发明名称
使用角度复用光学器件的波长切换系统

摘要
光开关可以包括适应两个或更多个光学端口的准直器元件。这增加了开关可以容纳的端口个数，而不必增加开关内的其他光学部件的尺寸。分离的偏转器可以用来适应来自两个不同端口的光信号。在一些实例中，可以通过重新引导光波器件来完成两组之间的信号的交叉耦合。
1. 一种波长切换系统，用于具有不同波长的光谱信道和多信道光信号的动态切换，包括：
 a) 用于具有所述光谱信道中的一个或多个光谱信道的光信号的多个准直器元件，每一个准直器元件具有用于光学端口的两个或更多个分离的光路，且配置为一次接收和发射两个或更多个相应的独立光信号，从而每一个准直器元件提供两个或更多个光学端口，从而多个准直器元件的多个端口包括两个或更多个相应的不同光学端口组；
 b) 波长分离器，配置为将来自所述多个准直器元件的多个端口中的经定端口的多信道光信号分离为相应组的组成光谱信道；
 c) 中继光学器件，光学地耦合在所述多个准直器元件和波长分离器之间，其中所述中继光学器件配置为将源自所述准直器中的不同端口的光信号按照不同的角度导引至波长分离器上的公共端；
 d) 两个或更多个独立的信道偏转元件阵列，光学地耦合至所述波长分离器，其中每一个信道偏转元件阵列配置为将与所述两个或更多个光信号通过所述两个或更多个不同的光学端口组的给定组中的给定端口的光信号相对应的一组光谱信道选择性地导引至该给定光学端口组中的不同的一个或多个选择的端口。

2. 根据权利要求1所述的系统，其中所述信道偏转元件阵列中的两个或更多个相对于彼此或角度朝向，以适应将按照不同角度入射到波长分离器上的光信号分别耦合到不同的信道偏转元件阵列。

3. 根据权利要求1所述的系统，其中所述多个准直器元件中的每一个准直器元件包括两个或更多个波导以及光学地耦合至所述两个或更多个波导的单一透镜，其中所述两个或更多个波导分离固定偏移的。

4. 根据权利要求3所述的系统，其中所述两个或更多个波导实质上彼此平行。

5. 根据权利要求4所述的系统，其中所述固定偏移约为波导宽度的两倍。

6. 根据权利要求1所述的系统，其中所述波长分离器包括干涉滤波器、偏振滤波器、阵列波导光栅、棱镜或衍射光栅。

7. 根据权利要求1所述的系统，其中所述两个或更多个阵列中的信道偏转元件包括微机电系统（MEMS）反射镜、硅上液晶（LCOS）器件、双稳态液晶、UV固化光学介质或者光折射全息光栅。

8. 根据权利要求1所述的系统，还包括：重新导引光学器件，配置为接收从所述两个或更多个信道偏转元件阵列之一发射的一组光谱信道，并且将所述信道的光谱信道重新导引至所述两个或更多个信道偏转元件阵列中的另一阵列。

9. 根据权利要求8所述的系统，其中所述重新导引光学器件包括耦合至一个或更多个重新导引反射镜的两个柱状透镜。

10. 根据权利要求9所述的系统，还包括聚焦光学器件，光学地耦合在波长分离器和信道偏转元件阵列之间、以及信道偏转元件阵列和重新导引光学器件之间，其中所述两个柱状透镜和聚焦光学器件配置为形成4f光学系统。

11. 一种光开关，包括：
 a) 多个准直器元件，其中每一个准直器元件配置为提供用于光学信号的两个或更多个光学端口，从而存在由较少的多个准直器元件提供的多个光学端口，从而所述多个光学端口...
口包括两个或更多个光学端口组；
b) 两个或更多个偏转器，光学地耦合至多个输入端口，所述两个或更多个偏转器中的
每一个偏转器配置为将相应的光信号选择性地导引至选定的输出端口；
c) 重新导引光学器件，配置用于接收从所述两个或更多个偏转器之一发射的光信号、
并且将所述光信号重新导引至所述两个或更多个偏转器中的一另一个偏转器；以及
d) 聚焦光学器件，光学地耦合在所述多个准直器元件和偏转器之间、以及偏转器和重
新导引光学器件之间。
12. 根据权利要求11所述的光开关，其中所述两个或更多个偏转器包括两个或更多个
可调反射镜。
13. 根据权利要求11所述的光开关，其中所述两个或更多个偏转器相对于彼此成角度
朝向。
14. 根据权利要求11所述的光开关，其中所述重新导引光学器件包括两个柱状透镜和
反射镜。
15. 根据权利要求14所述的光开关，其中所述两个柱状透镜和聚焦光学器件配置为形
成4f光学系统。
16. 根据权利要求11所述的光开关，其中所述多个准直器元件中的每一个准直器元件
包括两个或更多个波导以及光学地耦合至所述两个或更多个波导的单一透镜，其中所述两
个或更多个波导分离开固定的偏移。
17. 根据权利要求16所述的光开关，其中所述两个或更多个波导实质上彼此平行。
18. 根据权利要求17所述的光开关，其中所述波导的偏移是波导宽度的两倍。
使用角度复用光学器件的波长切换系统

技术领域
[0001] 本发明的实施例涉及一种采用角度复用光学器件的光开关键系统。

背景技术
[0002] 随着对于因特网带宽需求的实质上增长，因特网通信量要求已经变得完全不可预测。适应于这种挑战，许多网络已经演进为在环形和网格网络中的节点处使用可重新配置光上下路模块（ROADM）。这些网络要求使用波长切换系统。可以通过使用这些网络动态地路由从点A到点B的通信量。为了使路由灵活性，这些系统采用许多可使用的波长和信道，当需要时，可以响应于增加的带宽要求来配置新的信道，或者替代地，可以响应于网络的一部分的拥塞或中断来使信道下路。响应于这些增长的需求的WSS的演进包含两个基本体系结构：有色WSS和无色WSS。
[0003] 有色WSS将特定的波长切换到相关联的输出光纤。使用阵列波导光栅（AWG）作为波长复用/解复用元件来研究有色WSS。有色WSS的缺点是不能提供灵活性，因为需要固定或特定的波长用于切换过程的发生，即使可调激器是普遍可用的。由波长和具体输出光纤之间的物理关联性，波长是固定的。这限制了有色WSS用作上下路模块的能力，因为需要固定的波长以便执行上下路功能。使用有色WSS产生了不灵活的ROADM和网络。当安装WSS时实现波长提供或路由确定，这是手动的而不是动态的操作。
[0004] 另一方面，假设可调激器与WSS相连，有色WSS提供了动态地选择任意波长传输的自由度，然而，每一个可调激器只可以经由WSS的一个信道传输数据。如果从一个阶段需要更多的波长，需要将更多可调激器与WSS相连。为了将更多的可调激器与WSS相连，需要更多的WSS端口。为此原因，需要让WSS具有较高的端口数，或者需要光学结构配置为使用现有子数的端口传输更多个数的信道光信号。
[0005] 在光开关领域，需要可以在保持波长切换系统的主要设计方面的同时增加波长切换系统的灵活性的光开关结构。
[0006] 本发明的实施例起因于这样的场景。

附图说明
[0007] 图1A是说明了根据现有技术的波长切换系统的示例的示意性顶视图。
[0008] 图1B是说明了根据现有技术的波长切换系统的示例的示意性截面图。
[0009] 图2A是说明了光学设计的基本原理的示意图。
[0010] 图2B是说明了光学设计的另一个基本原理的示意图。
[0011] 图3A是说明了根据本发明实施例的采用角度复用的波长切换系统的示例的示意性顶视图。
[0012] 图3B是说明了根据本发明实施例的采用角度复用的波长切换系统的示例的示意性截面图。
[0013] 图4A是说明了根据本发明实施例的配置用于角度复用的输入端口的示意性侧视
图。
[0014] 图4B是说明了根据本发明实施例的配置用于角度复用的输入端口的示意图。
[0015] 图4C是说明了根据本发明实施例的配置用于角度复用的端口阵列的示意图。
[0016] 图4D是说明了根据本发明实施例的配置用于角度复用的端口阵列的示意图。
[0017] 图5A是说明了根据本发明实施例的采用角度复用和角度交换的波长切换系统的示意图。
[0018] 图5B是说明了根据本发明实施例的采用角度复用和角度交换的波长切换系统的示意图。
[0019] 图5C是说明了根据本发明另一个实施例的采用角度复用和角度交换的波长切换系统的示意图。
[0020] 图6A是说明了根据本发明实施例的采用角度复用和角度交换的光隔栏开关的示意图。
[0021] 图6B是说明了根据本发明实施例的采用角度复用和角度交换的光隔栏开关的示意图。

具体实施方式
[0022] 本发明的实施例利用了一种光学结构，所述光学结构可以在保持主要设计方面的同时，增加波长切换系统的灵活性。
[0023] 介绍
[0024] 为了说明本发明的波长选择性开关(WSS)结构的优势，理解传统WSS的细节是有用的。图1A-B说明了根据现有技术的波长切换系统(WSS)的示例。图1A说明了WSS的示意图，而图1B说明了WSS的示意图。WSS100包括光纤准直器阵列103，一组中继光学器件105，波长分离器107，聚焦光学元件109和信道偏转元件阵列111。WSS100配置为接收一个或多个信道的光信号101，并将这些组成信道引导至它们相应的输出端口106。通过将各种波长复用成单一的输出信号来产生每一个多信道光信号101。
[0025] 光纤准直器阵列103包括多个输入端口104和输出端口106，每一个输入端口104配置为接收单一的多信道光信号101，并且将多信道光信号101引导至一组中继光学器件105。为了说明的目的，只有单一的多信道光信号101将通过WSS101，但是重要的是应该注意，WSS100可以配置为依赖于可用的输入和输出端口的个数来同时重新引导几个多信道光信号。
[0026] 中继光学器件105配置为将多信道光信号101转换为光功率，并且将所述光功率引导至波长分离器107。中继光学器件105可以使用变形扩展器来实现。波长分离器107配置为将与多信道光信号101对应的光谱束分离到其组成光谱信号(即，波长)，并且将这些光谱信号传递至一组聚焦光学元件109。作为示例而不是作为限制，波长分离器107可以使用干涉滤波器、偏振滤波器、阵列波导光栅、棱镜等实现。
[0027] 聚焦光学元件109可以配置为接收单独的光谱信号，并且将它们导引至信道偏转
元件的阵列111。依赖于WSS100的结构，将每一个光谱信道信号到相应的信道偏转元件113。依赖于所包含开关的本性，阵列111中的每一个信道偏转元件113可以定位用于将不同的光谱信道信号至不同的输出端口106。重要的是应该注意，如果将不同光谱信道的偏转元件113设置为按照这样的方式执行，可以将两个不同光谱信道信号至相同的输出端口106。信道偏转元件113可以用微机电系统(MEMS)反射镜、双稳态液滴、UV固化光学介质、光致折射全息光栅等来实现。

[0028] 应该注意的是图1A至图1B中所示类型的开关中的信道个数依赖于准直器阵列103中的端口的个数。如图1所示的，术语“端口”指的是配置用于将光信号耦合入或耦合出光开关的光路。在传统结构的WSS中，例如在图1A-1B中所示的WSS中，每个准直器存在一个端口，例如一个光路。因此，增加图1A-1B中所示类型的开关中的端口个数要求增加阵列中准直器的个数。这进而要求准直器阵列103、中继光学器件105、波长分离器107的尺寸和偏转元件111的角度范围的增加。

[0029] 在描述本发明的任意实施例之前，必须阐述光学设计的一些基本原理。如图2所示，在两个焦点之间，透镜203用于执行角度空间和前后面平面处的位置之间执行傅里叶变换。为了更好的说明这一概念，请参考图2A和2B。在图2A中，来自透镜203左侧的两个平行射线将通过透镜右侧上的焦平面201'处的相同的点。类似地，在图2B中，来自透镜左侧上的焦平面201处的相同点的两个射线将沿相同的方向在透镜的右侧上传播，与它们的初始角度方向无关。

[0030] 因此，为了执行光学切换，给定的光学设计必须将其光学部件与其相关联的空间相匹配。在图1A-1B中，通过波长分离器将多信道光信号分散为不同角度的组成信道(波长)。因此，所述信道将在不同位置处与聚焦光学器件相遇，所述聚焦光学器件然后将所述信道导引至不同的偏转元件。偏转元件将沿不同的位置朝向以对于组成的信道执行角度调制，所述角度调制将更改信道与波长分离器相遇的位置，并且最终确定给定的信道导引至哪个输出端口。

[0031] 包括中继光学器件、光栅和透镜在内的光学部件的成本以及与光学系统的对准相关联的成本相当高。同样地，非常需要将光学装置的容量最大化。图1A-1B所示开关的结构描述了为了增加在给定WSS中切换所允许的多信道光信号的个数，必须增加端口的个数。这是因为每一个端口只能配置用于接收和发射单一的多信道光信号。增加端口的量自然会导致垂直地或水平地光学部件的增加。

[0032] 在垂直维度中，光纤准直器阵列的尺寸将增加以补偿增加的端口数。结果是总体光学系统(例如，中继光学器件、波长分离器、聚焦光学器件)的高度增加，显著地影响成本。附加地，垂直维度的增加也将产生对于单独的信道偏转元件的角度范围增加的需要，这不便于实现。

[0033] 在水平维度中，准直器阵列可以扩展为2xN或MxN的尺寸，以便补偿增加的端口数。这将要求与光纤准直器阵列相关联的透镜系统的尺寸和数值孔径(NA)的显著增加，这在当试图实现针对低插入损耗的低像差时非常难以实现。附加地，需要增加中继光学器件、波长分离器和聚焦光学器件的表面积，增加了WSS的总成本和尺寸。

[0034] 角度复用WSS

[0035] 为了将与增加切换的多信道光信号的个数相关联的成本最小化，本发明的实施例
试图在增加端口个数的同时避免增加光学系统的尺寸。不是增加准直器的个数并且垂直地或水平地扩展光学系统，本发明的实施例通过重新配置每一个准直器一次接收和发射多于一个的多信道光信号，增加了切换的多信道光信号的可允许个数。实际上，每一个准直器可以配置为提供两个或多个不同的端口。可以通过应用上述光学设计的基本原理，使用相同的中继光学器件、波长分离器和聚焦透镜来进行这种操作（例如，两个光信号在相同的点按照不同的角度进入光栅）。

[0036] 图3A-3B是说明了根据本发明实施例的使用角度复用光学器件的波长切换系统的示意图。图3A说明了WSS的透视图，而图3B提供了相同WSS的截面图。WSS300包括准直器阵列303，中继光学器件305，波长分离器307，聚焦光学器件309和两个偏转器阵列311，312。准直器阵列303可以由多个准直器单元304组成。准直器阵列301中的每一个准直器单元304可以配置为在与两个或多个不同端口相对应的不同光路上同时接收和发射两个或多个多信道光信号301，302。例如，可以使用光纤或光波导实现不同的光路。为了说明的目的，在我们的示例中通过WSS300只切换了总共两个多信道光信号301，302。重要的是应该注意，每一个输出/输入准直器可以配置为同时接收和发射多于两个多个预选光信号。

[0037] 作为示例而不是作为限制，每一个准直器单元304可以包括透镜。通过将不同的光路配置为使得透镜按照不同的角度偏转光信号，可以将输入的多信道光信号导引至透镜。如果透镜的光学行为是可逆的，准直器单元304同样可以将按照不同角度入射到透镜上的输出光信号耦合至不同的光路。

[0038] 参考图3B，准直器304可以接收两个输入的多信道光信号301，302。准直器304配置为将这输入的多信道光信号301，302按照不同的角度导引至中继光学器件305。这经由多信道光信号301，302离开输入端口304的角度可以依赖于WSS300的总体目标，并且可以在一个WSS与另一个WSS之间不同。中继光学器件305然后获取每一个多信道光信号301，302，并且在同时将每一个信号离开准直器304的不同角度转换为每一个光束入射到波长分离器307上的不同角度的同时，将所述多信道光信号转换为相应的光谱束。与多信道光信号相对应的每一个光谱束将在相同的点P处与波长分离器307相遇，尽管是按照不同的角度相遇。如果将波长分离器307定位于聚焦光学器件309的焦平面上，两个光谱束将根据上述光学设计的基本原理工作（即，它们将平行地离开聚焦光学器件）。

[0039] 通过聚焦光学器件309将由实线表示的第一多信道光信号301导引至信道偏转元件阵列312，下文中将其称作偏转器阵列B。聚焦光学器件309将由虚线表示的第二多信道光信号302导引至第二信道偏转元件阵列312，下文中将其称作偏转器阵列A。偏转器阵列311，312然后可以依赖于WSS300的要求，将组成信道重新导引至不同准直器元件306中的输出端口。作为示例而不是作为限制，偏转器阵列中的偏转元件可以是微机械系统(MEMS)反射镜。然而，本发明的实施例不限于利用MEMS反射镜的实施方式，替代地可以使用诸如硅上液晶(LCOS)器件之类的其他类型的偏转元件。偏转器阵列311，312可以相对于彼此成角度朝向，以适应由于第一和第二光信号301，302在波长分离器307上的不同入射角度导致的第一和第二光信号301，302在阵列上的不同入射角度。

[0040] 应该清楚的是因为偏转器阵列在WSS300内的垂直结构，每一个偏转器阵列311，312可以独立地运行，而不会影响其他元件。因此，几个光信号（因此几个光开关系统）可以占用相同的物理空间，而不会彼此干涉。具体地，作为示例而不是作为限制，本发明的实施
例包括以下实施方式：允许两个或更多个独立的1XN波长选择性开按照相同的形成因子，形成一个1XN波长选择性开关。但是现有技术要求准直器个数的增加，因此要求光学部件尺寸的增加，本发明的实施例可以采用现有光开关结构的优点。本发明的实施例允许每一个准直器接收和发射多于一个的多信道光信号，实现了每一个准直器的更加经济的使用，换句话说，每一个准直器可以提供多于一个端口。这进而允许光学系统中的大多数光学部件（即中继光学器件、波长分离器和聚焦光学器件）保持不变，将与切换大量信号相关联的成本最小化。尽管本发明的实施例可能对于通过单一的准直器元件发射的每一个附加多信道光信号要求附加的偏转器阵列，因为用于切换过程的大多数光学部件（例如中继光学器件、波长分离器和聚焦光学器件）可以与传统开关中的光学器件相同，可以减小切换附加的多信道光信号的总成本。

【0041】与这种类型的角度复用WSS相关联的问题是可能在两个或更多个信道光信号之间发生串扰（或隔离）。然而，通过当多信道光信号与波长分离器接触时控制多信道光信号之间的角度发生，可以容易地将串扰保持小于40dB。

【0042】图4A-4B说明了单一的输入准直器如何配置为经由不同的光路接收和发射两个或更多个信道光信号的示例。图4A说明了多端口准直器400的截面图，而图4B说明了准直器400的轴向视图。作为示例而不作为限制，单一的准直器元件可以配置为通过将两个分离的波导403A、403B定位于单一透镜405的前面来接收和发射两个多信道光信号401、402。在这一示例中，波导路径403A、403B可以彼此平行并且与透镜405的光轴平行。在这一示例中，两个波导路径403A、403B彼此偏移。波导路径403A、403B的每一个将相应的输入多信道光信号401、402沿平行方向导引至透镜405上的不同点。如果两个波导路径的偏移距离足够大，可以将两个信号401、403之间的串扰保持小于约40dB。作为示例而不是限制，共享同一透镜的两个波导可以偏移分离距离，所述偏移的分离距离应是波导路径宽度的两倍。例如，典型的波导宽度是在8μm的量级。在这种情况下，两个波导之间的中心-中心距离应该是16μm或以上。重要的是应该注意输出端口也可以配置为按照类似的方式接收和发射多于一个的多信道光信号。应该注意的是本发明的实施例包括以下实用方法，其中单一的准直器元件可以提供用于光信号的三个或更多的端口。同样地，本发明实施例中的准直器元件不限于图4A-4D所示的结构。

【0043】在替代实施例中，波导路径403A、403B的每一个可以将其相应的输入多信道光信号按照不同的角度导引至透镜405的共同点。在其他替代实施例中，波导路径403A、403B可以将光信号401、402导引至透镜405上的不同点并且是按照不同的角度。

【0044】尽管图4A-4B说明了单一输入端口的结构，可以使用如图4C-4D所示的类似结构构造多输入端口和输出端口的结构。图4C提供了输入和输出端口阵列的截面图，其中每一个端口配置为发射和接收两个多信道光信号。图4D提供了相同阵列的轴向图。波导阵列407可以定位于透镜阵列409的前面，使得两个或更多个波导403配置为将它们的多信道光信号引至相同的透镜405。在图4A-4B所示的实施例中，每一对波导403可以共享单一的透镜405。可以使用平面光导回路(PLC)技术来实现波导阵列(WGA)407，所示PLC技术利用晶片处理技术来形成由光刻限定的规格和可重复的图案。使用光刻，可以将光导之间的间隙与透镜阵列409的间隔精确地匹配。因为可以相当精确地实现透镜阵列409的焦距，也可以非常精确地控制从准直器出射的两个或更多组光之间的角度差。
图3B说明了将两个多信道光信号切换至不同输出端口的示例。然而，存在需要将两个不同的多信道光信号耦合到相同输出端口的时期（即交叉耦合）。只是未图3B中设置的两个偏转器阵列311、312来交叉耦合两个多信道光信号可能不是非常直接了当，因此可能需要引入附加的光学部件来便于这一过程。

应该注意的是可以将用于阵列303中的每一个准直器的不同波导路径看作是属于两个不同的光学端口组。例如，可以将每一个准直器元件中的上部端口看作是属于一个端口组，而将每一个准直器元件中的下部端口看作是属于不同的端口组。在图3A-3B中所示的开关结构中，可以将来自一个端口中的端口的信号经由相应的偏转器阵列耦合至不同端口组中的任意其他端口。可以改进图3A-3B的开关以提供不同端口组之间的光信号的交叉耦合。

图5A和5B是说明了根据本发明实施例的采用角度复用和交叉耦合的WSS的示意图。如这里所使用的，术语交叉耦合指的是将来自两个不同输入端口的信号耦合到相同的输出端口。图5A说明了根据本发明替代实施例的WSS500的顶视图，而图5B展示了相同WSS的截面图。不足将将将单个多信道光信号导引至不同集合的输出端口，该实施例设置为使得可以使用角度变换来交叉耦合单信道光信号。为了我们的示例的目的，我们将说明可以如何将单一多信道光信号501从偏转器阵列51512重新导引至偏转器阵列5111。一旦将多信道光信号501重新导引至偏转器阵列5111，所述多信道光信号501可以与最初导引至偏转器阵列5111(为了说明的目的没有示出)的多信道光信号耦合。

WSS500包括准直器元件504的阵列503。一组中继光器件505、波长分离器507、聚焦光学器件509和多个信道偏转元件阵列511、512。这些光学部件配置用于按照相对于图3A-3B描述的类似方式将一个或多个多信道光信号切换至它们相应的输出端口。除了所描述的光学部件之外，WSS500也包括附加的一维(1-D)反射器515以便于交叉耦合。将1-D反射器515沿波长分离器507和聚焦光学器件515之间的光路插入。1-D反射器515包括一个反射镜519和两个柱面透镜521、523。两个柱面透镜521、523配置用于沿与图5B中附图平面垂直的方向聚焦，并且不沿图5B中的垂直方向聚焦。为了方便起见，这里将最靠近聚焦光学器件的柱面透镜称作第一柱面透镜523。这里将位于反射镜519和第一柱面透镜523之间的柱面透镜称作第二柱面透镜521。

第一柱面透镜523与聚焦光学器件509相结合以形成一个有效的透镜。这种有效的透镜和第二柱面透镜521光学地耦合以形成4f光学系统。如众所周知的，在典型的4f光学系统中，将相等焦距f的两个透镜彼此分离距离2f。输入平面位置相距透镜之一距离f，而输出平面位置相对相反一侧上的另一个透镜距离f。在图5B中，输入平面可以位于偏转器阵列511或偏转器阵列51512处，并且输出平面可以位于1-D反射器中的反射镜519处。应该注意的是由于光信号的可逆性，输入平面和输出平面可以反转。在这一示例中，第一柱面透镜523和聚焦光学器件具有有效焦距f，并且第二柱面透镜521具有f的焦距。严格意义上来说，4f系统并不要求两个透镜的焦距相等。如果两个透镜521、523具有不同的焦距长度f1和f2，如果将透镜配置为使得透镜之间的距离是f1+f2，并且输入平面/输出平面分别位于f1和f2处，则可以实现4f光学系统。

从顶视图来看，如果偏转器阵列51512沿光轴将光反射回去，4f系统将光返回到相同的位置。然而，从图5B的侧视图可以看出偏转器阵列51512实际上朝向向下。沿图5B的附图
中的垂直方向，对于通过柱状透镜521、523的光不存在光学聚焦效应，因此当通过偏转器阵
列B512反射光时，改变光的角度。由于通过聚焦光学透镜509产生的角度位置变换，角度的变
换将引起光的导向至1-D反射镜519，所述1-D反射镜将光聚焦到偏转器阵列A511处。由偏转器阵列B512反射的所有的光将与在偏转器阵列A511处最初导引的任意组的光相耦合。
因此，1-D向后反射镜（1-Dretro reflector）515提供角度交换（AE）的机制。

【0051】这种角度交换的变换可以扩展至配置用于每个准直器元件504接收/发射多于两
个多信道光信号的系统。这如图5C所示，其中WSS500′配置为使用三个偏转元件阵列511、
512、517，每个输入准直器元件504切换三个多信道光信号。引入第三偏转器阵列517（这里
称作偏转器阵列C517）以便与输入端口相关联的第三多信道光信号的切换。为了说明的目
的，只示出了一个信道光信号501用于描述三个偏转器阵列511、512、517之间的角度
交换。将附加的反射镜520放置于1-D向后反射镜515′中以便于偏转器阵列B512和偏转器阵
列C517之间的角度交换。1-D向后反射镜515′按照与相对于由偏转器阵列A511和偏转器阵
列B512偏转的交叉耦合光如上所述的相同方式操作，附加的反射镜520相对于反射镜519有
一定角度以便于从偏转器阵列B512反射的光与在偏转器阵列C517处最初导引的任意组的
光的交叉耦合。

【0052】在本发明的一些实施例中，WSS500配置用于允许偏转器阵列A511和偏转器阵列
C517之间的交叉耦合。光信号501是碰撞反射镜519还是附加的反射镜520的选择依赖于偏
转器阵列B512的角度。如果略微地调节偏转器阵列B512的角度，光可以碰撞反射镜519，使
得改变返回光的角度，使得通过设计光信号可以返回到偏转器阵列A511。

【0053】重要的是应该注意，图5A～5C中所示的这种角度交换的变换可以适用于任意个数
的多信道光信号和任意个数的信道偏转元件阵列。

【0054】还应该注意的是WSS500可以配置为当不需要时避免偏转器之间的交叉耦合。例
如，如果1D反射器519、520占据不会改变传统1×N WSS功能的空间，可以避免不需要的角度
耦合。1D反射器519、520可以位于原始光路之间的一个信道空间，或者与原始WSS设计相比
较可以将端口的个数减小一个。因此，可以使得光信号501停留在自己的偏转器阵列，或者
可以将返回光束移动到1D偏转器以引起所述信道改变至不同的偏转器阵列。每一个反射镜
519、520可以配置为引起信号从偏转器阵列B512到偏转器阵列C517的一种类型的交换，附
加的空间允许另一个反射镜（按不同的角度倾斜）提供偏转器阵列B512和偏转器阵列
A511之间的交换。

【0055】角度复用和角度交换为WSS提供了在光切换容量和交叉耦合领域的相现有技术
的优势。它们允许两个多信道光信号共享光学部件，减小了与实现附加光学部件相关联的
成本。它们也允许几个多信道光信号共享相同的物理空间，从而减小了WSS的总体尺寸以及
与这种扩展相关联的成本。附加地，减小WSS部件数量的能力导致了更高的总体可靠性。

【0056】尽管角度复用光学器件和角度交换的主要应用包含波长切换系统，这些概念也适
用于如图6A～8所示的光纤开关。图6A说明了采用角度复用和角度交换的光纤开关的顶视
图。图6B说明了相同开关的截面图。开关600包括准直器阵列603、1-D向后反射镜（retro
reflector）615、聚焦光学元件609和三个偏转器611、612、617。将这三个偏转器称作偏转器
A611、偏转器B612和偏转器C617。作为示例而不是否定，偏转器611、612、617可以包括可移
动反射镜，例如MEMS反射镜，所述MEMS反射镜可以绕一个或多个轴引导以提供准直器阵列
603中的给定端口组内的不同端口之间的所需光学耦合。

【0057】准直器阵列603包括多个准直器元件604、606，所述多个准直器元件配置用于接收和发射光信号。每一个准直器元件604、606可以配置为经由如上所述的不同端口接收两个或更多个光信号。在图6所示的示例中，每一个准直器元件604、606配置用于在给定的时间接收和发射三个光信号。然而为了说明的目的，只示出了单一的光信号601通过光纤开关600。一旦第一准直器元件604中的输入端口已经接收到光信号601，它将所述光信号601引导至一组聚焦光学器件609。

【0058】然后，聚焦光学器件609依赖于开关600的结构将光信号601导引至偏转器。如所说明的示例所示，在图6B中，聚焦光学器件609可以配置为将光信号601导引至偏转器B612。尽管WSS采用偏转器阵列来重新导引每一个多信道光信号的单独信道(即波长)，可以利用单独的偏转器元件来实现光纤开关600以重新导引整个多信道光信号，而无需首先将光信号分离成组成信道。偏转器B612可以朝向以将光信号601导引至1-D向后反射镜615。1-D向后反射镜615包括两个柱面透镜和反射镜，并且如上所述操作(即，将1-D向后反射镜上入射的光导引至用于交叉耦合的另一个反射镜)。两个柱面透镜和聚焦光学器件609可以配置为形成4f光学系统，例如如上所述。在我们的示例中，光纤开关600设置为使得1-D向后反射镜615将光信号从偏转器B612重新导引至偏转器C617。这种角度交换的效果是将由反射镜B612反射的光信号与最初入射到偏转器C617上的任意光信号交叉耦合。重要的是应该注意，可以在任意个数的偏转器阵列组合之间实现角度交换。

【0059】尽管以上是本发明优选实施例的完整描述，可以使用各种替代、改进和等价物。因此，应该不是参考以上描述来确定本发明的范围，而是代替地参考所附权利要求及其等价物的整个范围来确定本发明的范围。这里描述的任意特征(不管优选与否)可以与这里描述的任意其他特征组合(不管优选与否)。在所附权利要求中，除了另有生命之外，不定冠词“一个”指的是符合所述事物的项目的一个或多个量。所附权利要求不应该解释为包括装置+功能的限制，除了使用术语“用于…的装置”在给定的权利要求中明确了这种限制。
图1A
图2A
图2B
图3B
图5B
图6A