Preferred TALL-1 modulating domain
<400> 146
```

Pro Ile Thr Ile Cys
$\underset{5}{\text { Cy }}$
Leu Asp
<210> 147
<211> 18
<212> PRT
<213> Artificial sequence
<220>
<223> Preferred TALL-1 modulating domain
<400> 147

Gln Ala

```
 Corrected sequence listing- final.txt
```

```
<210> 148
<211> 18
<212> PRT
<213> Artificial Sequence
<220>
<223> Preferred TALL-1 modulating domain
<400> 148
Lys Cys Leu Lys Gly Lys Trp Asp Leu Leu Thr Lys Gln Cys val Thr
Glu val
```

<210> 149
<211> 18
<212> PRT
<213> Artificial Sequence
<220>
<223> Preferred TALL-1 modulating domain
<400> 149
$\underset{1}{\text { Arg Cys }}$ Trp Asn $\underset{5}{\text { Gly }}$ Lys Trp Asp Leu $\underset{10}{\text { Leu }}$ Thr Lys Gln Cys $\underset{15}{\text { Ile }}$ His
Pro Trp
<210> 150
<211> 18
<212> PRT
<213> Artificial Sequence
<220>
<223> Preferred TALL-1 modulating domain
<400> 150

Arg Pro

```
<210> 151
<211> 18
<212> PRT
<213> Artificial Sequence
<220>
<223> Preferred TALL-1 modulating domain
```

                                    Page 73
    <400> 151


Pro Pro
<210> 152
<211> 18
<212> PRT
<213> Artificial Sequence
<220>
<223> Preferred TALL-1 modulating domain
<400> 152
Pro Glu Gly Gly Pro Lys Trp Asp Pro Leu Thr Lys Gln Phe Leu Pro
$\underset{5}{10}$

Pro Val

```
<210> 153
<211> 18
<212> PRT
<213> Artificial Sequence
<220>
<223> Preferred TALL-1 modulating domain
<400> 153
Gln Thr Pro Gln Lys Lys Trp Asp Leu Leu Thr Lys Gln Trp Phe Thr
Arg Asn
<210> 154
<211> 18
<212> PRT
<213> Artificial Sequence
<220>
<223> Preferred TALL-1 modulating domain
<400> 154
Ile Gly Ser Pro cys Lys Trp Asp Leu Leu Thr Lys Gln Met Ile Cys
Gln Thr
```


## Corrected sequence listing- final.txt

```
<210> 155
<211> 18
<212> PRT
<213> Artificial Sequence
<220>
<223> Preferred TALL-1 modulating domain
<400> 155
```



```
Glu Lys
<210> 156
<211> 18
<212> PRT
<213> Artificial Sequence
<220>
<223> Preferred TALL-1 modulating domain
<400> 156
Val Ser Gln Cys Met Lys Trp Asp Leu Leu Thr Lys Gln Cys Leu Gln
Gly Trp
<210> 157
<211> 18
<212> PRT
<213> Artificial Sequence
<220>
<223> Preferred TALL-1 modulating domain
<400> 157
|al Trp Gly Thr Trp Lys Trp Asp Leu Leu Thr Lys Gln Tyr Leu Pro
```

Pro Gln
<210> 158
<211> 18
<212> PRT
<213> Artificial Sequence
<220>
<223> Preferred TALL-1 modulating domain

```
 Corrected sequence listing- final.txt
<400> 158
```



```
Pro Gln
<210> 159
<211> 18
<212> PRT
<213> Artificial Sequence
<220>
<223> Preferred TALL-1 modulating domain
<400> 159
Thr Ala Gln val Ser Lys Trp Asp Leu Leu Thr Lys Gln Trp Leu Pro
```

Leu Ala
<210> 160
<211> 18
<212> PRT
<213> Artificial Sequence
<220>
<223> Preferred TALL-1 modulating domain
<400> 160

Ile Met
<210> 161
<211> 18
<212> PRT
<213> Artificial sequence
<220>
<223> Preferred TALL-1 modulating domain
<400> 161
$\underset{1}{\text { Trp Ala }}$ Thr Ser $\underset{5}{\text { Gln }}$ Lys Trp Asp Leu Leu Thr Lys Gln Trp Val $\underset{15}{ }$ Gln
Asn Met

```
<210> 162
<211> 18
<212> PRT
<213> Artificial Sequence
<220>
<223> Preferred TALL-1 modulating domain
<400> 162
Gln Arg Gln Cys Ala Lys Trp Asp Leu Leu Thr Lys Gln Cys val lof
Phe Tyr
```

<210> 163
<211> 18
<212> PRT
<213> Artificial Sequence
<220>
<223> Preferred TALL-1 modulating domain
<400> 163

Gln val
<210> 164
<211> 18
<212> PRT
<213> Artificial Sequence
<220>
<223> Preferred TALL-1 modulating domain
<400> 164
$\underset{1}{\text { Leu Leu Cys Gln }} \underset{5}{\text { Gly }}$ Lys Trp Asp Leu Leu $\underset{10}{ }$ Thr Lys Gln Cys Leu Lys
Leu Arg
<210> 165
<211> 18
<212> PRT
<213> Artificial Sequence
<220>
<223> Preferred TALL-1 modulating domain
Page 77

```
 Corrected sequence listing- final.txt
<400> 165
Leu Met Trp Phe Trp Lys Trp Asp Leu Leu Thr Lys Gln Leu val Pro
Thr Phe
<210> 166
<211> 18
<212> PRT
<213> Artificial Sequence
<220>
<223> Preferred TALL-1 modulating domain
<400> 166
Gln Thr Trp Ala }\underset{5}{Trp
Pro Met
```

```
<210> 167
```

<210> 167
<211> 18
<211> 18
<212> PRT
<212> PRT
<213> Artificial Sequence
<213> Artificial Sequence
<220>
<223> Preferred TALL-1 modulating domain
<400> 167
Asn Lys Glu Leu Leu Lys Trp Asp Leu Leu Thr Lys Gln Cys Arg Gly
Arg Ser
<210> 168
<211> 18
<212> PRT
<213> Artificial Sequence
<220>
<223> Preferred TALL-1 modulating domain
<400> 168
Gly Gln Lys Asp Leu Lys Trp Asp Leu Leu Thr Lys Gln Tyr val arg
Gln Ser

```

\title{
Corrected sequence listing- final.txt
}
```

<210> 169
<211> 18
<212> PRT
<213> Artificial Sequence
<220>
<223> Preferred TALL-1 modulating domain
<400> 169
Pro Lys Pro Cys Gln Lys Trp Asp Leu Leu Thr Lys Gln Cys Leu Gly
Ser val

```
<210> 170
<211> 18
<212> PRT
<213> Artificial Sequence
<220>
<223> Preferred TALL-1 modulating domain
<400> 170

Thr Arg
<210> 171
<211> 18
<212> PRT
<213> Artificial Sequence
<220>
<223> Preferred TALL-1 modulating domain
<400> 171
\(\underset{1}{\text { Val }} \underset{1}{\operatorname{Trp}}\) Leu Asp \(\underset{5}{\operatorname{Trp}}\) Lys Trp Asp Leu \(\underset{10}{\text { Leu }}\) Thr Lys Gln Trp \(\underset{15}{\text { Ile }}\) His
Pro Gln
<210> 172
\(<211>18\)
\(<212>\) PRT
<213> Artificial Sequence
\(<220>\)
<223> Preferred TALL-1 modulating domain
 Page 79
```

                            Corrected sequence listing- final.txt
    <400> 172
Gln Glu Trp Glu Tyr Lys Trp Asp Leu Leu Thr Lys Gln Trp Gly Trp
Leu Arg
<210> 173
<211> 18
<212> PRT
<213> Artificial Sequence
<220>
<223> Preferred TALL-1 modulating domain
<400> 173
His Trp Asp Ser Trp Lys Trp Asp Leu Leu Thr Lys Gln Trp Val val
Gln Ala

```
<210> 174
<211> 18
<212> PRT
<213> Artificial Sequence
<220>
<223> Preferred TALL-1 modulating domain
<400> 174

Val Gly
<210> 175
<211> 18
<212> PRT
<213> Artificial Sequence
<220>
<223> Preferred TALL-1 modulating domain
<400> 175
Ser Asp Gln Trp Gin Lys Trp Asp Leu Leu Thr Lys Gln Trp phe Trp
Asp Val
```

<210> }17
<211> 18
<212> PRT
<213> Artificial sequence
<220>
<223> Preferred TALL-1 modulating domain
<400> }17

```

```

Arg His

```
<210> 177
<211> 18
<212> PRT
<213> Artificial Sequence
<220>
<223> Preferred TALL-1 modulating domain
<400> 177
\(\underset{1}{\text { Gln Gly Glu Cys }} \underset{5}{\text { Arg Lys }}\) Trp Asp Leu Leu Thr Lys Gln Cys Phe Pro
Gly Gln
<210> 178
<211> 18
<212> PRT
<213> Artificial sequence
<220>
<223> Preferred TALL-1 modulating domain
<400> 178
\(\underset{1}{\text { Gly }}\) Gln Met Gly \(\underset{5}{\operatorname{Trp}}\) Arg Trp Asp Pro Leu Ile Lys Met Cys Leu Gly
Pro Ser
```

<210> 179
<211> 18
<212> PRT
<213> Artificial Sequence
<220>
<223>
Preferred TALL-1 modulating domain

```
 Corrected sequence listing- final.txt
<400> 179
Gln Leu Asp Gly Cys Lys Trp Asp Leu Leu Thr Lys Gln Lys val Cys
Ile Pro
<210> 180
<211> 18
<212> PRT
<213> Artificial Sequence
<220>
<223> Preferred TALL-1 modulating domain
<400> 180
His Gly Tyr Trp Gln Lys Trp Asp Leu Leu Thr Lys Gln Trp val Ser
Ser Glu
<210> 181
<211> 18
<212> PRT
<213> Artificial Sequence
<220>
<223> Preferred TALL-1 modulating domain
<400> 181
His Gln Gly Gln Cys Gly Trp Asp Leu Leu Thr Arg Ile Tyr Leu Pro
```

Cys His

```
<210> 182
<211> 18
<212> PRT
<213> Artificial Sequence
<220>
<223> Preferred TALL-1 modulating domain
<400> }18
```


Met Gln

```
<210> 183
<211> 18
<212> PRT
<213> Artificial Sequence
<220>
<223> Preferred TALL-1 modulating domain
<400> 183
```



```
Thr Gly
```

<210> 184
<211> 18
<212> PRT
<213> Artificial Sequence
<220>
<223> Preferred TALL-1 modulating domain
<400> 184
Ile Thr Gln Asp $\operatorname{Trp}_{5}$ Arg Phe Asp Thr Leu Thr Arg Leu Trp Leu Pro
Leu Arg
<210> 185
<211> 18
<212> PRT
<213> Artificial sequence
<220>
<223> Preferred TALL-1 modulating domain
<400> 185

Val Pro

```
<210> 186
<211> 18
<212> PRT
<213> Artificial Sequence
<220>
<223>
 Preferred TALL-1 modulating domain
 Page 83
```

```
 Corrected sequence listing- final.txt
<400> 186
Gly His Gly Thr pro Trp Trp Asp Ala Leu Thr Arg Ile Trp Ile Leu
Gly val
<210> 187
<211> 18
<212> PRT
<213> Artificial Sequence
<220>
<223> Preferred TALL-1 modulating domain
<400> 187
Val Trp Pro Trp Gln Lys Trp Asp Leu Leu Thr Lys Gln Phe val
Gln Asp
```

```
<210> 188
<211> 19
<212> PRT
<213> Artificial Sequence
<220>
<223> Preferred TALL-1 modulating domain
<400> 188
```

$\underset{1}{\operatorname{Trp}} \mathrm{Gln} \mathrm{Gln} \operatorname{Trp} \underset{5}{\operatorname{Ser}} \operatorname{Trp}$ Lys Trp Asp $\underset{10}{\text { Leu Leu Thr Arg Gln }} \underset{15}{\operatorname{Tyr}}$ Ile
Ser Ser ser
<210> 189
<211> 882
<212> DNA
<213> Artificial Sequence
<220>
<223> TALL-1 inhibitory peptibody 12-3 tandem dimer
<220>
<221> CDS
<222> (1)..(879)
<400> 189
atg ctt cca ggc tgc aag tgg gat ctt ctt att aag caa tgg gta tgc
Met Leu pro Gly Cys Lys Trp Asp Leu Leu Ile Lys Gln Trp Val Cys
Page 84
Corrected sequence listing- final.txt
10
15

## 5

gat cca ctt gga tcc ggt tct gct act ggt ggt tcc ggc tcc acc gca Asp Pro Leu Gly Ser Gly ser Ala $\underset{25}{ } \mathrm{Thr}_{2}$ Gly Gly ser Gly $\underset{30}{\text { Ser }}$ Thr Ala agc tct ggt tca ggc agt gcg act cat atg ctg ccg ggt tgt aaa tgg
ser ser gly ser Gly ser Ala thr His met Leu pro gly cys Lys trp
35 gac ctg ctg atc aad cag tgg gtt tgt gac ccg ctg ggt gga ggc ggt
Asp Leu Leu Ile Lys Gln Trp Val Cys Asp Pro Leu Giy Giy Giy Giy 50
ggg gtc gac aaa act cac aca tgt cca cct tgt cca gct ccg gaa ctc Gly val Asp Lys Thr
65
70
ctg ggg gga ccg tca gtc ttc ctc ttc ccc cca aaa ccc aag gac acc Leu Gly Gly pro Ser val phe Leu phe Pro Pro Lys Pro Lys Asp
85
90 ctc atg atc tcc cgg acc cct gag gtc aca tgc gtg gtg gtg gac gtg
Leu met Ile Ser arg Thr pro Glu val Thr cys val val val asp val 100105110
agc cac gaa gac cct gag gtc aag ttc aac tgg tac gtg gac ggc gtg

gag gtg cat aat gcc aag aca aag ccg cgg gag gag cag tac aac agc Glu Val his asn Ala Lys Thr Lys pro Arg Glu Glu Gin Tyr Asn ser acg tac cgt gtg gtc agc gtc ctc acc gtc ctg cac cag gac tgg ctg Thr Tyr Arg Val val Ser Val Leu Thr Val Leu His Gln Asp trp Leu 14515015516 aat ggc aag gag tac aag tgc aag gtc tcc aac aaa gec ctc cca gcc Asn Gly Lys Glu Tyr Lys Cys Lys val $\underset{165}{ } \quad \underset{170}{ } \quad$ Asn Lys Ala Leu pro Ala ccc atc gag aaa acc atc tcc aaa gcc aaa ggg cag ccc cga gaa cca pro Ile Glu Lys Thr Ile ser Lys Ala Lys Gly Gln pro arg glu pro 180 185 190
cag gtg tac acc ctg ccc cca tcc cgg gat gag ctg acc aag aac cag Gln val Tyr Thr Leu pro pro $\begin{aligned} & \text { Ser Arg Asp Glu Leu Thr Lys Asn Gln } \\ & 200\end{aligned}$
gtc agc ctg acc tgc ctg gtc aaa ggc ttc tat ccc agc gac atc gcc val ser Leu Thr cys Leu val Lys Gly Phe Tyr $\underset{215}{215} \begin{aligned} & \text { pro } \\ & 220\end{aligned}$ gtg gag tgg gag agc aat ggg cag ccg gag aac aac tac aag acc acg
Val Glu Trp Glu ser Asn Giy Gln Pro Glu Asn Asn Tyr Lys Thr Thr $225{ }_{230} \quad 240$ cct ccc gtg ctg gac tcc gac ggc tcc ttc ttc ctc tac agc aag ctc

acc gtg gac aag agc agg tgg cag cag ggg aac gtc ttc tca tgc tcc Page 85

```
 Corrected sequence listing- final.txt
Thr val Asp Lys Ser Arg Trp Gln Gln Gly Asn val phe Ser Cys Ser
 260 265
 270
gtg atg cat gag gct ctg cac aac cac tac acg cag aag agc ctc tcc
val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser
 275
 280
 285
ctg tct ccg ggt aaa taa
Leu Ser Pro Gly Lys
<210> }19
<211> 23
<212> PRT
<213> Artificial Sequence
<220>
<223> Preferred linker sequence
<400> 190
Gly Ser Gly Ser fla Thr Gly Gly Ser Gly Ser Thr Ala Ser Ser Gly
Ser Gly Ser Ala Thr Gly Met
 20
<210> 191
<211> 23
<212> PRT
<213> Artificial Sequence
<220>
<223> Preferred linker sequence
<400> 191
Gly Ser Gly Ser Ala Thr Gly Gly Ser Gly Ser Thr Ala Ser Ser Gly
Ser Gly Ser Ala Thr Gly Ser
<210> 192
<211> 46
<212> PRT
<213> Artificial Sequence
<220>
<223> Preferred linker sequence
<400> }19
Gly Ser Gly Ser Ala Thr Gly Gly Ser Gly Ser Thr Ala Ser Ser Gly
Ser Gly Ser Ala Thr His met Gly Ser Gly Ser Ala Thr Gly Gly Ser
 Page 86
```

```
Corrected \(\underset{25}{ }\) sequence listing- final.txt
```

Gly Ser $\underset{35}{\text { Thr Ala Ser Ser Gly }} \underset{40}{ } \underset{40}{ }$ Gly Ser Ala Thr $\underset{45}{\text { His }}$ Met

```
<210>
 193
```

<211> 23
<212> PRT
<213> Artificial Sequence
<220>
<223> Preferred linker sequence
<220>
<221> MISC_FEATURE
<222> (22)..(22)
<223> Basic or hydrophobic residue
<220>
<221> MISC_FEATURE
<222> (23)..(23)
<223> Hydrophobic residue
<400> 193
$\underset{1}{\text { Gly }} \operatorname{Ser}$ Gly Ser $\underset{5}{\text { Ala }}$ Thr Gly Gly Ser Gly $\underset{10}{ }$ Ser Thr Ala Ser Ser Gly
Ser Gly Ser $\underset{20}{\text { Ala }}$ Thr Xaa Xaa
<210> 194
<211> 46
<212> PRT
<213> Artificial Sequence
<220>
<223> Preferred linker sequence
<220>
<221> MISC_FEATURE
<222> (22)..(22)
<223> Basic or hydrophobic residue
<220>
<221> MISC_FEATURE
<222> (23)..(23)
<223> Hydrophobic residue
<220>
<221> MISC_FEATURE
<222> (45)..(45)
<223> Basic or hydrophobic residue
<220>
<221> MISC_FEATURE
<222> (46)..(46)

```
<223> Hydrophobic residurected sequence listing- final.txt
<400> }19
Gly Ser Gly Ser Ala Thr Gly Gly Ser Gly Ser Thr Ala Ser Ser Gly
```



```
Gly Ser Thr Ala Ser Ser Gly Ser Gly Ser Ala Thr Xaa xaa
<210> 195
<211> 38
<212> PRT
<213> Homo sapiens
<400> 195
Met Arg Arg Gly pro Arg Ser Leu Arg Gly arg Asp Ala Pro val vil pro
Thr Pro Cys val Pro Thr Glu Cys Tyr Asp Leu Leu val Arg Lys Cys
val Asp Cyss Arg Leu Leu
<210> }19
<211> 41
<212> PRT
<213> Homo sapiens
<400> 196
```



```
Ser Leu Ser Cys Arg Lys Glu Gln Gly Lys Phe Tyr Asp tive
Arg Asp Cys Ile Ser Cys Ala Ser Ile
<210> }19
<211> 42
<212> PRT
<213> Homo sapiens
<400> }19
Phe val Ser pro Ser Gln Glu Ile Arg Gly Arg Phe Arg Arg Met Leu
Page 88
```


## Corrected sequence listing- final.txt

Gln Met Ala Gly Gln Cys Ser Gln Asn Glu Tyr Phe Asp Ser Leu Leu 202530

His Ala Cys Ile Pro Cys Gln $\underset{40}{\text { Leu }}$ Arg Cys

Page 89

