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(57) Abstract

v The invention (Figure 5) provides for a data shifting capability that permits sorting the data in addition to searching for obtaining
real-time performance in color, with high quality imagery through a simple search of a spatial database based on a rectangularly shaped
search region or range search (see figure 13). A Sorting Magnitude Comparison Content Addressable Memory (SMCCAM) performs a
range search, introducing a conservative approximation of the ideal Occluding Region, and provides an MCCAM wherein the data words
stored in the fields is shifted to corresponding fields in an adjacent word, based on the magnitude comparisons (see figure 7). The 3D
graphics method stores the parameters of a polygon span in a spatial database (804-814) and a query operation is performed on the database
to determine which of those spans, or portions of spans, are visible (816 and 818), and applies a rule for comparing new span portion to
an. old span portion on a subspan-by-subspan basis, thereby providing additional polygon edge information within a raster line, providing
antialiasing.
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Method and Apparatus for
Span Sorting Rendering System

Field of the Invention

The field of this invention is twofold: 1) three-dimensional computer graphics; and 2) computer memories, and more
sj)eciﬁcally, Content Addressable Memories (CAM).

Background of the Invention
Three-dimensional Computer Graphics

Computer graphics is the art and science of generating pictures with a computer. Generation of pictures, or images, is
commonly called rendering. Generally, in three-dimensional (3D) computer graphics, geometry that represents surfaces (or vol-
umes) of objects in a scene is translated into pixels stored in a frame buffer, and then displayed on a display device. Real-time
display devices, such as CRTs used as computer monitors, refresh the display by continuously displaying the image over and
over. This refresh usually occurs row-by-row, where each row is called a raster line or scan line. In this document, raster lines are
numbered from bottom to top, but are displayed in order from top to bottom.

In a 3D animation, a sequence of images is displayed, giving the illusion of motion in three-dimensional space. Inter-
active 3D computer graphics allows a user to change his viewpoint or change the geometry in real-time, thereby requiring the
rendering system to create new images on-the-fly in real-time.

In 3D computer graphics, each renderable object generally has its own local object coordinate system, and therefore
needs to be translated 202 (or ransformed) from object coordinates to pixel display coordinates. Conceptually, this is a 4-step
process: 1) translation (including scaling for size enlargement or shrink) from object coordinates to world coordinates, which is
the coordinate system for the entire scene; 2) translation from world coordinates to eye coordinates, based on the viewing point
of the scene; 3) translation from eye coordinates to perspective translated eye coordinates, where perspective scaling (farther
objects appear smaller) has been performed; and 4) translation from perspective translated eye coordinates to pixel coordinates,
also called screen coordinates. Screen coordinates are points in three-dimensional space, and can be in either screen-precision
(i.e., pixels) or object-precision (high precision numbers, usually floating-point), as described later. These translation steps can
be compressed into one or two steps by precomputing appropriate translation matrices befare any translation occurs. Once the
geometry is in screen coordinates, it is broken into a set of pixel color values (that is “rasterized”) that are stored into the frame
buffer. Many techniques are used for generating pixel color values, including Gouraud shading, Phong shading, and texture map-
ping.

A summary of the prior art rendering process can be found in: “Fundamentals of Three-dimensional Computer Graph-
ics”, by Watt, Chapter 5: The Rendering Process, pages 97 to 113, published by Addison-Wesley Publishing Company, Reading,
Massachusetts, 1989, reprinted 1991, ISBN 0-201-15442-0 (hereinafter referred to as the Watt Reference).

Figure 1 shows a three-dimensional object, a tetrahedron 110, with its own coardinate axes @obj» Yovjs Zovy)- The three-
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dimensional object 110 is translated, scaled, and placed in the viewing point’s130 coordinate system based on (xeye, Yeye Zeye)-
The object 120 is projected onto the viewing plane 102, thereby correcting for perspective. At this point, the object appears to
have become two-dimensional; however, the object’s z-coordinates are preserved so they can be used later by hidden surface
removal techniques. The object is finally translated to screen coordinates, based 0n (Cpcreems Yacroens Zscroen)» WHETE Zycreen i g0ing
perpendicularly into the page. Points on the object now have theirx and y coordinates described by pixel location (and fractions
thereof) within the display screen 104 and their z coordinates in a scaled version of distance from the viewing point130.

Because many different portions of geometry can affect the same pixel, the geometry representing the surfaces closest
to the scene viewing point 130 must be determined. Thus, for each pixel, the visible surfaces within the volume subtended by the
pixel’s area determine the pixel color value, while hidden surfaces are prevented from affecting the pixel. Non-opague surfaces
closer to the viewing point than the closest opaque surface (or surfaces, if an edge of geometry crosses the pixel area) affect the
pixel color value, while all other non-opaque surfaces are discarded. In this document, the term “occluded™ is used to describe
geometry which is hidden by other non-opaque geometry.

Many techniques have been developed to perform visible surface determination, and a survey of these techniques are
incorporated herein by reference to: “Computer Graphics: Principles and Practice”, by Foley, van Dam, Feiner, and Hughes,
Chapter 15: Visible-Surface Determination, pages 649 to 720, 2nd edition published by Addison-Wesley Publishing Company,
Reading, Massachusetts, 1990, reprinted §vith corrections 1991, ISBN 0-201-12110-7 (hereinafter referred to as the Foley Refer-
ence). In the Foley Reference, on page 650, the terms “image-precision”™ and “object-precision” are defined: “Image-precision
algorithms are typically performed at the resolution of the display device, and determine the visibility at each pixel. Object-pre-
cision algorithms are performed at the precision with which each object is defined, and determine the visibility of each object.”

As a rendering process proceeds, most prior art renderers must compute the color value of a given screen pixel multi-
ple times because multiple surfaces intersect the volume subtended by the pixel. The average number of times a pixel needs to be
rendered, for a particular scene, is called the depth complexity of the scene. Simple scenes have a depth complexity near unity,
while complex scenes can have a depth complexity of ten or twenty. As scene models become more and more complicated, ren-
derers will be required to process scenes of ever increasing depth complexity. Thus, for most renders, the depth complexity of a
scene is a measure of the wasted processing. For example, for a scene with a depth complexity of ten, 90% of the computation is
wasted on hidden pixels. This wasted computation is typical of hardware renderers that use the simple Z-buffer technique (dis-
cussed later herein), generally chosen because it is easily built in hardware. Methods more complicated than the Z-buffer tech-
nique have heretofore generally been too complex to build in a cost-effective manner. An important feature of the method and
apparatus invention presented here is the avoidance of this wasted computation by eliminating hidden portions of geometry
before they are rasterized, while still being simple enough to build in cost-effective hardware.

When a point on a surface (frequently a polygon vertex) is translated to screen coordinates, the point has three coordi-
nates: 1) the x-coordinate in pixel units (generally including a fraction); 2) the y-coordinate in pixel units (generally including a
fraction); and 3) the z-coordinate of the point in either eye coordinates, distance from the virtual screen, or some other coordinate
system which preserves the relative distance of surfaces from the viewing point. In this document, positive z-coordinate values
are used for the “look direction” from the viewing point, and smaller values indicate a position closer to the viewing point.

When a surface is approximated by a set of planar polygons, the vertices of each polygon are translated to screen coor-
dinates. For points in or on the polygon (other than the vertices), the screen coordinates are interpolated from the coordinates of
vertices, typically by the processes of edge walking218 and span interpolation 220. Thus, a z-coordinate value is generally
included in each pixel value (along with the color value) as geometry is rendered.

Generic 3D Graphics Pipeline

Many hardware renderers have been developed, and an example is incorporated herein by reference: “Leo: A System
for Cost Effective 3D Shaded Graphics”, by Deering and Nelson, pages 101 to 108 of SIGGRAPH 93 Proceedings, 1-6 August
1993, Computer Graphics Proceedings, Annual Conference Series, published by ACM SIGGRAPH, New York, 1993, Softcover
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ISBN 0-201-58889-7 and CD-ROM ISBN 0-201-56997-3 (hereinafter referred to as the Deering Reference). The Deering Refer-
ence includes a diagram of a generic 3D graphics pipeline 200 (i.¢., a renderer, or a rendering system) that it describes as “truly
generic, as af the top level nearly every commercial 3D graphics accelerator fits this abstraction”, and this pipeline diagram is
reproduced here as Figure 2. Such pipeline diagrams convey the process of rendering, but do'not describe any particular hard-
ware. This document presents a new graphics pipeline 400 that shares some of the steps of the generic 3D graphics pipeline 200.
Each of the steps in the generic 3D graphics pipeline 200 will be briefly explained here, and are also shown in the method flow
diagram 300 of Figure 3. Processing of polygons is assumed throughout this document, but other methods for describing 3D
geometry could be substituted. For simplicity of explanation, triangles are used as the type of polygon in the described methods.

As seen in Figure 2, the fist step within the floating-point intensive functions250 of the generic 3D graphics
pipeline 200 is the transformation step 202, which was described above. The transformation step 202 is also shown in Figure 3
as the first step in the outer loop of the method flow diagram 300, and also includes “get next polygon™. The second step, the clip
test 204, checks the polygon to see if it is at least partially contained in the view volume 106 (sometimes shaped as a frustum). If
the polygon is not in the view volume106, it is discarded; otherwise processing continues. The third step is face
determination 206, where polygons facing away from the viewing point are discarded. Generally, face determination206 is
applied only to objects that are closed volumes. The fourth step, lighting computation208, generally includes the set up for
Gouraud shading and/or texture mapping with multiple light sources of various types, but could also be set up for Phong shading
or one of many other choices. The fifth step, clipping 210, deletes any portion of the polygon that is outside of the view
volume 106 because that portion would not project within the rectangular area of the viewing plane102. Generally, polygon
clipping 210 is done by splitting the polygon into two smaller polygons that both project within the area of the viewing
plane 102. Polygon clipping is computationally expensive, but its need is avoided in the invention presented here, thus providing
computational savings. The sixth step, perspective divide 212, does perspective correction for the projection of objects onto the
viewing plane 102. At this point, the points representing vertices of polygons are converted to pixel-space coordinates by step
seven, the screen space conversion 214 step. The eighth step, set up for incremental render 216, computes the various begin, end,
and increment values needed for edge walking 218 and span interpolation 220 (e.g.: x, y, and z-coordinates; RGB color; texture
map space 4 and v-coordinates; etc.).

Within the drawing intensive functions 260, edge walking 218 incrementally generates horizontal spans for each raster
line of the display device by incrementing values from the previously generated span (in the same polygon), thereby “walking”
vertically along opposite edges of the polygon. Similarly, span interpolation 220 “walks” horizontally along a span to generate
pixel values, including a z-coordinate value indicating the pixel’s distance from the viewing point130. By comparing this
2-coordinate value to the corresponding value stored in the Z-buffer, the z-buffered blend222 either keeps the new pixel values
(if it is closer to the viewing point than previously stored value for that pixel location) by writing it into the frame buffer224, or
discards the new pixel values (if it is farther). At this step, antialiasing methods (discussed in the next section) can blend the new
pixel color with the old pixel color. v

The generic 3D graphics pipeline 200 includes a double buffered frame buffer 224, 50 a double buffered MUX 226 is
also included. An output lookup table 226 is included for translating colar map values. Finally, digital to analog conversion228
makes an analog signal for input to the display device.

A major drawback to the generic 3D graphics pipeline 200 is its drawing intensive functions 260 are not deterministic
at the pixel level given a fixed number of polygons. That is, given a fixed number of polygons, more pixel-level computation is
required as the average polygon size increases. However, the floating-point intensive functions250 are proportional to the num-
ber of polygons, and independent bf the average polygon size. Therefore, it is difficult to balance the amount of computational
power between the floating-point intensive functions 250 and the drawing intensive functions 260 because this balance depends
on the average polygon size.

An ideal renderer’s pixel drawing computational requirement would be proportional to the number of pixels in the dis-
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play screen 104, not the total number of pixels in all the polygons in the view volume 106. This ideal is achieved by the invention
described here because hidden geometry is removed before most drawing inteasive functions are performed. In the invention
described here, computational load balancing is not a problem because the amount of floating-point computstion is essentially
independent of the amount of drawing computation.
Antialiasing

In this document, pixels are defined to be the smallest individually controliable element of the display device. But,
because images are quantized into discrete pixels, spatial aliasing occurs. A typical aliasing artifact is a “staircase” effect caused
when a straight line or edge cuts diagonally across rows of pixels. An ideal antialiased image eliminates this “staircase” effect by
calculating, for each pixel, an average colar by taking into account partial coverage by the visible surfaces within the pixel’s
area.

Some rendering systems reduce aliasing effects by dividing pixels into subpixels, where each sub-pixel can be colored
independently. When the image is to be displayed, the colors for all sub-pixels within each pixel are blended together to form an
average color for the pixel. A renderer that uses 16 sub-pixels per pixel is described in “RealityEngine Graphics™, by Akeley,
pages 109 to 116 of SIGGRAPH 93 Proceedings, 1-6 August 1993, Computer Graphics Proceedings, Annual Conference Series,
published by ACM SIGGRAPH, New York, 1993, Softcover ISBN 0-201-58889-7 and CD-ROM ISBN 0-201-56997-3 (herein-
after referred to as the Akeley Reference). The drawback with using subpixels is the increase in computation due to computing
color values at every subpixel. In the Akeley Reference, the increase in computation is reduced by only dividing a pixel into sub-
pixels when the pixel is crossed by a line or an edge of a polygon. This reduction becomes less significant as the number of poly-
gons increases. In other words, if the image is made up of lots of small overlapping polygons, then most pixels will need to be
divided. Utilization of subpixels is an image-precision antialiasing technique.

Another prior art antialiasing method is the A-Buffer used to perform alpha blending (this technique is also included in
the Akeley Reference), and is described in “The A-buffer, an Antialiased Hidden Surface Method” by L. Carpenter, SIGGRAPH
1984 Conference Proceedings, pp. 103-108 (hereinafter referred to as the Carpenter Reference). The A-buffer is an image-preci-
sion antialiasing technique that xeduc'es aliasing by keeping track of the percent coverage of a pixel by a rendered polygon. The
main drawback to this technique is the need to sort polygons front-to-back (or back-to-front) at each pixel in order to get accept-
able antialiased polygons. ’

An ideal antialiasing method would perform object-precision computations to precisely identify the visible portions of
geometry. This would require comparing edges of polygons to each other in order to determine the fraction of each pixel covered
by each polygon. The invention of this document performs object-precision antialiasing within each scan line, thus achieving this
ideal.

Z-buffers

Stated simply, the Z-buffer stores, for every pixel, the z-coordinate of the closest geometry (to the viewing point) that
affects the pixel. Hence, as new pixel values are generated, each new pixel’sz-coordinate is compared to the corresponding loca-
tion in the Z-buffer. If the new pixel’s z-coordinate is smaller (i.e., closer to the viewing point), this value is stored into the
Z-buffer and the new pixel’s color value is written into the frame buffer. If the new pixel’sz-coordinate is larger (ie., farther from
the viewing point), the frame buffer and Z-buffer values are unchanged and the new pixel is discarded. The Z-buffer is an image-
precision visible surface determination technique.

A flow diagram including the prior art Z-buffer method is shown in Figure 3. The main drawback to the Z-buffer hid-
den surface removal method is the requirement for geometry to be converted to pixel values before hidden surface removal can
be done. This is because the keep/discard decision is made on a pixel-by-pixel basis. In contrast, the invention of this document
performs hidden surface removal at a higher level by processing spans rather than pixels. For scenes with any significant depth
complexity, pixel-by-pixel hidden surface removal introduces much wasted computation by requiring all geometry within the
view volume to be converted to pixels, even though most are hidden and, therefore, thrown away. In hardware rendering systems,
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pixel color generation (shading, texture mapping, etc.) often happens in parallel with the Z-buffer comparison test, thereby com-
pounding the wasted computation because much of the computation is associated with color generation, and most of the pixels
are thrown away. Furthermore, the Z-buffer memory operation is a read-modify-write cycle, generally requiring the Z-buffer
memory input/output bus to change directions twice when writing pixels into the frame buffer, thereby causing a bottleneck in
the renderer. This bottleneck does not occur in the apparatus and method of the documeat's invention.

Prior art Z-buffers are based on conventional Random Access Memary (RAM), Video RAM (VRAM), or special pur-
pose DRAMs. One example of a special purpose DRAM is presented in “FBRAM: A new Form of Memory Optimized for 3D
Graphics”, by Deering, Schlapp, and Lavelle, pages 167 to 174 of SIGGRAPH 94 Proceedings, 24-29 July 1994, Computer
Graphics Proceedings, Annual Conference Series, published by ACM SIGGRAPH, New York, 1994, Softcover ISBN
0-201-60795-6.

Geometry Databases

The geometry needed to generate a renderable scene is stored in a database. This geometry database can be a simple
display list of graphics primitives or a hierarchically organized data structure. In the hierarchically organized geometry database,
the root of the hierarchy is entire database, and the first layer of subnodes in the data structure is generally all the objects in the
“world” which can be seen from the viewpoint. Each object, in turn, contains subobjects, which contain sub-subobjects; thus
resulting in a hierarchical “tree” of obje.cts. Hereinafter, the term “object” shall refer to any node in the hierarchial tree of objects.
Thus, each subobject is an object. The term “root object” shall refer to a node in the first layer of subnodes in the data structure.
Hence, the hierarchical database for a scene starts with the scene root node, and the first layer of objects are root objects.

Hierarchical databases of this type are used by the Programmer’s Hierarchical Interactive System (PHIGS) and PHIGS
PLUS standards An explanation of these standards can be found in the book, “A Practical Introduction to PHIGS and PHIGS
PLUS", by T. L. J. Howard, et. al., published by Addison-Wesley Publishing Company, 1991, ISBN 0-201-41641-7 (incorpo-
rated herein by reference and hereinafter called the Howard Reference). The Howard Reference describes the hierarchical nature
of 3D models and their data structure on pages 5 through 8. Hierarchical models can provide a separate transformation matrix at
each layer of the hierarchy, thereby making it possible to move models or parts of a models simply by changing & transformation
matrix. This allows non-changing model geometry (in object coordinates) to be used as movmg objects in an animation.
Content Addressable Memories

Most Content Addressable Memories (CAM) perform a bit-for-bit equality test between an input vector and each of
the data words stored in the CAM. This type of CAM frequently provides masking of bit positions in order to eliminate the cor-
responding bit in all words from affecting the equality test. It is inefficient to perform magnitude comparisons in a equality-test-
ing CAM because a large number of clock cycles is required to do the task.

CAMs are presently used in translation look-aside buffers within a virtual memory systems in some computers. CAMs
are also used to match addresses in high speed computer networks. CAMs are not used in any practical prior art renders.

Magnitude Comparison CAM (MCCAM) is defined here as any CAM where the stored data are treated as numbers,
and arithmetic magnitude comparisons (i.e. less-than, greater-than, less-than-or-equal-to, etc.) are performed on the data in par-
allel. This is in contrast to ordinary CAM which treats stored data strictly as bit vectors, not as numbers. An MCCAM patent,
included herein by reference, is U.S. Patent Number 4,996,666, by Jerome F. Duluk Jr., entitled “Content-Addressable Memory
System Capable of Fully Parallel Magnitude Comparisons™, granted February 26, 1991 (hereinafter referred to as the Duluk
Patent). Structures within the Duluk Patent specifically referenced shall include the prefix “Duluk Patent” (for example, “Duluk
Patent MCCAM Bit Circuit™). MCCAM:s are not used in any prior art renderer.

The basic intemal stucture of an MCCAM is a set of memory bits arganized into words, where each word can perform
one or more arithmetic magnitude comparisons between the stored data and input data. In general, for an MCCAM, when a vec-
tor of numbers is applied in parallel to an array of words, all arithmetic comparisons in all words occur in parallel. Such & paral-
lel search comparison operation is called a “query” of the stored data.
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The invention described here sugments the capsbility of the MCCAM by adding various features, including the ability
to perform sorting. This new type of MCCAM is call Sorting Magnitude Comparison CAM (SMCCAM).
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Summary of the Invention

Computer graphics is the art and science of generating pictures or images with a computer. This picture generation is
commonly referred to as rendering. The appearance of motion, for example in a 3-Dimensional animation is achieved by dis-
playing a sequence of images. Interactive 3-Dimensional (3D) computer graphics allows a user to change his or her viewpoint or
to change the geometry in real-time, thereby requiring the rendering system to create new images on-the-fly in real-time. There-
fore, real-time performance in color, with high quality imagery is becoming increasingly important.

The inventive apparatus and method provide a data shifting capability that permits sorting the data in addition to
searching. It also provides a new way to perform a simple search of a spatial database based on a rectangularly shaped search
region or range search. The range search may be performed in a special new Sorting Magnitude Comparison Content Address-
able Memory (SMCCAM) apparatus. This SMCCAM provides a magnitude comparison content addressable memory wherein
the data stored in the fields in each word of the memory may be shified to corresponding fields in an adjacent word, where this
shifting is conditionally performed based on the results of the magnitude comparisons.

The 3D graphics method stores the parameters of a polygon span in a spatial database, and a query operation is per-
formed on the database to determine which of those spans, or portions of spans, are visible. The spatial database of spans can be
stored in an SMCCAM. The SMCCAM apparatus is significant because its operation is fast enough to support real time opera-
tion, such as for standard and emerging video technologies (NTSC, PAL, HDTV, and the like), visual flight simulators, virtual
reality image generators, and the like, among other applications.

Since the range search is used, it introduces a conservative approximation of the ideal Occluding Region. An Occlud-
ing Test is provided which defines an Occluding Test Region as an approximation to the ideal Occluding Region. A rule based
method is used when comparing the Current Span Portion with the New Span, where the New Span is found by the Occluding
Test and read out of the data structure stored in memory. That memory may advantageously be the SMCCAM, or it may be a
conventional memory that implements the spatial data structure with conventional spatial database methods. Based on the results
of the comparison, one rule out of several possible simple rues are selected and applied to determine which piece of the Current
Span is visible, if any. Several alternative rules are described.

Multiple alternative span representations are provided, including a Segment Span, Trapezoidal Span, and Quadrilateral
Span. Each of these Spans is defined by its own set of span parameters, of which there are multiple selections of each. The span
parameters are stored in a data structure in memory, which may be implemented by the SMCCAM, and are used during the
query search operation. Each of these Span types have their own advantages. For example, a Trapezoidal Span or a Quadrilateral
Span provides superior anti-aliasing performance than provided by a Segment Span. This performance advantage is achieved by
preserving the left and right edge information of the polygon within a particular raster line. Several ways to handle the query
operation for Trapezoidal and Quadrilateral Spans are described.

Spatial searching and sorting apparatus and methods are provided such that spatial searching and sorting can be used
to properly render transparent polygon spans in front-to-back or back-to-front order.

The inventive apparatus, system, and method also provide several options and enhancements to the basic system.
These include, by way of example: preservation of rendering order, utilization of a single-buffered frame buffer for increased
compatibility with conventional video cards, the ability to selectively turn on or off anti-aliasing on specific polygon edges, the
ability to store edge-pairs rather than polygons thereby simplifying downstream processing, the ability to eliminate the Current
Polygon Memory by replacing it with a list of pointers, the ability to add clipping planes (front, rear, and/or arbitrary), provision
of a Geometry Cache for storing geometry as it is input for rendering, flexible options for the number of pages of Span Memory
and Page Memory 1/O bus architecture, support for geometry primitives other than polygons (such as CSG primitives), and alter-
natives that support the inventive method in conventional hardware with some performance compromises.
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A Brief Description of the Drawings

Figure 1: An object in three-dimensional space, its projection onto the viewing plane, and its image one & display
screen.

Figure 2: Generic rendering pipeline from the Deering Reference (prior art).

Figure 3: Method flow diagram for the standard Z-buffer method (prior art).

Figure 4: The Span Sorting Rendering Pipeline. The Span Memory can be implemented with a SMCCAMS800.

Figure 5: A block diagram of the Span Sorting Renderer architecture.

Figure 6: An example of nine polygons showing how they intersect the display screen and how they are included in &
particular raster line.

Figure 7: Three ways to model a polygon span: 1) a line segment; 2) a trapezoid; and 3) a quadrilateral.

Figure 8: Data organization within the Sorting Magnitude Comparison Content Addressable Memory 800
(SMCCAM 800).

Figure 9: SMCCAM Word 900 block diagram.

Figure 10: Examples of a span’s Occluding Region and a span’s SOT Region generated by a Span Occluding Test
Query.

Figure 11: An example set of segment spans on one raster line, shown in x-z space, with the visible span portions
shown as thick lines and hidden span portions shown as narrow lines.

Figure 12: The same example set of spans as shown in Figure 11, except with bounding boxes around each span.

Figure 13: The Span Sorting Rendering Method 1300 flow diagram.

Figure 14: The Process Polygon Method 1400 flow diagram, part of the Span Sorting Rendering Method 1300.

Figure 15: The Process Current Polygon Memory Method 1500 flow diagram, part of the Span Sorting Rendering
Method 1300. )

Figure 16: The Process Bucket Sort Memory Method 1600 flow diagram, part of the Span Sorting Rendering
Method 1300.

Figure 17: The Write Span Parameters Method 1700 fiow diagram.

Figure 18: The Simplified Span Rasterization Method 1800 flow diagram, part of the Span Sorting Rendering
Method 1300.

Figure 19: Span interaction nomenclature definitions,

Figure 20: The 49 varieties of Span Interaction Types.

Figure 21: Segment Span Rasterization Method2100 flow diagram, part of the Span Sorting Rendering
Method 1300.

Figure 22: Rule 1 2200 method flow diagram, part of Segment Span Rasterization Method 2100,

Figure 23: Rule 2 2300 method flow diagram, part of Segment Span Rasterization Method 2100.

Figure 24: Rule 3 2400 method flow diagram, part of Segment Span Rasterization Method 2100,

Figure 25: Rule 4 2500 method fiow diagram, part of Segment Span Rasterization Method 2100.

Figure 26: Rule 5 2600 method flow diagram, part of Segment Span Rasterization Method 2100.

Figure 27: An example raster line with fifteen spans. The bounding box of each span is shown as well as each span’s
x,1 location along the x-axis.

Figure 28: Timing diagram for phase-locked raster line processing and display.

Figure 29: Timing diagram for single buffered frame buffer.

Figure 30: Timing diagram for single buffered frame buffer where span rasterization covers more than one screen dis-
play time.

Figure 31: Block diagram of the Query Processor §10 hardware architecture, also including two pages within the Span
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Memory 408.

Figure 32: Block diagram of the Comparison and Offset Computation block3202 within the Query Processor 510.

Figure 33: Prior art MCCAM CMOS bit cell.

Figure 34: A “TTL type” circuit for an SMCCAM bit cell.

Figure 35: A CMOS circuit for the SMCCAM bit cell.

Figure 36: An array of SMCCAM bit cells.

Figure 37: Multiple spans vertically within a raster line.

Figure 38: Two trapezoidal spans working together to occlude farther spans that would be visible if the shown trape-
zoidal spans did not work together.

Figure 39: An example set of trapezoidal spans, shown in x-z space.

Figure 40: SOT Query for Processing Top and Bottom Separately

Figure 41: An example set of trapezoidal spans used to illustrate the Trapezoidal Span Rasterization Method version
that does occlusion processing on span tops and span bottoms separately.

Figure 42: SOT Query for processing every visibility transition

Figure 43: SOT Query with a complex shape

Figure 44: SOT Query with a wider search area

Figure 45: A set of segment spans in a raster line where the visible opaque surfaces are shown as thick black lines and
the visible translucent spans are shown as thick shaded lines.

Figure 46: Approximating trapezoidal spans using only one z-value per endpoint changes the spans into quadrilateral
spans.

Figure 47: An example set of quadrilateral spans, shown inx-z space.

Detailed Description of the Invention
Span Sorting Rendering Pipeline

Figure 4 shows the Span Sorting 3D Graphics Pipeline 400, where the first six steps are defined as the process
polygon 1400 steps. The first five steps (transformation 202, clip test 204, face determination 206, lighting 208, and perspective
divide 212) are the same as the five of the first six steps in the Generic 3D Graphics Pipeline 200. The clip 210 step is omitted
because the Span Sorting 3D Graphics Pipeline 400 operates in object-precision, and coordinates are not limited to the area of
the display screen 104. Elimination of the clip 210 step allows all polygons in the view volume 106 to be treated the same. How-
ever, the clip 210 step can be inserted if desired. The Span Sorting 3D Graphics Pipeline400 can be built with dedicated hard-
ware, done completely in software, or a combination of the two. Hereinafter, a dedicated hardware implementation is assumed,
and a new apparatus is described.

The top-level block diagram of the new apparatus is shown in Figure 5. The process polygon 1400 steps are performed
in the Polygon Processor $02. The last step performed by the Polygon Processor502 is the computation of the Polygon
Parameters 402. The Polygon Parameters, output by the Polygon Processor 502, describe a polygons as needed by the rest of the
Span Sorting 3D Graphics Pipeline 400.

For each polygon, Polygon Parameters are written into the Bucket Sort Memory400, and include: 1) the location in
object-precision screen coordinates of the polygon vertices, Vy, Vs, Vs, etc., defined respectively as: &1 Y1 210 (3 Y20 29),
(%3, y3, 23), etc.; 2) color information, including such things as vertex colors for Gouraud (or Phong) shading and/or texture map-
ping parameters; 3) the edge derivatives of x and z with respect to y (i.¢., &x/Sy and 82/3y) for each edge; 4) starting raster line (or
topmost), ystarys 5) ending raster line (or bottommost), ygnp; and 6) the span derivative of z with respect to x (i.e., &x/5y),
assigned to the variable d. The last four in this list need to be computed 402, and this is done in the Polygon Processor 502.

Assuming the polygons are triangles, the edge derivatives are computed as:
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When the starting raster line, yspapy, and the ending raster line, ygnp, are computed, the edges of the display
screen 104 must generally be taken into account. Figure 6 shows a display screen 104 with eight polygons (in this case, trian-
gles), some of which intersect the edges of the display screen 104. If a polygon does not intersect the right or left edges of the
display screen 104, then ygagr and ygnp are computed by:

YstarT = MinOf (yy, x, IntPartOf (MaxOf (Y15 Y9 ¥35++2)))

Yenp = MaxOf (0, IntPartOf (MinOf (y;, y,, ¥3, ...) )) Q2

The computation of ysragr first finds the maximum of the y-coordinates of the vertices of the polygon, thereby finding
the “uppermost” y-coordinate in the polygon. Then, the function IntPartOf( ) takes the “integer part of” the uppermost
y-coordinate, thereby computing the raster line of the “uppermost” y-coordinate in the polygon. Since the start of the polygon
can not be above the topmost raster line in the display screen 104, the MinOf( ) function substitutes ypx if the polygon would
start in a non-existent raster line. Computation of ygnp is done similarly. Figure 6 shows a polygon 602 that starts at ypg,x, and
another 604 that ends at raster line zero.

If a polygon intersects the right or left edges of the display screen104, then ygpspr and ¥enp should be the first and
last raster lines that is affected by the polygon within the display screen104. In Figure 6, an example polygon 606 begins at
Ya 608 and ends at yp 610. Another example polygon 612 begins at yc 614 and ends at raster line zero. The effects of the right
and left edges of the display screen 104 can be ignored, but then span generation 1500 will create spans that are not within the
display screen 104, and therefore must test for this, and throw away such spans.

Computation of the span derivative, d (i.e., 82/8x), can be computed in one of many conventional ways.

_ 0z
d= ox (EQ3)

The span derivative is constant for each planar polygon and can have either a positive or a negative value.

Writing into the Bucket Sort Memory 404 is done according to ygrugr for each polygon. There is one “bucket” per
raster line, and a polygon is placed into the one bucket that corresponds to its starting raster line. Within each bucket, polygons
do not need to be sorted. Management of the data in the Bucket Sort Memory 404 is done by the Bucket Sort Processor 504,
which can do the sort with one linked list per bucket. In addition, the Bucket Sort Memory404 can be double buffered so the
write operations associated with a scene can be performed concurrently with read operations from the previous scene.

If all the color information described above is stared into the Bucket Sort Memory404, it must be carried along,
through the Span Sorting Renderer 500 (see Figure 5) all the way to the Rasterize Processor §12. Alternatively, the color infor-
mation in the Bucket Sort Memory 404 can be replaced by an information pointer, and then stored into a separate Polygon Infor-
mation Memory 514. The information pointer is an address into the Polygon Information Memory 514 where all the color
information for the polygon is stored, and can be used by the Rasterize Processor512 to read the color information. The informa-
tion pointer is carried along to the Rasterize Processor $12. This saves expensive hardware memory throughout the Span Sorting
Renderer 500 because the information pointer has very few bits when compared to all the color information for a polygon. This
savings can be done because: 1) the color information is constant over the entire polygon, and so can be shared by all the spans
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of the polygon; and 2) the color information is not needed until visible span portions are colored by the Rasterize Processor512.
The use of the information pointer and the Polygon Information Memory 5§14 will be assumed in the rest of this document.

Within the Span Sorting Renderer 500, a list is kept in the Current Polygon Memory 406 of all the polygons that affect
the raster line that is currently being rendered. Hence, when the rendering of a scene begins, the Current Polygon Memory406 is
empty. During rendering, when a particular raster line is reached, all the polygons that have their ygr,p at that raster line (i.e.,
that particular bucket) are read from the Bucket Sort Memory 404 and added to the Current Polygon Memory 406. As rendering
proceeds, polygons are deleted from the Current Polygon Memory 406 as their ygyp, values are reached. The data in the Current
Polygon Memory 406 is managed by the Current Polygon Processor 506, which performs the operation “process data from
Bucket Sort Memory 404" 1600, as shown in the pipeline diagram 400. Also, the Current Polygon Processor 506 feeds the poly-
gons that affect the raster line to the Span Generation Processor 508.

‘ Starting at the beginning of the rendering of a raster line, each polygon that has a span in that raster line is input to the
Span Generation Processor 508, which performs span generation 1600. The Span Generation Processor 508 uses the geometric
properties of each polygon, including its edge derivatives of Equation 1, to compute the location in object-precision screen coor-
dinates of the left and right endpoints of its span within the current raster line. The span can be modeled as a simple line segment,
a trapezoid, or a quadrilateral, as shown in Figure 7. The geometric properties of the span are sent to the Query Processor$10,
and those properties include: 1) coordinates of the left endpoint of the span; 2) coordinates of the right endpoint of the span;
3) the span derivative, d; and 4) the information pointer. The coordinates of a span endpoint can be: 1) an , z) point within the
current raster line, used when spans are modeled as line segments as in Figure 7A; 2) two ¢, z) points, one for the top edge of the
current raster line and one for the lower edge, used when spans are modeled as trapezoids as in Figure 7B; or 3) an &y, xr, 2)
triplet including one z-coordinate and an x-coordinate for the upper and lower edges of the current raster line, used when spans
are modeled as quadrilaterals as in Figure 7C. Of the eight example polygons shown in Figure 6, four of them616, 618, 620, 622
have spans 626, 628, 630, 632 on the example current raster line 640. Note that one of the example spans 626 starts at a negative
x-value.

For a given raster line, as geometric properties of spans are output from the Span Generation Processor508, they are
received by the Query Processor 510 that then writes them all into one bank of the double buffered Span Memory 406. As the
spans are written into the Span Memory 406, they are sorted, in order of precedence, by: 1) the left x-coordinate; 2) the left
z-coordinate; and 3) the span derivative. Simultaneous to writing span data into one bank, the span data in the other bank of Span
Memory 406 is processed to discover visible span portions.

When the Query Processor 510 has completed processing the spans stored in one bank of the Span Memory 406, and
all the spans in the next raster line have been received from the Span Generation Processor 508 and written into the other bank,
the two banks of the Span Memory 406 are swapped. After the bank swap, the Query Processor 510 and the Span Memory 406
jointly perform arithmetic comparisons on the span data (hereinafter called query operations) and various arithmetic operations
to process 1800 or 2100 the spans and determine which spans or portions of spans are visible in the scene. These visible spans
(or portions of spans) are sent to the Rasterize Processor $12. A more detailed block diagram of the Query Processor 510 and the
Span Memory 406 is shown as Figure 31.

The Rasterize Processor 512 receives only spans (or portions of spans) that are fully visible. To process each spa.n, the
Rasterize Processor §12 performs the set up for incremental span render 412 and then performs span interpolation 220. Pixel
color values are generated by utilizing the data stored in the Polygon Information Memory514 and possibly also the Texture
Map Memory 516. As pixel color values are generated, they are written into the Raster Line Memory416.

The Raster Line Memory 416 can store all the colar pixel values for several complete raster Lines. That is, it416 stores
the color values for the raster line currently being fed to the digital to analog converter228 (via the Rasterize Processor §12) as
well as several subsequent raster lines. Once all the values for a particular raster line have been sent to the digital to analog
converter 228, the corresponding part of the Raster Line Memory 416 can be overwritten with another raster line. In this way, the
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total amount of memory required is only a few raster lines worth (the minimum is two), rather than the typical doubled buffered
full display screen 104 frame buffer 224 required by prior art 3D graphics renders. This saves many megabytes of memory. The
Raster Line Memory 416 can store data for several raster lines in order for the rasterization process to “work ahead” of the digi-
tal to analog converter 228, thereby providing some time cushion for raster lines that require more than the average amount of
time to process.

Having only enough memory for a few raster lines requires the Span Sorting Renderer 500 architecture to keep up with
the average raster line display rate. Therefore, if very large geometry databases (larger than the maximum where the Span Sort-
ing Renderer 500 can keep up) need to be rendered, the Raster Line Memory416 can be replaced with a doubled buffered full
display screen 104 frame buffer 224.

Sorting Magnitude Comparison Content Addressable Memory 800

A diagram of data storage 800 within a page of Span Memory 406 is shown in Figure 8. This data array can reside in
typical random access memory (RAM) as a sorted data structure, or reside in Sorting Magnitude Comparison Content Address-
able Memory (SMCCAM). The SMCCAM implementation will be assumed in the rest of this document.

An SMCCAM is a new type of MCCAM, and is comprised of a set of memory registers (or words), each word com-
posed of a multiplicity of fields, where each field can: 1) store a number, either as an integer or as a floating-point number;
2) perform arithmetic comparisons between the stored number and another number broadcast to all words; and 3) shift its con-
tents to the corresponding field in the next word. When used as the Span Memory 406 within the Span Sorting Renderer 500, the
SMCCAM stores a set of spans and performs parallel searching and sorting operations to find the visible span portions.

As shown in Figure 8, the data storage within the SMCCAM 800 is divided into SMCCAM Words 900, where each
word 900 stores and processes (by performing query operations) data corresponding to one span in the current raster line. The
figure shows a total of W SMCCAM Words 900, numbered 0 to W-1. Each SMCCAM Word 900 includes seven numeric fields
(and the variable name shown here is for the nth word): 1) the Word Number Field 802, w, that is & fixed (i.c., read-only) unique
identifying number for each word 900, akin to an address; 2) the Left X Field 804, x,; , that stores the x-coordinate of the left
endpoint of a span; 3) the Left Z Field 806, 2,1, that stores the z-coordinate of the left endpoint of a span; 4) the Right
X Field 808, x,p, that stores the x-coordinate of the right endpoint of a span; 5) the Right Z Field810, Z,x, that stores the
z-coordinate of the right endpoint of & span; 6) the Span Derivative Field812, d,, that stores the 52/8x slope of the span; and
7) the Information Pointer Field 814, i, that stores a pointer into the Polygon Information Memory 514 for color information for
the span’s polygon.

Each SMCCAM Word 900 also stores: 1) a Valid Flag 816, F s a single bit value indicating whether the SMCCAM
Word 900 is storing valid data; and 2) a Query Flag 818, F aQ & single bit value indicating whether the SMCCAM Word 900
responded positively to a query operation. Both flag bits 816,818 each have a corresponding “wired-nor” bus that indicates
whether all words 900 have that fiag bit tumed off. Specifically, for the Valid Flag816, Fyy if Fyy is false for all » (i.e., all
words), then the signal AllWordsinvalid990 is asserted. Similarly, if F wq is false for alln, then the signal
NullQueryResponse 992 is asserted. The two wired-nor signals, AllWordsinvalid 990 and NullQueryResponse 992, provide the
mechanism for query results to be fed back to the external controller (located in the Query Processor510), 5o it can make deci-
sions (i.e. “branches) about how to proceed within the method.

The nomenclature for fields and flags 804 to 818 include the Word Numbez Field 802 value as the first part of the field
subscript (e.g., 23 is in word 3). Later in this document, the number of fields in each word is increased to add various features to
the Span Sorting Renderer 500. Figure 8 shows two variable word indices, # and w, that are used throughout this document as
references to SMCCAM Words 900.

A block diagram of an SMCCAM Word 900 is shown as Figure 9, where each of the seven fields 802 to 814 is shown.
The seven fields, x,,; 804, z,; 806, x,» 808, z, 810, d,, 812, and i,, 814, each have a corresponding data bus within the set of
Array Busses910: BusW 912, BusXL 914, BusZL 916, BusXR 918, BusZR 920, BusD 922, and BusI 924. Six of the
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fields 802 to 812 are broken into a memory 902 or 904 and a comparator 906 or 908. The Word Number Field 802 includes: 1) a
fixed memory 902; and 2) an equality comparison circuit 906, used for query operations, that compares the fixed memory
value 902 to the data on the input bus, BusW 912. Five of the fields 804 to 812 include: 1) a read/write memory 904; and 2) an
arithmetic comparison circuit906 (tests for less-than, etc.), used for query operations, that compares the stored memory
value 904 to the data on the corresponding input bus. The seventh field, the Information Pointer Field814, i, is simply a read/
write memory that does not generally participate in query operations.

Query operations are used for searching, sorting, reading, and writing into the array 800 of SMCCAM Words 900, A
query operation is performed by all SMCCAM Words 900 in parallel by supplying query data to all words 900 via the Amray
Busses 910. The SMCCAM 800 includes the Query Logic Array 850, which is a set of Query Logic 930 circuits, one in each
SMCCAM Word 900.

In parallel, within ea'ch SMCCAM Word 900, query operation results are computed by the Query Logic930. The
Query Logic 930 receives the results from the comparators 906 and 908 as well at the Valid Flag 816 and Query Flag 818 val-
ues, performs a selectable Boolean operation on these values (selected by QueryCntrl932) to generate a query result bit, and
then writes the query result bit back into either the Valid Flag 816 or the Query Flag 818.

When a query operation is performed, every word 900 generates a query result, which is stored into either its 900 Valid
Flag 816 or the Query Flag 818. The set of all Valid Flags 816 is called the Valid Flag Word 830, and the set of all Query
Flags 818 is called the Valid Flag Word 834. When a search is done, the query results designate which words fulfilled the query

operation parameters. An example query operation is:

FnQ = FayA (‘an SxCL) EQ4)

where the following occurs: 1) xqy is broadcast to all words 900 via BusZL 916; 2) the Left X Field 804 in each word 900 per-
forms (an < xCL) . by comparing its 804 contents, x,1, to the value on BusZL 916; 3) the Query Logic930 in eng:h
word 900 performs the right side of Equation 4, which is the query result for that word 900; 4) in each word 900, the query result
is stored into the Query Flag 818 shown as the left side of Equation 4; and 5) the signal, NullQueryResponse 992, is asserted if
the Query Flag 818 is false in all words 900.

Additional example Boolean operations are shown in Equation 5, wherexcy , Sp Xcr, 2cR Zcy, and 2cp are data broad-
cast to all SMCCAM Words 900 via the Array Busses 910, and where 7 is the particular word 900 where the operation is taking
place (this happens for all 5, which means for all SMCCAM Words 900).

FnQ =F ya(r#Sp) A(x; <xcp) A (xp>xc) Al (2 <20p) Vv (z,g<2cp)]
F‘Q =F yA F.Q Al <zo) v (23<20)]
Faq=Fava Gy =3cp) A (2, = 2cp) (EQ5)
Fyy=FoyA (x> 3cp)

FnQ= F—':;,v >xa) VI =x) Az 22,1V ((x,L=xAL) Az =2,0) A (d,>d,)]

The query operation mechanism inherently performs a search operation on the data stored in the SMCCAMS800, and
the search results are stored into the Query Flags 818. When data needs to be written into the SMCCAM 800, the following
sequence occurs: 1) the Valid Flag Word 830 (or, for certain applications, the Query Flag Word 834 could be used) is chosen to
determine the word 900 to be written; 2) the Valid Flag Word830 contents are input to its 830 corresponding Priority
Resolver 840; 3) the Priority Resolver 840 finds the first occurrence of a logic “zero™ within the flag word 830, this is the first
invalid word; 4) the SMCCAM Word 900 with the first occurrence of logic “zero” is the selected word 900, and the data on the
Array Busses 910 is stored into that word 900; and 5) the selected word 900 has its Valid Flag 816 asserted, indicating that word
now contains valid data.

A read operation works similarly, with the following sequence: 1) the Valid Query Flag Word834 is chosen to deter-
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mine the word 900 to be read; 2) the Query Flag Word 834 contents are input to its 834 corresponding Priority Resolver 840;
3) the Priority Resolver 840 finds the first occurrence of a logic “one” within the flag word834; 4) the SMCCAM Word 900 with
the first occurrence of logic “one” is the selected word 900, and its 900 contents are output onto the Array Busses 910; 5) the
selected word 900 has its Query Flag 818 de-asserted, indicating that word has had its contents read, and subsequent reads (with-
out intervening queries) will read other words; and 6) the signal, NullQueryResponse 992, is asserted if the Query Flag 818 is
false in all words 900, indicating that no other words would respond to a read operation. The query, write, and read operations
work somewhat similarly to that described in the Duluk Patent.

The portion of the Priority Resolver 840 within an SMCCAM Word $00 is called a Priority Resolver Section 934, and
they 934 communicate across SMCCAM Words900 via the busses: ValidPriOuslw-1) 936, QueryPriOutiw-1] 937,
ValidPriOutlw) 938, and QueryPriOu{w] 939. Altematively, the Priority Resolver 840 could be built with a treelike structure,
thereby making the worst case circuit propagation delay proportional to log W rather than W.

The SMCCAM 800 also performs & sorting operation, which is not provided in the apparatus described in the Duluk .
Patent. As described above, the Span Sorting Renderer 500 sorts spans as they are written into the Span Memory 406 according
to: 1) the left x-coordinate; 2) the left z-coordinate; and 3) the span derivative. In the SMCCAM 800, sorting is done by locating
the place in the span list where a span needs to be inserted, then, from this place, shifting the SMCCAMS00 contents down one
word 900, and then writing the new span into the vacated word 900.

The SMCCAM 800 can shift data from word-to-word to make room in the sorted span list. The sarting operation is
done in the following sequence: 1) the geometric properties (as described sbove) of the span to be written are input to the
SMCCAM 800 for 2 query operation; 2) the query operation of Equation 6 is performed in every SMCCAM Word900 with the
query results written into the Query Flags 818, thereby identifying all words that contain either invalid data or contain a span that
should be sorted later in the span list that the span being written; 3) the Query Flag Word834 contents are input to the corre-
sponding Priority Resolver 840; 4) the Priority Resolver 840 finds the first occurrence of a logic “one™ within the Query Flag
Word 834, thereby determining the selected word 900; 5) for the selected word 900 and all SMCCAM Words 900 after the

selected word 900, stored data is shifted to the next word 900; and 6) at the selected word 900, the data on the Array Busses 910
is stored into the word 900.

Foq= FiyV > x) VI =x,) A G >0 VG = 50) A G =2,) A (4,54,)]  EQS)

Shifting data in the fields 802 to 814 from one SMCCAM Word 900 to the next is done via the Shift In Busses 950 that
are connected to the Shift Out Busses970 of the previous word900. The list of Shift In Busses950 includes:
ShifiOuXI[w-1)952; ShiftOutXR{w-1]954; ShiftOutZL{w-1) 956; ShifOwZR[w~1) 958; ShifiOutD{w~1} 960; and
ShiftOutliw-1]962. The list of Shift Out Busses 970 includes: ShifiOutXL{w) 972; ShifiOuXR[w) 974; ShifiOutZL{w) 976;
ShifiOuZR[w) 978; ShifiOwD[w—-1]980; and ShiffOurllw) 982. The circuit signal nomenclature used in this document includes
the use of a bracketed index, such as “{w]", indicating it is part of an array of busses (similar to the array nomenclature of the “C”
computer language). Here, “[w]"” indicates the wth word 900, and “fw—1]" indicates the word 900 immediately prior in the set of
words 800.

Span Occluding Test

Figure 10 shows three spans 1002, 1004, 1006 represented by line segments (i.c., “segment spans”) in the x-z plane,
carresponding to one raster line of the display screen104. One of the spans 1002 is shown with a corresponding Occluding
Region 1008. If there are no spans that Occluding Region 1008, then the corresponding span 1002 is not hidden. The shape of
the Occluding Region 1008 is trapezoidal, and therefore it is computationally expensive to determine if another span lies within
1t 1008, and is particularly expensive if many spans need to tested against the region1008. A simplifying approximation for an
Occluding Region 1008 is a rectangular Span Occluding Test Region 1010 (hereinafter called an SOT Region 1010). The SOT
Region 1010 is generated from the span (or span portion) being tested for occlusion, hereinafier called the Current Portion,
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S¢ 1004. Determining if a span 1006 with endpoints (x,;, 2,1 ) and (¥, , z,1 ) lies within an SOT Region 1010 for a Current Por-
tion, 1004, S¢, with endpoints (xcr., 2cp) 1012 and (xR, 2cp) 1014 is done by:

In SOT i{egion = (%,.<Xcp) A (X, >x¢p) A (2, <MaxOf(zop, 201) ) V (2,3 <MaxOf(z¢p, 2) )] (EQT)

The arithmetic computation required for Equ-ation 7 is four comparisons and one *“choose-the-maximum-of” function (the two
needed in the equation are identical). For the SMCCAM800 to perform the operations of Equation 7, the “choose-the-maxi-
mum-of™” would be performed outside the SMCCAM 800 to determine:

Zop = MaxOf(zcy, 2y ) EQ?)

and then the values xcy, Xcg, and zcp would be input on the Array Busses 910 and the comparisons would be performed in the
appropriate fields 804 to 810. In this way, all the spans stored in the SMCCAM 800 would be tested in parallel, performing the
search for occluding spans in a matter of nanoseconds. In this document, any span that is found by an SOT Query is called an

occluding span.

The complete equation for the Span Occluding Test Query (hereinafter called the SOT Query) is shown as Equation 9.

F”Q = Foya (n#8p) A (x,p <xep) A (X p>xcp) A [(2,1 <20p) V (2,3 <2cp) ] (EQ9)

The complete SOT Query equation adds two more terms to the conjunction: 1) the Valid Flag816, needed to keep words with
invalid data from mistakenly identifying themselves as storing an occluding span; and 2) a test, n# Sp, where Sp is the Word
Number Field 802 corresponding to the Current Portion, done to keep the span from being identified as occluding itself. The
complete SOT Query equation stores the query result into the Query Flag 818 of each SMCCAM Word 900. The result of the
SOT Query is available at the signal, NullQueryResponse 992, where an asserted value indicates that no occluding spans were
found. _

By using the SOT Region as an approximation of the Occluding Region 1008, a conservative error is introduced. That
is, the SOT Query may find occluding spans that are within the SOT Region1010, but are actually behind the Current Portion.
However, the SOT Query will never fail to find spans that actually occlude the Current Portion.

Span Sorting Rendering Method 1300

In order for the SOT Query to inadvertently find an occluding span that does not actuslly occlude the Current Portion,
the bounding box (described in the next section) of the Current Portion must overlap the bounding box of the occluding span.
Therefore, the simplest form of the Span Sorting Rendering Method 1300 assumes that bounding boxes of spans do not overlap,
thereby eliminating the need to handle occluding spans that do not actually occlude the Current Portion. While this assumption is
not practical for most rendering applications, it does simplify part of the description of the method1300. Therefore, this simpli-
fied (though not generally practical) version will be described first. In a later section, the method1300 will be expanded to pro-
cess spans with overlapping bounding boxes.

Figure 11 shows a set of fourteen spans in the same raster line (numbered Sy 1100 to S5 1113), where each span is
represented by a line segment in the x-z plane of the raster line (the y-coordinate is fixed). The visible parts of the spans are
shown as thick lines, and the hidden parts are shown as thin lines. For example,S, 1104 and S¢ 1106 are hidden, and S 1100 has
two visible portions. The spans have been sorted according to the x-coordinate location of their left endpoint. Hence, the spans
are numbered from left to right according to their Word Number Field802 assigned when they are all stored in the
SMCCAM 800. For example, span S; 1104 is stored in SMCCAM Word 900 number four, and has its left endpoint located at the
point (x41, 241) and its right endpoint located at (v4g, z4g)-

Figure 12 shows the same fourteen spans, except that each span is enclosed by a bounding box. The set of spans in
Figure 11 and Figure 12 were chosen 5o that the span bounding boxes do not overlap. The spans of Figure 12 will be used to
describe the simplest form of the Span Sorting Rendering Method 1300, the version that includes the Simplified Span Rasteriza-
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tion Method 1800 which assumes span bounding boxes do not overlap.

The Span Sorting Rendering Method 1300 is described in the context of the apparatus described herein, but can also be
performed by software on a general purpose computer. Figure 13 is the top-level method diagram of the Span Sorting Rendering
Method 1300. This method 1300 is performed by the Span Sorting Rendering Pipeline 400 of Figure 4, in the same way the
method flow diagram 300 of Figure 3 is performed by the generic 3D graphics pipeline 200.

In the Span Sorting Rendering Method 1300, scenes are generated 1302 (object locations in warld coordinates, etc.),
and within each scene, polygons are obtained 1304 for input to the Span Sorting Rendering Pipeline 400 and processed 1400.

Figure 14 shows the process polygon step1400. Included are the previously described transformation202, clip
test 204, face determination 206, lighting 208, perspective divide 212 and compute polygon parameter 402 steps. After these
steps, polygons are written into the Bucket Sort Memory 404, each according to its ygrs gy parameter.

Getting back to Figure 13, once all 1306 the polygons for a scene have been processed 1400 and therefore written into
the Bucket Sort Memory 404, each raster line is processed. The variable, R, is used to keep track of the current raster line num-
ber, and is initialized 1308 to zero. Before the first raster line can be processed, the Cumrent Polygon Memory406 must be
cleared 1310, thereby indicating that no polygons are on the current raster line. Also, the Span Memory408 must be
cleared 1312, thereby indicating that no spans are on the current raster line. These operations 1310, 1312 can be done by mark-
ing the entire contents of the memories 406, 408 as invalid. Since, at the first raster line, there are no polygons in the Current
Polygon Memory 406, the next step1600 is to transfer polygons that start in the current raster line form the Bucket Sort
Memory 404 to the Current Polygon Memory 406 and to make spans for these polygons. Begimﬁng on the second raster line
(ie., R =1), there is probably some polygons in the Current Polygon Memory 406, and spans need to be made 1500 for those
polygons.

Figure 15 is the Process Current Polygon Memory 406 step 1500 within the Span Sorting Rendering Method 1300.
Each 1502 polygon in the Current Polygon Memory 406, is read 1504, and if 1506 that polygon is not included in the current
raster line, it is deleted 1508 from the Current Polygon Memory 406 so subsequent raster lines do not need to consider it. If 1566
the polygon is included in the present raster line, then a span within the current raster line and its Span Parameters (as described
above) are generated 1510 for that polygon. Then, the Span Parameters are written 1700 into the Span Memory 408.

Figure 16 is the Process Bucket Sort Memory 404 step 1600 within the Span Sorting Rendering Method 1300. If 1602
there are more polygons to be read from the Bucket Sort Memory 404 for the current raster line, then for each such polygon:
1) the polygon is read 1604 from the Bucket Sort Memory 404; 2) the polygon is written 1606 into the Current Polygon
Memory 406; 3) the polygon has a span in the current raster line, and Span Parameters (as described above) are generated 1510
for the span; and 4) the Span Parameters are written 1700 into the Span Memory 408.

When writing 1700 Span Parameters into the Span Memory 408, a sort operation is done. The sort operation is per-
formed by the SMCCAM 800 as a query operation (Equation 6) and a special write operation, as described above. The apparatus
of the SMCCAM 800 performs this step 1700 in parallel, but it is described in the flow diagram 1700 of Figure 17 as if itis a
sequential search process. A counter, n, used as an index into the set of SMCCAM Words 900, is initialized 1702 to zero. The
flow diagram shows the query operation of Equation 6 broken down into six conditionals 1704 that test to see if the new span
should be inserted at the nth word 900. Words 900 are stepped through 1706 by incrementing # until such an insertion point is
found. When the insertion point is found, the counter n stops incrementing, and the contents of all the words fromW -1 to n
(using the counter, m) are transferred 1708 to the next word and the Span Parameters are written 1710 into word 7. A test 1712 A
for reaching the last word 900 (i.e., word W - 1) is included to detect an exception 1714 condition if there are more than a total
of W spans in the raster line, thus exceeding the total number of words900. Strategies to work within a fixed number of
words 900 are presented later in this document.

Once again retuming to Figure 13, once all the spans within the display screen at raster line R have been written into
the Span Memory 408, visible span portions are identified 1800 or 2100. One version of this portion of the method is the Simpli-
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fied Span Rasterization Method 1800, which assumes span bounding boxes do not overlap. Other versions that do not make this
assumption are the Segment Span Rasterization Method 2100 and the Trapezoidal Span Rasterization Method, described in later
sections.
Simplified Span Rasterization Method 1800

The Simplified Span Rasterization Method 1800, shown in Figure 18, maintains three sets of variables: 1) the current
left x-coordinate position, xcy , used to indicate how much of the current raster line has been rendered so far; 2) the Present Span,
Sp used to keep track of the frontmost span atxcy , including its Span Parameters xpy , Zpy , Xpg, 2R, dp ip and word number; and
3) the New Span, Sy, used to keep track of the span most recently read form the Span Memory 408 (genezally found by a query),
including its Span Parameters X\g , ZN1, ¥NR» 2NR» 9N in» 800 Word number. In the Simplified Span Rasterization Method 1800,
the Current Portion, S, is always equal to the Present Span, Sp

The rasterization method 1800 will be explained by using the set of spans in Figure 12 as an example. In the rest of this
section, the method 1800 will be followed step-by-step as the example spans are processed.

The method 1800 starts by setting 1802 x_ to zero (thereby starting at the left edge of the display screen) and declar-
ing the variables Sp and Sy to be invalid. Because Sp is invalid 1804 and there are valid 1806 spans still stored in the Span
Memory 408, a search 1808 must be done to find either the frontmost span atxcy (i.c., zero) or, if there is no span atxcy, then
find the leftmost valid span in the Span Memory 408.

The first step in this search 1808 is to do a query 1810 to find all valid spans in the Span Memory 408 that include xoy
(ie., zero). Looking at Figure 12, it is seen that there are no1812 spans at x-coordinate zero (the query 1810 finds nothing).
Because there are no spans 1812 at x-coordinate zero, the leftmost span in the Span Memory408 (ie., the first valid span
because the spans are sorted) is read 1818 thereby making Sp to be equal to S51200. There were no valid spans at
x¢y (i.e., zero), and the leftmost span does not start until xo; (left endpoint of span Sy 1200), so the range from zero to xg; does
not have any spans at all, and therefore the background is rendered 1820 from xcy, (i.e., zero) to xg; . Some rendering has been
done, so the value for xcy, is updated 1822 to become xpy_ (i.e., x5 ), indicating rendering has been done up to this point. An SOT
Query is done 1824 for the Present Span (i.e., S 1200) to find any occluding spans, and this finds all the other spans1201
to 1213 since they are all in the SOT Region of Sp 1200. The first of these found spans are read 1824, making the value of the
New Span, Sy, equal to §; 1201.

The method 1800 has not reached 1826 the right edge of the display screen (i.e.,xcp <X)pqax), both Sp and Sy are
valid 1804 and 1828, and the next step 1830 is to render the Sp (i.e., S 1200) from x¢y (i.c., Xz ) to xpy. (i-€., ;7). This render-
ing can be done because the SOT Query 1824 found the leftmost occluding span in front of S 1200, meaning any part of
S0 1200 to the left of this occluding span must be visible. This step 1830 also updates the value for xcy to be xyp (i.e., X1 ), and
also makes Sy (i.e., §; 1201) into the new value of Sp. An SOT Query is done 1832 for the Present Span (i.e., §; 1201) to find
any occluding spans, and this finds only one span, S, 1202, since it 1202 is the only span in the SOT Region of §; 1201. This
span is read 1832, making the value of the New Span, Sy, equal to S, 1202. .

The span §) 1201 is processed in a way similar to Sy 1200. The method 1800 has not reached 1826 the right edge of
the display screen (i.e., xcy, <xpmax) both Sp and Sy are valid 1804 and 1828, and Sp (Le., S; 1201) is rendered 1830 from
Xy (i.e., xyp) to xny, (i.e., x51). The value for xcp is updated 1830 to be xyp (i.e., ¥y ), and Sy (ie., S5 1202) is made into the
new value of Sp An SOT Query is done 1832 for the Present Span (i.e., S, 1202), but the query does not find any spans because
nothing occludes S, 1202, and the value of the New Span, Sy, is set to invalid.

The right edge of the display screen has not been reached 1826, Sp is valid 1804, Sy is invalid 1828, and the next
portion 1834 of the method 1800 includes a search for an abutting span for Sp An sbutting span is a span whose left endpoint is
located at the same point as the right endpoint of the Current Portion (or, for the Simplified Span Rasterization Method1800, the
Preéent Span). In Figure 12, three example pairs of abutting spans are: 1)S, 1202 and S5 1205; 2) S5 1205 and §;1207; and
3) 551206 and Sy 1209. Abutting spans occur frequently because 3D objects are generally described by a set of polygons that
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share edges. Therefore, for highly tessellated objects, n.ost spans will be part of at least one abutting span pair.

The portion 1834 of the method 1800 starts with rendering1836 Sp(ie.,S1202) from xcp (ie.xy) to
xpR (i.e., xpg). This can be done because the SOT Query did not find any occluding spans, thus proving Sp (i.., S; 1202) is not
hidden at all, and should be rendered. Also, xcy_ is set 1836 to xpg (i.e., ;). Next, a query is done 1838 to find an abutting span
for Sp (i.e., S, 1202), which finds span S5 1205. Because 1840 an abutting span was found, the abutting span, S5 1205, is
read 1846 and assigned to Sp An SOT Query is done 1848 for the Present Span (ie., S5 1205), but the query does not find any
spans because nothing occludes S5 1205, and the value of the New Span, Sy, is set to invalid.

The Present Span, S5 1205, is processed similarly to S, 1202. The right edge of the display screen has not been
reached 1826, Sp is valid 1804, Sy is invalid 1828, Sp (i.e., S5 1205) is rendered 1836 from xy (i.e., X3) to xpg (i.£. xsg), and
xcy is set1836 to xpp (i.e.. Xsp). A query is done 1838 for an abutting span, which finds span §; 1207. The abutting span,
571207, is read 1846 and assigned to Sp An SOT Query is done 1848 for the Present Span (i.e., Sy 1207), finding only Sg 1208
which is read 1832, making the value of the Sy equal to Sg 1208.

The Present Span, §; 1207 is processed similarly to §; 1201. The right edge of the display screen has not been
reached 1826, both Sp and Sy are valid 1804 and 1828, and Sp (ie. §71207) is rendered 1830 from xcy (i.e., xsg) to
xNL (i-e.. xg ). The value for xcy is updated 1830 to be xyy (i.e., xgr), and Sp is set to Sy (i.e., $1202). An SOT Query is
done 1832 for the Present Span (i.e., Sg 1208), but the query does not find any spans, and the value of the New Span, Sy, is set to
invalid.

The Present Span, Sg 1208 is processed similarly to §, 1202 and S5 1205. The right edge of the display screen has not
been reached 1826, Sp is valid 1804, Sy, is invalid 1828, Sp (i.e., Sg 1208) is rendered 1836 from xa (i.e., xg7 ) to xpg (i.e., xgg),
and xcy is set 1836 to xpg (i.e., x3r). A query is done 1838 for an abutting span, which finds span S} 1210. The abutting span,
5101210, is read 1846 and assigned to Sp An SOT Query is done 1848 for the Present Span (i.c., §;5 1210), but the query does
not find any spans, and the value of the New Span, Sy, is set to invalid.

As the Present Span, 5, 1210 is processed, the search for an sbutting span does not find such a span. The right edge bf
the display screen has not been reached 1826, Sp is valid 1804, Sy is invalid 1828, Sp (i.e., S;9 1210) is rendered 1836 from
Xcp (i.e., xgg) to xpg (i.€., X105), and xcy is set 1836 to xpp, (i.e., Xjop)- A query is done 1838 for an abutting span, but no abutting
span is found. Since 1840 no abutting span was found, a search must be done to find the frontmost span atxcy_(i.e., x,g). How-
ever, before the search is done, & query is done to invalidate 1842 all spans that are completely to the left of xy_(i.e., x;qg). This
invalidation 1842 can be done because the current raster line has been rendered up to xcy_ (i.e., x;o), and spans to the left of
xcy (i.e., xjor) Were either rendered or hidden (or some of each). The invalidation 1842 turns off the Valid Flags 816 for S, 1201
through S, 1210, thereby leaving only Sy 1200 and Sy, 1211 through S)5 1213 as validly stored spans. The value of the Present
Span, Sy, and the value of the New Span, Sy, are both set 1844 to invalid.

The right edge of the display screen has not been reached 1826, Sp is invalid 1804, there are still 1806 valid spans, and
the next part 1808 of the method includes a search for the frontmost span atxcy (i.e., x30g)- First, a query 1810 is done to find all
spans that include x¢y (i.e., Xjor), Which finds two spans: Sy 1200 and Sj; 1211. Since 1812 spans were found, these two
spans 1200 and 1211 are read 1814, the z-coordinates of the spans are computed 1814 at xcq_(i.e., X;gr), and are compared to
determine 1814 that §}, 1211 is the frontmost span. The z-coordinate computation is simplified by having the span derivative
(from the Span Derivative Field 812) available for use in extrapolating from the left eadpoint of the span. The frontmost span,
S13 1211, is made 1814 the Present Span, Sp An SOT Query is done 1824 for the Present Span (i.e., Sy, 1211), but the query
does not find any spans, and the value of the New Span, Sy, is set to invalid.

The Present Span, 5y 1211, is processed similarly to S, 1202, S5 1205, and S 1208. The right edge of the display
screen has not been reached 1826, Sp is valid 1804, Sy is invalid 1828, Sp (i.e., Sy, 1211) is rendered 1836 from xcy_(i-e., %;05)
to xpg (i.e., *11g), and xcp_is set 1836 to xpp (i.e., x);r). A query is done 1838 for an abutting span, which finds span ;5 1212.
The abutting span, S;3 1212, is read 1846 and assigned to Sp An SOT Query is done 1848 for the Present Span (i.c., S 12 1212),
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but the query does not find any spans, and the value of the New Span, Sy, is set to invalid.

The Present Span, Sy, 1212 is processed similarly to Sy¢ 1210. The right edge of the display screen has not been
reached 1826, Sp is valid 1804, Sy is invalid 1828, Sp (i.e., S5 1212) is rendered 1836 from xcy_ (i.e., %15R) to xpg (ie., Xjo8),
and xcy, is set 1836 to xpg (i.e., xj9R). A query is done 1838 for an abutting span, but no abutting span is found. Since 1840 no
abutting span was found, a query is done to invalidate 1842 all spans that are completely to the left of xcy (ie., X12R), thereby
turning off the Valid Flags 816 for Sy, 1211 and S5 1212, thereby leaving oaly Sy 1200 and S;4 1213 as validly stored spans.
The value of the Present Span, Sy, and the value of the New Span, Sy, are both set 1844 to invalid.

The right edge of the display screen has not been reached 1826, Sp is invalid 1804, there are still 1806 valid spans, and
the next part 1808 of the method includes a search for the frontmost span atxcy_ (i.e., x;5). First, a query 1810 is done to find all
spans that include x¢y_ (i.e., x2g), which finds only one span, Sy 1200. Since 1812 a span was found, it is made 1814 the Present
Span, Sp An SOT Query is done 1848 for the Present Span (i.e., So 1200), finding only S5 1213 which is read 1832, making the
value of the Sy equal to §;3 1213.

The right edge of the display screen has not been reached 1826, both Sp and Sy are valid 1804 and 1828, and Sp
(i.e., S 1200) is rendered 1830 from xcy (i.e., *12R) to Xy (i-e., %;31)- The value for xy is updated 1830 to be xyy (ie., X33,
and Sp is set to Sy (i.e., S13 1213). An SOT Query is done 1832 for the Present Span (i.e., S5 1213), but the query does not find
any spans, and the value of the New Span, Sy, is set to invalid.

The right edge of the display screen has not been reached 1826, Sp is valid 1804, Sy is invalid 1828, S, (i.e., §,5 1213)
is rendered 1836 from xcy_ (i.e., X331) to Xpg (i.e., X)3R), and xcy_ is set 1836 to xpy (i.e., X135). A query is done 1838 for an abut-
ting span, but no abutting span is found. Since 1840 no abutting span was found, a query is done to invalidate 1842 all spans that
are completely to the left of xy. (i.e., X;3R), thereby tuming off the Valid Flags 816 for Sg 1200 and S 4 1213, thereby eliminat-
ing the last valid spans. The value of the Present Span, Sy, and the value of the New Span, Sy, are both set 1844 to invalid.

The right edge of the display screen has not been reached 1826, Sp is invalid 1804, and there are 1806 no valid spans.
Therefore, the background is rendered from xcy_ (i.¢., x13R) to Xy x (i.e.,the right edge of the raster line). The entire current fas-
ter line has now been rendered, and the next raster line can be processed, as shown in the method flow diagram of Figure 13,

It is important to note that the method 1800 rendered the visible portions of the spans, and completely ignored the
spans that are totally hidden (i.e., $31203, §41204, 551206, and Sy 1209). For scenes with greater depth complexity, a larger
fraction of the spans will be ignored in a similar way, thereby providing a greater computational savings. A unique feature of this
method 1800 is the ability of abutting spans to work together to occlude spans behind them.

Another important feature of the method 1800 is the pixel coloration processing within a raster line is roughly Ppropor-
tional to the number of pixels in the raster line, rather than proportional o the number of pixels in all the spans in the raster line.
This is because hidden partions within spans are never sent to the pixel coloration process. Pixe! coloration processing is
“roughly” proportional to the number of pixels within the raster line because a pixel can be affected by two spans because, for
example, the span to the right may end within the pixel’s boundary. In this case, color from two spans are blended together to
form the final color for the pixel.

Span Interaction Types and Span Interaction Parameters

As described above, the SOT Query is a set of comparison operations simple enough to be performed in hardware by
an SMCCAM 800. However, in the general case where span bounding boxes overlap, the SOT Query will sometimes find spans
that do not occlude the Current Portion. Furthermore, the SOT Query will also sometimes find spans that intersect the Current
Portion, thus making both spans partially visible. The Segment Span Rasterization Method 2100 solves this shortcoming by cat-
egorizing the interaction between the Current Portion and a span in the SOT Region into one of many Span Interaction Types
(hereinafter abbreviated SIT), and then applying rendering rules based on the SIT. The SIT is determined from the Span Interac-
tion Parameters (hereinafter SIP) of the two spans.

As the Segment Span Rasterization Method 2100 proceeds, it 2100 maintains four spans and their associated parame-
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ters: 1) the Present Span, Sp, the frontmost span atxcq , as described above; 2) the New Span, Sy, a span in the SOT Region of Sp,
as described above; 3) the Current Portion, S¢, a subsection of the Present Span, Sp; and 4) the Saved Span, S, used as a single
depth stack for temporarily saving Sy so that more spans in the SOT Region of Sp can be read.

The nomenclature for spans, span endpoints, SIPs, and SITs is illustrated by the examples shown in Figure 19. The
Present Span, Sp 1902, has the endpoints (xpy, zp; ) 1904, 1906 and (xpg, zpg) 1908, 1910, is enclosed by a dashed oval, and is
shown as the union of a solid black line and a finely dotted line. The solid black line subsection of Sp 1902 is the Current Portion,
5¢ 1912, and has the endpoints (xcr, 2cp) 1914,1916 and (xcg, 2cr) 1918, 1920. The SOT Region 1922 catresponding to
Sc1912 is enclosed by a dashed line. The New Span, Syy1932, has the endpoints (xg,2zp)1934,1936 and
(*nR» 2nR) 1938, 1940, and is enclosed by its bounding box 1942,

The Span Interaction Parameters (i.e., SIPs) are arithmetic comparison results between the z-coordinates of S¢ 1912
and Sy 1932 at four particular x-coordinate values, specifically, the endpoints of the two spans: xy; 1934, xyp 1938, xp 1914,
and xy 1918. In detailed terms, the four Span Interaction Parameters (i.e., SIPs) are: 1) the comparison of the z-coordinate of -
Sc 1912 at xyp 1934 to 2y 1936, shown in the example as “Nonexistent” because S 1912 does not have a point at x; 1934;
2) the comparison of the z-coordinate of S 1912 at xng 1938 to zyg 1940, shown in the example as “Farther” because the point
on Sc 1912 is father (i.e., has a greater z-coordinate) than zyg 1940; 3) the comparison of the z-coordinate of Sy 1932 at
xcy. 1914 to z2¢q 1916, shown in the example as “Farther” because the point on Sy 1932 is father (i.c., has a greater z-coordinate)
than z¢q, 1916; and 4) the comparison of the z-coardinate of Sy; 1932 at xcg 1918 to 2o 1920, shown in the example as “Nonex-
istent” because Sy 1932 does not have a point at xcg 1918. Each of the four SIPs can take on one of the values: 1) “Nonexistent”
(abbreviated “Non™); 2) “Farther” (abbreviated ‘“Far”); 3) “Nearer” (abbreviated “Near™); or 4) “Equal”. In the example of
Figure 19, the four SIPs are Non, Far, Far, Non, as shown in the figure. This particular set of four is SIT 23, causing invocation of
Rule 4, as will be described later in this document.

The SIPs were chosen so s to be easy to compute, avoiding expensive computations such as division. The computa-

tion of z-coordinates used in the comparison is done by:

z-coordinate of Sq at xy; =z + (X = Xcp) de

z-coordinate of Si at xyp =z + (Xng = Xcr) dc Q10
z-coordinate of Sy at xop = 2y + (X —-XNL) dy

Figure 20 is a listing of all 49 possible SITs. For example, Figure 20C illustrates SIT 3, showing three examples of a
Sc paired with an Sy, where the SIPs are Near, Equal, Non, Non. Each possible combination of SIPs correspond to one SIT.
When a particular SIT is encountered during the Segment Span Rasterization Method2100, one of several rules is invoked, and
each SIT in Figure 20 identifies the rule it invokes. Some SITs, such as SIT 19 and SIT 22, cannot ever be encountered by the
method 2100, therefore, no rule is invoked, and the tag “impossible” is shown in Figure 20.

Segment Span Rasterization Method 2100

The Segment Span Rasterization Method 2100, shown in Figure 21, processes spans that are represented by line seg-
ments (as in Figure 7A). This method can be utilized within Span Sorting Rendering Method 1300, shown in Figure 13. In this
section of the document, the method flow diagrams of Figure 21 through Figure 26 will be described in very general terms. In the
next section, an complex set of example spans is used to describe the step-by-step functioning of the method2100.

The Segment Span Rasterization Method 2100 starts by initializing 2102 and 2104 variables. The method 2100 calls
sub-methods, called Rule 12200 through Rule 5 2600. Every rule considers: 1) what part of S should be rendered, if any; 2) the
updating of Sp and/or Sc; 3) updating of Sg; 4) invalidation of spans stored in the Span Memory 408; 5) doing an SOT Query;
and/or 6) updating of Sy
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Rule 12200 (shown in Figure 22) is invoked if Sp is invalid. It 2200 searches for the frontmost span atxcy , makes the
frontmost span Sp, performs an SOT Query, and updates Sy.

Rule 2 2300 (shown in Figure 23) is invoked if Sc has no Potentially Occluding Spans remaining. Therefore, it2300
renders the Present Span, Sp, from xcy, to xcg. Then, Sc is set to, in order of precedence: 1) thie Saved Span, Sg; 2) an Abutting
Span; or 3) the first valid span after invalidation of all spans completely to the left of xcp. In any case, x is set to xcg, and Sg is
invalidated.

Rule 3 2400 (shown in Figure 24) is invoked if the SIT is such that the Current Portion, S, is occluded at x)j , but is
visible from xcy, to xyy . Therefore, render the Present Span, Sp, from Xy, to Xy . Then, make the New Span, Sy, the Present
Span and begin processing it. Since S is not being rendered to xg, invalidate the Saved Span, Sg.

Rule 4 2500 (shown in Figure 25) is invoked if the SIT is such thatSc intersects Sy; and the point of intersection is vis-
ible. The intersection point, at (xj, zy), between the Current Portion, S, and the New Span, Sy is computed. Since S¢ is occluded
to the right of xj, S¢ is modified by changing xcg to x1. The New Span, Sy, is stored as the Saved Span, S, in case it is needed
later under Rule 1 2200. Then, the next Potentially Occluding Span is read and made Sy.

Rule 5 2600 (shown in Figure 26) is invoked if the Current Portion, S¢, occludes the New Span, Sy, such that none of
Sn is visible from xcy to xcg. Therefore, Sy is discarded, and the next Potentially Occluding Span is read and made Sy. Since S¢
is not being rendered when this rule is applied, leave the status of the Saved Span, Sg, unchanged.

Detailed example of the Segment Span Rasterization Method 2100

In order to fully describe the Segment Span Rasterization Method 2100 in a step-by-step fashion, an example set of
fifteen spans, shown in Figure 27, is used to illustrate how the method 2100 works. The spans in this example were chosen so as
to exercise all parts of the Segment Span Rasterization Method 2100. The example, when compared to typical raster lines in typ-
ical scenes, is abnormally complex due to the large fraction of overlapping bounding boxes and intersecting spans. As each step
in the Segment Span Rasterization Method 2100 is described, the corresponding reference designators in the method flow dia-
grams are listed at the beginning of the step description. Within a step description, equations for query operations are first shéwn
as they appear in the method flow diagrams, then, on a second line, the same equation is shown with all its variables substituted
by values from the example of Figure 27. Also within a step description, assignment statements will be cascaded (with multiple
“=" signs) showing how to arrive at the fully substituted variables.

For the example of Figure 27, when the Segment Span Rasterization Method 2100 begins, there are fifteen valid spans
in the SMCCAM 800, designated S, through S, 4. These spans are stored in SMCCAM Waords 800 0 through 14, and therefore
each have (F,y = 1), indicating those SMCCAM Words 900 have valid contents. The rest of the SMCCAM Words 900, namely
words 15 through W - 1, each have (F W= 0), indicating those SMCCAM Words 800 have invalid contents. Hence, at the start
of the Segment Span Rasterization Method 2100, the Valid Flag Word 840, Fy; designates the set of valid spans, and this set is
not empty.

For the example set of fifteen spans shown in Figure 27, the step-by-step processing using the Segment Span Raster-
ization Method 2100 is:

1) 2102 The left x value of the Current Portion, x¢y, indicates how far the rendering has proceeded along the present
raster line. Hence, the start of a raster line causes setting (xq_ = 0). The left z value of the Current Portion, z¢y , is
set to infinity to allow any span to be in front of the background. The depth location of the background is
considered to be at infinity. The background is not composed of polygons, and for may applications, is set to the
color black. The right x and y values of the Current Portion, xcg and xcg, are set to “invalid” because there is no
valid Present Span, Sp With assignment statements, this is described as:
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xoL = 0; XcR = iﬁvalid;
2oy = infinity; 2cg = invalid; (EQ11)

Zop = infinity;

2) 2104 The data within registers for storing span information external to the SMCCAM800 (i.e., Sp Sy, and Ss) are

also designated as invalid.
Sp = invalid;
Sy = invalid; (EQ12)
Ss = invalid;

3) 2106, 2108, and 2200 Because the Present Span, Sp, is not valid and Fy is not empty (indicating that at least some
spans are valid), Rule 1 is invoked. Here, Rule 1 is used to search for the first span to make the Present Span,Sp
3A) 2202 Do a query to find all valid spans that could nﬂ'ectﬁnecmentrutalimntxm_(i.e,u

x coordinate uro). The query performs, in each SMCCAM Word 800:
Frq = FayA (. S3¢p)

13
Foq = Fay A (£,,S0) EQ13)

This query does not find any spans, and therefore, the setF, is empty.

3B) 2204, 2206, and 2208 Because F, is empty and Sp is not valid, there must not be  valid span that
could affect the current raster line at xcq . Therefore, the first span in Fy is read and made the Present
Span, Sp This read operation sets the following values:

Sp = read(n) = 0;

Xpp, = read(x) = x5 ; xpp = read(xp) = xop; E014)
Zp = read(z) = Zops 2pg = read(zp) = Zops
dp = read(d) = d; ip = read (i) = iy

Reading the first span from Fy yields the leftmost valid span, Sy, because the spans are stored in the
SMCCAM 800 in a left to right ordering.

3C) 2210 Because there is not a valid span that could affect the current raster line atxcy (i.e., at x coordinate
zexo). and the leftmost valid span does not start until xp; (i.e., xg ), the background must be rendered
from xcq_ to xpy (i.e., from O to xgp ).
As possible alternate methods, rendering of the background can be avoided if: 1)it is know that
polygons will always cover 100% of the viewing plane; or 2) the raster buffer is initialized with the
background colors prior to processing the first span in each raster line.

3D)  2212There is now a Present Span, Sp (i.¢., Sg), and the Current Portion, S, is set equal to Sp by setting:

*cL = *pL = %oL} Xcr = *pr = ¥R’
ZcL = %pL = 2ot Zcr = 2pR = i (EQ15)
cF = Max(Zpy, Zpg) = Max(Zgp, Zpp) = Zy;

The Current Portion, Sc, is equal to S. The Far Z Value for the Current Portion, zcg, is set to zy;_ by the
“find the maximum” function.

3E) 2214 There is now a defined Present Span, Sp (i.c., Sp), and a defined Current Portion, Sc (e, Sp) 508
search is done for spans that could possibly occlude the Current Portion, So (ie., Sg). The Span
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Occluding Test query performs, in each SMCCAM Word 900:

FnQ =F yA (n2Sp) A (x; <xcp) A (x2>%c1) A (2, <2cp) V (2,3 <2cp) ]

F,.Q = Foyn (n#0) A (x,p <x3p) A (x,2>%5) A [(z.L<zm_) v (2,g<2)]

3F)

(EQ16)

This query creates the set of all Potentially Occluding Spans for the Current Portion, S¢ (i.e., Sp). The
query finds S; through S 4. In general, queries used for search operations include Fyy in the conjunction
in order to prevent invalid data stored in a SMCCAM Word 800 from causing a bit in F from being
mistakenly asserted.

2216 and 2218 Because F, is not empty, there must spans that possibly occlude the Current Portion,
Sc (i.e., Sp). Therefore, the first span in F is read and made the New Span, Sy. This read operation sets

the following values:
Sy =read(n) = 1;
Xy = read (x) = x1s Xyg = read(xp) = ey
. (EQ17)
N = read(zL) =2y INg = read(zp) = 23
dy = read(d) = d;; iy = read(i) = ij;

Reading the first span in F, yields Sy, the first span in the set. The read process also deletes S, from Fq
by setting (F 1Q= 0).

4) 2109, 2106, 2110, and 2112 The right edge of the display screen has not been reached (i.e.,xcp < Xp,,) and both
the Present Span, Sp (i.e., Sg), and the New Span, Sy (ie.,S;), are valid. Therefore, the Span Interaction
Parameters for these two spans are computed, and are found to be: (Far, Non, Non, Far).

5) 2114 The Span Interaction Type is determined from the Span Interaction Parameters, and turns out to be Type 14.

6) 2116 and 2400 Because the Span Interaction Type is Type 14, Rule 3 invaoked to process S |

6A)

6B)

6C)

6D)
6E)

2402 The Current Portion, S¢ (i.e., Sp), is hidden starting at x)y_(i.¢., x;1), but is visible to the left of
XL (i-e., X;p ). Therefore, render the Present Span, Sp (i.e., So), from xcy_to 2y (i.e., from xg; to x;p).
2404 The processing of Present Span is completed (at this point), so make Sy (i.¢., ;) into the Present
Span, Sp, by setting:

Sp=Sy=1
*pL = *NL = *ud *PR = *NR = 1R} EQ18)
ZpL T L T G ZpR = INR = AR}
dp=dy=dy; fp=iy=ij
2406 The Current Portion, S, is set equal to Sy by setting:
*cL T *nL = *1ui *cr = N = g’
ZeL = 2NL < 4u %crR = 2NR T %13 (EQ19)

cr = MaX (2yp, 2ng) = MaX (31, 215) = 2y

Altemnatively, the Current Portion, Sc, could be set to the Present Span, Sp, (rather than Sy;)because it has
the same values. However, this alternate way is not desirable for hardware implementation because this
step and the previous step could not be done in parallel.

2408 The Saved Span, Sg, is invalidated, but at this point in this example, it was already invalid.

2410 There is a new Current Portion, S¢ (i.e., §}), s0 a search is done for spans that could possibly
occlude it. The Span Occluding Test query performs, in each SMCCAM Word 900:
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FnQ = F yA (n#5p) A (x, <xcp) A (x,p >’xCL) Al(zg <2cp) v (z,g<3cp)]

FiusFaya#l) A (3 <xp) A(xg>2) A (2 <21) v (2,3<2,1)] EQ20)
This query creates the set of all Potentially Occluding Spans for the Current Portion, S¢: (i.e., S;). The
query finds S and S, through S 4.

6F) 2412 and 2414 Because Fg is not empty, there must be spans that possibly occlude the Current
Portion, S¢ (i.e., Sy). Therefore, the first span in F is read and made the New Span, Sy. This read
operation sets the following values:

Sy =read(n) = 0;

xyp = read(x;) = x4 X = read (xp) = X508

NL L OL NR R O0R (EQZI)
Zyy = Tead(z) =zy; 2zg = Tead (zp) = zop;

dy = read(d) = dy; iy = read (i) = iy~

Reading the first span in F yields S, the first span in the set. The read process also deletes S, from Fq
by setting (FOQ = 0).
7) 2109, 2106, 2110, and 2112 The right edge of the display screen has not been reached (i.¢., ¢y < Xg,,) and both
the Present Span, Sp (i.e., §), and the New Span, Sy (i.e., So), are valid. Therefore, the Sban Interaction
Parameters for these two spans are computed, and are found to be: (Far, Non, Far, Non).
8) 2114 The Span Interaction Type is determined from the Span Interaction Parameters, and turns out to be Type 23.
9) 2116, 2118, and 2500 Because the Span Interaction Type is Type 23, Rule 4 is invoked to processS;:
9A) 2502 The Current Portion, S¢ (i.e., S}), and the New Span, Sy (i.e., So), interact to cause S to transition
from being visible to being hidden somewhere along its length: at point of intersection between
Sc (ie., S;) and Sy (i.e., Sg). The intersection is computed, and found to be at (x, z;) 2702, as shown in
Figure 27.

9B) 2504 The Current Portion, S (i.., S}), is shortened by changing its right end point to the intersection
point. The right endpoint of S is modified by setting

*cr = ¥

Zer =21 (EQ22)
cp = MaX (e, 2) =20 =243

The Present Span, Sp, is still equal to all of S;.
9C) 2506 The New Span, Sy (i.e., So), is saved as the Saved Span, Ss. This is done because Sg will be
needed later if Sp (i.e., 5}) is rendered to x;.

§g = SN=0;
XsL = *NL = %pL *sR = *NR = %or} EQ23)
ZgL = INL = oL ZsR = INR = ZpR}
dg = dy = dy; is = iy = ig;

The portion of the Saved Span, S, to the right x; abuts S¢ at the x coordinate x;. If, later in the method,
S is rendered to xj, then Sg will become the Present Span, Sp
9D) 2508 The Current Portion, S¢ (i.e., Sy from x;; o x;) has been changed, 3o a search is done for spans

that could possibly occlude it. The Span Occluding Test query performs, in each SMCCAM Word 900:
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FnQ = FAVAF,'QA (n#8p) A (x,p <xcg) A (X5 >3cp) Al (2 <2cp) V (z,g<2cp)]

A4
Fo= F'IVAE.QA (1) A (xp<xp) A(xp>x) A2 <2) v (2,5<2;)] ®Q29)

This query creates the set of all Potentially Occluding Spans for the Current Portion, S (i.e., §; between
5 x)3, and xp). The query finds only S,. The conjunction performed by the query includes Fq to prevent any
previously read (and discarded) Potentially Occluding Span of §; from being re-included into Fqand
needlessly reprocessed.
A variation of this method could skip this step and continue reading from the existing Fq rather than
doing a query to eliminate spans from F. This variation saves execution time by eliminating the query,
10 but possibly increases execution time by failing to reduce the number of spans inFg.
9E) 2510 and 2512 Because Fq is not empty, there must be spans that possibly occlude the Current
Portion, S¢ (i.e., § from xyy_ to xy). Therefore, the first span in Fq is read and made the New Span, Sy.
This read operation sets the following values:

Sy = read(n) =2;
15

Xy = read(x;) = x5 Xyr = Tead (xp) = Xop;
(EQ25)
Zy = read(z) = Zo1s Zyg = read(zg) = Zopi
dy = read(d) = dy; iy = read (i) = iy;

Reading the first span in F yields S, the first (and only) span in the set. The read process also deletesS,
20 from F by setting (FQQ = 0). making Fq empty.
10) 2109, 2106, 2110, and 2112 The right edge of the display screen has not been reached (i.e.,xcp, < Xp,;) and both
the Present Span, Sp (i.e.,S;), and the New Span, Sy (i, S,), are valid. Therefore, the Span Interaction
Parameters for these two spans are computed, and are found to be: (Far, Non, Non, Near).
11) 2114 The Span Interaction Type is determined from the Span Interaction Parameters, and turns out to be Type 13.
25 12) 2116 and 2400 Because the Span Interaction Type is Type 13, Rule 3 is invoked to continue processing Sy
12A) 2402 The Current Portion, S¢ (i.e., §; between xy; and xp), is hidden starting at xyy (ie., x5 ), but is
visible to the left of 2y, (i.e., xr ). Therefore, render the Present Span, Sp (i.e., §y), from xcg to xyp.
(ie., from xj1 to xg7).
12B) 2404 The processing of Present Span is completed (at this point), so make Sy (i.e., §,) into the Present
30 Span, Sp, by setting:

Sp=8y=12
Xpr = Xy = X Xpp = Xnp = Xops
PL T *NL T %o PR = *NR = F2p}
. .. (EQ26)
ZpL T 2N < 21t Zpr = INR = Z3p
dp = dy = dy; ip = iy = iy;
35
12C) 2406 The Current Portion, Sc, is set equal to Sy by setting:
*oL = ANL T Faus *crR = *NR = Fori
L = I = Zaut Zcr = Ing = Zpd (EQ27)
cF = MaX (2np, 2yg) = Max (2, 25p) = 213
40

12D) 2408 The Saved Span, Sg, is invalidated. In Step 9C, the values for S were set to those of Sy, but these
are now labelled invalid.
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Sg = invalid; (EQ28)

12E) 2410 There is a new Current Portion, S (i.e., S2), 50 & search is done for spans that could possibly
occlude it. The Span Occluding Test query performs, in each SMCCAM Word 900:

FnQ =F yA (n#Sp) A (*,p.<xcg) A (x,g>%cp) A [(z“L<zCP) v (an<zCF)]
F,.Q =FyA(n#2) A (x_L<xm) A(xg>X) A [(z‘L<zzL) v (z_R<zzL)]

(EQ29)

This query creates the set of all Potentially Occluding Spans for the Current Portion, Sc (i.e., S3). The
query finds Sy, S5, and S,.

12F) 2412 and 2414 Because Fq is not empty, there must be spans that possibly occlude the Current
Portion, S¢ (i.., S,). Therefore, the first span in Fy is read and made the New Span, Sy. This read
operation sets the following values:

Sy =read(n) = 0;

Xy = r1ead(x;) = X,y Xap = read (x,) = x50;

NL L 0L NR R OR (EQ30)
zy = read(z) = ZoLs Ing = read(zp) = Zogs

dy = read(d) = dy iy = read (i) = ips

Reading the first span in Fy, yields So, the first span in the set. The read process also deletes S from Fq
by setting (FOQ = 0).

13) 2109, 2106, 2110, and 2112 The right edge of the display screen has not been reached (i.e., Xcy < Xg,,) and both
the Present Span, Sp (i.e., S,), and the New Span, Sy (i.e., Sg), are valid. Therefore, the Span Interaction
Parameters for these two spans are computed, and are found to be: (Non, Non, Far, Far).

14) 2114 The Span Interaction Type is determined from the Span Interaction Parameters, and turns out to be Type 32.

15) 2116, 2118, and 2600 Because the Span Interaction Type is Type 32, Rule § is invoked to processS,.
15A) 2602 and 2604 The New Span, Sy (i.e., So), is hidden within the x axis projection of Sc Gie. Sy).

Therefore, Sy (i.e., Sp) is discarded. Because F, Q is not empty, there must be other spans that possibly
occlude the Current Portion, S (i.e., S;). Therefore, the first span in F, 15 read and made the New Span,
S- This read operation sets the following values:

Sy =read(n) = 3;

Xy = read(xp) = Xa1s XN = read (xp) = X3ps
(EQ31)
I = read(zL) =243 Zyg = read (zg) = Z3Rs
dy = read(d) = dy; iy =read(i) = iy

Reading the first span in Fy, yields S, the first span in the set. The read process also deletes S from Fq
by seting (Fsq = 0). S is still the Present Span, Sp. The status of the Saved Span, S, is left unchanged,
thereby remaining invalid.

16) 2109, 2106, 2110, and 2112 The right edge of the display screen has not been reached (i..xcy. < Xgyay) ard both
the Present Span, Sp (i.e., §5), and the New Span, Sy (ie.,S3), are valid. Therefore, the Span Interaction
Parameters for these two spans are computed, and are found to be: (Far, Non, Non, Near).

17) 2114 The Span Interaction Type is determined from the Span Interaction Parameters, and turns out to be Type 13.

18) 2116 and 2400 Because the Span Interaction Type is Type 13, Rule 3 is invoked to continue processingS,.
18A) 2402 The Current Portion, Sc (i.e., S3), is hidden starting at xy (i.e., x31), but is visible to the left of

N (1.6, %31 ). Therefore, render the Present Span, Sp (i.¢., 53), from xcy to 2y (i.e., from x5 to x5y ).
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2404 The processing of Present Span is completed, so make the New Span, Sy, (i.e., S3), into the Present
Span, Sp, by setting:

Sp=Sy=3
*pL = *NL = %31 *pr = *NR = T3R5
i . (EQ32)
ZpL = INL = 2310 Zpr = INR T 3p
dp = dy = dj; ip = iy = iy
2406 The Current Portion, S, is set equal to Sy (i.e., S3) by setting:
*cL = ANL = %31 *crR = *NR = ¥3Ri
ZcL = 2NL = %L 2cR = INR = IR} (EQ33)
CF = MaX (2yp, 2ng) = MaX (237, 25p) = 2313
2408 The Saved Span, S, is invalidated, but it was already labelled invalid in a previous step.
Sg = invalid; (EQ34)

2410 There is a new Current Portion, Sc (i.e., §3), 50 a search is done for spans that could possibly
occlude it. The Span Occluding Test query performs, in each SMCCAM Word 800:

Foyn (n#8p) A (x,; <xcp) (x,r>xc0) A (2, <20p) V (2 <20p)]
v A RFp) ARX, <XcR) A p>XeL aL < 2CF R <ZCF EQ35)

This query creates the set of all Potentially Occluding Spans for the Current Portion, S¢. (i.e., S3). The
query finds only . _
2412 and 2414 Because F is not empty, there must be spans that possibly occlude the Current
Portion, S¢ (i.e., §3). Therefore, the first span in Fy is read and made the New Span, Sy. This read
operation sets the following values:

Sy = read(n) = 0;

Xy = read(x) = x5 3 x\g = read (xp) = xgp; €Q36)
2 = read(z) =z;; Ing = read(zp) = zpg;
dy = read(d) = d; iy = read (i) = i

Reading the first span in F() yields Sy, the first (and only) span in the set. The read process also deletesS,
from Fq by setting (Foq =0). The read process leaves set F empty.

19) 2109, 2106, 2110, and 2112 The right edge of the display screen has not been reached (i.excp < Xpyy) and both
the Present Span, Sp (i.e., S3), and the New Span, Sy (i.e., Sg), are valid. Thezefore, the Span Interaction
Parameters for these two spans are computed, and are found to be: (Non, Non, Far, Far).

20) 2114 The Span Interaction Type is determined from the Span Interaction Parameters, and turns out to be Type 32.
21) 2116, 2118, and 2600 Because the Span Interaction Type is Type 32, Rule 5 is invoked to processS;.

21A)

2602 and 2606 The New Span, Sy (i.e., So), is hidden within the x axis projection of S¢ (i.e., S3).
Therefore, Sy (i.e., Sp) is discarded. Because F is empty, there must be no other spans that possibly
occlude the Current Portion, S¢ (i.e., §3). Therefore, the New Span, Sy, is labelled as invalid.

Sy = invalid; (EQ37)

A read operation is not done. S is still the Present Span, Sp The status of the Saved Span, S, is left
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unchanged, thereby remaining invalid.
22) 2109, 2106, 2110, and 2300 Because the right edge of the display screen has not been reached (i.e.,xcr < Xpqz)

and also because Sp is valid and Sy is not valid, Rule 2 is invoked to continue processing S3.

22A) 2302 The Current Portion, S¢ (i.e., S3), must be completely visible. Therefore, render the Present Span,
Sp (ie., §3), from x¢y to xc (ie., from xgp to x3p).

22B) 2304 and 2306 Because the Saved Span, Sg, is not valid, there was not an intersecting span that
reduced the size of S¢. Therefore, a query is done to Jook for an Abutting Span. The query performs, in
each SMCCAM Word 900:

Fpq = Fayn (5, =Xcp) A (2, = 2¢p)

Faq= Faun (5, =23p) A (2 =23p)

(EQ38)

This query creates the set of all Abutting Spans for the Current Portion, S (i.e., S3) and stores them in
Fg- The query finds only §;.

22C) 2308 and 2310 Because F, is not empty, there must be an Abutting Span. Therefore, the first span in
Fq is read and made the Present Span, Sp This read operation sets the following values:

SP =read(n) = 7;

xpp = read(x;) = xq;; xpg = read(xp) = Zyp
(EQ39)
zpp = read(zp) = zyp; Zpp = read(zy) = Zops
dp = read (d) = d,; ip = read (i) = ip;

Reading the first span in F yields S, the first (and only) span in the set. The read process also deletes S,
from Fg by setting (F Q= 0). The read process leaves set Fg empty.
22D) 2312 The Current Portion, Sg, is set equal to Sp (Le., S7) by setting:

XcL = *pL = ¥7L0 *cR = *pr = ¥pp}
2oL = 2pL = 2918 ZoR = Zpg = Zpp; (EQ40)

CcF = Max (Zpp, 2pg) = Max (271, 255) = Zppi

This step can be done concurrently with Step 22C.
22E) 2314 There is a new Current Portion, S¢. (i.e,, §3), 50 a search is done for spans that could possibly
occlude it. The Span Occluding Test query performs, in each SMCCAM Word 800:

T3

"Q = F,yn (n#8p) A (x,p <Xcp) A (X2 >Xc1) A [(z.L<zCF) v (2,g<zcp)]

F,.Q =Fya(zT) A (3 <Xp) A (2,2 >%7) A [(zgp<2p) v (z,g<2p)]

(EQ41)

This query creates the set of all Potentially Occluding Spans for the Current Portion, S¢ (i.e., S7). The
query does not find any spans, so Fq) is empty.

22F) 2316 and 2318 Because Fy, is empty, there must be no spans that possibly occlude the Current Portion,
Sc (i.e, Sy). Therefore, the New Span, Sy, is labelled as invalid.

Sy = invalid; (EQ42)

A read operation is not done. S is still the Present Span, Sp
23) 2109, 2106, 2110, and 2300 Because the right edge of the display screen has not been reached (e, xop < Xpyy)
and also because Sp is valid and Sy is not valid, Rule 2 is invoked to process S-.
23A) 2302 The Current Portion, S¢ (i.¢., S7), must be completely visible. Therefore, render the Present Span,
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Sp (i.e., §7), from xoy to xcg (ie., from xg7 to x73).
23B) 2304 and 2306 Because the Saved Span, S, is not valid, there was not an intersecting span that
reduced the size of Sc. Therefore, a query is done to look for an Abutting Span. The query performs, in
each SMCCAM Word 900:

FuQ = an" (an = xCR) A (ZIIL = ZCR) (EQ43)

Fiq = Fay A (3,0 = %3p) A (3, = 23p)
This query creates the set of all Abutting Spans for the Current Portion, S¢ (i.e., S7) and stores them in
F. The query does not find any spans, so Fgq is empty.
23C) 2308 and 2320 Because Fq is empty, there is not an Abutting Span. All spans completely to the left of
XcR (ie., x7g) must be hidden, so they are declared invalid. This is done by a query that performs, in
each SMCCAM Word 900:

Foy = Foy A (x,2>3cp)

4
Fn\; = FIIVA (IAR>x7R) o4y

This query reduces the number of valid spans by reducing the spans in set Fy from 15 to 10. At this
point, Fy consists of S, §;, S¢, and Sg through S .
23D) 2322 There is neither a valid Present Span, Sp, nor a valid New Span, Sy. Hence, both are labelled as

invalid.
Sp = invalid;
- (EQ45)
Sy = invalid;
23E) 2324 The Current Portion, Sg, is set equal to:
XoL = XcR = Xqp Xcg = invalid;
z¢p = infinity; zog = invalid; (EQ46)

2cp = infinity;

24) 2109, 2106, 2108, and 2200 Because the right edge of the display screen has not been reached (i.e., xor < Xgar)
and also because the Present Span, Sp, is not valid and Fy is not empty (indicating that at least some spans are
valid), Rule 1 is invoked. Here, Rule 1 is used to search for the frontmost span atx,g. When found, this frontmost
span is processed as the Present Span, Sp
24A) 2202 Do a query to find all valid spans that could affect the current raster line atxcy (ie., x7R). The

query performs, in each SMCCAM Word 900:

FAQ = FAV A (qu stL)

Fag = Fav A (x,.S373)

(EQ47)

This query finds So, S, S¢, and Sg. The query operation could include z coordinate comparisons that
. check for values less than zcg which has been set to infinity.
24B) 2204 and 2222 Because Fq is not empty, there must be at least one span that could affect the current

raster line at xcy (i.e., 7g). Therefore, the first span in F is read and made the New Span, Sy. This read
operation sets the following values:
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Sy = read(n) = 0;
Xy = read(xp) = x4 3 XNR = Tead (xp) = x4p; EQ48)
2y =read(z;) = zo7; 2y = read(zg) = ZoRs
dy = read(d) = d; iy = read (i) = iy

Reading the first span yields the leftmost span in F, which is So. The read process also deletes S, from
F by setting (FoQ = 0).
2224 The z value for the New Span, Sy (i.e., So), at the x coordinate xcy_ (i.e., %;g) is computed as Ziemp-

Ziemp = INLt (FoL—*np) dn = ZoL + (X3 - Xg) dp (EQ49)

The position (¥7g, Zyemp) 2704 is shown in Figure 27.
2226, 2228, and 2232 The computed value, Ziepy, is less than zey (ie., infinity), so make the New
Span, Sy (i.e., Sp), into the Present Span, Sp, by setting:

Sp=Sy=0
X = X = Xn1 s X = X, = Xons
PL = *NL = %oL’ PR = *NR = %oR’
_ o _ o (EQ50)
2pL = INL T 4oL ZpR = INR T ZoR!
dP=dN=do; ip = iy = iy

2236 The Current Portion, S, is set to the portion of the Present Span, Sp (i.e., Sg) to the right of
xcy (i.e., x7r) by setting:
*cr = *NR = oR’
2cL = Ziemp? ZcR = 2NR T Zow’ (EQ51)

Zcp = Max (ztemp' zNR) = max (zump’ ZOR) = Zmnp;

2237 and 2238As stated above, the objective of this part of the method is to find the frontmost span at
xcy (i.e, ¥7g). At X (ie., X7R), the z coordinate of the Present Span, Sp (i.e., Sp), is equal to Ztemp:
Therefore, any span in front of Sp (i.¢., Sg) atxcy_ (i.e., x7g) must be at least partially located closer to the
observer than zyn,. The set Fg is not empty and includes all the candidates for frontmost span at
Xy (i.e.,, x7g), and some of these candidates maybe eliminated with the query:

FAQ = F‘VAF.QI\ [Gyp<zop v (z,g<zcp)]

FIIQ = FnV A F,.Q A [ (zuL < zump) v (ZAR < ztemp) ] (EQ 52)

This query operation keeps candidate spans that have either endpointz coordinate less than Ziemp. After
the query, Fq contains only S.

A variation of this method could skip this query to save ﬁe, but does not delete spans hidden by
Sp (i.e., Sp) at xcy (i.e., x7R), and so must read all the spans that could affect the current raster line at
X (i.e., x7g). If the depth complexity is small, then this variation would yield a net savings. However,
for large depth complexity, the time saved by eliminating candidate spans would outweigh the time spent
doing the query operations. Hence, the method choice depends on the expected depth complexity of the
scene.

To avoid making an a priori assumption about scene complexity, the SMCCAMS800 could include a
mechanism for determining the depth complexity atxcy, by counting the number of spans in the set F Q
If the number of spans in Fy) is small, the query operation of this step is skipped, and each spaninFg is
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read. If the number of spans in Fy is sufficiently large, the query operation is not skipped, and some
spans in Fg are deleted, and a net saving is achieved.
2204 and 2222 Because F is not empty, there must be at least one more candidate span that could be
frontmost atxcy (i.e., xr). Therefore, the first span in Fy is read and made the New Span, Sy. This read
operation sets the following values:

Sy =read(n) = §;
Xy = read(x;) = Xgi g = read (xl) = Xgps EQ53)

Zyy = read(zp) = zg; Zyg = read(zg) = z4p;
dy = read(d) = dg; iy = read (i) = ig;

Reading the first span yields the only span in Fg, Sg. The read process also deletes Sg from Fq by setting
(F 8Q= 0). The read process leaves set F empty.
2224 The z value for the New Span, Sy (i.e., Sg), at the x coordinate xy_(i.e., %;g) is computed as Hemp:

Ziemp = INL ¥ (XYoL =N N = Zg + (Xpp— %) dg (EQ34)

The position (¥7r, Zemp) 2704 is shown in Figure 27.

2226, 2228, and 2232 The computed value, 2z, is less than zy (i.e., 2 coordinate of Sy at xp,
computed aS Zyr,p in Step 24C), so make the New Span, Sy (i.e., Sg), into the Present Span, Sp, by
setting:

Sp=Sy=8
Xpy = Xy = Xgrs Xpp = Xp = Xgos
PL = *NL T XL PR = *NR = %R’
. _ . (EQ55)
ZpL = INL < Zgpt 2pRr = INR T 2R} :
dP=dN=da; ip=iN=i8;

2236 The Current Portion, S, is set to the portion of the Présent Span, Sp (i.e., Sg) to the right of
xcy (i.e., x7g) by setting:

*CrR = *NR = %gRi
2cL = Ztemp’ 2CR = MR T 4R (EQ56)
Zep = MAX (2o INg) = MAX (2 Z5p) = Zgps

2237, 2204, 2206, and 2214 Because Fq is empty and Sp (i.e., Sg) is valid, a search is done for spans
that could possibly occlude the Current Portion, S¢,, (i.e., Sg to the right of x7z). The Span Occluding
Test query performs, in each SMCCAM Word 900:

Foyn(n#5p) A (x,p<xcp) A (*,z>%cp) A “an< Zep) V (g <zcp)l

Foun (n#8) A (3, <xgp) A (x,p > %9p) A [(2 <2gp) V (2, < Zgp) ]

(EQ5T)

This query creates the set of all Potentially Occluding Spans for the Current Portion, Sc (i.e., Sg to the
right of x4 ). The query finds S; and Sy.
2216 and 2218 Because Fy is not empty, there must spans that possibly occlude the Current Portion,
Sc (i.e., Sg to the right of x;g). Therefore, the first span in F is read and made the New Span, Sy. This
read operation sets the following values:
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Sy = read(n) = 0;
xyp = read(x;) = x5 = read (x5) = X;p;
NL L oL *NR R oR (EQ58)
Zyy = read (zL) = Zo1s 2y = read (zR) = Zop}
dy = read (d) = dy; iy = read (i) = ig;

Reading the first span in F yields Sy, the first span in the set. The read process also deletes S from Fq
by setting (FoQ = 0).
25) 2109, 2106, 2110, and 2112 The right edge of the display screen has not been reached (i.e., Xy < Xps) and both
the Present Span, Sp (ie., Sg), and the New Span, Sy (ie., Sg), are valid. Therefore, the Span Interaction
Parameters for these two spans are computed, and are found to be: (Non, Non, Far, Near).
26) 2114 The Span Interaction Type is determined from the Span Interaction Parameters, and turns out to be Type 31.
27) 2116, 2118, and 2500 Because the Span Interaction Type is Type 31, Rule 4 invoked to process Sg:
27A) 2502 The Current Portion, S (i.e., Sg to the right of x;3), and the New Span, Sy (i.e., Sp), interact to
cause Sc to transition from being visible to being hidden somewhere along its length: at point of
intersection between Sc (i.e., §g to the right of x7z) and Sy (i.e., Sp). The intersection is computed, and
found to be at (x}, z;) 2708, as shown in Figure 27.

27B) 2504 The Current Portion, S (i.e., Sg to the right of x;g), is shortened by changing its right end point to
the intersection point. The right endpoint of S¢ is modified by setting

*cr = ¥p
Zcr = (EQ59)
Icp = max (zCL, zI) =z

The Current Portion, S¢ is now the portion of Sg between x;z and xj. The Present Span, Sp, is still equal
to all of Sg.

27C) 2506 The New Span, Sy (i.e., Sy), is saved as the Saved Span, Sg. Thls is done because Sg will be
needed later if Sp (i.e., Sg) is rendered to x;.

Sg=5y=0;
Xey = Xny = Xpri Xep = Xup = Xpps
sL = *NL = %oL’ SR = *NR = %or’
_ . _ . (EQ 60)
2sL = 2NL = 215 2sR = INR T ZoR’
ds=dN=d; is=l'N=i°;

The portion of the Saved Span, S, to the right x; abuts S at the x coordinate x;. If, later in the method,
S is rendered to xj, then Sg will become the Present Span, Sp

27D) 2508 The Current Portion, S¢ (i.e., Sg from xp to x7) has been changed, so a search is done for spans
that could possibly occlude it. The Span Occluding Test query performs, in each SMCCAM Word900:

F"Q = F"vAFnQA (n#S8p) A (x,1 <xcp) A (x> %) A [(z‘L<zCF) v (z~R<zCF)]

61
F”Q = F’IVAF“Q Am#EB) A (X <x) A(xp>Xp) Al (zgp<zpv (z,g<2zp] EQsL)
This query creates the set of all Potentially Occluding Spans for the Current Portion, S (i.e., Sg from
7R to xp). The query does not find any spans; therefore, F) is empty.
27E) 2510 and 2514 Because FQ is empty, there must not be any spans that possibly occlude the Current
Portion, S¢ (i.e., Sg from X7y, to x7). Therefore, the New Span, Sy, is declared invalid.
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Sy = invalid; (EQ62)

28) 2109, 2106, 2110, and 2300 Because the right edge of the display screen has not been reached (i.e.,xcy < Xp,5)
and also because Sp is valid and Sy is not valid, Rule 2 is invoked to process Sg.

28A)

28B)

28C)

28D)

28E)

2302 The Current Portion, S¢ (i.., Sg from xR to x7), must be completely visible. Therefore, render the
Present Span, Sp (i.e., Sg), from xcy to xcg (i.e., from x5, to xp).

2304 and 2326 Because the Saved Span, S, is valid, there was an intersecting span that reduced the
size of Sp. Therefore, the Saved Span, Sg (i.e., Sp), is made into the Present Span, Sp, by setting:

Sp=S85=0;
Xpr = Xop = Xprh Xpp = Xep = Xops
PL = XsL = XL} PR = *sR = %or}
. _ . (EQ63)
Zpp, = 25y, = 2o ZpRr = ZgR = Zpp;
dp=ds=d0; ip=is=io;

2328 The Current Portion, S, is set to the portion of Sp (i.e., So) that is to the right of x;. That way, the
Saved Span, S (i.e., Sp), acts the same as an Abutting Span for the portion of Sg to the left of x;, where
the abutting takes place atx;. This is done by setting:

*cL = *cr T *p *cR = ¥sR = %oR’

ZoL = Zcr = I 2cR = Zsr = %R} (EQ64)
Zop = mMax (2cp, Zgg) = max(z,zop) = 2z

This step can be done concurrently with Step 28B.
2330 Because the values for the Saved Span, Sg, have been transferred to the Present Span, Sp, Ss is
invalidated.

Sg = invalid; (EQ65)

2314 There is a new Current Portion, S¢ (i.e., Sy to the right of x7), so a search is done for spans that
could possibly occlude it. The Span Occluding Test query perfarms, in each SMCCAM Word 900:

F”Q = F yA (n#SP) A (X1 <3cp) A (".R>‘cx.) A [(z“L<zCF) v (z.R<zCF)]

F”Q = FyA (n#0) A (x,1 <xp) A (x g >3] A [(za<z) v (2,3<2)]

28F)

(EQ6S)

This query creates the set of all Potentially Occluding Spans for the Current Portion, S (i.e., S to the
right of x;). The query finds Sg through S} 5.

2316 and 2332 Because F is not empty, there must spans that possibly occlude the Current Portion,
Sc (e So to the right of xj). Therefore, the first span in F, is read and made the New Span, Sy. This
read operation sets the following values:

Sy = read(n) = 8;

Xy o= 1ead (X;) = X413 Xue =read(xp) = x,03

NL L 1L NR R SR (EQ67)
zy = read(z) = Zg1 2yg = read(zp) = Zgps

dy = read(d) = dg; iy = read(i) = igs

Reading the first span in F) yields Sg, the first span in the set.The read process also deletes Sg from Fg
by setting (FgQ = 0).
An altemnate method could include a way to prevent the left side partner of an intersecting span pair from
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being considered as a Potentially Occluding Span of the right side partner. This could be done with an
additional .query of an SMCCAM 800 that can do two simultaneous inequality tests on » in each
SMCCAM Word 900.

29) 2109, 2106, 2110, and 2112 The right edge of the display screen has not been reached (i.e.,xcy < Xg,) and both
the Present Span, Sp (i.e., Sg), and the New Span, Sy (i.e., Sg), are valid. Therefore, the Span Interaction
Parameters for these two spans are computed, and are found to be: (Non, Near, Equal, Non).

30) 2114 The Span Interaction Type is determined from the Span Interaction Parameters, and turns out to be Type 21.

31) 2116,2118, and 2600 Because the Span Interaction Type is Type 21, Rule § is invoked to process S,.
31A) 2602 and 2604 The New Span, Sy (i.e., Sg), is hidden within the x axis projection of S, (i.e., Sy to the

right of x;). Therefore, Sy, (i.e., Sg) is discarded. Because F is not empty, there must be other spans that
possibly occlude the Current Partion, S (i.e., So @ the right of x;). Therefore, the first span in Fqisread
and made the New Span, Sy. This read operation sets the following values:

Sy = read(n) = 9;

Xy = read(x)) = xg3 Xng = read(xp) = x R

N ’ ? (EQ68)
Zyg = read(z) = Zgrs Zyg = read(zg) = Zops

dy = read(d) = dgy; iy = read (i) = ig;

Reading the first span in F, yields So, the first span in the set. The read process also deletes Sy from Fq
by setting (FgQ = 0). So is still the Present Span, Sp. The status of the Saved Span, S, is left unchanged,
thereby remaining invalid.
32) 2109, 2106, 2110, and 2112 The right edge of the display screen has not been reached (i.e xcy <xp,,) and both
the Present Span, Sp (i.e., Sp), and the New Span, Sy (i.c., Sg), are valid. Therefore, the Span Interaction
Parameters for these two spans are computed, and are found to be: (Far, Far, Non, Non). '
33) 2114 The Span Interaction Type is determined from the Span Interaction Parameters, and turns out to be Type 5.
34) 2116 and 2400 Because the Span Interaction Type is Type 5, Rule 3 is invoked to continue processing S
34A) 2402 The Current Portion, S (i.e., Sp to the right of x;), is hidden starting atxg_(i.e., Xgr ), but is visible
to the left of xy, (i.e., g1 ). Therefore, render the Present Span, Sp (i.¢., So), from xcy_ to xy (i.e., from
Xy to xgp ).

34B) 2404 The processing of Present Span is completed (for now), so make the New Span, Sy (i.e., S3), into
the Present Span, Sp, by setting:

Sp=8y=9
Xpr = Xy = Xori Xop = Xpo = Xoni
PL = *NL = oL} PR = *NR = ¥9Ri
_ . _ . (EQ69)
ZpL = INL = FLs Zpr = INR = %R}
dP=dN=dg; iP=l'N=l'9;
34C) 2406 The Current Portion, Sg, is set equal o Sy (i.¢., Sg) by setting:
¥eL = AN = %o *cr = *NR = ¥oRi
fcL = INL = oL %cr = IR = Zog; (EQ70)

cF = MaX (2np, 2yg) = Max (237, 25p) = 793

34D) 2408 The Saved Span, Sg, is invalidated, but it was already labelied invalid.
Sg = invalid; (EQ71)
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2410 There is a new Current Portion, S¢ (i.¢., Sg), 50 a search is done for spans that could possibly
occlude it. The Span Occluding Test query performs, in each SMCCAM Word 900:

F,IQ = F yA (rneSP) A (qu<"CR) A (qu>"CL) A [(z¢<ch) v (an<zCP)]

F”Q =FyA(#9) A (%1 <Xgp) A (xr>%g) A [(z‘,_<z,L) vV (z,g<zg)]

34F)

(EQ72)

This query creates the set of all Potentially Occluding Spans for the Current Partion, Sc (ie., Sy;). The
query does not find any spans, so Fg is empty.

2412 and 2416 Because F is empty, there must be no other spans that possibly occlude the Current
Portion, S¢ (i.e., Sg). Therefore, the New Span, Sy, is labelled as invalid.

Sy = invalid; (EQ73)

A read operation is not done. Sy is still the Present Span, Sp The status of the Saved Span, Sg, is left -

unchanged, thereby remaining invalid.

35) 2109, 2106, 2110, and 2300 Because the right edge of the display screen has not been reached (ie.,xcr < Xpay)
and also because Sp is valid and Sy is not valid, Rule 2 is invoked to process Sy.

35A)

35B)

35C)

35D)

35E)

2302 The Current Portion, S¢ (i.e., Sg), must be completely visible. Therefore, render the Present Span,
Sp (ie., Sg), from xcy_to xcg (i.e., from xgp to xgR).

2304 and 2306 Because the Saved Span, Sg, is not valid, there was not an intersecting span that
reduced the size of S¢. Therefore, a query is done to look for an Abutting Span. The query performs, in
each SMCCAM Word 800:

Foq = Fuyn (3,0 =3cp) A (2, = 2¢g)

74
Faq = Fiy A (3,1 = Xgp) A (2,1, = 2g) EQ

This query creates the set of all Abutting Spans for the Current Portion, S¢ (i.e., S3) and stores them in
Fq. The query finds only §,.

2308 and 2310 Because Fg is not empty, there must be an Abutting Span. Therefore, the first span in
F is read and made the Present Span, Sp This read operation sets the following values:

Sp = read(n) = 11;

*pp =read(x ) = x;;: Zpg = read (xp) = T Qs
2p = read(z;) = z;y; zpg = read(zp) = ENT Y Q75)
dp = read(d) = dy; il, =read(i) = i

Reading the first span in Fq) yields S, the first (and only) span in the set. The read process also deletes
Sy from Fo by setting (Fyyq = 0). The read process leaves set Fg empty.
2312 The Current Portion, S¢, is set equal to Sp (i.e., S);) by setting:

XcL = *pL = *upe *cr = Xpp = ¥

IeL = %L = Lt %cr = R = 2y EQ76)
cp = MaX(Zpy, 2)15) = MaX (27, 2)p) = 255

2314 There is a new Current Portion, S¢ (i.e., S1), 50 a search is done for spans that could possibly
occlude it. The Span Occluding Test query performs, in each SMCCAM Word 900:
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F.Q = Foya (n#8p) A (x 0 <xcp) A (x5 >%0p) ALz <20p) Vv (2,5 <2cp) ] EQT)
wQ = Fava (1211) A (2 <xpp) A (%> 31y1) A (2 <2318) V (2,2 <25p)]
This query creates the set of all Potentially Occluding Spans for the Current Portion, S¢ (i.e., S7). The
query finds only S .

2316 and 2432 Because Fg is not empty, there must be spans that possibly occlude the Current
Portion, S¢ (i.e., §}1). Therefore, the first span in Fg is read and made the New Span, Sy. This read
operation sets the following values:

Sy =read(n) = 0;

X =r1ead (%) = X435 = read (x;) = xp0;

NL L oL *NR R oR EQ78)
2y = read(z;) = z; Zyg = Tead (zp) = zop;

dy = read(d) = dj; iy = read (i) = ips

Reading the first span in F) yields S, the first (and only) span in the set. The read process also deletes S,
from F by setting (F0Q=0). The read process leaves set F empty.

36) 2109, 2106, 2110, and 2112 The right edge of the display screen has not been reached (i.e., xcg < Xg,;) and both
the Present Span, Sp (i.e.,5))), and the New Span, Sy (.., Sy), are valid. Therefore, the Span Interaction
Parameters for these two spans are computed, and are found to be: (Non, Non, Far, Far).

37) 2114 The Span Interaction Type is determined from the Span Interaction Parameters, and turns out to be Type 32.

38) 2116, 2118, and 2600 Because the Span Interaction Type is Type 32, Rule 5 is invoked to processS);.

38A)

2602 and 2606 The New Span, Sy (i.e., So), is hidden within the x axis projection of S (i.e., §;,).
Therefore, S (i.e., Sp) is discarded. Because F, is empty, there must be no other spans that possibly
occlude the Current Portion, S¢ (i.e., ;). Therefore, the New Span, Sy, is labelled as invalid.

Sy = invalid; (EQ79)

A read operation is not done. S is still the Present Span, Sp The status of the Saved Span, Sg, is left
unchanged, thereby remaining invalid.

39) 2109, 2106, 2110, and 2300 Because the right edge of the display screen has not been reached (i.e., X1 < Xgay)
and also because Sp is valid and S is not valid, Rule 2 is invoked to continue processing S ;.

394)

39B)

39C)

2302 The Current Portion, S (i.e., Sy), must be completely visible. Therefore, render the Present Span,
Sp (i.e., S1)), from xcq to xcg (i.c., from 53y t0 xp1p)-

2304 and 2306 Because the Saved Span, S, is not valid, there was not an intersecting span that
reduced the size of S¢. Therefore, a query is done to look for an Abutting Span. The query performs, in
each SMCCAM Word 800:

Faq = Faun (3 =Xcp) A (2, = 2¢p)

Fag=Fiyn (g =25) A (2, = 2)55) Q50
This query creates the set of all Abutting Spans for the Current Portion, S¢: (i.e., §;;) and stores them in
Fq. The query does not find any spans, so Fq is empty.
2308 and 2320 Because F is empty, there is not an Abutting Span. All spans completely to the left of
Xcg (ie., %1 g) must be hidden, so they are declared invalid. This is done by a query that performs, in
each SMCCAM Word 800:
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Foy = FoyA (x> %c5)
aV \'4 aR~ “CR (EQ 81)
Foy = Foyn (x> %;p)
This query reduces the number of valid spans by reducing the spans in set Fy from 10 to 5. At this point,
Fy consists of Sy, S, and §;, through 4.
39D) 2322 There is neither a valid Present Span, Sp, nor a valid New Span, Sy. Hence, both are labelled as

SP = invalid;
o (EQ82)
Sy = invalid;
39E) 2324 The Current Portion, Sc,, is set equal to:
XoL = Xer = Xppé Xcg = invalid;
2¢y = infinity; Zog = invalid; (EQ83)

2cp = infinity;

40) 2109, 2106, 2108, and 2200 Because the right edge of the display screen has not been reached (i.e.,xcy < Xp,;)
and also because the Present Span, Sp, is not valid and Fy is not empty (indicating that at least some spans are
valid), Rule 1 is invoked. Here, Rule 1 is used to search for the frontmost span at x;;3. When found, this
frontmost span is processed as the Present Span, Sp
40A) 2202 Do a query to find all valid spans that could affect the current raster line atxcy (i.e., x;;g). The

query performs, in each SMCCAM Word 900:
Faq = FavA (3, S2¢p) €0 84)
Fug = Fav A (2, S3)55)
This query finds Sp, §;,and S;,. The query operation could include z coordinate comparisons that check
for values less than zcp, which has been set to infinity.
40B) 2204 and 2222 Because F is not empty, there must be at least one span that could affect the current
raster line at Xy, (ie., x15g). Therefore, the first span in F is read and made the New Span, Sy. This
read operation sets the following values:

Sy = read(n) = 0;

xyp = read(x;) = xp;; Xng = read(xp) = Xogs (EQ85)
2y =read(zy) =z 2y = read(zp) = zgp;
dy = read(d) = d; by =read (i) = igs

Reading the first span yields the leftmost span in Fq, which is So. The read process also deletes S, from
Fq by setting (Foq = 0).

40C) 2224 The z value for the New Span, Sy (i.e., So), at the x coordinate xcy (i.e., %;;g) is computed as
Ziemp-

Ziemp = INLYT (FcL=FNp) AN = ZoL + (Bpp=%pp)dp (EQ86)

The position (x)3R, Ziemp) 2710 is shown in Figure 27.
40D) 2226, 2228, and 2232 The computed value, Zyyg, is less than zcy (i.c., infinity), so make the New
Span, Sy (i.e., Sp), into the Present Span, Sp, by setting:
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SP =8y =0;
FpL = INL = ¥oL *pr = *NR = %oR’
PL = *NL = %oL EQET)
ZpL = I < o0 ZpR = INR T ZpR¢
dp = dy = dy; o =N = ip

4CE) 2236 The Current Portion, Sc, is set to the portion of the Present Span, Sp (i.e., Sp) to the right of
xcy (i.e., x13p) by setting:

*cr = *NR = ¥or}

2L = Ztempt Zcr = 2NR = %om’ (EQ88)
CF = MAX (2o 2NR) = MAX (Zigpr 208) = Zigpmpi
40F) 2237 and 2238 As stated above, the objective of this part of the method is to find the frontmost span at
Xcp (Le., xy1p)- At x¢q (i.e., x15g), the z coordinate of the Present Span, Sp (i.e., Sg), is equal to Zemp:
Therefore, any span in front of Sp (i.e., Sp) at Xy (i.e., X);r) must be at least partially located closer to
the observer than zmp. The set Fq is not empty and includes all the candidates for frontmost span at

xcy (i.e., x11R), and some of these candidates maybe eliminated with the query:

F“Q = FnVAFnQA [(ZAL<ZCL) v (zp<zo1)]
(EQ89)

F..Q = Fya F‘Q Al(zy < zumP) v (z.n<zmp)]
This query operation keeps candidate spans that has either endpoint z coordinate less than Ziemp. After
the query, F is empty.
40G) 2204, 2206, and 2214 Because Fq is empty, there can not be any other candidate span that could
frontmost at xcy (i.e., X3;R). Also, because Sp (i.e., S) is valid, perform, in each SMCCAM Word 900,
the Span Occluding Test query:

FuQ = F,yn (n#5p) A (x,L <Xcp) A (X,z> %) A [(ZAL<ZCF) v (an<zCF)]

90)
F,.Q = Fya(n20) A (x; <xpp) A (g3 Al (an<zump) v (z.R<z‘mP) 1 EQ
This query creates the set of all Potentially Occluding Spans for the Current Portion, S¢ (ie., Sy to the
right of x; g). The query does not find any spans, and F is empty.
40H) 2216 and 2220 Because F, is empty, there must be no other spans that possibly occlude the Current
Portion, S¢ (i.e., So to the right of x;;z). Therefore, the New Span, Sy, is labelled as invalid.

Sy = invalid; (EQ91)

A read operation is not done. S is still the Present Span, Sp The status of the Saved Span, Sg, is left
unchanged, thereby remaining invalid.
41) 2109, 2106, 2110, and 2300 Because the right edge of the display screen has not been reached (i.e.,xcy < Zpar)

and also because Sp is valid and Sy is not valid, Rule 2 is invoked to process Sy

41A) 2302 The Current Portion, S¢ (i.e., Sg to the right of x;3), must be completely visible. Therefare,
render the Present Span, Sp (i.e., S), from xcy. 0 xcy (i.e., from x;;p 10 xgg).

41B) 2304 and 2306 Because the Saved Span, S, is not valid, there was not an intersecting span that
reduced the size of Sc. Thereforc, a query is done to Jook for an Abutting Span. The query perfarms, in
each SMCCAM Word 900:
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Fuq= FovA (3 =%cp) A (2, = 2¢p) EQ92)

Faq = Faya (x, = %) A (2 = 25p)

This query creates the set of all Abutting Spans for the Current Portion, S¢ (i.e., So) and stores them in
Fy. The query does not find any spans, so Fgq is empty.

41C) 2308 and 2320 Because Fq is empty, there is not an Abutting Span. All spans completely to the left of
*cg (i.e., xgp) must be hiddea, so they are declared invalid. This is done by a query that performs, in
each SMCCAM Word 900:

FIIV = FIIVA (xuk>xCR)

(EQ93)
FnV =FavA (qu > xOR)
This query reduces the number of valid spans by reducing the spans in set Fy from 10 to 2. At this point,
Fy consists of §) and § .
41D) 2322 There is neither a valid Present Span, Sp, nor a valid New Span, Sy. Hence, both are labelled as

invalid.
§p = invalid; Q%)
Sy = invalid;
41E) 2324 The Current Portion, S, is set equal to:
Xop = X¥cR = Xops Xcg = invalid;
2oy = infinity; Zog = invalid; (EQ95)

zcp = infinity;

42) 2109, 2106, 2108, and 2200 Because the right edge of the display screen has not been reached (i.e., X < Xpyy)
and also because the Present Span, Sp is not valid and Fy is not empty (indicating that at least some spans are
valid), Rule 1 is invoked. Here, Rule 1 is used to search for the frontmost span atxgg. When found, this frontmost
span is processed as the Present Span, Sp.
42A) 2202 Do a query to find all valid spans that could affect the current raster line atxeq (i.e., xgg). The

query performs, in each SMCCAM Word 900:

FuQ = FuV A (qus xCl..)
Fag = Fav A (3, Sxgp)

(EQ96)

This query finds §; and §. The query operation could include z coordinate comparisons that check for
values less than zc which has been set to infinity.

42B) 2204 and 2222 Because Fq is not empty, there must be at least one span that could affect the current
raster line at xcy (i.e., Xgr). Therefore, the first span in Fq is read and made the New Span, Sy. This read

operation sets the following values:

Sy =rtead(n) = 1;

Xy = read(x;) = XL Xng = read (ap) = xR EQ9T)
2y = read(z;) = LY Zng = read(zp) = 2R
dy = read(d) = d; iy = read(i) = i

Reading the first span yields the leftmost span inFq, which is §). The read process also deletes S, from
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Fq by setting (o = 0).
2224 The z value for the New Span, Sy (i.e., 5;), at the x coordinate xcy_(i.e., Xgr) is computed as Ziemp-

Zemp = INL Y (oL —3ND) ON = 250+ (Bgp~ %) d) (EQ98)

The position (xgg, Ziemp) 2712 is shown in Figure 27,
2226, 2228, and 2232 The computed value, Ziemp» 15 less than 2y (ie., infinity), s0 make the New
Span, Sy (ie., 51), into the Present Span, Sp, by setting:

Sp=Sy=1
Xpr = = X3 Xon = Xan = Xipl
PL = *NL = %110 PR = *NR = %11}
_ L _ . (EQ99)
ZpL = i = 21 2pg = 2NR T I1pi
dp=dN=d1; ip =iy =iy

2236 The Current Portion, S is set to the portion of the Present Span, Sp (i.e., §,) to the right of
xc (i.e., xgg) by setting:

*cR = *NR = ¥1pi
ZcL = Ziemp Zcr = NR T %R} (EQ 100)

CF = MK (Zyppyp INg) = MIX (2 218) = Zppmp

2237 and 2238 As stated sbove, the objective of this part of the method is to find the frontmost span at
xcy (ie., xgp). At xcp (i.e., xgp), the 2 coordinate of the Present Span, Sp (i.e., S}), is equal to Ziemp-
Therefore, any span in front of Sp (i.., S;) atxqy_(i.e., Xo») must be at least partially located closer to the
observer than zyp,. The set Fy is not empty and includes all the candidates for frontmost span at
xcp (i.e., Xgg), and some of these candidates maybe eliminated with the query: ‘

FnQ = FHVAF.QA [(z_L<zCL) v (z“R<zCL)]
(EQ101)

F.Q =F A F_Q Al(zy < zmp) V(< zump)]
This query operation keeps candidate spans that has either endpoint z coordinate less than Ziemp- After
the query, F contains only Sy, and did not get changed by the query.
2204 and 2222 Because F is not empty, there must be at least one more candidate span that could be
frontmost at xgy (i.e., xR ). Therefore, the first span in Fqis read and made the New Span, Sy. This read
operation sets the following values:

Sy = read(n) = 14;

L = read(xp) = x4, Xng = read(xp) = x,,0: (EQ102)
I =read(zy) =24 Zyg = read(2p) = 2,0
dy = read(d) = ds iy =read(i) = i

Reading the first span yields the only span in Fq, that is, §4. The read process also deletes S, from Fq
by setting (F 14Q = 0). The read process leaves set Fy empty.

2224 The z value for the New Span, Sy, (i.e., Sj4), &t the x coordinate xc (i.e., xgR) is computed as
Liempr

Ziemp = INL ¥ (YoL = XNL) Ay = 240 + (Kop—%141) )4 (EQ 103)

The position (¥og, Zemp) 2714 is shown in Figure 27.
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42) 2226, 2228, and 2232 The computed value, Zep,, is less than 2¢y (ie., z coordinate of Sy at xyp,
computed 85 Zymy, in Step 42C), so make the New Span, Sy (ie., S14), into the Present Span, Sp, by

setting:
5 . : .
X =X =X X = X =X
PL = *NL = %141} PR = *NR = *14R’
. (EQ104)
ZpL = INL < 2L ZpR = INR T Pu4p}
dp =dy =dy ip =iy =i

42]) 2236 The Curmrent Portion, Sc, is set to the portion of the Present Span, Sp (i.e., S14) to the right of
10 xcq (i.e., xgp) by setting:

*crR = *NR = R’
2L = Zyemps ZcR = INR = 2up’ (EQ105)

CF = MaX (2,000 2vg) = MAX (2,0 Z14p) = Zy4pi

15 Because, as shown Figure 27, Ziemp is equal to 2y, the max( ) function could choose eitherz,,mp or Zcy.
42K) 2237,2204,2206, and 2214 Because Fqis empty and Sp (i.e., Sy4) is valid, a search is done for spans
that could possibly occlude the Current Portion, S¢,, (i.e., S}4 to the right of xgz). The Span Occluding
Test query performs, in each SMCCAM Word 800:

F_Q = Fyn (n#8p) A (x <xcp) A (X0 >xcp) Al(zy < Z2ep) Vv (z,r<2cp)]

F”Q =FyA(r#8) A (x <xp) A (xnk>z‘mp) Al <z v (z,g<214p)]

20 (EQ 106)

This query creates the set of all Potentially Occluding Spans for the Current Portion, S¢ (i.c., Sy4 to the
right of xgg). The query does not find any spans, so F, is empty.
42L) 2216 and 2220 Because Fq is empty, there must be no other spans that possibly occlude the Current
25 Portion, S (i.e., Sy4 to the right of xgg). Therefore, the New Span, SN; is labelled as invalid.

Sy = invalid; (EQ107)

A read operation is not done. §y4 is still the Present Span, Sp. The status of the Saved Span, Sg, is left
unchanged, thereby remaining invalid.
30 43) 2109, 2106, 2110, and 2300 Because the right edge of the display screen has not been reached (i.e.. Xcr < Xpyy)
and also because Sp is valid and Sy is not valid, Rule 2 is invoked to process S 4.
43A) 2302 The Current Portion, S¢ (i.c., S34 to the right of xgg), must be completely visible. Therefore,
render the Present Span, Sp (i.e., §;4), from xcy to xcp (i.e., from xgp to x145).
43B) 2304 and 2306 Because the Saved Span, Sg, is not valid, there was not an intersecting span that
35 reduced the size of Sc. Therefore, a query is done to look for an Abutting Span. The query performs, in
each SMCCAM Word 900:

Foq = Fava G =xcp) A (2, =2¢3)
Faq=FuvA (5 =24p) A (2 =2,4p)

(EQ108)

40 This query creates the set of all Abutting Spans for the Current Portion, S (i.e., $}4 to the right of XR)
and stores them in F. The query does notﬁndmyspans.toFQ is empty.

43C) 2308 and 2320 Because Fq is empty, there is not an Abutting Span. All spans completely to the left of

Xcg (i.e.,x)4p) must be hidden, so they are declared invalid. This is done by a query that performs, in
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each SMCCAM Word 900:

Foy=FyA(xg>3cp)

(EQ109)

Fov=Fyn(xg>x)

This query reduces the number of valid spans by reducing the spans in set Fy, from 2 to 1. At this point,

Fy consists only of 5.
43D) 2322 There is neither a valid Present Span, Sp, nor a valid New Span, Sy. Hence, both are labelled as
invalid.
§p = invalid;
Sy = invalid; EQ110)
43E) 2324 The Current Portion, S, is set equal to:
Xep = XoR = Xpaps Xcp = invalid;
2¢p = infinity; 2og = invalid; (EQ111)

2op = infinity;

44) 2109, 2106, 2108, and 2200 Because the right edge of the display screen has not been reached (i.e., xcy < Xnax)
and also because the Present Span, Sp, is not valid and Fy is not empty (indicating that at least some spans are
valid), Rule 1 is invoked. Here, Rule 1 is used to search for the frontmost span at x;,z. When found, this
frontmost span is processed as the Present Span, Sp
44A) 2202 Do a query to find all valid spans that could affect the current raster line atxcy (ie., x)45). The

query performs, in each SMCCAM Word 800:

FnQ = Faya (X“LS xCL)

(EQ112)
Fag = Fava (%, SX14p)

This query finds only S). The query operation could include z coordinate comparisons that check for
values less than 20, which has been set to infinity.

44B) 2204 and 2222 Because Fy is not empty, there must be at least one span that could affect the current
raster line at xcy, (i.e., X34g). Therefore, the first span in Fy is read and made the New Span, Sy. This
read operation sets the following values:

SN =read(n) = 1;

Xy =read(x) = x5 XN = Fead(xp) = g EQ113)
gy = read(zy) =z 2yg = read(zp) = zp5:
dN =read(d) = dl; iy = read (i) = il;

Reading the first span yields the leftmost span in Fg, which is §). The read process also deletes §; from
Fq by setting (F1q =0). .
44C) 2224 The z value for the New Span, Sy (i.c., §)), at the x coordinate xcy (i.¢., x145) is computed as

Ziemp = INL ¥ (Xop—*np) Ay = 2y + (Fyp - 21 ) 4, (EQ114)

The position (X)4R, Ziemp) 2716 is shown in Figure 27.
44D) 2226, 2228, and 2232 The computed value, Ziemyp 15 less than 2y (ie., infinity), s0 make the New
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Span, Sy (i.e., §}), into the Present Span, Sp, by setting:
Sp=8y=1
Xpr = Xy = Xpps Xpp = Xnp = g
PL = *NL = *1L PR = *NR = ¥R EQ115)
2L <IN < 4 ZpR = INR = Y10
dp=dy=d; ip=iy=ip;

2236 The Current Portion, Sc, is set to the portion of the Present Span, Sp (i, 5)) to the right of
xcy (i.e., xj4p) by setting:
*cR = *NR = F1Ri
%L = Ztemp ZcR = 2NR T g (EQ116)

cp = max (zump’ ZNR) = max (ztemp’ le) = zump;

2237, 2204, 2206, and 2214 Because Fqis empty and Sp (i.e., §y) is valid, a search is done for spans
that could possibly occlude the Current Portion, S, (i.e., §; to the right of x14r)- The Span Occluding
Test query performs, in each SMCCAM Word 900:

F~.=F (nzS (x:< (x.>x)[z<z)vz“<
2Q = FavA (n#5p) A (x,1 <xcg) A (X, >3cp) A l(2, <2cp) V (2,3 <2cp) ] EQ117)

This query creates the set of all Potentially Occluding Spans for the Current Portion, S¢ (i.e., §; to the
right of x,45). The query does not find any spans, so Fq is empty.

2216 and 2220 Because Fj is empty, there must not be any spans that possibly occlude the Current
Portion, S (ie., 1 to the right of xy4p). Therefore, the New Span, Sy, is labelled as invalid.

Sy = invalid; EQ118)

A read operation is not done. S| is still the Present Span, Sp The status of the Saved Span, Sg, is left
unchanged, thereby remaining invalid.

45) 2109, 2106, 2110, and 2300 Because the right edge of the display screen has not been reached (Le.,xcp < Xpax)
and also because Sp is valid and Sy is not valid, Rule 2 is invoked to process S.

45A)

45B)

45C)

2302 The Current Portion, S¢ (i.e., S; to the right of x,z), must be completely visible. Therefore,
render the Present Span, Sp (i.e., §;), from xcq_ to xcg (i.e., from xp 45 to X15).

2304 and 2306 Because the Saved Span, Sg, is not valid, there was not an intersecting span that
reduced the size of Sc. Therefore, a query is done to look for an Abutting Span. The query performs, in
each SMCCAM Word 800:

Foq = FavA (3 =3cp) A (2 =2¢p)

Fq= FavA By =3p) A (2,0 = 213)

(EQ119)

This query creates the ;et of all Abutting Spans for the Current Portion, S (i.e., S to the right of x,45)
and stores them in Fy. The query does not find any spans, so F is empty.

2308 and 2320 Because F is empty, there is not an Abutting Span. All spans completely to the left of
Xcg (i.c., x4p) must be hidden, so they are declared invalid. This is done by a query that performs, in
each SMCCAM Word 900:
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Foy=Fya@g>xcp)
Fov = Foya (x2>35)

(EQ120)

This query reduces the number of valid spans by reducing the spans in set Fy, from one to zero. At this

point, Fy, is empty. .
45D) 2322 There is neither a valid Present Span, Sp, nor a valid New Span, Sy. Hence, both are labelled as
invalid.
Sp = invalid; EQ121)
Sy = invalid;
45E) 2324 The Current Portion, S, is set equal to:
XcL = Xcr = X1ps Xcg = invalid;
2cp = infinity; 2cg = invalid; (EQ122)

zZcp = infinity;

46) 2106, 2108, and 2120 Because the Present Span, Sp is not valid and Fy is empty, all the spans have been
processed. Since xcy (i.e., xr) must be less than x,,,, there is still a fraction of the current raster line to the right
of xcy_(i.e., x;g) that has not been covered by spans. Therefore, the background is rendered fromxgy (i.e., x1g) to
Xmax- The Segment Span Rasterization Method 2100 is complete for the current raster line.

Timing of Processing within the Span Sorting Pipeline 400

The Generic 3D Graphics Pipeline 200 generally utilizes a double buffered frame buffer 224 with two pages of mem-
ory. This allows an image in one page to be displayed on the display device, while the rendering process writes an image into the
other page. Image data is written to random locations within the display screen 104 because the geometry is fed into the pipe;line
without any spatial sorting. When scene rendering is complete, the pages are swapped and the next scene is rendered.

Using only a few raster lines of display memory '

The Span Sorting Rendering Pipeline 400 generates the complete pixel coloring for a raster Line before proceeding to
the next raster line. If raster line rendering is done at a rate to keep up with the display, then only a few raster lines of Raster Line
Memory 416 are needed.

Figure 28 shows how the timing of processing within the Span Sorting Rendering Pipeline400 can be accomplished
with only two raster lines of Raster Line Memory 416. In this figure, the horizontal axis is time, where each tick mark Tepresents
the time to display one raster line on the physical display device (CRT, etc.). Polygon processing 1400 for scene 1 2802 writes
all the polygons in the scene into the Bucket Sort Memory 404. Once this 2802 is completed, raster line 0 is rendered 2804 for
scene 1. When rendering this first raster line 2804 is completed, the displaying of scene 12806 on the display device can begin,
provided that subsequent raster lines are rendered before they are needed by the display device. In this way, the rendering of ras-
ter lines 2808 is in lock step with displaying of raster lines 2806, and only two raster lines of Raster Line Memory 416 are
needed, one for writing while a raster line is processed, and one for reading to send data to the display device. Once i:olygon
processing 1400 for scene 12802 is complete, polygon processing 1400 for scene 2 2810 can begin, and this 2810 is done in
parallel (in a pipelined fashion) with processing raster lines for scene 12808 and displaying raster lines for scene 1 2806.

The diagram of Figure 28 is an ideal case because processing a raster line 2808 is assumed to be very closely matched
to the time it takes to display a raster line. In practical systems, there is some variation in the time it takes to process a raster line.
Therefore, several raster lines should be processed before the corresponding scene is displayed, thereby providing some “slack”
in the timing requirements. The diagram of Figure 28 also neglects display timing issues such as harizontal and vertical retrace
times, but these can be used to introduce some of the “slop” in the timing.
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Having less memory than a full frame buffer is possible because pixel coloration processing is proportional to the
number of pixels in the display screen rather than to the number of pixels in all the polygon spans in the raster line. When render-
ing timing is done this way, the latency through the Span Sorting Rendering Pipeline 400 is mostly in the process polygon 1400
portion. If the polygon processing 1400 can keep up with the display screen rate, then a new scene can be displayed every time
the screen of the display device is refreshed. .

The diagram of Figure 28 assumes, when a new scene is displayed, raster line 0 of the scene must be displayed first.
This assumption requires polygon processing 2802 and raster line processing 2808 to “sync up” with the display device 2806.
An alternate approach is to let the polygon processing complete at any point with in the cycle2806 of the display device, and to
begin raster line rendering at the raster line that is about to be displayed (taking into account the latency of processing a raster
line). This alternate approach requires the Bucket Sort Memory 404 to be able to start its read operation at any raster line.

Some display screens, such as standard televisions, use an interlaced display of the raster lines, That is the even num-
bered raster lines are displayed first (in the even “field”') and the odd numbered raster lines are displayed next (in the odd “field™).
For this type of display, the Span Sorting Rendering Pipeline 400 generates raster lines in the order needed by the display. The
two fields of the display can be treated as separate scenes, or as a single interlaced scene.

Using a single buffered display memory

Figure 28 assumes only a few raster lines are stored in the Raster Line Memory416. An alternate approach is to have
memory for all the raster lines in the Raster Line Memory 416. This increases the required memory by quite a lot (maybe by a
factor of 100), but most computer video display systems have memory for every pixel in the screen, and 3D rendering maybe
considered an add-on to this type of computer display. Hence, the required memory may already present in the video memory of
the host computer system.

This section of the document assumes the Raster Line Memory 416 stores all pixel colar information for every raster
line. Figure 29 shows the timing for a display device with ten raster lines (practical displays generally have on the order of 1000
raster lines) being continuously refreshed, where three screens worth of raster lines are displayed2902. As in the previous fig-
ure, the horizontal axis is time, where each tick mark represents the time to display one raster line on the physical display device.
At at some point within the display of a scene 2804, polygon processing 1400 will be completed 2906 for the next scene, and
this point 2906 is not assumed to be synchronized with the scene display in any particular way. Completion2906 of polygon
processing 1400 means that raster line processing 2007 can begin. Processing raster line 02908 is done first, and this raster
line is displayed the next time 2810 raster line 0 is sent to the display device. Similarly, the last raster line is processed 2912 and
subsequently displayed 2914, thereby displaying 2916 the entire scene. Figure 29 shows how, upon completion 2906 of a
scene’s polygon processing 1400, the scene can be displayed beginning at the very next refresh cycle 2916 of the display, even
though the raster line processing of the last raster line 2912 occurs after display of the first raster line 2010, If both the polygon
processing and the raster line processing for entire scenes can keep up with the display device's screen refresh rate, then a new
scene can be displayed at every screen refresh. If, once in a while, either the polygon processing or the raster line processing
does not keep up, then the display device may show the same scene on two consecutive display refresh cycles.

The concept behind Figure 29 can be extended to raster line processing that does not, on the average, keep up with the
display refresh cycles. That is, as long as the raster line processing of the last raster Line2012 is completed before it is
displayed 2914, then the entire scene will be displayed correctly. Furthermore, raster line processing can start on the raster line
that has most recently been displayed. Figure 30 shows polygon processing 1400 completing 3002 just before raster line 7 is
completely displayed. Raster line processing 3004 can begin with raster line 73006, and this raster line is displayed 3008 the
next time the display device shows it. Display of the scene is not intermixed with display of the previous scene (that is, there is a
clean transition) provided the last raster line processed 3010 is completed before it is displayed 3012. In this way, the maximum
time to process all rasters 3014 is almost as long as two screen refresh cycles. Hence, the processing of each raster line can be
about twice as long as the time to display it without requiring the need for double buffering, only a single buffer is needed.
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The concept itlustrated in Figure %10 of having raster line processing 3004 cover more that one screen refresh cycles,
can be moduded to have restex line processing 3004 wait until raster line 0 is displayed, thereby synchronizing with the refresh
cycles. Polygon processing 1400 t:or the next scene does not need to wait because the Bucket Sort Memory 404 is double buff-
ered.

Using a double buffered display memory

The Span Sorting Rendering Pipeline 400 can function with a fully double buffered Raster Line Memory 416, where
every pixel in the display screen 104 corresponds to two wards of memory (one in each buffer page). In this configuration, poly-
gon processing 1400 for & scene is done until completed, then raster line processing is done until all raster lines in the display
screen 104 have been processed, then the scene is shown on the display device. This approach has the advantage of being able to
take as long as necessary without being constrained to display device timing. This approach has the disadvantage of introducing
an additional stage of latency. '

Query Processor Architecture
W Within the Span Sorting Rendering Architecture 500 of Figure 5, for each raster line, the Query Processor510
’ receives-spens from the Span Generation Processor 508, determines the visible span portions (as described sbove), and sends the

visible span portions to the Rasterize Processor 510. A block diagram of the Query Processor 510 is shown in Figure 31, elong
with the two pages within the Span Memory 408.

While one Span Memory Page 800 is receiving Span Parameters from the Span Generation Processor 508, the other
page 8OO is being queried to determine the visible span portions. The two pages800 are swapped via the Query Processor
Crossbar 3102, which is a set of multiplexors. The Query Processor 510 includes a register file 3104 that is subdivided into five
sets of registers for storing Span Parameters: 1) registers3106 for the Current Portion, Sc; 2) registers 3108 for the Present
Span, Sp; 3) registers 3110 for the New Span, Sy; 4) registers 3112 for the Saved Span, Sg; and 5) temporary registers 3114
used for things such as span intersection locations.

The Query Processor Control 3116 determines the sequence of operations in the Query Processor 510, including the
sequence of query operations. As raster line processing proceeds, branches within the method 1800 or 2100 depend on query
outcomes, span status, and Span Interaction Types (SITs). For each pair of S and Sy, the SIT and SIP Logic 3118 generates the
Span Interaction Type. Computing a SIT requires the operations of Equation 10 to be performed, as well as various comparison
operations. These operations are performed in the Compare and Offset Computation3200 block on data received from the regis-
ter file 3104. Whenever Rule 4 2500 is invoked, the intersection point between S¢ and Sy is computed in the Intersection Com-
putation block.

For maximum throughput, Compare and Offset Computation3200 can be implemented in parallel hardware.
Figure 32 shows four identical blocks 3202, where each block 3202 includes two arithmetic comparators 3204 and 3206, a
subtracter 3208, and a multiplier 3210. The subtracter 3208 and multiplier 3210 compute the offsets as shown in Equation 10.
The comparators generate signals that can be used to generate the Span Interaction Parameters (SIPs). Inputs to the blocks3202
come from the register file 3104, and outputs go to the SIT and SIP Logic 3118.

Sorting Magnitude Comparison CAM Circuits

Figure 33 shows a prior art MCCAM bit cell 3300, taken from the Duluk Patent, constructed out of CMOS transistors
and gates. A field within an MCCAM Word can be built with a multiplicity of these cells3300. In this cell 3300, one bit is
stored in a Six Transistor RAM Subcircuit 3302, where reading and writing is controlled by the signal CamWord 3304 and data
is written and read via the differential bit lines, BifH 3306 and BitL 3308 (the “H and “L" at the end of signal names indicates
active high and active low, respectively). During a query operation, the XOR Subcircuit3310 performs an exclusive-or function
to produce the signal NotEqual 3312, which indicates the bit value stored in the RAM 3302 is not equal to the bit value on the
bit lines 3306 and 3308. During a query operation, the signal Enableln 3314 being asserted indicates higher order bits in the
field are all equal, and this bit position is enabled for comparison. If NotEqual 3312 is at logic “0" when Enableln 3314 is
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asserted, the Precharged Enable Propagation Subcircuit 3316 enables the next lower bit position by asserting EnableOus 3318,
If NotEqual 3312 is at logic “1” when Enableln 3314 is asserted, the Two Transistor Query Resolution Subcircuit3320 condi-
tionally pulls down the QueryTrue 3322 signal, depending on the value of ComparisonOp 3324 (as described in the Duluk
Patent), and EnableOut 3318 remains unasserted.

In contrast to an MCCAM, an SMCCAM 800 (recall, the “S” stands for “sorting™) can shift data from one word 900
to the next during a sorting operation. Figure 34 is a “TTL type"” circuit for one bit in an SMCCAM Word800. This cell 3400
includes a master-slave flip-flop 3402 for storing the bit value because it must function as a bit in a shift register. The cell is
shown with separate J/O lines, InputBit 3404 and OwtputBit 3406, but a single bidirectional I/O line or a bidirectional differen-
tial pair could be used. A read operation is done by asserting the Read 3408 control line, which enables the tri-state buffer 3410.
A write operation is done on the rising edge of Clock 3412 when WriteEn 3414 is asserted and ShifiEn 3416 is not asserted.
The shift within a sort operation is done on the rising edge of Clock 3412 when WriteEn 3414 is asserted and ShifiEn 3416 is
also asserted. The signal ShifiEn 3416 controls a multiplexor 3418 that chooses whether data on InputBir 3404 or data on .
ShiftIn 3420 is stored into the flip-flop 3402. Data on Shift/n 3420 come from ShifiOut 3422 in the corresponding cell 3400 in
the previous SMCCAM Word 900. Query operations function similarly to the MCCAM of the Duluk Patent. That is, an
exclusive-or 3424 generates the signal NotEqual 3312, which is used to generate EnableOut 3318 and the word's query result,
StoredGreaterL 3426. The key differences in the query operation function are: 1) the absence of ComparisonOp 3324 in the
cell; and 2) an open collector circuit 3428 to generate the query result.

Figure 35 is a 27-transistor CMOS circuit for one bit in an SMCCAM Word 800. This cell 3500 includes a Six Tran-
sistor RAM Subircuit 3302 as the master part of the flip-flop, and a Slave Memory Subcircuit 3502 as the slave part of the flip-
flop. The Six Transistor RAM Subcircuit 3302 is used in the conventional way for read and write operations, and the Slave
Memory Subcircuit 3502 is only used during shifting. To allow a bit to be shifted into the Six Transistor RAM Subcircuit3302,
a Shift Write Subcircuit is included in the cell 3504, The following sequence occurs (in this example cell 3500) when shifting is
done: 1) the differential clock signal ShifiToSlaveH 3506 and ShifiToSlaveL 3508 is asserted then de-asserted in order to latch
the data bit into the Slave Memory Subcircuit 3502; 2) the data bit is output from the cell to the comresponding cell 3500 in the
next word 900 via the differential signal ShiftDataOutH 3510 and ShiftDataOwil, 3512; and 3) the data bit is received on the
differential signal ShiftDatalnH 3514 and ShifiDatalnL 3516 in the next word 800 and is written into that cell 3500 by assert-
ing ShiftEnable 3518.

Certainly, there are many bit cell circuits that could be designed to do an equivalent function. To illustrate some of the
other choices, the cell in Figure 35 uses a Non-Precharged Enable Propagation Subcircuit3520 and a Three Transistor Query
Resolution Subcircuit 3522. Note that the Slave Memory Subcircuit 3502 is a dynamic circuit, and it could be replaced with
many other types of latches, including a static latch.

Figure 36 shows an array of CMOS SMCCAM bit cells forming a set of fields. The signals, ShiftDatalnH 3514 and
ShifiDatalnL 3518, are grounded in the first word 900 because the first word 800 cannot have data shifted into it 900.

When signed numbers need to be stored into the SMCCAM, it is simplest to invert the sign bit (i.e., “1” implies posi-
tive) during both the reading and writing processes. That way, in the hardware, positive numbers are “bigger” than negative num-
bers. An altemnate approach is to change the logic in the sign bit positions in every field where a signed number needs to be stored
and queried.

Multiple Spans Vertically within a Raster Line

In the Segment Span Rasterization Method 2100 as described above, each polygon can have only one span in a given
raster line, and that span is represented by a line segment (hence, the name 2100) parallel to the x-y plane in screen coordinates.
The location of the endpoints of spans are in object-precision, and therefore can be located anywhere horizontally within a
pixel’s boundaries. For example, if the end a span covers 20% of the width of a pixel, then that span accounts for 20% of the
color value for that pixel, and is blended with color value for the other 80% of the pixel width. This provides for horizontal anti-
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aliasing, but not vertical antialiasing. That is, blending occurs horizontally, but not vertically. If the edge of a polygon is closer to
horizontal than vertical, then the edge has a good chance of crossing through multiple pixel areas, meaning that the polygon
color should be blended into multiple pixels. However, when a single line segment is used to represent the span, the polygon’s
color is blended into one pixel (the one that includes the segment span endpoint), and pixels on ‘either side are assumed to be cov-
ered 100%, and are not blended (assuming visible span portions are wider than one pixel). Lack of vertical antialiasing is accept-
able for some applications, but high quality images should be both antialiased in both directions.

One method of adding vertical antialiasing is to divide each raster line vertically into several “sub-raster” lines. Then,
the Segment Span Rasterization Method 2100 can be used for each sub-rastez, and pixel color values can be generated by blend-
ing vertically as well as horizontally. Figure 37A shows a raster line 3702 and its pixels 3704, two edges of a polygon 3706
and 3708, and two sub-raster spans3710 and 3712 for that polygon. Similarly, Figure 37B shows four sub-raster
spans 3714, 3716, 3728, and 3720 for the polygon. As a possible variation, if a pixel is covered by only two such sub-raster
spans from the same polygon, it would be possible to compute one color value at the center of the pixel.

Using sub-raster lines reduces vertical aliasing, but does not eliminate it. For many applications, this is an acceptable
approximation. ‘

Trapezoidal Span Rasterization Method

Spans can be represented by two-dimensional trapezoids rather than one-dimensional line segments. Both line seg-
ments and planar trapezoids are in three-dimensional object-precision eye coordinates. The advantage of a trapezoidal represen-
tation is the preservation of edge information within a raster line, thereby providing correct antialiasing in both the horizontal
and vertical dimensions.

Figure 38 shows a triangle mesh with two triangles 3802, and 3804, and one raster line 3806 within the display
screen 104. The area within the raster line 3806 for each triangle 3802, and 3804 is a trapezoidally shaped span, labelled
S11 3808 and S} 3810. For trapezoidal spans, the span endpoint is an edge of the trapezoid, and is described by two points in
three-dimensional screen coordinates: one at the top edge of the raster line, and one at the bottom edge of the raster line, Mu.
a trapezoidal span is described by four points in screen coardinates. For example, the trapezoidal span on the left3808 in the fig-
ure has endpoints described in x-z space by: 1) the top of the left endpoint located at (x;;1 2;317); 2) the bottom of the left end-
point located at (x;)1 5, 2131 8); 3) the top of the right endpoint located at (x; 157, 23127); and 4) the bottom of the right endpoint
located at (x;1xp, 211rp)- These four points are actually in x-y-z space, but the y-coordinate is dictated by the location of either
the top or the bottom of the raster line 3806. Note that the subscripts in the coordinate variables indicate three things: 1) the span
number (e.g., “117); 2) the left or right endpoint (i.e., “L” or “R™); and 3) the top or bottom of the raster line (i.c., “T” ac “B™).

An opaque trapezoidal span occludes more distant geometry over most of its length, but at endpoints 3812, and 3814
that are not abutted to another trapezoidal span, mare distant geometry is partially visible. However, for abutting trapezoidal
spans, as shown in Figure 38, the common endpoint3816 does occlude more distant geometry. This presents & problem when
utilizing trapezoidal spans. That is, non-abutting trapezoidal span endpoints do not occlude more distant geometry, but abutting
endpoints work together to occlude 3818 more distant geometry. The invention of this document successfully solves this prob-
lem by searching for abutting spans.

Figure 39 shows a group of trapezoidal spans in the same raster line, and these spans are trapezoidal versions of the
segment spans shown in Figure 11. In Figure 39, the visible portions of the spans are shaded. Notice that for spans in a polygon
mesh (i.e. abutting spans), span tops lay end-to-end with each other, and span bottoms do likewise. Span endpoints cast an edge
“shadow” onto spans that are farther from the viewing point. For example, the left endpoint3902 of S, casts such a
shadow 3904 onto ;.

An additional concern when using trapezoidal spans occurs when a polygon crosses either the top or the bottom of the
raster line, but not both. This would generally happen at: 1) the comer of a polygon 2) at a horizontal edge of a polygon; or
3) when occluding spans leave only a sliver of a span visible. One example of this is shown in Figure 39, where the far right
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end 3906 of S is visible. In this type of situation, the trapezoidal span is actually shaped like a triangle, and therefare could be
considered a “degenerate trapezoid” where the top or bottom is of length zero.

This document has explained in great detail the Segment Span Rasterization Method 2100, and the Trapezoidal Span
Rasterization Method is similar in that it follows the frontmost spans from left to right and seriding the visible portions of spans
to the Rasterization Processor 512, The key difference is that non-abutting endpoints of tnpmidnl. spans do not fully occlude
more distant geometry. The Trapezoidal Span Rasterization Method must correctly handle these types of spans.

There is a variety of ways to handle trapezoidally shaped spans. Rather than having a method flow diagram for each of
the four choices for the Trapezoidal Span Rasterization Method presented here, the features of each choice will be explained,
along with the corresponding choices for SOT Queries. These four particular choices were selected to illustrate how the raster-
ization method presented here can be expanded to process trapezoidally shaped spans.

Version 1: Occlusion processing done separately for span tops and span bottoms

A trapezoidal span can be described as the collection of: 1) a span top, the line segment on the boundary of the trape-
zoidal span along the top of the raster line; 2) a span bottom, the line segment along the bottom of the raster line; and 3) the area
between the span top and the span bottom. The version of the Trapezoidal Span Rasterization Method described in the section of
the document does occluding processing on span tops separately from span bottoms. This can be done because, for the same ras-
ter line, span tops and span bottoms never occlude each other. Occlusion processing for span tops can be done in the same way
occlusion processing is done for segment spans in the Segment Span Rasterization Method 2100. Occlusion processing for span
bottoms can be done separately in the same way, and should be done in parallel with occlusion processing of span tops in order
for pairs of tops and bottoms to be correctly paired for pixel color generation.

This version of the Trapezoidal Span Rasterization Method keeps track of the following “span-like” things (including
appropriate endpoints): 1) the Present Span, Sp, the trapezoidal span that is currently being tested to see what part of it should be
rendered; 2) the Current Span Top, Scy, the top edge of the Sp that is being tested for visibility; 3) the Current Span Bottom, Scg,
the bottom edge of the Sp that is being tested for visibility; 4) the New Span, Sy, the trapezoidal span recently read from the Span
Memory 408; 5) the New Span Top, Sy, the top edge of Sy; 6) the New Span Bottom, Snp, the bottom edge of Sy; 7) the Top
Saved Span, Sgy a trapezoidal span that is temporarily saved because Scy intersects Sy, in a situation analogous to Rule 4
described above; and 8) the Bottom Saved Span, Sgp, 8 trapezoidal span that is temporarily saved because Scp intersects SNB-
Two different saved spans are needed because span tops are processed separately from span bottoms, and they could have inter-
sections with different spans. Keeping track of more information during rasterization requires more registers to be added to the
Span Parameter Registers 3104 within the Query Processor 510.

Figure 40 shows an enlarged version of the example spans S; 4001 and S, 4002 from Figure 39, and, S§; 4001 is
assumed to be the Preseat Span, Sp The span top of S; 4001, called S;r 4003, has its corresponding SOT Region 4004 that
finds Sy 4006 occluding it 4003. This SOT Region 4004 does not find S, 4008 because it 4004 is only searching for span
tops. Similarly, the span bottom of S, §; 4010, has its SOT Region 4012 that finds S, 4008 occluding it 4010.

Figure 41 shows two views of a partial set of spans within a raster line 4100, labelled 53, 4101 through §394109.
The upper diagram is the x-z view (the look direction is parallel to the y-axis) of the spans, and the lower diagram is x-y view (the
look direction is parallel to the z-axis) of the same spans. In the lower view, hidden portions of the spans are not shown, and
therefore represent how an infinite precision rendering of the spans would be drawn for that raster line4100. But, since the dis-
play device does not have infinite precision, span colors must be blended together in correct proportions for each pixel. In the fig-
ure, visible portions of span tops and bottoms are shown as thicker lines. Visible portions of span tops and bottoms are passed to
the Rasterization Processor 512 were they are used along with polygon edge derivatives to determine pixel colors. The spans in
Figure 41 were chosen to illustrate handling of various cases, including spans where only the span top or span bottom is visible
and also spans that do not cover the entire height of the raster line 4100,

Just as in the Segment Span Rasterization Method 2100, the spans are processed in a left-to-right manner. The exam-
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~ ple of Figure 41 starts in the middle (i.e., horizontally) of the raster line whereS3; 4101 is Sp 53,7 4111 is Scp, and S5, 4121

is Scp. The SOT Queries for Sy and Sep find nothing, Sy is set to invalid, and by a rendering rule similar to Rule 22300 of the
Segment Span Rasterization Method 2100, §3; 4101 is rendered to its right endpoint. The rendering of S3; 4101 covers 100%
of the pixels up to the one that includes x31rT 4151. From that point, the edge derivative for the corresponding polygon edge
(see Equation 1) is used to determine the percent coverage of each pixel, and this percentage weights the pixel color. The
span 4101 can be rendered to its right endpoint because the entire length of the endpoint (the endpoint of a trapezoidal span is a
line segment) is guaranteed to be visible. Also by the Rule 22300 analog, queries for abutting span tops and span bottoms find
S327 4112 and S35 4122. At this point in the method, Sy, 4102 is Sp S3p74112is Scp and S35p 4122 is Scg. The SOT Que-
ries for Sy and Scp find nothing, and abutting spans are also not found. Hence, Sy is set to invalid.

By a rule similar to Rule 22300, §3 4102 is rendered in its entirety (its right endpoint is guaranteed visible), and
edge derivatives are again used to compute pixel coverage. To sight an example, for the pixels at least partly contained between
x3;rr 4151 and x3;p5 4152, the sum of percent coverage due to S3; 4101 and S5, 4102 totals 100%. Queries to find abutting
span tops or bottoms fail, so all spans completely to the left of x3,3p 4152 are invalidated, and both Sp and Sy are set to invalid.

By a rule similar to Rule 12200, a search is done to find the frontmost span tops and bottoms at X3ppr 4153 and
x32rp 4154, which finds S33 4103 and assigns it to Sp, sets Scy to the part of S331 4113 to the left of X3opt 4154, and sets Scg
to the part of §335 4123 to the left of x35rp 4153. The SOT Queries for Sor and Scp find Sy 4114 and 5355 4125 (note these
are from different spans) which are assigned to Syr and Sy, respectively. Sy is set to Sy, 4104, rather than Sy 4105 because
the visible portion of S34 4104 is farther to the left, and the method proceeds from left to right

By a rule similar to Rule 32400, S334103 is rendered, but only partially. At this point, the Rasterization
Processor 512 can only render it 4103 to x34 7 4155 because its 4103 area to the right of x34; 4155 still needs to have its vis-
ibility determined (generally the case when Sy and Sy are not from the same span). Because x;,xr 4155 almost certainly does
not align with a pixel edge, the pixel that includes x34pr 4155 is partially colored by the portion of S33 4103 that is know to
cover it (and the rest added later). Alternatively, the entire color contribution to that pixel byS3; 4103 can be postponed until the
entire amount of pixel coverage is known. At this point in the method, S34 4104 is Sp, Sy, 4114 is Scp, and S35p 4125 is Scp.
The SOT Query for Scr (i.e., S347 4114) finds S35r 4115 and makes it Sy Because this Sy matches Sy of the previous step
(ie., they are from the same span, S35 4105), the SOT Query for Scp (i.c., S355 4125) is postponed to the next step in the
method. Sy is set to S35 4105.

During the method, when Syr and Syp are not from the same span, previous spans can only be rendered to the leftmost
of either the current x-value position along the top of the raster line and the currentx-value position along the bottom of the raster
line. At the leftmost of the two x-values, all span to the left has been considered, and 30 rendering can be done.

By a rule similar to Rule 3 2400, 53, 4104 is rendered by the Rasterization Processor 512. This time, St and Syp
are from the same span, so S, 4104 is rendered up to the left endpoint of Sy 4105. Also, rendering of §33 4103 can be com-
Pleted because its visibility has now been determined. At this point in the method, S35 4102 is made Sp, S35y 4115 is made Scp
and S3sp 4125 is made Scp. The SOT Query for Scr (i.e., S357 4115) finds S5y 4117 making it Sy while the SOT Query for
Sc (i.e., S35 4125) finds nothing, and makes Syp invalid. Sy is set to Sy7 4107.

By arule similar to Rule 3 2400, S35 4105 is rendered from its left endpoint to x35p, 4156 because x35pp 4156 is the
leftmost choice between x35z5 4156 and x3711 4157. A search for an abutting span bottom o Scp (ie., Sysp 4125) finds
S36p 4126. At this point in the method, S35 4106 is Sp S377 4117 is Scp, S3p 4126 is Scp, Sy77 4117 is Syp, and an SOT
Query for Scp (i.e., S36p 4126) finds S35 4129 and makes it Syp.

By 2 rule similar to Rule 3 2400, S35 4106 is rendered up to x37 1 4157 because xy711 4157 is the leftmost choice
between x37,1 4157 and x3q; g 4158. Also, rendering of S35 4105 can be continued up to X337 4157. Because S374107 is not
hidden and is known 10 have only a span top (no span bottom), it4107 is made Sp Also at this point, Sa7r 4117 is still Sop
S39p 4129 is Scp, and query to find an abutting span to S37 4107 finds noting, so Sy is invalid, and S3gp 4129 is still Syp.
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By a rule similar to Rule 2 2300, S3, 4107 is rendered in its entirety. Both S35 4105 and S35 4106 can now be ren-
dered up to x37rt 4159 (completing S35 4105) because it is the leftmost choice between X37ry 4159 and x39; 5 4158. At this
point, §3g 4108 is Sp, Scr is invalid, Sagp 4129 is Scp, Sy is invalid, and an SOT Query for Scg (i.e., S3gp 4129) finds nothing,
so Sy is invalid. )

By a rule similar to Rule 12200, a search is done to find the frontmost span top at X3y 4159. This search finds
S3g7 4118, and Scr is set to the portion of S3gr 4118 to the right of x37zy 4159. An SOT Query for Scy finds S3o7 4119 which
is assigned to SN At this point, S3g 4108 is still Sp, S3gp 4129 is still Scp, and Syp is still invalid.

By a rule similar to Rule 3 2400, S35 4108 is rendered up to the left endpoint of Syop 4129. Because 539 4109 is
going to be made into the next Sp the other remaining uncompleted span, S35 4106, is completed by rendering it up to the left
endpoint of S3gp 4129. Care must be taken to correctly account for all the polygons edge derivatives correctly.

The raster line 4100 processing continues with S39 4109 as Sp Mﬂwﬁghtedgeofowexnnplebasbeenfeached.lf
there had been some completely hidden spans within the left and right boundaries of this example, they would have been com-
pletely avoided by either never being found by an SOT Query or by being discarded by a rendering rule similar to Rule 52600.
Similarly, if there had been an intersection between two span tops or two span bottoms, a rule similar to Rule 42500 would have
been applied, and Saved Spans would have been used. '

A special case may be added for handling spans that either do not have either a span top or a span bottom (they are less
than one pixel in height) or have both their span top and span bottom hidden, but are visible within the raster line (just peeking
out from between two nearly horizontal polygon edges). In most practical applications, such marginally visible items can be
ignored.

Itis possible that color information from several different spans are blended together for a particular pixel. Under such
circumstances (and even for blending only two span’s colors), only a reasonable approximation of the percent coverage is needed
to make a high quality image.

When implemented in hardware, this version of the Trapezoidal Span Rasterization Method uses one SMCCAM
Word 800 for each span top and another one for each span bottom. Both the span tops and span bottoms could be stored into the
same page within the Span Memory 408. This would mean time-sharing the Span Memory 408 between two essentially inde-
pendent occlusion processes, thereby reducing performance when compared to storing span tops and span bottoms into different
pages. Using one page for occlusion implies the Span Memory 408 needs a total of two pages, as shown in Figure 38, to double
buffer the spans.

If two pages within the Span Memory 408 are used, the two occlusion processes can be done in parallel. However,
some fields, such as the Span Derivative Field 812 and the Information Pointer Ficld 812, need to be duplicated because they are
needed by both occluding processes. Also, using two pages for occlusion processing tends to imply a total of four pages are
needed in the Span Memory 408. But, if a non-interlaced display device is used, then the set of span bottoms for the current ras-
ter line is the same as the set of span tops for thencxtrastalinc.liuwe,threebhlplgummdedinﬂles_pmMmryMS
because one page is used for writing, and two pages are used for reading, and one of those two pages is reused for the next raster
line. If an interlaced display device is used, then the same technique can be used, but raster line rendering order will not match
the display device.

Another alternative is saving the list of the visible bottom span portions (i.c., after occlusion processing) in another
memory and then using them as the span tops in the next raster line. Such a memory could be included in the Rasterization
Processor 512. While this is certainly possible, it is probably more economical to recompute the visible top spans.

Version 2: Perform an SOT Query at every transition in the raster line

In this version of the Trapezoidal Span Rasterization Method, spans are processed from left to right, but occlusion pro-
cessing treats each span as & unit, not as & separate span top and a span bottom. To do this, SOT Regions are bounded on the right
and left by a visibility transition on either span tops or span bottoms.
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Figure 42 shows an enlarged version of the example spans 5) 4201 and S, 4202 from Figure 39. At the start of this
example, §; 4201 is the Present Span, Sp and x;; 5 4204 is the current x-coordinate, xcy . Hence, the raster line has been ren-
dered up to x); 4204, including the part of S} 4201 between xy;1 4203 and x;; 5 4204. The Current Span, Sg, is the part of Sp
(ie., S 4201) to the right of xy_(i.e., x;1 5 4204) that has the same visibility characteristic, namely the part betweenx;; p 4204
and xgr 4206 (making x;pr 4206 the value for xcp). The visibility characteristic for S; 4201 changes atx;pr 4206 because to
the right, the span 4201 does not occlude more distant geometry, while to the left of that point4206, it does. The SOT
Region 4208 for this S is shown in Figure 42 and described by Equation 123.

(EQ123)

F'Q= FlvAF.QA (n#Sc) A [y p<xcp) V (x5 <%cp)] A [(x‘n.<xCL) Vv (%.pp <*cp)]
ATz r <2cpp) v (2,5 <2crp) ] V [ (24pr <2cpp) V (2,35 <Zcpp)]]
F..Q =F yA F'.QA (nexl)Af (x g r<xp7) v (B <xipm)] A [(x,m.<xlu,) V (xgp <¥18)]

All (anT< zlempl) v (zuLB < zlLB) Ivi (anT<zlempl) v (zuRB <21LB) 1]

There are two different z-values used in this query, zcpr and zppp, because the span portion being tested for occlusion has differ-
ent depth values for its top and bottom. The value for zcpy is set to the maximum 2-value of the span top within the x-coordinate
interval of S¢, which happens to be x-coordinate with the value x;; g 4204, labelled Ziomp1 4209. The value Ziap1 4209 is com-
puted using the span derivative for §; 4201. Similarly, the value for 2cpp is set to the maximum z-value of the span bottom
within the x-coordinate interval of S¢, and this value is z;; 5 4210. The SOT Query finds S, 4202, and it 4202 is made SN-

By arule similar to Rule 3 2400 of the Segment Span Rasterization Method 2100, Sp (i.£., Sy 4201) is rendered from
xcy (i.e., X1 g 4204) to the leftmost point of Sy (i.e., S 4202), which is xy; 4204, Over this interval, the visibility characteris-
tic does not change for the raster line. That is, §; 4201 is the only geometry that is visible within the interval.

The value of xcy is changed to xy g 4211, and Sc is the top edge of S; 4201 from x;; 5 4211 to xy; 7 4212 combined
with the bottom edge of S, 4202 over the same interval. The valid for Sy is set to invalid. For this S, the visibility characteristic
is consistent in that it includes S; 4201 gradually being covered by S, 4202 over its entire width. The corresponding Query
Region 4213 is over the interval of S¢ in the x-coordinate dimension. But, in the z-coordinate dimension, span top coordinates
are tested to see if they are in front of 2,e7 4214 and span bottom coordinates are tested to see if they are in front of 2577 4216.
The coordinate 2iep,g7 4214 is the z-coordinate of the span top of §; 4201 at x-coordinate X1 g 4204. This Query Region 4213
needs to include a search for span tops that are between 2,7 4214 and 211 4216 because a span with its left top comer in this
range would be visible. The query operation is shown as Equation 124,

(EQ124)
In this example, the Query Region 4213 finds nothing, so Sy remains invalid.

By a rule similar to Rule 22300, S is not hidden, %0 it is rendered, resulting in a blending of §) 4201 and S, 4202
over the entire width of S¢. The rule then “checks for” the equivalent of an abutting span, and this is known o exist because
S 4202 continues to the right from xy 4212. Therefore, Sc. is set to the part of S, 4202 between xyy 7 4212 and x;pr 4218,
and xy is set to 21 4212. Once again (as always for this version of the method), Sc has a consistent visibility characteristic
over its entire width. The SOT Region4220 for this S¢ is shown in Figure 42 and described by Equation 125. The value
Ziemp3 4222 is the z-value of the span bottom of S, 4202 at the x-coardinate x; 1 4212,

(EQ125)
The rasterization of the spans in this raster line would continue from this point. This version of the method also has
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FnQ=F’NAFlQA (n#Sc) A [(x,17<xcp) V (%18 <3cp)] A [ (X pr<Xcp) V (3,pp <%cp)]
Az r<zepr) V (215 <2cpp) ) v [ (2 g <2cpy) V (2,38 <Zcpp) 1]
FAQ=F.VAF.‘QA (n#1) A (n22) ‘

Al r<Xrp) v (g <3y )] A [(xpr <Xy p) Vv (%55 <¥y15)]
AllGzyr< zmpz) V(zgp<iyg)l vI (z.”<zunp2) Vv (23 <2518)]]

F"Q= FAVAF"QA (n#8c) A [(xr<xcp) V (%15 <xep)l A [(x.x'r<‘cx.) V (x,pp <xcp)]
AllGpr<zepp v (s <zcep)l Vv [(z.m.<zcm.) V (2.8 <2cpp)1]
F"Q = anAF‘QA (n#2) A [(x,pp<Xppp) V (g <Xggp)] A [(xpr<¥yrp v (xgp <%y 7]

A7 <2y) V (2,08 <Zempd) ] V [(Zapr<23p7) V (2455 < Zempp) 1]

rules analogous to Rule 12200, Rule 4 2500, and Rule 5 2600.

In general, this version of the method takes spans, and subdivides them horizontally in order to create sections that
have a consistent visibility characteristic. This means that the endpoint regions of a span (the part that does not occlude distant
geometry, such as the endpoints 3812 and 3814 in Figure 38) are treated separately from the central portion of the span. This
causes more query operations to be needed, but can be done in a single occlusion process.

This version of the Trapezoidal Span Rasterization Method requires more fields per SMCCAM Word900 because
there are four fields per endpoint rather than just two. Additional comparison logic is also needed in the Word Number Field802
because it 802 must be able to check inequality with a Current Span that is the combination of two trapezoidal spans. In the
above example, the value of S¢ comresponding to the Query Region 4213 covering x5 y 4210 to x5; 1 4212 is the combination
of S| 4201 and S, 4202. Hence, the SOT Query must check for both (n# 1) and (n # 2), thereby requiring two inequality com-
parisons during that query operation. This version of the method has the advantage of needing only one word900 to store a
span.

Version 3: More comparisons per word to allow more complex SOT Regions

In this version of the Trapezoidal Span Rasterization Method, occlusion processing treats each span as a unit, just as in
Version 2. However, this version perfarms more comparison operations in each SMCCAM Word900, thereby providing the
ability to make more complicated SOT Regions. Rather than splitting spans at every visibility transition, the Current Span, SC,
can contain one visibility transition. In essence, an SOT Region for this version is the union of two SOT Regions as defined in
Version 2. Figure 43 shows the same two spans 4301 and 4302 as shown in Figure 42, and an SOT Region 4304 that is the
union of two SOT Regions 4213 and 4220 from Version 2 of the method. To perform this SOT Query, the query operation is
the disjunction (i.e., logical “or”) of the right sides of Equation 124 and Equation 125.

To perform the more complicated query function to generate the SOT Region4304, the fields in each SMCCAM
Word 900 each need to perform two comparison operations in parallel (if the two operations are done sequentially, then it is the
same as Version 2). This makes the hardware more complicated, but will reduce the time to perform occlusion processing by
about a factor of two.
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Version 4: Use a looser appraximation of the Occluding Region
Another choice to reduce the occlusion processing time is to use a looser approximation of the Occluding Region. For
example, the “L-shaped” SOT Region 4304 in Figure 43 (which is a good approximation) can be made into a simple rectangular
region by increasing its area. Figure 44 shows the same two spans4401 and 4402 as shown in Figure 43, and an SOT
Region 4404 that is larger and simpler than the SOT Region 4304 from Version 3 of the method. The SOT Query that generates
this SOT Region 4404 is the combination of Equation 124 and Equation 125 such that the Jooser constraint is used for each

field. The query operation is:

(EQ 126)

F,.Q = F’NAF”QA (n#Sc) A [(x"LT<xCR) vV (x1B<¥cg)l A [(x‘x.r<J:CL) v (x.n<xCL)]
AllGyr<zce) v (zgp<icpp)l Vv [(zm'r<zcrr) v (z,p <Zcpp)]]
F.Q= FAVAF'QA (1) A(n#2) A

A [(xppr <) V (3 <3pp) ] A [(Fry<Xy1p) V (X,gp <%31p)]
A 1< Zempy) v Gup <2ap)] ¥ (2R <Zppy) ¥ (app <218)]]

When this looser approximation is used for the SOT Region 4404, more Potentially Occluding Spans (on the average)
that are actually hidden will be found, thereby reducing performance. However, this may yield a net gain because the number of
query operations is reduced.

Transparency

The Span Sorting Rendering Architecture 500 can render transparent geometry (colored geometry that can be ﬁeen
through) by generating its spans in the same way as those for opaque geometry. Translucency can be handled in a similar way,
but this document focuses on transparency. To aid in the rasterization process, the transparency of each span is marked in the
Span Memory 408 by one of three methods: 1) another flag bit, Fyy, is added to each word 900; 2) a bit in the Information
Pointer Field 814; or 3) another field, a Translucency Field, is added to each word 800, The opacity coefficient (i.e., the amount
of light transmitted by the transparent geometry) is stored in the Polygon Information Memory514 along with the other color
information.

There are various ways to handle transparent spans within the rasterization method presented in this document. As an
aid in the following explanations, Figure 45 (a modified version of Figure 11) shows a set of segment spans4500 t0 4513 in a
raster line where the visible opaque surfaces are shown as thick black lines and the visible portions of the transparent
spans 4502, 4505, and 4507 are shown as thick shaded lines. This section of the document uses an example with segment
spans, but the transparency methods can be applied to trapezoidal spans and quadrilateral spans.

Version 1: Keeping visibility characteristic consistent over the Current Span

This vezsion of the method keeps the visibility characteristic of the Current Span, Sc, consistent by making S¢ smaller,
if necessary, when a transparent span occludes it. The method follows the frontmost opaque spans, and adds in the effect of trans-
parent spans if they are found to occlude S.

For example, in Figure 45, when the SOT Query for S; 4501 finds the transparent span S, 4502, S is changed to the
part of S; 4501 between x;; 4524 and xy 4526, and S) 4501 is also kept as the Saved Span, S, 5o that its part to the right of
xy1, 4524 will be the next Sc. When this part becomes Sg (i.e, the part of S; 4501 between x, 4526 and x5 4528), its SOT
Query also finds S 4502, and the combination of §; 4501 and S, 4502 is rendered. The combination of §3 4503 and 5, 4502

is processed in a similar way.
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When S, 4504 is reached, it is first processed as its part located between xg; 4530 and xg 4532 and includes the
effect of S 4502. Then, when Sc-is the portion of S; 4504 to the right of xs; 4532, the SOT Query finds both S5 4505 and
S 4506. At this point, the method and apparatus can be designed to either: 1) read the leftmost opaque occluding span; 2) read
the leftmost transparent occluding span; or 3) read the leftmost span or either type. The first of these choices is assumed here.
Hence, by a rendering rule similar to Rule 3 2400, Sc is reduced to the portion of S, 4504 between xg 4532 and xg 4534.
But, before S¢ is rendered, transparent spans in the SOT Region are read, thus obtaining S5 4505. Because S5 4505 covers all of
Sc (i.e. S4 4504 between x5; 4532 and xg1 4534), S is not further divided, and is rendered as the combination of S, 4504 and
S5 4505 over the interval from x5; 4532 to xg; 4534, Within the same rendering rule, Sg 4506 is made Sp, and all of it 4506 is
designated as Sc.

The span S¢ 4506 is processed similarly to 4 4504 in that its first portion, from xg 4534 to x;; 4536, is combined
with the transparent span S5 4503. Its second portion, from x7; 4535 to xg 4536, is combined with the transparent span
§74507. And, its third portion, to the right of xg; 4536, is hidden, and then S 4507 becomes Sp. From xg;_ 4536 to the right,
the spans are processed be described in previous section because there are no more transparent spans.

Version 2: Dividing the raster line into pieces where depth visibility changes

This version of the method follows, in lefi-to-right order, the frontmost spans whether they are opaque or transparent.
When opaque spans are rendered from left to right up to the x~coordinate where a visible transparent span starts, rendering of the
opaque spans is temporarily suspended (in essence, that rendering process is pushed onto a stack), and rendering shifts to the
transparent span. Then frontmost transparent spans are rendered from left to right until either: 1) the transparent spans end at an
x-coordinate where either only opaque spans or no spans exist; or 2) the frontmost transparent span is occluded by an opaque
span. At that point, rendering returns to the rendering of opaque spans that were temporarily suspended (the rendering process
stack is popped).

As transparent spans are rendered, they are deleted from the Span Memory 408 in order to keep them from being
re-rendered later in the method. Because a transparent span can transition from visible to hidden and then become visible again
as the method renders farther to the right, the visible part that is already rendered needs to be deleted to keep it from being
re-rendered. This can be done by overwriting the transparent span in the Span Memory 408 and changing its left endpoint. Thus,
when a transparent span is rendered, if it is rendered to its right endpoint, it is deleted completely. When a transparent span is
partially rendered, only the rendered part is deleted.

In portions of the raster line that have one visible transparent span, the stack-oriented approach renders the transparent
spans first, then the opaque spans. In portions of the raster line that have two visible transparent spans (one in front of the other),
the stack-oriented approach renders the frontmost transparent spans first, then the second from the front transparent spans, and
finally the opaque spans. As long as the rendering process stack does not overflow, this method can render any depth of visible
transparent spans.

The raster line can be thought of as being divided into pieces at x-coordinate locations where the visibility depth
changes (e.g., from one to two, from two to three, from two to one, etc.). Within these pieces, visible spans are rendered in 2
front-to-back order. Having the rendering done in front-to-back order allows pixel color values to be correctly blended. This is in
contrast to prior art methods (such as the Z-buffer technique) that renders geometry in random order.

Using the spans shown in Figure 45 as an example, this version of the method renders the visible portions of S, 4500
and 5} 4501 up to x5 4526. At that point in the method, Sc is the portion of §) 4501 between xy; 4526 and xy; 4528, and it is
pushed onto the rendering process stack. Next, the transparent spans S, 4502, S5 4505, and S, 4507 are rendered from
x71 4526 1o xg; 4536. As these spans are rendered, S, 4502 is deleted, S5 4505 is deleted, and part of Sy 4507 is deleted by
changing its left endpoint to (g , Zyemp1) 4540. Next, the rendering process stack is popped, and S is restored to the portion of
514501 between xy 4526 and x3; 4528. There, rendering of opague spans resumes, and the visible portions of spans §; 4501,
§3 4503, 5, 4504, and S 4506 are rendered from x,; 4526 to xg; 4536. The next Sc is set to all of Sy 4508, and the balance of
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the opaque spans are rendered. The remaining piece of S5 4506 is hidden, so the method avoids reading it 4506 from the Span
Memory 408.
Version 3: Perform multiple passes

In this version of the method, a multiple pass strategy is used. In the first pass, all the opague geometry is rendered
with the previously described method of this document. At the end of rendering the opaque spans, all the Valid Flags816 for the
opaque spans have been turned off. Then, in the second pass that renders the transparent spans, the Valid Flags816 for all the
opaque spans are tumed on, and each transparent span is then sequentially tested to determine if it is occluded by an opaque
span, and then its visible portions are rendered.

As a possible option, as an opaque span is rendered, a query is done to find all transparent spans that are completely
behind the opaque span and de-assert the Valid Flags 816 of such transparent spans. This reduces the number of transparent
spans that are processed and are hidden, but increases the processing required by each opaque span by adding another query. To
reduce this overhead, the query that invalidates transparent spans can be done once afier every set of abutting opague spans.
Hence, when the rendering of a set of abutting spans ends, the maximum z-value of any of the visible portions of spans in the set
is used as the minimum z-value in the query to find hidden transparent spans. This option is assumed in the example described in
the next paragraph. This option may consider a single span as a one-gpan set for use as occluding transparent spans.

Using the spans shown in Figure 45 as an example, in the first pass of this version of the method renders the visible
portions of S 4500, §; 4501, 5; 4503, and S, 4504. At this point in the method, rendering of a set of abutting spans has ended,
and transparent spans hidden by the set are invalidated by a query that finds transparent spans completely within thex-coordinate
range of x;; 4524 to xg; 4534 and having the z-value of both its endpoints greater than Ziemp 4542. Next, the visible part of
S5 4506 is rendered. Then, the abutting span set of Sg 4508 and 5,9 4510 is rendered, and a query is done to invalidate the trans-
parent spans behind the set. Likewise, when §;, 4511 and S;, 4512 are rendered, the same sart of query is done. The other
opaque spans in the raster line are processed normally. At the beginning of the second pass, all the Valid Flags816 of the opaque
spans are asserted, and then the ransparent spans are sequentially processed in a left-to-right arder. In the example, S, 4562 is
read from the Span Memory 408, an SOT Query is done for it 4502 which finds no occluding spans, and it is therefore rendered.
The span S¢ 4506 is processed similarly. For S, 4507, its SOT Query finds Sg 4508, so Sy 4507 is only rendered up to
xgr 4536. Since no other transparent spans are left, this raster line has been completed.

An optional change to this version of the method is to store the transparent spans in a memory separate from the Span
Memory 408, Then, in the second pass, each transparent span is read from this separate memory, has an SOT Query done for it,
and has its visible parts rendered.

Additional considerations for transparencies

Polygon coloration is frequently described by texture maps. Some texture maps are defined to have some pixels be
100% transparent (perfectly clear). A typical example use of such & texture map is an image of a tree mapped onto a rectangular
“billboard-type” polygon (billboard polygons automatically rotate to face the viewing point), where the comess of the rectangle
are clear, and holes within the tree’s image can occur. Polygons with such texture maps need to have their spans processed as
transparent spans. This is because they do not completely occlude all the geometry behind them. Hence, when a polygon uses &
texture map with transparent pixels, spans in that polygon are assumed to be transparent, and the texture map dictates the opacity
coefficient for each of its pixels.

When trapezoidal spans (or quadrilateral spans) are used, spans that include corners and edges of polygons that have
either a span top or span bottom but not both, can be processed as transparent spans. This can be done because spans of this type
do not completely occlude more distant spans, just as transparent spans do. Hence, this section of the document on transparency
can be used to process spans that only partially cover the vertical height of the raster line.

Spans Represented by Quadrilaterals
Representing spans with trapezoids has the disadvantage of requiring the location of four points inx-z plane (not pre-
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cisely a plane, it has the thickness of one raster line), which, in turn, requires lots of bits of memory. This is especially true if the
z-values are 32-bits each. )

In arder to reduce the memory requirements, the endpoint location of a span can be approximated by twox-values and
one z-value. In essence, the two points that describe the endpoint have the same z-coordinate, but have different x-coordinates.
Therefore, the number of fields for storing coordinates is reduced from eight to six. This introduces a small amount of error in
the antialiasing methods described above, but the error is only significant for polygons that are nearly parallel to thex-z plane.
For these polygons, the look direction is very close to being a tangent to the plane of the polygon. However, for most applica-
tions, this ervors is acceptable because the projection of these polygons onto the viewing plane 102 has not changed.

Figure 46 shows the trapezoidal spans S, 4601, S, “03. and S, 4604 as dashed lines, and shows the quadrilateral
approximations of these spans, 5’y 4611, '3 4613, and 5’4 4614 as solid lines. In this figure, endpoints for the quadrilateral
spans are always a horizontal line segment. Figure 47 is similar to Figure 39, except that all the trapezoidal spans have been
replaced by their trapezoidal approximation. Note that some of the trapezoidal spans appear to fold over themselves. Trapezoidal
spans can be processed by similar methods to those described in this document for trapezoidal spans.

Preservation of Rendering Order

For some applications, the order of rendering must be preserved. A typical example is the “painter's algorithm” (see
Foley Reference, page 674) as used in computer windowing systems. To render an inner rectangle with a boarder, first the
boarder is rendered as a filled rectangle, then the inner rectangle is rendered, over-writing most of the pixels in the boarder rect-
angle. If the rendering order of these two rectangles is reversed, then the entire area will have the color of the boarder rectangle
because the inner rectangle will be completely over-written. If these two rectangles have a distinct placement due to different
z-coordinates, then they will be rendered correctly. However, if no z-coordinate is specified (the default would be the depth of the
viewing plane 102), then the order must be preserved. This can be done by having the Bucket Sort Processor 504 and the Cur-
rent Polygon Processor 506 maintain the order in which they are received from the Polygon Processor 502. The Query Proces-
sor would maintain the rendering order by placing spans for later input polygons into later positions in the span list. Then, as
rendering proceeds, rendering order is preserved because, in the case of ties inz-coordinate, spans earlier in the list will be ren-
dered first and later geometry with the same z-coordinate will be assumed to be hidden.

Method and Apparatus Options and Possible Enhancements
Add to single buffered VGA graphics card

The video output for computers (for example, VGA and SVGA interfaces on IBM compatibles) generally includes a
frame buffer memory that stores the pixel information sent to the display device (i.e., the CRT). The 3D graphics rendering meth-
ods and/or apparatus described here can be added to such a display system. The CPU (or DMA coatroller) writes geometry into
the renderer, and it gets processed and stored into the Bucket Sort Memory (which may need to be double buffered). When the
geometry is done being written, the rest of the pipeline synchronizes to the computer display, and generates spans before they are
needed, overwriting the previous frames’s data in the computer’s frame buffer. Hence, a low cost, but high performance, 3D
graphics accelerator can be added to a computer without adding more memory to the frame buffer.

Turn off antialiasing on specific polygon edges »

The antialiasing method described above assumes that every polygon has independent color values; and when abutting
spans are found, the pixels that include both of the spans need to have their colors be a blend from the two polygons. However,
polygons that share an edge often have exactly the same color information along the edge. For example, this occurs for Gouraud
shaded polygons that have the same color and surface normal information at both ends of the same polygon edge. For these types
of edges, the pixel blending can be ignored because two identical colors will be blended together. Such polygon edges can be
tagged as “skip antialiasing” when they are supplied to the renderer. Then, if such edges are found to be part of an abutting span
pair, the pixel color value for one of them (say, the one on the right) is skipped, thereby saving computation. Edges that are
tagged but are not part of an abutting span pair are processed by the antialiasing methods described above. Prior art renderers can
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not take advantage of this saving because they do not search for abutting spans or polygons. That is, prior art renderers generally
assume every polygon is independent from all other polygons. If tagging is not done (due possibly to constraints imposed by the
interfacing software), the Span Sorting Rendering Pipeline 400 can automatically generate such tags for edges within polygon
meshes and strips where an edge shared between two polygons has the same color infarmation for both polygons.
Store edge pairs rather than polygons in Bucket Sort Memory 404 )

Rather than store polygons in the Bucket Sort Memory 404, polygon edge pairs can be stored. This means polygons
are horizontally sliced so that each horizontal strip of a polygon does not contain any polygon comers. Hence, polygons are hor-
izontally sliced at the y-coordinate (or nearby raster line boundary) of comers that are at neither yopapr of yerp- This polygon
slicing makes downstream processing easier by eliminating the need to test for when to change to a new edge at the corner of a
polygon.

Eliminate Current Polygons Memory 406 and read from Bucket Sort Memory 404

By adding more “smarts” to the Bucket Sort Processor 504, the Current Polygon Memory 406 and the Current Poly-
gon Processor 506 can be eliminated. This means polygons within the current raster line are fed, at high speed, directly from the
Bucket Sort Processor 504 to the Span Generation Processor 508.

This has the disadvantage of accessing the Bucket Sort Memory 404 at a much higher rate, thus probably requiring the
Bucket Sort Memory 404 to be fast memory, rather than slow memory. Another disadvantage is the need for a more complex
data structure within the Bucket Sort Memory 404, rather than a simple linked list. One possible way to do this is to sort poly-
gons within each “bucket” according to its ypNp parameter in reverse order. Then, at each raster line, every “bucket” is read until
a polygon is reached that has its ygyp) parameter greater than the y-coordinate of the current raster line, thereby indicating that
this polygon and those after it in the same bucket are not in the current raster line.

A decision to use this alternative must be based on an engineering decision between a large fast memory versus a large
slow memory coupled with a small fast memory. Also, the processing time required o doubly sort (i.e., into buckets and then
also within buckets) the Bucket Sort Memory 404 must be considered. '
Front and rear clipping planes

By adding clipping planes, the view volume (shaped as an infinite pyramid) is changed into a frustum. Right before
spans are written into the Span Memory 408, the z-value of their endpoints are compared to the z-location of the front and rear
clipping planes. If both endpoints are nearer then the front clipping plane or farther than the rear clipping plane, then the span is
discarded. If one endpoint is farther than the rear clipping plane, then that end of the span is shortened so that its endpoint is on
the rear clipping plane. If one endpoint is nearer than the front clipping plane, then that end of the span is shortened so that its
endpoint is on the front clipping plane. This requires a set of comparators to be added to the either the Span Generation
Processor 508 or the Query Processor 510.

Mulsiple arbitrary clipping planes

An aibitrary clipping plane could be done the same way as simple front and rear clipping planes, except, right before a
span in written into Span Memory 408, Span Interaction Parameters between the span and the span of clipping plane are gener-
ated, and these are used, as described above, to determine the Span Interaction Type (SIT). The span is then kept, clipped, or dis-
carded depending on the SIT.

This could also be done by adding dummy spans into the Span Memory 408 that represent the location of an arbitrary
clipping plane. Then the rasterization methods described above could be altered to make sure all rendered spans are behind these
dummy spans.

Geometry Cache

A memory at the input to the pipeline could be added to store geometry as it is input for rendering. Then, when subse-
quent scenes are rendered, this stored (or “cached”™) geometry can be re-rendered (with possibly changed translation matrices),
thereby saving cycles on the system bus. This could solve a bottleneck caused by having a renderer that can process more geom-
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etry per second than the host computer bus can support. It can only be applied to geometry that has not changed shape since its
previous rendering. “Squishy” objects would generally need to be supplied to the renderer for every scene.
Use only one page of Span Memory 408

It is possible to use only one page of Span Memory 408. This is done by shifting valid spans toward upper words,
leaving lower words invalid. Then, as new spans are generated, store them into the lower words. This strategy can be thought of
as a single bank of memory that is separated into two pages by a moving boundary. This can be done because, as a raster line is
processed, spans are deleted, while the simultaneous process of preparing for the next raster line generates spans.

As an alternate approach, the fixed Word Number Field 802 can be changed to a variable Tag Field. Unique (and ran-
dom will do) tags for each span are written into the Tag Field, and designate if: 1) a span is in the current raster line or the next
raster line; and 2) be a unique identifier for the span. Furthermore, the Tags can be included in the query process such that spans
from the current raster line can be intermixed with those in the next raster line. As long as spans in the same raster line are kept
in order with respect to each other, then spans from an unrelated raster line can be intermixed as long as they are ignored. This
could be done by maintaining two sets of Valid Flags 816, one for each raster line. Spans from more raster lines could be simul-
taneously maintained by adding more sets of Valid Flags 816.

Separate Read and Write Busses in the Span Memory Page

The circuit for the SMCCAM Cell 3400 or 3500 can be modified to have both an input bus and an output bus. This
allows simultaneous read and write operations. The is specially useful if there is only one page of Span Memory408 as
described in the previous section.

Computing SIP and SIT only when bounding boxes overlap

Rather than computing the SIT for every New Span, Sy, compute it sequentially with less hardware only when bound-
ing boxes overlap. This sacrifices time in order to save circuitry.

Split raster line into smaller pieces to save on SMCCAM memory '

The total number of words in the Span Memory Page 800 imposes a limit on the number of spans that can be pro-
cessed for a given raster line. This limitation can be overcome by conditionally splitting the raster line in half (or more pieces if
necessary), and passing through the span data twice, This decision can be done on the fly as a scene is rendered or by an a priori
decision before rendering starts.

Have an overflow RAM to save spans that are shifted out during sort operations

Rather than splitting the raster line in to pieces, the Span Memory Page 800 can be augmented with an “overflow
RAM? that stores spans as they are shifted out of the last SMCCAM Word 800. Shifted out spans would start at far right of ras-
ter line, so the left side of the raster line could be processed normally until xcy gets to left of leftmost shifted out span. Then,
shifted out spans could be re-written into the Span Memory Page 800 because may spans have been deleted (i.c., invalidated) by
the rasterizing process.

Inclusion rendering primitives other than polygons

Geometry primitives other than polygons (such as CSG primitives) can be processed by the Span Sorting Rendering
Pipeline 400. This can be done as long as the ysar and ygnp parameters can be computed (so the primitive can be stored into
the Bucket Sort Memory) and spans with bounding boxes can be generated. The corners of the bounding box are used as the
Span Parameters, and SOT Queries can be used to find the visible portions of the bounding boxes. Another set of Span Interac-
tion Types would be needed for the specific set of geometry primitives.

Low cost version can use CPU for front end

The host CPU, or a dedicated general-purpose processor, could perform the tasks of the Polygon Processor502, thus
feeding geometry in screen coordinates (in object-precision) to the rest of the pipeline. Similarly, such a CPU could perform
more of the front end of the pipeline 400. For example, a CPU and its general purpose memory could perform the tasks of the
Polygon Processor 502, the Bucket Sort Processor 504, and the Bucket Sort Memory 404, and feeding polygons that start on
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the present raster line to the rest of the pipeline.
Alternate sorting mechanism could use up-counting tag

The Word Number Field 802 could be replaced with a conditional up-counter, in order for shifting to be eliminated
from the SMCCAM. When a new span is being written to the SMCCAM, a query determines which spans should be later in the
sorted list than the new span. Such “later” spans have their up-counter incremented, and no shifting is performed. The up-counter
for the new span would be assigned the lowest counter number in the list of “later” spans before the up-count takes place.

This approach means the “get the first span in the sorted list” becomes “find the smallest counter value” in the Span
Memory 408. Hence, the sorting (ie., shifting) is replaced with a new search type. For this to be fast, the hardware would need
to have a “find the smallest” function associated with the set of up-counters. Also, this “find the smallest” could be performed in
bit-serial method.

Using a generic CAM

Generic, prior art CAMs could be used, but magnitude comparisons would be bit sequential. This would greatly slow -
the processing, but may afford some cost savings in the hardware. This alternative would probably use the up-counting tag, as
described in the previous section.

Using multiple registers per arithmetic comparator

The above description of the SMCCAM assumes a one-to-one match between memory register and arithmetic compar-
ators. An alternate approach is to have all the memory registers in the same word share a single arithmetic comparator. This saves
on circuitry, but slows the processing. However, since not all fields participate in every query operation, the performance loss is
not proportional to the total number of fields.

Other alternate approaches could share comparators between words, ar between words and fields. These approaches
further reduce the amount of hardware, but further reduce the performance. If any of these shared comparator approaches are
used, then a standard six-transistor RAM cell should be used because it provides the greatest density. Hence, the searching and
sorting hardware could be made from a set of multiple-word memories, where each such memory has one or more comparators
associated with it.

Using a RAM-based sorting processor

An alternative to using & CAM of any type can be done by having a fast linked list sorting processor. By utilizing fast
memory, spans could be sarted into a linear list in the same order as described above (using an SMCCAM). But, since spans are
added and deleted frequently, this approach might be very slow. The advantage is the ability to use fast off-the-shelf RAMs that
are readily available.

To aid in SOT Query operations, a two-dimensional data structure could be used that sorts the spans in both thex and z
dimensions at the same time. Such a searching and sorting structure is described on pages 24 to 55 of “Data Structures and Algo-
rithms 3: Multi-dimensional Searching and Computational Geometry™, by Kurt Mehlhom, a volume in the EATCS series on
Monographs on Theoretical Computer Science, edited by Brauer, W., et. al. ISBN 0-387-13642-8, published by Springer-Verlag,
New York, 1985.

Shadow processing

Because shadow computations are essentially the same as hidden surface removal, the Span Sorting Renderer500 can
be used for shadow computation. This can be done by utilizing multiple Span Sorting Renderers500 in parallel, or it can be
done by time-sharing one Span Sorting Renderer 500.
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What is Claimed is:

1. A sorting magnitude comparison content addressable memory (SMCCAM) comprising:

a plurality of words of memory storage, each said word having a plurality of fields for storing a polygon’s span
parameters;

query means for performing a query operation between at least two different polygon spans based on comparisons of
said stored span parameters between said at least two different polygon spans to determine which of said spans is visible and

which of said spans is occluded.

2. The SMCCAM in Claim 1, wherein said query means further comprises Span Occluding Test (SOT) means

for performing a Span Occluding Test to determine which of said spans is visible and which of said spans is occluded.

3. The SMCCAM in Claim 2, wherein said Span Occluding Test (SOT) query means comprises:

means for generating a span occulting test (SOT) region based on span parameters for a Current Span Portion (SC)
having current span endpoints (X, Z¢,) and (g, Zgy) being tested to determine if it is occluded;

means for identifying a selected span as an occluding span if said selected span having endpoints (Xugs Zy) and (X5,
z,;) lies within said Span Occulting Test Region according to the relationship: Selected Span is within SOT Region if { (x, <
X\ (Xg > XA [(Zy, <Zep)V (2,2 <Z)], Where zep= Maximum Of (zgp, Zgy).

4. The SMCCAM in Claim 3, wherein said operation of computing zc;= Maximum Of (z, 2, ) is performed
external to said SMCCAM and said SMCCAM further comprises:

input bus means for receiving values of X, , Xcp, and Zgy, into said SMCCAM so that said X¢, Xcz, and Zg; values are
compared to said selected span endpoints to identify said selected span as an occulting span;

said SMCCAM testing all of said polygon spans simultaneously and in parallel;

said SOT query result being stored in a field of said SMCCAM word.

5. The SMCCAM in Claim 4, further comprising:
means for preventing words storing invalid data from being identified as occluding spans; and

means for preventing a current span from being identified as an occulting span for said current span.

6. The SMCCAM in Claim 4, wherein each said span is modeled by geometric properties of said span including:

coordinates of the left endpoint of the span, and coordinates of the right endpoint of the span.

7. The SMCCAM in Claim 6, wherein said spans are represented by trapazoids, and wherein said endpoints of each

span are two (x,z) points, one for the top edge of the current raster line and one for the lower edge of said current raster line.

8. The SMCCAM in Claim 6, wherein said spans are represented by quadrilaterals, and wherein said endpoints of
each span are an (xy,x,,z) triplet including one z-coordinate and an x-coordinate for the upper and lower edges of the current

raster line.

9. The SMCCAM in Claim 6, wherein said spans are represented by line-segments, and wherein said endpoints of

each span are an (x,z) point within the current raster line.

10. A sorting magnitude comparison content addressable memory (SMCCAM) comprising:

a plurality of memory registers, each word comprised of a multiplicity of fields, each said field including;
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means for storing a number;

comparison means for performing an arithmetic comparison between said stored number and another number
broadcast to and received by all of said memory registers (words); and

means for shifting its stored number contents to the corresponding field in the next word, where said shifting is
conditionally based upon the results of said arithmetic comparisons;

said memory registers storing a set of spans and said comparison means performing parallel searching and sorting

operations to find the visible span portions.

11. The SMCCAM in Claim 10, wherein each said n® SMCCAM word includes:
seven numeric fields including:
a Word Number Field (w) that stores a unique identifying number address for each word;
a Left X Field (x,) that stores the x-coordinate of the left endpoint of a span;
a Left Z Field (z,) that stores the z-coordinate of the left endpoint of a span;
a Right X Field (x,,) that stores the x-coordinate of the right endpoint of a span;
a Right Z Field (z,,) that stores the z-coordinate of the right endpoint of a span;
a Span Derivative Field (d,) that stores the dz/dx slope of the span; and
an Information Pointer Field (i,) that stores 2 pointer into a Polygon Information Memory for color
information for the span’s polygon; and
a plurality of flag fields including:
a Valid Flag (F,y), a single bit value indicating whether the SMCCAM Word is storing valid data; and
a Query Flag (F,), a single bit value indicating whether the SMCCAM Word responded positively to a
query operation;
each said flag bit having a corresponding wired-nor bus that indicates whether ali words have said flag bit turned off,
such that for the Valid Flag (F,), if FaV is false for all words (n), then a signal AllWordsInvalid is asserted, and if FnQ is
false for all words (n), then a signal NullQueryResponse is asserted;
said two wired-nor signals, AllWordsInvalid and NullQueryResponse, providing means for feeding back query
results to an external controller in a Query Processor, so that said query Processor can make decisions, including branch

decisions.

12. The SMCCAM in Claim 11, wherein each of said numeric field w, X, 2,1, Xz, Z, d,, and i, have a
corresponding data bus BusW, BusXL, BusZL, BusXR, BusZR, BusD, and Busl for communicating a value to each of said
numeric fields;

said numeric field W, X, 2, , X,z, Z, and d,, each comprising a memory portion and a comparator portion;

said w field memory portion providing fixed readable memory and said w comparator portion providing an equality
comparison circuit used for query operations, that compares the fixed memory value to data received over said input bus,
BusW;

said numeric field Xy, Z,, Xz, Z» d,» and i, field memory portions each providing readable and writable memory
and said comparator portions providing an arithmetic magnitude comparison including greater-than, less-than, equal-to,
operations and combinations thereof, used for query operations, that compares the stored memory value in said memory
portion to the data on the corresponding input bus;

said Information Pointer Field, iw, having a readable writable memory portion.

said array busses supplying query data to all said words via said Array Busses;

means for performing a query operation by all said SMCCAM Words simultaneously and in parallel in response to
receipt of said query data;

a Query Logic Array comprising a Query Logic circuits associated with each said SMCCAM Word for computing
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query operation results;

said Query Logic receiving the query operation results from said equality and arithmetic comparators and said Valid
Flag and said Query Flag values;

a query controller generating a QueryCntrl signal for selecting a selected Boolean operation;

means for performing said selecmble.Boolean operation on said query operation results, said Valid Flag values, and
said Query Flag values, for every word, to generate a query result bit for every word;

means for writing said query result bit back into either said Valid Flag or said Query Flag depending upon a control
signal;

the set of all Valid Flags for all said SMCCAM words comprising a Valid Flag Word, and the set of all Query Flags
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for all SMCCAM words comprising a Valid Flag Word;

said query results identifying which of said words satisfied the query operation parameters.

13. A query processor apparatus comprising:

means receiving each raster line of data;

means for receiving spans from the Span Generation Processor;

means for determining the visible span portions;

means for sending visible span portions of said received spans to an external Rasterize Processor;

first Span Memory Page Means for receiving Span Parameters from an external Span Generation Processor;
second Span Memory Page Means for query interrogation to determine the visible span portions;

multiplexer means (Query Processor crossbar) for swapping data between said span memory page means and said

second span memory page means;

a register file subdivided into a plurality of registers for storing Span Parameters including:

a plurality of registers for storing the Current Portion of a span, SC;

a plurality of registers for storing the Present Span, SP;

a plurality of registers for storing the New Span, SN;

a plurality of registers for storing the Saved Span, SS; and

a plurality of temporary registers for storing for storing data including span intersection location data;

a Query Processor Controller for determines the sequence of operations in said Query Processor, including the

sequence of query operations;

SIT Generation Logic means coupled to receive said Current Portion Span Parameter (SC) and said New Span

Parameter (SN) and generating a Span Interaction Type (SIT) Result;

compare and offset computation means coupled to said span parameter registers and receiving parameters from said

registers for computing said SIT Result; and

selectably operable Intersection Computation Block means for computing an intersection point between said Current

Span (SC) and said New Span (SN), said operation being selected by predetermined rules.

14.

A span sorting rendering apparatus comprising:

a polygon processor;

a bucket sort processor;

a bucket sort memory coupled to said bucket sort processor for storing data;
a current polygon processor;

a current polygon memory coupled to said current polygon;

a span generation processor;

a query processor;

a span memory coupled to said processor;



10

15

20

30

35

WO 97/05575 PCT/US96/12301

- 64 -
a rasterize processor; and
a raster line memory coupled to said rasterizer.
15. In a memory apparatus having a plurality of storage registers for storing data, and a data structure defined

within said memory apparatus, a method for testing for span occultation of a current span by a selected different span, said
method comprising the steps of:

receiving a polygons’ span parameters and storing said parameters in predetermined storage locations within said data
structure;

performing a span occluding test query operation between at least two different polygon spans based on comparisons
of said stored span parameters between said at least two different polygon spans to determine which of said spans is visible and
which of said spans is occluded; and

storing said span occluding test query results in said data structure.

16. The method in Claim 15, wherein said Span Occluding Test (SOT) query comprises the steps of:

generating a span occulting test (SOT) region based on span parameters for a Current Span Portion (SC) having
current span endpoints (X, Z,) and (X, Zcp) being tested to determine if it is occluded;

identifying a selected span as an occluding span if said selecied span having endpoints (x5, ;) and (X5, z,,) lies
within said Span Occulting Test Region according to the relationship: Selected Span is within SOT Region if { (x; < XN (X2
> XN (2, <Zep)V (2,2 <2))], where = Maximum Of (2, Zy)-

17. The method in Claim 16, wherein said method further comprises:

receiving values of X¢, Xcg, and Zg, into said memory so that said X, Xeg, and z values are compared to said
selected span endpoints to identify said selected span as an occulting span;

testing all of said polygon spans simultaneously and in parallel; and

storing said query result in a field of said memory.

18. The method in Claim 17, wherein each said span is modeled by geometric properties of said span including:

coordinates of the left endpoint of the span, and coordinates of the right endpoint of the span.

19. The method in Claim 17, wherein said spans are represented by trapazoids, and wherein said endpoints of each

span are two (x,2) points, one for the top edge of the current raster line and one for the lower edge of said current raster line.

20. The method in Claim 17, wherein said spans are represented by quadrilaterals, and wherein said endpoints of
each span are an (xy,X,,2) triplet including one z-coordinate and an x-coordinate for the upper and lower edges of the current

raster line.

»



WO 97/05575 PCT/US96/12301
- 65 -

AMENDED CLAIMS
[received by the International Bureau on 03 January 1997 (03.01.97);
original claims 1-20 replaced by amended claims 1-37 (8 pages)]

1. A sorting magnitude comparison content addressable memory (SMCCAM)
apparatus comprising:

Means for storing a plurality of words, each of said words comprising a
plurality of data fields, each of said data fields being divided into a plurality of data bits;

Means for providing an input comprising a plurality of input fields
matching some of said data fields, each of said input fields divided into input bits so as
to have a one-to-one bit correspondence to said data bits in said data fields in said
words;

Query means for simultaneously comparing said plurality of input fields
to all said words, with simultaneous field comparisons such that each said data field is
compared to its corresponding input field, and for generating a one-bit query result for
each said word which query result is true when all said data fields within said word
which are compared to one of said input fields compare favorably to each
corresponding input field;

Flag memory storage means for storing a flag bit equal to said query
result for each of said words; and

Shifting means for conditionally shifting data stored in said data fields of
each said word to corresponding fields of a different adjacent word said flag bits stored

in said words.

2 A sorting magnitude comparison content addressable memory (SMCCAM)
apparatus as in Claim 1 wherein said flag memory means include means for storing a

plurality of said flag bits associated with each of said words.

3. A sorting magnitude comparison content addressable memory (SMCCAM)
apparatus as in Claim 2 wherein said flag memory means includes means for outputting
a multiplicity of output flag bits for each said word into query logic means which

performs a selectable Boolean operation for each said word on both said output flag

AMENDED SHEET (ARTICLE 19)
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bits and said query result to form a flag result for each said word and stores said flag

result into said flag memory.

4. A sorting magnitude comparison content addressable memory (SMCCAM)
apparatus memory as in Claim 3 including control means for causing said fields
comparisons to be one of a plurality of different query comparison operations including
either equality, less-than, less-than-or-equal-to, greater-than, greater-than-or-equal-to,

inequality, of don’t care.

5. A sorting magnitude comparison content addressable memory (SMCCAM)
apparatus as in Claim 4 including at least one priority resolver means for selecting the
highest priority said output flag bit from the multiplicity of said output flag bits for
purposes of selecting one said word for:

reading or writing; or

determining the set of set words perform said conditional shifting.

6. In a graphical processing system for processing 3-dimensional object geometry
data and rendering at least some of said object geometry data on a 2-dimensional
display screen, a method for rendering a scan line comprising the steps of:
(a) Transforming an object geometry data into a polygonal
representation, said polygonal representation comprising at least one
polygon, each or said polygon defined by a set of polygon parameters
including polygon vertices having display screen relative coordinates;
(b) Sorting said polygons using a bucket sorting routine wherein a
separate memory bucket is allocated for each display raster line and a
polygon is placed into the one particular bucket that corresponds to its
starting raster line; and
(c) For each display raster scan line:
(i) Maintaining a list of all current polygons that intersect the

raster scan line currently being rendered;

AMENDED SHEET (ARTICLE 18)
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(i) Generating a span for each polygon that intersects the
current raster scan line based on geometric properties of said
polygon including said polygon parameters;

(i) Storing geometric properties of each said generated span
into a span memory; and

(iv) Performing span occluding tests to determine which spans
or portions of spans are visible in the rendered scene; where said

span occluding test comprises the steps:

(1) selecting a current span portion which is part of a
span that is potentially visible;

(2) determining the leftmost, rightmost, and farthest
spatial coordinates in the said current span portion;

(3) performing a query operation on the said stored
geometric properties in said span memory to find all said
spans whose stored geometric properties include: a
spatial coordinate located between said leftmost and said
rightmost spatial coordinates of the said current span
portion; and a spatial coordinate closer than the said

farthest spatial coordinate of the said current span

portion.
7. The method in Claim 6, wherein said span memory comprises a data array in a
random access memory (RAM).
8. The method of Claim 6, further comprising the steps of: rasterizing said spans

or said portions of spans that are visible.

9. The method in Claim 6, wherein said step of performing span query operations

further comprises the steps of:

(a) comparing said span data being stored into said span memory to
span data previously stored into said span memory to thereby compare

first stored data directly with second stored data; and
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(b) inserting said span data being stored into said span memory so as to

maintain a sorted list of said span data within said span memory.

10.  The method in Claim 9, wherein said step of storing geometric properties of
each said generated span further comprises sorting said spans in order of precedence by

1) left x-coordinate, 2) left z-coordinate, and 3) span derivative.

11.  The method in Claim 6, wherein said rendering is performed by identifying
visible polygon spans than can be rendered without performing pixel-by-pixel z-buffer

comparisons.

12.  The method in Claim 6, wherein said step of maintaining a list of all current
polygons includes the steps of: discarding the sorted list of polygon spans from
processing a previous raster line and building a new sorted list for each raster line as it

is processed.

13.  The method in Claim 6, wherein said display screen relative coordinates include
the location in object - precision screen coordinates of polygon vertices for said object

geometry.

14.  The method in Claim 6, wherein said coordinates are not limited to coordinates

within the bounding area of said display screen.

15.  The method in Claim 6, wherein said step of sorting said polygons using a
bucket sorting routine includes the st.eps of generating one linked list per bucket, and

using said linked list to perform said sorting.

16.  The method in Claim 6, wherein said polygon parameters include: the location
of said polygon vertices in object-precision screen coordinates, color information, edge
derivatives for each polygon edge, starting raster line, ending raster line, and span

derivative.
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17.  The method in Claim 6, wherein each said span can be modeled as a member of
the set consisting of a line segment, a trapezoid, a quadrilateral, or combinations

thereof.

18.  The method in Claim 6, wherein said span is defined by span parameters
including:
(a) coordinates of a first span endpoint;
(b) coordinates of a second span endpoint;
(c) a span derivative dz/dx; and
(d) an information pointer comprising an address into a polygon
information memory store where color information for said polygon is

stored.

19.  The method in Claim 6, wherein said span memory comprises a double buffered
span memory having first and second banks, wherein said span geometric properties are
written to said first bank; and wherein simultaneous to writing span geometric
properties into said first bank, span geometric properties in said second bank are

processed to identify visible span portions.

20.  The method in Claim 6, wherein said rendering is performed with sufficient

speed to provide real time image generation.

21.  The method in Claim 6, wherein said span memory comprises a said sorting
magnitude comparison content addressable memory (SMCCAM), and said sorting
magnitude comparison content addressable memory (SMCCAM) performs said query

operations.

22, The method of Claim 21, further comprising the steps of: rasterizing said spans

or said portions of spans that are visible.

23.  The method in Claim 22, wherein said step of performing span query operations

further comprises the steps of:
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(a) comparing said span data being stored into said span memory to
span data previously stored into said span memory to thereby compare
first stored data directly with second stored data; and

(b) inserting said span data being stored into said span memory so as to

maintain a sorted list of said span data within said span memory.

24.  The method in Claim 21, wherein said step of storing geometric properties of
each said generated span further comprises sorting said spans in order of precedence by

1) left x-coordinate, 2) left z-coordinate, and 3) span derivative.

25.  The method in Claim 21, wherein said rendering is performed by identifying
visible polygon spans than can be rendered without performing pixel-by-pixel z-buffer

comparisons.

26.  The method in Claim 21, wherein said step of maintaining a list of all current
polygons includes the steps of: discarding the sorted list of polygon spans from
processing a previous raster line and building a new sorted list for each raster line as it

is processed.

27.  The method in Claim 21, wherein said display screen relative coordinates
include the location in object - precision screen coordinates of polygon vertices for said

object geometry.

28.  The method in Claim 21, wherein said coordinates are not limited to

coordinates within the bounding area of said display screen.

29.  The method in Claim 21, wherein said step of sorting said polygons using a
bucket sorting routine includes the steps of generating one linked list per bucket, and

using said linked list to perform said sorting.

30.  The method in Claim 21, wherein said polygon parameters include: the location

of said polygon vertices in object-precision screen coordinates, color information, edge
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derivatives for each polygon edge, starting raster line, ending raster line, and span

derivative.

31.  The method in Claim 21, wherein each said span can be modeled as a member
of the set consisting of a line segment, a trapezoid, a quadrilateral, or combinations

thereof.

32.  The method in Claim 21, wherein said span is defined by span parameters
including:
(a) coordinates of a first span endpoint;
(b) coordinates of a second span endpoint;
(c) a span derivative dz/dx; and
(d) an information pointer comprising an address into a polygon
information memory store where color information for said polygon is

stored.

33.  The method in Claim 21, wherein said span memory comprises a double
buffered span memory having first and second banks, wherein said span geometric
properties are written to said first bank; and wherein simultaneous to writing span
geometric properties into said first bank, span geometric properties in said second bank

are processed to identify visible span portions.

34.  The method in Claim 21, wherein said rendering is performed with sufficient

speed to provide real time image generation.

35.  The method in Claim 21, wherein said new sorted list is generated within about
two clock cycles per stored data value, whereas during first said clock cycle, a query
operation determines which said words perform said conditional shifting; and during
second said clock cycle, said geometric properties of said span are written into said

Span memory.
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36.  The method in Claim 21, wherein hidden surface removal is performed by

processing spans rather than pixels, thereby reducing computation for scenes with any

significant depth complexity.

37.  The method in Claim 21, wherein said polygon spans are stored in a SMCCAM,
and wherein said step of performing a query further comprises directly querying the
entire set of polygon spans stored in said SMCCAM to identify visible spans so that the
number of comparison operations is proportional to the number of visible polygon

spans which is a number smaller than the total number of spans.
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Figure 13
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Figure 14
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Figure 15
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Figure 16
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Figure 17
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Figure 20

Figure 20A: Interaction Type 1 = (Near, Near, Non, Non) => Rule §
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Figure 20 (continued)

Figure 20F: Interaction Typc 6:(Far, Equal Non, Non) =>Rule 3
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Figure 20 (continued)
Figure 20K: Interaction Type 11 = (Near, Non, Non, Far) = Rule 5
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Figure 20 (continued)

Figure 20P: Interaction Typc 16 = (Equal, Non, Non, Near) =>Rule 3

o (a)' (i)
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Figure 20 (contmued)

Figure 20U: Interaction Typc 21= (Non, Near, Equal, Non) = Rule §
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Figure 20 (continued)

Figure 20Z Interaction Type 26 (Non, Equal, Far, Non) = Rule 5
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Figure 20 (continued)

Figure 20EE: Interaction Type 31 = (Non, Non, Far, Near) = Rule 4
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Figure 20 (continued)

Figure 20JJ: Interaction Type 36 = (Non, Non, Equal, Equal) = Rule 5
SN\ T i P :
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Figure 20 (continued)

Figure 2000: Interaction Type 41 = (Equal, Non, Equal, Far) = Rule 5

§ 1SN

) (i) (iid)
Figure 20RR: Interaction Type 44 = (Far, Equal, Non, Equal) = Rule 3
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Figure 20 (continued)

Figure 20TT: Interaction Type 46 = (Non, Equal, Near, Equal) = impossible
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Figure 21
! 2100
xcL=0; xcg =invalid; L/z-mz
Zop, =o0; ZcR =invalid;
zcp = invalid;
* .
Sp = invalid 2104
SN = invalid
Sg = invalid po—
Y 2106 No 2109
L Spvalid Yo — <t
2108 No g 2200
Fy empty 2 perform Rule 1
Yes /21 20
render background
from xcy to Xpax
> perform Rule 2
Yes
compute the Span  |,/2112
Interaction Parameters
between SC and SN
y 2114
determine the Span
Interaction Type
2116
£:4,5,6 22400
one of: 4, 5, 6,
8,13, 14, 15, 16, perform Rule 3 >
one of: 2, 10 4 2500
Nyt rform Rule 4
23, or 31 periorm Rule —>
/2600
perform Rule 5

SUBSTITUTE SHEET (RuLE

28)



WO 97/05575 PCT/US96/12301

31/56
Figure 22
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Figure 23
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Figure 24
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Figure 25
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Figure 26
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Figure 33
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