PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 :

(11) International Publication Number:

WO 98/46023

HO4N 5/926, 9/804, G11B 27/034, 27/30, | Al) o
27/10, HO4N 17/32, 7/50, 7/52, 1/58 (43) International Publication Date: 15 October 1998 (15.10.98)
(21) International Application Number: PCT/US98/06246 | (81) Designated States: AU, CA, CN, DE, GB, JP, European patent

(22) International Filing Date: 30 March 1998 (30.03.98)

(30) Priority Data:

08/832,987 4 April 1997 (04.04.97) Us

(71) Applicant: AVID TECHNOLOGY, INC. [US/US]; Metropoli-
tan Technology Park, One Park West, Tewksbury, MA
01876 (US).

(72) Inventors: SPORER, Michael; 31 Longfellow Road, Welles-
ley, MA 02181 (US). CORNOG, Katherine, H.; 26 Chestnut
Street, Newburyport, MA 01950 (US). ZAWOISKI, Peter;
32 Packard Drive, Merrimack, NH 03054 (US). HAMIL-
TON, James; 684 Hillcrest Way, Redwood City, CA 94062
(US).

(74) Agent: GORDON, Peter, J.; Wolf, Greenfield & Sacks, P.C,,
600 Atlantic Avenue, Boston, MA 02210 (US).

(AT, BE, CH, DE, DK, ES, F], FR, GB, GR, IE, IT, LU,
MC, NL, PT, SE).

Published
With international search report.

(54) Title: COMPUTER SYSTEM AND PROCESS FOR CAPTURE, EDITING AND PLAYBACK OF MOTION VIDEO COM-
PRESSED USING INTERFRAME AND INTRAFRAME TECHNIQUES

(57) Abstract

Random access to arbitrary fields of a video segment compressed using both interframe and intraframe techniques is enhanced by
adding state information to the bitstream prior to each intraframe compressed image to allow each intraframe compressed image to be
randomly accessed, by generating a field index that maps each temporal field to the offset in the compressed bitstream of the data used
to decode the field, and by playing back segments using two or more alternatingly used decoders. The cut density may be improved by
eliminating from the bitstream applied to each decoder any data corresponding to bidirectionally compressed images that would otherwise

be used by the decoder to generate fields prior to the desired field.

AL
AM
AT
AU
AZ
BA
BB
BE
BF
BG
BJ
BR
BY
CA
CF
CG
CH
CI
CM
CN
CuU
Cz
DE
DK
EE

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania ES Spain LS Lesotho SI Slovenia

Armenia FIL Finland LT Lithuania SK Slovakia

Austria FR France LU Luxembourg SN Senegal

Australia GA Gabon LV Latvia Sz Swaziland
Azerbaijan GB United Kingdom MC Monaco TD Chad

Bosnia and Herzegovina GE Georgia MD Republic of Moldova TG Togo

Barbados GH Ghana MG Madagascar TJ Tajikistan

Belgium GN Guinea MK The former Yugoslav ™ Turkmenistan
Burkina Faso GR Greece Republic of Macedonia TR Turkey

Bulgaria HU Hungary ML Mali TT Trinidad and Tobago
Benin IE Ireland MN Mongolia UA Ukraine

Brazit IL Israel MR Mauritania uG Uganda

Belarus IS Iceland MW Malawi Us United States of America
Canada IT Italy MX Mexico UZ Uzbekistan

Central African Republic JP Japan NE Niger VN Viet Nam

Congo KE Kenya NL Netherlands YU Yugoslavia
Switzerland KG Kyrgyzstan NO Norway w Zimbabwe

Cote d'Ivoire KP Democratic People’s NZ New Zealand

Cameroon Republic of Korea PL Poland

China KR Republic of Korea PT Portugal

Cuba KZ Kazakstan RO Romania —
Czech Republic LC Saint Lucia RU Russian Federation

Germany LI Liechtenstein SD Sudan

Denmark LK Sri Lanka SE Sweden

Estonia LR Liberia SG Singapore

10

15

20

25

30

WO 98/46023 PCT/US98/06246
-1-

COMPUTER SYSTEM AND PROCESS FOR CAPTURE, EDITING
AND PLAYBACK OF MOTION VIDEO COMPRESSED USING

INTERFRAME AND INTRAFRAME TECHNIQUES

Field of the Invention

The present invention is related to the capture, editing and playback of motion video and
associated audio in digital form, wherein the motion video data is compressed using interframe

and intraframe techniques.

Background of the Invention
Several systems are presently available for capture, editing and playback of motion video
and associated audio. A particular category of such systems includes digital nonlinear video

editors. Such systems store motion video data as digital data, representing a sequence of digital

still images, in computer data files on a random access computer readable medium. A still image

may represent a single frame, i.e., two fields, or a single field of motion video data. Such
systems generally allow any particular image in the sequence of still images to be randomly
accessed for editing and for playback. Digital nonlinear video editors have several benefits over
previous video tape-based systems which provide only linear access to video information.

Since digital data representing motion video may consume large amounts of computer
memory, particularly for full motion broadcast quality video (e.g., sixty field per second for
NTSC and fifty fields per second for PAL), the digital data typically is compressed to reduce
storage requirements. There are several kinds of compression for motion video information.
One kind of compression is called “intraframe” compression which involves compressing the
data representing each still image independently of other still images. Commonly-used
intraframe compression techniques employ a transformation to the frequency domain from the
spatial domain, for example, by using discrete cosine transforms. The resulting values typically
are quantized and encoded. Commonly-used motion video compression schemes using
intraframe compression include “motion-JPEG” and “I-frame only” MPEG. While intraframe
compression reduces redundancy of data within a particular image, it does not reduce the
significant redundancy of data between adjacent images in a motion video sequence. For
intraframe compressed image sequences, however, each image in the sequence can be accessed
individually and decompressed without reference to the other images. Accordingly, intraframe

compression allows purely nonlinear access to any image in the sequence.

10

15

20

25

30

WO 98/46023 PCT/US98/06246
-2-

More compression can obtained for motion video sequences by using what is commonly
called “interframe” compression. Interframe compression involves predicting one image using
another. This kind of compression often is used in combination with intraframe compression.
For example, a first image may be compressed using intraframe compression, and typically is
called a key frame. The subsequent images may be compressed by generating predictive
information that, when combined with other image data, results in the desired image. Intraframe
compressed images may occur every so often throughout the sequence. Several standards use
interframe compression techniques, such as MPEG-1(ISO/IEC 11172-1 through 5),
MPEG-2(ISO/IEC 13818- 1 through 9) and H.261, an International Telecommunications Union
(ITU) standard. MPEG-2, for example, compresses some images using intraframe compression
(called I-frames or key frames), and other images using interframe compression techniques for
example by computing predictive errors between images. The predictive errors may be
computed for forward prediction (called P-frames) or bidirectional prediction (called B-frames).
MPEG-2 is designed to provide broadcast quality full motion video.

For interframe compressed image sequences, the interframe compressed images in the
sequence can be accessed and decompressed only with reference to other images in the sequence.
Accordingly, interframe compression does not allow purely nonlinear access to every image in
the sequence, because an image may depend on either previous or following images in the
sequence. Generally speaking, only the intraframe images in the sequence may be accessed
nonlinearly. However, in some compression formats, such as MPEG-2, some state information
needed for decoding or displaying an intraframe compressed image, such as a quantization table,
also may occur elsewhere in the compressed bitstream, eliminating the ability to access even
intraframe compressed images nonlinearly.

One approach to handling the playback of serially dependent segments in an arbitrary
sequence is described in U.S. Patent No. 4,729,044, (Keisel). In this system, the dependency
between images in a segment is due to the linear nature of the storage media, i.e., video tape.
Several tapes containing the same material are used. For any given segment to be played back,
an algorithm is used to select one of the tapes from which the material should be accessed. At
the same time, a tape for a subsequent segment is identified and cued to the start of the next
segment. As a result, several identical sources are processed in parallel in order to produce the
final program. o

In nonlinear systems, the need for multiple copies of video sources to produce arbitrary

10

15

20

25

30

WO 98/46023 PCT/US98/06246
-3-
sequences of segments has been avoided by the random-access nature of the media. Arbitrary
sequences of segments from multiple data files are provided by pipelining and buffering
nonlinear accesses to the motion video data. That is, while some data is being decompressed and
played back, other data is being retrieved from a data file, such as shown in U.S. Patent No.
5,045,940 (Peters et al.).

In such systems, video segments still may need to be processed in parallel in order to
produce certain special effects, such as dissolves and fades between two segments. One system
that performs such effects is described in PCT Publication No. WO 94/24815 (Kurtze et al.). In
this system, two video streams are blended by a function wA+ (1-0t)B wherein A and B are
corresponding pixels in corresponding images of the two video streams. A common use of this
system is to play segment A, and to cause a transition to segment B over several images. The
data required for segment B is loaded into a buffer and decompressed while A is being played
back so that decoded pixels for segment B are available at the time the transition is to occur.
Similar systems also are shown in U.S. Patent Nos. 5,495,291 (Adams) and 5,559,562 (Ferster).
When using interframe compression, if a second segment starts with an interframe image, the
processing of the second segment may have to begin earlier during processing of a previous first
segment to allow the desired image of the second segment to be available. Ideally, the second
segment should be processed from a previous intraframe compressed image. However, these
preceding images are not used in the output.

A problem arises when a third segment of interframe and intraframe compressed video is
to be played. In particular, the second segment must be long enough to allow the first image of
the third segment to be completely processed from a previous intraframe compressed image. If
only two channels of decoders are available, this processing for the third sequence would be
performed using the same decoder used to process the first segment, after the first sequence is
processed. In some cases, the first decoder also may output several images after the last desired
image is output. The minimum size of any second segment is referred to as the cut density.
While the cut density in principle can be reduced to a single field by using only intraframe
compression, interframe compression provides better compression. Accordingly, it is desirable
to minimize the cut density using interframe compression.

Another problem in designing a system that is compatible with some standards, such as
MPEG-2, is that there are many options that may or may not be present in a coded bitstream. For

example, an MPEG-2 formatted bitstream may include only I-frames, or I and P frames, or I, B

10

15

20

25

30

WO 98/46023 PCT/US98/06246
-4-

and P frames. The order in which these frames is displayed also may be different from the order
they are stored. Each compressed image also may result in the output of anywhere from zero to
six fields. State information needed to decode any particular image, including an I-frame, may
also occur at any point in the bitstream. As a result, the ability to randomly access a particular
field in an arbitrary MPEG-2 compliant bitstream may be determined by the actual format of the
bitstream.

Accordingly, a general aim of the present invention to provide a system which allows
nonlinear editing of interframe and intraframe compressed motion video with a minimum cut
density. Another general aim in one embodiment of the invention is to allow mixed editing of

interframe and intraframe compressed data streams with different compression formats.

Summary of the Invention

Random access to arbitrary fields of a video segment compressed using both interframe
and intraframe techniques is enhanced by including state information, for decoding and display,
at appropriate points in the compressed bitstream in order to enable random access to each
intraframe compressed image to allow each intraframe compressed image to be randomly
accessed. In addition, a field index is generated that maps each temporal field to the offset in the
compressed bitstream of the data used to decode the field. Additional benefits are provided by
playing back segments using two or more alternatingly used decoders. The cut density may be
improved by eliminating from the bitstream applied to each decoder any data corresponding to
bidirectionally compressed images that would otherwise be used by the decoder to generate
fields prior to the desired field.

Accordingly, one aspect of the invention is computer system for editing motion video
compressed using interframe and intraframe techniques. The computer system stores a
compressed bitstream for each motion video source to be edited. Each compressed bitstream is
processed to detect state information which is used to decode and/or display compressed data.
The detected state information is added at appropriate points in the bitstream for each intraframe
compressed image. The state information also may be properly inserted during compression.
The computer system also processes the compressed bitstream to generate an index that maps
each temporal field of a corresponding decompressed output image sequence to a first
compressed image used to start decompressing the temporal field, and the offset in the bitstream

of the data for the first compressed image. The index may be created while the motion video is

10

15

20

25

30

WO 98/46023 PCT/US98/06246

-5.-
captured or imported or by using a post-processing approach. The computer system provides an
editing system that permits a user to specify a composition of motion video segments, wherein
each segment is defined by a range specified in terms of temporal fields within a motion video
source. The field index is used to identify portions of the compressed bitstream to be used to
generate each of the motion video segments using the range defining the segment. Two or more
decoders are used to process, alternatingly, the identified portions of the compressed bitstream
for each of the motion video segments.

Another aspect of the invention is a process for enabling each intraframe image in a
compressed bitstream of motion video data compressed using intraframe and interframe
techniques to be randomly accessed. The compressed bitstream is processed to detect state
information. The detected state information is added to the bitstream for each intraframe
compressed image, thereby allowing random access to any intraframe compressed image.

Another aspect of the invention is a process for generating a field index for a compressed
bitstream of motion video data compressed using intraframe and interframe techniques. In this
process the number of video fields represented by each compressed image is determined. The
compressed image which is used to start decompressing the bitstream to obtain the temporal field
is then identified. A field index entry is then generated for each temporal field which maps the
temporal field to an offset in the bitstream of the compressed motion video data which is used to
start decompressing the bitstream to produce the temporal field. The index may be accessed
using as an input an indication of the desired temporal field.

Another aspect of the invention is a circuit for decoding a plurality of motion video data
streams compressed using interframe and intraframe techniques. This circuit includes a plurality
of decoders for decoding the compressed video data. An interface receives the compressed video
data, and provides the compressed video data to the decoders. This interface eliminates from the
bitstream applied to each decoder any data corresponding to bidirectionally compressed images
that would otherwise be used by the decoder to generate fields prior to the desired field. A
switch connected to the output of the decoders controls which fields of motion video are output
from the decoders so that only those fields within a range of specified temporal fields are output.

Other aspects of the invention include the processes and systems or circuits

corresponding to the foregoing aspects of the invention, and their various combinations.

10

15

20

25

30

WO 98/46023 PCT/US98/06246
-6-

Brief Description of the Drawings

In the drawings,

Fig. 1 is a block diagram of a video editing system;

Fig. 2 is a block diagram of a computer system which may be used to implement one or
more of the elements of Fig. 1;

Fig. 3 is a flowchart describing how an MPEG-2 bitstream is reformatted in one
embodiment of the present invention;

Fig. 4 illustrates one embodiment of a field index;

Fig. 5 illustrates the relationship of the bitstream order of compressed data to temporal
fields and the field index;

Fig. 6 is a flowchart describing how the field index is used to identify compressed image
data corresponding to a temporal image field;

Fig. 7 is a diagram illustrating, by way of example, a representation of an edited video
sequence comprised of a plurality of segments from different video sources;

Fig. 8 is a block diagram of a circuit in accordance with one embodiment of the
invention;

Fig. 9 is a block diagram of an interface circuit of Fig. 8;

Fig. 10 is a block diagram of a pixel switch in Fig. 8; and

Fig. 11 is a flowchart describing how a video program representation, such as shown in

Fig. 7, is translated into commands to be performed by the circuit of Figs. 8 through 10.

Detailed Description

The present invention will be more completely understood through the following detailed
description which should be read in conjunction with the attached drawing in which similar
reference numbers indicate similar structures. All references cited herein are hereby expressly
incorporated by reference.

Referring now to Fig. 1, the primary components of a typical non-linear video editing
system 30 are shown. The editing system includes a capture system 32 which receives video
and/or audio information from an analog or digital source, converts the information to a desired
format and stores the information in a storage system 34. The capture system 32 may receive

uncompressed motion video information and compress it using intraframe and/or interframe

techniques. Alternatively, it may receive already compressed data. The compressed motion

10

15

20

25

30

WO 98/46023 PCT/US98/06246

-7 -
video data is processed in a manner described below to allow random access to each intraframe
compressed image. The storage system typically stores data in data files accessible by other
application programs through the file system of an operating system. For example, the capture
system 32 may be an application program, or part of an application program, which writes
incoming data into data files using operating system commands that access files in the file
system. The storage system 34 is typically one or more computer-readable and writable disks.
The editing system 30 also includes an editor 36. The editor typically manipulates a
representation of a motion video program which includes references to files stored in storage 34
and ranges within those files for the multimedia content to be included in the edited motion video
program. A playback system 38 is also part of the editing system 30 and is used to playback the
edited motion video program, as well as to display information from storage system 34 during
the editing process. Accordingly, an editor 36 may also include playback system 38.

The system shown in Fig. 1 may be implemented on one computer, or on several
computers. For example, a single standalone computer with application programs defining the
functionality of the capture system 32, editor 36 and playback system 38 and having an
appropriate storage system 34 can be provided. In addition, the capture system 32, editor 36,
playback system 38 and storage system 34 may be separate machines that interact, for example,
using a client/server protocol over a network 39.

Referring now to Fig. 2, a typical computer system 40 which may be used to implement
any or all of the elements of Fig. 1 will now be described. The computer system 40 typically
includes an output device 42 which displays information to a user. The computer system
includes a main unit 41 connected to the output device 42 and an input device 44, such as a
keyboard. The main unit 41 generally includes a processor 46 connected to a memory system 48
via an interconnection mechanism 50. The input device 44 also is connected to the processor 46
and memory system 48 via the interconnection mechanism 50, as is the output device 42.

It should be understood that one or more output devices may be connected to the
computer system. Example output devices include a cathode ray tube (CRT) display, liquid
crystal displays (LCD), printers, communication devices such as a modem, and audio output the
playback system may access an output device that decodes compressed images for output to a
display. It should also be understood that one or more input devices may be connected to the
computer system. Example input devices include a keyboard, keypad, track ball, mouse, pen:rnld

tablet, communication device, video and audio input for capture and scanner. It should be

10

15

20

25

30

WO 98/46023 PCT/US98/06246
-8-

understood the invention is not limited to the particular input or output devices used in

combination with the computer system or to those described herein.

The computer system 40 may be a general purpose computer system which is
programmable using a high level computer programming language, such as AC, or APascal.@
The computer system may also be specially programmed, special purpose hardware. In a general
purpose computer system, the processor is typically a commercially available processor, of
which the series x86 processors, available from Intel, and the 680X0 series MicCroprocessors
available from Motorola are examples. Many other processors are available. Such a
microprocessor executes a program called an operating system, of which UNIX, DOS and VMS
are examples, which controls the execution of other computer programs and provides scheduling,
debugging, input/output control, accounting, compilation, storage assignment, data management
and memory management, and communication control and related services. The processor and
operating system define a computer platform for which application programs in high-level
programming languages are written.

A memory system typically includes a computer readable and writeable nonvolatile
recording medium, of which a magnetic disk, a flash memory and tape are examples. The disk
may be removable, known as a floppy disk, or permanent, known as a hard drive. A disk has a
number of tracks in which signals are stored, typically in binary form, i.e., a form interpreted as a
sequence of one and zeros. Such signals may define an application program to be executed by
the microprocessor, or information stored on the disk to be processed by the application program.
Typically, in operation, the processor causes data to be read from the nonvolatile recording
medium into an integrated circuit memory element, which is typically a volatile, random access
memory such as a dynamic random access memory (DRAM) or static memory (SRAM). The
integrated circuit memory element allows for faster access to the information by the processor
than does the disk. The processor generally manipulates the data within the integrated circuit
memory and then copies the data to the disk when processing is completed. A variety of
mechanisms are known for managing data movement between the disk and the integrated circuit
memory element, and the invention is not limited thereto. It should also be understood that the
invention is not limited to a particular memory system.

It should be understood that the invention is not limited to a particular computer platform

>

particular processor, or particular high-level programming language. Additionally, the cornputér

system 40 may be a multiprocessor computer system or may include multiple computers

10

15

20

25

30

WO 98/46023 PCT/US98/06246

connected over a computer network.

The implementation of one embodiment of the capture system 32 will now be described.
The capture system generally processes incoming audio or video data and processes it into
storage files on storage system 34 as described above. This general process is well-known.
Received video data may be compressed by the capture system using interframe and/or
intraframe techniques, or the capture system may receive a previously compressed bitstream that
was compressed using interframe and intraframe techniques. In order to allow for random access
to each intraframe compressed image in the compressed bitstream, the bitstream is reformatted.
In particular, any state information which is used to decode and/or display the compressed image
data is copied and inserted into appropriate points within the bitstream. In addition, a field index
is generated which maps each temporal field in the decompressed motion video to the offset in
the compressed bitstream of the data used to decode the field.

The process of reformatting a compressed bitstream will now be described in connection
with Fig. 3. The following description uses MPEG-2 as an example compression format that
provides both intraframe and interframe compression. It should be understood that the invention
is applicable to other kinds of compression using interframe and intraframe techniques and that
this description of the invention is provided by way of example only.

The process of reformatting the compressed bitstream to enable random access to any
intraframe compressed image may be performed during the capture process while a video stream
is being encoded or as a post-processing or importation step performed on previously
compressed data. This process is performed because many parameters in an MPEG-2 bitstream
can be specified once and then are applied to all subsequent images. These parameters are
specified in headers and may specify values such as a sequence header, sequence extension,
sequence display extension, sequence scalable extension, quantization matrix extension and
picture display extension. The various headers are described in more detail in the MPEG-2
specification. The parameters of concern are not headers that provide mere information, such as
a copyright header or a “GOP” header, but rather those that affect decoding and display. If any
headers occur after the first picture in the compressed bitstream, and if they actually change any
of the state that applies to the decoding and display of subsequent images, then the bitstream is
reformatted to insert the headers before each subsequent I-frame following the first such change.

The first step 50 of this process is demultiplexing MPEG-2 system layer streams intow

separate audio and video Packetized Elementary Streams (PES) or Elementary Streams (ES).

10

15

20

25

30

WO 98/46023 PCT/US98/06246

-10 -
Next, in step 52, program information fields may be located and extracted from the bitstream.
Examples of these fields include a program map table in a transport stream or a program stream
map in a program stream. The program information defines the association of audio and video
bitstreams as programs. A subset of the audio and video bitstreams then is selected in step 54 for
import from a system stream. Audio may be decompressed in step 56 (either MPEG audio or
AC-3 audio) and stored as PCM (AIFC) data, for example in a separate data file. Editing of the
uncompressed audio commonly done. Alternately, compressed audio data may be stored and
edited. Editing of such compressed audio data in a random access manner also may involve
techniques similar to those used for editing compressed video due to dependencies created by
compression.

The compressed video is then converted in step 58 into a form that can be accessed at any
I-frame, by inserting appropriate MPEG-2 headers. The import process begins with this step 58
if the compressed data file contains only video data. In particular, as discussed above MPEG-2
bitstreams are linear media that include state information, which may be specified at a certain
point in the bitstream, and which takes effect for all compressed video pictures that follow, or all
that follow until a reset condition occurs in the bitstream. Consequently, in order to be able to
start decoding a bitstream at any arbitrary and randomly accessed I-frame, some state
information may need to be repeated before all subsequent I-frames in order for the decoder to be
set to the state it would have been in if it had decoded the bitstream linearly from its start.
Specific examples are given in the next three steps. These cover the case of state information
called Main Profile, Simple Profile and 4:2:2 Profile. For SNR Profile, Scaleable Profile and
High Profile, additional headers would have to be inserted in a similar manner.

In particular, if any quantization tables are present in any sequence header after the first
sequence header, then a sequence header with the most recently occurring set of quantization
tables is inserted just prior to each coded I-frame for the rest of the bitstream, in step 60. In the
case of MPEG-2, a sequence extension also is inserted each time a sequence header is inserted.
Also in the case of MPEG-2, if a sequence display extension occurs following the first sequence
header, then a sequence display extension is inserted after the sequence extension each time a
sequence header and sequence extension is inserted.

Similarly, if a quantization matrix extension occurs following the picture coding
extension of any coded picture then a quantization matrix extension is inserted, in step 62, o

following the picture coding extension of all subsequent pictures to which the matrices in the

10

15

20

25

30

WO 98/46023 PCT/US98/06246
-11 -
quantization matrix extension apply until either another quantization matrix extension occurs or
the next sequence header occurs.

Next, in step 64, if a picture display extension occurs following any picture coding
extension, then a picture display extension with the most recently decoded frame center offset is
inserted following all subsequent picture coding extensions until either another picture display
extension occurs or the next sequence header occurs.

The import process can be avoided by digitizing and compressing the motion video so
that the state information already exists in the bitstream in a manner that allows random access to
and playback from any intraframe compressed image. In particular, the encoder should
implement the following constraints. First, to properly insert sequence headers, the encoder is
set up to encode the bitstream such that one of the following three conditions is true: 1) there is a
sequence header at the beginning of the bitstream and no other sequence header in the bitstream,
or 2) there is a sequence header prior to every intraframe, or 3) there is a sequence header at the
beginning of the bitstream and prior to every intraframe following the first repeat sequence
header containing quantization tables which differ from the ones in the first sequence header, if
there were any specified in the first sequence header, or from the default quantization tables, if
no tables were specified in the first sequence header.

To properly handle quantization matrix extensions (Quant Matrix Extension or QME),
the encoder is set up to encode the bitstream such that: 1) if a QME appears within an
intra-picture, then a QME must appear within every intra-picture until the next sequence header
is inserted, and 2) if a Quant Matrix Extension (QME) appears within an inter-picture, then a
QME must appear within every inter-picture until the next sequence header is inserted.

To properly handle picture display extensions (PDE), the encoder is set up to encode the
bitstream such that if a PDE appears within any compressed picture, then a PDE must appear
within every compressed picture until the next sequence header is inserted.

After the MPEG stream is reformatted, or a properly formatted stream is captured, a field
index is created in step 66. The field index is used to find the compressed video data which
corresponds to a particular video field and to determine what compressed video data should be
fed to the MPEG decoder in order to play a particular video field.

The format of one embodiment of the index will now be described in connection with
Fig. 4. For each MPEG file, either the import process or the digitize process creates an index 70

with one entry 72 for each image, such as a field. Note that the entries 72 in the index are stored

10

15

20

25

30

WO 98/46023 PCT/US98/06246

-12-
in the order in which the compressed images occur in the bitstream, i.e., the coded order and not
the display order.

Each entry 72 is 64 bits long and includes an offset 74, which may be represented by 48
bits, e.g., bits 0:47. These bits are the byte offset into the bitstream (not an OMFI file) of an
MPEG header which precedes the compressed picture which represents this image. If the picture
is preceded by a sequence header with no intervening pictures, the index is the byte offset to the
sequence header. Otherwise, if the picture is preceded by a group of pictures header with no
intervening pictures, the index is the byte offset to the group of pictures header. Otherwise, the
index is the byte offset of the picture header which precedes the picture.

Each entry 72 also includes an indication of the picture type 76, which may be
represented by two bits, e.g., bits 48-49. Example values are: 01 = I-frame, 10 = P-frame, 11 =
B-frame. The value 00 is reserved. This is the picture type of the compressed MPEG picture
found at the indicated offset 74 in the bitstream.

A random access bit 78 also is stored. This may be a single bit (e.g., bit 50) that indicates
whether random access into the bitstream at the offset 74 given by this field index entry 72 is
possible. A sequence header bit also may be stored to indicate whether this field index entry 72
references a sequence header. It may be represented by a single bit (e.g., bit 51). For example, if
this field index entry 72 points to a picture header or a GOP header, bit 51 is zero. If this field
index entry points to a sequence header, bit 51 is a one.

The last value in entry 72 is a temporal offset 82. This value signifies the offset between
the temporal field number of a video field and the entry number in the field index 70 which
contains the offset value of the compressed MPEG picture that contains that video field. To
access video field N, where N is the temporal number of the video field of interest, field index
entry N is read and the value of the temporal offset 82 which it contains is added to N. This sum
is used to index into the field index 70 again to retrieve the field index entry 72 which contains
the offset 74 of the compressed picture containing the field of interest.

The generation of the index may be done as a post-processing task or can be performed
while motion video is being compressed. A process for indexing intraframe only sequences is
described in U.S. Patent 5,577,190 (Peters), which is hereby incorporated by reference. In that
process, an interrupt is generated at the end of each compressed image output by the encoder. By
monitoring a data buffer, an amount of compressed data used for the image is determined. In

order to index sequences of interframe and intraframe compressed images, a similar technique is

10

15

20

25

30

WO 98/46023 PCT/US98/06246

-13-
used, but additional information should be made available for each image at the time the
interrupt is generated. In particular, the picture type of each compressed picture and the number
of video fields represented by each compressed picture is needed. This information may be
known in advance by the settings of the encoder. For example, the encoder may be set to use a
regular group of pictures with inverse telecine (inverse 3:2 pulldown) disabled. Alternatively,
the encoder may provide a separate data path, either by an output from the encoder or by
registers that may be read, to output for each compressed picture: the picture type, the
compressed size in bytes and the number of fields represented by the compressed picture.

An example of an MPEG bitstream and its associated field index will now be provided in
connection with Fig. 5. The first section 90, labeled “Bitstream order of MPEG pictures”
represents the compressed pictures found in an MPEG bitstream. The second section 92, labeled
“Number of video fields represented by each coded picture,” indicates the number of video fields
contained in each compressed MPEG picture of the first section. The third section 94 represents
the display order of the video fields in the bitstream. Each video field is numbered with a
temporal field number, and is represented by a vertical line. The position of the vertical line
indicates whether it is a top field or a bottom field. Line 96, labeled “MPEG pictures,” indicates
which MPEG pictures in the bitstream represent which temporal video fields. The MPEG
pictures are now shown in temporal order rather than in bitstream order. Lines 97-99, labeled
“Field Index:Entry Number,” “Field Index:Offset” and “Temporal Offset,” respectively,
represent the parts the Field Index 70 described above.

In order to locate an MPEG compressed picture which corresponds to the Nth temporal
video field, the process shown in Fig. 6 is followed. In particular, an entry number is computed
in step 100 by accessing the Nth entry 72 of the field index 70 to retrieve the value stored in the
temporal offset location 82. The temporal offset value is added to the value N to obtain this
entry number. The offset of the desired picture is determined in step 102 by accessing the entry
corresponding to the computed entry number from step 100 from the field index 70. The offset
74 stored in the determined entry is the desired picture offset. Using the example shown in Fig.
5, if the temporal field number N is 8, the entry number is 3. The picture offset is the offset
value stored in entry number 3 of the field index, which is the second field of image P3.

Having now described the content of media files containing MPEG encoded motion
video and audio data, the generation of video programs by an editor will now be described in

connection with Fig. 7.

10

15

20

25

30

WO 98/46023 PCT/US98/06246
-14 -

In Fig. 7, a representation of video program is shown. The video program 110 includes
several segments indicated at 112, 114, 116 and 118. It should be understood that there may be
several more segments in the video program 110. There may be, in some instances, two tracks of
video defining the video program, wherein the first and second tracks are blended or combined in
some way, for example, to generate a picture in picture, to generate special effects such as
dissolved transitions, or other arbitrary three-dimensional digital video effects. Each segment,
e.g., 112, includes a reference to a media object which signifies a source of media data and a
range within that source which is to be used to produce the segment. There are many ways to
represent the structure of the video program 110, such as shown in PCT Publication
W093/21636 (Wissner) and U.S. Patent No. 5,267,351 (Reber). The range within a file is
typically represented using some indication of the temporal fields at the start and end of the
segment within the source, such as by using time codes.

Given an edited sequence such as described in Fig. 7, it may be played back such as in
the editing process or to generate an output providing the final video program. Such a program
can be played back, as will now be described in connection with Figs. 8-11. The playback of
sequences of segments defined solely in intraframe compressed formats, and providing
transitions, etc., has been described, for example, in Published PCT International Application
W094/24815 as well as U.S. Patent No. 5,045,940 and U.S. Patent No. 5,267,351 (Reber). In
the present invention, the extension of such systems to include the capability of processing
motion video compressed using both intraframe and interframe techniques to both produce
effects and sequences will now be described.

A circuit in one embodiment of the invention, which handles segments of interframe and
intraframe compressed video will now be described in connection with Fig. 8. This embodiment
will be described using MPEG-2 as the example compression format.

Fig. 8 is a circuit which is designed to connect to the peripheral connection interface
(PCI) bus of a typical computer system. It should be understood that many other types of buses
and connections may be used. Accordingly, the board includes a PCI interface 120. The PCI
interface 120 may be implemented using a PCI to PCI bridge chip 21152 manufactured by
Digital Equipment Corporation. Connected to this interface are direct memory access (DMA)
controllers 122 and 124 which are responsive to commands from the host computer, particularly
the playback or editor application, to handle the video data transferred from data files on the

storage 34 to be played back. The DMA controllers have associated memory 126 and 128,

15

20

25

30

WO 98/46023 PCT/US98/06246

-15 -
respectively, for buffering incoming data. Each DMA controller represents one PCI load. The
PCI bridge allows the use of multiple DMA controllers upon the bus 121. These DMA
controllers then provide the data to four decoders indicated at 130, each of which has an
associated memory 132. The interface connecting the controllers 122 and 124 to decoders 130
are indicated at 134 and 136, respectively. The decoders 130 may be, for example MPEG-2
decoders, such the MPEGMES3I chip set available from International Business Machines (IBM).

A pixel switch 138 is connected to the outputs of the decoders to provide the outputs of
selected decoders to buffers 140. The buffers 140 may be field buffers, containing enough data
to hold one field of video information or frame buffers. The outputs of the buffers are provided
to a blender 142 which is controlled by alpha and addressing circuitry 144 having associated
memory 146, in a manner disclosed in PCT Publication W094/24815. Similarly, as disclosed in
PCT Publication W094/24815, one input to the blender also may be provided to a digital video
effects unit 148, while the output of the blender can be provided to another input of the digital
video effects board. The output of the digital video effects board indicated at 150, is input to a
buffer 152 prior to being played back to a suitable video encoder. A parameter bus 154 is used to
set the various registers and memory locations and control ports of the playback circuit.

The interfaces 134 and 136 will now be described in connection with Fig. 9. These
interfaces may be implemented using a field programmable gate array and act as an interface
layer between the DMA controllers 122 and 124 in the decoders 130. These interfaces perform
data path functions on the compressed data streams such as bus folding, address demultiplexing,
marker code detection, data flushing and general interface translation.

There are three classes of data transfers that occur through these interfaces: 32-bit DMA
transfers, 16-bit slave transfers and 32-bit slave transfers. DMA transfers are write transfers
from the buffers 126 and 128 to the MPEG decoder FIFO space. MPEG decoders have 16-bit
wide interfaces and DMA transfers are 32-bits wide. This interface folds DMA transfers into
two back-to-back write cycles to the MPEG decoder video FIFO register at the MPEG decoder
address 08 hexadecimal. DMA read transfers do not need to be supported by these interfaces
134 and 136. The MPEG decoder register accesses occur as read and write cycles on the
parameter bus 154 and are translated to a read or write cycle on the MPEG decoder bus by the
interfaces 134 and 136. e

The address mapping of the MPEG decoder 16-bit wide registers through this interface is

10

15

20

25

30

WO 98/46023 PCT/US98/06246

-16 -
mapped to 32-bit wide space on the parameter bus 154. The data is passed on the two
significant bytes of the parameter bus. Small MPEG decoder register addresses are shift left by
two. MPEG decoder addresses of 02 hexadecimal are a parameter bus address 08 hexadecimal.
Internal registers of the interface 134 and 136 also are aligned on four byte address boundaries
and may be 32-bits in length.

Interfaces 134 and 136 also perform a byte flushing function in which they scan the DMA
data passing through the data path for I, B and P picture header codes on the MPEG to video data
stream. When a B picture header is encountered, this interface discards all bytes in the DMA
data stream until one of the following events becomes true: 1) a header other than a B picture
header is detected, or 2) a preset B picture counter decrements to zero. This byte flushing
function is used because any ‘B’ pictures in the bitstream that occur prior to a desired video field
contribute nothing to the desired output. By dropping these pictures, the time to decode a
sequence of fields may be made shorter.

Another function to be performed by the interfaces 134 and 136 is picture start code
detection, which allows B-pictures to be detected and discarded as described above. The
detection generally enables parsing of an incoming data stream from the DMA controller for a
start code sequence. In particular, the picture header and all of their MPEG headers begin with a
start code of twenty-three bits of ‘0' followed by one bit of ‘1. The picture start code
immediately follows the header start code. The value for the picture start code is ‘00.” Therefore,
the byte sequence needed to be detected for a picture header is ‘0x00000100.” To determine that
the picture is a B-frame, the logic circuit examines the picture coding type field which is 3 bits
which occurs 10 bits after the end of the picture start code. Accordingly, the total bytes string
that will be scanned for is the following: 0x00000100xxcc, where cc is equal to the bit string
XXpppXXX, where ppp is equal to the picture coding type. The allowed picture coding types
are 001, for I picture, 010, for P picture, 011, for B picture and 100 used for D picture in MPEG-
1.

Six bytes are processed in order to decode the header. These bytes are held in a post
detector buffer until it is determined whether they will be used. If the picture is a B picture and
B picture dropping is enabled, and the B picture counter is not at zero, then the post detector byte
storage will be flushed and all incoming bytes will be dropped until the next picture start code is
detected. If the above is not true, then all bytes will be passed through to the MPEG-2 decoders.

In one embodiment of the invention, the interfaces 134 and 136 are identical and one is

10

15

20

25

30

WO 98/46023 PCT/US98/06246
-17 -
provided for each DMA engine. Such a modular design permits two motion JPEG engines to be
used in combination with one of the DMA engines instead of MPEG-2 decoders. The additional
or alternative compression engines could be implemented using a daughter card to allow mixed
media types.

Fig. 9 illustrates one embodiment of the interfaces 134 and 136. This figure represents
one of these interfaces. The parameter bus 154 is connected to an input register 160 and an
output register 162. Address data is received through an address latch 164 and through input
166. The input data received through input register 160 is applied to the multiplexer 168.
Picture detectors 170 and 172 detect whether a picture is available on line 174 and whether that
picture is a B-frame. Picture detector 170 is used for the first decoder while the picture detector
172 is used for the second decoder. Outputs of the picture detectors are applied to drop logic 176
and 178, respectively. Picture counters 180 and 182 keep track of the number of pictures
detected by the interface. For the first channel, a data register 184 provides the output video
data. A data input register 186 receives input video data from the encoder bus. Address and
command register 188 outputs address and command information to the first decoder. Similar
input/output and command registers 190, 192 and 194 are provided for the second decoder. In
addition, video requests from the decoder are received by request logic elements 196 and 198.
These request elements pass thru these requests to the DMA engine as requests 200.

The pixel switch 138 will now be described in connection with Fig. 10. The pixel switch
includes four ports 210, 212, 214 and 216 that receive streams of pixels from the MPEG
decoders. It also includes a parameter bus interface 218 which is a control register for storing
control information received from the parameter bus 154 (Fig. 8) to control a time base generator
220, field sequencer logic 222, 224, 266 and 228 and multiplexer controller 238. The field
sequence logic controls the pixel ports 210 through 216. Multiplexers 230 and 232 receive the
output video data from all four pixel ports to be output onto respective pixel buses 234 and 236
to provide the output of the pixel switch. These multiplexers are controlled by controller 238 in
accordance with the video program to be played, as will be described below.

This pixel switch acts as an interface layer between the MPEG decoders and the pixel
processing pipes or channels. The pixel switch allows for the directing of one of the four MPEG
pixel outputs to either pixel pipes on the circuit. The switching of the pixel switch occurs the
vertical blanking interval and can be changed on a field-by-field basis, as will be described o

below.

10

15

20

25

30

WO 98/46023 PCT/US98/06246
-18 -

The pixel switch also contains four sequencers, one for each MPEG decoder. These
sequencers are responsible for advancing the decoders on a field-by-field basis. This function is
used to sequence a specified decoder to any field after a specified intraframe compressed image
which has been defined by the edited video program as a cut point. Each sequencer may have
double buffered programmable registers used to define the number of fields to advance from
either a wait state or the existing active field. Each decoder is sequenced in the correct order
after reset to ensure that the sequencer knows that it is on the first field of the first frame.

The reset procedure is as follows. The playback application issues a reset to the desired
decoder via the channel reset command bit of the interface 134 and 136. An initialization bit in
the pixel switch control register 218 is then set. The playback application then waits for an
interrupt from the sequencer 222. The port sequencer issues three vertical synchronization
signals at their normal frequency of 16.6 milliseconds after a reset of the decoder. The sequencer
222 in the pixel switch enters a wait state and posts an interrupt to the PCI bus via the DMA
engine and sets a flag in its status register. Upon detection of the flag set, the playback
application loads the decoder micro code and rate buffer. Next, the control bit in the control
register 218 is set to cause the sequencer to complete initialization. After one more vertical
synchronization signal, the pixel switch waits 30 milliseconds and then issues three more vertical
synchronization signals. At this point, the decoder should be outputting the first field of the first
decoded picture.

When a sequencer is initialized, it is informed how many fields to advance by the
contents of field contents registers. If the field skip counter for a specific decoder is equal to
zero, the decoder is stalled in a wait state. This wait state is exited when the field count register
is loaded with a non-zero value or that value is selected as a pixel source by this pixel switch.
The field counter register is double buffered such that the written value enters a shadow register
which then is loaded into the counter on the next vertical synchronization signal. The
functionality of the pixel switch provides double buffered function loaded by the playback
application using the parameter bus 154. If the playback application changes the source of
pixels, it loads the pixel port selection bits in controller 238, which changes the source of the
given pixel port at the next synchronization period.

How a playback application uses the circuit of Figs. 8 through 10 to display arbitrary
MPEG-2 encoded sequences, such as defined by a video program as shown in Fig. 7, will now be

described in connection with Fig. 11.

10

15

20

25

30

WO 98/46023 PCT/US98/06246
-19-

A composition is first translated using known techniques into what may be called
playback graph. For example, a playback graph may be a collection of interconnected virtual
devices for use by a virtual device manager from Avid Technology, Inc., such as described in
U.S. Patent Application filed on even date herewith by James Hamilton and entitled VIDEO
DEVICE MANAGER FOR MANAGING MOTION VIDEO OUTPUT DEVICES AND
SUPPORTING CONTEXTS AND BUFFER ADOPTION, or a filter graph using the
ActiveMovie video device driver from Microsoft Corporation or Matrox Corporation. Such a
graph is translated into sequences of commands to the playback circuitry and read operations on
the data files containing the video data.

Referring now to Fig. 11, the first compressed image needed in order to decode a desired
field is identified using the field index in step 300. In particular, the entry in the field index
containing the offset into the compressed bitstream for the specified temporal field is determined,
as described above in connection with Fig. 6. Next, the closest preceding intraframe compressed
image is then identified by scanning the field index backwards for the first I-frame. However, if
the current frame is a B-frame, then at least two reference frames (I-frames or P-frames) must be
found, where the last reference frame is the I-frame from which decoding starts. When scanning
the field index backward, at least two fields are neeeded to idenfify a reference frame.
Accordingly, two adjacent entries of a P-type or I-type picture constitute one frame.

The number of fields between the first field output by the first compressed image
and the desired field is determined in step 302. This step may be performed by scanning the field
index starting with the identified intraframe image and by logically reordering the entries (which
occur in coded order) into the order in which the decoded fields would be output in a manner
which emulates the decoding process. Attached as Appendix I, hereby incorporated by
reference, is source code implementing the mapping of temporal ranges of MPEG encoded
material. This source code includes a function “GetDOrderField” which implements the process
of Fig. 6. Another function called “GetLeaderInfo” identifies the number of fields before a
specified temporal field, as described in steps 300 and 302. In addition, a number of fields that
may be output by the decoder after the end of the clip is then determined in step 304, in a similar
manner. This number may be anywhere from zero to six. Another pair of functions in the
Appendeix, “GetEndofRange” and “GetTrailingDiscards” may be used to perform step 306.

The “B” picture counter 180 or 182 (Fig. 9) is then set in step 306 according to the value

determined in step 302. The decoders then can be reset and initialized in step 308. The pixel

10

15

20

WO 98/46023 PCT/US98/06246

=20 -
switches then can be set in step 310. Given the initialization of steps 300 through 310, the data
may be read from data files in step 312 and transmitted to the circuit for the playback. As further
data is needed and as the playback of the sequence progresses, the pixel switches may be set
differently and additional data may be read from data files and transferred by the DMA
controller, limited by the end of the clip defined using the GetEndofRange function.

As described above, a compressed bitstream can be reformatted to add state information
affecting decoding and display to allow random access to each intraframe compressed image. In
addition, a field index allows a temporal field to be mapped to an offset within the bitstream of
the start of compressed image data used to reconstruct that field. Information in the bitstream
may be dropped prior to being provided to the decoder if it represents bidirectionally predicted
images and is prior to a desired field. By dropping such data, the amount of time to decode a
sequence of fields may be reduced, resulting in improved cut density. The random access and
improved cut density thereby improves the ability of an editor to construct video programs
including arbitrary segments of motion video data compressed using interframe and intraframe
techniques.

Compressed audio can be edited in much the same way as compressed video as described
herein, with multiple audio decoders and a sample dropping circuit on the output.

Having now described a few embodiments of the invention, it should be apparent to those
skilled in the art that the foregoing is merely illustrative and not limiting, having been presented
by way of example only. Numerous modifications and other embodiments are within the scope
of one of ordinary skill in the art and are contemplated as falling within the scope of the

invention as defined by the appended claims and equivalents thereto.

10

15

20

25

30

WO 98/46023

=21 -
Appendix 1

/*

*/

\

PCT/US98/06246

* | The following programs are the sole property of Avid Technology, Inc., |

* | and contain its proprietary and confidential information.

* | Copyright 1989-1996 Avid Technology Inc.

|
*\

*/

ko ok ok ok o sk ok ok s o s ok sk sk sk ok ok ok ks ok s ot skl ot ke ok ok ook o ok sk ok sk ook ok ok ok o ok ok ok ok ok ok ook o sk ok ok

ok ook ok ok ok ok

3k ofe s ok sk ok 3k ok ok ok sk sk ok sk ok skok sk sk ok skosk sk ske sk st skl ok sk ok st sk sk sk sk sk ok sk ok sk ok ok sk sfe sk sk ok sk sk sk sk sk ok sk ok sk ok ok sk ok ok ok ok ok sk sk ok sk ok ok sk ke sk ok

*/

MPEGMapper.c

MPEGMapper class and function definitions

#include "masterheader.h"”
#include "AMEBase.h"
#include "MPEGMapper.h"
#include "DIDPosition.h"
#include "DIDDescriptor.h"
#include "MPGIDescriptor.h"
#include "MPEGPosition.h"
#include "Exception.h"
#include "memrtns.h"
#include "MPEGDefs.h"

#define MPEGMapperVersion

10

15

20

25

30

WO 98/46023 PCT/US98/06246
-22.
#if IPORT_LEXT INHERITED
#undef inherited
#define inherited AMapper
#endif
OBJECT_STD_C(MPEGMapper)

MPEGMapper:: MPEGMapper(void) // OBJECT_STD_C requires this, but

don't use it

{
FtlAssertNotReached();

MPEGMapper::MPEGMapper(ameBaseStream *s, DIDDescriptor* desc, AvUnit_t

NumSamples,

long SampleSize, Boolean isfixedsize)

_NFields = desc->GetFrameLayout() == eSEPARATE_FIELDS ?2 :1;
IDIDMapper(s, desc, NumSamples * _NFields, SampleSize, isfixedsize,
sizeof(MPEGFramelndexEntry));

}

void MPEGMapper::GetBOBInfo(AvUnit_t BeginSample, AvUnit_t NumSamples,
AvUnit_t* offset, AvUnit_t* length

>

Boolean* needSeqHdr)
{
if (! IsFixedSize)
{
AvUnit_t dorderSample = GetDOrderField(BeginSample, FALSE);
AvUnit_t firstIFrame = dorderSample - GetLeaderLen(dorderSample);
long seqHdrLen = 0;

// add length of sequence header if needed

10

15

20

25

30

WO 98/46023
-23-

PCT/US98/06246

*needSeqHdr = ! HaveSequenceHdr(firstIFrame);

if (*needSeqHdr)

seqHdrLen = ((MPGIDescriptor*)

_Desc)->GetSequenceHdr(NULL);

*offset = GetFXOffset(firstIFrame);

*length = GetEndOfRange(BeginSample, NumSamples) - *offset

if (NumSamples)
+ seqHdrLen;
}
else
{
*offset = 0;
*length = NumSamples * _SampleSize;
*needSeqHdr = FALSE;
}
}
APosition*

MPEGMapper::MapSample(AvUnit_t SampleNum) {

if (! IsFixedSize)

{
AvUnit_t offset;

Boolean needSeqHdr;

GetBOBInfo(SampleNum, 0, &offset, NULL, &needSeqHdr);

return new MPEGPosition(offset, 0, NullMobID(),

SampleNum, 0, FALSE, needSeqHdr,

NULL_TRACKLABEL,

(MPGIDescriptor*) Desc, this);

10

15

20

25

30

WO 98/46023 PCT/US98/06246
-24 -

}

else

return new MPEGPosition(SampleNum * _SampleSize, SampleSize,

NullMobID(),

NULL TRACKLABEL,
SampleNum, 0, FALSE, FALSE,

(MPGIDescriptor*) Desc, this);

AvUnit_t MPEGMapper::BufferSize(AvUnit_t BeginSample, AvUnit_t NumSamples)

{
AvUnit_t offset;
AvUnit_t length;
Boolean needSeqHdr;
GetBOBInfo(BeginSample, NumSamples, &offset, &length, &needSeqHdr);
return length;
}

AvUnit_t MPEGMapper::GetSampleOffset(AvUnit_t SampleNum) {
AvUnit_t dorderSample = GetDOrderField(SampleNum, FALSE);
return GetFXOffset(dorderSample - GetLeaderLen(dorderSample));

B

AvUnit_t MPEGMapper::GetFXOffset(AvUnit_t dorderField)
{
if (!_IsFixedSize)

{
MPEGFramelndexEntry* entryP;

ValidateSampleNum(dorderField);

10

15

20

25

30

WO 98/46023 PCT/US98/06246

-25.-

entryP = (MPEGFramelndexEntry*) (FXPtr + 2 * (dorderField -

_tMin));

return entryP->offsetLow + (entryP->offsetHigh << 32);

else

return dorderField * _SampleSize;

int MPEGMapper::GetPicture Type(AvUnit_t dorderField)

_tMin));

{
if (1_IsFixedSize)
{
MPEGFramelndexEntry* entryP;
if (dorderField == NumSamples)
return MPEGIPicture;
ValidateSampleNum(dorderField);
entryP = (MPEGFramelndexEntry*) (FXPtr + 2 * (dorderField -
return entryP->flags & MPEGPictureTypeMask;
}
else
return MPEGIPicture;
}

‘int MPEGMapper::GetFieldOffset(AvUnit_t dorderField)

{

int result = 0;

if (!_IsFixedSize)

10

15

20

25

30

WO 98/46023 PCT/US98/06246
-26 -

AvUnit_t curFXOffset;
AvUnit tix = dorderField;

curFXOffset = GetFXOffset(ix);
1X--;
while (ix >= 0 && GetFXOffset(ix) == curFXOffset)
{
ix--;

result++;

return result;

Boolean MPEGMapper::HaveSequenceHdr(AvUnit_t dorderField)

{
if (!_IsFixedSize)
{
MPEGFramelndexEntry* entryP;

if (dorderField == 0)
return TRUE;

ValidateSampleNum(dorderField);

entryP = (MPEGFramelndexEntry*) (FXPtr + 2 * (dorderField -

_tMin));

return (entryP->flags & MPEGSequenceHdrBit) != 0;

else

10

15

20

25

30

WO 98/46023 PCT/US98/06246
227 -

return TRUE;

// GetDOrderField returns the disk order sample index corresponding to the
// picture which will produce the Nth temporal order frame. This is determined

// by a delta stored in the frame index.

AvUnit_t MPEGMapper::GetDOrderField(AvUnit_t SampleNum, Boolean lastField)

{
AvUnit_t result = _NFields * SampleNum;
MPEGFramelndexEntry* entryP;
if (lastField)
result += NFields - 1;
if (!_IsFixedSize)
{
ValidateSampleNum(result);
entryP = (MPEGFramelndexEntry*) (_FXPtr + 2 * (result - rMin));
return min(result + entryP->toDoDelta, NumSamples-1);
}
else
return result & 1;
}

/1 GetFieldPairing does a localized search to determine whether the given field (in disk
order)

// s the first or second field of a pair. This is primarily needed when field-based coding
is -

// involved. The method returns zero for the first field of a pair, and one for the second.

10

15

20

25

30

WO 98/46023 PCT/US98/06246
-28 -
/' As a special case, if the given field is part of a multi-field picture, the field offset is

returned.

int MPEGMapper::GetFieldPairing(AvUnit_t SampleNum)
{

const long searchLimit = 100;

AvUnit_t ix = SampleNum;

AvUnit_t fxOffset = GetFXOffset(ix);

AvUnit_t origFXOffset = fxOffset;

int pType = GetPictureType(ix);

int nextPType;

AvUnit_t nextOffset;

if (SampleNum > _NumSamples-SampleNum) // search backwards
{
while (SampleNum - ix < searchLimit && ix > 0)
{
ix--;

nextPType = GetPictureType(ix);

/1 if the ptypes are different then we know that ix is the second
field of a pair,

// unless the types are IP, which is ambiguous, so we continue (yes,
I know this is suboptimal).

if (pType != nextPType && (pType != MPEGPPicture ||
nextPType != MPEGIPicture))

return (SampleNum - ix + 1) & 1;

nextOffset = GetFXOffset(ix);

//if there is ever a multi-field picture, then we know that the field

we're on 1s even

10

15

20

25

30

WO 98/46023 PCT/US98/06246
229 .

if (nextOffset == fxOffset)

{
if (fxOffset == origFXOffset) // special case
return GetFieldOffset(SampleNum);
return (SampleNum - ix) & 1;
}

fxOffset = nextOffset;
pType = nextPType;

}
}
else /1
search forwards
{
while (ix - SampleNum < searchLimit)
{
iX++;
nextPType = GetPictureType(ix);
if (pType != nextPType && (pType != MPEGIPicture || nextPType
= MPEGPPicture))

return (ix - SampleNum) & 1;

nextOffset = GetFXOffset(ix);

if (nextOffset == fxOffset)

{
if (fxOffset == origF X Offset) /1 special case

return GetFieldOffset(SampleNum);

return (ix - 1 - SampleNum) & 1;

10

15

20

25

30

WO 98/46023 PCT/US98/06246

=30 -

fxOffset = nextOffset;
pType = nextPType;

return 0; // unknown - guess and hope for the best

long MPEGMapper::GetLeaderLen(AvUnit_t dorderField)

{
AvUnit_tix = dorderField;

if (NFields ==1) // One field case is simpler, and two-field code may

not work for progressive sequence
{
u_char desiredPType = GetPictureType(ix);
u_char pType = desiredPType;
int nPPics = 0;

while (ix > 0 && (pType != MPEGIPicture || (desiredPType ==
MPEGBPicture && nPPics == 0)))

{
iX--;
pType = GetPicture Type(ix);
if (pType == MPEGPPicture)
nPPics++;
}

// continue to first field of the I-picture we just found

ix -= GetFieldOffset(ix);

10

15

20

25

30

WO 98/46023

PCT/US98/06246
231 -

else //two-field case -- we need a reference field of each parity

{

u_char fieldParity = 0, // initial setting is arbitrary since we

need one or two of each

u_char nRefFields[2] = { 0,0 };
u_char nlFieldsf2]={ 0,0 };

u_char lastPType = GetPictureType(ix);

int BCount = 0;

int prevBCount = 0;

int fieldPairing = GetFieldPairing(ix);

if (lastPType != MPEGBPicture)

{

counting ref fields - only I's

relative to the preceding

MPEGBPicture)

nRefFields[0] = nRefFields[1] = 2; // don't bother

if (lastPType == MPEGIPicture)

{
nlFields[0] = 1;
if (GetPictureType(ix+1) == MPEGIPicture)
nlFields[1] = 1;
}

/1 if we are going to scan, we need to know the parity of this field
// which means we have to count B fields follwing this frame
if (nIFields[1] == 0)
{
AvUnit_tix2 =ix+1;

while (ix2 <_NumSamples && GetPictureType(ix2) ==

iX2++;

10

15

20

25

30

WO 98/46023

nRefFields[1] < 2))

PCT/US98/06246
-32 -

prevBCount = ix2 - ix - 1;

while (ix > 0 && (fieldPairing > 0 ||
nlFields[0] == 0 || nlFields{1] == 0 || nRefFields[0] <2 ||

int pType;

ix--;

pType = GetPictureType(ix);

if (pType == MPEGBPicture)

BCount++;

else //1orP

{
| if (lastPType == MPEGBPicture || fieldPairing < 0)

{
fieldPairing = min(1, GetFieldOffset(ix)-1);
fieldParity = (fieldParity + prevBCount + 1) & 1;
prevBCount = BCount;
BCount = 0;

3

else

{
fieldParity = (fieldParity + 1) & 1;
fieldPairing--;

¥

nRefFields[fieldParity] ++;

20

25

30

WO 98/46023 PCT/US98/06246

-33-

if (pType == MPEGIPicture)
nlFields[fieldParity] ++;

return dorderField - ix;

/I GetLeaderInfo returns all required information about the "leader”, which is the
// sequence of pictures that must be input to the decoder in order to get out a given

// frame. The SampleNum input is the index of the desired frame. If the given

SampleNum

well.

/1 is not a B-picture, then there may be B-pictures following it that will come out first

// and need to be discarded as well. The MPEGLeaderInfo t contains this information as

// ' The algorithm is: if the given frame is an I-picture, the leader length is zero.

/1 1f the given frame is a P-picture, the leader extends to the preceding I-picture.

// If the given frame is a B-picture, the leader extends to either the preceding I-picture
/1 if there is a P-picture intervening, or the second preceding I-picture if there is no

// P-picture intervening.

void MPEGMapper::GetLeaderInfo(AvUnit_t SampleNum, AvUnit_t NumSamples,
MPEGLeaderInfo_t* leaderInfo)

nt i;

AvUnit_t dorderFirstField = GetDOrderField(SampleNum, FALSE);
int firstFieldOffset = GetFieldOffset(dorderFirstField);

int leadingFields = GetLeaderLen(dorderFirstField) - firstFieldOffset;
AvUnit_t startOfLeader = dorderFirstField - leadingFields;
AvUnit_tix;

10

15

20

25

30

WO 98/46023 PCT/US98/06246
-34 -
AvUnit_t prevFXOffset;
AvUnit_t newFXOffset;
int pendingIPDiscards;
u_char pType;
int leadingDiscard = (MPGIDescriptor*) _Desc)->GetLeadingDiscard() ? 1 : 0;

int dorderZero = -1;

// if we're playing more than one frame, then we read and discard any B-pictures

following
// an initial I or P
if (GetPictureType(dorderFirstField) != MPEGBPicture && NumSamples >
_NFields)
{
AvUnit_t nextPic = FindNextPicture(dorderFirstField);
// Scan for following B-pictures, if we need any to play the desired range
if (nextPic - dorderFirstField < NumSamples * NFields)
{
AvUnit_tix2 = nextPic;
while (ix2 <_NumSamples && GetPictureType(ix2) ==
MPEGBPicture)
iX2++;
if (ix2 > nextPic)
leadingFields = ix2 - startOfLeader; //includes actual first
picture in this case
}

// discard any initial fields output from the first picture that we don't need

// we count the rest of the discards below

10

15

20

25

30

WO 98/46023

bottom field

prevEFXOffset;

PCT/US98/06246
-35-

leaderInfo->leadingDiscardFields = firstFieldOffset;

// 'add in an extra field if we are playing from start of clip and clip starts with

if (SampleNum == 0)

leaderInfo->leadingDiscardFields += leadingDiscard;
else if (startOfLeader <= 3 && leadingDiscard)
dorderZero = GetDOrderField(0, FALSE);

pendingIPDiscards = 0;

// now build the framelndexInfo list

1=0;

ix = startOfLeader;

pType = MPEGIPicture;
leaderInfo->framelndexInfo[0].nFields = 0;

prevEFXOffset = newFXOffset = GetFXOffset(startOf Leader);

while (TRUE)

{

if (newFXOffset == prevFXOffset)

{

else

leaderInfo->framelndexInfo[i].nFields++;

leaderInfo->framelndexInfo[i].pictureType = pType;
leaderInfo->framelndexInfoli].pictureLength = newFXOffset -

if (pType == MPEGBPicture)

10

15

20

25

30

WO 98/46023 PCT/US98/06246
-36 -
leaderInfo->leadingDiscardFields +=
leaderInfo->framelndexInfo[i].nFields;
else
pendingIPDiscards =

leaderInfo->frameIndexInfo[i].nFields;

pType = GetPicture Type(ix);
if (pType !'= MPEGBPicture)
leaderInfo->leadingDiscardFields += pendingIPDiscards;

i++;

>

leaderInfo->framelndexInfo[i].nFields = 1;

if (ix >= startOfLeader+leadingFields)
break;

if (ix == dorderZero)

leaderInfo->framelndexInfo[i].nFields += leadingDiscard;

ix++;
prevFXOffset = newFXOffset;
newFXOffset = GetFXOffset(ix);

leaderInfo->leaderLength =i,

// FindNextPicture: given a disk-order FX position, return the FX position of the next
disk-order

// picture in the index

10

15

20

25

30

WO 98/46023 PCT/US98/06246
-37-

AvUnit_t MPEGMapper::FindNextPicture(AvUnit_t ix)

{
AvUnit_t fxOffset = GetFXOffset(ix);
while (++ix <_NumSamples && GetFXOffset(ix) == fxOffset) {}
return ix;

}

/I GetEndOfRange returns the offset of the first picture following the range that does

/l ot need to be read.from the file in order to contain all of the frames in the given range.
// There are some tricky parts:

/1 (1) if the last temporal picture is I or P then some number of B pictures

// following it may be included in the range (either all or none, actually). And

/1 (2) the frame may cross picture boundaries, as indicated by field offsets, and

// (3) the next disk order frame may be part of the same picture, so that we have to

//'look further to find the frame index entry corresponding to the next disk-order picture

AvUnit_t MPEGMapper::GetEndOfRange(AvUnit_t SampleNum, AvUnit_t

NumSamples)
{

AvUnit_t dorderLastSample = GetDOrderField(SampleNum + NumSamples - 1,
TRUE);

int pType = GetPictureType(dorderLastSample);

AvUnit_t nextPict = FindNextPicture(dorderLastSample);

if (pType != MPEGBPicture && NumSamples * NFields > nextPict -
dorderLastSample)

{

while (nextPict <_NumSamples && GetPicture Type(nextPict) ==

MPEGBPicture) o

nextPict++;

15

20

25

30

WO 98/46023 PCT/US98/06246
-38 -

return GetFXOffset(nextPict);

// GetTrailingDiscards returns the number of fields that will be output from a decoder
following

// play of the frame at SampleNum. This includes two components: (1) if the last field to
be played

// comes from a B-picture, then the preceding I or P picture will come out with as many
fields as it

// is supposed to produce, and (2) the picture the produces the last field may produce
more fields than

// desired to be played.

int MPEGMapper::GetTrailingDiscards(AvUnit_t SampleNum)
{
AvUnit_t dorderLastSample = GetDOrderField(SampleNum, TRUE);
int pType = GetPictureType(dorderLastSample);
int result = 0;
AvUnit_tix;
AvUnit _t lastDOrderField;

if (pType == MPEGBPicture)
{
// find the preceding I or P
ix = dorderLastSample - 1;
while (ix > 0 && GetPictureType(ix) == MPEGBPicture)

iX--;

// now count its fields (there will always be at least two, by the pairing

10

15

20

25

30

WO 98/46023 PCT/US98/06246
-39-
rule)

result += 1 + min(1, GetFieldOffset(ix));

lastDOrderField = ix;

else

lastDOrderField = FindNextPicture(dorderLastSample) - 1;

// now count any extra fields in the last picture

result += lastDOrderField - dorderLastSample;

/1 if last picture is also last in clip, there may be one more
// the reason for the extra funny test is to avoid moving the FX cache to the end if
we are nowhere
// near the end
if (MPGIDescriptor*) _Desc)->GetTrailingDiscard() &&
(_NumSamples-lastDOrderField < 256) &&
lastDOrderField == GetDOrderField(NumSamples/ NFields-1, TRUE))

result++;

return result;

void MPEGMapper::SetSampleOffset(AvUnit_t SampleNum, AvUnit_t Offset) {
DoesNotImplement();

void MPEGMapper:: WriteFramelIndex(void)

{
DoesNotImplement();

WO 98/46023 PCT/US98/06246
-40 -

void

MPEGMapper::SetSampleSize(AvUnit_t NumSamples,long SampleSize)

{
DoesNotlmplement();

10

15

20

25

30

WO 98/46023 PCT/US98/06246
-41 -

/*
*/ \

* | The following programs are the sole property of Avid Technology, Inc., |
* | and contain its proprietary and confidential information.
*] Copyright 1989-1996 Avid Technology Inc.
|
*\ /
*/

#ifndef MPEG_MAPPER H
#define MPEG MAPPER_H

/***

3k koo ok ok sk ok

MPEGMapper.h

MPEGMapper class and function definitions

ok s o sk o ok ok ok o s o s ok ok o ok o ok ok sk ok e ok ok o s ok ok ke ok o ok ok ok ok ok ok ok o s o ke ok o o o s ok ok ok ok ok ok ok ok ok o o ok ok o ok ok ok ok ok o ok ok ok o ok ok ok ok sk

*/

#include "DIDMapper.h"
#include "MPEGDefs.h"

class MPGIDescriptor;

typedef struct {

char toDoDelta; // temporal order to disk order delta (signed)
u_char flags;
u_short offsetHigh; -

u_long offsetLow;

10

15

20

25

30

WO 98/46023 PCT/US98/06246
-42 -

+ MPEGFramelndexEntry;

// Content of flags:

#define MPEGPicture TypeMask 0x0003
#define MPEGRandomAccessBit 0x0004
#define MPEGSequenceHdrBit 0x0008

class MPEGMapper: public DIDMapper

{
OBJECT_STD_H(MPEGMapper)

public:
MPEGMapper(void); // OBJECT_STD_C requires this, but don't use it
MPEGMapper(ameBaseStream *s, DIDDescriptor* desc, AvUnit_t NumSamples,

long SampleSize, Boolean isfixedsize);

virtual APosition* MapSample(AvUnit_t SampleNum);
virtual AvUnit_t BufferSize(AvUnit_t BeginSample, AvUnit_t NumSamples);

virtual void SetSampleOffset(long SampleNum, long Offset);
virtual long GetSampleOffset(long SampleNum);

virtual void WriteFramelndex(void);

virtual void SetSampleSize(AvUnit_t NumSamples, long SampleSize);

// the following are "private" methods used either internally, or only by the
MPEGReader
void GetBOBInfo(AvUnit_t BeginSample, AvUnit_t
NumSamples,
AvUnit_t* offset, AvUnit_t*

length, Boolean* needSeqHdr);

10

15

20

25

WO 98/46023

NumSamples,

leaderInfo);

NumSamples);

lastField);

not frame (sample) number

protected:

SampleNum is disk-order

int

PCT/US98/06246
-43 -

void GetLeaderInfo(AvUnit_t SampleNum, AvUnit_t

MPEGLeaderInfo t*

AvUnit_t GetEndOfRange(AvUnit_t SampleNum, AvUnit_t

int GetTrailingDiscards(AvUnit_t SampleNum);

AvUnit_t GetDOrderField(AvUnit_t SampleNum, Boolean

// the following all operate on field position (normally temporal)

int GetPictureType(AvUnit_t dorderField);
Boolean HaveSequenceHdr(AvUnit_t dorderField);

// these really are private
int GetFieldOffset(AvUnit_t dorderField);
long GetLeaderLen(AvUnit_t dorderField); I

AvUnit_t GetFXOffset(AvUnit t dorderField);
AvUnit_t FindNextPicture(AvUnit_t ix);

int GetFieldPairing(AvUnit_t SampleNum);

_NFields;

#endif / MPEG_MAPPER H

10

15

20

25

30

WO 98/46023 PCT/US98/06246
- 44 -
CLAIMS

1. A process for indexing motion video data compressed using interframe and
intraframe techniques comprising the steps of:

processing a bitstream of the compressed motion video to identify state information used
for decoding and display; and

inserting the state information into the bitstream for each intraframe and each interframe

compressed image, thereby allowing random access to any intraframe compressed image.

2. A method for generating a field index for a bitstream of motion video data
compressed using intraframe and interframe techniques, comprising the steps of:

determining the number of video fields represented by each compressed image;

identifying for each temporal field in the motion video, a compressed image used to start
decompressing the bitstream to obtain the temporal field; and

generating a field index entry for each temporal field, which maps the temporal field to an
offset in the bitstream of the compressed motion video which is used to start decompressing to

produce the temporal field.

3. A circuit for decoding a plurality of motion video data streams compressed using
interframe and intraframe techniques, comprising:

a plurality of decoders for decoding the compressed video data;

an interface for receiving the compressed video data, and for providing the compressed
video data to the decoders, wherein the interface eliminates, from the bitstream applied to each
decoder, data corresponding to bidirectionally compressed images representing fields occurring
in a playback sequence prior to a desired field; and

a switch connected to the output of the decoders and controlled to output fields of motion

video from the decoders so that only fields within a specified range of temporal fields are output.

4. A computer system for editing motion video compressed using interframe and
intraframe techniques, including:
means for storing a compressed bitstream for each motion video source to be edited such

that state information used to decode and display the compressed bitstream allows random access

10

15

20

25

WO 98/46023 PCT/US98/06246
-45 -

to and playback of each intraframe compressed image;

means for generating an index of the compressed bitstream that maps each temporal field
of a corresponding decompressed output image sequence to a first compressed image used to
start decompressing the temporal field, and the offset in the bitstream of the data for the first
compressed image;

means for permitting a user to specify a composition of motion video segments, wherein
each segment is defined by a range specified in terms of temporal fields within a motion video
source;

means for identifying portions of the compressed bitstream to be used to generate each of
the motion video segments using the range defining the segment and the field index; and

a plurality of decoders for alternatingly processing the identified portions of the

compressed bitstream for each of the motion video segments.

5. A computer implemented process for editing motion video compressed using
interframe and intraframe techniques, including:

storing a compressed bitstream for each motion video source to be edited such that state
information used to decode and display the compressed bitstream allows random access to and
playback of each intraframe compressed image;

generating an index of the compressed bitstream that maps each temporal field of a
corresponding decompressed output image sequence to a first compressed image used to start
decompressing the temporal field, and the offset in the bitstream of the data for the first
compressed image;

permitting a user to specify a composition of motion video segments, wherein each
segment is defined by a range specified in terms of temporal fields within a motion video source;

identifying portions of the compressed bitstream to be used to generate each of the
motion video segments using the range defining the segment and the field index; and

a plurality of decoders for alternatingly processing the identified portions of the

compressed bitstream for each of the motion video segments.

WO 98/46023

1/9

PCT/US98/06246

30
36 /
eotorR |/
32 1 38
= 39
——»| CAPTURE I o PLAYBACK |
34
vy)
STORAGE
Fig. 1
§
|46
PROCESSOR
41
44 y / 42
b o0 [
v {
40| INPUT DEVICE f«-»| INTERCONNECTION MECHANISM ||~ OUTPUT DEVICE
A
48
memory system |/
L

Fig. 2

SUBSTITUTE SHEET (RULE 26)

WO 98/46023

DEMULTIPLEX MPEG
SYSTEM LAYER
STREAMS INTO

SEPARATE VIDEO
AND AUDIO

50

/

Y

LOCATE AND
EXTRACT PROGRAM
INFORMATION
FIELDS

52

SELECT A SUBSET
OF THE AUDIO AND
VIDEO BITSTREAMS

54

DECOMPRESS
AUDIO

56

Y

CONVERT
COMPRESSED
VIDEO INTO A FORM
THAT CAN BE
ACCESSED AT ANY
I-FRAME

58

PCT/US98/06246

INSERT A
SEQUENCE HEADER

FOR MOST RECENT /

QUANTIZATION
BEFORE EACH
I-FRAME

Y

INSERT QUANTIZATION
MATRIX EXTENSION
AFTER PICTURE CODING
EXTENSION OF ALL
APPLICABLE PICTURES

Y

INSERT PICTURE
DISPLAY EXTENSION
AFTER PICTURE
CODING EXTENSION
IN ALL APPLICABLE
PICTURES

CREATE FIELD
INDEX

Fig. 3

SUBSTITUTE SHEET (RULE 26)

60

62

64

66

WO 98/46023 PCT/US98/06246

3/9

70

74 76 78 80 82
- ~ ~ ~ ~
OFFSET PICTURE TYPE RANDOM ACCESS BIT SEQUENCE HEADER BIT TEMPORAL OFFSET

OFFSET PICTURE TYPE RANDOM ACCESS BIT SEQUENCE HEADER BIT TEMPORAL OFFSET

OFFSET PICTURE TYPE RANDOM ACCESS BIT SEQUENCE HEADER BIT TEMPORAL OFFSET

OFFSET PICTURE TYPE RANDOM ACCESS BIT SEQUENCE HEADER BIT TEMPORAL OFFSET

Fig. 4

ENTRY NUMBER =
FIELD INDEXINI: 100

TEMPORAL OFFSET /
+N.

Y

PICTURE OFFSET= | 100
FIELD INDEX [ENTRY
NUMBER]: OFFSET

Fig. 6

SUBSTITUTE SHEET (RULE 26)

72

WO 98/46023 PCT/US98/06246

4/9

/'
90- BITSTREAM ORDER OF MPEG PICTURES:

I0 P3 Bl B2 P6 B4 B5

92- NUMBER OF VIDEO FIELDS REPRESENTED BY EACH CODED PICTURE:

94- TEMPORAL FIELD #:
0 1 2 3 4 5 6 7 8 9 10 1N 122 13

| | | | | |
l | | | | | | |

96- MPEG PICTURES:

I0 10 Bl B Bl B2 B2 P3 P3 P3 B4 B5 P6 P6

97- FIELD INDEX: ENTRY NUMBER:

o1 2 3 4 5 6 7 8 9 10 M 12 13

98- FIELD INDEX: OFFSET:
0 10 P3 P3 P3 Bl Bl Bl B2 B2 P6 P6 B4 B5
99-TEMPORAL OFFSET:

6 0 3 3 3 3 3 5 5 5 2 2 2 -2

'

Fig. 5

SUBSTITUTE SHEET (RULE 26)

WO 98/46023 PCT/US98/06246

5/9

12 114 116 118 10

~ ~ ~ ~ S

Y Y Y Y

MEDIA FILE 1,| MEDIA FILE 2, | MEDIA FILE 3, | MEDIA FILE 4,
RANGE 1 RANGE 2 RANGE 3 RANGE 4

Fig. 7

SUBSTITUTE SHEET (RULE 26)

PCT/US98/06246

WO 98/46023

6/9

g ‘b1
- o€l
— 3
osngd ze~ | Wb awoL T\
[Wvd — VHdTV (¥ LWvd Wvdd 5
7 fasva] o L _y_
o 47! | awi |} | 1edd || L ||snad
rA7g} Odd | oI5 zao [1 " vwa
/W_ | ou [=52 o | v
a . |y | [8w A
N O Fif 5 | Lwwaa] | g Nﬁ 1d
<—omMH 3 p— ;T =
1 | 1| [ommﬁl snand| o
1IISYD q odd ki ' wwda | | 12d
ol 1A e |
[AS! AT ~ T N | n_ "
|
oms P 1 _ 1ed) “ I YWa
l ! X J € I N1 /
S | lea T e
oSt v gel | d | : !
||||| Ll awy | et awolL
Wvda Wvda
<Y}
na ——
\ﬁ Snad
8

/

odt

SUBSTITUTE SHEET (RULE 26)

PCT/US98/06246

WO 98/46023

961 de]
s 6 Bl
O 03IAIA — u%m; L
06~ | o3y
LNdNI
058 viva [o
4300030 zg 4315193y
- wmw - ® | wiva
viva 28~ 9l 08l i]
wva % = A N
761\ awd 1901 L33INNOD | [od3INnoD| | NdLNO
O——= any do¥a ¥NLDId J¥N1DId
ANVWWO) - 991
CSsmaay LS9 ~ D 0 D 0 p
|||||||| e o/l ——
= ay & Jaay
o ANVWWOD[gNy %Nm
™~ O —Ssqwaav | ¥aav 40103130 J01D313a vor
ol - 1 3nidid RN
3 O ot\ A
Lsng 1NN | o o A vl
Y / W AAUSIOT
4300030 | gy 4 N o
e LNdNI
he 1901
ol do¥d
viva [viva adl
e , 84 09l
21901 L
o33 03aA Lo OR D —1
861 \

00¢

SUBSTITUTE SHEET (RULE 26)

PCT/US98/06246

WO 98/46023

8/9

oL b1

8l¢

/oww

/v_,w

¢ viva D901
4INI Olm:m_ 3
sNad
ozz-/| dOLvdINID 8c2 ~J ¥ITI0YLNOD
ISVaIWIL
o D901
J3DNINOIS a1 o||_U -
:ro NNN\ 130d
e N snaExd © 0 TaXid
Qg7
kl_U 21901 f!
¥IONINOISATH | zgz' ™. [| @ 5
Nl ™ —| Lod
vee 11 13x1d
922 \\
P JI90T —
¥3ONINOIS 13 {
hmo Py 130d
1Xid — 05N 1axid @ -y
vET 0
JI901
—0 JIDNINOIS g13d 4)
~ 0€2
| 130d
8ee 13Ix1d

/N_,N

/OPN

SUBSTITUTE SHEET (RULE 28)

WO 98/46023

PCT/US98/06246

9/9

IDENTIFY FIRST
COMPRESSED
IMAGE NEEDEDTO | 300
DECODE DESIRED |/
FIELD

COUNT NUMBER OF FIELDS
BETWEEN FIRST FIELD
OUTPUT BY FIRST /302
COMPRESSED IMAGE AND
DESIRED FIELD

Y

COUNT NUMBER OF
FIELDS AFTER LAST
DESIRED FIELD THAT 304

WILL BE OUTPUTBY |/
DECODER

Y

SET B-PICTURE / 306
COUNTER

Y

RESET AND /
INITIALIZE DECODER

308

Y
»| SET PIXEL / 310

SWITCHES

Y

TRANSFER DATA
FROM DATA FILES

312
INTO PLAYBACK / 1
CARD

Fig. 11
SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT

In. utional Application No

PCT/US 98/06246
CLASSIFICATION OF SUBJECT MATT!

. ER
?PC 6 H04N5/926 H04N9/804 G11B27/034 G11B27/30 G11B27/10
HO4N7/32 HO4N7 /50 HO4N7/52 HO4N7/58

According to International Patent Classification(IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 6 GI1B HO4N GO6T GO6F

Documentation searched other than minimumdocumentation to the extent that such documents are included in the fields searched

Electronic data base consutted during the international search (name of data base and, where practical, search terms usad)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication, where appropriate, of the relevant passages Relevant to ctaim No.
X EP 0 725 399 A (SONY CORP) 7 August 1996 2,3
see the whole document
A 1
Y WEISS S M: "SWITCHING FACILITIES IN 1,3

MPEG-2: NEVASSARY BUT NOT SUFFICIENT"
SMPTE JOURNAL,

vol. 104, no. 12, 1 December 1995, WHITE
PLAINS, NY, US,

pages 788-802, XP000543847

see the whole document

A 2,4,5
X EP 0 696 798 A (SONY CORP) 14 February 2
1996
see column 5, 1ine 56 - column 23, line 54
Y 1,3
A 4,5

/..

Further documents are listed in the continuation of box C. Patent family members are listed in annex.

° Special categories of cited documents : , . .
"T" later document published after the international filing date
or priority date and not in conflict with the application but

"A" document detining the general state of the art which is not cited to understand the principle or theory underlying the

considered to be of particular relevance

invention
E efanvlergo'cument but published on or after the international "X" document of particular refevance; the claimed invention
ng date cannot be considered novel or cannot be considered to
“L" document which may throw doubts on priority claim(s) or involve an inventive step when the document is taken alone

which is cited to establish the publicationdate of another

citation or other special reason (as specified) Y document of particular retevance; the claimed invention

cannot be considered to involve an inventive step when the

"0" document referring to an oral disclosure, use, exhibition or document is combined with one or more other such docu-
other means ments, such combination being obvious to a person skilled
"P" document published prior to the intemational filing date but in the art,
later than the priority date claimed "&" document member of the same patent family
Date of the actual completion of theinternational search Date of mailing of the international search report
10 July 1998 20/07/1998 -
Name and mailing address of the ISA Authorized officer

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,

Fax: (+31-70) 340-3016 Daalmans, F

Form PCT/ISA/210 (second sheet) {July 1992)

page 1 of 3

INTERNATIONAL SEARCH REPORT

Im ational Application No

PCT/US 98/06246

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category °

Citation of document, with indication,where appropriate, of the relevant passages

Relevant to claim No.

P,X

P,A
A

WO 97 19552 A (IMEDIA CORP) 29 May 1997
see page 10, line 3 - page 12, line 9
see page 14, line 27 - page 29, line 7

HEDTKE R ET AL: "SCHNITTBEARBEITUNG VON
MPEG-2-CODIERTEN VIDEOSEQUENZEN"

FERNSEH UND KINOTECHNIK,

vol. 50, no. 7, 1 July 1996, ISSN
0015-0142 ,HEIDELBERG, DE,

pages 367-373, XP000623229

see the whole document

SARAIYA A ET AL: "ENCODING SOLUTIONS FOR
MPEG SYSTEMS"
WESCON '95 CONFERENCE RECORD.
MICROELECTRONICS, COMMUNICATIONS
TECHNOLOGY, PRODUCING QUALITY PRODUCTS,
MOBILE AND PORTABLE POWER, EMERGING
TECHNOLOGIES, SAN FRANCISCO, NOV. 7 - 9,
1995,

7 November 1995, INSTITUTE OF ELECTRICAL
AND ELECTRONICS ENGINEERS,
pages 732-737, XP000586644

see the whole document

SHIU J ET AL: "A LOW-COST EDITOR FOR
MPEG-1 SYSTEM STREAMS"

IEEE TRANSACTIONS ON CONSUMER ELECTRONICS,
vol. 41, no. 3, August 1995, ISSN
0098-3063,NEW YORK,US,

pages 620-625, XP000539515

see the whole document

US 5 495 291 A (ADAMS CHRISTOPHER) 27
February 1996

cited in the application

see the whole document

RANGAN P V ET AL: "CONTINUITY AND
SYNCHRONIZATION IN MPEG"

IEEE JOURNAL ON SELECTED AREAS IN
COMMUNICATIONS,

vol. 14, no. 1, 1 January 1996, NEW YORK,
NY, US,

pages 52-60, XP000548810

see the whole document

US 5 577 190 A (PETERS ERIC C) 19 November
1996

cited in the application

see the whole document

1-3

Fom PCT/ISA/210 (continuation of second sheet) (July 1992)

page 2 of

INTERNATIONAL SEARCH REPORT

Int. .tional Application No

PCT/US 98/06246

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication,where appropriate, of the relevant passages

A WO 93 21636 A (AVID TECHNOLOGY INC) 28
October 1993

cited in the application

see the whole document

A US 5 045 940 A (PETERS ERIC C ET AL) 3
September 1991

cited in the application

see the whole document

A US 5 267 351 A (REBER STEPHEN J ET AL) 30
November 1993

cited in the application

see the whole document

1-5

1-5

1-5

Fom PCT/ISA/210 (continuation of second sheet) (July 1992)

page 3 of 3

Relevant to claim No.

INTERNATIONAL SEARCH REPORT

Information on patent family members

Inte

Jonal Application No

PCT/US 98/06246

Patent document Publication Patent family Publication
cited in search report date member(s) date
EP 0725399 A 07-08-1996 JP 8214264 A 20-08-1996
AU 4226596 A 08-08-1996
CA 2167985 A 01-08-1996
CN 1136260 A 20-11-1996
us 5768466 A 16-06-1998
EP 0696798 A 14-02-1996 AU 693147 B 25-06-1998
AU 1424995 A 11-09-1995
BR 9505850 A 13-02-1996
CN 1123580 A 29-05-1996
WO 9523411 A 31-08-1995
PL 311235 A 05-02-1996
WO 9719552 A 29-05-1997 AU 7725196 A 11-06-1997
US 5495291 A 27-02-1996 EP 0695094 A 31-01-1996
JP 8065687 A 08-03-1996
UsS 5577190 A 19-11-1996 us 5355450 A 11-10-1994
AU 3974593 A 18-11-1993
AU 3976593 A 18-11-1993
WO 9321604 A 28-10-1993
Wo 9321595 A 28-10-1993
AU 3274593 A 19-07-1993
Wo 9312613 A 24-06-1993
AU 3274493 A 19-07-1993
CA 2125788 A 24-06-1993
JP 7505001 T 01-06-1995
Wo 9312481 A 24-06-1993
us 5513375 A 30-04-1996
us 5640601 A 17-06-1997
WO 9321636 A 28-10-1993 AU 4279893 A 18-11-1993
us 5724605 A 03-03-1998
us 5752029 A 12-05-1998
us 5754851 A 19-05-1998
US 5045940 A 03-09-1991 AU 670875 B 01-08-1996
AU 6603894 A 22-09-1994
AU 685712 B 22-01-1998

Form PCT/ISA/210 (patent family annex) {July 1992)

page 1 of 2

INTERNATIONAL SEARCH REPORT

information on patent tamily members

inte

.onal Application No

PCT/US 98/06246

Patent document Publication Patent family Publication

cited in search report date member(s) date

US 5045940 A AU 7057796 A 16-01-1997
AU 652733 B 08-09-1994
AU 7143391 A 24-07-1991
CA 2071975 A,C 23-06-1991
EP 0506877 A 07-10-1992
EP 0830026 A 18-03-1998
WO 9110323 A 11-07-1991

US 5267351 A 30-11-1993 AU 680906 B 14-08-1997
AU 6740494 A 22-09-1994
AU 7058591 A 24-07-1991
CA 2071986 A,C 23-06-1991
EP 0506870 A 07-10-1992
JP 5503179 T 27-05-1993
Wo 9110321 A 11-07-1991
us 5584006 A 10-12-1996

Fom PCT/ISA/210 (patent family annex) (Juty 1992)

page 2 of 2

	BIBLIOGRAPHY
	DESCRIPTION
	CLAIMS
	DRAWINGS
	SEARCH_REPORT

