
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2012/0320068 A1

Rose

US 20120320068A1

(43) Pub. Date: Dec. 20, 2012

(54)

(75)

(73)

(21)

(22)

(63)

DYNAMIC CONTEXT SWITCHING
BETWEEN ARCHITECTURALLY DISTINCT
GRAPHICS PROCESSORS

Inventor: Robert W. Rose, Bend, OR (US)

Assignee: Sony Computer Entertainment
America Inc., Foster City, CA (US)

Appl. No.: 13/561,629

Filed: Jul. 30, 2012

Related U.S. Application Data
Continuation of application No. 12/417.395, filed on
Apr. 2, 2009.

Publication Classification

(51) Int. Cl.
G06F 5/16 (2006.01)

(52) U.S. Cl. ... 345/SO2

(57) ABSTRACT

Graphics processing in a computer graphics apparatus having
architecturally dissimilar first and second graphics process
ing units (GPU) is disclosed. Graphics input is produced in a
format having an architecture-neutral display list. One or
more instructions in the architecture neutral display list are
translated into GPU instructions in an architecture specific
format for an active GPU of the first and second GPU.

MEMORY
102

PROGRAM

106

GPU Context
Controller

105

DISPLAY CONTROLLER

108

DISPLAY

110

Patent Application Publication Dec. 20, 2012 Sheet 1 of 5 US 2012/0320068 A1

10

MEMORY
102

PROGRAM

106

GPU COntext
COntroller

105

VRAM 107A VRAM 107B

DISPLAY CONTROLLER

108

DISPLAY

110

FIG. 1

US 2012/0320068 A1 Dec. 20, 2012 Sheet 2 of 5 Patent Application Publication

PrOCeSS
Translated

DL

Send

I I

– -) |?íCD ní |?z :• No. º I–1?? -No. (1)
? uºIP HIJ O© C , | a?S|t? H-CO do No.

I02No. 9
| ,-lo z ?+5 <C |Q -– o IO 3H- ?

|(_)
I I I

|– || II II ICDI | -1=Ë Ë =| | -109 ?U SEI |DL CD| || II II ||
Monitor ACtive Output For
GPU POWer
Consumption

Renderino

DISPLAY
CONTROLLER

108

Perform
Context Switch

DISPLAY
110

104 = = = = = = = = = = = 1

Deactivate
GPU. A

FIG. 2A

US 2012/0320068 A1 Dec. 20, 2012 Sheet 3 of 5 Patent Application Publication

Initially inactive)
103

(Initially Active)

GPU. A 105
GPU

CONTEXT
02 LLI –1 –1 O 02 H 2 O C_)

ACtivated

TranS GPU
State

FIG. 2B

Patent Application Publication Dec. 20, 2012 Sheet 4 of 5 US 2012/0320068 A1

MEMORY

PROGRAM
303

GRAPHICS
309 INPUT

GRAPHICS GPU
MEMORY

:

GPU CONTEXT 307A
CONTROLLER GRAPHICS

MEMORY

:
307B

STORAGE DISPLAY DISPLAY
CONTROLLER DEVICE

308 310

AUDIO 350
PROCESSOR

NETWORK 325
INERFACE

MESSAGE
PACKET 327 326

S

FIG. 3

Patent Application Publication Dec. 20, 2012 Sheet 5 of 5 US 2012/0320068 A1

400

GRAPHICS PROCESSING
INSTRUCTIONS

401
Instruction for producing graphics input
in format having architecture-neutral
display list

Instruction for translating instructions in
display list into GPU specific
instructions

POWERMONITORING CONTEXT SWITCH
INSTRUCTIONS DETERMINATION

(Optional) INSTRUCTIONS
404 (Optional)

406

CONTEXT SWITCH INACTIVE GPU SHUTOFF
INSTRUCTIONS INSTRUCTION

(Optional) (Optional)
408 410

FIG. 4

US 2012/0320068 A1

DYNAMIC CONTEXT SWITCHING
BETWEEN ARCHITECTURALLY DISTINCT

GRAPHCS PROCESSORS

PRIORITY CLAIM

0001. This application is a continuation of and claims the
priority benefit of co-pending U.S. patent application Ser. No.
12/417.395, filed Apr. 2, 2009, the entire contents of which
are incorporated herein by reference.

FIELD OF INVENTION

0002 This invention relates to computer graphics process
ing, and more specifically to computer graphics processing
using two or more architecturally distinct graphics proces
SOS.

BACKGROUND OF INVENTION

0003. Many computing devices utilize high-performance
graphics processors to present high quality graphics. High
performance graphics processors consume a great deal of
power (electricity), and Subsequently generate a great deal of
heat. In portable computing devices, the designers of Such
devices must trade off market demands for graphics perfor
mance with the power consumption capabilities of the device
(performance vs. battery life). Some laptop computers are
beginning to solve this problem by introducing two GPUs in
one laptop—one a low-performance, low-power consump
tion GPU and the other a high-performance, high-power con
sumption GPU and letting the user decide which GPU to
US

0004. Often, the two GPUs are architecturally dissimilar.
By architecturally dissimilar, it is meant that the graphical
input formatted for one GPU will not work with the other
GPU. Such architectural dissimilarity may be due to the two
GPUs having different instruction sets or different display list
formats that are architecture specific.
0005. Unfortunately, architecturally dissimilar GPUs are
not capable of cooperating with one another in a manner that
allows seamless context switching between them. Therefore a
problem arises in computing devices that use two or more
architecturally dissimilar GPUs in that in order to switch from
one GPU to another the user must stop what they are doing,
select a different GPU, and then reboot the device. This is
Somewhat awkward even with a laptop computer and consid
erably more awkward with hand-held portable computing
devices such as mobile internet access devices, cellular tele
phones, hand-held gaming devices, and the like.
0006. It would be desirable to allow the context switching

to be hidden from the user and performed automatically in the
background. Unfortunately, no solution is presently available
that allows for dynamic, real-time context Switching between
architecturally distinct GPUs. The closest prior art is the
Apple MacBook Pro, from Apple Computer of Cupertino,
Calif., which contains two architecturally distinct GPUs but
does not allow dynamic context Switches between them.
Another prior art solution is the Scalable Link Interface (SLI)
architecture developed by nVidia Corporation of Santa Clara,
Calif. This architecture lets a user run one or more GPUs in
parallel, but only for the purpose of increasing performance,
not to reduce power consumption. Also, this solution requires
the two GPUs to be synchronized when the system is enabled,
again requiring some amount of user intervention.

Dec. 20, 2012

0007. It is within this context that embodiments of the
current invention arise.

BRIEF DESCRIPTION OF THE DRAWINGS

0008 FIG. 1 is a block diagram illustrating an example of
a computer graphics system according to an embodiment of
the present invention.
0009 FIG. 2A is a flow diagram illustrating computer
graphics processing with two architecturally distinct graphics
processors in accordance with an embodiment of the present
invention.
0010 FIG. 2B is a flow diagram illustrating an example of
a context Switch between two architecturally distinct graphics
processors in accordance with an embodiment of the present
invention.
0011 FIG. 3 is a block diagram of a computer graphics
apparatus according to an embodiment of the present inven
tion.
0012 FIG. 4 is a block diagram of a computer readable
medium containing computer readable instructions for imple
menting a computer graphics processing method in a com
puter graphics apparatus having a central processing unit
(CPU) and architecturally dissimilar first and second graphics
processing units (GPU) in accordance with an embodiment of
the present invention.

DESCRIPTION OF THE SPECIFIC
EMBODIMENTS

0013 Embodiments of the present invention utilize a
graphics processing system and method that allows two or
more architecturally distinct GPUs with varying power con
Sumption profiles to be combined so that certain graphics
processing operations may transition seamlessly between the
two GPUs without user intervention or even the user's knowl
edge. This is accomplished using an architecture-neutral dis
play list instruction set in Software, and having a specialized
piece of hardware (the “GPU Context Controller) sit
between the GPUs that translates the architecture-neutral
instruction set into the architecture-specific instruction set of
the given GPU:
0014. According to an embodiment of the present inven
tion, a graphics processing system, e.g., as shown in FIG. 1
may be configured to implement certain portions of a graph
ics processing method, e.g., as described below with respect
to FIG. 2A and FIG. 2B.
0015 The system 100 may include a central processing
unit (CPU) 101, a memory 102 first graphics processing unit
(GPU) 103, a second GPU 104 and a GPU context controller
105. The memory 102 is coupled to the CPU 101. The
memory 102 may store applications and data for use by the
CPU 101. The memory 102 may be in the form of an inte
grated circuit, e.g., Random Access Memory (RAM),
Dynamic Random Access Memory (DRAM), Read-Only
Memory (ROM), and the like). By way of example, and not by
way of limitation, the memory 102 may be in the form of
RAM.
0016. A computer program 106 may be stored in the
memory 102 in the form of instructions that can be executed
on the CPU 101. The instructions of the program 106 may be
configured to implement, amongst other things, certain parts
of a graphical processing method that involves a context
Switch between the first and second graphics processing units
103,104. The program 106 may perform physics simulations,

US 2012/0320068 A1

Vertex processing and other calculations related to drawing
one or more images. The program 106 may also determine
which of the GPU 103,104 is to be used for rendering the one
or more images.
0017. The GPU 103, 104 receive input (e.g., data and/or
instructions) resulting from the computations performed by
the program 106 and further process the input to render the
one or more images on a display 110. Each of the GPU 103.
104 may have a corresponding associated video RAM
(VRAM) 107A, 107B. Each VRAM 107A, 107Ballows the
CPU 101 to process an image at the same time a GPU 103.
104 reads it out to a display controller 108 coupled to the
display 110. By way of example, the VRAM 107A, 107B may
be implemented in the form of dual ported RAM that allows
multiple reads or writes to occur at the same time, or nearly
the same time. Each VRAM 107A, 107B may contain both
input (e.g., textures) and output (e.g., buffered frames). Each
VRAM 107 may be implemented as a separate local hardware
components of each GPU. Alternatively, each VRAM 107
may be virtualized as part of the main memory 102.
0018. The GPU 103, 104 are in general, architecturally
dissimilar. As noted above, the term “architecturally dissimi
lar” means that graphical input formatted for one GPU 103
will not work with the other GPU 104 and vice versa. By way
of example, and not by way of limitation, the two GPU may
have different instruction sets, different display lists, or both.
In addition, in some embodiments, the two GPU 103, 104
may have different processing performance and power con
Sumption characteristics.
0019. To facilitate fast context switching between the two
GPU 103,104, the program 106 generates the input, e.g., a
display list, for the GPU 103, 104 in an architecture neutral
format. As used herein, the term “architecture neutral-for
mat” refers generally to a format that does not depend on a
specific processor architecture of a particular GPU. The input
is sent to the GPU Context Controller 105, which may be
implemented in hardware, e.g., as an application specific
integrated circuit (ASIC) or in Software, e.g., as a logic block
of coded instructions running on the CPU.
0020. The GPU Context Controller 105 may be imple
mented as a just-in-time compiler, which compiles the input
from the architecture neutral format into a format that is
specific to one of the GPU 103,104 or the other. The GPU that
is to receive the compiled input is referred to herein as the
active GPU. The GPU that does not receive the compiled
input is referred to herein as the inactive GPU. The GPU
Context Controller 105 translates architecture-neutral dis
play list instructions to the architecture-specific display list
instruction set of the active GPU. The resulting instruction set
is then sent to the active GPU for rendering. The inactive GPU
is shut down while the active GPU is in use. Shutting down the
inactive GPU can provide a considerable reduction in power
consumption.
0021. In addition to translating the instruction set, the
GPU. Context Controller 105 may monitor power consump
tion metrics for the active GPU to determine which of the
GPU 103, 104 should be used as the active GPU. The GPU
Context Controller 105 may also dynamically perform con
text switches between the two GPUs 103,104 based on active
load, anticipated load and/or direct selection messages from
the CPU 101. Context switches may be performed by reading
the GPU state from one GPU, translating the state to the
format of the other, and then uploading the state to the other
GPU. If necessary, the Context Controller 105 may transfer

Dec. 20, 2012

VRAM contents one GPU to another. This requires the archi
tecture-neutral display list to reference VRAM contents by
virtual address instead of direct address. After a context
switch the GPU Context Controller 105 may instruct the
video display controller 108 to switch the VRAM address for
framebuffer access.
0022. The system described above may implement a
graphics processing method according to an embodiment of
the present invention. By way of example, and not by way of
limitation, a computer-implemented graphics processing
method 200 may proceed as illustrated in FIG. 2A. Specifi
cally, the CPU 101 may produce graphics input for a GPU, as
indicated at 201. The CPU 101 may produce graphics input
for a sequence of frames processing each frame in the order in
which it is to be displayed on the display device 110. As
described above, the graphics input includes an architecture
neutral display list 202. The GPU Context Controller 105
translates the display list 202 into an architecture specific
format for the active GPU, as indicated at 203. In the example
illustrated in FIG. 2A GPUA 103 is active and GPU B104 is
inactive.

0023 The GPU Context Controller 105 sends the trans
lated display list 204 to the active GPU A103 for processing,
as indicated at 205. GPU A 103 processes the translated
display list, as indicated at 207 and generates output for
rendering. The output is sent to the display controller 108 for
rendering on the display device 110 as indicated at 209.
0024. To facilitate optimum power consumption, the GPU
Context Controller 105 may monitor the power consumption
of the active GPU, as indicated at 211 for the purpose of
determining whether or not to perform a context switch. The
GPU. Context Controller 105 may also wait for a signal from
the CPU 101 indicating that a context switch between the
currently active GPU and the currently inactive GPU should
be performed. If one or more criteria for performing a context
switch are met, as indicated at 213, the GPU Context Con
troller 105 may perform a context switch, as indicated at 215.
The GPUContext Controller 105 may the deactivate GPU A,
e.g., by shutting it down, if it is to be no longer active after the
context Switch.
0025 FIG. 2B illustrates an example of a context switch
220. In this example, GPU A 103 is initially active and GPU
B104 is initially inactive. As indicated at 222 a context switch
is triggered. There are a number of different ways of trigger
ing a context Switch. One way, as indicated above, is based on
monitoring of power consumption of the active GPU. For
example, GPU A and GPU B may have different power con
Sumption and processing capabilities. By way of example,
and not by way of limitation, GPU A may be a high power
GPU and GPU B may be a low power GPU having lower
power consumption than GPUA and a maximum processing
capacity that is less than a maximum processing capacity of
GPU. A. In such a case, the GPU Context Controller 105 may
be configured (e.g., programmed) to perform a context Switch
from GPUA to the GPU B if the GPUA is active operating at
a processing capacity that is less than or equal to the maxi
mum processing capacity GPU B.
(0026. Alternatively, if GPUA is the lower power GPU and
GPUB is the high power GPU, the GPU Context Controller
105 may perform a context switch from GPU A to GPU B if
GPUA is operating at its maximum processing capacity, and
a frame render time is decreasing.
0027. In some implementations, it may be desirable for the
GPUContext Controller 105 to way for active GPU A 103 to

US 2012/0320068 A1

finish processing a currently processing frame as indicated at
223 and 225 before implementing a context switch. The GPU
Context Controller 105 may wait, as indicated at 224 until
processing is finished as indicated at 226. To implement the
context switch, the GPU Context Controller 105 may read a
state 227 of the active GPU A 103, as indicated at 228. The
state may then be translated into a translated GPU state 229
that is in a format suitable for use by GPU B104 as indicated
at 230. The GPU context controller 105 may activate GPUB
104, as indicated at 232. Activation of GPUB 104 may take
place either before or after translating the state of GPU A103.
Once GPU B 104 is activated, the translated GPU State 229
may be transferred to GPUB104, as indicated at 234. In some
embodiments, the GPU Context Controller 105 may option
ally read the contents 233 of the VRAM 107A of GPUA 103
and transfer them to the VRAM 107B of GPU B 104, as
indicated at 236. Once the GPU Context Controller 105 has
extracted from GPU A 103 the information necessary for the
context switch, GPU A 103 may be deactivated, as indicated
at 238. The GPUContext Controller 105 may then process the
next frame as indicated at 240. Subsequent processing would
involve translating the display list 202 from the CPU 101 into
the architecture specific format for GPUB 104 and sending
the resulting translated display list 204 to GPU B 104 for
processing.
0028. It is noted that the order of operations shown in FIG.
2B is meant as an example and is not the only possible order.
For example, it is possible to deactivate GPU A before acti
vating GPUB if the necessary information for performing the
context switch (e.g., state 227 and VRAM contents 233 have
been extracted from GPU A and stored, e.g., in memory 102.
0029. The above-described approach to reducing power
consumption requirements in a GPU is a considerable depar
ture from current power-reducing measures. Current power
reducing measures in modern GPUs involve “power step
ping in which parts of the GPU are disabled based on load.
While these measures may have a small impact on power
consumption, they do not have as great effect as disabling an
entire GPU. Using two architecturally distinct GPUs is also a
bold approach, because it involves the production of an archi
tecture-neutral display list.
0030. A graphics processing apparatus may be configured
in accordance with embodiments of the present invention in
any of a number of ways. By way of example, FIG.3 is a more
detailed block diagram illustrating a graphics processing
apparatus 300 according to an embodiment of the present
invention. By way of example, and without loss of generality,
the graphics processing system 300 may be implemented as
part of a computer system, Such as a personal computer, video
game console, personal digital assistant, cellular telephone,
hand-held gaming device, portable internet device or other
digital device.
0031. The apparatus 300 generally includes a central pro
cessing unit (CPU)301, a memory 302, two or more graphics
processing units (GPU) 304A, 304B, and a GPU Context
Controller 305. The system may further include a display
controller 308 coupled to a display device 310.
0032. The apparatus 300 may also include well-known
support functions 311, such as input/output (I/O) elements
312, power supplies (P/S) 313, a clock (CLK) 314 and cache
315. The apparatus 300 may further include a storage device
316 that provides non-volatile storage for software instruc
tions 317 and data 318. By way of example, the storage device
316 may be a fixed disk drive, removable disk drive, flash

Dec. 20, 2012

memory device, tape drive, CD-ROM, DVD-ROM, Blu-ray,
HD-DVD, UMD, or other optical storage devices.
0033. The CPU 301 may include one or more processing
cores. By way of example and without limitation, the CPU
301 may be a parallel processor module, such as a Cell Pro
cessor. An example of a Cell Processor architecture is
described in detail, e.g., in Cell Broadband Engine Architec
ture, copyright International Business Machines Corpora
tion, Sony Computer Entertainment Incorporated, Toshiba
Corporation Aug. 8, 2005 a copy of which may be down
loaded at http://cell.scei.co.jp/, the entire contents of which
are incorporated herein by reference.
0034. The CPU 301 may be configured to run software
applications and optionally an operating system. The Soft
ware applications may include graphics processing Software
303 portions of which may be stored in the memory 302 and
loaded into registers of the CPU 301 and/or GPU Context
Controller 305 for execution.
0035. The CPU 301 and GPU Context Controller 305 may
be configured to implement the operations described above
with respect to FIG. 2A and FIG.2B. Specifically, the graph
ics processing software 303 may include instructions that,
upon execution, cause the CPU 301 to produce graphics input
309 for the GPU 304A,304B. The graphics input 309 may be
in a format having an architecture-neutral display list. The
GPU. Context Controller 305 may be configured to translate
instructions in the architecture neutral display list into an
architecture specific format for one of the GPU 304A, 304B
or the other depending on which one of them is active. The
GPU Context controller 305 may also be configured to deter
mine whether to perform a context switch between the two
GPU 304A, 304B, to perform the context switch, and to shut
down the GPU that is inactive after the context switch.

0036. There are a number of ways in which the GPU
Context Controller 305 may be configured to perform the
above-described tasks. In general, the GPU Context Control
ler 305 may be configured to execute software instructions of
the graphics processing program 303. By way of example, the
GPU. Context Controller 305 may be implemented as a dedi
cated separate processor component that is completely inde
pendent of the CPU 301. Alternatively, the GPU Context
Controller 305 may be implemented within the CPU 301. For
example, if the CPU301 has a multi-core or parallel processor
architecture having multiple processor elements, the func
tions of the GPUContext Controller 305 may be implemented
through instructions executed on one or more of these pro
cessor elements. Alternatively, the functions of the GPUCon
text Controller 305 may be implemented through a software
thread of the program 303 that runs on the CPU 301. Thus,
although the CPU Context Controller 305 is shown as a
separate block in FIG. 3, embodiments of the present inven
tion encompass implementation of the CPU Context Control
ler 305, and/or its functions on the CPU 301.
0037. The GPU 304A, 304B may be architecturally dis
similar, as described above. Each graphics processing unit
(GPU) 304A, 304B may include a graphics memory 307A,
307B such as a video RAM. Each graphics memory 307A,
307B may include a display memory (e.g., a frame buffer)
used for storing pixel data for each pixel of an output image.
Each graphics memory 307A, 307B may be integrated in the
same device as the corresponding GPU 304A, 304B, con
nected as a separate device with the corresponding GPU
304A, 304B, and/or implemented within the memory 302.
Pixel data may be provided to either graphics memory 307A,

US 2012/0320068 A1

307B directly from the CPU 301 or via the GPU Context
Controller 305. Alternatively, the CPU 301 or GPU Context
Controller 305 may provide the active GPU 304A or 304B
with data and/or instructions defining the desired output
images, from which the active GPU may generate the pixel
data of one or more output images. The data and/or instruc
tions defining the desired output images may be stored in
memory 302 and/or graphics memory 307A, 307B. In one
embodiment, one or both GPU 304A, 304B may be config
ured (e.g., by Suitable programming or hardware configura
tion) with 3D rendering capabilities for generating pixel data
for output images from instructions and data defining the
geometry, lighting, shading, texturing, motion, and/or camera
parameters for a scene. The GPU 304A, 304B may further
include one or more programmable execution units capable of
executing shader programs.
0038. As noted above, only one of the GPU304A,304B is
active at a time. The active GPU may periodically output pixel
data for an image from the corresponding graphics memory to
be displayed on the display device 310. The display device
308 may be any device capable of displaying visual informa
tion in response to a signal from the client device 300, includ
ing CRT, LCD, plasma, and OLED displays. The display
controller 308 may convert the pixel data to signals that
display device 310 uses to generate visible images. The dis
play controller 308 may provide the display device 310 with
analog or digital signals. By way of example, the display 310
may include a cathode ray tube (CRT) or flat panel screen that
displays visible text, numerals, graphical symbols or images.
0039. One or more user interface devices 320 may be used
to communicate user inputs from one or more users to the
system 300. By way of example, one or more of the user input
devices 320 may be coupled to the system 300 via the I/O
elements 312. Examples of suitable input device 320 include
keyboards, computer mice, joysticks, touch pads, touch
screens, light pens, still or video cameras, and/or micro
phones.
0040. The apparatus 300 may include a network interface
325 to facilitate communication via an electronic communi
cations network 327. The network interface 325 may be con
figured to implement wired or wireless communication over
local area networks and wide area networks such as the Inter
net. The system 300 may send and receive data and/or
requests for files via one or more message packets 326 over
the network 327.
0041. In addition, the apparatus 300 may optionally
include one or more audio speakers that produce audible or
otherwise detectable sounds. To facilitate generation of such
sounds, the apparatus 300 may further include an audio pro
cessor 330 adapted to generate analog or digital audio output
from instructions and/or data provided by the CPU 301,
memory 302, and/or storage 316.
0042. The components of the apparatus 300, including the
CPU 301, memory 302, GPU 304A, 304B, GPU Context
Controller 305, support functions 311, data storage 316, user
input devices 320, network interface 325, and audio processor
350 may be operably connected to each other via one or more
data buses 360. These components may be implemented in
hardware, software or firmware or some combination of two
or more of these.
0043. According to another embodiment, instructions for
carrying out graphics processing as described above may be
stored in a computer readable storage medium. By way of
example, and not by way of limitation, FIG. 4 illustrates an

Dec. 20, 2012

example of a computer-readable storage medium 400. The
storage medium contains computer-readable instructions
stored in a format that can be retrieved interpreted by a com
puter processing device. By way of example, and not by way
of limitation, the computer-readable storage medium 400
may be a computer-readable memory, Such as random access
memory (RAM) or read only memory (ROM), a computer
readable storage disk for a fixed disk drive (e.g., a hard disk
drive), or a removable disk drive. In addition, the computer
readable storage medium 400 may be a flash memory device,
a computer-readable tape, a CD-ROM, a DVD-ROM, a Blu
ray, HD-DVD, UMD, or other optical storage medium.
0044) The storage medium 400 contains Graphics pro
cessing instructions 401 including one or more instructions
402 for producing graphics input in a format having an archi
tecture-neutral display list, and one or more instructions 403
for translating instructions in an architecture-neutral display
list into GPU-specific instructions. The medium 400 may also
optionally include one or more powermonitoring instructions
404, one or more context Switch determination instructions
406, one or more context switch instructions 408 and one or
more inactive GPU shutoff instructions 410.
0045. The power monitoring instructions 404 may be con
figured for monitoring power consumption and/or perfor
mance of a GPU, e.g., as described above with respect to item
211 of FIG. 2A. The context switch determination instruc
tions 406 may be configured for determining whether one or
more criteria for triggering a context switch are met, as dis
cussed above with respect to 213 of FIGS. 2A and 222 of FIG.
2B. The context switch instructions 408 may be configured
for performing a context switch between two GPU, e.g., as
described above with respect to 224, 226, 228,230, 232,234,
236, 238, and 240 of FIG. 2B. The inactive GPU shutoff
instructions 410 may be configured for shutting of a GPU that
is inactive after a context Switch, e.g., as described above with
respect to 217 of FIG. 2A.
0046 Embodiments of the present invention as described
herein may be extended to enable dynamic load balancing
between two or more graphics processors for the purpose of
increasing performance at the cost of power, but with archi
tecturally similar GPUs (not identical GPUs as with SLI). By
way of example, and not by way of limitation, a context
switch may be performed between the two similar GPUs
based on which one would have the higher performance for
processing a given set of GPU input. Performance may be
based, e.g., on an estimated amount of time or number of
processor cycles to process the input.
0047. If two GPUs are sufficiently architecturally similar,
graphical input formatted for one GPU will work with the
other GPU and vice versa. In such a case, it would not be
necessary to generate the input in an architecture neutral
format and translate it to an architecture specific format.
0048. Another solution would be to have the CPU interpret
the architecture neutral instruction set and have the GPU
Context Controller completely shut down the GPU. Graphics
performance might severely degrade but potentially less
power would be consumed. According to this solution the
CPU would take over the processing tasks handled by the
GPU. In such a case, this solution may be implemented in a
system with just one GPU. Specifically, the CPU could take
over for the GPU by performing a context switch between the
GPU and the CPU.
0049. While the above is a complete description of the
preferred embodiment of the present invention, it is possible

US 2012/0320068 A1

to use various alternatives, modifications and equivalents.
Therefore, the scope of the present invention should be deter
mined not with reference to the above description but should,
instead, be determined with reference to the appended claims,
along with their full scope of equivalents. Any feature
described herein, whether preferred or not, may be combined
with any other feature described herein, whether preferred or
not. In the claims that follow, the indefinite article 'A', or
An' refers to a quantity of one or more of the item following

the article, except where expressly stated otherwise. The
appended claims are not to be interpreted as including means
plus-function limitations, unless such a limitation is explic
itly recited in a given claim using the phrase “means for.
0050. Throughout this description, the embodiments and
examples shown should be considered as exemplars, rather
than limitations on the apparatus and methods disclosed or
claimed. Although many of the examples presented herein
involve specific combinations of acts or system elements, it
should be understood that those acts and those elements may
be combined in other ways to accomplish the same objectives.
With regard to flowcharts, additional and fewer steps may be
taken, and the steps as shown may be combined or further
refined to achieve the methods described herein. Acts, ele
ments and features discussed only in connection with one
embodiment are not intended to be excluded from a similar
role in other embodiments.
0051. For means-plus-function limitations recited in the
claims, the means are not intended to be limited to the means
disclosed herein for performing the recited function, but are
intended to cover in Scope any means, known now or later
developed, for performing the recited function.
0052. As used herein, whether in the written description or
the claims, the terms “comprising”, “including”, “carrying.
“having”, “containing”, “involving, and the like are to be
understood to be open-ended, i.e., to mean including but not
limited to. Only the transitional phrases “consisting of and
“consisting essentially of, respectively, are closed or semi
closed transitional phrases with respect to claims.
0053 As used herein, “and/or” means that the listed items
are alternatives, but the alternatives also include any combi
nation of the listed items.

What is claimed is:
1. A computer graphics apparatus, comprising:
a) a central processing unit (CPU), wherein the CPU is

configured to produce graphics input in a format having
an architecture-neutral display list for a sequence of
frames;

b) a memory coupled to the central processing unit;
c) first and second graphics processing units (GPU)

coupled to the central processing unit, wherein the first
GPU is architecturally dissimilar from the second GPU;
and

d) a just-in-time compiler coupled to the CPU and the first
and second GPU configured to translate instructions in
the architecture neutral display list into an architecture
specific format for an active GPU of the first and second
GPU,

wherein the just-in-time compiler is configured to perform
a context switch between the active GPU and the inac
tive GPU, wherein the active GPU becomes inactive and
the inactive GPU becomes active to process a next frame
of the sequence of frames, and turn off the one of the first
and second GPU that is inactive after the context switch.

Dec. 20, 2012

2. The apparatus of claim 1 wherein the just-in-time com
piler is configured to perform the context Switch by reading a
GPU state from the one of the first and second GPU that is
active before the context Switch, translating the state to a
format of the other GPU of the first and second GPU, and then
uploading the state to the other GPU.

3. The apparatus of claim 2 wherein the just-in-time com
piler is configured to transfer contents of a video RAM of the
GPU that is inactive after the context switch to a video RAM
of the GPU that is to be active after the context switch.

4. The apparatus of claim 2 wherein the just-in-time com
piler is configured to translate a register state for the GPU that
is active before the context switch to a register state format for
the GPU that is to be active after the context switch.

5. The apparatus of claim 2 wherein the first GPU is a high
power GPU and the second GPU is a low power GPU having
lower power consumption than the high power GPU and a
maximum processing capacity that is less than a maximum
processing capacity of the high power GPU.

6. The apparatus of claim 5 wherein the just-in-time com
piler is configured to perform a context Switch from the high
power GPU to the low power GPU if the high power GPU is
the active GPU and the high power GPU is operating at a
processing capacity that is less than or equal to the maximum
processing capacity of the low power GPU.

7. The apparatus of claim 5 wherein the just-in-time com
piler is configured to perform a context switch from the low
power GPU to the high power GPU if the low power GPU is
the active GPU, the low power GPU is operating at its maxi
mum processing capacity, and a frame render time for the
apparatus is decreasing.

8. The apparatus of claim 1, further comprising a display
controller coupled to the first and second GPU.

9. The apparatus of claim 8, further comprising an image
display device coupled to the display controller.

10. In a computer graphics apparatus having a central pro
cessing unit (CPU) and architecturally dissimilar first and
second graphics processing units (GPU) a computer imple
mented graphics processing method, comprising:

a) producing graphics input in a format having an architec
ture-neutral display list for a sequence of frames with the
CPU:

b) translating by a just-in-time compiler one or more
instructions in the architecture neutral display list into
GPU instructions in an architecture specific format for
an active GPU of the first and second GPU;

c) performing graphics processing with the active GPU
using the GPU instructions in the architecture specific
format for the active GPU;

d) displaying one or more images on a display device using
signals derived from the active GPU as a result of execu
tion of the GPU instructions in the architecture specific
format for the active GPU;

e) monitoring a power consumption of the active GPU,
f) determining whether to switch between the active GPU

and an inactive GPU of the first and second GPU based
on the power consumption of the active GPU,

g) performing a context switch between the active GPU
and the inactive GPU, wherein the active GPU becomes
inactive and the inactive GPU becomes active to process
a next frame of the sequence of frames, and

h) turning off the one of the first and second GPU that is
inactive after the context switch.

US 2012/0320068 A1

11. The method of claim 10, wherein performing the con
text switch includes reading a GPU state from the one of the
first and second GPU that is active before the context switch,
translating the state to a format of the other GPU of the first
and 4 second GPU, and then uploading the state to the other
GPU.

12. The method of claim 11, wherein performing the con
text Switch further comprises transferring contents of a video
RAM of the GPU that is inactive after the context switch to a
video RAM of the GPU that is to be active after the context
switch.

13. The method of claim 11, wherein performing the con
text Switch further comprises translating a register state for
the GPU that is active before the context switch to a register
state format for the GPU that is to be active after the context
switch.

14. The method of claim 10 wherein the first GPU is a high
power GPU and the second GPU is a low power GPU having
lower power consumption than the high power GPU and a
maximum processing capacity that is less than a maximum
processing capacity of the high power GPU.

15. The method of claim 14 wherein performing the con
text Switch includes performing a context Switch from the
high power GPU to the low power GPU if the high power
GPU is the active GPU and the high power GPU is operating
at a processing capacity that is less than or equal to the
maximum processing capacity of the low power GPU.

16. The method of claim 14 wherein performing the con
text switch includes performing a context switch from the low
power GPU to the high power GPU if the low power GPU is

Dec. 20, 2012

the active GPU, the low power GPU is operating at its maxi
mum processing capacity, and a frame render time for the
apparatus is decreasing.

17. A non-transitory computer readable storage medium,
having embodied therein computer readable instructions for
implementing a computer graphics processing method in a
computer graphics apparatus having a central processing unit
(CPU) and architecturally dissimilar first and second graphics
processing units (GPU), the method comprising:

a) producing graphics input in a format having an architec
ture-neutral display list for a sequence of frames with the
CPU:

b) translating by a just-in-time compiler one or more
instructions in the architecture neutral display list into
GPU instructions in an architecture specific format for
an active GPU of the first and second GPU;

c) performing graphics processing with the active GPU
using the GPU instructions in the architecture specific
format for the active GPU;

d) displaying one or more images on a display device using
signals derived from the active GPU as a result of execu
tion of the GPU instructions in the architecture specific
format for the active GPU;

e) monitoring a power consumption of the active GPU,
f) determining whether to switch between the active GPU

and an inactive GPU of the first and second GPU based
on the power consumption of the active GPU,

g) performing a context switch between the active GPU
and the inactive GPU, wherein the active GPU becomes
inactive and the inactive GPU becomes active to process
a next frame of the sequence of frames, and

h) turning off the one of the first and second GPU that is
inactive after the context switch.

k k k k k

