发明名称
一种分级三维多孔石墨烯 / 二氧化钛光催化剂及其制备方法

摘要
本发明提供一种分级三维多孔结构石墨烯 / 二氧化钛光催化剂及其制备方法。该光催化剂由三维石墨烯骨架和纳米二氧化钛颗粒组成，石墨烯具有大孔结构，二氧化钛为介孔二氧化钛，大孔和介孔相互连通，纳米二氧化钛颗粒分散于石墨烯纳米片上，纳米二氧化钛微球表面包覆有石墨烯纳米片，所述纳米二氧化钛微球填充于所述石墨烯的大孔内。这种三维结构的光催化剂不仅能防止石墨烯片层的堆叠，而且能良好分散二氧化钛颗粒，且具有很高的比表面积。样品用于光催化降解亚甲基蓝，25分钟就几乎降解完全。本发明的制备方法为光催化剂的制备提供了一种新的思路，在能源和环境领域都有潜在的应用价值。
1. 一种分级三维多孔石墨烯 / 二氧化钛光催化剂，其特征在于：所述石墨烯 / 二氧化钛光催化复合材料由三维石墨烯骨架和纳米二氧化钛颗粒组成，所述石墨烯具有大孔结构，所述二氧化钛为介孔二氧化钛，大孔和介孔相互连通，所述纳米二氧化钛颗粒分散于石墨烯纳米片上，所述纳米二氧化钛微球表面包覆有石墨烯纳米片，所述纳米二氧化钛微球填充于所述石墨烯的大孔内，所述二氧化钛为纯锐钛矿型晶体。

2. 一种分级三维多孔石墨烯 / 二氧化钛光催化剂的制备方法，其特征在于，它包括以下步骤：

 1) 使用 Hummers 法制备氧化石墨烯，将氧化石墨烯溶于去离子水中，超声分散得到氧化石墨烯水溶液；

 2) 将酸异丙酯、十六胺加入到无水乙醇中并添加氯化钾水溶液，室温下搅拌混合溶液 16～20 小时，过滤反应溶液，然后用乙醇反复洗涤，干燥获得二氧化钛前驱体；

 3) 取步骤 2) 反应得到的二氧化钛前驱体溶于乙醇中，超声分散，然后加入步骤 1) 制备得到的氧化石墨烯水溶液和氨水得到混合溶液，将所述混合溶液超声分散后转移至水热反应釜中，120～180℃下反应 12～18 小时；

 4) 将步骤 3) 反应产物冷却至室温后，过滤并用无水乙醇洗涤，然后冷冻干燥；

 5) 将干燥后的样品在氮气气氛的管式炉中 500℃热处理 2～3 小时得到分级三维多孔石墨烯 / 二氧化钛光催化剂。

3. 根据权利要求 1 所述的分级三维多孔石墨烯 / 二氧化钛光催化剂的制备方法，其特征在于：步骤 2) 中，十六胺：去离子水：氯化钾：无水乙醇：钛酸异丙酯的摩尔比为（0.25～1.0）：（3～8）：（5.5×10^-3）：236.5：1.0。

4. 根据权利要求 1 所述的分级三维多孔石墨烯 / 二氧化钛光催化剂的制备方法，其特征在于：步骤 1) 中的氧化石墨烯水溶液浓度为 1～4mg/ml。

5. 根据权利要求 1 所述的分级三维多孔石墨烯 / 二氧化钛光催化剂的制备方法，其特征在于：步骤 3) 中的混合溶液 pH 为 9～12。

6. 根据权利要求 1 所述的分级三维多孔石墨烯 / 二氧化钛光催化剂的制备方法，其特征在于：步骤 3) 中，乙醇：氧化石墨烯水溶液的体积比为 1～5。

7. 根据权利要求 1 所述的分级三维多孔石墨烯 / 二氧化钛光催化剂的制备方法，其特征在于：步骤 3) 中，超声时间为 10～30 分钟，反应温度为 180℃，反应时间 16 小时。

8. 根据权利要求 1 所述的分级三维多孔石墨烯 / 二氧化钛光催化剂的制备方法，其特征在于：步骤 5) 中，样品在氩气保护的管式炉中热处理 2 小时得到分级三维多孔石墨烯 / 二氧化钛光催化剂。

9. 根据权利要求 1 所述的分级三维多孔石墨烯 / 二氧化钛光催化剂的制备方法，其特征在于：步骤 3) 中二氧化钛前驱体，氧化石墨烯的质量比在 2:1～8:1 之间。
一种分级三维多孔石墨烯 / 二氧化钛光催化剂及其制备方法

技术领域
[0001] 本发明涉及环境和能源领域，具体的说是涉及一种分级三维多孔石墨烯 / 二氧化钛光催化剂及其制备方法。

背景技术

发明内容
[0003] 本发明的目的在于提供一种光催化剂吸附性能和光催化性能增强的分级三维多孔石墨烯 / 二氧化钛光催化剂及其制备方法。

[0004] 一种分级三维多孔石墨烯 / 二氧化钛光催化剂，所述石墨烯 / 二氧化钛光催化复合材料由三维石墨烯骨架和纳米二氧化钛颗粒组成，所述石墨烯具有大孔结构，所述二氧化钛为介孔二氧化钛，大孔和介孔相互贯通，所述纳米二氧化钛颗粒分散于石墨烯纳米片上，所述纳米二氧化钛微球表面包裹有石墨烯纳米片，所述纳米二氧化硅微球填充于所述石墨烯的大孔内，所述二氧化钛为纯锐钛矿型晶体。

[0005] 一种分级三维多孔石墨烯 / 二氧化钛光催化剂的制备方法，它包括以下步骤：

[0006] 1) 使用 Hummers 法制备氧化石墨烯，将氧化石墨烯于去离子水中，超声分散得到氧化石墨烯水溶液；

[0007] 2) 将钛酸异丙酯、十六胺加入到无水乙醇中并添加氯化钾水溶液，室温下搅拌混合溶液 16 ～ 20 小时，过滤反应溶液，然后用乙醇反复洗涤，干燥获得二氧化钛前驱体；
说明书

3) 取步骤 2) 反应得到的二氧化钛前驱体溶于乙醇中，超声分散，然后加入步骤 1) 制备得到的氧化石墨烯水溶液和氨水得到混合溶液，将上述混合溶液超声分散后转移至水热反应釜中，120 ~ 180°C 下反应 12 - 18 小时；

4) 将步骤 3) 反应产物冷却至室温后，过滤并用无水乙醇洗涤，然后冷冻干燥；

5) 将干燥后的样品在惰性气氛的管式炉中 500°C 热处理 2 ~ 3 小时得到分级三维多孔石墨烯 / 二氧化钛光催化剂。

上述方案中，步骤 2) 中，十六胺 : 去离子水 : 氯化钾 : 无水乙醇 : 钛酸异丙酯的摩尔比为 (0.25 ~ 1.0) :(38) : (5.5×10^-3) : 236 : 5.1 : 0。

上述方案中，步骤 1) 中的氧化石墨烯水溶液浓度为 1 ~ 4mg/ml。

上述方案中，步骤 3) 中的混合溶液 pH 为 9 ~ 12。

上述方案中，步骤 3) 中，乙醇 : 氧化石墨烯水溶液的体积比为 1 ~ 5。

上述方案中，步骤 3) 中，超声时间为 10 ~ 30 分钟，反应温度为 180°C，反应时间 16 小时。

上述方案中，步骤 5) 中，样品在氮气保护的管式炉中热处理 2 小时得到分级三维多孔石墨烯 / 二氧化钛光催化剂。

上述方案中，步骤 3) 中二氧化钛前驱体 : 氧化石墨烯的质量比在 2:1 ~ 8:1 之间。

本发明的有益效果为：

1) 本发明采用高浓度的氧化石墨烯、二氧化钛前驱体为反应物，以乙醇和水为溶剂，水热条件进一步原位合成具有大孔 - 介孔结构的三维石墨烯 / 二氧化钛光催化剂，其比表面积、吸附性能和光催化性能都有显著提升。

2) 本发明解决了现有石墨烯 / 二氧化钛光催化剂及其制备方法中，石墨烯容易团聚成多层、二维结构的光催化剂吸附性能差，二氧化钛易团聚以及光催化效果不佳等问题，提供一种方便快捷的制备大孔 - 介孔结构的三维石墨烯 / 二氧化钛光催化剂的方法，以三维石墨烯为骨架，三维石墨烯相互连通的孔结构能有效固定二氧化钛纳米颗粒，极大增强了二氧化钛光催化剂与石墨烯纳米片的有效接触面积，同时也能抑制二氧化钛尺寸的增长，增强了光催化剂的吸附性能和光催化性能。

附图说明

图 1 是实施例 1、对比例 1 及对比例 2 得到的分级三维多孔石墨烯 / 二氧化钛光催化剂的 XRD 图谱；

图 2 是实施例 1 分级三维多孔石墨烯 / 二氧化钛光催化剂的 SEM 照片；

图 3 是实施例 1 分级三维多孔石墨烯 / 二氧化钛光催化剂的 TEM 照片；

图 4 是对比例 4 所制备样品的 SEM 照片；

图 5 是实施例 1 分级三维多孔石墨烯 / 二氧化钛光催化剂的氮气吸附 - 脱附图；

图 6 是实施例 1 所制备样品与 P25 和对比例 3 纯二氧化钛在光照时间下对亚甲基蓝的光催化降解曲线对比图；

图 7 是对比例 1 所制备样品与 P25 和对比例 3 纯二氧化钛在光照时间下对亚甲基蓝的光催化降解曲线对比图；

图 8 是对比例 2 所制备样品与 P25 和对比例 3 纯二氧化钛在光照时间下对亚甲基
具体的实施方式
[0029] 为了更好地理解本发明，下面结合实施例进一步阐明本发明的内容，但本发明的内容不仅仅限于下面的实施例。
[0030] 实施例 1:
[0031] 本实施例提供一种分级三维多孔石墨烯/二氧化钛光催化剂的制备方法，它包括以下步骤:
[0032] 1) 使用Hummers法制备氧化石墨烯，将氧化石墨烯溶于去离子水中，超声 2 小时得到浓度为 3mg/ml 的氧化石墨烯水溶液;
[0033] 2) 取 7.95g 十六胺加入到 800ml 无水乙醇和 3.20ml 氯化钾 (0.1M) 的水溶液中，超声 10 分钟，然后将至 18.10ml 水酸异丙酯缓慢滴加到混合溶液中，反应 18 小时，过滤后洗涤，然后用乙醇反复洗涤 3 次，干燥获得二氧化钛前躯体;
[0034] 3) 将 0.50g 二氧化钛前躯体溶于 10ml 乙醇中，超声分散 10 分钟，然后依次加入 50ml 氧化石墨烯水溶液 (3mg/ml) 和 500 μl 水得到混合溶液，混合溶液的 pH 值为 9 - 12，将所述混合溶液超声分散 10 分钟后转移至水热反应釜中，180°C 下反应 16 小时;
[0035] 4) 然后将反应产物冷却至室温后，过滤并用乙醇洗涤数次后冷冻干燥处理;
[0036] 5) 最后将干燥后的样品在氮气气氛保护的管式炉中 500°C 热处理 2 小时得到分级三维多孔石墨烯/二氧化钛光催化剂。
[0037] 从图 1 的 XRD 图谱中可以看出，本发明所制备的二氧化钛为纯锐钛矿型晶体，石墨烯与二氧化钛复合之后并没有影响到二氧化钛晶型，说明石墨烯的存在并不影响二氧化钛的形成，且各种实施例下所制备的二氧化钛晶型几乎无差别。在 2θ = 11° 左右的氧化石墨烯的特征衍射峰消失，则说明样品经过热处理后，氧化石墨烯已经被还原为石墨烯。
[0038] 图 2 是所制备样品的扫描电子图像，从图 2 可以看出，三维石墨烯骨架孔径在数微米到几十微米之间，二氧化钛介孔微球被包覆在于石墨烯为骨架的微米级的大孔中，同时，在二氧化钛微球表面也包覆有形状不一的石墨烯纳米片，这种三维结构非常有助于二氧化钛光降解时电子的传输，增大了电子 - 空穴的分离时间。
[0039] 从图 3 的透射图中，我们可以看出二氧化钛大面积的与石墨烯接触，填充于微米级的孔径之间，增强了二氧化钛纳米颗粒的分散性。这种三维结构同时还具有比二维材料更大的比表面积，从图 5 的氧吸附 - 脱附曲线可以看出，纯二氧化钛比表面积只有 79m^2/g，组装成三维结构之后，比表面积增大到 139m^2/g。
[0040] 实施例 2:
[0041] 本实施例与实施例 1 大致相同，不同之处在于步骤 2) 中的氯化钾水溶液的体积为 5.49ml，即 H2O : Ti 的摩尔比为 5 : 1 时，水含量的增加使其二氧化钛纳米颗粒径逐渐变小，由于石墨烯三维骨架的伸缩性，其包覆结构依然使得其光催化效率较 P25 高。
[0042] 实施例 3:
[0043] 本实施例与实施例 1 大致相同，不同之处在于步骤 2) 中的十六胺的质量为：3.975g 时，即十六胺 : 钛的摩尔比由实施例 1 的 0.5 : 1 降为 0.25 : 1 时，部分二氧化钛纳米颗粒开始相互粘结在一起，与三维石墨烯孔道结构形成包覆，光催化性能与实施例 1 相似。
说明书

[0044] 实施例 4：
[0045] 本实施例与实施例 1 大致相同，不同之处在于步骤 3）中的氧化石墨烯水溶液浓度为 2mg/ml，其结构性能及光催化性能与实施例 1 相似。
[0046] 对比例 1：
[0047] 本对比例与实施例 1 大致相同，不同之处在于反应物二氧化钛前驱体质量为 0.10g。产物测试结果与实施例 1 相似。图 1 中由于二氧化钛含量较低，所以其 XRD 图谱中峰强较弱，由于二氧化钛含量太低而其光催化性能低。
[0048] 对比例 2：
[0049] 本对比例与实施例 1 大致相同，不同之处在于反应物二氧化钛前驱体质量为 2.00g。产物测试结果与实施例 1 相似。
[0050] 对比例 3：
[0051] 同时制备对照的二氧化钛，具体步骤如下：
[0052] 取 7.47g 十六烷加入到 480ml 水无水乙醇和 2.625ml 氯化钾 (0.1M) 的水溶液中，超声 10 分钟，置于磁力搅拌器上室温搅拌，将 10.8ml 酚酸异丙酯缓慢滴加到混合溶液中，反应 18 小时，过滤反应溶液，然后用乙醇反复洗涤 3 次，干燥获得二氧化钛前驱体；将 0.50g 二氧化钛前驱体溶于 10ml 水无水乙醇中，超声分散 10 分钟，然后依次滴加 50ml 去离子水和 500μl 氨水到混合溶液中，再超声分散 10 分钟后转移至水热反应釜中，180°C 下反应 16 小时；然后将反应产物冷却至室温后，过滤并用无水乙醇洗涤数次后冷冻干燥处理。最终将干燥后的样品在马弗炉中 500°C 热处理 2 小时得到二氧化钛光催化剂。
[0053] 为了阐述本发明的效果，将本发明制备的分级三维多孔石墨烯 / 二氧化钛光催化剂应用于亚甲基蓝的光催化降解，同时对比单独制备的对比例 3 中的二氧化钛光催化剂和商业 P25 催化剂的光催化性能。具体步骤为：配置 1×10^{-5}M 的亚甲基蓝溶液，取 10mg 本发明实施例 1 所制备的光催化剂并加入到 100ml 亚甲基蓝溶液中。将此分散液置于暗处搅拌 30 分钟使亚甲基蓝达到吸附脱附平衡，然后转移至石英玻璃反应器，用 300W 的高压氙灯模拟太阳光，放置于离反应器 10cm 处。暗反应结束马上开启氙灯开始光降解过程。每隔一定时间取样，离心后取上清液用紫外 - 可见分光光度计测吸光度，从而得到各时间段亚甲基蓝的降解率。
[0054] 图 6 为实施例 1 所制备的分级三维多孔石墨烯 / 二氧化钛光催化剂对亚甲基蓝的光催化降解图。从图 6 可以看出，在 25 分钟内，本发明所制备的三维结构光催化剂对亚甲基蓝的降解率几乎达到了 100%，其降解性能超过了纯的二氧化钛和 P25。图 7 是对比例 1 所制备的分级三维多孔石墨烯 / 二氧化钛光催化剂对亚甲基蓝的光催化降解图。从图 7 可以看出，在 25 分钟内，对比例 1 所制备的三维结构光催化剂对亚甲基蓝的降解率仅达到了 60%，其降解性能未能超过纯的二氧化钛和 P25，这说明二氧化钛含量过低，也不利于其光催化性能的提升。图 8 是对比例 2 所制备的分级三维多孔石墨烯 / 二氧化钛光催化剂对亚甲基蓝的光催化降解图。对比比例 2 与比例 1 二氧化钛含量是实施例 1 的 4 倍，从图 8 可以看出，虽然二氧化钛的初始含量提高了，但是其光催化性能并没有相应提升，说明二氧化钛含量太高并不能完全的包覆于石墨烯三维孔道结构中，只有二氧化钛含量在一定的范围内时，其单位质量下的光催化效率是最高，通过反复实验，我们得出
[0055] 当二氧化钛前驱体 : 氧化石墨烯质量比在 2:1 ~ 8:1 之间时，其催化效率最佳，低
于 2:1 时，二氧化钛含量偏低使得光催化效率较低；反之，当比值大于 8:1 时，其光催化效率并不能因二氧化钛含量上升而增强。

【0056】 对比例 4：
【0057】 本对比例与实施例 1 大致相同，不同之处在于步骤 2) 中的氯化钾水溶液的体积为 10.98ml，即 H\text{2}O : Ti 的摩尔比为 10:1 时；所制备的复合光催化剂中二氧化钛含量及其次下，原因是因为当 H\text{2}O : Ti 的摩尔比大于 8:1 时，如图 4 所示，其二氧化钛纳米颗粒粒径太小而无法形成二氧化钛微球，不能被大孔石墨烯骨架的孔道结构所包覆，其光催化效率较低。

【0058】 对比例 5：
【0059】 本对比例与实施例 1 大致相同，不同之处在于步骤 3) 中的氧化石墨烯水溶液浓度为 0.1mg/ml，当氧化石墨烯浓度太低时，形成的骨架孔道结构常常大于 5\text{μ}m 甚至无法形成三维孔道结构，其包覆二氧化钛纳米颗粒效果非常差，石墨烯对二氧化钛光催化性能的提升作用非常有限。