US 20160219128A1

a9 United States

a2y Patent Application Publication o) Pub. No.: US 2016/0219128 A1

Bryan

43) Pub. Date: Jul. 28, 2016

(54)

(71)
(72)

@
(22)

(60)

(60)

MECHANISMS FOR TRANSPARENTLY
CONVERTING BETWEEN PEER-TO-PEER
PROTOCOLS

Applicant: Qoma, Inc., Palo Alto, CA (US)

Inventor: David A. Bryan, Cedar Park, TX (US)

Appl. No.: 15/087,498

Filed: Mar. 31,2016

Related U.S. Application Data

Division of application No. 12/932,859, filed on Mar.
8, 2011, now Pat. No. 9,332,068, which is a continu-
ation-in-part of application No. 12/313,609, filed on
Nov. 21, 2008, now abandoned.

Provisional application No. 61/004,900, filed on Nov.
29, 2007.

100 Incoming message received

102
Application-
level message?

Publication Classification

(51) Int.CL
HO4L 29/06 (2006.01)
HO4L 29/08 (2006.01)
(52) US.CL
CPC oo HO4L 69/03 (2013.01); HO4L 67/104
(2013.01)
(57) ABSTRACT

A method of converting client-server software agents to peer-
to-peer software agents coupling a client to an adaptor soft-
ware module is provided. The method includes directly cou-
pling a client in software to an adaptor software module,
wherein said adaptor software services underlying traffic
from an unmodified agent and relays it on behalf of said
unmodified agent, wherein all traffic generated by said
unmodified agent is relayed directly to said adaptor software
module.

104 Does
message trigger
an event?

yes

106 Update and store info

needed to trigger event later

110 Perform any protocol-level
operations and respond
appropriately, if required

108 Trigger response to event

Patent Application Publication Jul. 28,2016 Sheet1 of 6 US 2016/0219128 A1

Fig. 1

100 Incoming message received

102

Application-
level message?

104 Does

message trigger
an event?

yes

106 Update and store info
needed to trigger event later

108 Trigger response to event [€—

Y

110 Perform any protocol-level
operations and respond
appropriately, if required

Patent Application Publication Jul. 28,2016 Sheet2 of 6 US 2016/0219128 A1

200 App. call recv

Fig. 2

202 Explicit
nitialize
library?

204 Implicit
initialize?

206 Already
initialized?

210 Already
initialized?

no

v
—2{ 212 Initialize library

Patent Application Publication Jul. 28,2016 Sheet 3 of 6 US 2016/0219128 A1

300 App. call recv.

v Fig. 3
302 Determine destination
304 Reformat to new protocol
and send message

306 Does this
call wait for
response?

308 Wait for timeout
O response

310
Timeout?

318 Do we
need to register
an event for a
response?

312 Timeout

processing
320 Create event for 314 Format and return .
response call response

Patent Application Publication Jul. 28,2016 Sheet4 of 6 US 2016/0219128 A1

402 User agent / endpoint Fig. 4
using client-server protocol (P RIOR ART)

400
Data Network

NS

06 Server

404 User agent / endpoint
using client-server protocol

502 User agent / endpoint
using client-server protocol

CS
$ Fig. 5
504 Adapter node (presents (P RIOR AR D
CS network interface to
agent; presents P2P network

interface to other peers)

300

Data Network 508 User agent / endpoint

using P2P protocol

506 User agent / endpoint
using P2P protocol

Patent Application Publication

Jul. 28,2016 Sheet 5 of 6

606 Application Layer
(e.g., DNS, FTP, HTTP,
SIP, SMTP, SSH, RTP)

US 2016/0219128 A1l

{

614 Application Layer
(e.g., DNS, FTP, HTTP,
SIP, SMTP, SSH, RTP)

{

608 Transport Layer 616 Transport Layer
(e.g., TCP, UDP) (e.g., TCP, UDP)
610 Internet Layer 618 Internet Layer
(e.g.,IP) (e.g.,IP)

612 Link Layer 620 Link Layer

Fig. 6

Patent Application Publication Jul. 28,2016 Sheet 6 of 6 US 2016/0219128 A1

702 User agent / endpoint
using CS protocol at

application level Fig 7

704 Adaptor module
below application level

700

Data Network 708 User agent / endpoint

using P2P protocol

706 User agent / endpoint
using P2P protocol

US 2016/0219128 Al

MECHANISMS FOR TRANSPARENTLY
CONVERTING BETWEEN PEER-TO-PEER
PROTOCOLS

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application is a divisional of U.S. patent appli-
cation Ser. No. 12/932859 filed Mar. 8, 2011, which is a
continuation-in-part of U.S. patent application Ser. No.
12/313609 filed Nov. 21, 2008, which claims priority from
U.S. Provisional Patent Application 61/004900 filed Nov. 29,
2007, all of which are incorporated herein by reference.

FIELD OF THE INVENTION

[0002] The invention relates generally to distributed soft-
ware systems. More particularly, the invention relates to
methods for providing transparent translation between client-
server and peer-to-peer protocols.

BACKGROUND OF THE INVENTION

[0003] In distributed software systems, agents, also often
called endpoints, devices, or user agents, communicate with
each other and/or with central devices, such as servers. For
example, an agent may both send and receive information,
such as in a telephone-like device, or file/media sharing appli-
cation. An agent may only receive (or request and receive)
information, such as in a television-like device, a web client,
or streaming media viewer agent. An agent may only transmit
information, such as with a camera that is only able to stream
information to a central server for others to obtain.

[0004] These agents may be realized in the form of a soft-
ware application, a hardware device, or a hardware device
running a software application which implements the agent.
The agent may have a user associated with it, for example in
the case of a phone or mail system where the agent processes
messages for a particular user’s number or address, or the
agent may operate without an associated user.

[0005] In traditional client-server (CS) architecture, such
as the example shown in FIG. 4, agents 402 and 404 are
connected to a centralized server 406, which acts on behalf of
the agents, via network connections propagated through data
network 400 using a client-server protocol. The behaviors or
services that the central server 406 may provide to each agent
include, for example, registration, or storing a mapping of a
user’s unique name to a network location of the agent asso-
ciated with the user; presence information, or information
about the user’s availability, desire to be disturbed, etc.; locat-
ing a remote agent and proxying messages to that agent;
locating a remote agent and referring or redirecting the agent
to that party (often referred to as “discovery” or “rendezvous”
capability); storage and/or distribution of information used
by applications (such as web pages, media files, documents,
etc.); storage and/or distribution of information such as con-
figuration information; storage and/or distribution of infor-
mation such as system warning or downtime information;
storage and/or distribution of information related to system or
software updates; storage of and/or distribution of messages
in text, audio, video, or other form for later retrieval or deliv-
ery; providing security and asserted identity between various
communicating parties; storing and delivering messages for a
user who is unavailable; providing interactive voice response

Jul. 28, 2016

mechanisms; and providing information about resources
stored by the remote agents and how to retrieve the informa-
tion from the remote agents.

[0006] Peer-to-peer (P2P) mechanisms exist to distribute
many of the services enumerated above. In a P2P communi-
cations system, one, more, or all of the functions that would
normally be performed by a centralized server 406 are instead
performed by a distributed group of the agents themselves,
working together to collectively provide the service. For
example, if user agents 402 and 404 were to use a P2P pro-
tocol instead of a CS protocol, then much of the functionality
of server 406 would be provided by the P2P agents 402 and
404. In such cases, some aspects of communications between
the agents might be identical to the behavior of an agent
connecting to the central server. However, one or more critical
aspects would differ in that the distributed group of agents
performs a task that is, in the client-server protocol, per-
formed by central server 406.

[0007] The following example illustrates how a client-
server model may differ from a peer-to-peer model. In the
Session Initiation Protocol (SIP), locating a remote party in a
CS model involves several steps. At a high level, an agent 402
wishing to make themselves available for communications
first registers, or sends a message or messages, to a central
server 406, providing the location (IP address or other infor-
mation required to route information) of the agent 402 and a
well known name or address of record that refers to that
agent’s user. When a calling agent 404 wishes to send a
message to the agent 402, it either sends requests to the central
server 406 asking for the location of the remote agent 402 and
then sends the message directly to the agent 402, or it sends
the message to the server, which then routes or redirects the
message so that it reaches the intended agent endpoint 402.

[0008] In a P2P model, registrations (the mappings
between the user’s well-known, unique name and current
network location) are instead sent to one or more of the other
agents that make up the distributed group of agents. These
agents collectively maintain the mappings that would nor-
mally be maintained by the server. Using a P2P protocol to
communicate over network connections, calling agents con-
tact and work with one or more other agents (dependent upon
the exact nature of the P2P algorithm) to locate the agent that
is storing the registration. One or more intermediate agents or
data provided by one or more agents, rather than a central
server or information from a central server, is thus used to
locate and communicate with the remote party’s agent.

[0009] This P2P location mechanism (and, more generally,
any other mechanism beyond location that is distributed
among the end agents rather than being provided by a central
server) requires special P2P functionality that is not normally
present in CS agents. Implementations of a P2P system have
to date taken three approaches: implementing a completely
new agent containing P2P functionality, significantly modi-
fying an existing agent to include P2P functionality, or using
a separate, standalone “adaptor node” agent to receive the
calling agent’s CS protocol and make new P2P protocol calls
on behalf of the calling agent.

[0010] Implementing a new P2P agent or modifying a CS
agent to include P2P functionality both have a number of
shortcomings. They require significant new engineering
effort. They cannot immediately leverage all work on existing
agents, since current agents require modification to operate.
Finally, work done to modify one application client in no way

US 2016/0219128 Al

improves the performance of other applications—each must
be modified separately to perform the operations in a distrib-
uted fashion.

[0011] Because of these shortcomings, a standalone adap-
tor agent, often called an adaptor node or adaptor peer, has
been attempted, as illustrated in FIG. 5. Such an adaptor agent
504 runs as a member of a P2P network of agents which also
includes P2P agents 506 and 508. These P2P agents commu-
nicate with each other over P2P network connections via a
data network 500 using a P2P protocol. An unmodified CS
agent 502 is explicitly configured to connect to the adaptor
agent 504 over a network connection using a CS protocol.
This network connection may be external (between two
physical machines) or internal, using a virtual machine or
loopback, but must always be explicitly configured in the
unmodified CS agent 502. The adaptor node 504 acts as a
central server in the view of the unmodified CS agent 502, but
participates as a full P2P agent in the distributed group along
with peers 506 and 508.

[0012] In some cases, the use of an adapter node works to
allow unmodified CS agents to connect to a P2P network, but
there are a significant number of problems with this approach,
as well as cases where it fails. For example, problems arise
with certain protocols that allow agents to initiate connections
directly with other agents when the location of these have
already been determined. In such cases, it may be difficult to
ensure that the unmodified CS agent 502 does not become
confused and try to communicate directly with P2P agents
506 or 508 rather than through the adapter agent 504. Failure
to use the adaptor agent 504 for all communications can result
in incorrect or corrupted P2P state information, or result in
agents 506 and/or 508 receiving messages that they are
unable to understand or process. A further problem is that
most newer protocols, including the P2P protocols to which
this concept applies, are designed with increased security.
Since an older CS protocol is used between the unmodified
agent 502 and the adaptor node 504, possibly traveling over
an unsecured network or on a virtual network inside a multi-
user machine, the advantages of the newer security mecha-
nisms are not realized. Another problem is that if the adaptor
agent 504 is located on a different host than the calling agent
502, the calling agent cannot function properly if the host
running the adaptor agent 504 fails. In the event both 502 and
504 operate on the same host, the calling agent 502 will not
operate in the event that the adaptor node application crashes.
There may be no good mechanism for the adaptor agent to
restart, or to even detect that the adaptor node has failed.
Additionally, because the proper function of this system
requires the calling agent 502 to be configured to communi-
cate with the adaptor node 504, this mechanism is susceptible
to misconfiguration. Kruppa et al. in US Pat. Pub. 2009/
0316687 discloses a P2P distributed call center method for
high-level management of how to handle incoming calls to a
call center. The technique is a layer on top of a communica-
tions system, and not a communications system itself. While
standard P2P communications may be part of the underlying
system, there is no teaching or suggestion by Kruppa of
converting CS protocol to P2P protocol at the basic level of
call control.

[0013] In view of the above, there is still a need for tech-
niques that help overcome the existing challenges in convert-
ing client-server agents to peer-to-peer agents.

Jul. 28, 2016

SUMMARY OF THE INVENTION

[0014] A mechanism is provided where a client is directly
coupled in software to an adaptor software module that ser-
vices underlying traffic from the unmodified agent and relays
iton behalf of the agent. Rather than the agent using a network
connection to the adaptor, all traffic generated by the agent is
relayed directly to the adaptor software module.

[0015] Inoneaspect, amethod of converting a client-server
software agent to a peer-to-peer software agent is provided. A
client agent, which operates using a client-server protocol, is
directly coupled in software to an adaptor software module
without any network connection between them. The adaptor
software module receives from the client agent application-
level network traffic in a client-server protocol, then it con-
verts the received traffic into a peer-to-peer protocol and
relays it over a network connection on behalf of the client
agent. In one embodiment, the conversion between client-
server protocol traffic and peer-to-peer protocol traffic is per-
formed by a modified software library. In another embodi-
ment, the conversion between client-server protocol traffic
and peer-to-peer protocol traffic is performed by a modified
stack performing deep packet inspection at the socket level.

[0016] Inanother aspect, a method for translating between
client-server and peer-to-peer protocols is provided. The
method includes receiving a network message conforming to
a peer-to-peer protocol. If the network message is an appli-
cation-level message and does not trigger an application-level
event, a local protocol state is updated with information in the
application-level message. Ifthe network message is an appli-
cation-level message and triggers an application-level event,
atranslated message is sent to an application layer in a client-
server protocol to trigger an appropriate application-level
event. Peer-to-peer protocol-level operations are performed
in response to the network message. In addition, the method
includes receiving from an application-layer a call conform-
ing to a client-server protocol. If the call is a library initial-
ization call, a local stack is created to handle subsequent calls
and to process incoming network messages conforming to a
peer-to-peer protocol. If the call is not a library initialization
call but the call implies library initialization, a local stack is
created to handle subsequent calls and to process incoming
network messages conforming to a peer-to-peer protocol. If
the call is a request to send information using a client-server
protocol, then the request is translated to at least one network
message conforming to a peer-to-peer protocol. The method
may include various additional steps. For example, if the call
received from the application layer is awaiting a response, a
response network message in a peer-to-peer protocol is
waited for. And if the response network message is received,
a translated response in client-server protocol is sent to the
application layer. The method may also include registering an
appropriate event trigger if the call received from the appli-
cation layer is not awaiting a response. If the response net-
work message is later received, a translated response in client-
server protocol is sent to the application layer.

[0017] Themethod may be implemented by a network edge
device performing deep packet inspection, by software
executing on a machine shared with application-level soft-
ware generating the application-level message, or by an
adapter software module that transparently translates client-
server application level network messages to and from peer-
to-peer network messages, e.g., a protocol stack, state
machine, protocol library, dialog manager, or application
driver. The adapter module converts a non-P2P protocol that

US 2016/0219128 Al

the agent uses to a P2P protocol with exactly or substantially
similar function signatures. Preferably, the client-server
application requires little or no modification, since the func-
tion calls are essentially identical. Internally to the stack,
however, these commands are translated to the P2P protocol.
Activities such as lookup, storage of information, etc. are
performed by the underlying stack in a P2P manner, with the
result being passed back to the agent application in exactly the
same format as if it were received from a server. In another
aspect, the existing application may have inferior security
properties, but the new stack will use superior security prop-
erties. In another aspect, a configuration mechanism may be
provided to allow configuration of parameters that are spe-
cific to the P2P protocol and the adaptor software module. In
a further aspect, the new stack may additionally provide some
new functionality, allowing the client developer to add new
features to the agent over time. Significantly, however, a
client-server interface substantially like the existing interface
is provided to allow agent applications to be converted to P2P
enabled applications with little or no modification.

[0018] The above methods for converting between a client-
server protocol and a P2P protocol may also be used to con-
vert between two P2P protocols.

BRIEF DESCRIPTION OF THE DRAWINGS

[0019] FIG. 1 is a flowchart illustrating a method imple-
mented in a software library when an incoming message from
the network is received, according to an embodiment of the
invention.

[0020] FIG. 2 is a flowchart illustrating a method for pro-
cessing requests that initialize the software library, according
to an embodiment of the invention.

[0021] FIG. 3 is a flowchart illustrating a method for pro-
cessing requests from the application layer to send informa-
tion out using the original protocol(s), according to an
embodiment of the invention.

[0022] FIG. 4 is a schematic diagram illustrating a tradi-
tional client-server architecture in which agents communi-
cate via a centralized server using a client-server protocol.
[0023] FIG. 5 is a schematic diagram illustrating a known
network architecture using a standalone adaptor agent net-
work device which translates between client-server protocol
and peer-to-peer protocol.

[0024] FIG. 6 is a schematic diagram that illustrates net-
work protocol stacks in two devices connected to each other
via a network connection, according to an embodiment of the
invention.

[0025] FIG. 7 is a schematic diagram that illustrates an
example of a P2P architecture for converting a client-server
software agent to a peer-to-peer software agent, according to
an embodiment of the invention.

DETAILED DESCRIPTION

[0026] Although the following detailed description con-
tains many specifics for the purposes of illustration, anyone of
ordinary skill in the art will readily appreciate that many
variations and alterations to the following exemplary details
are within the scope of the invention. Accordingly, the fol-
lowing preferred embodiments of the invention are set forth
without any loss of generality to, and without imposing limi-
tations upon, the claimed invention.

[0027] In one embodiment of the invention a method is
provided for converting a client-server software agent to a

Jul. 28, 2016

peer-to-peer software agent. FIG. 7 illustrates an example of
a P2P system implementing one embodiment of the inven-
tion. A client agent 702, which is implemented as an applica-
tion-layer software program, is originally designed to operate
using a client-server protocol. The client agent 702 is directly
coupled in software to an adaptor software module 704 with-
out any network connection between them. In other words,
instead of sending network messages down from the applica-
tion layer, through the network protocol stack and passing
them over a network connection to an adapter node in the
network (see FIG. 6), the adapter module 704 is directly
coupled to the client agent 702 so that the CS messages do not
pass all the way down the network protocol stack and over a
network connection. Instead, the CS messages from the agent
702 are intercepted by the adapter module 704 and converted
to P2P protocol before they reach the link layer and pass over
the network.

[0028] The conversion between client-server protocol traf-
fic and peer-to-peer protocol traffic may be performed either
by a modified software library or by a modified stack per-
forming deep packet inspection at the socket level. In the case
of' a modified software library, the agent at the application
layer is compiled against a modified library, which presents
the same interface to the developer, but performs P2P opera-
tions in the background. Using deep packet inspection, on the
other hand, the translation between CS and P2P may take
place either by intercepting messages at a very low level
(socket or data connection level) or by translating messages at
a higher level (stack, state machine, application). In any case,
the agent requires no separate adaptor device for the conver-
sion, as it is directly coupled at a software level to the adaptor
software module that performs the P2P translation opera-
tions.

[0029] The adaptor software module 704 receives from the
client agent 702 application-layer network traffic in a client-
server protocol and converts the received traffic into a peer-
to-peer protocol. Only after the CS traffic is converted to P2P
protocol is the traffic relayed on behalf of the client agent 702
over a network connection. Consequently, unmodified (or
minimally modified) application layer agent 702 designed to
operate using CS protocol is enabled by adaptor module 704
to communicate with P2P agents 706 and 708 over network
700 using a P2P protocol. The P2P functionality is transpar-
ent to the application layer agent 702 which still operates as if
it were using a CS protocol.

[0030] FIG. 6 illustrates the network protocol stacks in two
devices 602 and 604 connected to each other via a network
connection. Each device has a network protocol stack com-
posed of several layers. The network stack for device 602 has
application layer 606, transport layer 608, internet layer 610,
and link layer 612. Similarly, the network stack for device 604
has application layer 614, transport layer 616, internet layer
618, and link layer 620. In one embodiment of the present
invention, the CS traffic generated by an agent at application
layer 606 in device 602 is converted to P2P protocol prior to
passing down the lower layers of the network stack (e.g.,
layers 608, 610 and 612) and over a network connection
through network 600.

[0031] In contrast, prior techniques using adapter nodes
(see FIG. 5) function by passing the CS traffic from applica-
tion layer 606 down through all layers 608, 610, 612 of the
network protocol stack and over network 600. The CS traffic
is then received by the adapter node 604, passes up the pro-
tocol stack, is converted from CS to P2P, and only then does

US 2016/0219128 Al

P2P traffic pass down the protocol stack of the adapter node
device 604 and out on the network 600.

[0032] Thus, the present embodiment of the invention is
distinguished by the fact that CS traffic does not flow down all
layers of the protocol stack of any device. Those skilled in the
art will appreciate that this technique may be implemented in
various ways including a modified protocol stack, state
machine, protocol library, dialog manager, or application
driver.

[0033] Embodiments of the present invention can be used
to convert between various different CS and P2P protocols,
enabling translation between them that is transparent to the
application layer agent(s). Various general principles, how-
ever, apply to all these implementations. In a structured P2P
system, systems are uniquely identified, and are located based
upon P2P identifier (ID) (such as a peer or node ID), which are
either used in place of, or in addition to, traditional network
routing primitives such as IP addresses, Ethernet addresses,
etc. The adaptor module 704 works by receiving calls from
the application to a modified software entity, such as a pro-
tocol stack, state machine, protocol library, dialog manager or
application driver. This modified software entity is designed
to appear to the application as a traditional CS version. Once
CS calls from the application are received, the underlying
adaptor module code is responsible for making a number of
modifications/translations to the message (if passed as acom-
plete message) or to encode it in a different way than the
unmodified library would have. In both cases, this is done
before any information is sent over a network connection or to
a low-level socket library. These modifications may include
one or more of the following. (Note that these modifications
are quite different than those that would be applied when
translating between two different CS protocols.)

[0034] An exemplary translation may be applied to mes-
sages that are being sent out in a P2P or overlay network, and
in many cases these require a P2P identifier. For the first
message being sent, an identifier is obtained, either by local
generation (for example hashing a unique property), protocol
based mechanisms to request an ID from the other peers, or
out of band mechanism for requesting an ID. This ID may or
may not also provide cryptographic assertion of identity.
[0035] Another translation example may include a case
where all messages that are sent after an ID is obtained (in-
cluding the first message sent) may need to include this ID.
The modified protocol stack, state machine, protocol library,
dialog manager, or application driver inserts this ID into the
messages. Received messages may need to have this ID (and
other information added to support insertion of this ID)
stripped or translated before being passed back to the
unmodified application. Additionally, the messages may need
to be made to appear to have originated from the desired target
of the CS protocol.

[0036] A further translation example can be applied in
cases where message routing in structured P2P systems often
involves performing a lookup, and using the returned network
location as the destination of the message. As such, the modi-
fied protocol stack, state machine, protocol library, dialog
manager, or application driver performs this lookup, and if
required by the particular P2P protocol being used, places this
information into headers to route the message, rather than the
more traditional mechanisms that may be used in a CS pro-
tocol, such as DNS resolution or sending directly to an
embedded IP address. The information added to support this
may need to be stripped or translated from received messages

Jul. 28, 2016

before they are passed back to the unmodified application.
Additionally, the messages may need to be made to appear to
have originated from the desired target of the CS protocol.
[0037] Inanothertranslation example, messages routedina
structured P2P network also may need to be sent through an
intermediary device, determined by the underlying P2P net-
work. This could be for topological routing considerations,
NAT traversal, obfuscation/anonymity of the messages, or
simply because the particular P2P protocol used requires such
an intermediary be used. As such, the modified protocol stack,
state machine, protocol library, dialog manager, or applica-
tion driver will determine which other peer it is appropriate to
use to relay the message, marking and routing the request
appropriately as needed. Information added to support this
may need to be stripped or translated from received messages
before being passed back to the unmodified application.
Additionally, the messages may need to be made to appear to
have originated from the desired target of the CS protocol.
[0038] Inafurther translation example, some P2P protocols
may require unique signatures or encryption properties, for
example ones that sign or encrypt information as being from
aparticular peer. This may involve fetching of the appropriate
information (certificates or other information) that is needed
to encrypt or decrypt messages from other peers, so they can
be translated and passed back to the unmodified application.
[0039] Additionally, messages of different types may be
treated differently in different protocols. For example, in
some CS telephony applications, messages providing loca-
tion, controlling features, storing voicemails, and setting up
calls, may all be sent to different devices, e.g., registration
servers, feature servers, voicemail servers, and call control
servers. In a P2P system, all of these features may be distrib-
uted among the peers, and require appropriate lookup to route
to a peer with those capabilities. Similarly, a CS system may
require all messages to be sent to one location, and again a
P2P system may distribute the functions among the peers,
requiring lookup of locations before transmitting, or storing
information.

[0040] In an unstructured P2P system, IDs may not be
present, but techniques such as broadcasts or flooding the
network may be used to locate an appropriate host for mes-
sages to be sent to, and appropriate routing information based
on these P2P responses may be inserted on outbound mes-
sages and stripped from inbound messages. The modified
protocol stack, state machine, protocol library, dialog man-
ager, or application driver may then route messages to the
appropriate peer, based on these unstructured searches. Infor-
mation added to support this may need to be stripped or
translated from received messages before they are passed
back to the unmodified application, just as ID based informa-
tion would need to be stripped or translated in the case of a
structured P2P system. Additionally, the messages may be
made to appear to have originated from the desired target of
the CS protocol.

[0041] These types of translations described above are fun-
damentally different from the type of translations that are
offered by traditional CS to CS translations. Such CS to CS
translations often involve little more than converting an
address or transcoding packets from one protocol to another.
[0042] Inone aspect, ifthere are several agent applications,
each of which uses a different stack implementation, modi-
fying a single stack implementation may not allow all the
agents to transparently use the new protocol. Consequently,
deep packet inspection techniques may be used instead. In

US 2016/0219128 Al

such a case, the client application layer program is built
against a modified low-level data connection library (for
example a socket library or equivalent), rather than the tradi-
tional system low-level data connection library. Unlike an
adaptor node, the raw messages are not passed over a network
or within the computer as virtual messages across the loop
back or system sockets, but are rather intercepted by a modi-
fied interface library. This library performs deep packet
inspection, examining each packet to see if it is using the
older, CS protocol. As appropriate, packets that are not using
a CS protocol selected for translation to P2P are passed
unmodified to the network connection, while packets using
such a CS protocol are processed and modified. As a result of
the processing of the packets, P2P packets are inserted on the
network connection as appropriate. The modified low-level
data connection is used to pass packets back to the calling
application level program such that the packets appear to have
come from the network and to have been processed in a
client-server fashion.

[0043] In some cases there may not be a one-to-one map-
ping between the old packets and new packets. As such, the
modified low-level data connection library may send and
receive messages over a network connection at a different rate
or with different payloads than those passed back and forth
between the modified data connection library. This allows for
translation even in cases where the new P2P protocol differs
radically from the client-server protocol.

[0044] Implementing such an application using deep
packet inspection is similar to the other embodiments dis-
cussed above. The primary difference is where the protocol
translation code is implemented. In the other embodiments
above, this code lies in the modified protocol stack, state
machine, protocol library, dialog manager, or application
driver, which has a signature similar to the unmodified one,
and in general is an application level software implementa-
tion. In a deep packet inspection implementation, the appli-
cation level protocol stack, state machine, protocol library,
dialog manager, or application driver is left intact, but the
messages it produces are intercepted at a low level using deep
packet inspection before being passed over a network con-
nection. These intercepted messages are then translated from
CS to P2P using techniques discussed above in relation to
other embodiments. The application layer program is
unchanged, and is even linked to an unmodified protocol
library.

[0045] Deep packet inspection has been used previously in
other contexts to intercept and redirect messages to a different
(but usually fixed) location, to translate messages between
two CS protocols, or to translate internal addresses to traverse
a NAT. In general, run time decisions about where messages
are routed are not made in these prior applications of deep
packetinspection. In this case, however, the unique properties
of' a P2P network (including as discussed above, choosing
where to route messages, marking them appropriately for an
overlay, performing broadcasts, etc.) make the type of trans-
lation performed quite different. Packets that are not related to
a selected CS protocol to be translated to P2P or that are
unrelated to the new P2P protocol are untouched.

[0046] In contrast with techniques in which an agent is
connected over a network connection to an adaptor agent
(FIG. 5), in the embodiments described above, there is a
single resulting software entity and CS messages selected for
translation to P2P are not passed over a network connection
(either physical or virtual internal such as a loopback or

Jul. 28, 2016

system socket). No traffic in the selected CS protocol is trans-
mitted over the network, ensuring that messages are not inad-
vertently sent in a non-P2P fashion, and ensuring old security
mechanisms, if applicable, are not accidentally used.

[0047] In embodiments of the invention, the agent is not
explicitly aware of any network connection to an adaptor
module and need not be configured for such a connection. In
the adaptor node scenario, on the other hand, the agent must
be explicitly configured to communicate with the adaptor, just
as if the adaptor were a server. The adaptor node approach is
thus not entirely transparent or configuration-free.

[0048] In the approach of these embodiments, the code is
recompiled against the adaptor software module, or is per-
formed at the socket library level, which makes the protocol
translation transparent to the higher-level agent. Additionally,
this mechanism does not require packets to pass over a virtual
network connection (although, as noted below, an alternate
embodiment where this does occur is mentioned).

[0049] Embodiments of the invention may be implemented
such that the low-level code performing the translation could
additionally switch back and forth in behavior between trans-
lating a selected CS protocol or not, thus producing a P2P
application or not translating the underlying packets, allow-
ing the application to operate alternatively in either P2P or CS
modes, without modification to the application.

[0050] According to another embodiment, the deep packet
code is implemented in a NAT device, firewall, router, gate-
way or any other device that sits in the network, in particular,
atthe interface, or edge, between a local network and a wider
area network such as the internet so that it intercepts packets
flowing to and from the WAN. All intercepted traffic is
inspected for client-server traffic, which is then transparently
converted to P2P traffic. Although similar in architecture to
the system of FIG. 5, the use of deep packet inspection avoids
the need to configure the endpoint agents on the local network
to communicate with an adaptor node. Instead, this embodi-
ment allows insertion and configuration of the edge box
implementing the deep packet inspection, allowing all CS
agents behind the network to be switched transparently over
to a P2P protocol as seen by the WAN, without the agents even
being aware this change had happened. This provides the
opportunity for providers/managers to transition enterprises
or organizations from CS to P2P in a nearly seamless way.
This technique could be implemented as deep packet inspec-
tion, as discussed in the earlier embodiment above, but with
the CS traffic now flowing over a LAN unmodified until it
reaches the network edge, where the translation between pro-
tocols takes place. Similar techniques have been imple-
mented in other contexts to fix addresses within a protocol
while traversing NATs and to translate from one protocol to
another. However, the unique nature of the changes required
to convert between P2P and CS, as outlined in above, make
this a unique application of deep packet inspection technol-
ogy.

[0051] This transparent deep packet inspection behavior
could also be placed in operating system software, such as a
system-wide firewall. In such a case, all applications running
on the host would be converted, again without modification to
or configuration of the applications implementing the CS
agents.

[0052] Similarly, the behavior could be implemented
directly in the OS low-level data connection library itself,
meaning all applications using the network connection would
be translated.

US 2016/0219128 Al

[0053] Packet inspection and modification behavior is
often implemented in firewalls, NATs, or Session Border
Controllers (SBCs). However, such behavior has not been
used previously to convert between different protocols or
between P2P and non-P2P protocols.

[0054] Note that this mechanism can additionally be used
to translate between CS and P2P versions of the same proto-
col, where appropriate, or even to translate messages from
multiple CS protocols into a single P2P protocol.

[0055] Thus, an adaptor module may be transparently
inserted into an edge device in the network or within an OS
network component (low level data interface, firewall, etc.).
Such an adaptor module uses deep packet inspection to inter-
cept and translate messages from the agents before they are
fed onto the WAN. This adaptor module thus differs from the
existing adaptor node approach in that such interception and
modification of traffic is transparent to the agent and does not
require the agent to be “pointed” at an adaptor that serves on
the behalf of the agent. This adaptor module also allows
installations to be translated from one protocol to another in
place.

[0056] The edge agent resident approach described above
differs from the session border controllers (SBCs) deployed
today in that the inspection mechanism is used to fundamen-
tally alter the behavior of the agents from speaking a client-
server oriented protocol to speaking to one that is peer-to-
peer. To date, SBCs have been used mostly to enforce
security, to modify the IP addresses embedded in messages to
allow the traffic to traverse NATS, or to translate between one
CS protocol and another. Today, these devices mostly trans-
late between two versions (often proprietary) of a single CS
protocol, or between two different CS protocols. Addition-
ally, they are used to modify protocols to pass NATSs, insert
additional security, etc. They are not used to translate between
CS and P2P protocols, or between CS and P2P versions of one
protocol.

[0057] A functional description of the operation of some
embodiments of the invention will now be described in rela-
tionto FIGS. 1-3. These embodiments illustrate the function-
ing of an unmodified CS application layer program that issues
calls to and receives messages from a modified underlying
protocol stack, state machine, protocol library, dialog man-
ager, or application driver (all of which are collectively
referred to below as a “library”). This modified library is
designed so that the application layer programs interacting
with it see it behaving exactly as an unmodified library that
uses an original protocol(s), including identical calls and
responses. The library then translates the messages in the
original protocol(s) to and from P2P protocol(s).

[0058] The library processes both new incoming messages
that arrive at the library from a network connection and vari-
ous software commands (calls) issued by the application to
the library. As translation between different protocols and
different specific software embodiments (different libraries,
protocol stacks etc.) may cause slightly different actions, for
other types of actions not described here, the overriding func-
tionality of the library is to perform operations (storing local
data, sending messages, responding to calls from the appli-
cation, etc.) as required such that the library appears to
devices connected over the network as a software entity com-
municating using the new protocol(s) while appearing to the
application as an unmodified library for the earlier protocol

(s).

Jul. 28, 2016

[0059] When an incoming message from the network is
received by the library, the following steps are performed by
the library, as illustrated in FIG. 1. Note that standard lower-
level operations (such as message reassembly in the event of
fragmentation, encryption and decryption of messages, per-
forming checksums, etc.) may occur as part of the protocols
used, but are not illustrated here for clarity in understanding
the invention.

[0060] In step 100 the library receives the incoming mes-
sage over a network connection. In step 102 the message is
examined to determine if the purpose of the message is to
send a message to the local application, or simply a message
used by the new protocol(s). For example, a message used by
the new protocol might be a message containing information
to traverse NATs, to keep connections alive, or to maintain the
P2P structure (overlay) such as to replication information or
maintain connections between peers. If the message is not
simply for protocol(s) maintenance (i.e., if it is an application
level message), control is passed to step 104 which examines
the message to determine if it contains information that
causes an event to be triggered that must be passed to the
application. If the message is not simply for protocol(s) main-
tenance (is an application level message), but does not contain
information that causes an event to be triggered, in step 106
the library updates local state with the information received in
the event it may be needed later when an event is triggered.
Note that this handles the case where there is not a one-to-one
correspondence between messages in the new protocol(s) and
the original protocol(s). Control is then passed to step 110. If
in step 104 it is determined that the message is not simply for
protocol(s) maintenance (is an application level message),
and does cause one of the events to be triggered, in step 108
the library looks up the corresponding event to determine
what action (e.g., calling a function) is to be taken. In addi-
tion, the library properly formats the data received in a way
that the unmodified application is familiar with, and performs
any actions to be triggered when the event occurs. Control is
then passed to step 110, in which any required low-level
protocol operations for the new protocol(s) are performed
(e.g., updating lists of peers, marking connections as live, or
storing data required in a P2P layer), and any required
responses to the message are constructed and transmitted.
The processing of an incoming message is then completed in
step 112.

[0061] For calls made by the application into the P2P
library there are a number of different types of requests that
may be made. In all cases, The application issues a call to the
library. The value(s) provided to the library (if any) by the
unmodified application (values passed, name of the call, etc)
are functionally identical to an unmodified library call, and
the value(s) returned (if any) appear to have come from the
unmodified library.

[0062] Requests that initialize the library are processed as
shown in FIG. 2. Note that this behavior may be spread across
multiple calls. In step 200 the library receives a call from the
application layer (e.g., a function call, method on an object, or
OS call). In step 202 the call is examined to determine if this
is an explicit library initialization call (note that this exami-
nation may be implicit, for example, in that the call is or is not
a particular initialize function). If the call is an initialization
call, control is transferred to step 212 in which the library is
initialized. Specifically, actions are performed to create the
local stack needed to handle further calls and to process
incoming message. This may include creating data structures,

US 2016/0219128 Al

opening sockets, and so on. The handling is then completed in
step 214. If in step 202 it is determined that the call is not an
explicit initialization call, control is transterred to step 204
which checks to see if the library supports implicit initializa-
tion when the first command arrives and if this is a message
that causes implicit initialization. If not, control is transferred
to step 206 which checks if the library is already initialized. If
not, an error condition is present and control is passed to step
208. If so, the initialization phase is over and control is trans-
ferred to step 214 which terminates the processing. If, in step
204, the library supports implicit initialization when the first
command arrives and if this is a message that causes implicit
initialization, then control is transferred to step 210 which
checks if the library is already initialized. If not, then the
library is initialized in step 212 as discussed above. Other-
wise, control is transferred to step 214 and the initialization
phase is over.

[0063] Requests that create local data structures, register
functions to be called back when incoming messages are
received, and so on, behave as discussed as follows. For calls
that create local data structures, the library will create and
maintain this information for a duration similarly to the
unmodified application (until program end, until the struc-
tures are explicitly de-allocated, until no longer needed, and
so on). The policy for determining if the resources can be
deleted is the same as for the unmodified library. For calls
registering callbacks to be called on the receipt of messages,
the library creates and maintains a list of events that are
registered and the action to be taken in response to this event.
Note that this may be a complex structure, as the event being
registered for in the old protocol(s) may not have a one-to-one
correlation to events in the new protocol(s) library’s case. The
library will maintain a decision tree, table, event tracker, or
the like to determine when the corresponding event from the
original protocol(s) would have occurred. The library returns
an appropriate return value, corresponding to the value that
would have been returned by the unmodified library, ensuring
that application requires no modification.

[0064] Requests from the application layer to send infor-
mation out (with or without a response) using the original
protocol(s) (e.g., requests to store information or to request
information) are handled as illustrated in FIG. 3. In step 300
the library receives a call from the application (e.g., a function
call, method on an object, or OS call). In step 302 the library
examines the call and uses configuration information and
information about the new protocol(s) to determine where the
message should be sent. For example, the destination may be
the destination peer for a P2P protocol. Note that this process
may itself involve sending a number of messages. In step 304
the library takes the information provided in the call and
properly formats it for the format of the new protocol(s), and
sends the message to the destination calculated in step 302.
Note that, in some P2P systems, the determination of where
the message is sent is implicit (i.e., the message is sent to a
“best guess” peer, which sends to its “best guess”, and so on).
In some embodiments, steps 300, 302, 304 may be combined.
In step 306 the library determines if the call received from the
application is a blocking call, i.e., one that waits for a
response (e.g., an acknowledgement that that the message had
been received or data returned in response to a request). If it
is a blocking call, step 308 waits for a response from peer(s)
that the request was sent to, or for a timeout (indicating the
message failed) to be returned. Step 310 checks if the mes-
sage times out. If so, appropriate timeout processing is per-

Jul. 28, 2016

formed in step 312. If no timeout was received (i.e., a
response is received), control passes to step 314 which for-
mats a response to the call. The response is formatted so that
it appears to be identical to the response (if any) that would
have occurred in the unmodified library. The response (if any)
is returned in step 314, and the processing is completed in step
316. If in step 306 the call is not blocking, control is passed to
step 318 which determines if a new event must be registered
to trigger an action when a response is received later. If so,
step 320 sets up an appropriate event registration and passes
control to step 314. If not, control is passed directly to step
314 which formats the response (if any) in a form that is
appropriate for the original, unmodified library and returns it
to the application. The process then completes at step 316.

[0065] In summary, according to embodiments of the
invention, a protocol stack, state machine, protocol library,
dialog manager, or application driver is provided for the new
P2P protocol with exactly or substantially similar function
signatures to the older, non-P2P protocol the CS agent is built
using. The application requires little or no modification, since
the function calls are essentially identical. Internally to the
stack, however, these commands are translated to the new
protocol, and activities such as lookup and storage of infor-
mation are performed by the underlying stack in a P2P man-
ner, with the result being passed back to the calling agent
application in exactly the same format as if it were received
from a server. The existing application may have inferior
security properties, but the new stack will preferably use the
newer, superior security properties. The existing application
may function only in CS mode, or in combination with the
adaptor software module, it can join the P2P network. The
new stack or software may provide a configuration mecha-
nism to allow configuration of parameters that are specific to
the new protocol and the adaptor software module. The new
stack may additionally provide some new functionality,
allowing the client developer to add new features to the agent
over time, but an interface substantially like the existing one
is provided to allow agent applications to be ported with little
or no modification. If an application is operating in a CS
mode, the traffic can be monitored to detect a loss in connec-
tivity with the server. In such an event, the translation to P2P
protocol can be automatically turned on, providing switching
between protocols that is transparent to the application.

[0066] Those skilled in the art will appreciate that the tech-
niques of the present invention may be used for translating not
only between CS and P2P protocols but also between difter-
ent P2P protocols such as structured/DHTs, unstructured/
flooding, tracker-based, and so on. It will also be evident to
those skilled in the art that, while the invention has been
described for the sake of simplicity as translating one protocol
to another, it may be easily extended to translate between
multiple protocols, e.g., translating several different CS pro-
tocols to and from several different corresponding P2P pro-
tocols.

[0067] The present invention has now been described in
accordance with several exemplary embodiments, which are
intended to be illustrative in all aspects, rather than restrictive.
These embodiments are capable of many variations in
detailed implementation, which may be derived from the
description contained herein by a person of ordinary skill in
the art. All such variations are considered to be within the
scope and spirit of the present invention as defined by the
following claims and their legal equivalents.

US 2016/0219128 Al

1. A method of transparently converting between peer-to-
peer protocols, the method comprising:

directly coupling in software on a user agent device a peer
agent application-level software program to an adaptor
software module without any network connection
between the peer agent application-level software pro-
gram and the adaptor software module, wherein the peer
agent application-level software program operates using
a first peer-to-peer protocol;

receiving by the user agent device at the adaptor software
module from the peer agent application-level software
program application-level network traffic in the first
peer-to-peer protocol;

converting by the user agent device at the adaptor software
module the received traffic into a second peer-to-peer
protocol;

relaying by the user agent device using the adaptor soft-
ware module the converted traffic over a network on
behalf of the peer agent application-level software pro-
gram.

Jul. 28, 2016

2. A method for translating between peer-to-peer proto-
cols, the method comprising:
positioning between a peer agent and a network edge an
adaptor software module device that intercepts packets
traversing a network connection between the peer agent
and a network edge between a local area network and a
wide area network;
receiving by the adaptor software module device from the
peer agent network traffic in a first peer-to-peer protocol;
converting by the adaptor software module device the
received traffic into a second peer-to-peer protocol;
relaying by the adaptor software module device the con-
verted traffic over a network on behalf of the peer agent.
3. The method of claim 2 wherein the adaptor software
module device is implemented as part of a firewall.
4. The method of claim 2 wherein the adaptor software
module device is implemented as part of a network edge
device.

