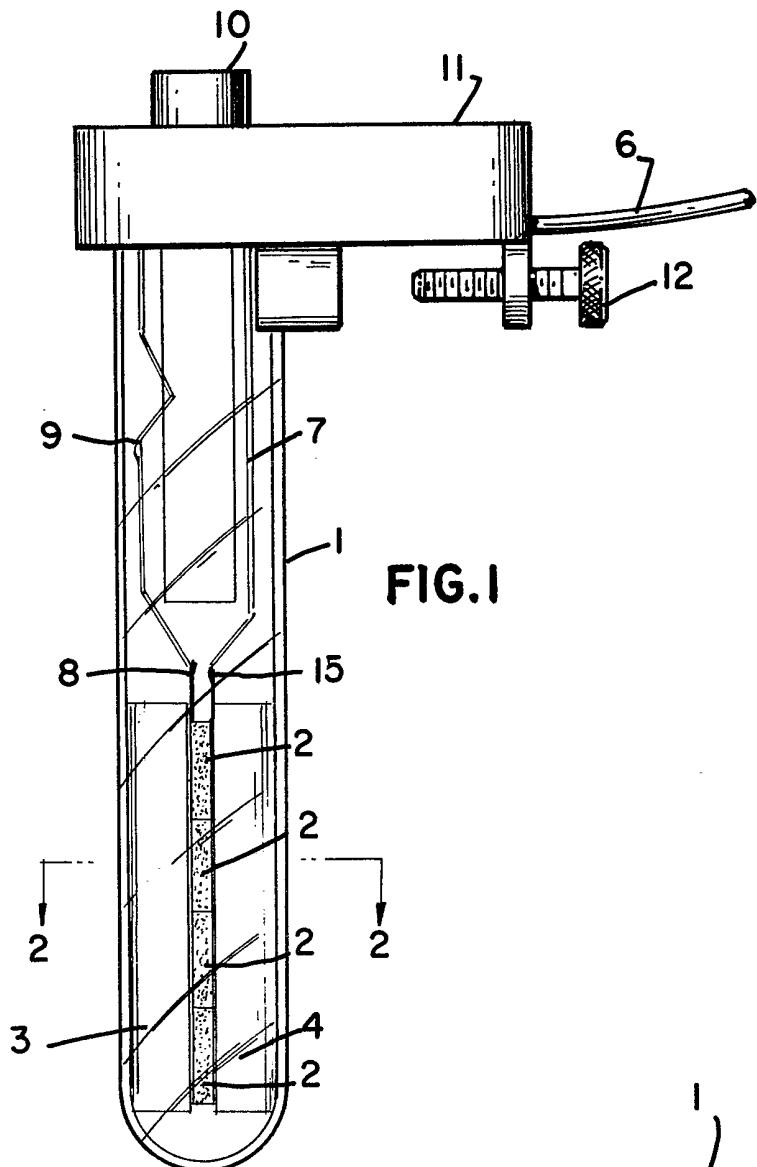
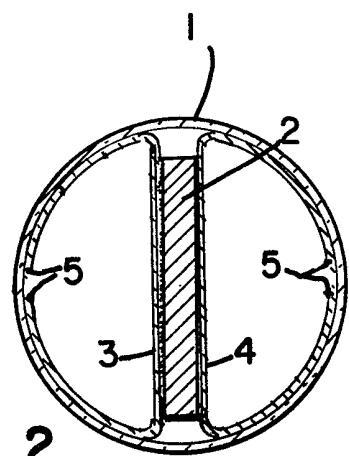

(12) UK Patent Application (19) GB (11) 2 084 437 A

(21) Application No 8128339
(22) Date of filing 18 Sep 1981
(30) Priority data
(31) 188644
(32) 19 Sep 1980
(33) United States of America (US)
(43) Application published 7 Apr 1982
(51) INT CL³ H05B 3/12
(52) Domestic classification H5H 108 140 144 198 212 224 231 232 243 256 274 275 AA2
(56) Documents cited GB 1562610
GB 1540432
GB 1494611
(58) Field of search H5H
(71) Applicants GTE Products Corporation, 100 W. 10th Street, Wilmington, Delaware, United States of America
(72) Inventors David A. Siefer, Burrell M. York
(74) Agents Gee & Co., Chancery House, Chancery Lane, London WC2A 1QU


(54) PTC energized immersible heater

(57) An immersible heater comprises two elongated heat conductors (3, 4) disposed in a heater envelope (1). Each heat conductor has a flat portion and a semi-circular portion. A plurality of PTC heater discs (2) are disposed between the flat portions of the heat


conductors. The semi-circular portions of the heat conductors (3, 4) press against the walls of the heater envelope (1). Thermostatic control under normal conditions is achieved by thermostatic switch (9); the PTC heater discs are designed to reach their high resistance level should the heater be accidentally operated in air.

GB 2 084 437 A

FIG. I

FIG.2

SPECIFICATION
PTC energized immersible heater

This invention is concerned with immersible heaters such as are used in aquariums. The 5 conventional immersible heater consists of a heater envelope containing resistance wire wrapped around a ceramic insulator. The heater is in series with a thermostatic switch which shuts off power to the heater when the water is heated 10 to a predetermined temperature, and turns power back on when the water temperature drops below a predetermined temperature.

One of the problems with such heaters occurs when the water incidentally leaks out of the 15 aquarium and the heater operates in air. Under some such conditions it is possible that the thermostat will not shut off power and that current will flow through the heater continuously. This results in an excessively high temperature on the 20 outside of the heating envelope, say, above about 240°C in the case of a 100 watt heater, and such a high temperature could present a fire hazard if, say, readily flammable paper happened to be disposed proximate the heater envelope. It is the 25 purpose of this invention to prevent such a fire hazard if the heater is accidentally operated in air.

The present invention provides an immersible heater comprising: a tubular heater envelope; two elongated heat conductors having flat portions 30 and semi-circular portions disposed in the heater envelope, the semi-circular portions being in efficient heat transfer relationship with said envelope; a plurality of PTC heater discs in abutting relationship to each other disposed 35 between the flat portions of the heat conductors and being in efficient heat transfer relationship with said heat conductors; and electrical circuit means for providing electrical power to said PTC heater discs, the heat conductors being part of the 40 electrical circuit of said electrical circuit means.

The invention is illustrated by way of example in the accompanying drawings, in which:

Fig. 1 is an elevation of one embodiment of an immersible heater in accordance with this 45 invention, and

Fig. 2 is a section on the line 2—2 of Fig. 1.

Referring to the drawings, the heater comprises 50 a tubular glass envelope 1 containing four 25 watt PTC square discs 2 mounted in parallel and abutting each other edgewise. The flat surfaces of discs 2 are electroded and are in physical contact with flat surfaces of elongated heat conductors 3 or 4, preferably by being bonded thereto with an electrically conductive cement, such as silver-filled 55 epoxy. Heat conductors 3 and 4 are somewhat semi-circular, in shape, are made of a resilient metal, and are arranged to be a tight fit when they are inserted into envelope 1, with discs 2 bonded to the flat surfaces of conductors 3 and 4. Conductors 3 and 4 are slightly oversize in relation 60 to envelope. This results in good surface contact of the curved surfaces of conductors 3 and 4 to the walls of envelope 1, providing for good heat transfer therebetween.

65 An electrical terminal 15 is attached to conductor 4 and is connected to one side of power line 6 through lead-in wire 7. An electrical terminal 8 is attached to conductor 3 and is connected to thermostatic switch 9 which is

70 connected to the other side of power line 6. When switch 9 is closed, power is applied to disc heaters 2. Knob 10 is used to adjust switch 9 to a desired operating temperature, the mechanism for which is contained in plastic housing 11. Housing 11 is 75 the supporting structure for envelope 1 and can be mounted on an aquarium by means of mounting thumb screw 12.

Under normal operation, envelope 1 is disposed in the water of an aquarium and heat is transferred 80 from discs 2, through conductors 3 and 4, to the walls of envelope 1 and then to the water. When the water is heated to a predetermined temperature, switch 9 is activated and terminates current flow to discs 2. When the water cools 85 sufficiently, switch 9 closes and restarts the heating cycle. Heater transfer from discs 2 to the water is good enough to prevent discs 2 from being heated to their high resistance level.

If the heater is accidentally operated in air, as 90 could occur if the water leaked out of the aquarium, the thermostatic switch 9 does not become heated to its activating temperature and there is continuous current flow through discs 2. In such a case heat transfer from discs 2 to the air 95 surrounding envelope 1 is less effective and discs 2 become heated to their high resistance level with the result that the current flow through discs 2 decreases considerably. The steady state operation under such conditions results in a lower 100 heater envelope temperature than in the case of the prior art resistance wire heater, about 180° versus about 240°C.

CLAIMS

1. An immersible heater comprising: a tubular 105 heater envelope; two elongated heat conductors having flat portions and semi-circular portions disposed in the heater envelope, the semi-circular portions being in efficient heat transfer relationship with said envelope; a plurality of PTC 110 heater discs in abutting relationship to each other disposed between the flat portions of the heat conductors and being in efficient heat transfer relationship with said heat conductors; and electrical circuit means for providing electrical 115 power to said PTC heater discs, the heat conductors being part of the electrical circuit of said electrical circuit means.

2. A heater as claimed in Claim 1, wherein the PTC heater discs are conductively bonded to the 120 heat conductors.

3. A heater as claimed in Claim 1 or 2, wherein the heat conductors are made of metal.

4. A heater as claimed in any one of Claims 1—3, wherein the heater envelope is made of 125 glass.

5. A heater as claimed in Claim 4, wherein the semi-circular portions of the heat conductors

press against the glass walls of the heater envelope.

6. An immersible heater substantially as described herein with reference to the

5 accompanying drawings.

7. The features as herein described, or their equivalents, in any novel selection.

Printed for Her Majesty's Stationery Office by the Courier Press, Leamington Spa, 1982. Published by the Patent Office,
25 Southampton Buildings, London, WC2A 1AY, from which copies may be obtained.